Feeds:
Posts
Comments

Posts Tagged ‘aptamers and nanoparticles’

Nano-guided cell networks as conveyors of molecular communication

Nature Communications
6,
Article number:
8500
doi:10.1038/ncomms9500
Received
07 March 2015
Accepted
28 August 2015
Published
12 October 2015

Abstract

Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and ‘binned’ responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a ‘bio-litmus’ in a manner read by simple optical means.

At a glance

Figures

View all figures

left

  1. Nano-guided cell networks for processing molecular information.
    Figure 1
  2. Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.
    Figure 2
  3. Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.
    Figure 3
  4. Affinity-based probing for functional analysis of AI-2-induced protein expression.
    Figure 4
  5. Single and multi-population cell responses to autoinducer-2.
    Figure 5
  6. Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.
    Figure 6
  7. Extension of nano-guided cell networks for hypothetical regulatory structures.
    Figure 7

right

Introduction

It has become increasingly apparent that a wealth of molecular information exists, which, when appropriately accessed, can provide feedback on biological systems, their componentry and their function. Thus, there is a developing niche that transcends length scales to concurrently recognize molecular detail and at the same time provide understanding of the overall system1, 2. An emerging scheme is to develop nano- to micro-scaled tools that intimately engage with biological systems through monitoring and interacting at the molecular level, with synthetic biology being one such tool3, 4, 5, 6, 7.

While synthetic biology is often viewed as an innovative means for ‘green’ product synthesis through the genetic rearrangement of cells, their biosynthetic capabilities and their regulatory networks can instead be tuned for executive function8, 9, 10. That is, cells can be rewired to survey molecular space3, 11, 12 as they have sophisticated capabilities to recognize, amplify and transduce chemical information13. Further, they provide a means to connect biological systems with traditional microelectronic devices and in doing so present a potential interface between chemically based biomolecular processing and conventional vectors of information flow, such as electrons and photons14, 15, 16. Specifically, through engineered design, cell-based molecular processing can be further coupled to enable external abiotic responses. Cells, then, represent a versatile means for mediating the molecular ‘signatures’ common in complex environments, or in other words, they are conveyors of molecular communication17, 18, 19.

Further, beyond clonal cell-based sensors, there is an emerging concept of population engineering to establish microorganisms in deliberate networks that enable enriched system identification through a combination of distinctive yet coexistent behaviours, including, perhaps, competitive or cooperative features8, 20, 21, 22, 23, 24, 25. We posit the use of cell populations assembled in parallel¸ where multiple microbes with distinct molecular recognition capabilities work congruently. An advantage is that populations, as opposed to few cells, can facilitate thorough sampling since the presence of many cells increases their spatial breadth and per-cell data contributions (Fig. 1a). Each cellular unit undergoes independent decision-making and contributes a datum to its entire constituency. The prevalence of data provided within the population, then, substantiates a collective output by the system based on the molecular landscape. As follows in a multi-population system, molecular input thus influences the outcomes of each population, and elicits plural responses when the molecular input ranges overlap the ranges of the sensing populations21, which can define classification boundaries (Fig. 1a). Cell-mediated classification was posited in silico by Didovyk et al.21, where reporter libraries with randomized sensitivities to a molecular cue elicit concentration-dependent fluorescent patterns and these are elucidated by population screening . In the present construct, multiple populations enable multiplexed analysis, resulting, here, in a response gradation that is designed to index the molecular input ‘signature’. Consequently, the fed-back information becomes transfigured beyond a dose-dependent cell-by-cell analysis. That is, the output is predicated by the comparison between the populations rather than accumulation of response within a total population.

Figure 1: Nano-guided cell networks for processing molecular information.

Nano-guided cell networks for processing molecular information.

(a) Biotic (multicellular) processing is facilitated by cell recognition, signal transduction and genetic response. The genetically encoded response reflects the identity and prevalence of the target molecule(s). Biotic processing includes both increased cell number of responders and their genetically tuned response patterns. (b) Abiotic processing, used in conjunction with biotic processing, adds dimensionality to cell-based output by modifying through a physical stimulus (in our example, magnetic focusing). (c) Schematic of a cell population and nanomaterial-based network comprising both biotic (green/red axis) and abiotic (black axis) processing mechanisms. This conceptual system interprets molecular information by intercepting diverse molecular inputs, processes them autonomously through independent cell units within the system and refines output to include positive responders that are viewed via orthogonal means (visual classification). The system’s hierarchical structure allows molecular information to be refined into categorized collective outputs.

With population engineering as a premise for enriched molecular information processing, we engineered cell species, each to achieve an appropriate output through genetic means. There is conceptual basis for incorporation into networks, such as through mobile surveillance and position-based information relay26, 27. Hence, it is conceivable that, in addition to autonomous molecular recognition and processing afforded by synthetic biology, the use of physical stimuli to enable cell response could confer similar networking properties28, 29. For example, the complete information-processing ‘repertoire’ can be expanded beyond specific cell responses by the integration of external stimuli that serve to collate cell populations30. Specifically, we envision integration of nanomaterials that enable co-responses to molecular inputs, such that cell populations employ traditional reporting functions, that is, fluorescence marker expression, as well as responses that enable additional processing via the integration of stimuli-responsive abiotic materials (Fig. 1b).

In our example, cells are engineered to respond by permitting the attachment of magnetic nanoparticles (mNPs), such that each fluorescent cell becomes receptive to a magnetic field. Thus, the combination of cell-nanoparticle structures provides further dimensionality for the conveyance of molecular information (via magnetic stimulation). That is, without magnetic collation the fully distributed system would harbour diffuse responses; a magnetically stimulated system results in acute output due to a filtering and focusing effect (Fig. 1b)31, 32, allowing binned information to be readily, and fluorescently, conveyed.

The detection and interpretation of signalling molecules in our example is based on a microbial communication process known as quorum sensing (QS). The molecules, autoinducers (AIs), are secreted and perceived within a microbial community; once accumulated, the AI level indicates that the population size has reached a ‘quorum’33, 34. By surpassing a threshold concentration, the AI signalling coordinates population-wide phenotypic changes35. We have designed a QS information processor that utilizes two cell populations to independently interrogate natural microbial communities and generate information about QS activity by accessing AI-2 (ref. 36). Each cell population becomes ‘activated’ in response to a characteristic AI-2 level by expressing a fluorescent marker and a streptavidin-binding peptide (SBP) on the outer membrane38. SBP provides a means for collating data by binding mNPs that are introduced into the community. Using a post-processing magnetic sweep, the system as a whole interprets a molecular landscape and refines output into colour-categorized, or ‘binned,’ states (no fluorescence, red, or red and green) through (1) parallel population processing and (2) acute focusing (Fig. 1c).

The use of engineered cells as data-acquiring units and selectively equipping each with functional nanomaterials to form a redistributable processing system merges two paradigms: decentralized, active probing at a molecular scale and self-organization of units through structured dependencies on stimuli42. The population-based system overall contributes categorized feedback about a biological environment.

Results

Surface expression of SBP and fluorescent protein fusions

First, we established expression of a fusion protein consisting of a fluorescent marker (enhanced green fluorescent protein (eGFP) and variants) and SBP. Importantly, for SBP to function as a coupling agent between cells and mNPs, we used AIDAc (kindly shared by J. Larssen)40 to export the chimeric protein to Escherichia coli’s outer surface. Translocation to a cell’s surface utilizes a signal peptide (for inner membrane translocation) and AIDAc as an outer membrane autotransporter pore38, 39, 40, 41, with the passenger protein linked to each. In Fig. 2a, we depict expression of three different constructs using Venus, eGFP and mCherry for optical transmission, and the AIDAc translocator domain for surface localization. These constructs are mapped inSupplementary Fig. 1. After induction with isopropyl B-D-1-thiogalactopyranoside (IPTG), cultures were probed for surface expression of the SBP portion of the tagged fluorescent protein. Cells were incubated with fluorescently labelled streptavidin; the fluorophore of the streptavidin probe was orthogonal to the expressed fluorescent protein. The multiple fluorescence emissions were analysed by confocal microscopy without spectral overlap. The fraction of cells (fc) that exhibit colocalized fluorescent protein and the fluorescently-labeled streptavidin is reported in Fig. 2b, showing that SBP–Venus cells bound streptavidin at a slightly lower frequency than SBP–mCherry and SBP–eGFP, which exhibited statistically similar fractions (fc=0.7).

Figure 2: Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.

Cells express functional, interchangeable protein components indicating both fluorescence and ability for streptavidin-linked surface coupling.

(a) A T7 cassette was used to express chimeric proteins consisting of a membrane autotransporter domain (AIDAc), one of several fluorescent proteins and a streptavidin-binding peptide (SBP). Fluorophore-tagged streptavidin (SA) was used to bind SBP. (b) Of cells expressing fluorescent proteins (FP), those also marked by SBP coupling are represented as a ‘colocalized fraction (fc),’ plotted with image analysis-based s.d. of at least five replicates. The asterisk ‘*’ denotes fc that +SBP–eGFP and+SBP–mCherry are statistically equivalent (fc~0.7) by t-test and greater than +SBP–Venus cells. (c) Composite images show cell fluorescence (Column I) from the fluorescent protein (FP); labelled streptavidin using orthogonal filter sets (Column II); and an overlay of both (Column III). Arrows indicate representative cells with strong colocalization. Plotted in Column IV are the fluorescence mean grey values (y-axis) from a representative horizontal slice of the composite image (x-axis). Vertical bars displayed between Columns III and IV identify the position of each analysed slice. Arrows indicate peaks that match the highlighted cells in Column III. fc values are noted. Fluorophores with non-overlapping spectra were paired. Row 1, Venus expression (yellow-green) was paired with Dylight405-labelled SA (blue). Row 2, eGFP expression (green) was paired with Alexafluor594-labeled SA (red). Row 3, mCherry expression (red) was paired with Alexafluor488-labeled SA (green). Scale bar in lower left, 50μm.

That is, microscopy results related to the colocalization analysis are depicted for pairings of Venus and blue-streptavidin (SA), eGFP and red-SA, and mCherry and green-SA (Fig. 2c). Strong signals were observed in both filter sets (the fluorescent protein (Column I) and the labelled streptavidin (Column II)). Overlaying each image reveals colocalization, as indicated in Column III, where arrows point to examples of strong colocalization. In addition, Column IV plots fluorescence intensities across horizontal sections of the images, where cells that exhibit colocalized fluorescence are indicated by superimposed peaks. For +pSBP–Venus cells, those with both a blue and yellow signal are observed as pale blue–violet in the overlaid image. Cells with +pSBP–eGFP and +pSBP–mCherry and labelled streptavidin emit both green and red signals; their colocalization appears yellow. Controls shown in Supplementary Fig. 2, verify that fluorescent streptavidin (all colours) has specificity for only SBP-expressing cells over negative controls. Colocalization indicates that not only are both components of the fusion, SBP and the fluorescent protein, expressed, but that SBP is accessible to bind streptavidin on the cell’s surface. This is the first use of AIDAc for cell surface anchoring of fluorescent proteins, each having been functionalized with an affinity peptide.

Cell hybridization via mNPs

Given that expression of a fluorescent protein tagged with SBP enabled external binding of streptavidin, we employed this interaction for fastening streptavidin-functionalized materials directly to the cell surface. We chose streptavidin-conjugated mNPs, 100nm in diameter (an order of magnitude smaller than a cell), for binding to a cell surface (Fig. 3a) to impart the abiotic magnetic properties. Scanning electron microscopy (SEM) was used to observe surface interaction between cell surface-expressing SBP and streptavidin-functionalized mNPs. Supplementary Fig. 3a,bshows electron micrographs of E. coli cells (dimensions 1.5–2μm in length) and the mNPs (~100nm in diameter). The SEM image in Fig. 3b, shows a magnetically isolated SBP-expressing cell with streptavidin-mNPs. The sample was prepared by mixing SBP-expressing cells with streptavidin-mNPs, then collecting or ‘focusing’ into a magnetized pellet via magnetic field, then separating from unbound cells in the supernatant. The cells were then washed and resuspended. In Fig. 3b, clusters of surface-bound mNPs are observed. In addition, the elemental composition was analysed with energy-dispersive X-ray spectroscopy, shown in Fig. 3c by an element map superimposed with carbon (red) and iron (green). While the cell appears to be of a uniform carbon composition, the particles localized at the cell surface (highlighted with arrows) were found having a strong iron composition; thus, elemental analysis confirmed particle identity as iron oxide mNPs. Additional characterization of magnetic functionality, including detailed SEM and fluorescent microscopic analysis prior to and after application of magnetic fields, is described in theSupplementary Information (Supplementary Fig. 3).

Figure 3: Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.

Cells equipped with magnetic nanoparticles (mNPs) via streptavidin-mediated interaction with surface-expressed proteins.

(a) Cell surface binding of streptavidin-conjugated magnetic nanoparticles occurs via surface-anchored streptavidin-binding peptide (SBP). The fusion of T7-expressed SBP-fluorescent protein (FP)-AIDAc enables the cell surface accessibility. (b) Scanning electron micrograph of an E. coli cell with surface-bound particles. (c) Element map of carbon (red) and iron (green) through energy-dispersive spectroscopy.

In sum, the well-known affinity interaction between streptavidin and the peptide SBP is harnessed to endow cells with non-natural abiotic properties. Here coupling a functionalized nanomaterial to the surface-displayed peptide physically extends the fusion protein and also adds physical (magnetic) functionality to the cell.

Linking expression to AI-2 recognition

The expression system for pSBP–Venus was then put under AI-2 control so that the protein is expressed in the presence of AI-2 instead of IPTG. That is, we coupled the native QS signal transduction circuitry to the reporter cassette. To ensure ample expression (as the native operon is fairly weak), we placed expression of T7 RNA polymerase under control of the natural QS circuitry43. Phosphorylated AI-2 activates the system through derepression of the regulator LsrR, naturally upregulating AI-2 import and phosphorylation44, and, by design, the T7 RNA polymerase on a sensor plasmid43. When sbp–Venus is included downstream of a T7 promoter region on a second plasmid, expression is then triggered by AI-2 uptake (Supplementary Fig. 4a). Then, we used two host sensor strains engineered to provide varied AI-2 sensitivity (denoted responders ‘A’ and ‘B’). In ‘A’, lsrFG, genes required for internally phosphorylated AI-2 degradation45, 46 are deleted. Also, both strains lack the terminal AI-2 synthase, luxS, so they cannot produce AI-2 and, instead, must ‘receive’ AI-2 from an external source (Supplementary Fig. 4a). The phenotypic difference between A and B is the threshold level of AI-2 that activates the genetic response47, 48. Fully constructed, these cells are designed to take up and process AI-2 to generate fluorescence output (that co-functions with streptavidin binding).

We next evaluated the kinetics of surface-fusion protein expression and effects on cell growth. The AI-2-induced expression for AIDAc-linked and SBP-tagged fluorescent proteins did not alter growth kinetics for either cell type (Supplementary Fig. 4b,c). Expression efficacy was also evaluated via immunoassay of the outer membrane, probing for AI-2-induced surface display. After induction with 20μM AI-2, extracts from cell types A and B were size-separated and blotted using alkaline phosphatase-conjugated streptavidin to probe for the SBP-tagged protein fusion (Supplementary Fig. 5). The 88kDa AIDAc–Venus–SBP protein was only found in the membrane-containing pellet fraction (Fig. 4a). Analogously, protein orientation was assessed by immunolabeling the fluorescent protein. Cell type B transformed with pSBP–eGFP was induced with 20μM AI-2 overnight; cell surfaces were then probed for eGFP using a mouse anti-GFP primary antibody and red-labelled secondary anti-mouse IgG. Simultaneously, cells were observed using phase contrast and fluorescence confocal microscopy. We noted a punctate pattern for eGFP, which was in one-to-one correspondence with red immunostaining of the surface-expressed protein. The positive staining of eGFP-expressing cells for red fluorescence, contrasted by the absence of negative control immunostaining indicated surface exposure of the fusion (Supplementary Fig. 6). Confocal microscopy confirmed precise colocalization of the eGFP and red-labelled antibodies within the confines of individual cells (Fig. 4b). Therefore, efficient transport of this functionality to the membrane under AI-2 induction was demonstrated in each host.

Figure 4: Affinity-based probing for functional analysis of AI-2-induced protein expression.

Affinity-based probing for functional analysis of AI-2-induced protein expression.

(a) 64–82kDa region of western blot for pelleted (P) and supernatant (S) protein fractions isolated from Type A and B cells. Alkaline phosphatase-conjugated streptavidin was used to target AIDAc–Venus–SBP at expression timepoints. Arrows indicate the expected position of the full fusion protein. (b) Immunostaining for assessment of the fluorescent protein surface accessibility. The external surfaces of cells expressing AIDAc–eGFP–SBP were probed with an anti–eGFP and Alexafluor594-labelled antibody pair. A representative overlaid fluorescence and phase contrast image is shown along with fluorescence images of the green (G) and red (R) filters for the boxed-in region. Scale bar, 2μM.

Establishing molecular ranges for cell interrogation

Importantly, the engineered cells each provide a characteristic response to the level of AI-2. Recently, we showed that AI-2 level influences the quorum size of responding engineered populations but does not alter the expression level within each quorum47. Here we evaluated our engineered AI-2 responders, again for quorum size (or in other words, percentage of AI-2-responsive cells in the population), this time varying the compositions of molecular input and the configuration of responders (Fig. 5a). First, we added AI-2, synthesized in vitro, to each of the two responder populations (Fig. 5b). We also added conditioned medium (CM), the spent medium from an AI-2 producer culture containing metabolic byproducts, as well as AI-2 (refs 36, 49; Fig. 5c). We also mixed the responder populations and added AI-2 to gauge responses in complex cultures (Fig. 5d).

Figure 5: Single and multi-population cell responses to autoinducer-2.

Single and multi-population cell responses to autoinducer-2.

(a) Fluorescence output is linked to small molecule input, derived from purified or crude sources. Fluorescence from Responders A and B was analysed after exposure to autoinducer-2 (AI-2) in mono and mixed culture environments. (b) Venus expression from in vitro-synthesized AI-2 added to monocultures of A and B. (c) Venus expression from conditioned media (CM) added to monocultures of A and B. CM was isolated from WT W3110 E. coli cultures sampled at indicated OD. Data are averages from triplicate cultures with s.d. indicated. (d) Red and green fluorescence responses to AI-2 during co-incubation of Responders A (pSBP–mCherry+, red) and B (pSBP–eGFP+, green). Representative fluorescence images show colocalization of red and green cells. Scale bar, 10μm. The average cell count per responder cell is plotted against AI-2 concentration, as determined by image analysis in quadruplicate. All data are plotted as averages of at least triplicate samples with s.d.

Specifically, in Fig. 5b, A and B populations were incubated at mid-exponential phase with in vitro-synthesized AI-2 (refs 50, 51) at concentrations: 0, 2, 10, 28 and 75μM. After 12h, samples were observed for fluorescence by confocal microscopy and then quantified by fluorescence-activated cell sorting (FACS; Supplementary Fig. 4c). We found that SBP–Venus expression for responder A cells occurred at the lowest tested level (2μM AI-2), where 56% of the population expressed SBP–Venus and this fraction increased with AI-2 reaching a maximum of 90% at 28μM. For type B, a more gradual trend was found; only ~1% was fluorescent from 0-2μM, and this increased from 9 to 46% as AI-2 was increased to 28μM. Finally, the highest fraction of fluorescing cells was found at the highest concentration tested, 75μM.

We next isolated CM, which contains a dynamic composition of unfiltered metabolites and media components, from W3110 E. coli cultures at intervals during their exponential growth, throughout which AI-2 accumulates (AI-2 levels for the samples are indicated in Supplementary Fig. 7). CM aliquots were mixed with either A or B cells and cultured in triplicate for 12h. Through FACS analysis it was found, again, that a larger subpopulation of A expressed Venus compared with population B at any concentration (Fig. 5c). Statistically relevant expression from B was not apparent until incubated with CM from cultures at an optical density (OD) of 0.23. In all cases, population A recognized AI-2 presence, including from media isolated at a W3110 OD of 0.05, the minimum cell density tested in this study.

The sensitivities of both strains to AI-2-mediated induction corroborate previous literature10, 47. These trends demonstrate that strains engineered for altered sensitivity to molecular cues provide discrimination of concentration level. That is, the identical plasmid expression system was transformed into different hosts, providing robust and distinct levels of expression.

Having developed cell types A and B with differential ability to detect AI-2, we next altered the reporters so that each cell type expressed a unique SBP-fluorescence fusion for colour-coded designation. Cell type A was engineered with pSBP–mCherry and type B with pSBP–eGFP, resulting in red and green fluorescence, respectively. These populations were mixed together in equal proportion at mid-exponential phase, introduced to a range of AI-2 concentrations, and incubated overnight. Populations A and B exhibited equal growth rates when cultured alone and together (Supplementary Fig. 8c); it followed that the cocultures should comprise a 1:1 ratio of each constituent. Fluorescence output is shown by representative images in Fig. 5d. Also in Fig. 5d, the green and red cell count is plotted from a quadruplicate analysis for each input concentration.

Coculturing enables parallel processing as the molecule-rich environment is perceived by each cell, and is processed uniquely per cell type. Yet, since each sensing mechanism is a living and proliferating population, we tested whether the potentially altered dynamics of coculturing would permit the same sensitivities as isolated culturing. We evaluated the Monod-type saturation constant for each population independently and in cocultures. We found, in Fig. 5d, the general trends in response to an increasing AI-2 level were as predicted by modelled response curves (Supplementary Table 4), which were also well-correlated to Fig. 5b data (Supplementary Fig. 8a,b). That is, the saturation constants that describe dependence on AI-2 were unchanged when measured in cocultures. Phenomenologically, as expected, an initial accumulation of red type A responders was found. Then, at higher AI-2 levels, we found an emergence of a green subpopulation (type B). Above 28μM, there was no longer an apparent differential response that would otherwise enable discrimination of AI-2 concentration; based on the consistency with modelled behaviour, coculturing contributed to dampen the response as the maximum percentage of responding cells in cocultures is 50% instead of 100%. However, the overall fluorescence output is enriched by the combination of multiple populations since the ranges of sensitivity overlap and effectively expand that of the master population (Supplementary Fig. 8d). Specifically, because the fluorescence of B is described by a larger saturation constant, its fluorescence continually increases at higher AI-2 concentrations, while the fluorescence of A remains unchanged. Thus, coculturing between A and B enables resolvable output that is lower than the detection limit of B (due to A) yet surpasses the upper limit at which A saturates by the inclusion of B. The choice to fluorescently differentiate A and B was important because the output would otherwise be biased by extracellular components including the existence of non-sensing cells. Due to colour designation of A and B, a colour ‘pattern’ emerges as a feature of the parallel response, which we recognize is independent of the absolute fluorescence of the population.

Consensus feedback through multidimensional processing

We hypothesized that the value of cell-based sensing would be enhanced if the cell output could be collated in an unbiased manner that in turn were easily ‘read’ using optical means. We engaged magnetic processing, which represents an abiotic processing step that enhances the signal by focusing the collective response. Hence, cells were equipped with streptavidin-conjugated mNPs (Fig. 3). The ability of a magnetic field to refine fluorescence output through filtering and focusing is described in the Supplementary Information (Supplementary Fig. 11). Thus, in our combinatorial approach, fluorescence feedback about molecular information within a microbial community entails biotic processing through constituencies of two independent cell types in conjunction with magnetic post-processing that is enabled by guidance at the nanoscale (Fig. 6c). Moreover, since the fluorescence feedback data is provided through two constituencies, consensus from each independently provides an aggregate output; in our example, the output becomes relayed as a distinctive ‘binned’ category due to finite colour-combinations generated from constituencies A and B (Fig. 6c).

Figure 6: Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.

Binning molecular information through cell-based parallel processing and magnetically focusing fluorescence into collective consensus output.

(a) A and B cell types were co-incubated with AI-2 levels ranging from 0 to 55μM AI-2 (left axis), then imaged after magnetic nanoparticle coupling and magnetic collation. Fluorescence results (centred directly over the magnet) are shown from high to low input (top left to bottom right). (b) Quantification of red and green fluorescence cell densities per AI-2 level. (c) The process of accessing molecular information begins by distributing Responders A and B within the environment of an AI-2 producer, P. A and B independently express fluorophore fusions and are linked with magnetic nanoparticles on processing autoinducer-2. Magnetic focusing translocates fluorescing responders. Image analysis of the magnetically collated cell aggregate reveals classified fluorescence output, representing the AI-2 composition of the interrogated environment. (d) Bright field (left) and fluorescence (right, red and green filters) images positioned over the edge of a magnet, as indicated by the inset. The sample in the bottom image pair was isolated from an environment of low AI-2 accumulation. The sample in the top image pair was isolated from a high AI-2 environment. (e) Quantification of visual space occupied by collated cells (eGFP and mCherry expressers) while distributed (- magnet) and magnetically focused (+). Scale bars, 50μm.

Again, type A transmits red output (SBP–mCherry+) and type B transmits green (SBP–eGFP+). These were first co-incubated with titred concentrations of AI-2, to obtain results similar to those ofFig. 5d. By coupling mNPs to the responsive parallel populations, we tested for aggregate two-colour output to provide informative feedback within a set of outcomes ranging from no colour, red-only to red+green. After overnight co-incubation and a magnetic sweep with streptavidin-mNPs, fluorescence results are shown in Fig. 6a, where the recovered cells are displayed above a magnet’s center in order from highest to lowest AI-2 level (top left to bottom right). The processing output generated by the range of conditions was quantitatively assessed for contributions from A and B responders. The spatial density of each fluorophore, or the area occupied by fluorescent responders as a percentage of total visible area, was quantified and plotted in Fig. 6b. Here the trend of increasing fluorescence with AI-2 is followed by both A and B cell types; however, red A cells accumulate at a higher rate than green B cells. This relationship between A and B processing is not only consistent with their previous characterizations (Fig. 5) but indicates that the aggregate output is unbiased regardless of assembly with mNPs and magnetic-stimulated redistribution (Supplementary Information, Supplementary Fig. 14a).

Next, A and B cells were added together to probe the QS environment of Listeria innocua, an AI-2-producing cell type that is genetically and ecologically similar to the pathogenic strain L. monocytogenes52. The environment was biased towards low and high cell density conditions by altering nutrient levels to develop contrasting scenarios of AI-2 level. Preliminary characterization in the Supplementary Information indicated that L. innocua proliferation is unperturbed by the presence of E. coli responders (Supplementary Fig. 12) and that type A cells detect AI-2 at lowListeria densities limited by sparse nutrients; then with rich nutrient availability, cell proliferation permits a higher AI-2 level that can be detected by type B (Supplementary Fig. 13). Replicating these conditions, we expected red fluorescence to be observed at low culture density and for green fluorescence to be reported when high (Fig. 6c). Two conditions were tested: L. innocua was proportioned to responder cells at 20:1 in dilute media to establish a low culture density condition or, alternatively, a ratio of 200:1 in rich media for a high culture density condition. After overnight co-incubation and a magnetic sweep (applied directly to the triple strain cultures) with streptavidin-mNPs, the recovered cells are displayed above a magnet’s edge (shown in Fig. 6d). Acute focusing of the fluorescence signals, contributed by each subset population of the processor (A and B), is visually apparent. The magnetic field had a physical effect of repositioning the ‘on’ subsets to be tightly confined within the magnetic field.

The processing output generated by the contrasting culture conditions was again assessed for the respective contributions of A and B, and for changes in spatial signal density due to the magnetic sweep (Fig. 6e). The analysis was based on images provided in Supplementary Fig. 14b. Data inFig. 6e indicate that red type A cells are prevalent regardless of culture condition (except negative controls). However, compared with the low AI-2 condition, the abundance of green cells is 100-fold higher in the high AI-2 condition. In addition, the ratio of green to red was consistent prior to and after magnetic concentration, substantiating observations in the distributed system. Further, data show that magnetic refining increased per-area fluorescence 100-fold or 10-fold in low and high cell culture studies, respectively.

Based on the thresholds established for responder populations A and B, we found colour-coded binning corresponded to AI-2 level, where ‘red-only’ represented less AI-2 than ‘red+green’ (Fig. 5d). Thus, we found a binned output was established via this multidimensional molecular information-processing system and that this matched the expectations. Red feedback (from responder A) indicated dilute AI-2 accumulation occurred in the low density culture. In the dense cultures, high AI-2 accumulation turned on both A and B for combined red and green feedback.

System response patterns defined by parallel populations

Our example demonstrates the concept of an amorphous processing system that utilizes several biotic and abiotic components for multidimensional information processing. Interestingly, a binning effect was enabled: our system yields an index of colour-categorized feedback that characterizes the sampled environment. In Fig. 7, we present a means to extend our approach to multidimensional systems, those with more than one molecule-of-interest and at different concentrations. That is, by appropriate design of the cell responders, we can further enrich the methodology, its depth and breadth of applicability. We depict 10 hypothetical pairs of responses (with defining equations located in Supplementary Table 5)—those that can be driven by appropriately engineering cells to portend altered genetic responses. For example, rows 1 and 3 provide genetic outcomes as a function of analyte (AI-2) concentration. The hypothetical depictions are feasible as ‘designer’ signal transduction and marker expression processes enabled by synthetic biology21, 53, 54. Rows 2 and 4 demonstrate the corresponding visual planes, where red cell numbers (x-axis) are plotted against green (y-axis), illustrated by the first example. If one divides the two-dimensional space into quadrants (no colour, majority red, majority green, and equivalent ratios of red and green), it becomes apparent that the relationship between cell types influences the ‘visual’ or optical output. Thus, the 10 arbitrary response sets yield a variety of pairings that can provide unique visual patterns for categorizing molecular information. We have simplified the analysis by placing dot marker symbols at the various coincident datapoints, revealing visual patterns. In this way, the ability to incorporate unique responses to a multitude of molecular cues, all within a single pair of cells, or through further multiplexing with additional cell populations becomes apparent.

Figure 7: Extension of nano-guided cell networks for hypothetical regulatory structures.

Extension of nano-guided cell networks for hypothetical regulatory structures.

(a) Rows 1 and 3 depict 10 hypothetical genetic responses to molecular inputs for pairs of fluorescence-reporting cell populations (red, R and green, G). Rows 2 and 4 depict genetic responses as phase-plane plots yielding distinct patterns. This establishes a visual field, showing the extent of any population–population bias (illustrated in example case 1). (b) Left panel: a two-population pairing (shown in case 10) defines visual output that inherently bins into three quadrants: Q1, negligible colour; Q2, red bias due to majority red cell output; and Q4, combined red and green output. Right panel: data from Figs 5d and 6bare plotted analogously, where each data point represents an autoinducer-2 input (labelled, μM). As expected, red and green outputs were binned into Q1, Q2 and Q4 as indicated by coloured outlines.

Our AI-2-conveying cell network is similar to example 7 in Fig. 7a and the AI-2 response curves inFig. 5 (characterized by Supplementary Table 4 equations). Example 7 establishes output into three basic quadrants, including Q1 (negligible colour), Q2 (majority red) and Q4 (roughly equal red and green) (Fig. 7b). We recast the data from Figs 5d and 6b as a phase-plane portrait in Fig. 7c. This reveals the mechanisms by which the output is binned and how the originating cell response curves lead to this pattern, which in turn, was unchanged due to magnetic refinement. InSupplementary Fig. 15, we demonstrate a parameterization of the red and green response curves that suggest the methodology is robust, that when cells are appropriately engineered one could ‘tune’ system characteristics to enhance or diminish a binning effect. We suggest that the utility of subcellular genetic tuning extends well beyond per-cell performance. Rather, we suggest such a strategy may be used to guide the dynamics of population architecture for actuation of by-design response patterns at a systems level.

Discussion

While cell-based sensors work well in well-defined assay conditions, extension to complex environments remains a challenge. They grow, they move, they perturb their environs, they report in a time and concentration-dependent manner, small numbers of sensor cells may require signal amplification and so on. Also, increasingly, bacterial cells are engineered for user specified ‘executive’ functions in complex environments55, 56, 57. Their performance depends on their ability to filter out extraneous noise while surveying the molecular landscape, and providing informed actuation.

Our system interrogates the molecular space by focusing on bacterial QS and a widely distributed signal molecule, AI-2. In addition to genetic attributes of the AI-2-responding sensor cells, AI-2 is a chemoattractant for E. coli, and hence E. coli engineered to sense and respond to AI-2 will naturally move towards its sources, enabling full sampling of the prevailing state10, 37. Each strain evaluates AI-2 with a distinct sensitivity. When ‘activated’ in response to a characteristic level, the cells simultaneously expressed a fluorescent marker and a SBP on the outer membrane via AIDAc translocation. SBP provides a means for cell hybridization through its strong affinity to streptavidin, and here, aids in binding mNPs. This enables the non-genetically coded property of cell translocation within a magnetic field through physically stimulated focusing and binning.

By making use of a diversity of biotic and abiotic features, our multidimensional system of ‘responder’ populations exemplifies several key metrics that promote executive performance in such environments: active molecule capture, post-capture refining of the detection output and finally the utilization of multiple feedback thresholds58, 59, 60. Here cells facilitate AI-2 recognition autonomously and actively because, as a distributed network they reside planktonically, chemotaxing to and continually processing signals over time. When AI-2 is detected, a processor cell’s cognate machinery responds by upregulation of the native QS operon, leading to rapid signal uptake and thereby creating an active-capture signal-processing mechanism. To maximize information acquisition and account for a potentially heterogeneous molecular landscape, cells serve as molecular sampling units among a distributed population, which leads to data fed back as a consensus of fluorescent ‘datapoints’. Then, distributed data collection can be selectively reversed via the incorporated abiotic feature: mNPs, fastened externally on the cell through affinity-guided self-assembly. As such, responding cells obtained this extendable feature, thereby becomes sensitized to repositioning within a magnetic field.

The layered nature of the processor here, from the subcellular to multicellular scale, permits a series of selective steps: it commences with the AI-2-triggered expression cascade which releases a tight repressor, surface localization of both the fluorescent protein and SBP tag, and finally nanoparticle binding for recovery. In addition, multiple layers of amplification result in orthogonal fluorescence feedback. The AI-2 detection event leads to whole-cell fluorescence through expression of many protein copies47. Then their physical collection further amplifies the signal, yielding a macroscopic composite of many individual cell units. When utilized as a network of multiple constituencies, responder cell types A and B contribute individual recognition results (off, red or green) to a single consensus output. Finally, due to their overlapping thresholds for recognition of the same molecule, in this case, AI-2, parallel processing by A and B responders can contribute to visual interpretation of information about the molecule. Outcomes are classified into a finite number of states: here output to no fluorescence, red, or red and green, with each addition of colour as a metric of a higher interval of AI-2. In many respects, the elucidation of layered information networks as demonstrated here is analogous to computer information processing via information theory61, 62, 63.

Here, however, interrogation of biological systems requires a reliable means for accessing molecular information—that which is communicated between biological species and that which can be relayed to the end user. The responder cells need not be present in high concentration, nor must they all be collected in the present format. We suggest that engineered biological mechanisms are well-poised to serve at this critical interface between information acquisition and user interaction. Thus, the functional design of components for autonomous self-assembly, decision-making and networking is requisite in the field of micro- and nano-scaled machines. Our combinatorial approach allows for cells to independently assess, yet collectively report, on molecular information. Its processing is enabled through appropriate integration of synthetic biology and nanomaterials design. We suggest this approach provides a rich opportunity to direct many formats of multi-population response through genetic tuning and systems-level engineering. Further development of cellular networks and incorporation of alternate abiotic attributes can expand the depth and breadth of molecular communication for user specified actuation.

Read Full Post »

Aptamers and nanoparticles

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

What’s new at Base Pair?

Proprietary, new software algorithms power our ability to identify novel aptamer sequences and structural motifs.New methods developed and optimized over the past year in our laboratory allow us to not only develop aptamers directed against as many as thirty different targets at the same time, but also to design screens that identify aptamers recognizing overlapping sets of targets or that selectively recognize a single target while ignoring others. Finally, our new methods allow us to select for aptamers directed against your target, in the very same type of sample that you would like to use for your eventual assay, avoiding matrix background and non-specific binding problems.

 

Sensitive detection of MRSA

Early detection, enabling early intervention, is a critical goal for infectious disease agents and sensitive assays are crucial for early detection.  One of Base Pair’s  aptamers (catalog number ATW0032) targeted against penicillin binding protein 2a ,the protein responsible for the antibiotic resistance of methicillin resistant Staphyloccus aureus (MRSA), , is featured in a recently accepted publication by Adhikari et al. [1] in this month’s issue of Analytical Chemistry.  In the paper entitled, “Aptamer-phage reporters for ultrasensitive lateral flow assays” the authors utilize an innovative combination of extensively labeled phage particle reporters and aptamers for molecular recognition and improve the sensitivity of 2 lateral flow assays for MRSA by ~100-fold.

MRSA LFA.png

 

Aptamer-phage reporters for ultrasensitive lateral flow assays.
Anal Chem. 2015 Oct 12. [Epub ahead of print]      DOI: http://dx.doi.org:/10.1021/acs.analchem.5b00702

We introduce the modification of bacteriophage particles with aptamers for the use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ~100 times lower than those of previously reported IgE assays.

 

Multivalent aptamers
While it is generally thought that because of their small size, DNA aptamers are univalent and thus have lower affinities and faster off rates than antibodies, this may not be the case.  In an article published in RSC Advances, Wang et al. [2] utilized molecular modeling to understand observed experimental performance of a Base Pair aptamer directed against tetracycline, as well as a previously published aptamer directed against the same target.  Interestingly, through modeling the authors predict that both aptamers are multivalent for tetracycline, and that each likely have 3 binding sites for the small molecule.  This may be a generalized phenomenon for tight binders and Base Pair would be interested in hearing from researchers who have observed similar results.

multivalent tet aptamer

Conformational structure-dependent molecular recognition of two aptamers for tetracycline

Sai Wang,a   Jiahui Liu,a   Yiyang Dong,*a   Haijia Sua and  Tianwei Tana  
RSC Adv., 2015,5, 53796-53801     DOI: http://dx.doi.org:/10.1039/C5RA08050A

Different aptamers towards one target molecule can be selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), however, not all aptamers have real world practicability. In this study, conformational structure-dependent molecular recognition of two aptamers towards tetracycline (TC), 76 mer and 40 mer, was studied both quantitatively and computationally. Two formats of competitive enzyme-linked aptamer assay (ELAA), a molecular docking module and Isothermal Titration Calorimeter (ITC) analysis were used to further investigate the two selected aptamers. With longer strand length, more G, C bases, and more recognition sites for TC, the 76 mer aptamer showed better performance than the 40 mer aptamer. Deciphering the relevance of aptamers with different molecular characteristics towards one target molecule can furnish as a referral guidance for aptamer selection and further practical application.

Graphical abstract: Conformational structure-dependent molecular recognition of two aptamers for tetracycline
RSC Adv., 2013,3, 23503-23507
Aptamer-gold “plasmon rulers”

In June of 2015 Somin Lee et al. of Lawrence Berkeley National Laboratory published a paper in ACS Nano Letters entitled, “Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules” [3].  Plasmon rulers are pairs of gold nanoparticles that are coupled via a linker.  They exhibit a shorter wavelength light scattering peak when further apart and longer wavelength light scattering peak when closer together.  The distance between the particles can be measured as a function of scattering wavelength, thus creating a ruler.  By attaching two particles together through a DNA aptamer, Lee and colleagues were able to create a plasmon resonance based sensor for aptamer binding.  The Base Pair aptamer ATW0062, which recognizes matrix metalloproteinase-3 (MMP-3) was used to link two gold nanoparticles together.  In order to facilitate synthesis, Base Pair provided the aptamer with a thiol on one end and a biotin on the other end.  Using the resulting nanoparticle-aptamer-nanoparticle constructs, the authors demonstrated detection of MMP-3  in cell culture with single molecule sensitivity and full reversibility of the sensor.   Unlike fluorescence-resonance energy transfer (FRET), such a sensor can be used to continuously monitor dynamic changes in biological systems without concern for photobleaching.

Plasmon ruler_MMP3
Aptamer-phage reporters for ultrasensitive lateral flow assays.
We introduce the modification of bacteriophage particles with aptamers for the use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ~100 times lower than those of previously reported IgE assays.

References:

1. Adhikari M, Strych U, Kim J, Goux H, Dhamane S, Poongavanam M-V, Hagström AEV, Kourentzi K, Conrad JC, Willson RC: Aptamer-phage reporters for ultrasensitive lateral flow assays. Anal Chem 2015.

2. Wang S, Liu J, Dong Y, Su H, Tan T: Conformational structure-dependent molecular recognition of two aptamers for tetracycline. RSC Adv 2015, 5:53796–53801.

3. Lee SE, Chen Q, Bhat R, Petkiewicz S, Smith JM, Ferry VE, Correia AL, Alivisatos AP, Bissell MJ: Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. Nano Lett 2015, 15:4564–4570.

Aptamer sandwich pairs

Pairs of affinity reagents (typically antibodies) are frequently used in a variety of research-use-only and clinical diagnostic assays.  These are commonly known as “sandwich pairs” – i.e. they bind non-overlapping epitopes on their target protein.  Unfortunately, screening for complementary pairs of sandwich antibodies is tedious and resource intensive, requiring expression of multiple monoclonal antibodies and empirical testing of pairwise compatibility.

In contrast, Base Pair has developed a proprietary workflow leveraging high-content arrays to rapidly discover complementary sandwich pairs of DNA aptamers.  These pairs are then validated for their binding in a quantitative manner by Microscale Thermophoresis (MST) or backscattering interferometry(BSI).  As an example, ATW0077 and ATW0083 is a pair of aptamers demonstrated to bind to both human and murine interleukin-6 (IL6).  IL6 is an important cytokine involved in many phase of inflammation and immune response.  Therefore, these aptamers represent a useful reagent pair for any number of prototype assay or biosensor development projects.  We will gladly synthesize these aptamers or others with immobilization and detection modifications to meet your specific requirements.  More information can be found in our Aptamers that Work ™ online catalog, or contact us for custom sandwich pair requirements.

We can tailor solutions for your unique platform or for use with standard instrumentation.  Our custom aptamer development services can also be deployed to design and develop new affinity agent pairs to address your objectives.

Aptamers specific for phosphorylated peptides
Mass spectroscopy is one of the most important available tools for studying and quantifying post-translational modifications.  Quantitative workflows such as SISCAPA (Stable Isotope Standards and Capture by Anti-Peptide Antibodies), or “multi-reaction monitoring” (MRM-MS) have become the workhorse of advanced proteomic studies.  Unfortunately, any affinity-based mass spectroscopy  approach is limited by the quality of the affinity reagent itself.  In many cases, the availability of an adequately performing antibody can be a limiting factor.

As an example, development of antibodies specific to modified peptides (a frequently desired analyte) can be challenging by conventional immunization.  Under funding from the National Cancer Institute (NIH, U.S.) Base Pair has recently demonstrated its patented multiplex approach to confer aptamer specificity to phosphorylated peptides over their non-phosphorylated counterparts.  The Aptamers that Work ™ online catalog has multiple peptide-specific aptamers to ERK1 and ERK2, which are extracellular-signal-regulated kinases that play important roles in regulating meiosis, mitosis and postmiotic functions in differentiated cells and which are part of one of the most important known signal transduction cascades.  These aptamers were selected to recognize both phosphorylated and non-phosphorylated peptides with validation data to both for added confidence.  More information on our modification specific aptamers can be found in our Technical Note Phosphorylation Site Specific Aptamers for Cancer Biomarker Peptide Enrichment and Detection in Mass Spectrometry Based Proteomics.  

IL6sandwich
A new publication featuring our Globe system describes the use of magnetic Iron nanoparticles in combination with enzyme-linked immunosorbent assay (ELISA) to facilitate the hybrid technique of ‘magnetic nanoparticles – ELISA’ for use in the capture of progesterone in numerous types of milk.

The synthesis and silane functionalization of magnetic iron nanoparticles is greatly facilitated by the use of the automated Globe system, as it offers improved sensitivity and simple operation.

Globe Chemical Reactor

The magnetic particle-linked antibody for immunoassay of progesterone has great potential to supersede the traditional enzyme-linked immunosorbent assay for progesterone determination.

 

Chemisens Calorimeter Helps Max Planck Researchers

Researchers at Germany’s Max Planck Institute of Colloids and Interfaces have provided a testimonial about the Chemisens Calorimeter, praising it for generating reliable, reproducible data and for being really easy to use.

They use the calorimeter to quantitatively evaluate polymerization reaction profiles and accurately determine end points. Klaus Tauer, Leader of the Department of Colloid Chemistry’s Heterophase Polymerization – Polymer Dispersions Group, explains: “We rely on a Chemisens Calorimeter for this work, using it almost daily for three main purposes; heterophase polymerizations, to follow reaction kinetics, and as a tool for polymer synthesis.”

Max Planck researchers with Chemisens Calorimeter

 

 

 

Read Full Post »

%d bloggers like this: