Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
Advances in Liver Transplantation: New Frontiers in Organ Regeneration and Immunomodulation
Curator: Dr. Sudipta Saha, Ph. D.
Recent research in the field of liver transplantation has been marked by significant advancements in organ preservation, immune tolerance, and regenerative medicine. Efforts have been made to address the critical shortage of donor organs and reduce long-term complications associated with immunosuppressive therapy.
Normothermic machine perfusion (NMP) techniques have been employed to preserve and assess donor livers outside the body. This method has allowed marginal or extended criteria livers to be reconditioned, increasing the usable donor pool. The viability of these organs has been improved through real-time functional monitoring during perfusion.
Immunological tolerance has been targeted through cell-based therapies and gene editing strategies. Regulatory T-cell therapies and tolerogenic dendritic cells have been investigated to reduce the reliance on lifelong immunosuppression. CRISPR-based gene editing is also being explored to modify donor tissues before transplantation to evade host immune responses.
In parallel, liver organoids and bioengineered tissue scaffolds have been studied for their potential in partial transplantation or functional support in acute liver failure. Although clinical application remains at an early stage, these developments have suggested future directions for transplant alternatives or bridge-to-transplant therapies.
Artificial intelligence has been integrated into transplant decision-making, predicting post-transplant outcomes and optimizing donor-recipient matching. These models are being trained on large datasets to improve prognostic accuracy.
Ethical concerns surrounding organ allocation equity and experimental treatments continue to be actively discussed. However, these advancements have collectively pushed the boundaries of transplant medicine toward safer, more personalized, and more sustainable outcomes.
SNU-BioTalk 2025: Symphony of Cellular Signals in Metabolism and Immune Response – International Conference at Sister Nivedita University, Kolkata, India on 16 & 17 January 2025
Joint Convenor: Dr. Sudipta Saha (Member of LPBI since 2012)
About the Conference:
The International Conference on ‘Symphony of Cellular Signals in Metabolism and Immune Response’ focuses on the complex signalling pathways governing cellular functions in health and disease. It will explore the cellular mechanisms that regulate metabolism, immune responses, and survival, highlighting advances in medical science and biotechnology. Bringing together leading experts and emerging researchers, the conference will feature keynote lectures, panel discussions, research presentations, and interactive sessions, all designed to foster collaboration and innovation. By promoting an exchange of ideas, the event aims to drive transformative insights and solutions that impact human health and sustainable healthcare practices.
The conference will also be livestreamed on YouTube and Facebook
This programme will also host I-STEM: Indian Science, Technology and Engineering facilities Map (I-STEM) is a dynamic and interactive national portal for research cooperation.
Thrust areas:
Intracellular signalling processes of cellular metabolism
Signalling pathways in physiological and pathological processes
Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use
In this curation we wish to present two breaking through goals:
Goal 1:
Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer
Goal 2:
Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.
According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.
These eight subcellular pathologies can’t be measured at present time.
In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.
Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases
Glycation
Oxidative Stress
Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
Membrane instability
Inflammation in the gut [mucin layer and tight junctions]
Epigenetics/Methylation
Autophagy [AMPKbeta1 improvement in health span]
Diseases that are not Diseases: no drugs for them, only diet modification will help
Image source
Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease
These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:
Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL
In the Bioelecronics domain we are inspired by the work of the following three research sources:
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC
PENDING
THE VOICE of Stephen J. Williams, PhD
Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes
25% of US children have fatty liver
Type II diabetes can be manifested from fatty live with 151 million people worldwide affected moving up to 568 million in 7 years
A common myth is diabetes due to overweight condition driving the metabolic disease
There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
Thirty percent of ‘obese’ people just have high subcutaneous fat. the visceral fat is more problematic
there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects. Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
At any BMI some patients are insulin sensitive while some resistant
Visceral fat accumulation may be more due to chronic stress condition
Fructose can decrease liver mitochondrial function
A methionine and choline deficient diet can lead to rapid NASH development
Genetic scissors: a tool for rewriting the code of life
Emmanuelle Charpentier and Jennifer A. Doudna have discovered one of gene technology’s sharpest tools: the CRISPR/Cas9 genetic scissors. Using these, researchers can change the DNA of animals, plants and microorganisms with extremely high precision. This technology has had a revolutionary impact on the life sciences, is contributing to new cancer therapies and may make the dream of curing inherited diseases come true.
Researchers need to modify genes in cells if they are to find out about life’s inner workings. This used to be time-consuming, difficult and sometimes impossible work. Using the CRISPR/Cas9 genetic scissors, it is now possible to change the code of life over the course of a few weeks.
“There is enormous power in this genetic tool, which affects us all. It has not only revolutionised basic science, but also resulted in innovative crops and will lead to ground-breaking new medical treatments,” says Claes Gustafsson, chair of the Nobel Committee for Chemistry.
As so often in science, the discovery of these genetic scissors was unexpected. During Emmanuelle Charpentier’s studies of Streptococcus pyogenes, one of the bacteria that cause the most harm to humanity, she discovered a previously unknown molecule, tracrRNA. Her work showed that tracrRNA is part of bacteria’s ancient immune system, CRISPR/Cas, that disarms viruses by cleaving their DNA.
Charpentier published her discovery in 2011. The same year, she initiated a collaboration with Jennifer Doudna, an experienced biochemist with vast knowledge of RNA. Together, they succeeded in recreating the bacteria’s genetic scissors in a test tube and simplifying the scissors’ molecular components so they were easier to use.
In an epoch-making experiment, they then reprogrammed the genetic scissors. In their natural form, the scissors recognise DNA from viruses, but Charpentier and Doudna proved that they could be controlled so that they can cut any DNA molecule at a predetermined site. Where the DNA is cut it is then easy to rewrite the code of life.
Since Charpentier and Doudna discovered the CRISPR/Cas9 genetic scissors in 2012 their use has exploded. This tool has contributed to many important discoveries in basic research, and plant researchers have been able to develop crops that withstand mould, pests and drought. In medicine, clinical trials of new cancer therapies are underway, and the dream of being able to cure inherited diseases is about to come true. These genetic scissors have taken the life sciences into a new epoch and, in many ways, are bringing the greatest benefit to humankind.
Emmanuelle Charpentier, born 1968 in Juvisy-sur-Orge, France. Ph.D. 1995 from Institut Pasteur, Paris, France. Director of the Max Planck Unit for the Science of Pathogens, Berlin, Germany.
Jennifer A. Doudna, born 1964 in Washington, D.C, USA. Ph.D. 1989 from Harvard Medical School, Boston, USA. Professor at the University of California, Berkeley, USA and Investigator, Howard Hughes Medical Institute.
Other Articles on the Nobel Prize in this Open Access Journal Include:
Important but Unseen Human Embryo Developmental Stages Mimicked in Lab
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
Scientists have created embryo-like structures that mimic a crucial yet not much known stage of human development. The structures, created from stem cells and called gastruloids, are the first to form a 3D assembly that lays out how the body will take shape. The gastruloids developed rudimentary components of a heart and nervous system, but lacked the components to form a brain and other cell types that would make them capable of becoming a viable fetus.
Human embryos take a momentous leap in their third week, when the largely homogeneous ball of cells starts to differentiate and develop specific characteristics of the body parts they will become, a process known as gastrulation. During this process, the embryo elongates and lays down a body plan with a head and tail, often called the head-to-tail axis. But scientists have never seen this process live in action. That is partly because many countries have regulations that stop embryos from being grown in the laboratory for research beyond 14 days.
Over the past years, several research groups have cultured embryonic stem-cell structures that model when cells start to differentiate. The latest model developed at the University of Cambridge, UK and their collaborators in the Netherlands, Showed for the first time what happens when the blueprint for the body’s development is laid out, around 18–21 days after conception. Genetic analysis showed that the cells formed were those that would eventually go on to form muscles in the trunk, vertebrae, heart and other organs.
If everything is done properly, the cells develop into 3D structures on their own — and then spontaneously mimic the gastrulation process. Although they display certain key features of a 21-day-old embryo, the gastruloids reach that stage after just 72 hours and survive for maximum 4 days before collapsing. Scientists will probably use the model to make structures that are even more realistic representations of early development.
The model could help scientists to understand the role of genetics and environmental factors in different disorders. The artificial structures make it possible to avoid ethical concerns about doing research on human embryos. But as the structures become more advanced and life-like, there may be ethical restrictions.
Parkinson’s Disease (PD), characterized by both motor and non-motor system pathology, is a common neurodegenerative disorder affecting about 1% of the population over age 60. Its prevalence presents an increasing social burden as the population ages. Since its introduction in the 1960’s, dopamine (DA)-replacement therapy (e.g., L-DOPA) has remained the gold standard treatment. While improving PD patients’ quality of life, the effects of treatment fade with disease progression and prolonged usage of these medications often (>80%) results in side effects including dyskinesias and motor fluctuations. Since the selective degeneration of A9 mDA neurons (mDANs) in the substantia nigra (SN) is a key pathological feature of the disease and is directly associated with the cardinal motor symptoms, dopaminergic cell transplantation has been proposed as a therapeutic strategy.
Researchers showed that mammalian fibroblasts can be converted into embryonic stem cell (ESC)-like induced pluripotent stem cells (iPSCs) by introducing four transcription factors i.e., Oct4, Sox2, Klf4, and c-Myc. This was then accomplished with human somatic cells, reprogramming them into human iPSCs (hiPSCs), offering the possibility of generating patient-specific stem cells. There are several major barriers to implementation of hiPSC-based cell therapy for PD. First, probably due to the limited understanding of the reprogramming process, wide variability exists between the differentiation potential of individual hiPSC lines. Second, the safety of hiPSC-based cell therapy has yet to be fully established. In particular, since any hiPSCs that remain undifferentiated or bear sub-clonal tumorigenic mutations have neoplastic potential, it is critical to eliminate completely such cells from a therapeutic product.
In the present study the researchers established human induced pluripotent stem cell (hiPSC)-based autologous cell therapy. Researchers reported a platform of core techniques for the production of mDA progenitors as a safe and effective therapeutic product. First, by combining metabolism-regulating microRNAs with reprogramming factors, a method was developed to more efficiently generate clinical grade iPSCs, as evidenced by genomic integrity and unbiased pluripotent potential. Second, a “spotting”-based in vitro differentiation methodology was established to generate functional and healthy mDA cells in a scalable manner. Third, a chemical method was developed that safely eliminates undifferentiated cells from the final product. Dopaminergic cells thus produced can express high levels of characteristic mDA markers, produce and secrete dopamine, and exhibit electrophysiological features typical of mDA cells. Transplantation of these cells into rodent models of PD robustly restored motor dysfunction and reinnervated host brain, while showing no evidence of tumor formation or redistribution of the implanted cells.
Together these results supported the promise of these techniques to provide clinically applicable personalized autologous cell therapy for PD. It was recognized by researchers that this methodology is likely to be more costly in dollars and manpower than techniques using off-the-shelf methods and allogenic cell lines. Nevertheless, the cost for autologous cell therapy may be expected to decrease steadily with technological refinement and automation. Given the significant advantages inherent in a cell source free of ethical concerns and with the potential to obviate the need for immunosuppression, with its attendant costs and dangers, it was proposed that this platform is suitable for the successful implementation of human personalized autologous cell therapy for PD.
Feeling the Heat – the Link between Inflammation and Cancer
Reporter: Irina Robu, PhD
Researchers at Lerner Research Institute led by Dr. Xiaoxia Li revealed a new signaling pathway in a subset of hair follicle stem cells that can be linked to inflammation, wound healing and tumorigenesis giving new insights into how to potential target to slow or prevent tumor initiation. However, previous research shows that uncontrolled tissue repair is usually associated with tumor formation, but there is no direct connection between them.
The scientists found that the proinflammatory cytokine, IL-17A plays a vital role in aberrant tissue repair. They showed that when IL-17A signaling is turned on, Lrig1+ stem cells expanded and their progeny translocated to other layers of the skin in reply to injury. Through a series of investigations, Dr. Li showed that the presence and physical proximity of a series of proteins sets into motion a complex signaling cascade that results in activation of ERK5 (extracellular signal regulated kinase 5), which is ultimately responsible for the expansion and migration of Lrig1+ stem cells. While many proteins including interleukin-17 receptor, epidermal growth factor receptor and Act1 are involved, tumor necrosis factor receptor associated factor 4 is the first receptor to fail, setting the entire signaling cascade in motion.
Considering that this is the first study to show that a proinflammatory cytokine can recruit a growth factor receptor to activate stem cells in support of tissue repair and tumorigenesis. This proves that tumor necrosis factor receptor associated factor 4 may be a viable therapeutic target to pursue in upcoming studies.
Immuno-editing can be a constant defense in the cancer landscape, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
There are many considerations in the cancer immunoediting landscape of defense and regulation in the cancer hallmark biology. The cancer hallmark biology in concert with key controls of the HLA compatibility affinity mechanisms are pivotal in architecting a unique patient-centric therapeutic application. Selection of random immune products including neoantigens, antigens, antibodies and other vital immune elements creates a high level of uncertainty and risk of undesirable immune reactions. Immunoediting is a constant process. The human innate and adaptive forces can either trigger favorable or unfavorable immunoediting features. Cancer is a multi-disease entity. There are multi-factorial initiators in a certain disease process. Namely, environmental exposures, viral and / or microbiome exposure disequilibrium, direct harm to DNA, poor immune adaptability, inherent risk and an individual’s own vibration rhythm in life.
When a human single cell is crippled (Deranged DNA) with mixed up molecular behavior that is the initiator of the problem. A once normal cell now transitioned into full threatening molecular time bomb. In the modeling and creation of a tumor it all begins with the singular molecular crisis and crippling of a normal human cell. At this point it is either chop suey (mixed bit responses) or a productive defensive and regulation response and posture of the immune system. Mixed bits of normal DNA, cancer-laden DNA, circulating tumor DNA, circulating normal cells, circulating tumor cells, circulating immune defense cells, circulating immune inflammatory cells forming a moiety of normal and a moiety of mess. The challenge is to scavenge the mess and amplify the normal.
Immunoediting is a primary push-button feature that is definitely required to be hit when it comes to initiating immune defenses against cancer and an adaptation in favor of regression. As mentioned before that the tumor microenvironment is a “mixed bit” moiety, which includes elements of the immune system that can defend against circulating cancer cells and tumor growth. Personalized (Precision-Based) cancer vaccines must become the primary form of treatment in this case. Current treatment regimens in conventional therapy destroy immune defenses and regulation and create more serious complications observed in tumor progression, metastasis and survival. Commonly resistance to chemotherapeutic agents is observed. These personalized treatments will be developed in concert with cancer hallmark analytics and immunocentrics affinity and selection mapping. This mapping will demonstrate molecular pathway interface and HLA compatibility and adaptation with patientcentricity.
Functioning Human Neural Networks Grown in 3-D from Stem Cells
Reporter: Irina Robu, PhD
Researchers at Tuffs University developed three-dimensional human tissue model that mimics structural and functional features of the brain and were able to demonstrate sustained neural activity over several months. The 3D brain tissue models were the result of a collaborative effort between researchers from Tufts University School of Engineering, Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences at Tufts, and the Jackson Laboratory.
These tissue models have the ability to populate a 3D matrix of silk protein and collagen with cells from patients with Parkinson’s disease, Alzheimer’s disease and the ability to
explore cell interactions,
disease progression and
response to treatment.
The 3D brain tissue models overcome a crucial challenge of previous models which is the availability of human source neurons due to the fact that neurological tissues are rarely removed from
healthy patients, and are usually available
post-mortem from diseased patients.
The 3D tissue models are populated with human induced pluripotent stem cells (iPSCs) that can be derived from several sources, including patient skin. The iPSCs are generated by turning back the clock on cell development to their embryonic-like precursors. They can then be dialed forward again to any cell type, including neurons. The porous structure of the 3D tissue cultures labeled in the research delivers sufficient oxygenation, access for nutrients and measurement of cellular properties. A clear window in the center of each 3D matrix allows researchers to visualize the
growth,
organization and
behavior of individual cells.
According to David L. Kaplan, “the silk-collagen scaffolds provide the right environment to produce cells with the genetic signatures and electrical signaling found in native neuronal tissues”. Compared to growing and culturing cells in two dimensions, the three-dimensional matrix yields a knowingly extra complete mix of cells found in neural tissue, with the appropriate morphology and expression of receptors and neurotransmitters. Other researchers have used iPSCs to create brain-like organoids, but can still make it difficult figuring out what individual cells are doing in real time. Likewise, cells in the center of the organoids may not obtain enough oxygen or nutrients to function in a native state.
However, the researchers can see a great advantage of the 3D tissue models with advanced imaging techniques, and the addition of cell types such as microglia and endothelial cells,to create a more complete model of the brain environment and the complex interactions that are involved in
Bluebird Bio’s Lenti D has been granted as “breakthrough therapy designation” by FDA for the treatment of patients with cerebral adrenoleukodystrophy (CALD), or Lorenzo’s Oil disease due to optimistic data from current ongoing Phase 2/3 study. This therapy contains using patient’s own immature bone marrow cells and modifying them to include a functional copy of ABCD1 gene which permits the expression of functional ALD, the deficient protein in the patient population.
In addition, the data indicated that the safety profile of Lenti-D remains consistent with myeloablative chemotherapy and no graft versus host disease or treatment related mortality were reported. Initial findings from the ongoing Starbeam Study (ALD-102) assessing the investigational gene therapy in boys with CALD aged 17 years or younger who do not have a matched sibling donor were published in the New England Journal of Medicine in October 2017 and indicated that the drug hit its main effectiveness endpoint. In the study, 88% (n=15) of patients infused with Lenti-D remained alive and free of major functional disabilities at 2 years post-treatment.
According to Mohammed Asmal, Vice President, Clinical Development at bluebird bio “The mechanism by which this would work is very much like how stem cell therapy transplantation is able to correct the disease. The theory was certainly there, it just relied on someone, essentially, being willing to develop the vector and then try it on patients who did not have any other feasible options for transplant, and who had poor predicted outcomes for transplant survival.”
Currently, the only available therapeutic option for patients with CALD is allogeneic hematopoietic stem cell transplant (HSCT). Whereas clinical benefit has been reported if made early during CALD progression, possible complications of allogeneic HSCT can be fatal. According to David Davison, chief medical officer at Bluebird Bio “FDA’s Breakthrough Therapy designation for Lenti-D brings new hope to the patients and families affected by this devastating disease”.