Feeds:
Posts
Comments

Posts Tagged ‘actin’

Lesson 5 Cell Signaling And Motility: Cytoskeleton & Actin: Curations and Articles of reference as supplemental information: #TUBiol3373

Curator: Stephen J. Williams, Ph.D.

Cell motility or migration is an essential cellular process for a variety of biological events. In embryonic development, cells migrate to appropriate locations for the morphogenesis of tissues and organs. Cells need to migrate to heal the wound in repairing damaged tissue. Vascular endothelial cells (ECs) migrate to form new capillaries during angiogenesis. White blood cells migrate to the sites of inflammation to kill bacteria. Cancer cell metastasis involves their migration through the blood vessel wall to invade surrounding tissues.

Please Click on the Following Powerpoint Presentation for Lesson 4 on the Cytoskeleton, Actin, and Filaments

CLICK ON LINK BELOW

cell signaling 5 lesson

This post will be updated with further information when we get into Lesson 6 and complete our discussion on the Cytoskeleton

Please see the following articles on Actin and the Cytoskeleton in Cellular Signaling

Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility

This article, constitutes a broad, but not complete review of the emerging discoveries of the critical role of calcium signaling on cell motility and, by extension, embryonic development, cancer metastasis, changes in vascular compliance at the junction between the endothelium and the underlying interstitial layer.  The effect of calcium signaling on the heart in arrhtmogenesis and heart failure will be a third in this series, while the binding of calcium to troponin C in the synchronous contraction of the myocardium had been discussed by Dr. Lev-Ari in Part I.

Universal MOTIFs essential to skeletal muscle, smooth muscle, cardiac syncytial muscle, endothelium, neovascularization, atherosclerosis and hypertension, cell division, embryogenesis, and cancer metastasis. The discussion will be presented in several parts:
1.  Biochemical and signaling cascades in cell motility
2.  Extracellular matrix and cell-ECM adhesions
3.  Actin dynamics in cell-cell adhesion
4.  Effect of intracellular Ca++ action on cell motility
5.  Regulation of the cytoskeleton
6.  Role of thymosin in actin-sequestration
7.  T-lymphocyte signaling and the actin cytoskeleton

 

Identification of Biomarkers that are Related to the Actin Cytoskeleton

In this article the Dr. Larry Bernstein covers two types of biomarker on the function of actin in cytoskeleton mobility in situ.

  • First, is an application in developing the actin or other component, for a biotarget and then, to be able to follow it as

(a) a biomarker either for diagnosis, or

(b) for the potential treatment prediction of disease free survival.

  • Second, is mostly in the context of MI, for which there is an abundance of work to reference, and a substantial body of knowledge about

(a) treatment and long term effects of diet, exercise, and

(b) underlying effects of therapeutic drugs.

Microtubule-Associated Protein Assembled on Polymerized Microtubules

(This article has a great 3D visualization of a microtuble structure as well as description of genetic diseases which result from mutations in tubulin and effects on intracellular trafficking of proteins.

A latticework of tiny tubes called microtubules gives your cells their shape and also acts like a railroad track that essential proteins travel on. But if there is a glitch in the connection between train and track, diseases can occur. In the November 24, 2015 issue of PNAS, Tatyana Polenova, Ph.D., Professor of Chemistry and Biochemistry, and her team at the University of Delaware (UD), together with John C. Williams, Ph.D., Associate Professor at the Beckman Research Institute of City of Hope in Duarte, California, reveal for the first time — atom by atom — the structure of a protein bound to a microtubule. The protein of focus, CAP-Gly, short for “cytoskeleton-associated protein-glycine-rich domains,” is a component of dynactin, which binds with the motor protein dynein to move cargoes of essential proteins along the microtubule tracks. Mutations in CAP-Gly have been linked to such neurological diseases and disorders as Perry syndrome and distal spinal bulbar muscular dystrophy.

 

Read Full Post »

Lesson 9 Cell Signaling:  Curations and Articles of reference as supplemental information for lecture section on WNTs: #TUBiol3373

Stephen J. Wiilliams, Ph.D: Curator

UPDATED 4/23/2019

This has an updated lesson on WNT signaling.  Please click on the following and look at the slides labeled under lesson 10

cell motility 9b lesson_2018_sjw

Remember our lessons on the importance of signal termination.  The CANONICAL WNT signaling (that is the β-catenin dependent signaling)

is terminated by the APC-driven degradation complex.  This leads to the signal messenger  β-catenin being degraded by the proteosome.  Other examples of growth factor signaling that is terminated by a proteosome-directed include the Hedgehog signaling system, which is involved in growth and differentiation as well as WNTs and is implicated in various cancers.

A good article on the Hedgehog signaling pathway is found here:

The Voice of a Pathologist, Cancer Expert: Scientific Interpretation of Images: Cancer Signaling Pathways and Tumor Progression

All images in use for this article are under copyrights with Shutterstock.com

Cancer is expressed through a series of transformations equally involving metabolic enzymes and glucose, fat, and protein metabolism, and gene transcription, as a result of altered gene regulatory and transcription pathways, and also as a result of changes in cell-cell interactions.  These are embodied in the following series of graphics.

Figure 1: Sonic_hedgehog_pathwaySonic_hedgehog_pathway

The Voice of Dr. Larry

The figure shows a modification of nuclear translocation by Sonic hedgehog pathway. The hedgehog proteins have since been implicated in the development of internal organs, midline neurological structures, and the hematopoietic system in humans. The Hh signaling pathway consists of three main components: the receptor patched 1 (PTCH1), the seven transmembrane G-protein coupled receptor smoothened (SMO), and the intracellular glioma-associated oncogene homolog (GLI) family of transcription factors.5The GLI family is composed of three members, including GLI1 (gene activating), GLI2 (gene activating and repressive), and GLI3 (gene repressive).6 In the absence of an activating signal from either Shh, Ihh or Dhh, PTCH1 exerts an inhibitory effect on the signal transducer SMO, preventing any downstream signaling from occurring.7 When Hh ligands bind and activate PTCH1, the inhibition on SMO is released, allowing the translocation of SMO into the cytoplasm and its subsequent activation of the GLI family of transcription factors.

 

And from the review of  Elaine Y. C. HsiaYirui Gui, and Xiaoyan Zheng   Regulation of Hedgehog Signaling by Ubiquitination  Front Biol (Beijing). 2015 Jun; 10(3): 203–220.

the authors state:

Finally, termination of Hh signaling is also important for controlling the duration of pathway activity. Hh induced ubiquitination and degradation of Ci/Gli is the most well-established mechanism for limiting signal duration, and inhibiting this process can lead to cell patterning disruption and excessive cell proliferation (). In addition to Ci/Gli, a growing body of evidence suggests that ubiquitination also plays critical roles in regulating other Hh signaling components including Ptc, Smo, and Sufu. Thus, ubiquitination serves as a general mechanism in the dynamic regulation of the Hh pathway.

Overview of Hedgehog signaling showing the signal termination by ubiquitnation and subsequent degradation of the Gli transcriptional factors. obtained from Oncotarget 5(10):2881-911 · May 2014. GSK-3B as a Therapeutic Intervention in Cancer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that in absence of Hedgehog ligands Ptch inhibits Smo accumulation and activation but upon binding of Hedgehog ligands (by an autocrine or paracrine fashion) Ptch is now unable to inhibit Smo (evidence exists that Ptch is now targeted for degradation) and Smo can now inhibit Sufu-dependent and GSK-3B dependent induced degradation of Gli factors Gli1 and Gli2.  Also note the Gli1 and Gli2 are transcriptional activators while Gli3 is a transcriptional repressor.

UPDATED 4/16/2019

Please click on the following links for the Powerpoint presentation for lesson 9.  In addition click on the mp4 links to download the movies so you can view them in Powerpoint slide 22:

cell motility 9 lesson_SJW 2019

movie file 1:

Tumorigenic but noninvasive MCF-7 cells motility on an extracellular matrix derived from normal (3DCntrol) or tumor associated (TA) fibroblasts.  Note that TA ECM is “soft” and not organized and tumor cells appear to move randomly if  much at all.

Movie 2:

 

Note that these tumorigenic and invasive MDA-MB-231 breast cancer cells move in organized patterns on organized ECM derived from Tumor Associated (TA) fibroblasts than from the ‘soft’ or unorganized ECM derived from normal  (3DCntrl) fibroblasts

 

The following contain curations of scientific articles from the site https://pharmaceuticalintelligence.com  intended as additional reference material  to supplement material presented in the lecture.

Wnts are a family of lipid-modified secreted glycoproteins which are involved in:

Normal physiological processes including

A. Development:

– Osteogenesis and adipogenesis (Loss of wnt/β‐catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes)

  – embryogenesis including body axis patterning, cell fate specification, cell proliferation and cell migration

B. tissue regeneration in adult tissue

read: Wnt signaling in the intestinal epithelium: from endoderm to cancer

And in pathologic processes such as oncogenesis (refer to Wnt/β-catenin Signaling [7.10]) and to your Powerpoint presentation

 

The curation Wnt/β-catenin Signaling is a comprehensive review of canonical and noncanonical Wnt signaling pathways

 

To review:

 

 

 

 

 

 

 

 

 

 

 

Activating the canonical Wnt pathway frees B-catenin from the degradation complex, resulting in B-catenin translocating to the nucleus and resultant transcription of B-catenin/TCF/LEF target genes.

Fig. 1 Canonical Wnt/FZD signaling pathway. (A) In the absence of Wnt signaling, soluble β-catenin is phosphorylated by a degradation complex consisting of the kinases GSK3β and CK1α and the scaffolding proteins APC and Axin1. Phosphorylated β-catenin is targeted for proteasomal degradation after ubiquitination by the SCF protein complex. In the nucleus and in the absence of β-catenin, TCF/LEF transcription factor activity is repressed by TLE-1; (B) activation of the canonical Wnt/FZD signaling leads to phosphorylation of Dvl/Dsh, which in turn recruits Axin1 and GSK3β adjacent to the plasma membrane, thus preventing the formation of the degradation complex. As a result, β-catenin accumulates in the cytoplasm and translocates into the nucleus, where it promotes the expression of target genes via interaction with TCF/LEF transcription factors and other proteins such as CBP, Bcl9, and Pygo.

NOTE: In the canonical signaling, the Wnt signal is transmitted via the Frizzled/LRP5/6 activated receptor to INACTIVATE the degradation complex thus allowing free B-catenin to act as the ultimate transducer of the signal.

Remember, as we discussed, the most frequent cancer-related mutations of WNT pathway constituents is in APC.

This shows how important the degradation complex is in controlling canonical WNT signaling.

Other cell signaling systems are controlled by protein degradation:

A.  The Forkhead family of transcription factors

Read: Regulation of FoxO protein stability via ubiquitination and proteasome degradation

B. Tumor necrosis factor α/NF κB signaling

Read: NF-κB, the first quarter-century: remarkable progress and outstanding questions

1.            Question: In cell involving G-proteins, the signal can be terminated by desensitization mechanisms.  How is both the canonical and noncanonical Wnt signal eventually terminated/desensitized?

We also discussed the noncanonical Wnt signaling pathway (independent of B-catenin induced transcriptional activity).  Note that the canonical and noncanonical involve different transducers of the signal.

Noncanonical WNT Signaling

Note: In noncanonical signaling the transducer is a G-protein and second messenger system is IP3/DAG/Ca++ and/or kinases such as MAPK, JNK.

Depending on the different combinations of WNT ligands and the receptors, WNT signaling activates several different intracellular pathways  (i.e. canonical versus noncanonical)

 

In addition different Wnt ligands are expressed at different times (temporally) and different cell types in development and in the process of oncogenesis. 

The following paper on Wnt signaling in ovarian oncogenesis shows how certain Wnt ligands are expressed in normal epithelial cells but the Wnt expression pattern changes upon transformation and ovarian oncogenesis. In addition, differential expression of canonical versus noncanonical WNT ligands occur during the process of oncogenesis (for example below the authors describe the noncanonical WNT5a is expressed in normal ovarian  epithelia yet WNT5a expression in ovarian cancer is lower than the underlying normal epithelium. However the canonical WNT10a, overexpressed in ovarian cancer cells, serves as an oncogene, promoting oncogenesis and tumor growth.

Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence

Benjamin G. Bitler,1 Jasmine P. Nicodemus,1 Hua Li,1 Qi Cai,2 Hong Wu,3 Xiang Hua,4 Tianyu Li,5 Michael J. Birrer,6Andrew K. Godwin,7 Paul Cairns,8 and Rugang Zhang1,*

A.           Abstract

Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy in the US. Thus, there is an urgent need to develop novel therapeutics for this disease. Cellular senescence is an important tumor suppression mechanism that has recently been suggested as a novel mechanism to target for developing cancer therapeutics. Wnt5a is a non-canonical Wnt ligand that plays a context-dependent role in human cancers. Here, we investigate the role of Wnt5a in regulating senescence of EOC cells. We demonstrate that Wnt5a is expressed at significantly lower levels in human EOC cell lines and in primary human EOCs (n = 130) compared with either normal ovarian surface epithelium (n = 31; p = 0.039) or fallopian tube epithelium (n = 28; p < 0.001). Notably, a lower level of Wnt5a expression correlates with tumor stage (p = 0.003) and predicts shorter overall survival in EOC patients (p = 0.003). Significantly, restoration of Wnt5a expression inhibits the proliferation of human EOC cells both in vitro and in vivo in an orthotopic EOC mouse model. Mechanistically, Wnt5a antagonizes canonical Wnt/β-catenin signaling and induces cellular senescence by activating the histone repressor A (HIRA)/promyelocytic leukemia (PML) senescence pathway. In summary, we show that loss of Wnt5a predicts poor outcome in EOC patients and Wnt5a suppresses the growth of EOC cells by triggering cellular senescence. We suggest that strategies to drive senescence in EOC cells by reconstituting Wnt5a signaling may offer an effective new strategy for EOC therapy.

Oncol Lett. 2017 Dec;14(6):6611-6617. doi: 10.3892/ol.2017.7062. Epub 2017 Sep 26.

Clinical significance and biological role of Wnt10a in ovarian cancer. 

Li P1Liu W1Xu Q1Wang C1.

Ovarian cancer is one of the five most malignant types of cancer in females, and the only currently effective therapy is surgical resection combined with chemotherapy. Wnt family member 10A (Wnt10a) has previously been identified to serve an oncogenic function in several tumor types, and was revealed to have clinical significance in renal cell carcinoma; however, there is still only limited information regarding the function of Wnt10a in the carcinogenesis of ovarian cancer. The present study identified increased expression levels of Wnt10a in two cell lines, SKOV3 and A2780, using reverse transcription-polymerase chain reaction. Functional analysis indicated that the viability rate and migratory ability of SKOV3 cells was significantly inhibited following Wnt10a knockdown using short interfering RNA (siRNA) technology. The viability rate of SKOV3 cells decreased by ~60% compared with the control and the migratory ability was only ~30% of that in the control. Furthermore, the expression levels of β-catenin, transcription factor 4, lymphoid enhancer binding factor 1 and cyclin D1 were significantly downregulated in SKOV3 cells treated with Wnt10a-siRNA3 or LGK-974, a specific inhibitor of the canonical Wnt signaling pathway. However, there were no synergistic effects observed between Wnt10a siRNA3 and LGK-974, which indicated that Wnt10a activated the Wnt/β-catenin signaling pathway in SKOV3 cells. In addition, using quantitative PCR, Wnt10a was overexpressed in the tumor tissue samples obtained from 86 patients with ovarian cancer when compared with matching paratumoral tissues. Clinicopathological association analysis revealed that Wnt10a was significantly associated with high-grade (grade III, P=0.031) and late-stage (T4, P=0.008) ovarian cancer. Furthermore, the estimated 5-year survival rate was 18.4% for patients with low Wnt10a expression levels (n=38), whereas for patients with high Wnt10a expression (n=48) the rate was 6.3%. The results of the present study suggested that Wnt10a serves an oncogenic role during the carcinogenesis and progression of ovarian cancer via the Wnt/β-catenin signaling pathway.

Targeting the Wnt Pathway includes curations of articles related to the clinical development of Wnt signaling inhibitors as a therapeutic target in various cancers including hepatocellular carcinoma, colon, breast and potentially ovarian cancer.

 

2.         Question: Given that different Wnt ligands and receptors activate different signaling pathways, AND  WNT ligands  can be deferentially and temporally expressed  in various tumor types and the process of oncogenesis, how would you approach a personalized therapy targeting the WNT signaling pathway?

3.         Question: What are the potential mechanisms of either intrinsic or acquired resistance to Wnt ligand antagonists being developed?

 

Other related articles published in this Open Access Online Scientific Journal include the following:

Targeting the Wnt Pathway [7.11]

Wnt/β-catenin Signaling [7.10]

Cancer Signaling Pathways and Tumor Progression: Images of Biological Processes in the Voice of a Pathologist Cancer Expert

e-Scientific Publishing: The Competitive Advantage of a Powerhouse for Curation of Scientific Findings and Methodology Development for e-Scientific Publishing – LPBI Group, A Case in Point 

Electronic Scientific AGORA: Comment Exchanges by Global Scientists on Articles published in the Open Access Journal @pharmaceuticalintelligence.com – Four Case Studies

 

Read Full Post »

Author: Aviral Vatsa PhD MBBS

This is the first post in a series of posts on mechanosensation and mechanotransduction and their role in physiology and disease.

Future posts in this category will focus on various aspects of role of mechanosensation and mechanotransduction in human physiology. These aspects will include among others: gene modulation, cellular mechanosensation, tissue regeneration, stem cell differentiation, cancer, disease models, nanomodulation, material science and therapeutics etc.

Based on Zhang et al [1]

Multicellular organisms such as humans require intricate orchestration of signals between cells to achieve global morphogenesis and organ function and thus maintain haemostasis. Three major ‘signalling modalities’ work in unison intracellularly and/or exrtacellularly to regulate harmonious functioning of the physiological milieu. These ‘modalities’ namely biochemical molecules, electrical currents or fields and mechanical forces (external or internal) cohesively direct the downstream regulation of physiological processes.

Traditionally most of the biological studies have focused on biochemical or electrical signalling events and relatively lesser resources have been dedicated towards exploring the role of mechanical forces in human health and disease. Despite early theories proposed by scientists such as Julius Wolff (Wolff’s law [2]) in the late nineteenth century “ that bone in a healthy person or animal will adapt to the loads under which it is placed”, relatively little has been studied about the role of external mechanical forces in maintaining haemostasis. However, recent important developments such as

  • identification of external force dependent regulation of signalling pathways [3]
  • determination of mechanosensing elements of cellular cytoskeleton [4]
  • manipulation of single molecules [5]

have reinstated the importance of external mechanical forces in physiology. As a result more recent investigations have demonstrated that external mechanical forces are major coordinators of development and haemostasis of organisms [6], [7] [8].

‘Mechanotransduction’ has been traditionally defined as the conversion of mechanical stimulus into chemical cues for the cells and thus altering downstream signalling e.g conformational changes in ion channels might lead to initiation of downstream signalling. However, with the accumulation of new knowledge pertaining to the effects of external mechanical loads on extracellular matrix or a cell or on subcellular structures, it is being widely accepted that mechanotransduction is more than merely a physical switch. Rather it entails the whole spectrum of cell-cell , cell-ECM, and intracellular interactions that can directly or indirectly modulate the functioning of cellular mechanisms involved in haemostasis. This modulation can function at various levels such as organism level, tissue level, cellular level and subcellular level.

Forces in cells and organisms

From biological point of view mechanical forces can be grouped into three categories

  • intracellular forces
  • intercellular forces
  • inter-tissue forces

In the eukaryotic cells these forces are generally generated by the the contractile cytoskeletal machinery of the cell that is comprised of

  • microfilaments : Diameter-6 nm; example- actin
  • intermediate filaments: Diameter-10 nm; example- vimentin, keratin
  • microtubules: Diameter-23 nm; example- alpha and beta tubulin

 

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa

Actin (cytoskeleton) staining of single osteocyte in situ in mouse calvaria (source: Aviral Vatsa)

There are a range of forces generated in the biological milieu (adopted from Mammoto et al [8]): 

  • Hydrostatic pressure: mechanical force applied by fluids or gases (e.g. blood or air) that perfuse or infuse living organs (e.g. blood vessels or lung).
  • Shear stress: frictional force of fluid flow on the surface of cells. The shear stress generated by the heart pumping blood through the systemic circulation has a key role in the determination of the cell fate of cardiomyocytes, endothelial cells and hematopoietic cells.
  • Compressive force: pushing force that shortens the material in the direction of the applied force. Tensional force: pulling force that lengthens materials in the direction of the applied force.
  • Cell traction force: is exerted on the adhesion to the ECM and other cells as a result of the shortening of the contractile cytoskeletal actomyosin filaments, which transmit tensional forces across cell surface adhesion receptors (e.g. integrins, cadherins).
  • Cell prestress: stabilizing isometric tension in the cell that is generated by the establishment of a mechanical force balance within the cytoskeleton through a tensegrity mechanism. Pulling forces generated within contractile microfilaments are resisted by external tethers of the cell (e.g. to the ECM or neighboring cells) and by internal load-bearing structures that resist compression (e.g. microtubules, filipodia). Prestress controls signal transduction and regulates cell fate.

It is the interplay of these forces generated by the cellular cytoskeleton and the ECM that regulate physiological functions. Disruption in mechanotransduction has been implicated in a variety of diseases such as hypertension, muscular dystrophies, cardiomyopathies, loss of hearing, cancer progression and metastasis. Ongoing attempts at unravelling the finer details of mechanosensation hold promising potential for new therapeutic approaches.

 

References

[1] H. Zhang and M. Labouesse, “Signalling through mechanical inputs – a coordinated process,” Journal of Cell Science, vol. 125, no. 17, pp. 4172–4172, Oct. 2012.

[2] R. A. Brand, “Biographical Sketch: Julius Wolff, 1836–1902,” Clin Orthop Relat Res, vol. 468, no. 4, pp. 1047–1049, Apr. 2010.

[3] A. J. Hudspeth, “The cellular basis of hearing: the biophysics of hair cells,” Science, vol. 230, no. 4727, pp. 745–752, Nov. 1985.

[4] N. Wang, J. P. Butler, and D. E. Ingber, “Mechanotransduction across the cell surface and through the cytoskeleton,” Science, vol. 260, no. 5111, pp. 1124–1127, May 1993.

[5] J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” , Published online: 10 March 1994; | doi:10.1038/368113a0, vol. 368, no. 6467, pp. 113–119, Mar. 1994.

[6] P. A. Janmey and R. T. Miller, “Mechanisms of mechanical signaling in development and disease,” J Cell Sci, vol. 124, no. 1, pp. 9–18, Jan. 2011.

[7] R. Keller, L. A. Davidson, and D. R. Shook, “How we are shaped: The biomechanics of gastrulation,” Differentiation, vol. 71, no. 3, pp. 171–205, Apr. 2003.

[8] T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development, vol. 137, no. 9, pp. 1407–1420, May 2010.

 

Read Full Post »

Identification of Biomarkers that are Related to the Actin Cytoskeleton

Curator and Writer: Larry H Bernstein, MD, FCAP

Article I Identification of Biomarkers that are Related to the Actin Cytoskeleton

This is Part I in a series of articles on Calcium and Cell motility.

The Series consists of the following articles:

Part I: Identification of Biomarkers that are Related to the Actin Cytoskeleton

Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2012/12/10/identification-of-biomarkers-that-are-related-to-the-actin-cytoskeleton/

Part II: Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility

Larry H. Bernstein, MD, FCAP, Stephen Williams, PhD and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/08/26/role-of-calcium-the-actin-skeleton-and-lipid-structures-in-signaling-and-cell-motility/

Part III: Renal Distal Tubular Ca2+ Exchange Mechanism in Health and Disease

Larry H. Bernstein, MD, FCAP, Stephen J. Williams, PhD
 and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/09/02/renal-distal-tubular-ca2-exchange-mechanism-in-health-and-disease/

Part IV: The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets

Larry H Bernstein, MD, FCAP, Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/09/08/the-centrality-of-ca2-signaling-and-cytoskeleton-involving-calmodulin-kinases-and-ryanodine-receptors-in-cardiac-failure-arterial-smooth-muscle-post-ischemic-arrhythmia-similarities-and-differen/

Part V: Ca2+-Stimulated Exocytosis:  The Role of Calmodulin and Protein Kinase C in Ca2+ Regulation of Hormone and Neurotransmitter

Larry H Bernstein, MD, FCAP
and
Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/12/23/calmodulin-and-protein-kinase-c-drive-the-ca2-regulation-of-hormone-and-neurotransmitter-release-that-triggers-ca2-stimulated-exocytosis/

Part VI: Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/08/01/calcium-molecule-in-cardiac-gene-therapy-inhalable-gene-therapy-for-pulmonary-arterial-hypertension-and-percutaneous-intra-coronary-artery-infusion-for-heart-failure-contributions-by-roger-j-hajjar/

Part VII: Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmias and Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/08/28/cardiac-contractility-myocardium-performance-ventricular-arrhythmias-and-non-ischemic-heart-failure-therapeutic-implications-for-cardiomyocyte-ryanopathy-calcium-release-related-contractile/

Part VIII: Disruption of Calcium Homeostasis: Cardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/09/12/disruption-of-calcium-homeostasis-cardiomyocytes-and-vascular-smooth-muscle-cells-the-cardiac-and-cardiovascular-calcium-signaling-mechanism/

Part IXCalcium-Channel Blockers, Calcium Release-related Contractile Dysfunction (Ryanopathy) and Calcium as Neurotransmitter Sensor

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

Part X: Synaptotagmin functions as a Calcium Sensor: How Calcium Ions Regulate the fusion of vesicles with cell membranes during Neurotransmission

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/09/10/synaptotagmin-functions-as-a-calcium-sensor-how-calcium-ions-regulate-the-fusion-of-vesicles-with-cell-membranes-during-neurotransmission/

Part XI: Sensors and Signaling in Oxidative Stress

Larry H. Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2013/11/01/sensors-and-signaling-in-oxidative-stress/

Part XII: Atherosclerosis Independence: Genetic Polymorphisms of Ion Channels Role in the Pathogenesis of Coronary Microvascular Dysfunction and Myocardial Ischemia (Coronary Artery Disease (CAD))

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/12/21/genetic-polymorphisms-of-ion-channels-have-a-role-in-the-pathogenesis-of-coronary-microvascular-dysfunction-and-ischemic-heart-disease/

In this article the Author will cover two types of biomarker on the function of actin in cytoskeleton mobility in situ.

  • First, is an application in developing the actin or other component, for a biotarget and then, to be able to follow it as

(a) a biomarker either for diagnosis, or

(b) for the potential treatment prediction of disease free survival.

  • Second, is mostly in the context of MI, for which there is an abundance of work to reference, and a substantial body of knowledge about

(a) treatment and long term effects of diet, exercise, and

(b) underlying effects of therapeutic drugs.

1.  Cell Membrane (cytoskeletal) Plasticity

Refer to … Squeezing Ovarian Cancer Cells to Predict Metastatic Potential: Cell Stiffness as Possible Biomarker

Reporter/curator: Prabodh Kandala, PhD

New Georgia Tech research shows that cell stiffness could be a valuable clue for doctors as they search for and treat cancerous cells before they’re able to spread. The findings, which are published in the journal PLoS One, found that highly metastatic ovarian cancer cells are several times softer than less metastatic ovarian cancer cells. This study used atomic force microscopy (AFM) to study the mechanical properties of various ovarian cell lines. A soft mechanical probe “tapped” healthy, malignant and metastatic ovarian cells to measure their stiffness. In order to spread, metastatic cells must push themselves into the bloodstream. As a result, they must be highly deformable and softer. This study results indicate that cell stiffness may be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.

Comparative gene expression analyses indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling and microscopic examination of actin fiber structure in these cell lines is consistent with this prediction.   The results suggest either of two approaches. Atomic Force Microscopy is not normally used by pathologists in diagnostics. Electron microscopy requires space for making and cutting the embedded specimen, and a separate room for the instrument. The instrument is large and the technique was not suitable for anything other than research initially until EM gained importance in Renal Pathology. It has not otherwise been used.  This new method looks like it might be more justified over a spectrum of cases.

A.  Atomic Force Microscopy

So the first point related to microscopy is whether AFM has feasibility for routine clinical use in the pathologists’ hands. This requires:

  1. suitable size of equipment
  2.  suitable manipulation of the specimen
  3. The question of whether you are using overnight fixed specimen, or whether the material is used unfixed
  4. Nothing is said about staining of cells for identification.
  5. Then there is the question about whether this will increase the number of Pathologist Assistants used across the country, which I am not against.   This would be the end of “house” trained PAs, and gives more credence to the too few PA programs across the country. The PA programs have to be reviewed and accredited by NAACLS (I served 8 years on the Board). A PA is represented on the Board, and programs are inspected by qualified peers.   There is no academic recognition given to this for tenure and promotion in Pathology Departments, and a pathologist is selected for a medical advisory role by the ASCP, and must be a Medical Advisor to a MLS accredited Program.   The fact is that PAs do gross anatomic dictation of selected specimens, and they do autopsies under the guidance of a pathologist. This is the reality of the profession today. The pathologist has to be in attendance at a variety of quality review conferences, for surgical morbidity and mortality to obstetrics review, and the Cancer Review. Cytopathology and cytogenetics are in the pathology domain.   In the case of tumors of the throat, cervix, and accessible orifices, it seems plausible to receive a swab for preparation. However, sampling error is greater than for a biopsy. A directed needle biopsy or a MIS specimen is needed for the ovary.

B.  identification of biomarkers that are related to the actin cytoskeleton

The alternative to the first approach is the identification of biomarkers that are related to the actin cytoskeleton, perhaps in the nature of the lipid or apoprotein isoform that gives the cell membrane deformability. The method measuring by Atomic Force Microscopy is shown with the current method of cytological screening, and I call attention to cells clustered together that have a scant cytoplasm surrounding nuclei occupying 1/2 to 3/4 of the cell radius.  The cells are not anaplastic, but the clumps are suggestive of glnad forming epithelium.

English: Animation showing 3-D nature of clust...

English: Animation showing 3-D nature of cluster. Image:Serous carcinoma 2a – cytology.jpg (Photo credit: Wikipedia)

The cell membrane, also called the plasma memb...

The cell membrane, also called the plasma membrane or plasmalemma, is a semipermeable lipid bilayer common to all living cells. It contains a variety of biological molecules, primarily proteins and lipids, which are involved in a vast array of cellular processes. It also serves as the attachment point for both the intracellular cytoskeleton and, if present, the cell wall. (Photo credit: Wikipedia)

English: AFM bema detection

AFM non contact mode

AFM non contact mode (Photo credit: Wikipedia)

C.  The diagnosis of ovarian cancer can be problematic because it can have a long period of growth undetected.

On the other hand, it is easily accessible once there is reason to suspect it. They are terrible to deal with because they metastasize along the abdominal peritoneum and form a solid cake. It is a problem of location and silence until it is late. Once they do announce a presence on the abdominal wall, there is probably a serous effusion. It was not possible to rely on a single marker, but when CA125 was introduced, Dr. Marguerite Pinto, Chief of Cytology at Bridgeport Hospital-Yale New Haven Health came to the immnunochemistry lab and we worked out a method for analyzing effusions, as we had already done with carcinoembryonic antigen.       The use of CEA and CA125 was published by Pinto and Bernstein as a first that had an impact.  This was followed by a study with the Chief of Oncology, Dr. Martin Rosman, that showed that the 30 month survival of patients post treatment is predicted by the half-life of disappearance of CA125 in serum.  At the time of this writing, I am not sure of the extent of its use 20 years later. History has taught us that adoption can be slow, depending very much on dissemination from major academic medical centers.  On the other hand, concepts can also be stuck at academic medical centers because of a rigid and unprepared mindset in the professional community.  The best example of this is the story of Ignaz Semmelweis, the best student of Rokitansky in Vienna for discovering the cause and prevention of childbirth fever at a time that nursemaids had far better results at obstetrical delivery than physicians.  Contrary to this, Edward Jenner, the best student of John Hunter (anatomist, surgeon, and physician to James Hume), discovered vaccination from the observation that milkmaids did not get smallpox (cowpox was a better alternative).
Only this year a Nobel Prize in Physics was awarded to an Israeli scientist who, working in the US, was unable to convince his associates of his discovery of PSEUDOCRYSTALS. – Diagnostic efficiency of carcinoembryonic antigen and CA125 in the cytological evaluation of effusions. M M Pinto, L H Bernstein, R A Rudolph, D A Brogan, M Rosman Arch Pathol Lab Med 1992; 116(6):626-631 ICID: 825503 Article type: Review article – Immunoradiometric assay of CA 125 in effusions. Comparison with carcinoembryonic antigen. M M Pinto, L H Bernstein, D A Brogan, E Criscuolo Cancer 1987; 59(2):218-222 ICID: 825555 Article type: Review article – Carcinoembryonic antigen in effusions. A diagnostic adjunct to cytology. M M Pinto, L H Bernstein, D A Brogan, E M Criscuolo Acta Cytologica 1987; 31(2):113-118 ICID: 825557

Predictive Modeling

Ovarian Cancer a plot of the CA125 elimination half-life vs the Kullback-Liebler distance

Ca125 half-life vs Kullback Entropy                                                          HL vs Survival KM plot 

Troponin(s) T, I, C  and the contractile apparatus  (contributed by Aviva Lev-Ari, PhD, RN)

 

For 2012 – 2013 Frontier Contribution in Cardiology on Gene Therapy Solutions for Improving Myocardial Contractility, see

Lev-Ari, A. 8/1/2013 Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

http://pharmaceuticalintelligence.com/2013/08/01/calcium-molecule-in-cardiac-gene-therapy-inhalable-gene-therapy-for-pulmonary-arterial-hypertension-and-percutaneous-intra-coronary-artery-infusion-for-heart-failure-contributions-by-roger-j-hajjar/

For explanation of Conduction prior to Myocardial Contractility, see

Lev-Ari, A. 4/28/2013 Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

http://pharmaceuticalintelligence.com/2013/04/28/genetics-of-conduction-disease-atrioventricular-av-conduction-disease-block-gene-mutations-transcription-excitability-and-energy-homeostasis/

The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticulum—a specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding).

  • When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract.
  • At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.

Figure 11.25

Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more…)
Contractile Assemblies of Actin and Myosin in Nonmuscle Cells

Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.

Figure 11.26

Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions.

Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.

The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesis—the division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.

Figure 11.27

Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.

http://www.ncbi.nlm.nih.gov/books/NBK9961/

2.  Use of Troponin(s) in Diagnosis

Troponins T and I are released into the circulation at the time of an acute coronary syndrome (ACS).  Troponin T was first introduced by Roche (developed in Germany) for the Roche platform as a superior biomarker for identifying acute myocardial infarction (AMI), because of a monoclonal specificity to the cardiac troponin T.  It could not be measured on any other platform (limited license patent), so the Washington University Clinical Chemistry group developed a myocardiocyte specific troponin I that quickly became widely available to Beckman, and was adapted to other instruments.  This was intended to replace the CK isoenzyme MB, that is highly elevated in rhabdomyolysis associated with sepsis or with anesthesia in special cases.

The troponins I and T had a tenfold scale difference, and the Receiver Operator Curve Generated cutoff was accurate for AMI, but had significant elevation with end-stage renal disease.  The industry worked in concert to develop a high sensitivity assay for each because there were some missed AMIs just below the ROC cutoff, which could be interpreted as Plaque Rupture.  However, the concept of plaque rupture had to be reconsidered, and we are left with type1 and type 2 AMI (disregarding the case of post PCI or CABG related).   This led to the current establishment of 3 standard deviations above the lowest measureable level at 10% coefficient of variation.  This has been discussed sufficiently elsewhere.  It did introduce a problem in the use of the test as a “silver bullet” once the finer distinctions aqnd the interest in using the test for prognosis as well as diagnosis.   This is where the use of another protein associated with heart failure came into play – either the B type natriuretic peptide, or its propeptide, N-terminal pro BNP.  The prognostic value of using these markers, secreted by the HEART and acting on the kidneys (sodium reabsorption) has proved useful.  But there has not been a multivariate refinement of the use of a two biomarker approach.  In the following part D, I illustrate what can be done with an algorithmic approach to multiple markers.

Software Agent for Diagnosis of AMI

Isaac E. Mayzlin, Ph.D., David Mayzlin, Larry H. Bernstein, M.D. The so called gold standard of proof of a method is considered the Receiver-Operating Characteristic Curve, developed for detecting “enemy planes or missiles”, and adopted first by radiologists in medicine.  This matches the correct “hits” to the actual calssification and it is generally taught as a plot of sensitivity vs (1 – specifity).  But what if you had no “training” variable?  Work inspired by Eugene Rypka’s bacterial classification led to Rosser Rudolph’s application of the Entropy of Shannon and Weaver to identify meaningful information, referring to what was Kullback-Liebler distance as “effective information”.  This allowed Rudolph and Bernstein to classify using disease biomarkers obtaing the same results as the ROC curve using an apl program.  The same data set was used by Bernstein, Adan et al. previously, and was again used by Izaak Mayzlin from University of Moscow with a new wrinkle.  Dr. Mayzlin created a neural network (Maynet), and then did a traditional NN with training on the data, and also clustered the data using geometric distance clustering and trained on the clusters.  It was interesting to see that the optimum cluster separation was closely related to the number of classes and the accuracy of classification.  An earlier simpler model using the slope of the MB isoenzyme increase and percent of total CK activity was perhaps related to Burton Sobel’s work on CK-MB disappearance rate for infarct size. The main process consists of three successive steps: (1)       clustering performed on training data set, (2)       neural network’s training on clusters from previous step, and (3)       classifier’s accuracy evaluation on testing data. The classifier in this research will be the ANN, created on step 2, with output in the range [0,1], that provides binary result (1 – AMI, 0 – not AMI), using decision point 0.5. Table  1.  Effect  of  selection  of  maximum  distance  on  the  number  of  classes  formed  and  on  the accuracy of recognition by ANN

Clustering Distance Factor F(D = F * R) Number ofClasses Number of Nodes in The Hidden Layers Number of Misrecognized Patterns inThe TestingSet of 43 Percent ofMisrecognized
10.90.80.7 2414135 1,  02,  03,  01,  02,  03,  0 3,  2 3,  2 121121 1 1 2.34.62.32.34.62.3 2.3 2.3

Creatine kinase B-subunit activity in serum in cases of suspected myocardial infarction: a prediction model based on the slope of MB increase and percentage CK-MB activity. L H Bernstein, G Reynoso Clin Chem 1983; 29(3):590-592 ICID: 825549 Diagnosis of acute myocardial infarction from two measurements of creatine kinase isoenzyme MB with use of nonparametric probability estimation. L H Bernstein, I J Good, G I Holtzman, M L Deaton, J Babb.  Clin Chem 1989; 35(3):444-447 ICID: 825570 – Information induction for predicting acute myocardial infarction. R A Rudolph, L H Bernstein, J Babb. Clin Chem 1988; 34(10):2031-2038 ICID: 825568

Related articles

Related articles published on this Open Access Online Scientific Journal, include the following:

Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

Aviva Lev-Ari, PhD, RN 8/1/2013

http://pharmaceuticalintelligence.com/2013/08/01/calcium-molecule-in-cardiac-gene-therapy-inhalable-gene-therapy-for-pulmonary-arterial-hypertension-and-percutaneous-intra-coronary-artery-infusion-for-heart-failure-contributions-by-roger-j-hajjar/

High-Sensitivity Cardiac Troponin Assays- Preparing the United States for High-Sensitivity Cardiac Troponin Assays

Larry Bernstein, MD, FCAP 6/13/2013

http://pharmaceuticalintelligence.com/2013/06/13/high-sensitivity-cardiac-troponin-assays/

Dealing with the Use of the High Sensitivity Troponin (hs cTn) Assays

Larry Bernstein and Aviva Lev-Ari  5/18/2013

http://pharmaceuticalintelligence.com/2013/05/18/dealing-with-the-use-of-the-hs-ctn-assays/

Acute Chest Pain/ER Admission: Three Emerging Alternatives to Angiography and PCI – Corus CAD, hs cTn, CCTA

Aviva Lev-Ari  3/10/2013

http://pharmaceuticalintelligence.com/2013/03/10/acute-chest-painer-admission-three-emerging-alternatives-to-angiography-and-pci/

  • Redberg’s conclusions are correct for the initial screening. The issue has been whether to do further testing for low or intermediate risk patients.
  • The most intriguing finding that is not at all surprising is that the CCTA added very little in the suspect group with small or moderate risk.
  • The ultra sensitive troponin threw the ROC out the window
  • The improved assay does pick up minor elevations of troponin in the absence of MI.

Critical Care | Abstract | Cardiac ischemia in patients with septic …
Aviva Lev-Ari  6/26/2013
http://pharmaceuticalintelligence.com/2013/06/26/critical-care-abstract-cardiac-ischemia-in-patients-with-septic/

  • refer to:  Cardiac ischemia in patients with septic shock randomized to vasopressin or norepinephrine

Mehta S, Granton J,  Gordon AC, Cook DJ, et al.
Critical Care 2013, 17:R117   http://dx.doi.org/10.1186/cc12789
Troponin and CK levels, and rates of ischemic ECG changes were similar in the VP and NE groups. In multivariable analysis

  • only APACHE II was associated with 28-day mortality (OR 1.07, 95% CI 1.01-1.14, p=0.033).

Assessing Cardiovascular Disease with Biomarkers

Larry H Bernstein, MD, FCAP 12/25/2012

http://pharmaceuticalintelligence.com/2012/12/25/assessing-cardiovascular-disease-with-biomarkers/

Vascular Medicine and Biology: CLASSIFICATION OF FAST ACTING THERAPY FOR PATIENTS AT HIGH RISK FOR MACROVASCULAR EVENTS Macrovascular Disease – Therapeutic Potential of cEPCs

Aviva Lev-Ari, PhD, RN 8/24/2012

http://pharmaceuticalintelligence.com/2012/08/24/vascular-medicine-and-biology-classification-of-fast-acting-therapy-for-patients-at-high-risk-for-macrovascular-events-macrovascular-disease-therapeutic-potential-of-cepcs/

 PENDING Integration

  • ‘Ryanopathy’: causes and manifestations of RyR2 dysfunction in heart failureCardiovasc Res. 2013;98:240-247,
  • Up-regulation of sarcoplasmic reticulum Ca2+ uptake leads to cardiac hypertrophy, contractile dysfunction and early mortality in mice deficient in CASQ2Cardiovasc Res. 2013;98:297-306,
  • Myocardial Delivery of Stromal Cell-Derived Factor 1 in Patients With Ischemic Heart Disease: Safe and PromisingCirc. Res.. 2013;112:746-747,
  • Circulation Research Thematic Synopsis: Cardiovascular GeneticsCirc. Res.. 2013;112:e34-e50,
  • Gene and cytokine therapy for heart failure: molecular mechanisms in the improvement of cardiac functionAm. J. Physiol. Heart Circ. Physiol.. 2012;303:H501-H512,
  • Ryanodine Receptor Phosphorylation and Heart Failure: Phasing Out S2808 and “Criminalizing” S2814Circ. Res.. 2012;110:1398-1402,

http://circres.ahajournals.org/content/110/5/777.figures-only

Read Full Post »

%d bloggers like this: