Feeds:
Posts
Comments

Archive for the ‘Bio Instrumentation in Experimental Life Sciences Research’ Category

Article SELECTION from Collection of Aviva Lev-Ari, PhD, RN Scientific Articles on PULSE on LinkedIn.com for Training Small Language Models (SLMs) in Domain-aware Content of Medical, Pharmaceutical, Life Sciences and Healthcare by 15 Subjects Matter

Article SELECTION from Collection of Aviva Lev-Ari, PhD, RN Scientific Articles on PULSE on LinkedIn.com for Training Small Language Models (SLMs) in Domain-aware Content of Medical, Pharmaceutical, Life Sciences and Healthcare by 15 Subjects Matter

Article selection: Aviva Lev-Ari, PhD, RN

 

#1 – February 20, 2016

Contributions to Personalized and Precision Medicine & Genomic Research

Author: Larry H. Bernstein, MD, FCAP

https://www.linkedin.com/pulse/contributions-personalized-precision-medicine-genomic-aviva/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

http://pharmaceuticalintelligence.com/contributors-biographies/members-of-the-board/larry-bernstein/

 

#2 – March 31, 2016

Nutrition: Articles of Note @PharmaceuticalIntelligence.com

Author and Curators: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/nutrition-articles-note-pharmaceuticalintelligencecom-aviva/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

 

#3 – March 31, 2016

Epigenetics, Environment and Cancer: Articles of Note @PharmaceuticalIntelligence.com

Author and Curators: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/epigenetics-environment-cancer-articles-note-aviva-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

 

#4 – April 5, 2016

Alzheimer’s Disease: Novel Therapeutical Approaches — Articles of Note @PharmaceuticalIntelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/alzheimers-disease-novel-therapeutical-approaches-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

http://pharmaceuticalintelligence.com/2016/04/05/alzheimers-disease-novel-therapeutical-approaches-articles-of-note-pharmaceuticalintelligence-com/

 

#5 – April 5, 2016

Prostate Cancer: Diagnosis and Novel Treatment – Articles of Note  @PharmaceuticalIntelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/prostate-cancer-diagnosis-novel-treatment-articles-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

http://pharmaceuticalintelligence.com/2016/04/05/prostate-cancer-diagnosis-and-novel-treatment-articles-of-note-pharmaceuticalintelligence-com/ 

 

#6 – May 1, 2016

Immune System Stimulants: Articles of Note @pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/immune-system-stimulants-articles-note-aviva-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

 

#7 – May 26, 2016

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/pancreatic-cancer-articles-note-aviva-lev-ari-phd-rn/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#8 – August 23, 2017

Proteomics, Metabolomics, Signaling Pathways, and Cell Regulation – Articles of Note, LPBI Group’s Scientists @ http://pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/proteomics-metabolomics-signaling-pathways-cell-lev-ari-phd-rn/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#9 – August 17, 2017

Articles of Note on Signaling and Metabolic Pathways published by the Team of LPBI Group in @pharmaceuticalintelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/articles-note-signaling-metabolic-pathways-published-aviva/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#10 – October 8, 2017

What do we know on Exosomes?

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/what-do-we-know-exosomes-aviva-lev-ari-phd-rn/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#11 – September 1, 2017

Articles on Minimally Invasive Surgery (MIS) in Cardiovascular Diseases by the Team @Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/articles-minimally-invasive-surgery-mis-diseases-team-aviva/?trackingId=CPyrP0SNQq2X9N4pSubFxQ%3D%3D

 

#12 – August 13, 2018

MedTech & Medical Devices for Cardiovascular Repair – Contributions by LPBI Team to Cardiac Imaging, Cardiothoracic Surgical Procedures and PCI

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/medtech-medical-devices-cardiovascular-repair-lpbi-lev-ari-phd-rn/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

 

#13 – May 24, 2019

Resources on Artificial Intelligence in Health Care and in Medicine: Articles of Note at PharmaceuticalIntelligence.com @AVIVA1950 @pharma_BI

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/resources-artificial-intelligence-health-care-note-lev-ari-phd-rn/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

 

#14 – December 19, 2025

AI in Health: The Voice of Aviva Lev-Ari, PhD, RN

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/ai-health-voice-aviva-lev-ari-phd-rn-aviva-lev-ari-phd-rn-xgqie/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

 

#15 – January 7, 2026

NEW Foundation Multimodal Model in Healthcare: LPBI Group’s Domain-aware Corpus for 2025 Grok 4.1 Causal Reasoning & Novel Biomedical Relationships

Aviva Lev-Ari, PhD, RN, Founder of LPBI Group

https://www.linkedin.com/pulse/new-foundation-multimodal-model-healthcare-lpbi-2025-aviva-40h1e/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

Read Full Post »

Real Time Conferecence Coverage: Advancing Precision Medicine Conference Philadelphia PA November 1,2 2024  Deliverables

Curator: Stephen J. Williams, Ph.D.

Below are deliverables in form of real Time conference coverage from the Advancing Precision Medicine Confererence held this year in Philadelphia, PA.  The meeting brought together scientists and clinicians to discuss the challenges faced in implementing genomics and proteomics into precision medicine decision making workflow.  As summarized by a future release at the 2025 ASCO, there are many issues and hindrances to incorporating data obtained from sequencing to make a personalized medicine strategy.  The meeting focused on two main disease states: oncology and cardiovascular however most of  the live meeting notes are from the oncology tract.  In general it was discussed there are three areas which need to be addressed to correctly and more frequently incorporate precision medicine and genomic panel testing into clinical decision making workflow:

  1.  access to testing panels and testing methodology for both doctors and patients
  2. expert interpretation of results including algorithms needed to analyze the data
  3. more education of molecular biology and omics data and methodology in medical school to address knowledge gaps between clinicians and scientists

The issues can be summarized by a JCO report to ASCO in 2022:

 Helen Sadik, PhDDaryl Pritchard, PhD https://orcid.org/0000-0003-2675-0371 dpritchard@personalizedmedicinecoalition.orgDerry-Mae Keeling, BScFrank Policht, PhDPeter Riccelli, PhDGretta Stone, BSKira Finkel, MSPHJeff Schreier, MBA, and Susanne Munksted, MS.  Impact of Clinical Practice Gaps on the Implementation of Personalized Medicine in Advanced Non–Small-Cell Lung Cancer. 2022: JCO Precision Oncology; Volume 6. https://doi.org/10.1200/PO.22.00246

Personalized medicine presents new opportunities for patients with cancer. However, many patients do not receive the most effective personalized treatments because of challenges associated with integrating predictive biomarker testing into clinical care. Patients are lost at various steps along the precision oncology pathway because of operational inefficiencies, limited understanding of biomarker strategies, inappropriate testing result usage, and access barriers. We examine the impact of various clinical practice gaps associated with diagnostic testing-informed personalized medicine strategies on the treatment of advanced non–small-cell lung cancer (aNSCLC).

The authors used a  Diaceutics’ Data Repository, a multisource database including commercial and Medicare claims and laboratory data from over 500,000 patients with non–small-cell lung cancer in the United States. They  analyzed the number of patients with newly diagnosed aNSCLC who could have, but did not, benefit from a personalized treatment. The analysis was focused on identifying the gaps and at which steps during care did gaps existed which precipitated either lack of use of precision medicine testing or incorrect interpretation of results.

Their conclusions were alarming:

Most patients with aNSCLC eligible for precision oncology treatments do not benefit from them because of clinical practice gaps. This finding is likely reflective of similar gaps in other cancer types. An increased understanding of the impact of each practice gap can inform strategies to improve the delivery of precision oncology, helping to fully realize the promise of personalized medicine.

The links to the live meeting notes are given below and collection of tweets follow (please note this meeting did not have a Twitter hashtag)

Real Time Coverage Advancing Precision Medicine Annual Conference, Philadelphia PA November 1,2 2024

https://pharmaceuticalintelligence.com/2024/11/01/real-time-coverage-advancing-precision-medicine-annual-conference-philadelphia-pa-november-12-2024/

Real Time Coverage Morning Session on Precision Oncology: Advancing Precision Medicine Annual Conference, Philadelphia PA November 1 2024

https://pharmaceuticalintelligence.com/2024/11/01/real-time-coverage-morning-session-on-precision-oncology-advancing-precision-medicine-annual-conference-philadelphia-pa-november-1-2024/

Real Time Coverage Afternoon Session on Precision Oncology: Advancing Precision Medicine Annual Conference, Philadelphia PA November 1 2024

https://pharmaceuticalintelligence.com/2024/11/01/real-time-coverage-afternoon-session-on-precision-oncology-advancing-precision-medicine-annual-conference-philadelphia-pa-november-1-2024/ 

Real Time Coverage Morning Session on Precision Oncology: Advancing Precision Medicine Annual Conference, Philadelphia PA November 2 2024

https://pharmaceuticalintelligence.com/2024/11/04/real-time-coverage-morning-session-on-precision-oncology-advancing-precision-medicine-annual-conference-philadelphia-pa-november-2-2024/ 

Tweet Collection

Tweet Collection Advancing Precision Medicine Conference November 1,2 2024 Philadelphia PA

 

Read Full Post »

Jennifer A. Lewis: Revolutionizing Materials Science with the 2025 James Prize

Curator: Dr. Sudipta Saha, Ph.D.

Jennifer A. Lewis, the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard University, has been awarded the prestigious 2025 James Prize in Science and Technology Integration by the National Academy of Sciences. This recognition highlights her ground breaking research in the programmable assembly of soft functional, structural, and biological materials.

Lewis has pioneered work in integrating various scientific fields, including materials science, soft matter physics, additive manufacturing, bioengineering, and stem cell biology. Her lab focuses on developing advanced materials, such as electrically and ionically conductive inks for micro-scale printed devices like electronics and batteries. Additionally, Lewis’s work on stem cell-derived organoids has enabled the creation of 3D organ-on-chip models and vascularized tissues, which hold promise for drug screening, disease modeling, and therapeutic applications.

The James Prize, awarded by the National Academy of Sciences, recognizes outstanding contributions made by individuals who integrate knowledge across multiple disciplines to address pressing challenges. Lewis’s innovative approach, exemplified in her multidisciplinary work, has transformed the way soft materials and biological systems are designed and utilized. The prize includes a $50,000 award, underscoring her exceptional impact on science and technology.

With numerous accolades to her name, including the NSF Presidential Faculty Fellow Award and election to the National Academy of Sciences and the National Academy of Engineering, Lewis’s work continues to reshape the future of biologically inspired engineering.

References

https://nasonline.swoogo.com/nas162_awards/7558066?utm_source=twitter&utm_medium=social&utm_term=thenasciences&utm_content=b029f1bc-6b38-43b2-aaec-bcc943b07bea&utm_campaign=hootsuite

https://seas.harvard.edu/news/2025/01/jennifer-lewis-awarded-james-prize-science-and-technology-integration

https://wyss.harvard.edu/news/jennifer-a-lewis-pioneer-in-3d-printing-and-bioinspired-materials-joins-harvard-faculty/

https://pharmaceuticalintelligence.com/knowledge-portals-system-kps/irina-robu-phd-3d-bioprinting-tissue-engineering-biomaterials-nanotechnology-drug-delivery/

https://pharmaceuticalintelligence.com/2020/06/09/targeting-atherosclerotic-plaques-with-drug-eluting-biomaterials/

Read Full Post »

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Curators:

 

THE VOICE of Aviva Lev-Ari, PhD, RN

In this curation we wish to present two breaking through goals:

Goal 1:

Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer

Goal 2:

Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.

According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.

These eight subcellular pathologies can’t be measured at present time.

In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.

Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases

  1. Glycation
  2. Oxidative Stress
  3. Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
  4. Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
  5. Membrane instability
  6. Inflammation in the gut [mucin layer and tight junctions]
  7. Epigenetics/Methylation
  8. Autophagy [AMPKbeta1 improvement in health span]

Diseases that are not Diseases: no drugs for them, only diet modification will help

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

Exercise will not undo Unhealthy Diet

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:

  1. Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
  2. IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL

In the Bioelecronics domain we are inspired by the work of the following three research sources:

  1. Biological and Biomedical Electrical Engineering (B2E2) at Cornell University, School of Engineering https://www.engineering.cornell.edu/bio-electrical-engineering-0
  2. Bioelectronics Group at MIT https://bioelectronics.mit.edu/
  3. The work of Michael Levin @Tufts, The Levin Lab
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
Born: 1969 (age 54 years), Moscow, Russia
Education: Harvard University (1992–1996), Tufts University (1988–1992)
Affiliation: University of Cape Town
Research interests: Allergy, Immunology, Cross Cultural Communication
Awards: Cozzarelli prize (2020)
Doctoral advisor: Clifford Tabin
Most recent 20 Publications by Michael Levin, PhD
SOURCE
SCHOLARLY ARTICLE
The nonlinearity of regulation in biological networks
1 Dec 2023npj Systems Biology and Applications9(1)
Co-authorsManicka S, Johnson K, Levin M
SCHOLARLY ARTICLE
Toward an ethics of autopoietic technology: Stress, care, and intelligence
1 Sep 2023BioSystems231
Co-authorsWitkowski O, Doctor T, Solomonova E
SCHOLARLY ARTICLE
Closing the Loop on Morphogenesis: A Mathematical Model of Morphogenesis by Closed-Loop Reaction-Diffusion
14 Aug 2023Frontiers in Cell and Developmental Biology11:1087650
Co-authorsGrodstein J, McMillen P, Levin M
SCHOLARLY ARTICLE
30 Jul 2023Biochim Biophys Acta Gen Subj1867(10):130440
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
Regulative development as a model for origin of life and artificial life studies
1 Jul 2023BioSystems229
Co-authorsFields C, Levin M
SCHOLARLY ARTICLE
The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left–Right Functional Differences
1 Jul 2023International Journal of Molecular Sciences24(13)
Co-authorsMasuelli S, Real S, McMillen P
SCHOLARLY ARTICLE
Bioelectricidad en agregados multicelulares de células no excitables- modelos biofísicos
Jun 2023Revista Española de Física32(2)
Co-authorsCervera J, Levin M, Mafé S
SCHOLARLY ARTICLE
Bioelectricity: A Multifaceted Discipline, and a Multifaceted Issue!
1 Jun 2023Bioelectricity5(2):75
Co-authorsDjamgoz MBA, Levin M
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part I: Classical and Quantum Formulations of Active Inference
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):235-245
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part II: Tensor Networks as General Models of Control Flow
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):246-256
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Darwin’s agential materials: evolutionary implications of multiscale competency in developmental biology
1 Jun 2023Cellular and Molecular Life Sciences80(6)
Co-authorsLevin M
SCHOLARLY ARTICLE
Morphoceuticals: Perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging
1 Jun 2023Drug Discovery Today28(6)
Co-authorsPio-Lopez L, Levin M
SCHOLARLY ARTICLE
Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine
12 May 2023Patterns4(5)
Co-authorsMathews J, Chang A, Devlin L
SCHOLARLY ARTICLE
Making and breaking symmetries in mind and life
14 Apr 2023Interface Focus13(3)
Co-authorsSafron A, Sakthivadivel DAR, Sheikhbahaee Z
SCHOLARLY ARTICLE
The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis
14 Apr 2023Interface Focus13(3)
Co-authorsPio-Lopez L, Bischof J, LaPalme JV
SCHOLARLY ARTICLE
The collective intelligence of evolution and development
Apr 2023Collective Intelligence2(2):263391372311683SAGE Publications
Co-authorsWatson R, Levin M
SCHOLARLY ARTICLE
Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling
13 Mar 2023Physics Reports1004:1-31
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines
1 Mar 2023Biomimetics8(1)
Co-authorsBongard J, Levin M
SCHOLARLY ARTICLE
Transplantation of fragments from different planaria: A bioelectrical model for head regeneration
7 Feb 2023Journal of Theoretical Biology558
Co-authorsCervera J, Manzanares JA, Levin M
SCHOLARLY ARTICLE
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
1 Jan 2023Animal Cognition
Co-authorsLevin M
SCHOLARLY ARTICLE
Biological Robots: Perspectives on an Emerging Interdisciplinary Field
1 Jan 2023Soft Robotics
Co-authorsBlackiston D, Kriegman S, Bongard J
SCHOLARLY ARTICLE
Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model
1 Jan 2023Entropy25(1)
Co-authorsShreesha L, Levin M
5

5 total citations on Dimensions.

Article has an altmetric score of 16
SCHOLARLY ARTICLE
1 Jan 2023BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY138(1):141
Co-authorsClawson WP, Levin M
SCHOLARLY ARTICLE
Future medicine: from molecular pathways to the collective intelligence of the body
1 Jan 2023Trends in Molecular Medicine
Co-authorsLagasse E, Levin M

THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC

PENDING

THE VOICE of  Stephen J. Williams, PhD

Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes

 

  1. 25% of US children have fatty liver
  2. Type II diabetes can be manifested from fatty live with 151 million  people worldwide affected moving up to 568 million in 7 years
  3. A common myth is diabetes due to overweight condition driving the metabolic disease
  4. There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
  5. Thirty percent of ‘obese’ people just have high subcutaneous fat.  the visceral fat is more problematic
  6. there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects.  Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
  7. At any BMI some patients are insulin sensitive while some resistant
  8. Visceral fat accumulation may be more due to chronic stress condition
  9. Fructose can decrease liver mitochondrial function
  10. A methionine and choline deficient diet can lead to rapid NASH development

 

Read Full Post »

Mimicking vaginal cells and microbiome interactions on chip microfluidic culture

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Scientists at Harvard University’s Wyss Institute for Biologically Inspired Engineering have developed the world’s first “vagina-on-a-chip,” which uses living cells and bacteria to mimic the microbial environment of the human vagina. It could help to test drugs against bacterial vaginosis, a common microbial imbalance that makes millions of people more susceptible to sexually transmitted diseases and puts them at risk of preterm delivery when pregnant. Vaginal health is difficult to study in a laboratory setting partly because laboratory animals have “totally different microbiomes” than humans. To address this, scientists have created an unique chip, which is an inch-long, rectangular polymer case containing live human vaginal tissue from a donor and a flow of estrogen-carrying material to simulate vaginal mucus.

The organs-on-a-chip mimic real bodily function, making it easier to study diseases and test drugs. Previous examples include models of the lungs and the intestines. In this case, the tissue acts like that of a real vagina in some important ways. It even responds to changes in estrogen by adjusting the expression of certain genes. And it can grow a humanlike microbiome dominated by “good” or “bad” bacteria. The researchers have demonstrated that Lactobacilli growing on the chip’s tissue help to maintain a low pH by producing lactic acid. Conversely, if the researchers introduce Gardnerella, the chip develops a higher pH, cell damage and increased inflammation: classic bacterial vaginosis signs. So, the chip can demonstrate how a healthy / unhealthy microbiome affects the vagina.

The next step is personalization or subject specific culture from individuals. The chip is a real leap forward, it has the prospect of testing how typical antibiotic treatments against bacterial vaginosis affect the different bacterial strains. Critics of organ-on-a-chip technology often raise the point that it models organs in isolation from the rest of the body. There are limitations such as many researchers are interested in vaginal microbiome changes that occur during pregnancy because of the link between bacterial vaginosis and labor complications. Although the chip’s tissue responds to estrogen, but it does not fully mimic pregnancy without feedback loops from other organs. The researchers are already working on connecting the vagina chip to a cervix chip, which could better represent the larger reproductive system.

All these information indicate that the human vagina chip offers a new model to study host-vaginal microbiome interactions in both optimal and non-optimal states, as well as providing a human relevant preclinical model for development and testing of reproductive therapeutics, including live bio-therapeutics products for bacterial vaginosis. This microfluidic human vagina chip that enables flow through an open epithelial lumen also offers a unique advantage for studies on the effect of cervicovaginal mucus on vaginal health as clinical mucus samples or commercially available mucins can be flowed through this channel. The role of resident and circulating immune cells in host-microbiome interactions also can be explored by incorporating these cells into the vagina chip in the future, as this has been successfully done in various other organ chip models.

References:

https://www.scientificamerican.com/article/first-vagina-on-a-chip-will-help-researchers-test-drugs/

https://www.webmd.com/infertility-and-reproduction/news/20230209/scientists-create-vagina-on-chip-what-to-know

https://www.livescience.com/vagina-on-a-chip

https://link.springer.com/article/10.1186/s40168-022-01400-1

https://www.nature.com/articles/s41585-022-00717-8

Read Full Post »

Accelerating PROTAC drug discovery: Establishing a relationship between ubiquitination and target protein degradation

Curator: Stephen J. Williams, Ph.D.

PROTACs have been explored in multiple disease fields with focus on only few ligases like cereblon (CRBN), Von Hippel-Lindau (VHL), IAP and MDM2. Cancer targets like androgen receptor, estrogen receptor, BTK, BCL2, CDK8 and c-MET [[6], [7], [8], [9], [10], [11]] have been successfully targeted using PROTACs. A variety of BET family (BRD2, BRD3, and BRD4)- PROTACs were designed using multiple ligases; MDM2-based BRD4 PROTAC [12], CRBN based dBET1 [13] and BETd-24-6 [14] for triple-negative breast cancer, enhanced membrane permeable dBET6 [15], and dBET57 PROTAC [16]. PROTACs for Hepatitis c virus (HCV) protease, IRAK4 and Tau [[17], [18], [19]] have been explored for viral, immune and neurodegenerative diseases, respectively. Currently, the PROTAC field expansion to vast undruggable proteome is hindered due to narrow focus on select E3 ligases. Lack of reliable tools to rapidly evaluate PROTACs based on new ligases is hindering the progress. Screening platforms designed must be physiologically relevant and represent true PROTAC cellular function, i.e., PROTAC-mediated target ubiquitination and degradation.

In the current study, we employ TUBEs as affinity capture reagents to monitor PROTAC-induced poly-ubiquitination and degradation as a measure of potency. We established and validated proof-of-concept cell-based assays in a 96-well format using PROTACS for three therapeutic targets BET family proteins, kinases, and KRAS. To our knowledge, the proposed PROTAC assays are first of its kind that can simultaneously 1) detect ubiquitination of endogenous, native protein targets, 2) evaluate the potency of PROTACs, and 3) establish a link between the UPS and protein degradation. Using these TUBE assays, we established rank order potencies between four BET family PROTACs dBET1, dBET6, BETd246 and dBET57 based on peak ubiquitination signals (“UbMax”) of the target protein. TUBE assay was successful in demonstrating promiscuous kinase PROTACs efficiency to degrade Aurora Kinase A at sub-nanomolar concentrations within 1 h. A comparative study to identify changes in the ubiquitination and degradation profile of KRAS G12C PROTACs recruiting two E3 ligases (CRBN and VHL). All of the ubiquitination and degradation profiles obtained from TUBE based assays correlate well with traditional low throughput immunoblotting. Significant correlation between DC50 obtained from protein degradation in western blotting and UbMax values demonstrates our proposed assays can aid in high-throughput screening and drastically eliminate artifacts to overcome bottlenecks in PROTAC drug discovery.

To successfully set up HTS screening with novel PROTACs without pre-existing knowledge, we recommend the following steps. 1. Identify a model PROTAC that can potentially demonstrate activity based on knowledge in PROTAC design or in vitro binding studies. 2. Perform a time course study with 2–3 doses of the model PROTAC based on affinities of the ligands selected. 3. Monitor ubiquitination and degradation profiles using plate-based assay and identify time point that demonstrates UbMax. 4. Perform a dose response at selected time point with a library of PROTACs to establish rank order potency.

INTRODUCTION

Ubiquitination is a major regulatory mechanism to maintain cellular protein homeostasis by marking proteins for proteasomal-mediated degradation [1]. Given ubiquitin’s role in a variety of pathologies, the idea of targeting the Ubiquitin Proteasome System (UPS) is at the forefront of drug discovery [2]. “Event-driven” protein degradation using the cell’s own UPS is a promising technology for addressing the “undruggable” proteome [3]. Targeted protein degradation (TPD) has emerged as a new paradigm and promising therapeutic option to selectively attack previously intractable drug targets using PROteolytic TArgeting Chimeras (PROTACs) [4]. PROTACs are heterobifunctional molecules with a distinct ligand that targets a specific E3 ligase which is tethered to another ligand specific for the target protein using an optimized chemical linker. A functional PROTAC induces a ternary E3-PROTAC-target complex, resulting in poly-ubiquitination and subsequent controlled protein degradation [5]. Ability to function at sub-stoichiometric levels for efficient degradation, a significant advantage over traditional small molecules.

PROTACs have been explored in multiple disease fields with focus on only few ligases like cereblon (CRBN), Von Hippel-Lindau (VHL), IAP and MDM2. Cancer targets like androgen receptorestrogen receptor, BTK, BCL2, CDK8 and c-MET [[6][7][8][9][10][11]] have been successfully targeted using PROTACs. A variety of BET family (BRD2, BRD3, and BRD4)- PROTACs were designed using multiple ligases; MDM2-based BRD4 PROTAC [12], CRBN based dBET1 [13] and BETd-24-6 [14] for triple-negative breast cancer, enhanced membrane permeable dBET6 [15], and dBET57 PROTAC [16]. PROTACs for Hepatitis c virus (HCV) proteaseIRAK4 and Tau [[17][18][19]] have been explored for viral, immune and neurodegenerative diseases, respectively. Currently, the PROTAC field expansion to vast undruggable proteome is hindered due to narrow focus on select E3 ligases. Lack of reliable tools to rapidly evaluate PROTACs based on new ligases is hindering the progress. Screening platforms designed must be physiologically relevant and represent true PROTAC cellular function, i.e., PROTAC-mediated target ubiquitination and degradation.

Cellular PROTAC screening is traditionally performed using cell lines harboring reporter genes and/or Western blotting. While Western blotting is easy to perform, they are low throughput, semi-quantitative and lack sensitivity. While reporter gene assays address some of the issues, they are challenged by reporter tags having internal lysines leading to artifacts. Currently, no approaches are available that can identify true PROTAC effects such as target ubiquitination and proteasome-mediated degradation simultaneously. High affinity ubiquitin capture reagents like TUBEs [20] (tandem ubiquitin binding entities), are engineered ubiquitin binding domains (UBDs) that allow for detection of ultralow levels of polyubiquitinated proteins under native conditions with affinities as low as 1 nM. The versatility and selectivity of TUBEs makes them superior to antibodies, and they also offer chain-selectivity (-K48, -K63, or linear) [21]. High throughput assays that can report the efficacy of multiple PROTACs simultaneously by monitoring PROTAC mediated ubiquitination can help establish rank order potency and guide chemists in developing meaningful structure activity relationships (SAR) rapidly.

In the current study, we employ TUBEs as affinity capture reagents to monitor PROTAC-induced poly-ubiquitination and degradation as a measure of potency. We established and validated proof-of-concept cell-based assays in a 96-well format using PROTACS for three therapeutic targets BET family proteins, kinases, and KRAS. To our knowledge, the proposed PROTAC assays are first of its kind that can simultaneously 1) detect ubiquitination of endogenous, native protein targets, 2) evaluate the potency of PROTACs, and 3) establish a link between the UPS and protein degradation. Using these TUBE assays, we established rank order potencies between four BET family PROTACs dBET1, dBET6, BETd246 and dBET57 based on peak ubiquitination signals (“UbMax”) of the target protein. TUBE assay was successful in demonstrating promiscuous kinase PROTACs efficiency to degrade Aurora Kinase A at sub-nanomolar concentrations within 1 h. A comparative study to identify changes in the ubiquitination and degradation profile of KRAS G12C PROTACs recruiting two E3 ligases (CRBN and VHL). All of the ubiquitination and degradation profiles obtained from TUBE based assays correlate well with traditional low throughput immunoblotting. Significant correlation between DC50 obtained from protein degradation in western blotting and UbMax values demonstrates our proposed assays can aid in high-throughput screening and drastically eliminate artifacts to overcome bottlenecks in PROTAC drug discovery.

Fig. 1. Schematic representation of TUBE assay to monitor PROTAC mediated cellular ubiquitination of target proteins.
Fig. 2. TUBE based assay screening of PROTACs: Jurkat cell lysates were treated with BRD3-specific PROTACs A) dBET1, B) dBET6, C) BETd24-6, and D) dBET57. Polyubiquitination profiles and Ubmax of BRD3 for each PROTAC were represented as relative CL intensity. Relative CL intensities were calculated by dividing raw CL signals from a given PROTAC dose over DMSO treated samples. Error bars represent standard deviations, n = 3.
Fig. 3. PROTAC mediated degradation of bromodomain proteins analyzed by anti-BRD3 western blotting. Dose response of PROTACs dBET1, dBET6, Betd-24-6 and dBET57 at 45 min in Jurkat cells demonstrates degradation of BRD3, Acting as loading control.

 

 

 

 

 

 

 

 

 

Fig. 4. PROTAC mediated ubiquitination and degradation of AURKA in K562 cells. (A) Time course study to evaluate intracellular ubiquitination and degradation. (B) Western blot analysis of time course study: degradation kinetics (C) A dose response study to evaluate DC50 of the promiscuous kinase PROTAC in K562 cells. (D) Western blot analysis of dose response study to monitor degradation, GAPDH as loading control. Error bars represent standard deviation, n = 3.

SOURCE

https://www.sciencedirect.com/science/article/abs/pii/S0006291X22011792

Other articles of PROTACs in this Open Access Journal Include

The Vibrant Philly Biotech Scene: Proteovant Therapeutics Using Artificial Intelligence and Machine Learning to Develop PROTACs

The Map of human proteins drawn by artificial intelligence and PROTAC (proteolysis targeting chimeras) Technology for Drug Discovery

Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Late Day Sessions

From High-Throughput Assay to Systems Biology: New Tools for Drug Discovery

 

Read Full Post »

The Human Genome Gets Fully Sequenced: A Simplistic Take on Century Long Effort

 

Curator: Stephen J. Williams, PhD

Article ID #295: The Human Genome Gets Fully Sequenced: A Simplistic Take on Century Long Effort. Published on 6/14/2022

WordCloud Image Produced by Adam Tubman

Ever since the hard work by Rosalind Franklin to deduce structures of DNA and the coincidental work by Francis Crick and James Watson who modeled the basic building blocks of DNA, DNA has been considered as the basic unit of heredity and life, with the “Central Dogma” (DNA to RNA to Protein) at its core.  These were the discoveries in the early twentieth century, and helped drive the transformational shift of biological experimentation, from protein isolation and characterization to cloning protein-encoding genes to characterizing how the genes are expressed temporally, spatially, and contextually.

Rosalind Franklin, who’s crystolagraphic data led to determination of DNA structure. Shown as 1953 Time cover as Time person of the Year

Dr Francis Crick and James Watson in front of their model structure of DNA

 

 

 

 

 

 

 

 

 

Up to this point (1970s-mid 80s) , it was felt that genetic information was rather static, and the goal was still to understand and characterize protein structure and function while an understanding of the underlying genetic information was more important for efforts like linkage analysis of genetic defects and tools for the rapidly developing field of molecular biology.  But the development of the aforementioned molecular biology tools including DNA cloning, sequencing and synthesis, gave scientists the idea that a whole recording of the human genome might be possible and worth the effort.

How the Human Genome Project  Expanded our View of Genes Genetic Material and Biological Processes

 

 

From the Human Genome Project Information Archive

Source:  https://web.ornl.gov/sci/techresources/Human_Genome/project/hgp.shtml

History of the Human Genome Project

The Human Genome Project (HGP) refers to the international 13-year effort, formally begun in October 1990 and completed in 2003, to discover all the estimated 20,000-25,000 human genes and make them accessible for further biological study. Another project goal was to determine the complete sequence of the 3 billion DNA subunits (bases in the human genome). As part of the HGP, parallel studies were carried out on selected model organisms such as the bacterium E. coli and the mouse to help develop the technology and interpret human gene function. The DOE Human Genome Program and the NIH National Human Genome Research Institute (NHGRI) together sponsored the U.S. Human Genome Project.

 

Please see the following for goals, timelines, and funding for this project

 

History of the Project

It is interesting to note that multiple government legislation is credited for the funding of such a massive project including

Project Enabling Legislation

  • The Atomic Energy Act of 1946 (P.L. 79-585) provided the initial charter for a comprehensive program of research and development related to the utilization of fissionable and radioactive materials for medical, biological, and health purposes.
  • The Atomic Energy Act of 1954 (P.L. 83-706) further authorized the AEC “to conduct research on the biologic effects of ionizing radiation.”
  • The Energy Reorganization Act of 1974 (P.L. 93-438) provided that responsibilities of the Energy Research and Development Administration (ERDA) shall include “engaging in and supporting environmental, biomedical, physical, and safety research related to the development of energy resources and utilization technologies.”
  • The Federal Non-nuclear Energy Research and Development Act of 1974 (P.L. 93-577) authorized ERDA to conduct a comprehensive non-nuclear energy research, development, and demonstration program to include the environmental and social consequences of the various technologies.
  • The DOE Organization Act of 1977 (P.L. 95-91) mandated the Department “to assure incorporation of national environmental protection goals in the formulation and implementation of energy programs; and to advance the goal of restoring, protecting, and enhancing environmental quality, and assuring public health and safety,” and to conduct “a comprehensive program of research and development on the environmental effects of energy technology and program.”

It should also be emphasized that the project was not JUST funded through NIH but also Department of Energy

Project Sponsors

For a great read on Dr. Craig Ventnor with interviews with the scientist see Dr. Larry Bernstein’s excellent post The Human Genome Project

 

By 2003 we had gained much information about the structure of DNA, genes, exons, introns and allowed us to gain more insights into the diversity of genetic material and the underlying protein coding genes as well as many of the gene-expression regulatory elements.  However there was much uninvestigated material dispersed between genes, the then called “junk DNA” and, up to 2003 not much was known about the function of this ‘junk DNA’.  In addition there were two other problems:

  • The reference DNA used was actually from one person (Craig Ventor who was the lead initiator of the project)
  • Multiple gaps in the DNA sequence existed, and needed to be filled in

It is important to note that a tremendous amount of diversity of protein has been realized from both transcriptomic and proteomic studies.  Although about 20 to 25,000 coding genes exist the human proteome contains about 600,000 proteoforms (due to alternative splicing, posttranslational modifications etc.)

This expansion of the proteoform via alternate splicing into isoforms, gene duplication to paralogs has been shown to have major effects on, for example, cellular signaling pathways (1)

However just recently it has been reported that the FULL human genome has been sequenced and is complete and verified.  This was the focus of a recent issue in the journal Science.

Source: https://www.science.org/doi/10.1126/science.abj6987

Abstract

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion–base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.

 

The current human reference genome was released by the Genome Reference Consortium (GRC) in 2013 and most recently patched in 2019 (GRCh38.p13) (1). This reference traces its origin to the publicly funded Human Genome Project (2) and has been continually improved over the past two decades. Unlike the competing Celera effort (3) and most modern sequencing projects based on “shotgun” sequence assembly (4), the GRC assembly was constructed from sequenced bacterial artificial chromosomes (BACs) that were ordered and oriented along the human genome by means of radiation hybrid, genetic linkage, and fingerprint maps. However, limitations of BAC cloning led to an underrepresentation of repetitive sequences, and the opportunistic assembly of BACs derived from multiple individuals resulted in a mosaic of haplotypes. As a result, several GRC assembly gaps are unsolvable because of incompatible structural polymorphisms on their flanks, and many other repetitive and polymorphic regions were left unfinished or incorrectly assembled (5).

 

Fig. 1. Summary of the complete T2T-CHM13 human genome assembly.
(A) Ideogram of T2T-CHM13v1.1 assembly features. For each chromosome (chr), the following information is provided from bottom to top: gaps and issues in GRCh38 fixed by CHM13 overlaid with the density of genes exclusive to CHM13 in red; segmental duplications (SDs) (42) and centromeric satellites (CenSat) (30); and CHM13 ancestry predictions (EUR, European; SAS, South Asian; EAS, East Asian; AMR, ad-mixed American). Bottom scale is measured in Mbp. (B and C) Additional (nonsyntenic) bases in the CHM13 assembly relative to GRCh38 per chromosome, with the acrocentrics highlighted in black (B) and by sequence type (C). (Note that the CenSat and SD annotations overlap.) RepMask, RepeatMasker. (D) Total nongap bases in UCSC reference genome releases dating back to September 2000 (hg4) and ending with T2T-CHM13 in 2021. Mt/Y/Ns, mitochondria, chrY, and gaps.

Note in Figure 1D the exponential growth in genetic information.

Also very important is the ability to determine all the paralogs, isoforms, areas of potential epigenetic regulation, gene duplications, and transposable elements that exist within the human genome.

Analyses and resources

A number of companion studies were carried out to characterize the complete sequence of a human genome, including comprehensive analyses of centromeric satellites (30), segmental duplications (42), transcriptional (49) and epigenetic profiles (29), mobile elements (49), and variant calls (25). Up to 99% of the complete CHM13 genome can be confidently mapped with long-read sequencing, opening these regions of the genome to functional and variational analysis (23) (fig. S38 and table S14). We have produced a rich collection of annotations and omics datasets for CHM13—including RNA sequencing (RNA-seq) (30), Iso-seq (21), precision run-on sequencing (PRO-seq) (49), cleavage under targets and release using nuclease (CUT&RUN) (30), and ONT methylation (29) experiments—and have made these datasets available via a centralized University of California, Santa Cruz (UCSC), Assembly Hub genome browser (54).

 

To highlight the utility of these genetic and epigenetic resources mapped to a complete human genome, we provide the example of a segmentally duplicated region of the chromosome 4q subtelomere that is associated with facioscapulohumeral muscular dystrophy (FSHD) (55). This region includes FSHD region gene 1 (FRG1), FSHD region gene 2 (FRG2), and an intervening D4Z4 macrosatellite repeat containing the double homeobox 4 (DUX4) gene that has been implicated in the etiology of FSHD (56). Numerous duplications of this region throughout the genome have complicated past genetic analyses of FSHD.

The T2T-CHM13 assembly reveals 23 paralogs of FRG1 spread across all acrocentric chromosomes as well as chromosomes 9 and 20 (Fig. 5A). This gene appears to have undergone recent amplification in the great apes (57), and approximate locations of FRG1 paralogs were previously identified by FISH (58). However, only nine FRG1 paralogs are found in GRCh38, hampering sequence-based analysis.

Future of the human reference genome

The T2T-CHM13 assembly adds five full chromosome arms and more additional sequence than any genome reference release in the past 20 years (Fig. 1D). This 8% of the genome has not been overlooked because of a lack of importance but rather because of technological limitations. High-accuracy long-read sequencing has finally removed this technological barrier, enabling comprehensive studies of genomic variation across the entire human genome, which we expect to drive future discovery in human genomic health and disease. Such studies will necessarily require a complete and accurate human reference genome.

CHM13 lacks a Y chromosome, and homozygous Y-bearing CHMs are nonviable, so a different sample type will be required to complete this last remaining chromosome. However, given its haploid nature, it should be possible to assemble the Y chromosome from a male sample using the same methods described here and supplement the T2T-CHM13 reference assembly with a Y chromosome as needed.

Extending beyond the human reference genome, large-scale resequencing projects have revealed genomic variation across human populations. Our reanalyses of the 1KGP (25) and SGDP (42) datasets have already shown the advantages of T2T-CHM13, even for short-read analyses. However, these studies give only a glimpse of the extensive structural variation that lies within the most repetitive regions of the genome assembled here. Long-read resequencing studies are now needed to comprehensively survey polymorphic variation and reveal any phenotypic associations within these regions.

Although CHM13 represents a complete human haplotype, it does not capture the full diversity of human genetic variation. To address this bias, the Human Pangenome Reference Consortium (59) has joined with the T2T Consortium to build a collection of high-quality reference haplotypes from a diverse set of samples. Ideally, all genomes could be assembled at the quality achieved here, but automated T2T assembly of diploid genomes presents a difficult challenge that will require continued development. Until this goal is realized, and any human genome can be completely sequenced without error, the T2T-CHM13 assembly represents a more complete, representative, and accurate reference than GRCh38.

 

This paper was the focus of a Time article and their basis for making the lead authors part of their Time 100 people of the year.

From TIME

The Human Genome Is Finally Fully Sequenced

Source: https://time.com/6163452/human-genome-fully-sequenced/

 

The first human genome was mapped in 2001 as part of the Human Genome Project, but researchers knew it was neither complete nor completely accurate. Now, scientists have produced the most completely sequenced human genome to date, filling in gaps and correcting mistakes in the previous version.

The sequence is the most complete reference genome for any mammal so far. The findings from six new papers describing the genome, which were published in Science, should lead to a deeper understanding of human evolution and potentially reveal new targets for addressing a host of diseases.

A more precise human genome

“The Human Genome Project relied on DNA obtained through blood draws; that was the technology at the time,” says Adam Phillippy, head of genome informatics at the National Institutes of Health’s National Human Genome Research Institute (NHGRI) and senior author of one of the new papers. “The techniques at the time introduced errors and gaps that have persisted all of these years. It’s nice now to fill in those gaps and correct those mistakes.”

“We always knew there were parts missing, but I don’t think any of us appreciated how extensive they were, or how interesting,” says Michael Schatz, professor of computer science and biology at Johns Hopkins University and another senior author of the same paper.

The work is the result of the Telomere to Telomere consortium, which is supported by NHGRI and involves genetic and computational biology experts from dozens of institutes around the world. The group focused on filling in the 8% of the human genome that remained a genetic black hole from the first draft sequence. Since then, geneticists have been trying to add those missing portions bit by bit. The latest group of studies identifies about an entire chromosome’s worth of new sequences, representing 200 million more base pairs (the letters making up the genome) and 1,956 new genes.

 

NOTE: In 2001 many scientists postulated there were as much as 100,000 coding human genes however now we understand there are about 20,000 to 25,000 human coding genes.  This does not however take into account the multiple diversity obtained from alternate splicing, gene duplications, SNPs, and chromosomal rearrangements.

Scientists were also able to sequence the long stretches of DNA that contained repeated sequences, which genetic experts originally thought were similar to copying errors and dismissed as so-called “junk DNA”. These repeated sequences, however, may play roles in certain human diseases. “Just because a sequence is repetitive doesn’t mean it’s junk,” says Eichler. He points out that critical genes are embedded in these repeated regions—genes that contribute to machinery that creates proteins, genes that dictate how cells divide and split their DNA evenly into their two daughter cells, and human-specific genes that might distinguish the human species from our closest evolutionary relatives, the primates. In one of the papers, for example, researchers found that primates have different numbers of copies of these repeated regions than humans, and that they appear in different parts of the genome.

“These are some of the most important functions that are essential to live, and for making us human,” says Eichler. “Clearly, if you get rid of these genes, you don’t live. That’s not junk to me.”

Deciphering what these repeated sections mean, if anything, and how the sequences of previously unsequenced regions like the centromeres will translate to new therapies or better understanding of human disease, is just starting, says Deanna Church, a vice president at Inscripta, a genome engineering company who wrote a commentary accompanying the scientific articles. Having the full sequence of a human genome is different from decoding it; she notes that currently, of people with suspected genetic disorders whose genomes are sequenced, about half can be traced to specific changes in their DNA. That means much of what the human genome does still remains a mystery.

The investigators in the Telomere to Telomere Consortium made the Time 100 People of the Year.

Michael Schatz, Karen Miga, Evan Eichler, and Adam Phillippy

Illustration by Brian Lutz for Time (Source Photos: Will Kirk—Johns Hopkins University; Nick Gonzales—UC Santa Cruz; Patrick Kehoe; National Human Genome Research Institute)

BY JENNIFER DOUDNA

MAY 23, 2022 6:08 AM EDT

Ever since the draft of the human genome became available in 2001, there has been a nagging question about the genome’s “dark matter”—the parts of the map that were missed the first time through, and what they contained. Now, thanks to Adam Phillippy, Karen Miga, Evan Eichler, Michael Schatz, and the entire Telomere-to-Telomere Consortium (T2T) of scientists that they led, we can see the full map of the human genomic landscape—and there’s much to explore.

In the scientific community, there wasn’t a consensus that mapping these missing parts was necessary. Some in the field felt there was already plenty to do using the data in hand. In addition, overcoming the technical challenges to getting the missing information wasn’t possible until recently. But the more we learn about the genome, the more we understand that every piece of the puzzle is meaningful.

I admire the

T2T group’s willingness to grapple with the technical demands of this project and their persistence in expanding the genome map into uncharted territory. The complete human genome sequence is an invaluable resource that may provide new insights into the origin of diseases and how we can treat them. It also offers the most complete look yet at the genetic script underlying the very nature of who we are as human beings.

Doudna is a biochemist and winner of the 2020 Nobel Prize in Chemistry

Source: https://time.com/collection/100-most-influential-people-2022/6177818/evan-eichler-karen-miga-adam-phillippy-michael-schatz/

Other articles on the Human Genome Project and Junk DNA in this Open Access Scientific Journal Include:

 

International Award for Human Genome Project

 

Cracking the Genome – Inside the Race to Unlock Human DNA – quotes in newspapers

 

The Human Genome Project

 

Junk DNA and Breast Cancer

 

A Perspective on Personalized Medicine

 

 

 

 

 

 

 

Additional References

 

  1. P. Scalia, A. Giordano, C. Martini, S. J. Williams, Isoform- and Paralog-Switching in IR-Signaling: When Diabetes Opens the Gates to Cancer. Biomolecules 10, (Nov 30, 2020).

 

 

Read Full Post »

Embryogenesis in Mechanical Womb

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

A highly effective platforms for the ex utero culture of post-implantation mouse embryos have been developed in the present study by scientists of the Weizmann Institute of Science in Israel. The study was published in the journal Nature. They have grown more than 1,000 embryos in this way. This study enables the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms.

At Day 11 of development more than halfway through a mouse pregnancy the researchers compared them to those developing in the uteruses of living mice and were found to be identical. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. The mouse embryos looked perfectly normal. All their organs developed as expected, along with their limbs and circulatory and nervous systems. Their tiny hearts were beating at a normal 170 beats per minute. But, the lab-grown embryos becomes too large to survive without a blood supply. They had a placenta and a yolk sack, but the nutrient solution that fed them through diffusion was no longer sufficient. So, a suitable mechanism for blood supply is required to be developed.

Till date the only way to study the development of tissues and organs is to turn to species like worms, frogs and flies that do not need a uterus, or to remove embryos from the uteruses of experimental animals at varying times, providing glimpses of development more like in snapshots than in live videos. This research will help scientists understand how mammals develop and how gene mutations, nutrients and environmental conditions may affect the fetus. This will allow researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals. In the future it may be possible to develop a human embryo from fertilization to birth entirely outside the uterus. But the work may one day raise profound questions about whether other animals, even humans, should or could be cultured outside a living womb.

References:

https://www.nature.com/articles/s41586-021-03416-3

https://www.sciencedirect.com/science/article/pii/S0092867414000750?via%3Dihub

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-185X.1978.tb00993.x

https://www.nature.com/articles/199297a0

https://rep.bioscientifica.com/view/journals/rep/35/1/jrf_35_1_018.xml

Read Full Post »

National Resilience, Inc. is a first-of-its-kind manufacturing and technology company dedicated to broadening access to complex medicines and protecting biopharmaceutical supply chains against disruption – the Acquisition of Two Premier Biologics Manufacturing Facilities: Boston and in Ontario, Canada

 

Reporter: Aviva Lev-Ari, PhD, RN

Resilience’s new facility, located at 500 Soldiers Field Rd., Boston, MA. (Photo: Business Wire) – The Genzyme-Sanofi Building

 

SAN DIEGO & BOSTON–(BUSINESS WIRE)–Resilience (National Resilience, Inc.), a new company building the world’s most advanced biopharmaceutical manufacturing ecosystem, announced it has acquired two premier commercial manufacturing facilities in North America, joining other facilities already in Resilience’s network to boost total capacity under management to more than 750,000 square feet.

“These locations will serve as hubs for the future of biopharma manufacturing, leading the way and shaping the future of Resilience.”

  • The acquired facilities include a 310,000-square-foot plant in Boston, MA, purchased from Sanofi; and in a separate transaction,
  • a 136,000-square-foot plant in Mississauga, Ontario, Canada.

Both facilities, which currently produce commercial, marketed products, will see significant investments as Resilience adds capacity and capabilities to produce new therapies at these locations. In addition, the company has offered employment to the existing plant staff and intends to add more jobs at each facility.

“We have big plans for these facilities including investing in new capacity, applying new manufacturing technologies, creating jobs and bringing in new customers,” said Rahul Singhvi, Sc.D, Chief Executive Officer of Resilience. “These locations will serve as hubs for the future of biopharma manufacturing, leading the way and shaping the future of Resilience.”

As part of its agreement with Sanofi, Resilience will continue to manufacture a marketed product at the Boston location. The facility plan includes a build out to facilitate multi-modality manufacturing and state-of-the-art quality laboratories to ensure safe, reliable supply to patients. The facility itself is certified ISO 14001 (Environmental management system), OSHAS 18001 (Health & safety management system) and ISO 50001 (Energy management system).​

This is currently the largest of several facilities in Resilience’s growing biologics and advanced therapeutics manufacturing network, with plans to acquire and develop other sites in the U.S. this year. The facility offers 24/7/365 production, multiple 2000L bioreactors capacity and multiple downstream processing trains, with investment in additional capabilities to come.

Our state-of-the-art flexible facility in Mississauga, Ontario, provides upstream, downstream and aseptic fill finish, and is designed to comply with cGMP. The plant has been inspected and approved by multiple regulatory bodies, and handles development and commercialized products.

About Resilience

Resilience (National Resilience, Inc.) is a first-of-its-kind manufacturing and technology company dedicated to broadening access to complex medicines and protecting biopharmaceutical supply chains against disruption. Founded in 2020, the company is building a sustainable network of high-tech, end-to-end manufacturing solutions to ensure the medicines of today and tomorrow can be made quickly, safely, and at scale. Resilience offers the highest quality and regulatory capabilities, and flexible and adaptive facilities to serve partners of all sizes. By continuously advancing the science of biopharmaceutical manufacturing and development, Resilience frees partners to focus on the discoveries that improve patients’ lives.

For more information, visit www.Resilience.com.

Contacts

Ryan Flinn
Head of Communications
Ryan.flinn@Resilience.com
510-207-7616

Read Full Post »

Life-changing surgical blade technology to enhance patient healing

Reporter: Irina Robu, PhD

Entrepix Medical, a US based start-up specializes in applying nano-polishing technology introduced a new life-changing surgical blade technology considered to advance patient healing. The start-up claims its Planatome technology which applies a patented nano-polishing process to erase manufacturing defects found on standard scalpels and gives the surgical instruments an ultra-smooth and consistent cutting surface.

According to Entrepix Medical, their surgical blade technology improves pos-procedures outcome including faster healing, increase wound strength, minimizes chances of infections, less pain, less scaring and reduced nerve damage.  Their studies have shown wound closure rates from incisions made using Planatome technology can be larger than 90 percent after 24 hours, compared to 10% attained by traditional scalpels.

Entrepix Medical studies show that nerves incised with a Planatome blade demonstrated 25% recovery five weeks after surgery, while a nerve cut with a standard scalpel showed a 9% recovery and after 12 weeks, the nerves incised with a Planatome blade showed a 92% recovery.

Planatome Technology by Entrepix Medical reevaluates surgical potentials for both the surgeon and patient by familiarizing the most advanced nano-polishing technology used in microchip manufacturing and applying it to surgical instruments. A Planatome blade is the only surgical instrument of its kind that provides the atomic level precision and consistency required to minimize these possible difficulties.

SOURCE

https://www.nsmedicaldevices.com/news/entrepix-medical-planatome

Read Full Post »

Older Posts »