Feeds:
Posts
Comments

Posts Tagged ‘osteocytes’


Author: Aviral Vatsa PhD MBBS

This is the first post in a series of posts on mechanosensation and mechanotransduction and their role in physiology and disease.

Future posts in this category will focus on various aspects of role of mechanosensation and mechanotransduction in human physiology. These aspects will include among others: gene modulation, cellular mechanosensation, tissue regeneration, stem cell differentiation, cancer, disease models, nanomodulation, material science and therapeutics etc.

Based on Zhang et al [1]

Multicellular organisms such as humans require intricate orchestration of signals between cells to achieve global morphogenesis and organ function and thus maintain haemostasis. Three major ‘signalling modalities’ work in unison intracellularly and/or exrtacellularly to regulate harmonious functioning of the physiological milieu. These ‘modalities’ namely biochemical molecules, electrical currents or fields and mechanical forces (external or internal) cohesively direct the downstream regulation of physiological processes.

Traditionally most of the biological studies have focused on biochemical or electrical signalling events and relatively lesser resources have been dedicated towards exploring the role of mechanical forces in human health and disease. Despite early theories proposed by scientists such as Julius Wolff (Wolff’s law [2]) in the late nineteenth century “ that bone in a healthy person or animal will adapt to the loads under which it is placed”, relatively little has been studied about the role of external mechanical forces in maintaining haemostasis. However, recent important developments such as

  • identification of external force dependent regulation of signalling pathways [3]
  • determination of mechanosensing elements of cellular cytoskeleton [4]
  • manipulation of single molecules [5]

have reinstated the importance of external mechanical forces in physiology. As a result more recent investigations have demonstrated that external mechanical forces are major coordinators of development and haemostasis of organisms [6], [7] [8].

‘Mechanotransduction’ has been traditionally defined as the conversion of mechanical stimulus into chemical cues for the cells and thus altering downstream signalling e.g conformational changes in ion channels might lead to initiation of downstream signalling. However, with the accumulation of new knowledge pertaining to the effects of external mechanical loads on extracellular matrix or a cell or on subcellular structures, it is being widely accepted that mechanotransduction is more than merely a physical switch. Rather it entails the whole spectrum of cell-cell , cell-ECM, and intracellular interactions that can directly or indirectly modulate the functioning of cellular mechanisms involved in haemostasis. This modulation can function at various levels such as organism level, tissue level, cellular level and subcellular level.

Forces in cells and organisms

From biological point of view mechanical forces can be grouped into three categories

  • intracellular forces
  • intercellular forces
  • inter-tissue forces

In the eukaryotic cells these forces are generally generated by the the contractile cytoskeletal machinery of the cell that is comprised of

  • microfilaments : Diameter-6 nm; example- actin
  • intermediate filaments: Diameter-10 nm; example- vimentin, keratin
  • microtubules: Diameter-23 nm; example- alpha and beta tubulin

 

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa

Actin labeling in single Osteocyte in situ in mouse bone. Source: Aviral Vatsa

Actin (cytoskeleton) staining of single osteocyte in situ in mouse calvaria (source: Aviral Vatsa)

There are a range of forces generated in the biological milieu (adopted from Mammoto et al [8]): 

  • Hydrostatic pressure: mechanical force applied by fluids or gases (e.g. blood or air) that perfuse or infuse living organs (e.g. blood vessels or lung).
  • Shear stress: frictional force of fluid flow on the surface of cells. The shear stress generated by the heart pumping blood through the systemic circulation has a key role in the determination of the cell fate of cardiomyocytes, endothelial cells and hematopoietic cells.
  • Compressive force: pushing force that shortens the material in the direction of the applied force. Tensional force: pulling force that lengthens materials in the direction of the applied force.
  • Cell traction force: is exerted on the adhesion to the ECM and other cells as a result of the shortening of the contractile cytoskeletal actomyosin filaments, which transmit tensional forces across cell surface adhesion receptors (e.g. integrins, cadherins).
  • Cell prestress: stabilizing isometric tension in the cell that is generated by the establishment of a mechanical force balance within the cytoskeleton through a tensegrity mechanism. Pulling forces generated within contractile microfilaments are resisted by external tethers of the cell (e.g. to the ECM or neighboring cells) and by internal load-bearing structures that resist compression (e.g. microtubules, filipodia). Prestress controls signal transduction and regulates cell fate.

It is the interplay of these forces generated by the cellular cytoskeleton and the ECM that regulate physiological functions. Disruption in mechanotransduction has been implicated in a variety of diseases such as hypertension, muscular dystrophies, cardiomyopathies, loss of hearing, cancer progression and metastasis. Ongoing attempts at unravelling the finer details of mechanosensation hold promising potential for new therapeutic approaches.

 

References

[1] H. Zhang and M. Labouesse, “Signalling through mechanical inputs – a coordinated process,” Journal of Cell Science, vol. 125, no. 17, pp. 4172–4172, Oct. 2012.

[2] R. A. Brand, “Biographical Sketch: Julius Wolff, 1836–1902,” Clin Orthop Relat Res, vol. 468, no. 4, pp. 1047–1049, Apr. 2010.

[3] A. J. Hudspeth, “The cellular basis of hearing: the biophysics of hair cells,” Science, vol. 230, no. 4727, pp. 745–752, Nov. 1985.

[4] N. Wang, J. P. Butler, and D. E. Ingber, “Mechanotransduction across the cell surface and through the cytoskeleton,” Science, vol. 260, no. 5111, pp. 1124–1127, May 1993.

[5] J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” , Published online: 10 March 1994; | doi:10.1038/368113a0, vol. 368, no. 6467, pp. 113–119, Mar. 1994.

[6] P. A. Janmey and R. T. Miller, “Mechanisms of mechanical signaling in development and disease,” J Cell Sci, vol. 124, no. 1, pp. 9–18, Jan. 2011.

[7] R. Keller, L. A. Davidson, and D. R. Shook, “How we are shaped: The biomechanics of gastrulation,” Differentiation, vol. 71, no. 3, pp. 171–205, Apr. 2003.

[8] T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development, vol. 137, no. 9, pp. 1407–1420, May 2010.

 

Read Full Post »


Reporter: Aviral Vatsa PhD, MBBS

Osteocytes are the professional mechanosensors of bone. They modulate bone remodelling in accordance with external mechanical loads by orchestrating the activity of one forming osteoblasts and bone resorbing osteoclasts. Osteocytes are at the heart of bone metabolism. They constitute >95% of bone cells. They are terminally differentiated cells and reside in the hard mineralised matrix of bone, thus making it difficult to study them in situ. However, recent developments in imaging and tissue processing have made it possible to study osteocytes in their natural milieu. Moreover, increasing number of studies have highlighted the fact that a multifaceted approach from various domains of science such as biomechanics, cell biology, bioengineering, biophysics, biomaterials, computational modelling, endocrinology, and orthopaedics is essential to further our understanding of the intricate processes involved in bone remodelling and the central role of osteocytes in maintaining bone mass and architecture.

In this post a variety of reviews from an upcoming special issue on osteocytes in the journal Bone are highlighted that help us add few more pieces of knowledge to the ever growing eclaircissements on the subject.

1. Measurement and estimation of osteocyte mechanical strain

Review Article
Amber Rath Stern, Daniel P. Nicolella

Abstract

Osteocytes are the most abundant cell type in bone and are responsible for sensing mechanical strain and signaling bone (re)modeling, making them the primary mechanosensors within the bone. Under aging and osteoporotic conditions, bone is known to be less responsive to loading (exercise), but it is unclear why. Perhaps, the levels of mechanical strain required to initiate these biological events are not perceived by the osteocytes embedded within the bone tissue. In this review we examine the methods used to measure and estimate the strains experienced by osteocytes in vivo as well as the results of related published experiments. Although the physiological levels of strain experienced by osteocytes in vivo are still under investigation, through computational modeling and laboratory experiments, it has been shown that there is significant amplification of average bone strain at the level of the osteocyte lacunae. It has also been proposed that the material properties of the perilacunar region surrounding the osteocyte can have significant effects of the strain perceived by the embedded osteocyte. These facts have profound implications for studies involving osteoporotic bone where the material properties are known to become stiffer.

2. Glucocorticoids and Osteocyte Autophagy

Review Article
Wei Yao, Weiwei Dai, Jean X. Jiang, Nancy E. Lane

Abstract

Glucocorticoids are used for the treatment of inflammatory and autoimmune diseases. While they are effective therapy, bone loss and incident fracture risk is high. While previous studies have found GC effects on both osteoclasts and oteoblasts, our work has focused on the effects of GCs on osteocytes. Osteocytes exposed to low dose GCs undergo autophagy while osteocytes exposed to high doses of GCs or for a prolonged period of time undergo apoptosis. This paper will review the data to support the role of GCs in osteocyte autophagy.

3. Osteocytes remove and replace perilacunar mineral during reproductive cycles

Review Article
John J. Wysolmerski

Abstract

Lactation is associated with an increased demand for calcium and is accompanied by a remarkable cycle of bone loss and recovery that helps to supply calcium and phosphorus for milk production. Bone loss is the result of increased bone resorption that is due, in part, to increased levels of PTHrP and decreased levels of estrogen. However, the regulation of bone turnover during this time is not fully understood. In the 1960s and 1970s many observations were made to suggest that osteocytes could resorb bone and increase the size of their lacunae. This concept became known as osteocytic osteolysis and studies suggested that it occurred in response to parathyroid hormone and/or an increased systemic demand for calcium. However, this concept fell out of favor in the late 1970s when it was established that osteoclasts were the principal bone-resorbing cells. Given that lactation is associated with increased PTHrP levels and negative calcium balance, we recently examined whether osteocytes contribute to bone loss during this time. Our findings suggest that osteocytes can remodel their perilacunar and pericanalicular matrix and that they participate in the liberation of skeletal calcium stores during reproductive cycles. These findings raise new questions about the role of osteocytes in coordinating bone and mineral metabolism during lactation as well as the recovery of bone mass after weaning. It is also interesting to consider whether osteocyte lacunar and canalicular remodeling contribute more broadly to the maintenance of skeletal and mineral homeostasis.

4. Studying osteocytes within their environment

Review Article
Duncan J. Webster, Philipp Schneider, Sarah L. Dallas, Ralph Müller

Abstract

It is widely hypothesized that osteocytes are the mechano-sensors residing in the bone’s mineralized matrix which control load induced bone adaptation. Owing to their inaccessibility it has proved challenging to generate quantitative in vivo experimental data which supports this hypothesis. Recent advances in in situ imaging, both in non-living and living specimens, have provided new insights into the role of osteocytes in the skeleton. Combined with the retrieval of biochemical information from mechanically stimulated osteocytes using in vivo models, quantitative experimental data is now becoming available which is leading to a more accurate understanding of osteocyte function. With this in mind, here we review i) state of the art ex vivo imaging modalities which are able to precisely capture osteocyte structure in 3D, ii) live cell imaging techniques which are able to track structural morphology and cellular differentiation in both space and time, and iii) in vivo models which when combined with the latest biochemical assays and microfluidic imaging techniques can provide further insight on the biological function of osteocytes.

5. Osteocyte apoptosis

Review Article
Robert L. Jilka, Brendon Noble, Robert S. Weinstein

Abstract

Apoptotic death of osteocytes was recognized over 15 years ago, but its significance for bone homeostasis has remained elusive. A new paradigm has emerged that invokes osteocyte apoptosis as a critical event in the recruitment of osteoclasts to a specific site in response to skeletal unloading, fatigue damage, estrogen deficiency and perhaps in other states where bone must be removed. This is accomplished by yet to be defined signals emanating from dying osteocytes, which stimulate neighboring viable osteocytes to produce osteoclastogenic cytokines. The osteocyte apoptosis caused by chronic glucocorticoid administration does not increase osteoclasts; however, it does negatively impact maintenance of bone hydration, vascularity, and strength.

6. Emerging role of primary cilia as mechanosensors in osteocytes

Review Article
An M. Nguyen, Christopher R. Jacobs

Abstract

The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell. This organelle has established mechanosensory roles in several contexts including kidney, liver, and the embryonic node. Mechanical load deflects the cilium, triggering biochemical responses. Defects in cilium function have been associated with numerous human diseases. Recent research has implicated the primary cilium as a mechanosensor in bone. In this review, we discuss the cilium, the growing evidence for its mechanosensory role in bone, and areas of future study.

7. Mechanosensation and transduction in osteocytes

Review Article
Jenneke Klein-Nulend, Astrid D. Bakker, Rommel G. Bacabac, Aviral Vatsa, Sheldon Weinbaum

Abstract

The human skeleton is a miracle of engineering, combining both toughness and light weight. It does so because bones possess cellular mechanisms wherein external mechanical loads are sensed. These mechanical loads are transformed into biological signals, which ultimately direct bone formation and/or bone resorption. Osteocytes, since they are ubiquitous in the mineralized matrix, are the cells that sense mechanical loads and transduce the mechanical signals into a chemical response. The osteocytes then release signaling molecules, which orchestrate the recruitment and activity of osteoblasts or osteoclasts, resulting in the adaptation of bone mass and structure. In this review, we highlight current insights in bone adaptation to external mechanical loading, with an emphasis on how a mechanical load placed on whole bones is translated and amplified into a mechanical signal that is subsequently sensed by the osteocytes.

8. The osteocyte in CKD: New concepts regarding the role of FGF23 in mineral metabolism and systemic complications

Review Article
Katherine Wesseling-Perry, Harald Jüppner

Abstract

The identification of elevated circulating levels of the osteocytic protein fibroblast growth factor 23 (FGF23) in patients with chronic kidney disease (CKD), along with recent data linking these values to the pathogenesis of secondary hyperparathyroidism and to systemic complications, has changed the approach to the pathophysiology and treatment of disordered bone and mineral metabolism in renal failure. It now appears that osteocyte biology is altered very early in the course of CKD and these changes have implications for bone biology, as well as for progressive cardiovascular and renal disease. Since circulating FGF23 values are influenced by therapies used to treat secondary hyperparathyroidism, the effects of different therapeutic paradigms on FGF23 have important implications for mineral metabolism as well as for morbidity and mortality. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization and turnover as well as the potential effects that current therapeutic options may have on osteocyte biology.

9. Vitamin D signaling in osteocytes: Effects on bone and mineral homeostasis

Review Article
Liesbet Lieben, Geert Carmeliet

Abstract

The active form of vitamin D [1,25(OH)2D] is an important regulator of calcium and bone homeostasis, as evidenced by the consequences of 1,25(OH)2D inactivity in man and mice, which include hypocalcemia, hypophosphatemia, secondary hyperparathyroidism and bone abnormalities. The recent generation of tissue-specific (intestine, osteoblast/osteocyte, chondrocyte) vitamin D receptor (Vdr) null mice has provided mechanistic insight in the cell-specific actions of 1,25(OH)2D and their contribution to the integrative physiology of VDR signaling that controls bone and mineral metabolism. These studies have demonstrated that even with normal dietary calcium intake, 1,25(OH)2D is crucial to maintain normal calcium and bone homeostasis and accomplishes this through this primarily through stimulation of intestinal calcium transport. When, moreover, insufficient calcium is acquired from the diet (severe dietary calcium restriction, lack of intestinal VDR activity), 1,25(OH)2D levels will increase and will directly act on osteoblasts and osteocytes to enhance bone resorption and to suppress bone matrix mineralization. Although this system is essential to maintain normal calcium levels in blood during a negative calcium balance, the consequences for bone are disastrous and generate an increased fracture risk. These findings evidently demonstrate that preservation of serum calcium levels has priority over skeletal integrity. Since vitamin D supplementation is an essential part of anti-osteoporotic therapy, mechanistic insight in vitamin D actions is required to define the optimal therapeutic regimen, taking into account the amount of dietary calcium supply, in order to maximize the targeted outcome and to avoid side-effects. We will review the current understanding concerning the functions of osteoblastic/osteocytic VDR signaling which not only include the regulation of bone metabolism, but also comprise the control of calcium and phosphate homeostasis via fibroblast growth factor (FGF) 23 secretion and the maintenance of the hematopoeitic stem cell (HSC) niche, with special focus on the experimental data obtained from systemic and osteoblast/osteocyte-specific Vdr null mice.

10. In vitro and in vivo approaches to study osteocyte biology

Review Article
Ivo Kalajzic, Brya G. Matthews, Elena Torreggiani, Marie A. Harris, Paola Divieti Pajevic, Stephen E. Harris

Abstract

Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models.

We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed.

In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes.

11. Gap junction and hemichannel functions in osteocytes

Review Article
Alayna E. Loiselle, Jean X. Jiang, Henry J. Donahue

Abstract

Cell-to-cell and cell-to-matrix communication in bone cells mediated by gap junctions and hemichannels, respectively, maintains bone homeostasis. Gap junctional communication between cells permits the passage of small molecules including calcium and cyclic AMP. This cell-to-cell communication occurs between bone cells including osteoblasts, osteoclasts and osteocytes, and is important in both bone formation and bone resorption. Connexin (Cx) 43 is the predominant gap junction protein in bone cells, and facilitates the communication of cellular signals either through docking of gap junctions between two cells, or through the formation of un-paired hemichannels. Systemic deletion of Cx43 results in perinatal lethality, so conditional deletion models are necessary to study the postnatal role of gap junctions in bone. These models provide the opportunity to determine the role of gap junctions in specific bone cells, notably the osteocyte. In this review, we summarize the key roles that gap junctions and hemichannels in osteocytes play in bone cell response to many stimuli including mechanical loading, intracellular and extracellular stimuli, such as parathyroid hormone, PGE2, plasma calcium levels and pH, as well as in maintaining osteocyte survival.

12. Effects of PTH on osteocyte function

Review Article
Teresita Bellido, Vaibhav Saini, Paola Divieti Pajevic

Abstract

Osteocytes are ideally positioned to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. However, evidence supporting the involvement of osteocytes in specific aspects of skeletal biology has been limited mainly due to the lack of suitable experimental approaches. Few crucial advances in the field in the past several years have markedly increased our understanding of the function of osteocytes. The development of osteocytic cell lines initiated a plethora of in vitro studies that have provided insights into the unique biology of osteocytes and continue to generate novel hypotheses. Genetic approaches using promoter fragments that direct gene expression to osteocytes allowed the generation of mice with gain or loss of function of particular genes revealing their role in osteocyte function. Furthermore, evidence that Sost/sclerostin is expressed primarily in osteocytes and inhibits bone formation by osteoblasts, fueled research attempting to identify regulators of this gene as well as other osteocyte products that impact the function of osteoblasts and osteoclasts. The discovery that parathyroid hormone (PTH), a central regulator of bone homeostasis, inhibits sclerostin expression generated a cascade of studies that revealed that osteocytes are crucial target cells of the actions of PTH. This review highlights these investigations and discusses their significance for advancing our understanding of the mechanisms by which osteocytes regulate bone homeostasis and for developing therapies for bone diseases targeting osteocytes.

13. For whom the bell tolls: Distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases

Review Article
Stavros C. Manolagas, A. Michael Parfitt

Abstract

Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar–canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab.

14. Osteocyte control of osteoclastogenesis

Review Article
Charles A. O’Brien, Tomoki Nakashima, Hiroshi Takayanagi

Abstract

Multiple lines of evidence support the idea that osteocytes act as mechanosensors in bone and that they control bone formation, in part, by expressing the Wnt antagonist sclerostin. However, the role of osteocytes in the control of bone resorption has been less clear. Recent studies have demonstrated that osteocytes are the major source of the cytokine RANKL involved in osteoclast formation in cancellous bone. The goal of this review is to discuss these and other studies that reveal mechanisms whereby osteocytes control osteoclast formation and thus bone resorption.

References

  1. A. R. Stern and D. P. Nicolella, “Measurement and estimation of osteocyte mechanical strain,” Bone.
  2. W. Yao, W. Dai, J. X. Jiang, and N. E. Lane, “Glucocorticoids and Osteocyte Autophagy,” Bone.
  3. J. J. Wysolmerski, “Osteocytes remove and replace perilacunar mineral during reproductive cycles,” Bone.
  4. D. J. Webster, P. Schneider, S. L. Dallas, and R. Müller, “Studying osteocytes within their environment,” Bone.
  5. R. L. Jilka, B. Noble, and R. S. Weinstein, “Osteocyte apoptosis,” Bone.
  6. A. M. Nguyen and C. R. Jacobs, “Emerging role of primary cilia as mechanosensors in osteocytes,” Bone.
  7. J. Klein-Nulend, A. D. Bakker, R. G. Bacabac, A. Vatsa, and S. Weinbaum, “Mechanosensation and transduction in osteocytes,” Bone.
  8. K. Wesseling-Perry and H. Jüppner, “The osteocyte in CKD: New concepts regarding the role of FGF23 in mineral metabolism and systemic complications,” Bone.
  9. L. Lieben and G. Carmeliet, “Vitamin D signaling in osteocytes: Effects on bone and mineral homeostasis,” Bone.
  10. I. Kalajzic, B. G. Matthews, E. Torreggiani, M. A. Harris, P. Divieti Pajevic, and S. E. Harris, “In vitro and in vivo approaches to study osteocyte biology,” Bone.
  11. A. E. Loiselle, J. X. Jiang, and H. J. Donahue, “Gap junction and hemichannel functions in osteocytes,” Bone.
  12. T. Bellido, V. Saini, and P. D. Pajevic, “Effects of PTH on osteocyte function,” Bone.
  13. S. C. Manolagas and A. M. Parfitt, “For whom the bell tolls: Distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases,” Bone
  14. C. A. O’Brien, T. Nakashima, and H. Takayanagi, “Osteocyte control of osteoclastogenesis,” Bone.
  15. Bone remodelling in a nutshel June 22, 2012 by aviralvatsa
  16. Isolation of primary osteocytes from skeletally mature mice bones: Reoprt on “Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice” (BioTechniques 52:361-373 ( June 2012) doi 10.2144/0000113876 )
  17. Nitric Oxide in bone metabolism July 16, 2012 by aviralvatsa

Read Full Post »


Reporter: Aviral Vatsa PhD, MBBS

A new study in JBMR highlights a novel glucocorticoid receptor modulator Compound A (CpdA) with the potential for an improved risk/benefit profile. They tested the effects of CpdA on bone in a mouse model of GC‐induced bone loss.

This study underlines the bone‐sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK‐1 in osteoblast lineage cells, GC‐induced bone loss may be ameliorated. © 2012 American Society for Bone and Mineral Research.

RESULTS

PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum P1NP, reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf‐1 (DKK‐1). In addition, serum CTX‐1 and the skeletal RANKL/OPG ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO‐Y4 cells. Finally, CpdA also failed to transactivate DKK‐1 expression in bone tissue, BMSCs and osteocytes.

METHODS

Bone loss was induced in FVB/N mice by implanting slow‐release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte‐like cells (MLO‐Y4 cells).

Read Full Post »


Author: Aviral Vatsa PhD, MBBS

Nitric oxide (NO) is a short-lived, highly reactive, free radical which is ubiquitously present in the human body. Physiologically, it is widely used as a second messenger both an inter-cellular and intra-cellular signaling molecule. NO is produced when L-arginine is converted to L-citruline in the presence of NO synthase (NOS) enzyme, molecular oxygen, NADPH, and other cofactors. Principally, three isoenzymes of NOS are present in the body to catalyse the production of NO in various anatomic locations and under various physiological conditions. Three distinct genes encode for the three types of NOS i.e. endothelial (eNOS or NOS-3), neuronal (nNOS or NOS-1), and inducible (iNOS or NOS-2) NOS. Neuronal NOS and endothelial NOS are calcium-dependent enzymes, whereas inducible NOS is a calcium-independent inducible enzyme, that is activated and upregulated by cytokines during inflammatory processes. The tissue-specificity indicated in the names is not absolute as these subtypes have been discovered in wider locations in the body.

In bone, NO plays a vital role in mechanosensation and mechanotransduction. Osteocytes are widely accepted as the ‘professional’ mechanosensors in bone. They sense external mechanical loads on bone and produce chemical signals such as NO and prostaglandins. NO in turn has been shown to modulate the activity of both bone forming osteoblasts and bone resorbing osteoclasts. NO is essential for load-induced bone formation in vivo. Studies using single gene deletions have shown that NO is an important cog in the wheel for bone metabolism and bone remodelling. Although eNOS isotype is widely implicated in NO production in bone, but recent studies indicate that iNOS isotype might also be involved in NO production in bone in response to mechanical loading. Targeted deletion of eNOS shows mild osteoporotic phenotype in mice and iNOS pathway has been implicated in L-1-induced osteoclastic bone resorption. Hence both NOS isoforms have important role in bone remodelling.

Challenges to study NO: NO is a small, short-lived signalling molecule. It has a half life of less than 5 sec, which makes its online detection very difficult. Predominantly, the more stable metabolites of NO such as nitrites and nitrates are detected by using techniques such as Greiss reagent. They are however lited by the sensitivity levels and their inability to detect actual levels of NO. However, fluorescent dyes such as DAR 4M and DAF dyes are potent tools to detect online NO production at single cell level. These dyes are membrane-permeable, hence are taken up readily by the cells. Once inside the cell they are metabolised and rendered membrane-impermeable. When cell produces NO these dyes trap NO and get converted into fluorescent product, which can then be detected by using fluorescence microscopy. Moreover, by using these techniques, quantitative analyses of NO production (not only its metabolites) is feasible in live, single cells.

Molecular methods to investigate mRNA or protein levels of NOS enzymes are also used to corroborate with the changes in NO production levels.

Sources:

http://onlinelibrary.wiley.com/doi/10.1359/jbmr.060720/full

http://www.sciencedirect.com/science/article/pii/S0021929007000826

http://www.sciencedirect.com/science/article/pii/S8756328204004144

http://onlinelibrary.wiley.com/doi/10.1359/jbmr.080107/full

Read Full Post »


Curator, Reporter: Aviral Vatsa, PhD, MBBS

Isolation of primary osteocytes from skeletally mature mice bones: A report on “Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice” (BioTechniques 52:361-373 ( June 2012) doi 10.2144/0000113876)

A new study by Stern et al reports a technique where in the authors have isolated primary osteocytes from mature and aged mice.

Osteocytes are deeply embedded in the mineralised matrix of bone. They form the majority cell types of bone and play vital function in maintenance of bone homeostasis. However their study has been limited by their location in the bone and that they are terminally differentiated cells.

Osteocytes are the most abundant of the three bone cell types; however, the least is known about them. While their location deep within the bone matrix makes them ideally situated to sense bone strain, it also makes their observation and study in vivo difficult. Additionally, primary osteocytes, particularly those within the long bones of skeletally mature animals, have proven difficult to obtain and study ex vivo. Furthermore, once primary osteocytes are obtained, their study is often limited by their inability to proliferate as they are considered terminally differentiated cells. ”

As a result majority of the studies on osteocytes in vitro have used either cell lines and/or primary cells from new-born animals such as chicken, rat and mouse.

The MLO-Y4 cell line is well-characterized and represents the phenotype of early osteocytes ”

“Although the MLO-Y4 cell line is a very powerful tool for the study of osteocytes in vitro, there are known differences between primary osteocytes and the immortalized MLO-Y4 cell line. For example, MLO-Y4 cells express low to undetectable levels of Dentin matrix protein 1 (Dmp1) and Sclerostin (Sost), while osteocytes are known to express these genes in vivo .”

Primary osteocytes have most commonly been isolated from 16- or 18-day-old chick calvaria or from newborn through 4-day-old rat calvaria, 12-day-old mouse calvaria, and 3- to 4-week-old mouse calvaria and long bones.”

Studies utilizing these primary osteocytes can provide insight to the behavior of osteocytes during development but do not aid in the study of osteocytes from skeletally mature animals or enable the comparison between osteocytes isolated from skeletally mature but relatively young mice (4- to 6-month) and aged mice (>22-month-old).”

To circumvent the above mentioned limitations the authors utilised multi-step digestion technique. They subjected mouse long bone pieces (from 4-month old mouse and 22-month old mouse) to collagenase and EDTA alternatively for 25 minutes and collected the aspirate after each step for plating and culture of cells. (as described in the table, which has been taken from the study).

Table 1. Osteocyte isolation from murine long bone (courtesy: Stern et al)

They collected cells from nine such alternate steps in total and also the left over bone. These cells were then cultured for 7 days. Following parameters were tested to characterise the osteocytes.

  • E11/GP38 staining – early osteocyte specific protein
  • Alkaline Phosphatase (ALP) staining – indicator of osteoblastic state
  • COL 1 – major component of bone and produced by osteoblasts
  • Gene expression of E11, SOST, MEPE, Dmp1 – markers of osteogencity in different stages of osteogenesis
    • Osteoid osteocytes are known to express E11, Phex, and Mepe, while mineralizing osteocytes express Dmp1, and mature osteocytes encased in a mineralized matrix express Sost and Fgf23”

The authors were able to demonstrate that the isolated cells indeed expressed osteogenic markers. It was observed that cells isolated from later digestion steps (6-9) were more osteocyte like. This was also the case with the cells isolated from the left over bone pieces.

In this study, we were able to success fully isolate primary cells displaying several characteristics of osteocytes from the long bones of skeletally mature 4-month-old and 22-month-old mice through a process of sequential digestions and the use of a tissue homogenizer. From both the 4-month-old and 22-month-old mice, approximately 250,000 cells per osteocyte-enriched digestion (digestions 7–9) were obtained. These cells expressed E11/GP38 protein, and they lacked ALP and COL1A1 expression found in osteoblasts. Furthermore, several genes known to be expressed in osteocytes were also expressed in the cells obtained using our methodology. These include E11/gp38, Sost, Cox2, Mepe, Phex, and Dmp1.”

Limitations: 

As the authors pointed out, their study characterised the cells ensemble from separate digestion steps. This could lead to having a mixed population from each step.

The authors did not mention about the proliferation (or the absence of it) of the isolated cells. Since osteocytes are terminally differentiated cells, theoretically they should not proliferate. In addition when such primary cells are co-cultured with dividing cells, such as osteoblasts and fibroblasts in this case, the dividing population tends to over grow in culture leaving behind very few primary osteocytes. A detailed characterisation of these cells at different stages of digestion along with progressive time points will be very helpful.

Possibilities:

As authors claim, in future, this technique can help scientists to answer tricky questions about osteocytes such as comparing osteocytes from animals grouped on the basis of age, disease, bone characteristics, and therapies.

Reference: Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. BioTechniques 52:361-373 ( June 2012) doi 10.2144/0000113876 .

Read Full Post »


Author: Aviral Vatsa, Ph.D., MBBS

Bone is a highly dynamic tissue that responds to changes in its external environment. Our bones adapt their mass and architecture according to the external mechanical loading conditions. Any long term alterations in loading conditions result in alteration of bone mass and architecture. This is highlighted in the following examples:

  1. Astronauts tend to lose their bone when they are in space. This is because the bones are not mechanically loaded externally due to absence of or reduction in gravitational force.
  2. Tennis players gain more mass in their playing forearm as compared to the non-playing forearm.

In both these examples bones tend to readjust their internal structural mass and alignment as per the external loads or their absence. How bones can achieve this? How bone forming and bone resorbing cells can be orchestrated to bring about this adaptation?

Bone cells

The questions mentioned above can be answered by knowing more about the cellular components of bone and their functions. Our bones primarily have four cell types: osteocytes, osteoblasts, osteoclasts and bone lining cells. Osteocytes are believed to be the ‘professional’ mechanosensors of bone i.e. they sense the external loads put on bone. Osteoblasts are the bone forming cells. Osteoclasts are the bone resorbing cells and as the name suggests, bone lining cells line the bone surfaces and play a role in regeneration of osteogenic cells. Osteocytes, following mechanical loading, secrete signalling molecules such as nitric oxide (besides others). These signalling molecules then modulate the activity of bone forming osteoblasts and/or bone resorbing osteoclasts. Thus osteocytes orchestrate this process wherein adequate bone mass and architecture is achieved in accordance with the external loading conditions.

Anatomically, the osteocytes reside with in the hard bony matrix. They are the majority cell types in bone and are ideally placed to sense the mechanical loads. Osteocytes have a cell body and from the cell body arise nearly fifty cell processes. Through these cell processes each osteocyte forms a network with the surrounding osteocytes. Through this network, following mechanical loading, osteocytes can stimulate the activity of osteoblasts and inhibit the activity of osteoclasts. This process of maintenance of bone mass and architecture is called bone remodelling. Bone remodelling occurs through out our life. It occurs in response to microfractures, which can appear in our bone without being noticed clinically. As long as our bone metabolism is physiologically normal these stimuli, such as microfractures, result in bone remodelling.

In diseases such as osteoporosis, the mechanism of bone remodelling is disrupted and there is more bone resorbtion than new bone formation thus leading to reduction in bone mass and alteration of bone architecture. Drug therapies for osteoporosis such as bisphosphonates, act by inhibiting the activity of osteoclasts thereby resulting in reduction in bone resorbtion and hence helping in maintenance of adequate bone mass and architecture. Newer therapies that target to modulate a part of bone remodelling are being investigated.

Read Full Post »