Feeds:
Posts
Comments

Posts Tagged ‘Scaffolds’


New Liver Tissue Implants Showing Potential

Reporter: Irina Robu,PhD

To develop new tissues, researchers at the Medical Research Council Center for Regenerative Medicine at the University of Edinburgh have found that stem cells transformed into 3-D liver tissue can support liver function when implanted into the mice suffering with a liver disease.

The scientists stimulated human embryonic stem cells and induced pluripotent stem cells to mature pluripotent stem cells into liver cells, hepatocytes. Hepatocytes are the chief functional cells of the liver and perform an astonishing number of metabolic, endocrine and secretory functions. Hepatocytes are exceptionally active in synthesis of protein and lipids for export. The cells are grown in 3-D conditions as small spheres for over a year. However, keeping the stem cells as liver cells for a long time is very difficult, because the viability of hepatocytes decreases in-vitro conditions.

Succeeding the discovery, the team up with materials chemists and engineers to detect appropriate polymers that have already been approved for human use that can be developed into 3-D scaffolds. The best material to use a biodegradable polyester, called polycaprolactone (PCL).PCL is degraded by hydrolysis of its ester linkages in physiological conditions (such as in the human body) and it is especially interesting for the preparation of long term implantable devices, owing to its degradation which is even slower than that of polylactide. They spun the PCL into microscopic fibers that formed a scaffold one centimeter square and a few millimeters thick.

At the same time, hepatocytes derived from embryonic cells had been grown in culture for 20 days and were then loaded onto the scaffolds and implanted under the skin of mice.Blood vessels successfully grew on the scaffolds with the mice having human liver proteins in their blood, demonstrating that the tissue had successfully integrated with the circulatory system. The scaffolds were not rejected by the animals’ immune systems.

The scientists tested the liver tissue scaffolds in mice with tyrosinaemia,a potentially fatal genetic disorder where the enzymes in the liver that break down the amino acid tyrosine are defective, resulting in the accumulation of toxic metabolic products. The implanted liver tissue aided the mice with tyrosinaemia to break down tyrosine and the mice finally lost less weight, had less buildup of toxins in the blood and exhibited fewer signs of liver damage than the control group that received empty scaffolds.

According to Rob Buckle, PhD, Chief Science Officer at the MRC, “Showing that such stem cell-derived tissue is able to reproduce aspects of liver function in the lab also offers real potential to improve the testing of new drugs where more accurate models of human tissue are needed”. It is believed that the discovery could be the next step towards harnessing stem cell reprogramming technologies to provide renewable supplies of liver tissue products for transplantation.

SOURCE

https://www.rdmag.com/article/2018/08/new-liver-tissue-implants-showing-promise?et_cid=6438323

 

Read Full Post »


3-D Printed Ovaries Produce Healthy Offspring

Reporter: Irina Robu, PhD

 

Each year about 120,000 organs are transplanted from one human being to another and most of the time is a living volunteer. But lack of suitable donors, predominantly means the supply of such organs is inadequate. Countless people consequently die waiting for a transplant which has led researchers to study the question of how to build organs from scratch.

One promising approach is to print them, but “bioprinting” remains largely experimental. Nevertheless, bioprinted tissue is before now being sold for drug testing, and the first transplantable tissues are anticipated to be ready for use in a few years’ time. The first 3D printed organ includes bioprosthetic ovaries which are constructed of 3D printed scaffolds that have immature eggs and have been successful in boosting hormone production and restoring fertility was developed by Teresa K. Woodruff, a reproductive scientist and director of the Women’s Health Research Institute at Feinberg School of Medicine, at Northwestern University, in Illinois.

What sets apart these bioprosthetic ovaries is the architecture of the scaffold. The material is made of gelatin made from broken-down collagen that is safe to humans which is self-supporting and can lead to building multiple layers.

The 3-D printed “scaffold” or “skeleton” is implanted into a female and its pores can be used to optimize how follicles, or immature eggs, get wedged within the scaffold. The scaffold supports the survival of the mouse’s immature egg cells and the cells that produce hormones to boost production. The open construction permits room for the egg cells to mature and ovulate, blood vessels to form within the implant enabling the hormones to circulate and trigger lactation after giving birth. The purpose of this scaffold is to recapitulate how an ovary would function.
The scientists’ only objective for developing the bioprosthetic ovaries was to help reestablish fertility and hormone production in women who have suffered adult cancer treatments and now have bigger risks of infertility and hormone-based developmental issues.

 

SOURCES

Printed human body parts could soon be available for transplant
https://www.economist.com/news/science-and-technology/21715638-how-build-organs-scratch

 

3D printed ovaries produce healthy offspring giving hope to infertile women

http://www.telegraph.co.uk/science/2017/05/16/3d-printed-ovaries-produce-healthy-offspring-giving-hope-infertile/

 

Brave new world: 3D-printed ovaries produce healthy offspring

http://www.naturalnews.com/2017-05-27-brave-new-world-3-d-printed-ovaries-produce-healthy-offspring.html

 

3-D-printed scaffolds restore ovary function in infertile mice

http://www.medicalnewstoday.com/articles/317485.php

 

Our Grandkids May Be Born From 3D-Printed Ovaries

http://gizmodo.com/these-mice-gave-birth-using-3d-printed-ovaries-1795237820

 

Read Full Post »