Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
Article SELECTION from Collection of Aviva Lev-Ari, PhD, RN Scientific Articles on PULSE on LinkedIn.com for Training Small Language Models (SLMs) in Domain-aware Content of Medical, Pharmaceutical, Life Sciences and Healthcare by 15 Subjects Matter
Article selection: Aviva Lev-Ari, PhD, RN
#1 – February 20, 2016
Contributions to Personalized and Precision Medicine & Genomic Research
Tailored Hope: Personalized Gene Therapy Makes History
Curator: Dr. Sudipta Saha, Ph. D.
A groundbreaking milestone in precision medicine has been achieved by researchers supported by the National Institutes of Health (NIH), USA where a personalized gene therapy was successfully administered to an infant diagnosed with a rare and fatal genetic disorder. This therapy was developed and delivered under the NIH’s Bespoke Gene Therapy Consortium (BGTC), which focuses on accelerating gene therapy solutions for ultra-rare conditions.
The child, who had been diagnosed with a previously untreatable condition caused by mutations in the TBCK gene, was treated with a customized adeno-associated viral (AAV) vector designed specifically to address the individual’s unique mutation. This approach was enabled by rapid sequencing, vector engineering, preclinical safety testing, and regulatory approvals—all expedited within a year of diagnosis.
The therapeutic gene was administered through a single intravenous infusion. Post-treatment observations indicated stabilization in disease progression and improvement in neurological function, though ongoing monitoring is being conducted to assess long-term outcomes.
This personalized treatment was made possible by the integration of genomic diagnostics, advanced vector design, and regulatory science, marking a transformative moment in paediatric precision medicine. Ethical considerations and close family collaboration were emphasized throughout the process.
The case has highlighted the promise of tailored gene therapies for diseases too rare to be addressed by conventional clinical trials. By establishing a streamlined pathway, the NIH aims to extend this model to more patients globally.
Unlocking the Secrets of Longevity: A 117-Year-Old Woman’s Genes Defied Aging
Curator: Dr. Sudipta Saha, Ph.D.
A recent study led by the University of Barcelona has shed light on the genetic factors contributing to exceptional human longevity. The research focused on Maria Branyas Morera, who was recognized as the world’s oldest living person until her passing at age 117 in August 2024. The findings revealed that her unique genetic makeup allowed her cells to function as if they were 17 years younger, and her gut microbiota resembled that of an infant.
Branyas Morera attributed her remarkable lifespan to “luck and good genetics.” Beyond her genetic advantages, she maintained a healthy lifestyle characterized by a Mediterranean diet, regular physical activity, and strong family bonds. These factors likely contributed to her prolonged cognitive clarity and minimal health issues, primarily limited to joint pain and hearing loss.
This study adds to a growing body of research exploring the genetic foundations of longevity. For instance, the Okinawa Centenarian Study has examined over 600 centenarians from Okinawa, Japan, uncovering genetic markers associated with extended lifespan and reduced incidence of age-related diseases.
Similarly, the New England Centenarian Study has identified specific genetic variations linked to longevity, providing insights into the biological mechanisms that allow some individuals to live significantly longer than average.
Researchers hope that understanding these genetic factors can inform the development of treatments for age-related diseases, challenging the notion that aging and illness are inextricably linked. By studying individuals like Branyas Morera, scientists aim to uncover strategies to promote healthier aging across the broader population.
However, it’s important to note that while genetics play a crucial role in exceptional longevity, lifestyle factors such as diet, exercise, and social connections also significantly impact overall health and lifespan. The interplay between genetic predisposition and environmental influences continues to be a critical area of research in understanding human aging.
Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use
In this curation we wish to present two breaking through goals:
Goal 1:
Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer
Goal 2:
Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.
According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.
These eight subcellular pathologies can’t be measured at present time.
In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.
Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases
Glycation
Oxidative Stress
Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
Membrane instability
Inflammation in the gut [mucin layer and tight junctions]
Epigenetics/Methylation
Autophagy [AMPKbeta1 improvement in health span]
Diseases that are not Diseases: no drugs for them, only diet modification will help
Image source
Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease
These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:
Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL
In the Bioelecronics domain we are inspired by the work of the following three research sources:
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC
PENDING
THE VOICE of Stephen J. Williams, PhD
Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes
25% of US children have fatty liver
Type II diabetes can be manifested from fatty live with 151 million people worldwide affected moving up to 568 million in 7 years
A common myth is diabetes due to overweight condition driving the metabolic disease
There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
Thirty percent of ‘obese’ people just have high subcutaneous fat. the visceral fat is more problematic
there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects. Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
At any BMI some patients are insulin sensitive while some resistant
Visceral fat accumulation may be more due to chronic stress condition
Fructose can decrease liver mitochondrial function
A methionine and choline deficient diet can lead to rapid NASH development
Infertility has been primarily treated as a female predicament but around one-half of infertility cases can be tracked to male factors. Clinically, male infertility is typically determined using measures of semen quality recommended by World Health Organization (WHO). A major limitation, however, is that standard semen analyses are relatively poor predictors of reproductive capacity and success. Despite major advances in understanding the molecular and cellular functions in sperm over the last several decades, semen analyses remain the primary method to assess male fecundity and fertility.
Chronological age is a significant determinant of human fecundity and fertility. The disease burden of infertility is likely to continue to rise as parental age at the time of conception has been steadily increasing. While the emphasis has been on the effects of advanced maternal age on adverse reproductive and offspring health, new evidence suggests that, irrespective of maternal age, higher male age contributes to longer time-to-conception, poor pregnancy outcomes and adverse health of the offspring in later life. The effect of chronological age on the genomic landscape of DNA methylation is profound and likely occurs through the accumulation of maintenance errors of DNA methylation over the lifespan, which have been originally described as epigenetic drift.
In recent years, the strong relation between age and DNA methylation profiles has enabled the development of statistical models to estimate biological age in most somatic tissue via different epigenetic ‘clock’ metrics, such as DNA methylation age and epigenetic age acceleration, which describe the degree to which predicted biological age deviates from chronological age. In turn, these epigenetic clock metrics have emerged as novel biomarkers of a host of phenotypes such as allergy and asthma in children, early menopause, increased incidence of cancer types and cardiovascular-related diseases, frailty and cognitive decline in adults. They also display good predictive ability for cancer, cardiovascular and all-cause mortality.
Epigenetic clock metrics are powerful tools to better understand the aging process in somatic tissue as well as their associations with adverse disease outcomes and mortality. Only a few studies have constructed epigenetic clocks specific to male germ cells and only one study reported that smokers trended toward an increased epigenetic age compared to non-smokers. These results indicate that sperm epigenetic clocks hold promise as a novel biomarker for reproductive health and/or environmental exposures. However, the relation between sperm epigenetic clocks and reproductive outcomes has not been examined.
There is a critical need for new measures of male fecundity for assessing overall reproductive success among couples in the general population. Data shows that sperm epigenetic clocks may fulfill this need as a novel biomarker that predicts pregnancy success among couples not seeking fertility treatment. Such a summary measure of sperm biological age is of clinical importance as it allows couples in the general population to realize their probability of achieving pregnancy during natural intercourse, thereby informing and expediting potential infertility treatment decisions. With the ability to customize high throughput DNA methylation arrays and capture sequencing approaches, the integration of the epigenetic clocks as part of standard clinical care can enhance our understanding of idiopathic infertility and the paternal contribution to reproductive success and offspring health.
eProceedings for BIO 2019 International Convention, June 3-6, 2019 Philadelphia Convention Center; Philadelphia PA, Real Time Coverage by Stephen J. Williams, PhD @StephenJWillia2
CONFERENCE OVERVIEW
Real Time Coverage of BIO 2019 International Convention, June 3-6, 2019 Philadelphia Convention Center; Philadelphia PA
Reporter: Stephen J. Williams, PhD @StephenJWillia2
Real Time Coverage @BIOConvention #BIO2019: Machine Learning and Artificial Intelligence: Realizing Precision Medicine One Patient at a Time, 6/5/2019, Philadelphia PA
Real Time @BIOConvention #BIO2019:#Bitcoin Your Data! From Trusted Pharma Silos to Trustless Community-Owned Blockchain-Based Precision Medicine Data Trials, 6/5/2019, Philadelphia PA
Real Time Coverage @BIOConvention #BIO2019: June 4 Morning Sessions; Global Biotech Investment & Public-Private Partnerships, 6/4/2019, Philadelphia PA
Real Time Coverage @BIOConvention #BIO2019: Understanding the Voices of Patients: Unique Perspectives on Healthcare; June 4, 2019, 11:00 AM, Philadelphia PA
Real Time Coverage @BIOConvention #BIO2019: Issues of Risk and Reproduceability in Translational and Academic Collaboration; 2:30-4:00 June 3, 2019, Philadelphia PA
Real Time Coverage @BIOConvention #BIO2019: After Trump’s Drug Pricing Blueprint: What Happens Next? A View from Washington; June 3, 2019 1:00 PM, Philadelphia PA
The relationship between gut microbial metabolism and mental health is one of the most intriguing and controversial topics in microbiome research. Bidirectional microbiota–gut–brain communication has mostly been explored in animal models, with human research lagging behind. Large-scale metagenomics studies could facilitate the translational process, but their interpretation is hampered by a lack of dedicated reference databases and tools to study the microbial neuroactive potential.
Out of all the many ways, the teeming ecosystem of microbes in a person’s gut and other tissues might affect health. But, its potential influences on the brain may be the most provocative for research. Several studies in mice had indicated that gut microbes can affect behavior, and small scale studies on human beings suggested this microbial repertoire is altered in depression. Studies by two large European groups have found that several species of gut bacteria are missing in people with depression. The researchers can’t say whether the absence is a cause or an effect of the illness, but they showed that many gut bacteria could make substances that affect the nerve cell function—and maybe the mood.
Butyrate-producing Faecalibacterium and Coprococcus bacteria were consistently associated with higher quality of life indicators. Together with Dialister, Coprococcus spp. was also depleted in depression, even after correcting for the confounding effects of antidepressants. Two kinds of microbes, Coprococcus and Dialister, were missing from the microbiomes of the depressed subjects, but not from those with a high quality of life. The researchers also found the depressed people had an increase in bacteria implicated in Crohn disease, suggesting inflammation may be at fault.
Looking for something that could link microbes to mood, researchers compiled a list of 56 substances important for proper functioning of nervous system that gut microbes either produce or break down. They found, for example, that Coprococcus seems to have a pathway related to dopamine, a key brain signal involved in depression, although they have no evidence how this might protect against depression. The same microbe also makes an anti-inflammatory substance called butyrate, and increased inflammation is implicated in depression.
Still, it is very much unclear that how microbial compounds made in the gut might influence the brain. One possible channel is the vagus nerve, which links the gut and brain. Resolving the microbiome-brain connection might lead to novel therapies. Some physicians and companies are already exploring typical probiotics, oral bacterial supplements, for depression, although they don’t normally include the missing gut microbes identified in the new study.
Live 12:00 – 1:00 P.M Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : October 19, 2018
Reporter: Stephen J. Williams, Ph.D.
12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?
Prof. Antonino De Lorenzo, MD, PhD.
Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”
It is important to determine how our bodies interacts with the environment, such as absorption of nutrients.
Studies shown here show decrease in life expectancy of a high sugar diet, but the quality of the diet, not just the type of diet is important, especially the role of natural probiotics and phenolic compounds found in the Mediterranean diet.
The WHO report in 2005 discusses the unsustainability of nutrition deficiencies and suggest a proactive personalized and preventative/predictive approach of diet and health.
Most of the noncommunicable diseases like CV (46%) cancer 21% and 11% respiratory and 4% diabetes could be prevented and or cured with proper dietary approaches
Italy vs. the US diseases: in Italy most disease due to environmental contamination while US diet plays a major role
The issue we are facing in less than 10% of the Italian population (fruit, fibers, oils) are not getting the proper foods, diet and contributing to as we suggest 46% of the disease
The Food Paradox: 1.5 billion are obese; we notice we are eating less products of quality and most quality produce is going to waste;
growing BMI and junk food: our studies are correlating the junk food (pre-prepared) and global BMI
modern diet and impact of human health (junk food high in additives, salt) has impact on microflora
Western Diet and Addiction: We show a link (using brain scans) showing correlation of junk food, sugar cravings, and other addictive behaviors by affecting the dopamine signaling in the substantia nigra
developed a junk food calculator and a Mediterranean diet calculator
the intersection of culture, food is embedded in the Mediterranean diet; this is supported by dietary studies of two distinct rural Italian populations (one of these in the US) show decrease in diet
Impact of diet: have model in Germany how this diet can increase health and life expectancy
from 1950 to present day 2.7 unit increase in the diet index can increase life expectancy by 26%
so there is an inverse relationship with our index and breast cancer
Environment and metal contamination and glyphosate: contribution to disease and impact of maintaining the healthy diet
huge problem with use of pesticides and increase in celiac disease
Cancer as a disease of the environment. Weinberg’s hallmarks of Cancer reveal how environment and epigenetics can impact any of these hallmarks.
Epigenetic effects
gene gatekeepers (Rb and P53)
DNA repair and damage stabilization
Heavy Metals and Dioxins:( alterations of the immune system as well as epigenetic regulations)
Asbestos and Mesothelioma: they have demonstrated that p53 can be involved in development of mesothelioma as reactivating p53 may be a suitable strategy for therapy
Diet, Tomato and Cancer
looked at tomato extract on p53 function in gastric cancer: tomato extract had a growth reduction effect and altered cell cycle regulation and results in apoptosis
RBL2 levels are increased in extract amount dependent manner so data shows effect of certain tomato extracts of the southern italian tomato ( )
Antonio Giordano: we tested whole extracts of almost 30 different varieties of tomato. The tomato variety with highest activity was near Ravela however black tomatoes have shown high antitumor activity. We have done a followup studies showing that these varieties, if grow elsewhere lose their antitumor activity after two or three generations of breeding, even though there genetics are similar. We are also studying the effects of different styles of cooking of these tomatoes and if it reduces antitumor effect
Decline in Sperm Count – Epigenetics, Well-being and the Significance for Population Evolution and Demography
Dr. Marc Feldman, Expert Opinion on the significance of Sperm Count Decline on the Future of Population Evolution and Demography
Dr. Sudipta Saha, Effects of Sperm Quality and Quantity on Human Reproduction
Dr. Aviva Lev-Ari, Psycho-Social Effects of Poverty, Unemployment and Epigenetics on Male Well-being, Physiological Conditions affecting Sperm Quality and Quantity
Updated on 10/6/2022
There Are Two Americas Now: One With a B.A. and One Without’
Carol Graham, a senior fellow at Brookings, described the erosion of economic and social status for whites without college degrees in a 2021 paper:
From 2005 to 2019, an average of 70,000 Americans died annually from deaths of despair (suicide, drug overdose, and alcohol poisoning). These deaths are concentrated among less than college educated middle-aged whites, with those out of the labor force disproportionately represented. Low-income minorities are significantly more optimistic than whites and much less likely to die of these deaths. This despair reflects the decline of the white working class. Counties with more respondents reporting lost hope in the years before 2016 were more likely to vote for Trump.
A 2010 Pew Research Center study that examined the effects of the Great Recession on Black and white Americans reported that Black Americans consistently suffered more in terms of unemployment, work cutbacks and other measures, but remained far more optimistic about the future than whites. Twice as many Black as white Americans were forced during the 2008 recession to work fewer hours, to take unpaid leave or switch to part-time, and Black unemployment rose from 8.9 to 15.5 percent from April 2007 to April 2009, compared with an increase from 3.7 to 8 percent for whites.
Despite experiencing more hardship, 81 percent of Black Americans agreed with the statement “America will always continue to be prosperous and make economic progress,” compared with 59 percent of whites; 45 percent of Black Americans said the country was still in recession compared with 57 percent of whites
In “Trends in Extreme Distress in the United States, 1993-2019,” David G. Blanchflower and Andrew J. Oswald, economists at Dartmouth and the University of Warwick in Britain, note that “the proportion of the U.S. population in extreme distress rose from 3.6 percent in 1993 to 6.4 percent in 2019. Among low-education midlife white persons, the percentage more than doubled, from 4.8 percent to 11.5 percent.”
In her 2020 paper, “Trends in U.S. Working-Age Non-Hispanic White Mortality: Rural-Urban and Within-Rural Differences,” Shannon M. Monnat, a professor of sociology at Syracuse University’s Maxwell School, explained that “between 1990-92 and 2016-18, the mortality rates among non-Hispanic whites increased by 9.6 deaths per 100,000 population among metro males and 30.5 among metro females but increased by 70.1 and 65.0 among nonmetro (rural and exurban) males and females, respectively.”
Three economists, David Autor, David Dorn and Gordon Hanson of M.I.T., the University of Zurich and Harvard, reported in their 2018 paper, “When Work Disappears: Manufacturing Decline and the Falling Marriage Market Value of Young Men,” on the debilitating consequences for working-class men of the “China shock”
There is some evidence that partisanship correlates with mortality rates.
Anne Case wrote in her email, that the United States is fast approaching a point where
Education divides everything, including connection to the labor market, marriage, connection to institutions (like organized religion), physical and mental health, and mortality. It does so for whites, Blacks and Hispanics. There has been a profound (not yet complete) convergence in life expectancy by education. There are two Americas now: one with a B.A. and one without.
Aside from the decline in sperm counts, growing numbers of sperm appear defective — there’s a boom in two-headed sperm — while others loll aimlessly in circles, rather than furiously swimming in pursuit of an egg. And infants who have had greater exposures to a kind of endocrine disruptor called phthalates have smaller penises, Swan found.
Recent studies concluded via rigorous and comprehensive analysis found that Sperm Count (SC) declined 52.4% between 1973 and 2011 among unselected men from western countries, with no evidence of a ‘leveling off’ in recent years. Declining mean SC implies that an increasing proportion of men have sperm counts below any given threshold for sub-fertility or infertility. The high proportion of men from western countries with concentration below 40 million/ml is particularly concerning given the evidence that SC below this threshold is associated with a decreased monthly probability of conception.
1.Temporal trends in sperm count: a systematic review and meta-regression analysis
Hagai Levine, Niels Jørgensen, Anderson Martino‐Andrade, Jaime Mendiola, Dan Weksler-Derri, Irina Mindlis, Rachel Pinotti, Shanna H Swan. Human Reproduction Update, July 25, 2017, doi:10.1093/humupd/dmx022.
4. Long, mysterious strips of RNA contribute to low sperm count – Long non-coding RNAs can be added to the group of possible non-structural effects, possibly epigenetic, that might regulate sperm counts.
Thus, we postulated that some lncRNAs may also impact mammalian spermatogenesis and fertility. In this study, we identified a dynamic expression pattern of lncRNAs during murine spermatogenesis. Importantly, we identified a subset of lncRNAs and very few mRNAs that appear to escape meiotic sex chromosome inactivation (MSCI), an epigenetic process that leads to the silencing of the X- and Y-chromosomes at the pachytene stage of meiosis. Further, some of these lncRNAs and mRNAs show strong testis expression pattern suggesting that they may play key roles in spermatogenesis. Lastly, we generated a mouse knock out of one X-linked lncRNA, Tslrn1 (testis-specific long non-coding RNA 1), and found that males carrying a Tslrn1 deletion displayed normal fertility but a significant reduction in spermatozoa. Our findings demonstrate that dysregulation of specific mammalian lncRNAs is a novel mechanism of low sperm count or infertility, thus potentially providing new biomarkers and therapeutic strategies.
This article presents two perspectives on the potential effects of Sperm Count decline.
One Perspective identifies Epigenetics and male well-being conditions
as a potential explanation to the Sperm Count decline, and
as evidence for decline in White male longevity in certain geographies in the US since the mid 80s.
The other Perspective, evaluates if Sperm Count Decline would have or would not have a significant long term effects on Population Evolution and Demography.
The Voice of Prof. Marc Feldman, Stanford University – Long term significance of Sperm Count Decline on Population Evolution and Demography
Poor sperm count appears to be associated with such demographic statistics as life expectancy (1), infertility (2), and morbidity (3,4). The meta-analysis by Levine et al. (5) focuses on the change in sperm count of men from North America, Europe, Australia, and New Zealand, and shows a more than 50% decline between 1973 and 2011. Although there is no analysis of potential environmental or lifestyle factors that could contribute to the estimated decline in sperm count, Levine et al. speculate that this decline could be a signal for other negative changes in men’s health.
Because this study focuses mainly on Western men, this remarkable decline in sperm count is difficult to associate with any change in actual fertility, that is, number of children born per woman. The total fertility rate in Europe, especially Italy, Spain, and Germany, has slowly declined, but age at first marriage has increased at the same time, and this increase may be more due to economic factors than physiological changes.
Included in Levine et al.’s analysis was a set of data from “Other” countries from South America, Asia, and Africa. Sperm count in men from these countries did not show significant trends, which is interesting because there have been strong fertility declines in Asia and Africa over the same period, with corresponding increases in life expectancy (once HIV is accounted for).
What can we say about the evolutionary consequences for humans of this decrease? The answer depends on the minimal number of sperm/ml/year that would be required to maintain fertility (per woman) at replacement level, say 2.1 children, over a woman’s lifetime. Given the smaller number of ova produced per woman, a change in the ovulation statistics of women would be likely to play a larger role in the total fertility rate than the number of sperm/ejaculate/man. In other words, sperm count alone, absent other effects on mortality during male reproductive years, is unlikely to tell us much about human evolution.
Further, the major declines in fertility over the 38-year period covered by Levine et al. occurred in China, India, and Japan. Chinese fertility has declined to less than 1.5 children per woman, and in Japan it has also been well below 1.5 for some time. These declines have been due to national policies and economic changes, and are therefore unlikely to signal genetic changes that would have evolutionary ramifications. It is more likely that cultural changes will continue to be the main drivers of fertility change.
The fastest growing human populations are in the Muslim world, where fertility control is not nearly as widely practiced as in the West or Asia. If this pattern were to continue for a few more generations, the cultural evolutionary impact would swamp any effects of potentially declining sperm count.
On the other hand, if the decline in sperm count were to be discovered to be associated with genetic and/or epigenetic phenotypic effects on fetuses, newborns, or pre-reproductive humans, for example, due to stress or obesity, then there would be cause to worry about long-term evolutionary problems. As Levine et al. remark, “decline in sperm count might be considered as a ‘canary in the coal mine’ for male health across the lifespan”. But to date, there is little evidence that the evolutionary trajectory of humans constitutes such a “coal mine”.
References
Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. 2009. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol 170: 559-565.
Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, Lipshultz LI. 2014. Semen quality, infertility and mortality in the USA. Hum Reprod 29: 1567-1574.
Eisenberg ML, Li S, Cullen MR, Baker LC. 2016. Increased risk of incident chronic medical conditions in infertile men: analysis of United States claims data. Fertil Steril 105: 629-636.
Latif T, Kold Jensen T, Mehlsen J, Holmboe SA, Brinth L, Pors K, Skouby SO, Jorgensen N, Lindahl-Jacobsen R. Semen quality is a predictor of subsequent morbidity. A Danish cohort study of 4,712 men with long-term follow-up. Am J Epidemiol. Doi: 10.1093/aje/kwx067. (Epub ahead of print]
Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, Pinotti R, Swan SH. 2017. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update pp. 1-14. Doi: 10.1093/humupd/dmx022.
Psycho-Social Effects of Poverty, Unemployment and Epigenetics on Male Well-being, Physiological Conditions as POTENTIAL effects on Sperm Quality and Quantity and Evidence of its effects on Male Longevity
The IMPACT of Well-being, Stress induced by Worry, Pain, Perception of Hope related to Employment and Lack of employment on deterioration of Physiological Conditions as evidence by Decrease Longevity
In recent work based on our well-being metrics in the Gallup polls and on the mortality data from the Centers for Disease Control and Prevention, we find a robust association between lack of hope (and high levels of worry) among poor whites and the premature mortality rates, both at the individual and metropolitan statistical area (MSA) levels. Yet we also find important differences across places. Places come with different economic structures and identities, community traits, physical environments and much more. In the maps below, we provide a visual picture of the differences in in hope for the future, worry, and pain across race-income cohorts across U.S. states. We attempted to isolate the specific role of place, controlling for economic, socio-demographic, and other variables.
One surprise is the low level of optimism and high level of worry in the minority dense and generally “blue” state of California, and high levels of pain and worry in the equally minority dense and “blue” states of New York and Massachusetts. High levels of income inequality in these states may explain these patterns, as may the nature of jobs that poor minorities hold.
We cannot answer many questions at this point. What is it about the state of Washington, for example, that is so bad for minorities across the board? Why is Florida so much better for poor whites than it is for poor minorities? Why is Nevada “good” for poor white optimism but terrible for worry for the same group? One potential issue—which will enter into our future analysis—is racial segregation across places. We hope that the differences that we have found will provoke future exploration. Readers of this piece may have some contributions of their own as they click through the various maps, and we welcome their input. Better understanding the role of place in the “crisis” of despair facing our country is essential to finding viable solutions, as economic explanations, while important, alone are not enough.
There has been a genuine decline in semen quality over the past 50 years. There is lot of controversy about this as there are limitations in studies that have attempted to address it. Sperm count is of considerable public health importance for several reasons. First, sperm count is closely linked to male fecundity and is a crucial component of semen analysis, the first step to identify male factor infertility.
Reduced sperm count is associated with cryptorchidism, hypospadias and testicular cancer. It may be associated with multiple environmental influences, including endocrine disrupting chemicals, pesticides, heat and lifestyle factors, including diet, stress, smoking and BMI. Therefore, sperm count may sensitively reflect the impacts of the modern environment on male health throughout the life span.
This study provided a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group. Analyzing trends by birth cohorts instead of year of sample collection may aid in assessing the causes of the decline (prenatal or in adult life) but was not feasible owing to lack of information.
This rigorous and comprehensive analysis found that SC declined 52.4% between 1973 and 2011 among unselected men from western countries, with no evidence of a ‘leveling off’ in recent years. Declining mean SC implies that an increasing proportion of men have sperm counts below any given threshold for sub-fertility or infertility. The high proportion of men from western countries with concentration below 40 million/ml is particularly concerning given the evidence that SC below this threshold is associated with a decreased monthly probability of conception.
Declines in sperm count have implications beyond fertility and reproduction. The decline reported in this study is consistent with reported trends in other male reproductive health indicators, such as testicular germ cell tumors, cryptorchidism, onset of male puberty and total testosterone levels. The public health implications are even wider. Recent studies have shown that poor sperm count is associated with overall morbidity and mortality. While the current study is not designed to provide direct information on the causes of the observed declines, sperm count has been plausibly associated with multiple environmental (including unwanted chemical exposure in alarming levels) and lifestyle influences, both prenatally and in adult life. In particular, endocrine disruption from chemical exposures or maternal smoking during critical windows of male reproductive development may play a role in prenatal life, while lifestyle changes and exposure to pesticides may play a role in adult life.
These findings strongly suggest a significant decline in male reproductive health, which has serious implications beyond fertility concerns. Research on causes and implications of this decline is urgently needed.
REFERENCES
Temporal trends in sperm count: a systematic review and meta-regression analysis
Hagai Levine, Niels Jørgensen, Anderson Martino‐Andrade, Jaime Mendiola, Dan Weksler-Derri, Irina Mindlis, Rachel Pinotti, Shanna H Swan. Human Reproduction Update, July 25, 2017, doi:10.1093/humupd/dmx022.
Intake of Fruits and Vegetables with Low-to-Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men.