Feeds:
Posts
Comments

Posts Tagged ‘mechanical strain’


Reporter: Aviral Vatsa PhD, MBBS

Osteocytes are the professional mechanosensors of bone. They modulate bone remodelling in accordance with external mechanical loads by orchestrating the activity of one forming osteoblasts and bone resorbing osteoclasts. Osteocytes are at the heart of bone metabolism. They constitute >95% of bone cells. They are terminally differentiated cells and reside in the hard mineralised matrix of bone, thus making it difficult to study them in situ. However, recent developments in imaging and tissue processing have made it possible to study osteocytes in their natural milieu. Moreover, increasing number of studies have highlighted the fact that a multifaceted approach from various domains of science such as biomechanics, cell biology, bioengineering, biophysics, biomaterials, computational modelling, endocrinology, and orthopaedics is essential to further our understanding of the intricate processes involved in bone remodelling and the central role of osteocytes in maintaining bone mass and architecture.

In this post a variety of reviews from an upcoming special issue on osteocytes in the journal Bone are highlighted that help us add few more pieces of knowledge to the ever growing eclaircissements on the subject.

1. Measurement and estimation of osteocyte mechanical strain

Review Article
Amber Rath Stern, Daniel P. Nicolella

Abstract

Osteocytes are the most abundant cell type in bone and are responsible for sensing mechanical strain and signaling bone (re)modeling, making them the primary mechanosensors within the bone. Under aging and osteoporotic conditions, bone is known to be less responsive to loading (exercise), but it is unclear why. Perhaps, the levels of mechanical strain required to initiate these biological events are not perceived by the osteocytes embedded within the bone tissue. In this review we examine the methods used to measure and estimate the strains experienced by osteocytes in vivo as well as the results of related published experiments. Although the physiological levels of strain experienced by osteocytes in vivo are still under investigation, through computational modeling and laboratory experiments, it has been shown that there is significant amplification of average bone strain at the level of the osteocyte lacunae. It has also been proposed that the material properties of the perilacunar region surrounding the osteocyte can have significant effects of the strain perceived by the embedded osteocyte. These facts have profound implications for studies involving osteoporotic bone where the material properties are known to become stiffer.

2. Glucocorticoids and Osteocyte Autophagy

Review Article
Wei Yao, Weiwei Dai, Jean X. Jiang, Nancy E. Lane

Abstract

Glucocorticoids are used for the treatment of inflammatory and autoimmune diseases. While they are effective therapy, bone loss and incident fracture risk is high. While previous studies have found GC effects on both osteoclasts and oteoblasts, our work has focused on the effects of GCs on osteocytes. Osteocytes exposed to low dose GCs undergo autophagy while osteocytes exposed to high doses of GCs or for a prolonged period of time undergo apoptosis. This paper will review the data to support the role of GCs in osteocyte autophagy.

3. Osteocytes remove and replace perilacunar mineral during reproductive cycles

Review Article
John J. Wysolmerski

Abstract

Lactation is associated with an increased demand for calcium and is accompanied by a remarkable cycle of bone loss and recovery that helps to supply calcium and phosphorus for milk production. Bone loss is the result of increased bone resorption that is due, in part, to increased levels of PTHrP and decreased levels of estrogen. However, the regulation of bone turnover during this time is not fully understood. In the 1960s and 1970s many observations were made to suggest that osteocytes could resorb bone and increase the size of their lacunae. This concept became known as osteocytic osteolysis and studies suggested that it occurred in response to parathyroid hormone and/or an increased systemic demand for calcium. However, this concept fell out of favor in the late 1970s when it was established that osteoclasts were the principal bone-resorbing cells. Given that lactation is associated with increased PTHrP levels and negative calcium balance, we recently examined whether osteocytes contribute to bone loss during this time. Our findings suggest that osteocytes can remodel their perilacunar and pericanalicular matrix and that they participate in the liberation of skeletal calcium stores during reproductive cycles. These findings raise new questions about the role of osteocytes in coordinating bone and mineral metabolism during lactation as well as the recovery of bone mass after weaning. It is also interesting to consider whether osteocyte lacunar and canalicular remodeling contribute more broadly to the maintenance of skeletal and mineral homeostasis.

4. Studying osteocytes within their environment

Review Article
Duncan J. Webster, Philipp Schneider, Sarah L. Dallas, Ralph Müller

Abstract

It is widely hypothesized that osteocytes are the mechano-sensors residing in the bone’s mineralized matrix which control load induced bone adaptation. Owing to their inaccessibility it has proved challenging to generate quantitative in vivo experimental data which supports this hypothesis. Recent advances in in situ imaging, both in non-living and living specimens, have provided new insights into the role of osteocytes in the skeleton. Combined with the retrieval of biochemical information from mechanically stimulated osteocytes using in vivo models, quantitative experimental data is now becoming available which is leading to a more accurate understanding of osteocyte function. With this in mind, here we review i) state of the art ex vivo imaging modalities which are able to precisely capture osteocyte structure in 3D, ii) live cell imaging techniques which are able to track structural morphology and cellular differentiation in both space and time, and iii) in vivo models which when combined with the latest biochemical assays and microfluidic imaging techniques can provide further insight on the biological function of osteocytes.

5. Osteocyte apoptosis

Review Article
Robert L. Jilka, Brendon Noble, Robert S. Weinstein

Abstract

Apoptotic death of osteocytes was recognized over 15 years ago, but its significance for bone homeostasis has remained elusive. A new paradigm has emerged that invokes osteocyte apoptosis as a critical event in the recruitment of osteoclasts to a specific site in response to skeletal unloading, fatigue damage, estrogen deficiency and perhaps in other states where bone must be removed. This is accomplished by yet to be defined signals emanating from dying osteocytes, which stimulate neighboring viable osteocytes to produce osteoclastogenic cytokines. The osteocyte apoptosis caused by chronic glucocorticoid administration does not increase osteoclasts; however, it does negatively impact maintenance of bone hydration, vascularity, and strength.

6. Emerging role of primary cilia as mechanosensors in osteocytes

Review Article
An M. Nguyen, Christopher R. Jacobs

Abstract

The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell. This organelle has established mechanosensory roles in several contexts including kidney, liver, and the embryonic node. Mechanical load deflects the cilium, triggering biochemical responses. Defects in cilium function have been associated with numerous human diseases. Recent research has implicated the primary cilium as a mechanosensor in bone. In this review, we discuss the cilium, the growing evidence for its mechanosensory role in bone, and areas of future study.

7. Mechanosensation and transduction in osteocytes

Review Article
Jenneke Klein-Nulend, Astrid D. Bakker, Rommel G. Bacabac, Aviral Vatsa, Sheldon Weinbaum

Abstract

The human skeleton is a miracle of engineering, combining both toughness and light weight. It does so because bones possess cellular mechanisms wherein external mechanical loads are sensed. These mechanical loads are transformed into biological signals, which ultimately direct bone formation and/or bone resorption. Osteocytes, since they are ubiquitous in the mineralized matrix, are the cells that sense mechanical loads and transduce the mechanical signals into a chemical response. The osteocytes then release signaling molecules, which orchestrate the recruitment and activity of osteoblasts or osteoclasts, resulting in the adaptation of bone mass and structure. In this review, we highlight current insights in bone adaptation to external mechanical loading, with an emphasis on how a mechanical load placed on whole bones is translated and amplified into a mechanical signal that is subsequently sensed by the osteocytes.

8. The osteocyte in CKD: New concepts regarding the role of FGF23 in mineral metabolism and systemic complications

Review Article
Katherine Wesseling-Perry, Harald Jüppner

Abstract

The identification of elevated circulating levels of the osteocytic protein fibroblast growth factor 23 (FGF23) in patients with chronic kidney disease (CKD), along with recent data linking these values to the pathogenesis of secondary hyperparathyroidism and to systemic complications, has changed the approach to the pathophysiology and treatment of disordered bone and mineral metabolism in renal failure. It now appears that osteocyte biology is altered very early in the course of CKD and these changes have implications for bone biology, as well as for progressive cardiovascular and renal disease. Since circulating FGF23 values are influenced by therapies used to treat secondary hyperparathyroidism, the effects of different therapeutic paradigms on FGF23 have important implications for mineral metabolism as well as for morbidity and mortality. Further studies are critically needed to identify the initial trigger for abnormalities of skeletal mineralization and turnover as well as the potential effects that current therapeutic options may have on osteocyte biology.

9. Vitamin D signaling in osteocytes: Effects on bone and mineral homeostasis

Review Article
Liesbet Lieben, Geert Carmeliet

Abstract

The active form of vitamin D [1,25(OH)2D] is an important regulator of calcium and bone homeostasis, as evidenced by the consequences of 1,25(OH)2D inactivity in man and mice, which include hypocalcemia, hypophosphatemia, secondary hyperparathyroidism and bone abnormalities. The recent generation of tissue-specific (intestine, osteoblast/osteocyte, chondrocyte) vitamin D receptor (Vdr) null mice has provided mechanistic insight in the cell-specific actions of 1,25(OH)2D and their contribution to the integrative physiology of VDR signaling that controls bone and mineral metabolism. These studies have demonstrated that even with normal dietary calcium intake, 1,25(OH)2D is crucial to maintain normal calcium and bone homeostasis and accomplishes this through this primarily through stimulation of intestinal calcium transport. When, moreover, insufficient calcium is acquired from the diet (severe dietary calcium restriction, lack of intestinal VDR activity), 1,25(OH)2D levels will increase and will directly act on osteoblasts and osteocytes to enhance bone resorption and to suppress bone matrix mineralization. Although this system is essential to maintain normal calcium levels in blood during a negative calcium balance, the consequences for bone are disastrous and generate an increased fracture risk. These findings evidently demonstrate that preservation of serum calcium levels has priority over skeletal integrity. Since vitamin D supplementation is an essential part of anti-osteoporotic therapy, mechanistic insight in vitamin D actions is required to define the optimal therapeutic regimen, taking into account the amount of dietary calcium supply, in order to maximize the targeted outcome and to avoid side-effects. We will review the current understanding concerning the functions of osteoblastic/osteocytic VDR signaling which not only include the regulation of bone metabolism, but also comprise the control of calcium and phosphate homeostasis via fibroblast growth factor (FGF) 23 secretion and the maintenance of the hematopoeitic stem cell (HSC) niche, with special focus on the experimental data obtained from systemic and osteoblast/osteocyte-specific Vdr null mice.

10. In vitro and in vivo approaches to study osteocyte biology

Review Article
Ivo Kalajzic, Brya G. Matthews, Elena Torreggiani, Marie A. Harris, Paola Divieti Pajevic, Stephen E. Harris

Abstract

Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models.

We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed.

In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes.

11. Gap junction and hemichannel functions in osteocytes

Review Article
Alayna E. Loiselle, Jean X. Jiang, Henry J. Donahue

Abstract

Cell-to-cell and cell-to-matrix communication in bone cells mediated by gap junctions and hemichannels, respectively, maintains bone homeostasis. Gap junctional communication between cells permits the passage of small molecules including calcium and cyclic AMP. This cell-to-cell communication occurs between bone cells including osteoblasts, osteoclasts and osteocytes, and is important in both bone formation and bone resorption. Connexin (Cx) 43 is the predominant gap junction protein in bone cells, and facilitates the communication of cellular signals either through docking of gap junctions between two cells, or through the formation of un-paired hemichannels. Systemic deletion of Cx43 results in perinatal lethality, so conditional deletion models are necessary to study the postnatal role of gap junctions in bone. These models provide the opportunity to determine the role of gap junctions in specific bone cells, notably the osteocyte. In this review, we summarize the key roles that gap junctions and hemichannels in osteocytes play in bone cell response to many stimuli including mechanical loading, intracellular and extracellular stimuli, such as parathyroid hormone, PGE2, plasma calcium levels and pH, as well as in maintaining osteocyte survival.

12. Effects of PTH on osteocyte function

Review Article
Teresita Bellido, Vaibhav Saini, Paola Divieti Pajevic

Abstract

Osteocytes are ideally positioned to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. However, evidence supporting the involvement of osteocytes in specific aspects of skeletal biology has been limited mainly due to the lack of suitable experimental approaches. Few crucial advances in the field in the past several years have markedly increased our understanding of the function of osteocytes. The development of osteocytic cell lines initiated a plethora of in vitro studies that have provided insights into the unique biology of osteocytes and continue to generate novel hypotheses. Genetic approaches using promoter fragments that direct gene expression to osteocytes allowed the generation of mice with gain or loss of function of particular genes revealing their role in osteocyte function. Furthermore, evidence that Sost/sclerostin is expressed primarily in osteocytes and inhibits bone formation by osteoblasts, fueled research attempting to identify regulators of this gene as well as other osteocyte products that impact the function of osteoblasts and osteoclasts. The discovery that parathyroid hormone (PTH), a central regulator of bone homeostasis, inhibits sclerostin expression generated a cascade of studies that revealed that osteocytes are crucial target cells of the actions of PTH. This review highlights these investigations and discusses their significance for advancing our understanding of the mechanisms by which osteocytes regulate bone homeostasis and for developing therapies for bone diseases targeting osteocytes.

13. For whom the bell tolls: Distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases

Review Article
Stavros C. Manolagas, A. Michael Parfitt

Abstract

Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar–canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab.

14. Osteocyte control of osteoclastogenesis

Review Article
Charles A. O’Brien, Tomoki Nakashima, Hiroshi Takayanagi

Abstract

Multiple lines of evidence support the idea that osteocytes act as mechanosensors in bone and that they control bone formation, in part, by expressing the Wnt antagonist sclerostin. However, the role of osteocytes in the control of bone resorption has been less clear. Recent studies have demonstrated that osteocytes are the major source of the cytokine RANKL involved in osteoclast formation in cancellous bone. The goal of this review is to discuss these and other studies that reveal mechanisms whereby osteocytes control osteoclast formation and thus bone resorption.

References

  1. A. R. Stern and D. P. Nicolella, “Measurement and estimation of osteocyte mechanical strain,” Bone.
  2. W. Yao, W. Dai, J. X. Jiang, and N. E. Lane, “Glucocorticoids and Osteocyte Autophagy,” Bone.
  3. J. J. Wysolmerski, “Osteocytes remove and replace perilacunar mineral during reproductive cycles,” Bone.
  4. D. J. Webster, P. Schneider, S. L. Dallas, and R. Müller, “Studying osteocytes within their environment,” Bone.
  5. R. L. Jilka, B. Noble, and R. S. Weinstein, “Osteocyte apoptosis,” Bone.
  6. A. M. Nguyen and C. R. Jacobs, “Emerging role of primary cilia as mechanosensors in osteocytes,” Bone.
  7. J. Klein-Nulend, A. D. Bakker, R. G. Bacabac, A. Vatsa, and S. Weinbaum, “Mechanosensation and transduction in osteocytes,” Bone.
  8. K. Wesseling-Perry and H. Jüppner, “The osteocyte in CKD: New concepts regarding the role of FGF23 in mineral metabolism and systemic complications,” Bone.
  9. L. Lieben and G. Carmeliet, “Vitamin D signaling in osteocytes: Effects on bone and mineral homeostasis,” Bone.
  10. I. Kalajzic, B. G. Matthews, E. Torreggiani, M. A. Harris, P. Divieti Pajevic, and S. E. Harris, “In vitro and in vivo approaches to study osteocyte biology,” Bone.
  11. A. E. Loiselle, J. X. Jiang, and H. J. Donahue, “Gap junction and hemichannel functions in osteocytes,” Bone.
  12. T. Bellido, V. Saini, and P. D. Pajevic, “Effects of PTH on osteocyte function,” Bone.
  13. S. C. Manolagas and A. M. Parfitt, “For whom the bell tolls: Distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases,” Bone
  14. C. A. O’Brien, T. Nakashima, and H. Takayanagi, “Osteocyte control of osteoclastogenesis,” Bone.
  15. Bone remodelling in a nutshel June 22, 2012 by aviralvatsa
  16. Isolation of primary osteocytes from skeletally mature mice bones: Reoprt on “Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice” (BioTechniques 52:361-373 ( June 2012) doi 10.2144/0000113876 )
  17. Nitric Oxide in bone metabolism July 16, 2012 by aviralvatsa

Read Full Post »


A revolutionary microchip-based human disease model for testing drugs

Reporter: Ritu Saxena, Ph.D.

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, have developed lung-on-a-microfluid chip and shown that it mimic human lung function in response to Interluekin-2 (IL-2) and mechanical strain. Authors describe it as “a “lung-on-a-chip” that reconstituted the alveolar-capillary interface of the human lung and exposed it to physiological mechanical deformation and flow; in other words, it breathed rhythmically much like a living lung”.

The model was developed by Hu et al and reported earlier in the journal Science in 2010. The group has now been successful in demonstrating that lung-on-a-chip can act as a drug-testing model for pulmonary edema. Infact, Hu et al were able to predict the activity of a new drug, GSK2193874, for edema. Authors stated “These studies also led to identification of potential new therapeutics, including angiopoietin-1 (Ang-1) and a new transient receptor potential vanilloid 4 (TRPV4) ion channel inhibitor (GSK2193874), which might prevent this life-threatening toxicity of IL-2 in the future.” The findings have been published recently in the November 7 issue of Science Translational Medicine.

Research

To recreate lung on the microchip, the authors cultured two toes of human lung cells in parallel microchannels separated by a thin membrane. It was observed that the upper channel (alveolar) was filled with air, while the lower channel (microvascular) was filled with liquid. The observation was similar to what occurs in human lung. Breathing motion of the lung was mimicked on the chip by applying vacuum cyclically to the sides of the channels.

Mimicking pulmonary edema

Pulmonary edema is a condition characterized by the abnormal buildup of fluid in the air sacs of the lungs, which leads to shortness of breath. It is often caused when the heart is not able to pump blood to the body efficiently, it can back up into the veins that take blood through the lungs to the left side of the heart. As the pressure in these blood vessels increases, fluid is pushed into the air spaces (alveoli) in the lungs. This fluid reduces normal oxygen movement through the lungs. This and the increased pressure can lead to shortness of breath.

Hu and colleagues observed that when IL-2 was added to the microvascular channel, the fluid started to leak into the alveolar compartment of the chip. This process is a reproduction of what happens in edema. Further, adding cyclic mechanical strain along with IL-2 compromised the pulmonary barrier even further and leading to a threefold increase in leakage.

Drug-testing model

Once the authors established the pulmonary disease model on the microchip, they tested against a novel pharmacological agent, GSK2193874, which blocks certain ion channels activated by mechanical strain. This drug was able to inhibit leakage suggesting that it might be a viable treatment option for patients with pulmonary edema who are being mechanically ventilated. A major advantage of using this model is avoiding the use of animal models for research.

Future perspective

The lung-on-a-chip model developed by Hu et al could be used to test novel agents for pulmonary edema.

Editorial note on the article in Science translational medicine article states “The next step is to hook this lung up to other chip-based organs− heart, liver, pancreas, etc.−with the goal of one day being able to rapidly screen many drugs and conditions that could affect patient health.”

Source:

Journal articles

Hul D, et al. A Human Disease Model of Drug Toxicity−Induced Pulmonary Edema in aLung-on-a-Chip. Microdevice Sci Transl Med. 2012 Nov 7;4(159):159ra147.http://www.ncbi.nlm.nih.gov/pubmed/23136042

Hul D et al Reconstituting organ-level lung functions on a chipScience. 2010 Jun 25;328(5986):1662-8. http://www.ncbi.nlm.nih.gov/pubmed/20576885

News brief

Video link to lung-on-a-chip http://wyss.harvard.edu/viewpage/240/

Sciencedaily report, November 7, 2012 http://www.sciencedaily.com/releases/2012/11/121107141044.htm

Read Full Post »