Feeds:
Posts
Comments

Archive for the ‘Biological Engineering’ Category

China is Making Large Inroads into Biotech: Is Investment Money Following? Is US Investment Money Following the China Biotech Boom?

Curator: Stephen J. Williams, Ph.D.

 

A common route for raising capital or exit strategy for many US biotechs has been strategic transfer or sale of intellectual property (IP) or strategic partnership with large pharmaceutical companies looking to acquire new biotechnologies or expand their own pipelines. Most US based biotechs had enjoyed a favorable (although not fully exclusive) deal-making environment with US pharmaceutical companies with some competition from international biotech companies.  US government agencies such as FINRA, CFIUS, and the SEC closely monitored such international deals and the regulatory environment for such international deal making in the biotechnology space was tight.

 

Smaller Chinese biotechs have operated in the United States (at various biotech hubs around the country) and have usually set up as either service entities to the biotech industry as contract research organizations (Wuxi AppTech), developing research reagents for biotech (Sino Biological) or conducting research for purposes of transferring IP to a parent company in China.  Most likely Chinese biotechs set up research operations because of the overabundance of biotech hubs in the United States, with a dearth of these innovation hubs in the China mainland.

 

However, as highlighted in the Next in Health Podcast Series from PriceWaterHouseCoopers (PwC), China has been rapidly been developing innovation hubs as well as biotech hubs.  And Chinese biotech companies are staying home in mainly China and exporting their IP to major US pharmaceutical companies.  As PwC notes this deal making between Chinese biotech in China and US pharmaceutical companies have rapidly expanded recently.

 

The following are notes from PriceWaterHouseCoopers (PwC) podcast entitled: Strategic Shifts: Navigating China’s Biotech Boom and Its Impact on US Pharma:

 

You can hear this podcast on YouTube at https://music.youtube.com/podcast/iguywci6oG0 

 

Tune in as Glenn Hunzinger, PwC’s Health Industries Leader and Roel van den Akker, PwC’s Pharma and Life Sciences Deals Leader discuss the rapid rise of China’s biotech industry and what it means for U.S. pharmaceutical companies. They discuss the evolving role of Chinese biotech in the global innovation landscape and share perspectives on how U.S. pharmaceutical companies can thoughtfully assess opportunities, manage cross-border complexities, and build effective partnering and diligence strategies.

 

 Discussion highlights:

 

  • China’s biotech industry is growing fast and becoming a global player, with U.S. companies increasingly looking to partner with Chinese firms on cutting-edge science
  • U.S. pharma leaders are encouraged to move beyond skepticism and stay curious by building relationships, learning from local innovation, and exploring new partnership opportunities
  • Successfully partnering with Chinese biotech firms requires a careful and well-structured approach that accounts for global complexity, protects data and IP, and uses creative deal structures like new company formations to manage risk and stay flexible
  • U.S. companies need to be proactive in order to stay competitive by actively exploring global innovation, understanding the risks, and having a clear strategy to bring high-potential science to U.S. patients

 

Speakers:

 

Roel Van den Akker, Pharmaceutical and Life Sciences Deals Leader 

 

Glenn Hunzinger, Partner, Health Industries Leader, PwC

 

Linked materials:

 

https://www.pwc.com/us/en/industries/health-industries/health-research-institute/next-in-health-podcast/strategic-shifts-navigating-chinas-biotech-boom-and-its-impact-on-us-pharma.html 

 

China’s rise as a biotech innovation hub: 4 key strategic questions for US biopharma executives 

 

For more information, please visit us at: https://www.pwc.com/us/en/industries/..

 

In 2019 there were zero in licensing deals from China to US pharma…. Today one in five come from China.  

  1. China evolved into a expanding economy because China invested in biotech companies
  2. Lots of skilled people
  3. Built centers that rivaled biotech innovation centers in places like  Boston, California Bay  Area, and Philadelphia

China has gone from low cost manufacturing country to an innovative economy with great science coming out of it. US pharma boardrooms need to understand this

 

The analysts at PWC suggest to look at Data integrity, IP protection and risks before bringing China biotech IP  in US.  It is imperative that companies do ample due  diligence.

 

China’s rise as a biotech innovation hub: 4 key strategic questions for US biopharma executives

May 08, 2025

Roel van den Akker; Partner, Pharmaceutical & Life Science Deals Leader, PwC

China’s biotech sector is evolving at breakneck speed — and the implications for US pharma are too significant to ignore. Over the past five years, China has transitioned from being a nice to watch market to a central pillar of global biopharma innovation. Today, one-third of in-licensed molecules at US pharma multinationals originate from China, up from virtually zero in 2019.

China’s biotech sector, however, is not monolithic or uniform. The ecosystem spans high-quality, globally competitive biotech hubs in cities like Hangzhou and Suzhou — home to companies producing first-in-class and novel innovations in ophthalmology, cardiovascular, and immunology — as well as a long tail of undercapitalized players where execution and capability gaps remain profound.

And now, Washington is paying attention, too. A recent report from the US National Security Commission on Emerging Biotechnology (NSCEB) highlighted China’s ambitions to dominate biotech as a “strategic priority” with dual-use implications across health and security. The report urges the US government and private sector to reassess dependencies and increase scrutiny of biotechnology partnerships abroad. For the US biopharma industry, this isn’t just a supply chain concern — it is a boardroom issue.

With the licensing market still skewed toward buyers, venture funding remaining depressed in China and IPO windows in Hong Kong slowly reopening, there is a compelling window for US companies to secure differentiated assets at relatively attractive terms. Speedy deal execution is increasingly important as the highest quality assets are being quickly scooped up. But navigating this terrain can require more than opportunism. It calls for deliberate strategy, structured governance and a nuanced geopolitical risk framework.

Here are four questions every US biopharma executive should be asking:

1. What is our posture toward preclinical and clinical science from China?

Are we approaching Chinese innovation with a default posture of skepticism or strategic curiosity? Many top-tier Chinese biotechs are now generating US-caliber data at the speed of light, particularly in therapeutic modalities such as mAbs, ADCs and T-cell engagers, but plenty still have execution gaps. Those that elect to lean in will likely need a deliberate eco-system approach geared towards being the partner of choice and local brand building.

2. What does our China diligence playbook look like?

In light of national security concerns, companies need a China-specific diligence framework — one that goes beyond the science. This includes scrutiny around data integrity, IP protection, export controls, and cross border data sharing.

3. What is our plan post-licensing or acquisition?

Ownership is just the start. US companies need a clear strategy for globalizing China-origin assets — from IND transfers to FDA filing to commercial launch. In some cases, that may require reworking the preclinical package or rebuilding the CMC infrastructure entirely. Increasingly, US (or Europe)-based “Newcos” may serve as geopolitical firewalls.

4. How can we preserve agility amid regulatory and political volatility?

With rising US-China tensions and new export control proposals under review, companies must future-proof deal structures. This could include regional carveouts, US-only development rights, or milestone-gated commitments. The NSCEB report makes clear: passive engagement is no longer tenable.

Innovation strategy meets national interest

The trendlines are clear: China is not just a manufacturing hub — it is an increasingly important source of global biotech innovation. But sourcing innovation from China now sits at the intersection of science, strategy and security. US pharma and biopharma companies can no longer afford to treat China engagement as tactical. Those who adopt a deliberate, resilient and agile China strategy — grounded in scientific rigor and geopolitical realism — likely lead in tomorrow’s innovation race.

 

Source: https://www.pwc.com/us/en/industries/health-industries/library/china-biotech-sector.html 

 

US pharma bets big on China to snap up potential blockbuster drugs

By Sriparna Roy and Sneha S K

June 16, 202511:26 AM EDTUpdated June 16, 2025

A researcher prepares medicine at a laboratory in Nanjing University in Nanjing, Jiangsu province, April 29, 2011. REUTERS/Aly Song/File Photo Purchase Licensing Rights

, opens new tab

  • U.S. drugmakers turn to Chinese companies as they face patent expirations
  • Licensing deals accelerate while traditional mergers decline
  • Chinese biotechs are challenging Western peers, analysts say

June 16 (Reuters) – U.S. drugmakers are licensing molecules from China for potential new medicines at an accelerating pace, according to new data, betting they can turn upfront payments of as little as $80 million into multibillion-dollar treatments.

Through June, U.S. drugmakers have signed 14 deals potentially worth $18.3 billion to license drugs from China-based companies. That compares with just two such deals in the year-earlier period, according to data from GlobalData provided exclusively to Reuters.

 

How to stop the shift of drug discovery from the U.S. to China. The FDA must make it easier to do such work in the U.S.

Scott GottliebMay 6, 2025

 

Five years ago, U.S. pharmaceutical companies didn’t license any new drugs from China. By 2024, one-third of their new compounds were coming from Chinese biotechnology firms.

Why are U.S. drugmakers sending their business to China? As in many other industries, it’s so much cheaper to synthesize new compounds inside Chinese biotechnology firms once a novel biological target has been discovered in American laboratories.

Yet the costs of developing new drugs in the U.S. needn’t be so high. They are driven up, in part, by increasing regulatory requirements that burden early-stage drug discovery in America. That’s especially true for Phase I clinical trials, in which drugs are tested in people for the first time.

Newsletter

The smartest thinkers in life sciences on what’s happening — and what’s to come

This shift of discovery work to China is going to accelerate if we don’t take deliberate steps to make it easier to do such work here in America. Yet the imperative to modernize early-stage drug development — to ensure that groundbreaking drug discovery remains in the U.S. rather than migrating to China — is colliding head-on with an impulse to slash the very government workforce capable of spearheading these reforms. These conflicting impulses have created a paradoxical tension: on one hand, the desire to stay competitive with China in biotechnology innovation, and on the other, a parallel campaign to reduce and in some cases dismantle the investments and institutions essential to achieving that goal.

In most cases, Chinese firms are not discovering new biological targets, nor are they crafting genuinely novel compounds to engage these targets through homegrown Chinese research. Instead, they piggyback on Western innovations by scouring U.S. patents, zeroing in on biological targets that are initially uncovered in American labs, and then developing “me too” drugs that replicate American-made compounds with only superficial tweaks, or producing “fast follower” drugs that capitalize on the original breakthroughs while refining key features to try to surpass U.S. innovation. Facing fewer regulations, the Chinese drugmakers can move more quickly than U.S. biotechnology companies — synthesizing copy-cat drugs based on our biological advances and then promptly moving these Chinese-made compounds into early-stage clinical trials, outpacing their American counterparts.

According to the investment bank Jefferies, large American drug companies spent more than $4.2 billion over the past year licensing or acquiring new compounds originally synthesized by Chinese firms. Many comprised advanced compounds such as antibody drugs and cell therapies — underscoring Chinese companies’ growing sophistication in adopting the latest American technologies. The cost of licensing these compounds from China, rather than synthesizing them in American labs, can be significantly lower. At a time when research funding in the U.S. is being cut, and research budgets are becoming painfully stretched, companies are looking to lower the cost of building their pipelines. In a fast-moving field such as oncology, this shift toward Chinese-synthesized compounds is particularly striking: I am told by someone inside the FDA process that nearly three-quarters of new small molecule cancer drugs submitted to the Food and Drug Administration for permission to begin U.S.-based clinical trials are initially made in China.

Usually, only a few months elapse between the moment a U.S. research team publishes a patent identifying a new biological target and when a biotechnology firm in China creates the corresponding drug that capitalizes on these findings. Because Chinese firms can synthesize new molecules at a fraction of the cost incurred by U.S. biotechnology companies — owing to a large and skilled but much cheaper workforce — they find the most intriguing biological targets pursued by Western researchers, rapidly churning out potent yet less expensive copycat molecules that they then market to Western companies.

A major challenge for U.S. firms is the long and costly process of obtaining FDA approval for Phase I studies, in which drugmakers test a new drug’s safety and tolerability in a small group of human volunteers. In China, launching this initial phase of clinical trials is far simpler, giving Chinese biotechnology companies a competitive advantage: By swiftly advancing their molecules into early-stage patient testing, Chinese firms can more readily determine which compounds hit their biological targets and show the greatest therapeutic promise. This allows the Chinese firms to quickly refine their molecules and then leapfrog their American counterparts, who are slowed by more cautious regulatory processes. While China’s regulatory process doesn’t uphold the patient safeguards that Americans rightly insist upon, the U.S. FDA could still streamline its path into early-stage drug development, bolstering America’s competitive edge without compromising patient safety.

In the U.S., one of the costliest early hurdles is the exhaustive animal testing that the FDA requires before a drug can be advanced into Phase I studies. These “pre-clinical” studies help safeguard patients, but the agency also uses this testing to weed out potential failures before a drug requires more intensive FDA scrutiny in later trials.

Over time, this regulatory framework has frontloaded a significant share of costs to the earliest phases of drug development, when biotechnology startups are often running on shoestring budgets, lack clinical data to attract investors, and can least afford delays. One measure of the increasing difficulty in securing the FDA’s permission for Phase I trials is the growing number of U.S. drugmakers who take compounds discovered on American soil and conduct these clinical trials in other Western markets, where they can obtain data more quickly and inexpensively before bringing it back to the FDA. One popular locale is Australia, where costs run about 60% lower than U.S.-based clinical trials, largely because the Australian government offers tax incentives to attract this kind of biomedical investment.

Many animal studies address esoteric questions about a drug’s long-term effects on parameters that may not be relevant to its eventual use — for example, at doses and durations of use that may be far beyond how patients will ultimately use the drug. The FDA’s preclinical testing protocols sometimes require American researchers to administer new compounds to animals at levels up to 500 times higher than any intended dose for patients, aiming for maximum animal exposure before human trials can begin. Where the FDA needs to screen for certain remote risks, many animal studies could be safely deferred until human trials confirm that a drug may benefit patients. At that point, it becomes easier for biotechnology companies to raise capital to fund these pro forma testing efforts.

To modernize the process, the FDA could tap into the wealth of data from existing drugs to establish a more phased approach to these requirements, where the amount of initial animal testing is more closely matched to a drug’s novelty and a better estimation of its perceived risks. It’s a prime opportunity to employ artificial intelligence — mining current data and extrapolating known information to newly discovered molecules. For new molecules that share structural similarities with established drugs, where a robust body of safety information already exists (and the likelihood of uncovering novel risks is judged to be minimal), some animal studies might simply be unnecessary. To establish a graduated approach to the scope of pre-clinical toxicology studies that the FDA requires for new molecules, Congress could revise the agency’s statutory framework, explicitly empowering it to adopt such flexible standards. It would also require targeted investments, enabling the FDA to craft the necessary tools and protocols to implement these refined methodologies.

Mice and even primates are often poor proxies for many of the remote toxicities the FDA is trying to test for, anyway. The agency can also make a more concerted effort to adopt advanced technologies, like pieces of human organs embedded in chips that can be used to test for remote dangers a drug may pose to specific organs like the heart and liver. These tools can reliably screen for risks at a fraction of the time and cost. FDA Commissioner Marty Makary recently announced his intention to pursue a plan that would phase out animal studies in the preclinical evaluation of antibody drugs, shifting instead toward innovative technologies that assess toxicology without relying on live animals. This positive step requires the FDA to invest in new capabilities, and scientific staff that possess expertise in these novel domains.

But right now, that investment seems unlikely. The size and scientific scope of the FDA staff responsible for reviewing early-stage drug development — and evaluating data collected from animal studies — has failed to keep up with the increasing complexity and sheer volume of applications flooding into the agency to launch Phase I clinical trials. Now, the FDA has made deep staffing cuts, prompted by DOGE, that have specifically targeted scientific teams that would lead these essential reforms.

Adding to these woes, morale at the FDA has declined so markedly that many foresee a wave of voluntary resignations among clinical reviewers. By thinning the ranks of experts who tackle novel scientific questions and resolve issues that span across different drug development programs — especially the elimination of the policy office within the FDA’s Office of New Drugs, which adjudicated these kinds of cross-cutting scientific questions — the government has impeded the early dialogue with drug developers that often results in streamlining requirements for Phase I studies. Even more challenging, it weakens the staff’s ability to develop new guidance documents and put better review practices into place — reforms essential for lasting improvements to the preclinical review process.

Instead of strengthening America’s biotechnology ecosystem, such measures risk accelerating the migration of discovery activities to China, undermining innovation at home. When U.S. drugmakers license compounds from China, they divert funds that might otherwise bolster innovation hubs such as Boston’s Kendall Square or North Carolina’s Research Triangle. The U.S. biotechnology industry was the world’s envy, but if we’re not careful, every drug could be made in China.

Scott Gottlieb, M.D., is a senior fellow at the American Enterprise Institute and served as commissioner of the Food and Drug Administration from 2017 to 2019. He is a partner at the venture capital firm New Enterprise Associates and serves on the boards of directors of Pfizer Inc. and Illumina.

From FierceBiotech: US Biotech Companies are finding that foreign investments may put them in a precarious position for government funding

Source: https://www.fiercebiotech.com/biotech/us-appears-be-terminating-grants-biotechs-investors-certain-countries 

 

By Gabrielle Masson  Jun 18, 2025 11:50am

 

By Gabrielle Masson  Jun 18, 2025

The Department of Health and Human Services is allegedly denying clinical trial funding for biotechs based on their ties to certain foreign investors, Fierce Biotech has learned.

At the BIO conference in Boston this week, Fierce spoke with a biotech executive who had their grant pulled, as well as an industry thought leader who backed up the claims about a change in the HHS’ funding approach.

“We’re in a situation where some of the companies are confused about their ability to take foreign investment,” said John Stanford, founder and executive director of Incubate, a nonprofit organization of biotech venture capital firms and patient advocacy groups designed to educate policymakers on life science investment and innovation.

“We’ve been hearing about SBIR grants canceled,” Stanford told Fierce in a separate interview at BIO. “Anecdotally, we’ve also heard it’s a lot more than China and it’s countries—Canada, Norway, the EU—that traditionally we think of as allies.”

“Again, that’s anecdotal,” he stressed. “But we would be very concerned [about] the idea that we won’t take Canadian investments or Japanese investments or EU-based investments.”

“We want foreign investors coming to U.S.-based companies to develop drugs for the world,” Stanford said. “That is a win-win-win.”

Back in February, President Donald Trump issued a memorandum titled the “America First Investment Policy” that aims to restrict both inbound and outbound investments related to “foreign adversaries” in certain strategic industries. The document lacks specifics but puts China front and center while mentioning both healthcare and biotech among the sectors it will regulate.

And the investment analysis firm Jeffries noted that

 

Looking at financial data from FactSet, Jefferies analysts found biotech funding in May 2025 was down 57%, to just over $2.7 billion, compared to the same time last year. That sum was only slightly better than the nearly $2.6 billion raised in April — the worst haul in three years — and was also 44% lower than the average seen across the past 12 months.

 

Source: https://www.biopharmadive.com/news/biotech-funding-trump-policy-ipo-venture-pipe/749784/ 

 

But according to other Jeffries analysis biotech investment is not diminishing but realigning and maybe going international:

 

From Health Tech World: https://www.htworld.co.uk/insight/opinion/biotech-investment-isnt-shrinking-its-smarter-fn25/ 

Today, total capital remains relatively steady, but it’s flowing differently.

Fewer companies are commanding a greater share of investment, and a new global map of biotech leadership is emerging—one where Israel, Italy, Korea, Saudi Arabia, and NAME are not just participants but strategic innovators and investors in the space.

While some correction was inevitable after the pandemic’s urgency subsided, the sector’s foundation had already changed.

CROs didn’t scale down; they doubled down, offering sponsors the flexibility to develop therapies without taking on the full weight of manufacturing and trials in-house.

This shift underpinned a new era of capital efficiency and strategic outsourcing, which is strongly influenced by new smart technologies that generate code and content at a blink of an eye and refine research protocols.

Selective but Strong: The New Capital Math

After the surge of 2020–2021, a funding correction began in late 2022.

According to Jefferies, biotech funding in May 2025 was down 57 per cent year-over-year, dropping to roughly $2.7 billion.

Public markets also cooled. In 2023, biotech IPOs hit their lowest numbers in a decade, and follow-on offerings became increasingly rare.

This deceleration prompted talk of a “biotech winter.” Yet key indicators suggest a market in transition rather than decline. Private equity and venture capital remain active but are more selective.

While early-stage companies face greater hurdles, late-stage biotechs and those with de-risked clinical programs continue to attract significant funding.

Follow the Late-Stage Money

A recent GlobalData report underscores this trend: late-stage biotech companies now receive nearly double the capital of their earlier-stage counterparts.

Median venture rounds for Phase III companies have climbed to $62.5 million, as investors increasingly prioritise assets with regulatory clarity and near-term commercialisation potential.

The post-COVID period has revealed an important funding shift: fewer biotech companies are securing a larger percentage of available capital.

In an environment of macroeconomic uncertainty, geopolitical risk, and rising interest rates, investors are retreating from speculative bets and doubling down on known quantities.

From Gemini: Is US biotech investment going overseas in 2025? Plot in a bar graph the US biotech investment versus worldwide biotech investment by country

Is US biotech investment going overseas in 2025? Plot in a bar graph the US biotech investment versus worldwide biotech investment by country

Yes the US has many more venture capital  firms focused on Biotech investment but it is appearing that investment is not staying in the US.

The global biotech funding landscape in 2023: U.S. leads while Europe and China make strides

Earth planet inside DNA molecule. Elements of this image are furnished by NASA

[Image courtesy of Sergey Nivens/Adobe Stock]

In 2023, the U.S. continued to demonstrate its position as the biotech funding leader, commanding over one-third, 35%, of the global investment in the sector. Overall, U.S. biotech firms attracted $56.79 billion in funding, according to a survey of Crunchbase data. Next in line was China, which contributed about 12.7% to the global funding pool, or $20.61 billion. Up next was Europe, which secured more than $11.46 billion and representing more than 7% of the worldwide funding. 

While U.S. leads in total biotech funding, Chinese biotech companies, on average, saw larger funding rounds than either Europe or the U.S. The average funding size per company in China was roughly three times larger than that in the U.S. and six times larger than the average in Europe.

But while China-based companies had larger hauls, they were comparatively few. Chinese biotech secured in cumulative $20.61 billion among just 69 firms, with roughly $299 million in funding per company on average. Meanwhile, the 229 European biotech firms that won funding in the past year attracted $11.46 billion in funding, averaging $50 million each. In comparison, the 583 U.S. biotech companies with recent funding attracted $56.79 billion, averaging $97 million per company.

The map below represents the total biotech funding amount in USD across the globe. Funding amounts are shaded based on companies’ cumulative funding totals and density. Darker shades indicate higher funding amounts and density, with the U.S. hubs on the East and West Coasts showing the darkest shade, reflecting the combination of total funding and density.

The Chinese Biotech Market is expected to grow to over 800 million in 2025. This is on the heels of phenomenal growth from 2013, where almost a ten fold increase in market size growth has been seen from 2013 to 2025. Source: https://www.franklintempleton.co.uk/articles/2025/clearbridge-investments/china-emerging-as-a-global-biotechnology-player

 

Size of the US Biotech Market is expected to grow from half a billion in 2023 to 1.7 trillion in 2033. Source novaoneadvisor.com

 

Biotech investment trends in the US for 2025 present a complex picture. While some reports indicate a general slowdown in venture funding for biotech startups and concerns about tariff impacts, other sources suggest resilience within the sector, with strong revenue growth for public biotech companies in both the US and Europe in 2024, expected to continue into 2025. Additionally, there are calls for significant investment within the US to maintain its leadership in biotechnology. Therefore, it is not definitively clear that US biotech investment is predominantly going overseas in 2025, but rather navigating a challenging and evolving landscape.

Regarding US biotech investment versus worldwide biotech investment by country, here is a bar graph of key biotech investment moves in 2025 based on available data. Please note that this data reflects “key moves” in biotech funding for 2025 as reported by Labiotech, and a comprehensive worldwide investment breakdown for all countries was not available.

From Franklin Templeton: China is Emerging as a Global Biotechnology Player

See Source for more: https://www.franklintempleton.co.uk/articles/2025/clearbridge-investments/china-emerging-as-a-global-biotechnology-player 

The combined value of China’s outside licensing deals reached around US$46 billion in 2024, up from US$38 billion in 2023 and US$28 billion in 2022, according to data provider NextPharma. Meanwhile, the number of global companies licensing into China has decreased across the same period. These tailwinds have helped China expand its share of global drug development to nearly 30% compared to 48% for the United States, according to data provider Citeline. Strong IP protection has positioned China to receive global investment, with a 2024 policy encouraging more IP collaboration between global and Chinese companies. US investment bank Stifel projects that molecules licensed by large pharmaceutical firms from China will increase to 37% in 2025. This shift has been largely driven by US companies seeking cheaper drug development alternatives and has led to R&D spending in China outpacing that of the United States.

A Closer Look at the Financials and Comparison between China and US Biotech Investment Trends

This rapid growth of Chinese biopharma was predictable back in 2018 as this article from an investment newsletter suggests:

China’s Biopharma Industry: Market Prospects, Investment Paths

Source: https://www.china-briefing.com/news/china-booming-biopharmaceuticals-market-innovation-investment-opportunities/ 

November 10, 2022Posted by China BriefingWritten by Yi WuReading Time:  5 minutes

Biopharma, short for biopharmaceuticals, are medical products produced using biotechnology (or biotech). Typical biopharma products include pharmaceuticals generated from living organisms, vaccines, gene therapy, etc.

An important subsector of biotech, China’s biopharma industry has much attention home and abroad, especially after Chinese companies developed multiple COVID-19 vaccines now in wide circulation. Market capitalization of Chinese biopharma companies grew to over US$200 billion in 2020 from US$1 billion in 2016.

With China’s rapidly aging population and a growing affluent middle-class, the country’s biopharma industry presents challenging but compelling opportunities to investors.

In this article, we discuss the market size, growth drivers, and global competition facing China’s biopharma industry and suggest potential investment paths.

How big is China’s biopharma market?

Biopharmaceuticals in China is a lucrative business, with significant domestic demand due to an aging population and expanding household budgets for quality products and services as people’s living standards improve.

China’s healthcare market is predicted to expand from around US$900 billion (RMB 6.47 trillion) in 2019 to US$2.3 trillion (RMB 16.53 trillion) in 2030, and its market size is second to only the US. China’s total expenditure on healthcare as a component of its GDP increased to 5.35 percent in 2019 from 4.23 percent in 2010.

Specifically to the biopharma industry, the market size will likely grow from RMB 345.7 billion (US$47.60 billion) in 2020 to RMB 811.6 billion (US$111.76 billion) in 2025, an 135 percent increase in five years. Similarly, market capitalization of Chinese biopharma companies grew from US$1 billion in 2016 to over US$200 billion in 2020. From 2010 to 2020, 141 new drug and biotech companies were launched in China, doubling from the previous decade.

What are the growth drivers for China’s biopharma industry?

The broader biotech sector is a main focus of the Chinese government’s “Made in China 2025” strategy. The country needs a steady biopharmaceutical industry to address its healthcare needs and to build an internationally competitive and innovative pharmaceutical industry as part of wider economic restructuring. Under the same momentum, on January 30, 2022, nine agencies jointly issued the “14th Five-year Plan for the Development of the Pharmaceuticals Industry” as a guiding document that clarifies the goals and directions for China’s pharmaceutical industry development in the next five years.

Now let’s compare the size of the US biotech market: You can see the US biotech valuation is now similar to the estimated market capitalization of the China market.

 

The U.S. biotechnology market size was valued at USD 621.55 billion in 2024 and is projected to reach USD 1,794.11 billion by 2033, registering a CAGR of 12.5% from 2024 to 2033. Ongoing government initiatives are the key factors driving the growth of the market. Also, improving approval processes coupled with the favorable reimbursement policies can fuel market growth further.

Key Takeaways:

  •         DNA sequencing dominated this market and held the highest revenue market share of 18% in 2023
  •         The others’ segment is anticipated to grow at the fastest CAGR of 28.1% during the forecast period.
  •         The health segment dominated the market and accounted for the largest revenue market share of 44.13% in 2023.
  •         Bioinformatics is expected to witness the fastest growth, with a CAGR of 17.2% during the forecast period.

The Complete Study is Now Available for Immediate Access | Download the Sample Pages of this Report@ https://www.novaoneadvisor.com/report/sample/8456

The U.S. biotechnology market is witnessing major growth contributed by the increasing adoption and applications of biotechnology in many industries like pharmaceuticals, agriculture, food production, environmental conservation, and energy. In addition, market players in the industry are increasingly focusing on innovations across many fields such as energy, medicine, and materials science using biological processes to overcome challenges and fuel technological advancements. Also, in recent years there has been a notable surge in the utilization of biotechnological methods including DNA fingerprinting, stem cell technology, and genetic engineering propelling the market expansion soon.

 

From BioPharmaDive

Source: https://www.biopharmadive.com/news/biotech-us-china-competition-drug-deals/737543/ 

‘The bar has risen’: China’s biotech gains push US companies to adapt

A fast-improving pipeline of drugs invented in China is attracting pharma dealmakers, putting pressure on U.S. biotechs and the VC firms that back them.

Published Jan. 16, 2025

Ben Fidler

Senior Editor

Soon after starting a new biotechnology company, David Li realized he needed to rethink his strategy. 

Li had been conducting the competitive research biotech entrepreneurs typically undertake before soliciting investment. He drew up a list of drug targets that his startup, Meliora Therapeutics, could pursue and checked them against the potential competition. 

Li quickly found that biotechs in China were already working on many of the targets he had on his list. Curious, he visited Shanghai and Suzhou and witnessed a buzzing scene of startups set frenetically to task. 

The latest developments in oncology research

“They’re not really thinking about the U.S. at all. They’re just trying to create more value and stay alive to differentiate themselves from the next guy in China,” he said. “They’re moving quick. There are a lot of them and they’re just quite competitive.”

Li’s experience is illustrative of a trend that could pressure biotech companies in the U.S. and alter their drug development strategies. More and more, large pharmaceutical companies are licensing experimental drugs from China. Venture companies are testing similar tactics by launching new U.S. startups around compounds sourced from China’s laboratories. This shift has been sudden, with licensing deals ramping rapidly over the past two years. And it is occurring even as the shadow of U.S.-China competition within biotech grows longer. 

Executives and investors interviewed by BioPharma Dive at the J.P. Morgan Healthcare Conference this week share Li’s outlook. They expect such deals will accelerate and, in the process, force U.S. biotechs to work harder to stand out. 

“We’ve been warning people for a while, we’re losing our edge,” said Paul Hastings, CEO of cell therapy maker Nkarta and former chair of the U.S. lobbying group the Biotechnology Innovation Organization. “Innovation is now showing up on our doorstep.”

There’s perhaps no clearer example of this than ivonescimab, a drug developed by China-based Akeso Therapeutics and licensed by U.S.-based Summit Therapeutics. Recent results from a lung cancer study run in China showed ivonescimab outperformed Keytruda, Merck’s dominant immunotherapy and currently the pharmaceutical industry’s most lucrative single product. 

The finding “put a huge focus on what’s happening in China,” said Boris Zaïtra, head of business development at Roche, which sells a rival to Keytruda. 

Fast-moving research

Today’s deal boom has roots in efforts by the Chinese government to upgrade the country’s biotech capabilities by upping investment in technological innovation. In the life sciences, the initiative provided funding, discounted or even free laboratory space and grants to support what Li described as a “robust ecosystem” of biotechs. 

The results are clear. Places like Shanghai and Suzhou are home to a skilled workforce of scientists and hundreds of homegrown companies that employ them. Science parks akin to the U.S. biotech hubs of Cambridge, Massachusetts and San Francisco have sprouted up. 

Chinese companies generally can move faster, and at a lower cost, than their U.S. counterparts. Startups can go from launch to clinical trials in 18 months or less, compared to a few years in the U.S., Li estimated. Clinical trial enrollment is speedy, while staffing and supply chain costs are lower, helping companies move drugs along more cost effectively. 

“If you’re a national company within China running a trial, just by virtue of the networks that you work within, you pay a fraction of what we pay, and the access to patients is enough that you can go really fast,” said Andy Plump, head of research at Takeda Pharmaceutical. “All of those are enablers.” 

And what they’ve enabled is a large and growing stockpile of drug prospects, many of which are designed as “me too better” versions of existing medicines, analysts at the investment bank Jefferies wrote in a December report. Initially focused in oncology, China-based companies are now churning out high-quality compounds across multiple therapeutic areas, including autoimmune conditions and obesity

“There was a huge boom of investment in China, cost of capital was very low, and all these companies blew out huge pipelines,” said Alexis Borisy, a biotech investor and founder of venture capital firm Curie.Bio. ”Anything that anybody was doing in the biotech and pharmaceutical industry, you could probably find 10 to 50 versions of it across the China ecosystem.”

Me-toos become me-betters

For years now, Western biopharma executives have scouted the pipelines of China’s biotech laboratories — exploration that yielded a smattering of licensing deals and research collaborations. Borisy was among them, starting in 2020 a company called EQRx that sought to bring Chinese versions of already-approved drugs to the U.S. and sell them for less. EQRx’s plan backfired amid scrutiny by the U.S. Food and Drug Administration of medicines tested only in people from a single country.

Now, however, the pace of deals has accelerated rapidly. There are a few reasons for this. According to Plump, one is the improving quality of the drug compounds being developed. The “me toos” are becoming “me betters” that could surpass available therapies and earn significant revenue for companies — like BeiGene’s blood cancer drug Brukinsa, which, in new prescriptions for the treatment of leukemia, overtook two established medicines of the same type last year. 

Another reason, Plump said, is that China-based companies are becoming more innovative, studying drug targets that might not have yet yielded marketed medicines, or for which the most advanced competition is in early testing. Li notes how Chinese companies are going after harder “engineering problems,” like making complex, multifunctional antibody drugs, or antibody-drug conjugates. 

“There are so many [companies] that the new assets are going to keep coming,” Li said. 

Inside the market strategies of today’s drugmakers

Much as in the U.S., China-based biotechs are also fighting for funding, pushing them to consider licensing deals with multinational pharma companies. At the same time, these pharmas are hunting for cheap medicines they can plug into their pipelines ahead of looming patent cliffs. The two trends are “colliding,” said Kristina Burow, a managing director with Arch Venture Partners. “I don’t see an end to that.”

The statistics bear Burow’s view out. According to Jefferies, the number and average value of deals for China-developed drugs reached record levels last year. Another report, from Stifel’s Tim Opler, showed that pharma companies now source about one-third of their in-licensed molecules from China, up from around 10% to 12% between 2020 and 2022. 

“I see huge opportunities for us to partner and work together with Chinese companies,” said Plump, of Takeda. 

Several venture-backed startups have been built around China-originated drugs, too, among them Kailera Therapeutics, Verdiva Bio, Candid Therapeutics and Ouro Medicines, all of which launched with nine-figure funding rounds. 

“There’s been a lot of really good, high quality molecules and data that have emerged from China over the last couple of years,” said Robert Plenge, the head of research at Bristol Myers Squibb. “It’s also no longer just simply repeating what’s been done with the exact same type of molecule.”

Geopolitical risks

These deals are happening against an uncertain backdrop. The U.S. Congress has spent the last year or so kicking around iterations of the Biosecure Act, a bill that would restrict U.S. biotechs from working with certain China-based drug contractors. A committee in the House of Representatives is calling for new limits on clinical trials that involve Chinese military hospitals. And the incoming Trump administration has threatened tariffs that could ripple across industrial sectors. 

“We don’t know what this new administration is going to do,” said Jon Norris, a managing director at HSBC Innovation Banking.

The Biosecure Act “keeps going sideways,” added Hastings, who believes that any impact from the legislation, if passed, would be minimal. Instead, Hastings wonders if future tariffs may be more problematic. “There will be tariffs on other goods coming from China. Does that include raw materials and innovation? It’s hard to imagine that it won’t,” he said. 

But executives and investors expect deals to continue, meaning U.S. biotechs will have to do more to compete. 

“U.S. companies will need to figure out what it is they’re able to bring to the table that others can’t,” said Burow, of Arch. 

Borisy said startups working on first-of-their-kind drugs need to be more secretive than ever. “Do not publish. Do not present at a scientific meeting. Do not put out a poster. Try to make your initial patent filing as obtuse as possible,” he cautioned. 

“The second that paper comes out, or poster at any scientific meeting, or talk or patent, assume it has launched a thousand ships.”

Those that are further along should assume companies in China will be quick on their heels with potentially superior drugs. “The day when you could come out with a bad molecule and open up a field is over,” he said. 

Greater competition isn’t necessarily a bad thing, according to Neil Kumar, CEO of BridgeBio Pharma. Drug development could become more efficient as pharmas acquire medicines from a “cheaper” starting point and advance them more quickly. 

Venture dollars could be directed towards newer ideas, rather than standing up a host of similar companies.“If all of a sudden this makes us less ‘lemming-like,’” Kumar said, “I have no problem with that.”

Li similarly argues that, going forward, U.S. companies need to focus on “novelty and innovation.” At his own company, Li is now working on things “we felt others were not able to access.”

“The game has always been the same. Bring something super differentiated to market,” he said. But “the bar has risen.” 

 Gwendolyn Wu and Jacob Bell contributed reporting. 

Is Chinese Biotechs just Producing Me-Too Drugs or are they Innovating New Molecular Entities?

The following articles explain the areas in which Chinese Biotech is expanding and focused on.

However the sort answer and summary to the aforementioned question is: Definately Chinese Biotechs are innovating at a rapid pace, and new molecular entities and new classes of drugs are outpacing any copycat or mee-too generic drug development.

This article  by Joe Renny on LinkedIn focuses on the degree of innovation in Chinese biotech companies. I put the article in mostly its entirety because Joe did an excellent analysis of China’s biotech industry.

You can see the full article here: https://www.linkedin.com/pulse/copy-chinas-biotech-boom-can-really-solve-pharmas-roi-joe-renny-rerge/ 

China’s Biotech Boom: Can It Really Solve Pharma’s ROI Problem?

Joe Renny

Joe Renny: Strategic Growth Leader | Driving M&A, Pharma Partnerships & Innovation | Unlocking the Commercial Potential of Science | Biotech & Pharmaceuticals

China’s biotech sector is in the midst of a stunning surge – its stocks have skyrocketed over 60% this year (outpacing even China’s high-flying tech sector), and the country now has over 1,250 innovative drugs in development, nearly catching up with the U.S. pipeline of ~1,440. Once known mainly for generic manufacturing, China is rapidly emerging as a source of differentiated innovation. Global pharma giants have taken notice: major licensing deals are proliferating as Western drugmakers snap up Chinese-born therapies in fields like oncology, metabolic diseases (obesity/diabetes), and immunology. The excitement is palpable – but a critical question looms beneath the optimism: Can this wave of innovation meaningfully improve the pharmaceutical industry’s return on investment (ROI)? In other words, will China’s biotech boom fix the underlying economics of drug development, or are the same old ROI challenges here to stay?

From Copycats to Cutting-Edge: China’s Rapid Ascent in Biotech

In the past decade, China’s pharma landscape has transformed from copycat chemistry to cutting-edge biotech. The sheer scale of innovation is unprecedented. A recent analysis found China had over 1,250 novel drug candidates enter development in 2024, far surpassing the EU and nearly reaching U.S. levels. This is a remarkable jump from just a few years ago – back in 2015, China contributed only ~160 compounds globally. Reforms to streamline drug approvals and massive R&D investments (spurred by initiatives like Made in China 2025) have unleashed a boom led by returnee scientists and ambitious startups.

Importantly, the quality of Chinese innovation has leapt upward alongside quantity. Drugs originating in China are increasingly clearing high bars of efficacy and safety. The world’s strictest regulators, including the U.S. FDA and European EMA, have begun fast-tracking more Chinese-developed drugs with priority reviews and “breakthrough” designations. For example, a cell therapy for blood cancer developed by China’s Legend Biotech won FDA approval (marketed by Johnson & Johnson) and is considered superior to a rival U.S. therapy. Another China-origin drug – Akeso Inc.’s novel cancer antibody that outperformed Merck’s Keytruda in trials – triggered a global wave of interest and a $500 million licensing deal in 2022. In short, China is no longer just a low-cost manufacturing base; it’s producing world-class treatments that Big Pharma is eager to get its hands on.

This trend is also evident in the stock markets. After a four-year slump, Chinese biotech stocks have roared back, becoming one of Asia’s best-performing sectors in 2025. The Hang Seng Biotech Index in Hong Kong is up over 60% since January, vastly outperforming broader tech indices. Investors are excited by signals that China is becoming a true global hub for biopharma innovation. According to one analyst, “China biotech is now a disruptive force reshaping global drug innovation… The science is real, the economics are compelling, and the pipeline is starting to deliver”. All of this represents a fundamental shift in the industry’s centre of gravity – and perhaps a new source of competitive pressure on Western incumbents.

Western Pharma’s Response: Licensing Deals and Partnerships Accelerate

Global pharmaceutical companies aren’t standing on the sidelines – they’re rushing to collaborate with and invest in Chinese biotechs. In fact, U.S. and European drugmakers have dramatically stepped up licensing deals to tap China’s innovations. Through the first half of 2025 alone, U.S. companies signed 14 licensing agreements worth up to $18.3 billion for Chinese-origin drugs, a huge jump from just 2 such deals in the same period a year earlier. Many of these partnerships involve potential blockbusters in cancer, metabolic disorders, and other areas where Chinese R&D is making leaps.

  • Oncology: China has become a hotbed for cancer drug innovation, especially with advanced biologics like bispecific antibodies. In May 2025, Pfizer paid a record $1.25 billion upfront to license a PD-1/VEGF bispecific antibody from China’s 3SBio (a deal worth up to $6 billion with milestones). Weeks later, Bristol Myers Squibb struck an $11.5 billion alliance for a similar immunotherapy developed in China. Virtually every active clinical trial for certain cutting-edge cancer combos (like PD-1/VEGF drugs) now originates in China, making it a goldmine for Western firms seeking the next breakthrough. AstraZeneca, Merck, Novartis, and others have all scooped up Chinese cancer therapies in recent years as they cast their nets wider for innovation.
  • Metabolic & Obesity Drugs: Western pharma is also eyeing China’s contributions in metabolic diseases. Notably, Merck licensed a Chinese-developed GLP-1 oral drug (for diabetes/obesity) from Hansoh Pharma in late 2022 for up to $1.7 billion. And in 2025, Regeneron paid $80 million upfront (in a deal worth up to $2 billion) for rights to an experimental obesity drug from Hansoh. These deals underscore that Chinese labs are producing competitive candidates in the red-hot obesity/diabetes arena – an area of huge global market potential.
  • Autoimmune & Other Areas: While oncology leads, Chinese biotechs are also advancing novel therapies in immunology and autoimmune diseases. For example, multiple deals in 2024–25 have focused on inflammatory conditions and neurology, indicating breadth in China’s pipeline. As one industry banker observed, roughly one-third of all new assets licensed by large pharmas in 2024 originated from China, and this could rise to 40–50% in coming years. In other words, nearly half of Big Pharma’s in-licensed pipeline may soon be sourced from China – a radical change from a decade ago.

Underpinning this deal frenzy is a stark reversal of roles: China has shifted from mostly importing therapies to now exporting its homegrown innovations. Back in 2015, Chinese companies mainly signed “license-in” deals to bring foreign drugs to China. But by 2024, nearly half of China’s transactions were license-out deals, with Chinese firms granting global rights to their own drugs. In 2024 alone, Chinese biotechs out-licensed 94 novel projects to overseas partners, often at early clinical stages. This boom in outbound deals – especially for high-value cancer therapies (like ADCs and bispecific antibodies) – highlights China’s maturation as an innovation engine.

In a scientific paper published by Yan et al, the authors provided a comparative analysis between the US, EU, and China of new approved drugs from the years 2019- 2023.

Yan Y, Guo X, Li Z, Shi W, Long M, Yue X, Kong F, Zhao Z. New Drug Approvals in China: An International Comparative Analysis, 2019-2023. Drug Des Devel Ther. 2025 Apr 3;19:2629-2639. doi: 10.2147/DDDT.S514132.

In the paper, the authors retrieved approval data from from the National Medical Products Administration (NMPA), Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA), including information on the generic name, trade name, applicants, target, approval date, drug type, approved indications, therapeutic area, the highest R&D status in China, and special approval status. The approval time gaps between China and other regions were calculated.

Results: Interestingly, China led with 256 new drug approvals, followed by the US (243 approvals), the EU (191 approvals), and Japan (187 approvals). Oncology, hematology, and infectiology were identified as the leading therapeutic areas globally and in China. Notably, PD-1 and EGFR inhibitors saw substantial approval, with 8 drugs each approved by the NMPA. China significantly reduced the approval timeline gap with the US and the EU since 2021, approving 15 first-in-class drugs during the study period.

The authors concluded, that despite the COVID-19 years, Chinese biotech has rapidly innovated in the biotech space and made up for the time gaps with increased research productivity.

Number of drug approvals by regulatory agency. Source: Yan Y, Guo X, Li Z, Shi W, Long M, Yue X, Kong F, Zhao Z. New Drug Approvals in China: An International Comparative Analysis, 2019-2023. Drug Des Devel Ther. 2025 Apr 3;19:2629-2639. doi: 10.2147/DDDT.S514132.

A comparison of drug approvals in US and China, as percentage of clinical use in various disease states. Source: Yan Y, Guo X, Li Z, Shi W, Long M, Yue X, Kong F, Zhao Z. New Drug Approvals in China: An International Comparative Analysis, 2019-2023. Drug Des Devel Ther. 2025 Apr 3;19:2629-2639. doi: 10.2147/DDDT.S514132.

China Biotech Innovation Hubs

The following was generated by Google AI

China has several prominent biotech innovation hubs, with the Yangtze River Delta region (including Shanghai, Suzhou, and Hangzhou) and Beijing being particularly strong. These regions leverage strong academic and research institutions, high R&D expenditures, and significant investment to foster a vibrant biotech ecosystem. 

Here’s a closer look at some key hubs:

Yangtze River Delta:

  • Shanghai:
    A major hub with a focus on oncology, cell and gene therapy, and a strong track record of biotech IPOs. It’s home to the Zhangjiang Biotech and Pharmaceutical Base, known as China’s “Medicine Valley”. 
  • Suzhou:
    Known for the BioBay industrial park, which houses numerous biotechnology and technology companies. 
  • Hangzhou:
    Features a growing biotech sector, with companies like Hangzhou DAC Biotech

Other Notable Hubs:

Key Factors Driving Growth:

  • Strong government support and investment:
    China has been actively promoting the growth of its biotech sector through various initiatives and funding programs. 
  • High R&D expenditures:
    China is investing heavily in research and development, particularly in the tech, manufacturing, and biotech sectors. 
  • Increasingly strong talent pool:
    China is producing a growing number of STEM graduates and globally recognized researchers. 
  • AI and technology integration:
    AI is being applied to drug design and discovery, accelerating innovation. 
  • Focus on specific areas:
    Different hubs are specializing in areas like oncology, regenerative medicine, and medical devices. 

Overall, China’s biotech sector is experiencing rapid growth and is becoming a significant player in the global landscape, with these hubs leading the way. 

 

Articles of Interest on International Biotech Venture Investment on the Open Access Scientific Journal Include:

10th annual World Medical Innovation Forum (WMIF) Monday, Sept. 23–Wednesday, Sept. 25 at the Encore Boston Harbor in Boston

CAR T-Cell Therapy Market: 2020 – 2027 – Global Market Analysis and Industry Forecast

2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021

Real Time Coverage @BIOConvention #BIO2019: What’s Next: The Landscape of Innovation in 2019 and Beyond. 3-4 PM June 3 Philadelphia PA

 

Read Full Post »

Jennifer A. Lewis: Revolutionizing Materials Science with the 2025 James Prize

Curator: Dr. Sudipta Saha, Ph.D.

Jennifer A. Lewis, the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard University, has been awarded the prestigious 2025 James Prize in Science and Technology Integration by the National Academy of Sciences. This recognition highlights her ground breaking research in the programmable assembly of soft functional, structural, and biological materials.

Lewis has pioneered work in integrating various scientific fields, including materials science, soft matter physics, additive manufacturing, bioengineering, and stem cell biology. Her lab focuses on developing advanced materials, such as electrically and ionically conductive inks for micro-scale printed devices like electronics and batteries. Additionally, Lewis’s work on stem cell-derived organoids has enabled the creation of 3D organ-on-chip models and vascularized tissues, which hold promise for drug screening, disease modeling, and therapeutic applications.

The James Prize, awarded by the National Academy of Sciences, recognizes outstanding contributions made by individuals who integrate knowledge across multiple disciplines to address pressing challenges. Lewis’s innovative approach, exemplified in her multidisciplinary work, has transformed the way soft materials and biological systems are designed and utilized. The prize includes a $50,000 award, underscoring her exceptional impact on science and technology.

With numerous accolades to her name, including the NSF Presidential Faculty Fellow Award and election to the National Academy of Sciences and the National Academy of Engineering, Lewis’s work continues to reshape the future of biologically inspired engineering.

References

https://nasonline.swoogo.com/nas162_awards/7558066?utm_source=twitter&utm_medium=social&utm_term=thenasciences&utm_content=b029f1bc-6b38-43b2-aaec-bcc943b07bea&utm_campaign=hootsuite

https://seas.harvard.edu/news/2025/01/jennifer-lewis-awarded-james-prize-science-and-technology-integration

https://wyss.harvard.edu/news/jennifer-a-lewis-pioneer-in-3d-printing-and-bioinspired-materials-joins-harvard-faculty/

https://pharmaceuticalintelligence.com/knowledge-portals-system-kps/irina-robu-phd-3d-bioprinting-tissue-engineering-biomaterials-nanotechnology-drug-delivery/

https://pharmaceuticalintelligence.com/2020/06/09/targeting-atherosclerotic-plaques-with-drug-eluting-biomaterials/

Read Full Post »

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Curators:

 

THE VOICE of Aviva Lev-Ari, PhD, RN

In this curation we wish to present two breaking through goals:

Goal 1:

Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer

Goal 2:

Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.

According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.

These eight subcellular pathologies can’t be measured at present time.

In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.

Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases

  1. Glycation
  2. Oxidative Stress
  3. Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
  4. Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
  5. Membrane instability
  6. Inflammation in the gut [mucin layer and tight junctions]
  7. Epigenetics/Methylation
  8. Autophagy [AMPKbeta1 improvement in health span]

Diseases that are not Diseases: no drugs for them, only diet modification will help

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

Exercise will not undo Unhealthy Diet

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:

  1. Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
  2. IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL

In the Bioelecronics domain we are inspired by the work of the following three research sources:

  1. Biological and Biomedical Electrical Engineering (B2E2) at Cornell University, School of Engineering https://www.engineering.cornell.edu/bio-electrical-engineering-0
  2. Bioelectronics Group at MIT https://bioelectronics.mit.edu/
  3. The work of Michael Levin @Tufts, The Levin Lab
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
Born: 1969 (age 54 years), Moscow, Russia
Education: Harvard University (1992–1996), Tufts University (1988–1992)
Affiliation: University of Cape Town
Research interests: Allergy, Immunology, Cross Cultural Communication
Awards: Cozzarelli prize (2020)
Doctoral advisor: Clifford Tabin
Most recent 20 Publications by Michael Levin, PhD
SOURCE
SCHOLARLY ARTICLE
The nonlinearity of regulation in biological networks
1 Dec 2023npj Systems Biology and Applications9(1)
Co-authorsManicka S, Johnson K, Levin M
SCHOLARLY ARTICLE
Toward an ethics of autopoietic technology: Stress, care, and intelligence
1 Sep 2023BioSystems231
Co-authorsWitkowski O, Doctor T, Solomonova E
SCHOLARLY ARTICLE
Closing the Loop on Morphogenesis: A Mathematical Model of Morphogenesis by Closed-Loop Reaction-Diffusion
14 Aug 2023Frontiers in Cell and Developmental Biology11:1087650
Co-authorsGrodstein J, McMillen P, Levin M
SCHOLARLY ARTICLE
30 Jul 2023Biochim Biophys Acta Gen Subj1867(10):130440
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
Regulative development as a model for origin of life and artificial life studies
1 Jul 2023BioSystems229
Co-authorsFields C, Levin M
SCHOLARLY ARTICLE
The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left–Right Functional Differences
1 Jul 2023International Journal of Molecular Sciences24(13)
Co-authorsMasuelli S, Real S, McMillen P
SCHOLARLY ARTICLE
Bioelectricidad en agregados multicelulares de células no excitables- modelos biofísicos
Jun 2023Revista Española de Física32(2)
Co-authorsCervera J, Levin M, Mafé S
SCHOLARLY ARTICLE
Bioelectricity: A Multifaceted Discipline, and a Multifaceted Issue!
1 Jun 2023Bioelectricity5(2):75
Co-authorsDjamgoz MBA, Levin M
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part I: Classical and Quantum Formulations of Active Inference
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):235-245
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part II: Tensor Networks as General Models of Control Flow
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):246-256
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Darwin’s agential materials: evolutionary implications of multiscale competency in developmental biology
1 Jun 2023Cellular and Molecular Life Sciences80(6)
Co-authorsLevin M
SCHOLARLY ARTICLE
Morphoceuticals: Perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging
1 Jun 2023Drug Discovery Today28(6)
Co-authorsPio-Lopez L, Levin M
SCHOLARLY ARTICLE
Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine
12 May 2023Patterns4(5)
Co-authorsMathews J, Chang A, Devlin L
SCHOLARLY ARTICLE
Making and breaking symmetries in mind and life
14 Apr 2023Interface Focus13(3)
Co-authorsSafron A, Sakthivadivel DAR, Sheikhbahaee Z
SCHOLARLY ARTICLE
The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis
14 Apr 2023Interface Focus13(3)
Co-authorsPio-Lopez L, Bischof J, LaPalme JV
SCHOLARLY ARTICLE
The collective intelligence of evolution and development
Apr 2023Collective Intelligence2(2):263391372311683SAGE Publications
Co-authorsWatson R, Levin M
SCHOLARLY ARTICLE
Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling
13 Mar 2023Physics Reports1004:1-31
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines
1 Mar 2023Biomimetics8(1)
Co-authorsBongard J, Levin M
SCHOLARLY ARTICLE
Transplantation of fragments from different planaria: A bioelectrical model for head regeneration
7 Feb 2023Journal of Theoretical Biology558
Co-authorsCervera J, Manzanares JA, Levin M
SCHOLARLY ARTICLE
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
1 Jan 2023Animal Cognition
Co-authorsLevin M
SCHOLARLY ARTICLE
Biological Robots: Perspectives on an Emerging Interdisciplinary Field
1 Jan 2023Soft Robotics
Co-authorsBlackiston D, Kriegman S, Bongard J
SCHOLARLY ARTICLE
Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model
1 Jan 2023Entropy25(1)
Co-authorsShreesha L, Levin M
5

5 total citations on Dimensions.

Article has an altmetric score of 16
SCHOLARLY ARTICLE
1 Jan 2023BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY138(1):141
Co-authorsClawson WP, Levin M
SCHOLARLY ARTICLE
Future medicine: from molecular pathways to the collective intelligence of the body
1 Jan 2023Trends in Molecular Medicine
Co-authorsLagasse E, Levin M

THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC

PENDING

THE VOICE of  Stephen J. Williams, PhD

Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes

 

  1. 25% of US children have fatty liver
  2. Type II diabetes can be manifested from fatty live with 151 million  people worldwide affected moving up to 568 million in 7 years
  3. A common myth is diabetes due to overweight condition driving the metabolic disease
  4. There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
  5. Thirty percent of ‘obese’ people just have high subcutaneous fat.  the visceral fat is more problematic
  6. there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects.  Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
  7. At any BMI some patients are insulin sensitive while some resistant
  8. Visceral fat accumulation may be more due to chronic stress condition
  9. Fructose can decrease liver mitochondrial function
  10. A methionine and choline deficient diet can lead to rapid NASH development

 

Read Full Post »

Alliance for Cancer Gene Therapy to honor Dr. Crystal Mackall with Edward Netter Leadership Award

Reporter: Stephen J. Williams, PhD

Article ID #299: Alliance for Cancer Gene Therapy to honor Dr. Crystal Mackall with Edward Netter Leadership Award. Published on 4/8/2023

WordCloud Image Produced by Adam Tubman

Past recipient and cancer research pioneer Carl June, MD, to present award to Dr. Mackall

Alliance for Cancer Gene Therapy (ACGT) will award the Edward Netter Leadership Award to Crystal Mackall, MD, of Stanford University, at the ACGT Awards Luncheon on March 30 at Riverpark restaurant at the Alexandria Center for Life Science, located at 450 E. 29th St., New York City.

Named for ACGT co-founder, Edward Netter, the award recognizes a researcher who has made unparalleled and groundbreaking contributions to the field of cell and gene therapy for cancer. Dr. Mackall is a leader in advancing cell and gene therapies for the treatment of solid tumors, with a major focus on children’s cancers.

In addition to being an ACGT research fellow and a member of ACGT’s Scientific Advisory Council, Dr. Mackall is the Ernest and Amelia Gallo Family professor of Pediatrics and Medicine at Stanford University, the founding director of the Stanford Center for Cancer Cell Therapy, associate director of the Stanford Cancer Institute, leader of the Cancer Immunotherapy Program and director of the Parker Institute for Cancer Immunotherapy. She has led numerous groundbreaking clinical trials to treat children with sarcomas and brain cancers.

“There is exciting progress happening in the field of cancer cell and gene therapy,” said Kevin Honeycutt, CEO and president of ACGT. “We continue to see the FDA approve cell and gene therapy treatments for blood cancers, while research for solid tumors is now progressing to clinical trials. These successes are linked to the funding of ACGT, and Dr. Crystal Mackall is one of the best examples of a researcher who refused to accept the status-quo of standard cancer treatment and committed to developing novel cell and gene therapies for children with difficult-to-treat tumors. ACGT is proud that Dr. Mackall is an ACGT Research Fellow, a member of ACGT’s Scientific Advisory Council, and the newest recipient of the Edward Netter Leadership Award.”

The ACGT Awards Luncheon will celebrate the non-profit organization’s 20th anniversary and usher in a new decade as the only nonprofit dedicated exclusively to funding cancer cell and gene therapy research. ACGT funds innovative scientists and biotechnology companies working to harness the power of cell and gene therapy to transform how cancer is treated and to drive momentum toward a cure.

The Edward Netter Leadership Award will be presented to Dr. Mackall by Carl June, MD, of the University of Pennsylvania, who received the honor at ACGT’s 2019 Awards Gala. ACGT grant funding enabled Dr. June to research and develop cell and gene therapies that led to the first FDA approvals of CAR T-cell therapies for cancer.

For information about purchasing a ticket to the ACGT Awards Luncheon, visit the ACGT Awards Luncheon website (https://acgtfoundation.org/awards/), call Keri Eisenberg at (475) 400-4373, or email keisenberg@acgtfoundation.org

Alliance for Cancer Gene Therapy (ACGT) 

For more than 20 years, Alliance for Cancer Gene Therapy has funded research that is bringing innovative treatment options to people living with deadly cancers – treatments that save lives and offer new hope to all cancer patients. Alliance for Cancer Gene Therapy funds researchers who are pioneering the potential of cancer cell and gene therapy – talented visionaries whose scientific advancements are driving the development of groundbreaking treatments for ovarian, prostate, sarcoma, glioblastoma, melanoma and pancreatic cancers. One hundred percent of all public funds raised by Alliance for Cancer Gene Therapy directly support research and programs. For more information, visit acgtfoundation.org, call (203) 358-5055, or join the Alliance for Cancer Gene Therapy community on FacebookTwitterLinkedIn, Instagram and YouTube @acgtfoundation.

# # #

Other Related Articles in this Open Access Scientific Journal Include

 

Read Full Post »

Mimicking vaginal cells and microbiome interactions on chip microfluidic culture

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Scientists at Harvard University’s Wyss Institute for Biologically Inspired Engineering have developed the world’s first “vagina-on-a-chip,” which uses living cells and bacteria to mimic the microbial environment of the human vagina. It could help to test drugs against bacterial vaginosis, a common microbial imbalance that makes millions of people more susceptible to sexually transmitted diseases and puts them at risk of preterm delivery when pregnant. Vaginal health is difficult to study in a laboratory setting partly because laboratory animals have “totally different microbiomes” than humans. To address this, scientists have created an unique chip, which is an inch-long, rectangular polymer case containing live human vaginal tissue from a donor and a flow of estrogen-carrying material to simulate vaginal mucus.

The organs-on-a-chip mimic real bodily function, making it easier to study diseases and test drugs. Previous examples include models of the lungs and the intestines. In this case, the tissue acts like that of a real vagina in some important ways. It even responds to changes in estrogen by adjusting the expression of certain genes. And it can grow a humanlike microbiome dominated by “good” or “bad” bacteria. The researchers have demonstrated that Lactobacilli growing on the chip’s tissue help to maintain a low pH by producing lactic acid. Conversely, if the researchers introduce Gardnerella, the chip develops a higher pH, cell damage and increased inflammation: classic bacterial vaginosis signs. So, the chip can demonstrate how a healthy / unhealthy microbiome affects the vagina.

The next step is personalization or subject specific culture from individuals. The chip is a real leap forward, it has the prospect of testing how typical antibiotic treatments against bacterial vaginosis affect the different bacterial strains. Critics of organ-on-a-chip technology often raise the point that it models organs in isolation from the rest of the body. There are limitations such as many researchers are interested in vaginal microbiome changes that occur during pregnancy because of the link between bacterial vaginosis and labor complications. Although the chip’s tissue responds to estrogen, but it does not fully mimic pregnancy without feedback loops from other organs. The researchers are already working on connecting the vagina chip to a cervix chip, which could better represent the larger reproductive system.

All these information indicate that the human vagina chip offers a new model to study host-vaginal microbiome interactions in both optimal and non-optimal states, as well as providing a human relevant preclinical model for development and testing of reproductive therapeutics, including live bio-therapeutics products for bacterial vaginosis. This microfluidic human vagina chip that enables flow through an open epithelial lumen also offers a unique advantage for studies on the effect of cervicovaginal mucus on vaginal health as clinical mucus samples or commercially available mucins can be flowed through this channel. The role of resident and circulating immune cells in host-microbiome interactions also can be explored by incorporating these cells into the vagina chip in the future, as this has been successfully done in various other organ chip models.

References:

https://www.scientificamerican.com/article/first-vagina-on-a-chip-will-help-researchers-test-drugs/

https://www.webmd.com/infertility-and-reproduction/news/20230209/scientists-create-vagina-on-chip-what-to-know

https://www.livescience.com/vagina-on-a-chip

https://link.springer.com/article/10.1186/s40168-022-01400-1

https://www.nature.com/articles/s41585-022-00717-8

Read Full Post »

Genomic data can predict miscarriage and IVF failure

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Infertility is a major reproductive health issue that affects about 12% of women of reproductive age in the United States. Aneuploidy in eggs accounts for a significant proportion of early miscarriage and in vitro fertilization failure. Recent studies have shown that genetic variants in several genes affect chromosome segregation fidelity and predispose women to a higher incidence of egg aneuploidy. However, the exact genetic causes of aneuploid egg production remain unclear, making it difficult to diagnose infertility based on individual genetic variants in mother’s genome. Although, age is a predictive factor for aneuploidy, it is not a highly accurate gauge because aneuploidy rates within individuals of the same age can vary dramatically.

Researchers described a technique combining genomic sequencing with machine-learning methods to predict the possibility a woman will undergo a miscarriage because of egg aneuploidy—a term describing a human egg with an abnormal number of chromosomes. The scientists were able to examine genetic samples of patients using a technique called “whole exome sequencing,” which allowed researchers to home in on the protein coding sections of the vast human genome. Then they created software using machine learning, an aspect of artificial intelligence in which programs can learn and make predictions without following specific instructions. To do so, the researchers developed algorithms and statistical models that analyzed and drew inferences from patterns in the genetic data.

As a result, the scientists were able to create a specific risk score based on a woman’s genome. The scientists also identified three genes—MCM5, FGGY and DDX60L—that when mutated and are highly associated with a risk of producing eggs with aneuploidy. So, the report demonstrated that sequencing data can be mined to predict patients’ aneuploidy risk thus improving clinical diagnosis. The candidate genes and pathways that were identified in the present study are promising targets for future aneuploidy studies. Identifying genetic variations with more predictive power will serve women and their treating clinicians with better information.

References:

https://medicalxpress-com.cdn.ampproject.org/c/s/medicalxpress.com/news/2022-06-miscarriage-failure-vitro-fertilization-genomic.amp

https://pubmed.ncbi.nlm.nih.gov/35347416/

https://pubmed.ncbi.nlm.nih.gov/31552087/

https://pubmed.ncbi.nlm.nih.gov/33193747/

https://pubmed.ncbi.nlm.nih.gov/33197264/

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Infertility has been primarily treated as a female predicament but around one-half of infertility cases can be tracked to male factors. Clinically, male infertility is typically determined using measures of semen quality recommended by World Health Organization (WHO). A major limitation, however, is that standard semen analyses are relatively poor predictors of reproductive capacity and success. Despite major advances in understanding the molecular and cellular functions in sperm over the last several decades, semen analyses remain the primary method to assess male fecundity and fertility.

Chronological age is a significant determinant of human fecundity and fertility. The disease burden of infertility is likely to continue to rise as parental age at the time of conception has been steadily increasing. While the emphasis has been on the effects of advanced maternal age on adverse reproductive and offspring health, new evidence suggests that, irrespective of maternal age, higher male age contributes to longer time-to-conception, poor pregnancy outcomes and adverse health of the offspring in later life. The effect of chronological age on the genomic landscape of DNA methylation is profound and likely occurs through the accumulation of maintenance errors of DNA methylation over the lifespan, which have been originally described as epigenetic drift.

In recent years, the strong relation between age and DNA methylation profiles has enabled the development of statistical models to estimate biological age in most somatic tissue via different epigenetic ‘clock’ metrics, such as DNA methylation age and epigenetic age acceleration, which describe the degree to which predicted biological age deviates from chronological age. In turn, these epigenetic clock metrics have emerged as novel biomarkers of a host of phenotypes such as allergy and asthma in children, early menopause, increased incidence of cancer types and cardiovascular-related diseases, frailty and cognitive decline in adults. They also display good predictive ability for cancer, cardiovascular and all-cause mortality.

Epigenetic clock metrics are powerful tools to better understand the aging process in somatic tissue as well as their associations with adverse disease outcomes and mortality. Only a few studies have constructed epigenetic clocks specific to male germ cells and only one study reported that smokers trended toward an increased epigenetic age compared to non-smokers. These results indicate that sperm epigenetic clocks hold promise as a novel biomarker for reproductive health and/or environmental exposures. However, the relation between sperm epigenetic clocks and reproductive outcomes has not been examined.

There is a critical need for new measures of male fecundity for assessing overall reproductive success among couples in the general population. Data shows that sperm epigenetic clocks may fulfill this need as a novel biomarker that predicts pregnancy success among couples not seeking fertility treatment. Such a summary measure of sperm biological age is of clinical importance as it allows couples in the general population to realize their probability of achieving pregnancy during natural intercourse, thereby informing and expediting potential infertility treatment decisions. With the ability to customize high throughput DNA methylation arrays and capture sequencing approaches, the integration of the epigenetic clocks as part of standard clinical care can enhance our understanding of idiopathic infertility and the paternal contribution to reproductive success and offspring health.

References:

https://academic.oup.com/humrep/advance-article/doi/10.1093/humrep/deac084/6583111?login=false

https://pubmed.ncbi.nlm.nih.gov/33317634/

https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-019-0656-7

https://pubmed.ncbi.nlm.nih.gov/19319879/

https://pubmed.ncbi.nlm.nih.gov/31901222/

https://pubmed.ncbi.nlm.nih.gov/25928123/

Read Full Post »

Embryogenesis in Mechanical Womb

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

A highly effective platforms for the ex utero culture of post-implantation mouse embryos have been developed in the present study by scientists of the Weizmann Institute of Science in Israel. The study was published in the journal Nature. They have grown more than 1,000 embryos in this way. This study enables the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms.

At Day 11 of development more than halfway through a mouse pregnancy the researchers compared them to those developing in the uteruses of living mice and were found to be identical. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. The mouse embryos looked perfectly normal. All their organs developed as expected, along with their limbs and circulatory and nervous systems. Their tiny hearts were beating at a normal 170 beats per minute. But, the lab-grown embryos becomes too large to survive without a blood supply. They had a placenta and a yolk sack, but the nutrient solution that fed them through diffusion was no longer sufficient. So, a suitable mechanism for blood supply is required to be developed.

Till date the only way to study the development of tissues and organs is to turn to species like worms, frogs and flies that do not need a uterus, or to remove embryos from the uteruses of experimental animals at varying times, providing glimpses of development more like in snapshots than in live videos. This research will help scientists understand how mammals develop and how gene mutations, nutrients and environmental conditions may affect the fetus. This will allow researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals. In the future it may be possible to develop a human embryo from fertilization to birth entirely outside the uterus. But the work may one day raise profound questions about whether other animals, even humans, should or could be cultured outside a living womb.

References:

https://www.nature.com/articles/s41586-021-03416-3

https://www.sciencedirect.com/science/article/pii/S0092867414000750?via%3Dihub

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-185X.1978.tb00993.x

https://www.nature.com/articles/199297a0

https://rep.bioscientifica.com/view/journals/rep/35/1/jrf_35_1_018.xml

Read Full Post »

National Resilience, Inc. is a first-of-its-kind manufacturing and technology company dedicated to broadening access to complex medicines and protecting biopharmaceutical supply chains against disruption – the Acquisition of Two Premier Biologics Manufacturing Facilities: Boston and in Ontario, Canada

 

Reporter: Aviva Lev-Ari, PhD, RN

Resilience’s new facility, located at 500 Soldiers Field Rd., Boston, MA. (Photo: Business Wire) – The Genzyme-Sanofi Building

 

SAN DIEGO & BOSTON–(BUSINESS WIRE)–Resilience (National Resilience, Inc.), a new company building the world’s most advanced biopharmaceutical manufacturing ecosystem, announced it has acquired two premier commercial manufacturing facilities in North America, joining other facilities already in Resilience’s network to boost total capacity under management to more than 750,000 square feet.

“These locations will serve as hubs for the future of biopharma manufacturing, leading the way and shaping the future of Resilience.”

  • The acquired facilities include a 310,000-square-foot plant in Boston, MA, purchased from Sanofi; and in a separate transaction,
  • a 136,000-square-foot plant in Mississauga, Ontario, Canada.

Both facilities, which currently produce commercial, marketed products, will see significant investments as Resilience adds capacity and capabilities to produce new therapies at these locations. In addition, the company has offered employment to the existing plant staff and intends to add more jobs at each facility.

“We have big plans for these facilities including investing in new capacity, applying new manufacturing technologies, creating jobs and bringing in new customers,” said Rahul Singhvi, Sc.D, Chief Executive Officer of Resilience. “These locations will serve as hubs for the future of biopharma manufacturing, leading the way and shaping the future of Resilience.”

As part of its agreement with Sanofi, Resilience will continue to manufacture a marketed product at the Boston location. The facility plan includes a build out to facilitate multi-modality manufacturing and state-of-the-art quality laboratories to ensure safe, reliable supply to patients. The facility itself is certified ISO 14001 (Environmental management system), OSHAS 18001 (Health & safety management system) and ISO 50001 (Energy management system).​

This is currently the largest of several facilities in Resilience’s growing biologics and advanced therapeutics manufacturing network, with plans to acquire and develop other sites in the U.S. this year. The facility offers 24/7/365 production, multiple 2000L bioreactors capacity and multiple downstream processing trains, with investment in additional capabilities to come.

Our state-of-the-art flexible facility in Mississauga, Ontario, provides upstream, downstream and aseptic fill finish, and is designed to comply with cGMP. The plant has been inspected and approved by multiple regulatory bodies, and handles development and commercialized products.

About Resilience

Resilience (National Resilience, Inc.) is a first-of-its-kind manufacturing and technology company dedicated to broadening access to complex medicines and protecting biopharmaceutical supply chains against disruption. Founded in 2020, the company is building a sustainable network of high-tech, end-to-end manufacturing solutions to ensure the medicines of today and tomorrow can be made quickly, safely, and at scale. Resilience offers the highest quality and regulatory capabilities, and flexible and adaptive facilities to serve partners of all sizes. By continuously advancing the science of biopharmaceutical manufacturing and development, Resilience frees partners to focus on the discoveries that improve patients’ lives.

For more information, visit www.Resilience.com.

Contacts

Ryan Flinn
Head of Communications
Ryan.flinn@Resilience.com
510-207-7616

Read Full Post »

Joe Biden Announced Science Team Nominations for the New Administration

Reporter: Stephen J. Williams, PhD

Article ID #287: Joe Biden Announced Science Team Nominations for the New Administration. Published on 1/17/2021

WordCloud Image Produced by Adam Tubman

In an announcement televised on C-Span, President Elect Joseph Biden announced his new Science Team to advise on science policy matters, as part of the White House Advisory Committee on Science and Technology. Below is a video clip and the transcript, also available at

https://www.c-span.org/video/?508044-1/president-elect-biden-introduces-white-house-science-team

 

 

COMING UP TONIGHT ON C-SPAN, NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. AND THEN SENATE MINORITY LEADER CHUCK SCHUMER TALKS ABOUT THE IMPEACHMENT OF PRESIDENT TRUMP IN THE WEEKLY DEMOCRATIC ADDRESS. AND AFTER THAT, TODAY’S SPEECH BY VICE PRESIDENT MIKE PENCE TO SAILORS AT NAVAL AIR STATION LAMORE IN CALIFORNIA. NEXT, PRESIDENT-ELECT JOE BIDEN AND VICE PRESIDENT-ELECT KAMALA HARRIS ANNOUNCE SEVERAL MEMBERS OF THEIR WHITE HOUSE SCIENCE TEAM. FROM WILMINGTON, DELAWARE, THIS IS ABOUT 40 MINUTES. PRESIDENT-ELECT BIDEN: GOOD AFTERNOON, FOLKS. I WAS TELLING THESE FOUR BRILLIANT SCIENTISTS AS I STOOD IN THE BACK, IN A WAY, THEY — THIS IS THE MOST EXCITING ANNOUNCEMENT THAT I’VE GOTTEN TO MAKE IN THE ENTIRE CABINET RAISED TO A CABINET LEVEL POSITION IN ONE CASE. THESE ARE AMONG THE BRIGHTEST MOST DEDICATED PEOPLE NOT ONLY IN THE COUNTRY BUT THE WORLD. THEY’RE COMPOSED OF SOME OF THE MOST SCIENTIFIC BRILLIANT MINDS IN THE WORLD. WHEN I WAS VICE PRESIDENT AS — I I HAD INTENSE INTEREST IN EVERYTHING THEY WERE DOING AND I PAID ENORMOUS ATTENTION. AND I WOULD — LIKE A KID GOING BACK TO SCHOOL. SIT DOWN AND CAN YOU EXPLAIN TO ME AND THEY WERE — VERY PATIENT WITH ME. AND — BUT AS PRESIDENT, I WANTED YOU TO KNOW I’M GOING TO PAY A GREAT DEAL OF ATTENTION. WHEN I TRAVEL THE WORLD AS VICE PRESIDENT, I WAS OFTEN ASKED TO EXPLAIN TO WORLD LEADERS, THEY ASKED ME THINGS LIKE DEFINE AMERICA. TELL ME HOW CAN YOU DEFINE AMERICA? WHAT’S AMERICA? AND I WAS ON A TIBETAN PLATEAU WITH AT THE TIME WITH XI ZIN PING AND WE HAD AN INTERPRETER CAN I DEFINE AMERICA FOR HIM? I SAID YES, I CAN. IN ONE WORD. POSSIBILITIES. POSSIBILITIES. I THINK IT’S ONE OF THE REASONS WHY WE’VE OCCASIONALLY BEEN REFERRED TO AS UGLY AMERICANS. WE THINK ANYTHING’S POSSIBLE GIVEN THE CHANCE, WE CAN DO ANYTHING. AND THAT’S PART OF I THINK THE AMERICAN SPIRIT. AND WHAT THE PEOPLE ON THIS STAGE AND THE DEPARTMENTS THEY WILL LEAD REPRESENT ENORMOUS POSSIBILITIES. THEY’RE THE ONES ASKING THE MOST AMERICAN OF QUESTIONS, WHAT NEXT? WHAT NEXT? NEVER SATISFIED, WHAT’S NEXT? AND WHAT’S NEXT IS BIG AND BREATHTAKING. HOW CAN — HOW CAN WE MAKE THE IMPOSSIBLE POSSIBLE? AND THEY WERE JUST ASKING QUESTIONS FOR THE SAKE OF QUESTIONS, THEY’RE ASKING THESE QUESTIONS AS CALL TO ACTION. , TO INSPIRE, TO HELP US IMAGINE THE FUTURE AND FIGURE OUT HOW TO MAKE IT REAL AND IMPROVE THE LIVES OF THE AMERICAN PEOPLE AND PEOPLE AROUND THE WORLD. THIS IS A TEAM THAT ASKED US TO IMAGINE EVERY HOME IN AMERICA BEING POWERED BY RENEWABLE ENERGY WITHIN THE NEXT 10 YEARS. OR 3-D IMAGE PRINTERS RESTORING TISSUE AFTER TRAUMATIC INJURIES AND HOSPITALS PRINTING ORGANS FOR ORGAN TRANSPLANTS. IMAGINE, IMAGINE. AND THEY REALLY — AND, YOU KNOW, THEN RALLY, THE SCIENTIFIC COMMUNITY TO GO ABOUT DOING WHAT WE’RE IMAGINING. YOU NEED SCIENCE, DATA AND DISCOVERY WAS A GOVERNING PHILOSOPHY IN THE OBAMA-BIDEN ADMINISTRATION. AND EVERYTHING FROM THE ECONOMY TO THE ENVIRONMENT TO CRIMINAL JUSTICE REFORM AND TO NATIONAL SECURITY. AND ON HEALTH CARE. FOR EXAMPLE, A BELIEF IN SCIENCE LED OUR EFFORTS TO MAP THE HUMAN BRAIN AND TO DEVELOP MORE PRECISE INDIVIDUALIZED MEDICINES. IT LED TO OUR ONGOING MISSION TO END CANCER AS WE KNOW IT, SOMETHING THAT IS DEEPLY PERSONAL TO BOTH MY FAMILY AND KAMALA’S FAMILY AND COUNTLESS FAMILIES IN AMERICA. WHEN PRESIDENT OBAMA ASKED ME TO LEAD THE CANCER MOON SHOT, I KNEW WE HAD TO INJECT A SENSE OF URGENCY INTO THE FIGHT. WE BELIEVED WE COULD DOUBLE THE RATE OF PROGRESS AND DO IN FIVE YEARS WHAT OTHERWISE WOULD TAKE 10. MY WIFE, JILL, AND I TRAVELED AROUND THE COUNTRY AND THE WORLD MEETING WITH THOUSANDS OF CANCER PATIENTS AND THEIR FAMILIES, PHYSICIANS, RESEARCHERS, PHILANTHROPISTS, TECHNOLOGY LEADERS AND HEADS OF STATE. WE SOUGHT TO BETTER UNDERSTAND AND BREAK DOWN THE SILOS AND STOVE PIPES THAT PREVENT THE SHARING OF INFORMATION AND IMPEDE ADVANCES IN CANCER RESEARCH AND TREATMENT WHILE BUILDING A FOCUSED AND COORDINATED EFFORT HERE AT HOME AND ABROAD. WE MADE PROGRESS. BUT THERE’S SO MUCH MORE THAT WE CAN DO. WHEN I ANNOUNCED THAT I WOULD NOT RUN IN 2015 AT THE TIME, I SAID I ONLY HAD ONE REGRET IN THE ROSE GARDEN AND IF I HAD ANY REGRETS THAT I HAD WON, THAT I WOULDN’T GET TO BE THE PRESIDENT TO PRESIDE OVER CANCER AS WE KNOW IT. WELL, AS GOD WILLING, AND ON THE 20TH OF THIS MONTH IN A COUPLE OF DAYS AS PRESIDENT I’M GOING TO DO EVERYTHING I CAN TO GET THAT DONE. I’M GOING TO — GOING TO BE A PRIORITY FOR ME AND FOR KAMALA AND IT’S A SIGNATURE ISSUE FOR JILL AS FIRST LADY. WE KNOW THE SCIENCE IS DISCOVERY AND NOT FICTION. AND IT’S ALSO ABOUT HOPE. AND THAT’S AMERICA. IT’S IN THE D.N.A. OF THIS COUNTRY, HOPE. WE’RE ON THE CUSP OF SOME OF THE MOST REMARKABLE BREAKTHROUGHS THAT WILL FUNDAMENTALLY CHANGE THE WAY OF LIFE FOR ALL LIFE ON THIS PLANET. WE CAN MAKE MORE PROGRESS IN THE NEXT 10 YEARS, I PREDICT, THAN WE’VE MADE IN THE LAST 50 YEARS. AND EXPONENTIAL MOVEMENT. WE CAN ALSO FACE SOME OF THE MOST DIRE CRISES IN A GENERATION WHERE SCIENCE IS CRITICAL TO WHETHER OR NOT WE MEET THE MOMENT OF PERIL AND PROMISE THAT WE KNOW IS WITHIN OUR REACH. IN 1944, FRANKLIN ROOSEVELT ASKED HIS SCIENCE ADVISOR HOW COULD THE UNITED STATES FURTHER ADVANCE SCIENTIFIC RESEARCH IN THE CRITICAL YEARS FOLLOWING THE SECOND WORLD WAR? THE RESPONSE LED TO SOME OF THE MOST GROUND BREAKING DISCOVERIES IN THE LAST 75 YEARS. AND WE CAN DO THAT AGAIN. AND WE CAN DO MORE. SO TODAY, I’M PROUD TO ANNOUNCE A TEAM OF SOME OF THE COUNTRY’S MOST BRILLIANT AND ACCOMPLISHED SCIENTISTS TO LEAD THE WAY. AND I’M ASKING THEM TO FOCUS ON FIVE KEY AREAS. FIRST THE PANDEMIC AND WHAT WE CAN LEARN ABOUT WHAT IS POSSIBLE OR WHAT SHOULD BE POSSIBLE TO ADDRESS THE WIDEST RANGE OF PUBLIC HEALTH NEEDS. SECONDLY, THE ECONOMY, HOW CAN WE BUILD BACK BETTER TO ENSURE PROSPERITY IS FULLY SHARED ALL ACROSS AMERICA? AMONG ALL AMERICANS? AND THIRDLY, HOW SCIENCE HELPS US CONFRONT THIS CLIMATE CRISIS WE FACE IN AMERICA AND THE WORLD BUT IN AMERICA HOW IT HELPS US CONFRONT THE CLIMATE CRISIS WITH AMERICAN JOBS AND INGENUITY. AND FOURTH, HOW CAN WE ENSURE THE UNITED STATES LEADS THE WORLD IN TECHNOLOGIES AND THE INDUSTRIES THAT THE FUTURE THAT WILL BE CRITICAL FOR OUR ECONOMIC PROSPERITY AND NATIONAL SECURITY? ESPECIALLY WITH THE INTENSE INCREASED COMPETITION AROUND THE WORLD FROM CHINA ON? AND FIFTH, HOW CAN WE ASSURE THE LONG-TERM HEALTH AND TRUST IN SCIENCE AND TECHNOLOGY IN OUR NATION? YOU KNOW, THESE ARE EACH QUESTIONS THAT CALL FOR ACTION. AND I’M HONORED TO ANNOUNCE A TEAM THAT IS ANSWERING THE CALL TO SERVE. AS THE PRESIDENTIAL SCIENCE ADVISOR AND DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY, I NOMINATE ONE OF THE MOST BRILLIANT GUYS I KNOW, PERSONS I KNOW, DR. ERIC LANDER. AND THANK YOU, DOC, FOR COMING BACK. THE PIONEER — HE’S A PIONEER IN THE STIFFING COMMUNITY. PRINCIPAL LEADER IN THE HUMAN GENOME PROJECT. AND NOT HYPERBOLE TO SUGGEST THAT DR. LANDER’S WORK HAS CHANGED THE COURSE OF HUMAN HISTORY. HIS ROLE IN HELPING US MAP THE GENOME PULLED BACK THE CURTAIN ON HUMAN DISEASE, ALLOWING SCIENTISTS, EVER SINCE, AND FOR GENERATIONS TO COME TO EXPLORE THE MOLECULAR BASIS FOR SOME OF THE MOST DEVASTATING ILLNESSES AFFECTING OUR WORLD. AND THE APPLICATION OF HIS PIONEERING WORK AS — ARE POISED TO LEAD TO INCREDIBLE CURES AND BREAKTHROUGHS IN THE YEARS TO COME. DR. LANDER NOW SERVES AS THE PRESIDENT AND FOUNDING DIRECTOR OF THE BRODE INSTITUTE AT M.I.T. AND HARVARD, THE WORLD’S FOREMOST NONPROFIT GENETIC RESEARCH ORGANIZATION. AND I CAME TO APPRECIATE DR. LANDER’S EXTRAORDINARY MIND WHEN HE SERVED AS THE CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS AND SCIENCE AND TECHNOLOGY DURING THE OBAMA-BIDEN ADMINISTRATION. AND I’M GRATEFUL, I’M GRATEFUL THAT WE CAN WORK TOGETHER AGAIN. I’VE ALWAYS SAID THAT BIDEN-HARRIS ADMINISTRATION WILL ALSO LEAD AND WE’RE GOING TO LEAD WITH SCIENCE AND TRUTH. WE BELIEVE IN BOTH. [LAUGHTER] GOD WILLING OVERCOME THE PANDEMIC AND BUILD OUR COUNTRY BETTER THAN IT WAS BEFORE. AND THAT’S WHY FOR THE FIRST TIME IN HISTORY, I’M GOING TO BE ELEVATING THE PRESIDENTIAL SCIENCE ADVISOR TO A CABINET RANK BECAUSE WE THINK IT’S THAT IMPORTANT. AS DEPUTY DIRECTOR OF THE OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND SCIENCE AND — SCIENCE AND SOCIETY, I APPOINT DR. NELSON. SHE’S A PROFESSOR AT THE INSTITUTE OF ADVANCED STUDIES AT PRINCETON UNIVERSITY. THE PRESIDENT OF THE SOCIAL SCIENCE RESEARCH COUNCIL. AND ONE OF AMERICA’S LEADING SCHOLARS IN THE — AN AWARD-WINNING AUTHOR AND RESEARCHER AND EXPLORING THE CONNECTIONS BETWEEN SCIENCE AND OUR SOCIETY. THE DAUGHTER OF A MILITARY FAMILY, HER DAD SERVED IN THE UNITED STATES NAVY AND HER MOM WAS AN ARMY CRIPPING TO RAFFER. DR. NELSON DEVELOPED A LOVE OF TECHNOLOGY AT A VERY YOUNG AGE PARTICULARLY WITH THE EARLY COMPUTER PRODUCTS. COMPUTING PRODUCTS AND CODE-BREAKING EQUIPMENT THAT EVERY KID HAS AROUND THEIR HOUSE. AND SHE GREW UP WITHIN HER HOME. WHEN I WROTE THAT DOWN, I THOUGHT TO MYSELF, I MEAN, HOW MANY KIDS — ANY WAY, THAT PASSION WAS A PASSION FORGED A LIFELONG CURIOSITY ABOUT THE INEQUITIES AND THE POWER DIAMONDICS THAT SIT BENEATH THE SURFACE OF SCIENTIFIC RESEARCH AND THE TECHNOLOGY WE BUILD. DR. NELSON IS FOCUSED ON THOSE INSIGHTS. AND THE SCIENCE, TECHNOLOGY AND SOCIETY, LIKE FEW BEFORE HER EVER HAVE IN AMERICAN HISTORY. BREAKING NEW GROUND ON OUR UNDERSTANDING OF THE ROLE SCIENCE PLAYS IN AMERICAN LIFE AND OPENING THE DOOR TO — TO A FUTURE WHICH SCIENCE BETTER SERVES ALL PEOPLE. AS CO-CHAIR OF THE PRESIDENT’S COUNCIL ON ADVISORS OF SCIENCE AND TECHNOLOGY,APPOINT DR. FRANCIS ARNOLD, DIRECTOR OF THE ROSE BIOENGINEERING CENTER AT CALTECH AND ONE OF THE WORLD’S LEADING EXPERTS IN PROTEIN ENGINEERING, A LIFE-LONG CHAMPION OF RENEWABLE ENERGY SOLUTIONS WHO HAS BEEN INDUCTED INTO THE NATIONAL INVENTORS’ HALL OF FAME. THAT AIN’T A BAD PLACE TO BE. NOT ONLY IS SHE THE FIRST WOMAN TO BE ELECTED TO ALL THREE NATIONAL ACADEMIES OF SCIENCE, MEDICINE AND ENGINEERING AND ALSO THE FIRST WOMAN, AMERICAN WOMAN, TO WIN A NOBEL PRIZE IN CHEMISTRY. A VERY SLOW LEARNER, SLOW STARTER, THE DAUGHTER OF PITTSBURGH, SHE WORKED AS A CAB DRIVER, A JAZZ CLUB SERVER, BEFORE MAKING HER WAY TO BERKELEY AND A CAREER ON THE LEADING EDGE OF HUMAN DISCOVERY. AND I WANT TO MAKE THAT POINT AGAIN. I WANT — IF ANY OF YOUR CHILDREN ARE WATCHING, LET THEM KNOW YOU CAN DO ANYTHING. THIS COUNTRY CAN DO ANYTHING. ANYTHING AT ALL. AND SO SHE SURVIVED BREAST CANCER, OVERCAME A TRAGIC LOSS IN HER FAMILY WHILE RISING TO THE TOP OF HER FIELD, STILL OVERWHELMINGLY DOMINATED BY MEN. HER PASSION HAS BEEN A STEADFAST COMMITMENT TO RENEWABLE ENERGY FOR THE BETTERMENT OF OUR PLANET AND HUMANKIND. SHE IS AN INSPIRING FIGURE TO SCIENTISTS ACROSS THE FIELD AND ACROSS NATIONS. AND I WANT TO THANK DR. ARNOLD FOR AGREEING TO CO-CHAIR A FIRST ALL WOMAN TEAM TO LEAD THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY WHICH LEADS ME TO THE NEXT MEMBER OF THE TEAM. AS CO-CHAIR, THE PRESIDENT’S COUNCIL OF ADVISORS ON SCIENCE AND TECHNOLOGY, I APPOINT DR. MARIE ZUBER. A TRAIL BLAZER BRAISING GEO PHYSICIST AND PLANETARY SCIENTIST A. FORMER CHAIR OF THE NATIONAL SCIENCE BOARD. FIRST WOMAN TO LEAD THE SCIENCE DEPARTMENT AT M.I.T. AND THE FIRST WOMAN TO LEAD NASA’S ROBOTIC PLANETARY MISSION. GROWING UP IN COLE COUNTRY NOT FAR FROM HEAVEN, SCRANTON, PENNSYLVANIA, IN CARBON COUNTY, PENNSYLVANIA, ABOUT 50 MILES SOUTH OF WHERE I WAS A KID, SHE DREAMED OF EXPLORING OUTER SPACE. COULD HAVE TOLD HER SHE WOULD JUST GO TO GREEN REACH IN SCRANTON AND FIND WHERE IT WAS. AND I SHOULDN’T BE SO FLIPPANT. BUT I’M SO EXCITED ABOUT THESE FOLKS. YOU KNOW, READING EVERY BOOK SHE COULD FIND AND LISTENING TO HER MOM’S STORIES ABOUT WATCHING THE EARLIEST ROCKET LAUNCH ON TELEVISION, MARIE BECAME THE FIRST PERSON IN HER FAMILY TO GO TO COLLEGE AND NEVER LET GO OF HER DREAM. TODAY SHE OVERSEES THE LINCOLN LABORATORY AT M.I.T. AND LEADS THE INSTITUTION’S CLIMATE ACTION PLAN. GROWING UP IN COLD COUNTRY, NOT AND FINALLY, COULD NOT BE HERE TODAY, BUT I’M PLEASED TO ANNOUNCE THAT I’VE HAD A LONG CONVERSATION WITH DR. FRANCIS COLLINS AND COULD NOT BE HERE TODAY. AND I’VE ASKED THEM TO STAY ON AS DIRECTOR OF THE INSTITUTE OF HEALTH AND — AT THIS CRITICAL MOMENT. I’VE KNOWN DR. COLLINS FOR MANY YEARS. I WORKED WITH HIM CLOSELY. HE’S BRILLIANT. A PIONEER. A TRUE LEADER. AND ABOVE ALL, HE’S A MODEL OF PUBLIC SERVICE AND I’M HONORED TO BE WORKING WITH HIM AGAIN. AND IT IS — IN HIS ABSENCE I WANT TO THANK HIM AGAIN FOR BEING WILLING TO STAY ON. I KNOW THAT WASN’T HIS ORIGINAL PLAN. BUT WE WORKED AN AWFUL LOT ON THE MOON SHOT AND DEALING WITH CANCER AND I JUST WANT TO THANK HIM AGAIN. AND TO EACH OF YOU AND YOUR FAMILIES, AND I SAY YOUR FAMILIES, THANK YOU FOR THE WILLINGNESS TO SERVE. AND NOT THAT YOU HAVEN’T BEEN SERVING ALREADY BUT TO SERVE IN THE ADMINISTRATION. AND THE AMERICAN PEOPLE, TO ALL THE AMERICAN PEOPLE, THIS IS A TEAM THAT’S GOING TO HELP RESTORE YOUR FAITH IN AMERICA’S PLACE IN THE FRONTIER OF SCIENCE AND DISCOVER AND HOPE. I’M NOW GOING TO TURN THIS OVER STARTING WITH DR. LANDER, TO EACH OF OUR NOMINEES AND THEN WITH — HEAR FROM THE VICE PRESIDENT. BUT AGAIN, JUST CAN’T THANK YOU ENOUGH AND I REALLY MEAN IT. THANK YOU, THANK YOU, THANK YOU FOR WILLING TO DO THIS. DOCTOR, IT’S ALL YOURS. I BETTER PUT MY MASK ON OR I’M GOING TO GET IN TROUBLE.

 

Director’s Page

Read Full Post »

Older Posts »