Feeds:
Posts
Comments

Archive for the ‘Metabolic Immuno-Oncology’ Category

Article SELECTION from Collection of Aviva Lev-Ari, PhD, RN Scientific Articles on PULSE on LinkedIn.com for Training Small Language Models (SLMs) in Domain-aware Content of Medical, Pharmaceutical, Life Sciences and Healthcare by 15 Subjects Matter

Article SELECTION from Collection of Aviva Lev-Ari, PhD, RN Scientific Articles on PULSE on LinkedIn.com for Training Small Language Models (SLMs) in Domain-aware Content of Medical, Pharmaceutical, Life Sciences and Healthcare by 15 Subjects Matter

Article selection: Aviva Lev-Ari, PhD, RN

 

#1 – February 20, 2016

Contributions to Personalized and Precision Medicine & Genomic Research

Author: Larry H. Bernstein, MD, FCAP

https://www.linkedin.com/pulse/contributions-personalized-precision-medicine-genomic-aviva/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

http://pharmaceuticalintelligence.com/contributors-biographies/members-of-the-board/larry-bernstein/

 

#2 – March 31, 2016

Nutrition: Articles of Note @PharmaceuticalIntelligence.com

Author and Curators: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/nutrition-articles-note-pharmaceuticalintelligencecom-aviva/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

 

#3 – March 31, 2016

Epigenetics, Environment and Cancer: Articles of Note @PharmaceuticalIntelligence.com

Author and Curators: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/epigenetics-environment-cancer-articles-note-aviva-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

 

#4 – April 5, 2016

Alzheimer’s Disease: Novel Therapeutical Approaches — Articles of Note @PharmaceuticalIntelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/alzheimers-disease-novel-therapeutical-approaches-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

http://pharmaceuticalintelligence.com/2016/04/05/alzheimers-disease-novel-therapeutical-approaches-articles-of-note-pharmaceuticalintelligence-com/

 

#5 – April 5, 2016

Prostate Cancer: Diagnosis and Novel Treatment – Articles of Note  @PharmaceuticalIntelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/prostate-cancer-diagnosis-novel-treatment-articles-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

http://pharmaceuticalintelligence.com/2016/04/05/prostate-cancer-diagnosis-and-novel-treatment-articles-of-note-pharmaceuticalintelligence-com/ 

 

#6 – May 1, 2016

Immune System Stimulants: Articles of Note @pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/immune-system-stimulants-articles-note-aviva-lev-ari-phd-rn/?trackingId=IXDBMmp4SR6vVYaXKPmfqQ%3D%3D

 

#7 – May 26, 2016

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/pancreatic-cancer-articles-note-aviva-lev-ari-phd-rn/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#8 – August 23, 2017

Proteomics, Metabolomics, Signaling Pathways, and Cell Regulation – Articles of Note, LPBI Group’s Scientists @ http://pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/proteomics-metabolomics-signaling-pathways-cell-lev-ari-phd-rn/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#9 – August 17, 2017

Articles of Note on Signaling and Metabolic Pathways published by the Team of LPBI Group in @pharmaceuticalintelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/articles-note-signaling-metabolic-pathways-published-aviva/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#10 – October 8, 2017

What do we know on Exosomes?

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/what-do-we-know-exosomes-aviva-lev-ari-phd-rn/?trackingId=0AT4eUwMQZiEXyEOqo58Ng%3D%3D

 

#11 – September 1, 2017

Articles on Minimally Invasive Surgery (MIS) in Cardiovascular Diseases by the Team @Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/articles-minimally-invasive-surgery-mis-diseases-team-aviva/?trackingId=CPyrP0SNQq2X9N4pSubFxQ%3D%3D

 

#12 – August 13, 2018

MedTech & Medical Devices for Cardiovascular Repair – Contributions by LPBI Team to Cardiac Imaging, Cardiothoracic Surgical Procedures and PCI

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/medtech-medical-devices-cardiovascular-repair-lpbi-lev-ari-phd-rn/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

 

#13 – May 24, 2019

Resources on Artificial Intelligence in Health Care and in Medicine: Articles of Note at PharmaceuticalIntelligence.com @AVIVA1950 @pharma_BI

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/resources-artificial-intelligence-health-care-note-lev-ari-phd-rn/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

 

#14 – December 19, 2025

AI in Health: The Voice of Aviva Lev-Ari, PhD, RN

Curator: Aviva Lev-Ari, PhD, RN

https://www.linkedin.com/pulse/ai-health-voice-aviva-lev-ari-phd-rn-aviva-lev-ari-phd-rn-xgqie/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

 

#15 – January 7, 2026

NEW Foundation Multimodal Model in Healthcare: LPBI Group’s Domain-aware Corpus for 2025 Grok 4.1 Causal Reasoning & Novel Biomedical Relationships

Aviva Lev-Ari, PhD, RN, Founder of LPBI Group

https://www.linkedin.com/pulse/new-foundation-multimodal-model-healthcare-lpbi-2025-aviva-40h1e/?trackingId=5EFVlg%2BQRLO5i%2FfGBEN2FQ%3D%3D

Read Full Post »

Real Time Conference Coverage: Advancing Precision Medicine Conference, Early Morning Session Track 1 October 4 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

 

8:55 – 10:35

SESSION 1

Precision For All:

Global Access, Real Cases, and Implementation Science

 

8:55-9:15

Results and Future Direction from WIN’s Data Science Paper

Razelle Kurzrock, MD

9:15-9:55

When Precision Gets Personal: WIN Consortium International Molecular Tumor Board Live

Andrea Ferreira-Gonzalez
Razelle Kurzrock, MD

Razelle Kurzrock, MD, FACP, Chief Medical Officer, WIN Consortium; Professor of Medicine, Associate Director, Clinical Research, Linda T. and John A. Mellowes Endowed Chair of Precision Oncology, MCW Cancer Center and Linda T. & John A. Mellowes Center for Genomic Sciences and Precision Medicine

Notes from Live Tumor Board from Live Tweets

Tumor board Live… Molecular profiling great for identifying synthetic lethal combinations work very well… Many oncologist not accepting recommendations of molec tumor board

Tumor board Live . Oncologists don’t always accept tumor board recommendations based on molecular profiling… Dr Baptiste at first felt constrained to use single agent but WINTER combo trial with molec profiling better

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Pemetrexemed not always working but MTAP inhibitions may work

Tumor board Live… Discussion of ovarian cancer case women first presented with CRC BRCA mut but failed PARP inhibitor board is looking at immunotherapy NGS IHC performed

#WINconsortium

Fusions being detected by RNAseq at rate of 100 per month

Tumor board Live…. Theranostics are becoming part of molec tumor board … Radio labeled dual diagnostic therapeutic antibodies

Tumor board Live… Molecular profiling great for identifying synthetic lethal combinations work very well… Many oncologist not accepting recommendations of molec tumor board

SESSION 2

Expanding the Precision Frontier

9:55-10:25

Precision Oncology in the Immunotherapy Era: Biomarkers and Clinical Trial Innovation

Razelle Kurzrock, MD

Lillian Siu, MD, President, AACR 2025-2026; Director, Phase I Clinical Trials Program; Co-Director, Robert and Maggie Bras and Family Drug Development Program Clinical Lead, Tumor Immunotherapy Program; BMO Chair, Precision Cancer Genomics, Princess Margaret Cancer Centre Professor of Medicine, University of Toronto

  • Princess Margaret CC went to Merck got pembrolizumab from them but built a team platform of clinicians and scientists to work on INSPIRE trial
  • $11 million of grants, 13 major papers, great team science
  • did ctDNA from liquid biopsy and also looked at methylation patterns in cfDNA
  • looked at IFN stimulation and outcome to pembrolizumab
  • retro transposable elements found in INSPIRE program, maybe a predictor of immune sensitivity
  • they were able to correlate some of their findings with spatial omics
  • using spatial data they could look at hot versus cold head and neck cancer
  •  factors for response to immunotherapy: TMB, t cell infiltrate,  PDL1 etc
  • using AI with IHC slides as well as NGS data sets
  • as clinical trials become multiomics and AI with multiomics platforms data sharing will be critical for success

10:25 – 10:35

The Microbiome and Its Role in Cancer Development and Treatment Response

Razelle Kurzrock, MD

Sabine Hazan, MD, CEO, Ventura Clinical Trials; CEO, Progenabiome

  • microbiome research at the infancy so we don’t know much when comes to oncology
  • we need to compare microbiome between persons using NGS and other omics
  • we all have different microbiome even though microbiome ‘healthy’
  • lots of factors affect microbiome including surgery
  • families are similar in their microbiome but when looking at Alzheimers there are differences
  • first lab to find whole COVID in the stools
  • virus was different in different people, difference spike proteins. Virus mutates from lung to stool (gut)
  • in intrafamily patients had different microbiome upon COVID infection
  • bifodobacteria was found as a major part of microbiome altered in COVID but also lots of other diseases
  • lots of examples of host microbial symbiosis
  • they had an instance with throat tumor treated with microbiome and tumor receded without chemo
  • in a glioblastoma microbiome adjustment helped but changed positive response to immunotherapy

Read Full Post »

Immuno-Timebombs: The Hidden Drivers of Age-Related Illness

Curator: Dr. Sudipta Saha, Ph. D.

 

There are two converging biological processes that drive most age-related diseases: immunosenescence and inflammaging. Together, they explain how a deteriorating immune system and chronic low-grade inflammation contribute to neurodegenerative diseases, cancer, cardiovascular disorders, and frailty.

Immunosenescence refers to the waning competence of both innate and adaptive immune systems. With age, T and B cells become less effective, and macrophage function declines. This makes older individuals more susceptible to infections and less efficient at clearing dysfunctional cells.

Inflammaging, on the other hand, is the persistent presence of inflammation without infection. Factors like gut microbiome alterations, senescent cell accumulation, and epigenetic drift contribute to this condition. Over time, this “silent fire” damages tissues and lays the groundwork for disease.

These drivers don’t just correlate with disease—they often precede it. This positions inflammaging and immunosenescence as targets for prevention, not just treatment. Interventions like exercise, caloric modulation, and anti-inflammatory diets may attenuate their effects. Emerging therapies such as senolytics and immune rejuvenation approaches (e.g., thymic regeneration) are showing promise.

This article also calls for a paradigm shift in medical science—from reactive disease management to proactive longevity interventions. As we unravel the biological clocks of aging, strategies targeting immune recalibration may delay or prevent multiple diseases simultaneously.

The future of healthy aging may well depend on how early we can intervene in this immuno-inflammatory loop—before pathology sets in.

References:

https://erictopol.substack.com/p/the-drivers-of-age-related-diseases

https://www.nature.com/articles/s41591-019-0661-0

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761661

https://www.cell.com/fulltext/S0092-8674(19)30184-4

https://www.frontiersin.org/articles/10.3389/fimmu.2020.579220/full

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649506

Read Full Post »

Cancer Surgery Rethought: Immunotherapy Takes the Lead

Curator: Dr. Sudipta Saha, Ph.D.

In a recent phase 2 study published in The New England Journal of Medicine, the efficacy of nonoperative management was assessed in patients with mismatch repair–deficient (dMMR) solid tumors. Instead of undergoing curative-intent surgery, patients with stage I to III dMMR tumors were administered immune checkpoint inhibitors.

The study was conducted across two cohorts involving 117 patients. After two years of follow-up, a recurrence-free survival rate of 92% (95% CI, 86 to 99) was achieved. It was found that complete clinical responses could be maintained without surgical intervention, and substantial preservation of organ function was observed.

The avoidance of surgery was associated with fewer treatment-related complications and a significant improvement in patients’ quality of life. It has been emphasized that dMMR tumors, being highly immunogenic, respond exceptionally well to immune checkpoint blockade, thereby offering a viable alternative to conventional surgery-based treatment plans.

While the study’s findings have been considered ground breaking, long-term data have been recommended to fully validate this approach. Future studies are expected to refine patient selection criteria and monitoring strategies to ensure sustained outcomes.

Overall, a potential shift in the standard of care for patients with early-stage dMMR tumors has been proposed, highlighting how personalized immunotherapy can redefine oncological practice.

References

https://www.nejm.org/doi/full/10.1056/NEJMoa2404512

https://pubmed.ncbi.nlm.nih.gov/28734759

https://pubmed.ncbi.nlm.nih.gov/26028255

https://www.mdpi.com/2072-6694/12/9/2679

Read Full Post »

SNU-BioTalk 2025: Symphony of Cellular Signals in Metabolism and Immune Response – International Conference at Sister Nivedita University, Kolkata, India on 16 & 17 January 2025

SNU-BioTalk 2025: Symphony of Cellular Signals in Metabolism and Immune Response – International Conference at Sister Nivedita University, Kolkata, India on 16 & 17 January 2025

Joint Convenor: Dr. Sudipta Saha (Member of LPBI since 2012)

About the Conference:

The International Conference on ‘Symphony of Cellular Signals in Metabolism and Immune Response’ focuses on the complex signalling pathways governing cellular functions in health and disease. It will explore the cellular mechanisms that regulate metabolism, immune responses, and survival, highlighting advances in medical science and biotechnology. Bringing together leading experts and emerging researchers, the conference will feature keynote lectures, panel discussions, research presentations, and interactive sessions, all designed to foster collaboration and innovation. By promoting an exchange of ideas, the event aims to drive transformative insights and solutions that impact human health and sustainable healthcare practices.

The conference will also be livestreamed on YouTube and Facebook

This programme will also host I-STEM: Indian Science, Technology and Engineering facilities Map (I-STEM) is a dynamic and interactive national portal for research cooperation.

Thrust areas:

  • Intracellular signalling processes of cellular metabolism
  • Signalling pathways in physiological and pathological processes
  • Signalling in innate and adaptive immunity

Conference Webpage: https://www.snuniv.ac.in/snu-biotalk-2025/

NU-BioTalk 2025 Abstract Submission Form: https://forms.gle/ygdGqtuBGa7DEhDFA

SNU-BioTalk 2025 Registration Form: https://forms.gle/unasPpByLmYwrRBM6

Programme Schedule:

YouTube Links of Live Telecast:

Day 1:

Day 2:

Media:

Newspaper:

The Telegraph – Click to View

 

Abstract Book

Scan to Download:

Click: 

Abstract Book

Read Full Post »

Alliance for Cancer Gene Therapy to honor Dr. Crystal Mackall with Edward Netter Leadership Award

Reporter: Stephen J. Williams, PhD

Article ID #299: Alliance for Cancer Gene Therapy to honor Dr. Crystal Mackall with Edward Netter Leadership Award. Published on 4/8/2023

WordCloud Image Produced by Adam Tubman

Past recipient and cancer research pioneer Carl June, MD, to present award to Dr. Mackall

Alliance for Cancer Gene Therapy (ACGT) will award the Edward Netter Leadership Award to Crystal Mackall, MD, of Stanford University, at the ACGT Awards Luncheon on March 30 at Riverpark restaurant at the Alexandria Center for Life Science, located at 450 E. 29th St., New York City.

Named for ACGT co-founder, Edward Netter, the award recognizes a researcher who has made unparalleled and groundbreaking contributions to the field of cell and gene therapy for cancer. Dr. Mackall is a leader in advancing cell and gene therapies for the treatment of solid tumors, with a major focus on children’s cancers.

In addition to being an ACGT research fellow and a member of ACGT’s Scientific Advisory Council, Dr. Mackall is the Ernest and Amelia Gallo Family professor of Pediatrics and Medicine at Stanford University, the founding director of the Stanford Center for Cancer Cell Therapy, associate director of the Stanford Cancer Institute, leader of the Cancer Immunotherapy Program and director of the Parker Institute for Cancer Immunotherapy. She has led numerous groundbreaking clinical trials to treat children with sarcomas and brain cancers.

“There is exciting progress happening in the field of cancer cell and gene therapy,” said Kevin Honeycutt, CEO and president of ACGT. “We continue to see the FDA approve cell and gene therapy treatments for blood cancers, while research for solid tumors is now progressing to clinical trials. These successes are linked to the funding of ACGT, and Dr. Crystal Mackall is one of the best examples of a researcher who refused to accept the status-quo of standard cancer treatment and committed to developing novel cell and gene therapies for children with difficult-to-treat tumors. ACGT is proud that Dr. Mackall is an ACGT Research Fellow, a member of ACGT’s Scientific Advisory Council, and the newest recipient of the Edward Netter Leadership Award.”

The ACGT Awards Luncheon will celebrate the non-profit organization’s 20th anniversary and usher in a new decade as the only nonprofit dedicated exclusively to funding cancer cell and gene therapy research. ACGT funds innovative scientists and biotechnology companies working to harness the power of cell and gene therapy to transform how cancer is treated and to drive momentum toward a cure.

The Edward Netter Leadership Award will be presented to Dr. Mackall by Carl June, MD, of the University of Pennsylvania, who received the honor at ACGT’s 2019 Awards Gala. ACGT grant funding enabled Dr. June to research and develop cell and gene therapies that led to the first FDA approvals of CAR T-cell therapies for cancer.

For information about purchasing a ticket to the ACGT Awards Luncheon, visit the ACGT Awards Luncheon website (https://acgtfoundation.org/awards/), call Keri Eisenberg at (475) 400-4373, or email keisenberg@acgtfoundation.org

Alliance for Cancer Gene Therapy (ACGT) 

For more than 20 years, Alliance for Cancer Gene Therapy has funded research that is bringing innovative treatment options to people living with deadly cancers – treatments that save lives and offer new hope to all cancer patients. Alliance for Cancer Gene Therapy funds researchers who are pioneering the potential of cancer cell and gene therapy – talented visionaries whose scientific advancements are driving the development of groundbreaking treatments for ovarian, prostate, sarcoma, glioblastoma, melanoma and pancreatic cancers. One hundred percent of all public funds raised by Alliance for Cancer Gene Therapy directly support research and programs. For more information, visit acgtfoundation.org, call (203) 358-5055, or join the Alliance for Cancer Gene Therapy community on FacebookTwitterLinkedIn, Instagram and YouTube @acgtfoundation.

# # #

Other Related Articles in this Open Access Scientific Journal Include

 

Read Full Post »

Live Notes, Real Time Conference Coverage AACR 2020 #AACR20: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Live Notes, Real Time Conference Coverage AACR 2020: Tuesday June 23, 2020 Noon-2:45 Educational Sessions

Reporter: Stephen J. Williams, PhD

Follow Live in Real Time using

#AACR20

@pharma_BI

@AACR

Register for FREE at https://www.aacr.org/

 

Presidential Address

Elaine R Mardis, William N Hait

DETAILS

Welcome and introduction

William N Hait

 

Improving diagnostic yield in pediatric cancer precision medicine

Elaine R Mardis
  • Advent of genomics have revolutionized how we diagnose and treat lung cancer
  • We are currently needing to understand the driver mutations and variants where we can personalize therapy
  • PD-L1 and other checkpoint therapy have not really been used in pediatric cancers even though CAR-T have been successful
  • The incidence rates and mortality rates of pediatric cancers are rising
  • Large scale study of over 700 pediatric cancers show cancers driven by epigenetic drivers or fusion proteins. Need for transcriptomics.  Also study demonstrated that we have underestimated germ line mutations and hereditary factors.
  • They put together a database to nominate patients on their IGM Cancer protocol. Involves genetic counseling and obtaining germ line samples to determine hereditary factors.  RNA and protein are evaluated as well as exome sequencing. RNASeq and Archer Dx test to identify driver fusions
  • PECAN curated database from St. Jude used to determine driver mutations. They use multiple databases and overlap within these databases and knowledge base to determine or weed out false positives
  • They have used these studies to understand the immune infiltrate into recurrent cancers (CytoCure)
  • They found 40 germline cancer predisposition genes, 47 driver somatic fusion proteins, 81 potential actionable targets, 106 CNV, 196 meaningful somatic driver mutations

 

 

Tuesday, June 23

12:00 PM – 12:30 PM EDT

Awards and Lectures

NCI Director’s Address

Norman E Sharpless, Elaine R Mardis

DETAILS

Introduction: Elaine Mardis

 

NCI Director Address: Norman E Sharpless
  • They are functioning well at NCI with respect to grant reviews, research, and general functions in spite of the COVID pandemic and the massive demonstrations on also focusing on the disparities which occur in cancer research field and cancer care
  • There are ongoing efforts at NCI to make a positive difference in racial injustice, diversity in the cancer workforce, and for patients as well
  • Need a diverse workforce across the cancer research and care spectrum
  • Data show that areas where the clinicians are successful in putting African Americans on clinical trials are areas (geographic and site specific) where health disparities are narrowing
  • Grants through NCI new SeroNet for COVID-19 serologic testing funded by two RFAs through NIAD (RFA-CA-30-038 and RFA-CA-20-039) and will close on July 22, 2020

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Immunology, Tumor Biology, Experimental and Molecular Therapeutics, Molecular and Cellular Biology/Genetics

Tumor Immunology and Immunotherapy for Nonimmunologists: Innovation and Discovery in Immune-Oncology

This educational session will update cancer researchers and clinicians about the latest developments in the detailed understanding of the types and roles of immune cells in tumors. It will summarize current knowledge about the types of T cells, natural killer cells, B cells, and myeloid cells in tumors and discuss current knowledge about the roles these cells play in the antitumor immune response. The session will feature some of the most promising up-and-coming cancer immunologists who will inform about their latest strategies to harness the immune system to promote more effective therapies.

Judith A Varner, Yuliya Pylayeva-Gupta

 

Introduction

Judith A Varner
New techniques reveal critical roles of myeloid cells in tumor development and progression
  • Different type of cells are becoming targets for immune checkpoint like myeloid cells
  • In T cell excluded or desert tumors T cells are held at periphery so myeloid cells can infiltrate though so macrophages might be effective in these immune t cell naïve tumors, macrophages are most abundant types of immune cells in tumors
  • CXCLs are potential targets
  • PI3K delta inhibitors,
  • Reduce the infiltrate of myeloid tumor suppressor cells like macrophages
  • When should we give myeloid or T cell therapy is the issue
Judith A Varner
Novel strategies to harness T-cell biology for cancer therapy
Positive and negative roles of B cells in cancer
Yuliya Pylayeva-Gupta
New approaches in cancer immunotherapy: Programming bacteria to induce systemic antitumor immunity

 

 

Tuesday, June 23

12:45 PM – 1:46 PM EDT

Virtual Educational Session

Cancer Chemistry

Chemistry to the Clinic: Part 2: Irreversible Inhibitors as Potential Anticancer Agents

There are numerous examples of highly successful covalent drugs such as aspirin and penicillin that have been in use for a long period of time. Despite historical success, there was a period of reluctance among many to purse covalent drugs based on concerns about toxicity. With advances in understanding features of a well-designed covalent drug, new techniques to discover and characterize covalent inhibitors, and clinical success of new covalent cancer drugs in recent years, there is renewed interest in covalent compounds. This session will provide a broad look at covalent probe compounds and drug development, including a historical perspective, examination of warheads and electrophilic amino acids, the role of chemoproteomics, and case studies.

Benjamin F Cravatt, Richard A. Ward, Sara J Buhrlage

 

Discovering and optimizing covalent small-molecule ligands by chemical proteomics

Benjamin F Cravatt
  • Multiple approaches are being investigated to find new covalent inhibitors such as: 1) cysteine reactivity mapping, 2) mapping cysteine ligandability, 3) and functional screening in phenotypic assays for electrophilic compounds
  • Using fluorescent activity probes in proteomic screens; have broad useability in the proteome but can be specific
  • They screened quiescent versus stimulated T cells to determine reactive cysteines in a phenotypic screen and analyzed by MS proteomics (cysteine reactivity profiling); can quantitate 15000 to 20,000 reactive cysteines
  • Isocitrate dehydrogenase 1 and adapter protein LCP-1 are two examples of changes in reactive cysteines they have seen using this method
  • They use scout molecules to target ligands or proteins with reactive cysteines
  • For phenotypic screens they first use a cytotoxic assay to screen out toxic compounds which just kill cells without causing T cell activation (like IL10 secretion)
  • INTERESTINGLY coupling these MS reactive cysteine screens with phenotypic screens you can find NONCANONICAL mechanisms of many of these target proteins (many of the compounds found targets which were not predicted or known)

Electrophilic warheads and nucleophilic amino acids: A chemical and computational perspective on covalent modifier

The covalent targeting of cysteine residues in drug discovery and its application to the discovery of Osimertinib

Richard A. Ward
  • Cysteine activation: thiolate form of cysteine is a strong nucleophile
  • Thiolate form preferred in polar environment
  • Activation can be assisted by neighboring residues; pKA will have an effect on deprotonation
  • pKas of cysteine vary in EGFR
  • cysteine that are too reactive give toxicity while not reactive enough are ineffective

 

Accelerating drug discovery with lysine-targeted covalent probes

 

Tuesday, June 23

12:45 PM – 2:15 PM EDT

Virtual Educational Session

Molecular and Cellular Biology/Genetics

Virtual Educational Session

Tumor Biology, Immunology

Metabolism and Tumor Microenvironment

This Educational Session aims to guide discussion on the heterogeneous cells and metabolism in the tumor microenvironment. It is now clear that the diversity of cells in tumors each require distinct metabolic programs to survive and proliferate. Tumors, however, are genetically programmed for high rates of metabolism and can present a metabolically hostile environment in which nutrient competition and hypoxia can limit antitumor immunity.

Jeffrey C Rathmell, Lydia Lynch, Mara H Sherman, Greg M Delgoffe

 

T-cell metabolism and metabolic reprogramming antitumor immunity

Jeffrey C Rathmell

Introduction

Jeffrey C Rathmell

Metabolic functions of cancer-associated fibroblasts

Mara H Sherman

Tumor microenvironment metabolism and its effects on antitumor immunity and immunotherapeutic response

Greg M Delgoffe
  • Multiple metabolites, reactive oxygen species within the tumor microenvironment; is there heterogeneity within the TME metabolome which can predict their ability to be immunosensitive
  • Took melanoma cells and looked at metabolism using Seahorse (glycolysis): and there was vast heterogeneity in melanoma tumor cells; some just do oxphos and no glycolytic metabolism (inverse Warburg)
  • As they profiled whole tumors they could separate out the metabolism of each cell type within the tumor and could look at T cells versus stromal CAFs or tumor cells and characterized cells as indolent or metabolic
  • T cells from hyerglycolytic tumors were fine but from high glycolysis the T cells were more indolent
  • When knock down glucose transporter the cells become more glycolytic
  • If patient had high oxidative metabolism had low PDL1 sensitivity
  • Showed this result in head and neck cancer as well
  • Metformin a complex 1 inhibitor which is not as toxic as most mito oxphos inhibitors the T cells have less hypoxia and can remodel the TME and stimulate the immune response
  • Metformin now in clinical trials
  • T cells though seem metabolically restricted; T cells that infiltrate tumors are low mitochondrial phosph cells
  • T cells from tumors have defective mitochondria or little respiratory capacity
  • They have some preliminary findings that metabolic inhibitors may help with CAR-T therapy

Obesity, lipids and suppression of anti-tumor immunity

Lydia Lynch
  • Hypothesis: obesity causes issues with anti tumor immunity
  • Less NK cells in obese people; also produce less IFN gamma
  • RNASeq on NOD mice; granzymes and perforins at top of list of obese downregulated
  • Upregulated genes that were upregulated involved in lipid metabolism
  • All were PPAR target genes
  • NK cells from obese patients takes up palmitate and this reduces their glycolysis but OXPHOS also reduced; they think increased FFA basically overloads mitochondria
  • PPAR alpha gamma activation mimics obesity

 

 

Tuesday, June 23

12:45 PM – 2:45 PM EDT

Virtual Educational Session

Clinical Research Excluding Trials

The Evolving Role of the Pathologist in Cancer Research

Long recognized for their role in cancer diagnosis and prognostication, pathologists are beginning to leverage a variety of digital imaging technologies and computational tools to improve both clinical practice and cancer research. Remarkably, the emergence of artificial intelligence (AI) and machine learning algorithms for analyzing pathology specimens is poised to not only augment the resolution and accuracy of clinical diagnosis, but also fundamentally transform the role of the pathologist in cancer science and precision oncology. This session will discuss what pathologists are currently able to achieve with these new technologies, present their challenges and barriers, and overview their future possibilities in cancer diagnosis and research. The session will also include discussions of what is practical and doable in the clinic for diagnostic and clinical oncology in comparison to technologies and approaches primarily utilized to accelerate cancer research.

 

Jorge S Reis-Filho, Thomas J Fuchs, David L Rimm, Jayanta Debnath

DETAILS

Tuesday, June 23

12:45 PM – 2:45 PM EDT

 

High-dimensional imaging technologies in cancer research

David L Rimm

  • Using old methods and new methods; so cell counting you use to find the cells then phenotype; with quantification like with Aqua use densitometry of positive signal to determine a threshold to determine presence of a cell for counting
  • Hiplex versus multiplex imaging where you have ten channels to measure by cycling of flour on antibody (can get up to 20plex)
  • Hiplex can be coupled with Mass spectrometry (Imaging Mass spectrometry, based on heavy metal tags on mAbs)
  • However it will still take a trained pathologist to define regions of interest or field of desired view

 

Introduction

Jayanta Debnath

Challenges and barriers of implementing AI tools for cancer diagnostics

Jorge S Reis-Filho

Implementing robust digital pathology workflows into clinical practice and cancer research

Jayanta Debnath

Invited Speaker

Thomas J Fuchs
  • Founder of spinout of Memorial Sloan Kettering
  • Separates AI from computational algothimic
  • Dealing with not just machines but integrating human intelligence
  • Making decision for the patients must involve human decision making as well
  • How do we get experts to do these decisions faster
  • AI in pathology: what is difficult? =è sandbox scenarios where machines are great,; curated datasets; human decision support systems or maps; or try to predict nature
  • 1) learn rules made by humans; human to human scenario 2)constrained nature 3)unconstrained nature like images and or behavior 4) predict nature response to nature response to itself
  • In sandbox scenario the rules are set in stone and machines are great like chess playing
  • In second scenario can train computer to predict what a human would predict
  • So third scenario is like driving cars
  • System on constrained nature or constrained dataset will take a long time for commuter to get to decision
  • Fourth category is long term data collection project
  • He is finding it is still finding it is still is difficult to predict nature so going from clinical finding to prognosis still does not have good predictability with AI alone; need for human involvement
  • End to end partnering (EPL) is a new way where humans can get more involved with the algorithm and assist with the problem of constrained data
  • An example of a workflow for pathology would be as follows from Campanella et al 2019 Nature Medicine: obtain digital images (they digitized a million slides), train a massive data set with highthroughput computing (needed a lot of time and big software developing effort), and then train it using input be the best expert pathologists (nature to human and unconstrained because no data curation done)
  • Led to first clinically grade machine learning system (Camelyon16 was the challenge for detecting metastatic cells in lymph tissue; tested on 12,000 patients from 45 countries)
  • The first big hurdle was moving from manually annotated slides (which was a big bottleneck) to automatically extracted data from path reports).
  • Now problem is in prediction: How can we bridge the gap from predicting humans to predicting nature?
  • With an AI system pathologist drastically improved the ability to detect very small lesions

 

Virtual Educational Session

Epidemiology

Cancer Increases in Younger Populations: Where Are They Coming from?

Incidence rates of several cancers (e.g., colorectal, pancreatic, and breast cancers) are rising in younger populations, which contrasts with either declining or more slowly rising incidence in older populations. Early-onset cancers are also more aggressive and have different tumor characteristics than those in older populations. Evidence on risk factors and contributors to early-onset cancers is emerging. In this Educational Session, the trends and burden, potential causes, risk factors, and tumor characteristics of early-onset cancers will be covered. Presenters will focus on colorectal and breast cancer, which are among the most common causes of cancer deaths in younger people. Potential mechanisms of early-onset cancers and racial/ethnic differences will also be discussed.

Stacey A. Fedewa, Xavier Llor, Pepper Jo Schedin, Yin Cao

Cancers that are and are not increasing in younger populations

Stacey A. Fedewa

 

  • Early onset cancers, pediatric cancers and colon cancers are increasing in younger adults
  • Younger people are more likely to be uninsured and these are there most productive years so it is a horrible life event for a young adult to be diagnosed with cancer. They will have more financial hardship and most (70%) of the young adults with cancer have had financial difficulties.  It is very hard for women as they are on their childbearing years so additional stress
  • Types of early onset cancer varies by age as well as geographic locations. For example in 20s thyroid cancer is more common but in 30s it is breast cancer.  Colorectal and testicular most common in US.
  • SCC is decreasing by adenocarcinoma of the cervix is increasing in women’s 40s, potentially due to changing sexual behaviors
  • Breast cancer is increasing in younger women: maybe etiologic distinct like triple negative and larger racial disparities in younger African American women
  • Increased obesity among younger people is becoming a factor in this increasing incidence of early onset cancers

 

 

Other Articles on this Open Access  Online Journal on Cancer Conferences and Conference Coverage in Real Time Include

Press Coverage

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on NCI Activities: COVID-19 and Cancer Research 5:20 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Evaluating Cancer Genomics from Normal Tissues Through Metastatic Disease 3:50 PM

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Session on Novel Targets and Therapies 2:35 PM

 

Read Full Post »

An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

3.2.9

3.2.9   An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

HER2 is an important prognostic biomarker for 20–30% of breast cancers, which is the most common cancer in women. Overexpression of the HER2 receptor stimulates breast cells to proliferate and differentiate uncontrollably, thereby enhancing the malignancy of breast cancer and resulting in a poor prognosis for affected individuals. Current therapies to suppress the overexpression of HER2 in breast cancer mainly involve treatment with HER2-specific monoclonal antibodies. However, these monoclonal anti-HER2 antibodies have severe side effects in clinical trials, such as diarrhea, abnormal liver function, and drug resistance. Removing HER2 from the plasma membrane or inhibiting the gene expression of HER2 is a promising alternative that could limit the malignancy of HER2-positive cancer cells.

DNA origami is an emerging field of DNA-based nanotechnology and intelligent DNA nanorobots show great promise in working as a drug delivery system in healthcare. Different DNA-based nanorobots have been developed as affordable and facile therapeutic drugs. In particular, many studies reported that a tetrahedral framework nucleic acid (tFNA) could serve as a promising DNA nanocarrier for many antitumor drugs, owing to its high biocompatibility and biosecurity. For example, tFNA was reported to effectively deliver paclitaxel or doxorubicin to cancer cells for reversing drug resistance, small interfering RNAs (siRNAs) have been modified into tFNA for targeted drug delivery. Moreover, the production and storage of tFNA are not complicated, and they can be quickly degraded in lysosomes by cells. Since both free HApt and tFNA can be diverted into lysosomes, so,  combining the HApt and tFNA as a novel DNA nanorobot (namely, HApt-tFNA) can be an effective strategy to improve its delivery and therapeutic efficacy in treating HER2-positive breast cancer.

Researchers reported that a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. An anti-HER2 aptamer (HApt) was site-specifically anchored on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy.

It was previously reported that tFNA was degraded by lysosomes and could enhance cell autophagy. Results indicated that free Cy5-HApt and Cy5-HApt-tFNA could enter the lysosomes; thus, tFNA can be regarded as an efficient nanocarrier to transmit HApt into the target organelle. The DNA nanorobot composed of HApt and tFNA showed a higher stability and a more effective performance than free HApt against HER2-positive breast cancer cells. The PI3K/AKT pathway was inhibited when membrane-bound HER2 decreased in SK-BR-3 cells under the action of HApt-tFNA. The research findings suggest that tFNA can enhance the anticancer effects of HApt on SK-BR-3 cells; while HApt-tFNA can bind to HER2 specifically, the compounded HER2-HApt-tFNA complexes can then be transferred and degraded in lysosomes. After these processes, the accumulation of HER2 in the plasma membrane would decrease, which could also influence the downstream PI3K/AKT signaling pathway that is associated with cell growth and death.

However, some limitations need to be noted when interpreting the findings: (i) the cytotoxicity of the nanorobot on HER2-positive cancer cells was weak, and the anticancer effects between conventional monoclonal antibodies and HApt-tFNA was not compared; (ii) the differences in delivery efficiency between tFNA and other nanocarriers need to be confirmed; and (iii) the confirmation of anticancer effects of HApt-tFNA on tumors within animals remains challenging. Despite these limitations, the present study provided novel evidence of the biological effects of tFNA when combined with HApt. Although the stability and the anticancer effects of HApt-tFNA may require further improvement before clinical application, this study initiates a promising step toward the development of nanomedicines with novel and intelligent DNA nanorobots for tumor treatment.

References:

https://pubs.acs.org/doi/10.1021/acs.nanolett.9b01320

https://www.ncbi.nlm.nih.gov/pubmed/27939064

https://www.ncbi.nlm.nih.gov/pubmed/11694782

https://www.ncbi.nlm.nih.gov/pubmed/27082923

https://www.ncbi.nlm.nih.gov/pubmed/25365825

https://www.ncbi.nlm.nih.gov/pubmed/26840503

https://www.ncbi.nlm.nih.gov/pubmed/29802035

Read Full Post »

Newly Found Functions of B Cell

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

4.1.8

4.1.8   Newly Found Functions of B Cell, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 4: Single Cell Genomics

The importance of B cells to human health is more than what is already known. Vaccines capable of eradicating disease activate B cells, cancer checkpoint blockade therapies are produced using B cells, and B cell deficiencies have devastating impacts. B cells have been a subject of fascination since at least the 1800s. The notion of a humoral branch to immunity emerged from the work of and contemporaries studying B cells in the early 1900s.

Efforts to understand how we could make antibodies from B cells against almost any foreign surface while usually avoiding making them against self, led to Burnet’s clonal selection theory. This was followed by the molecular definition of how a diversity of immunoglobulins can arise by gene rearrangement in developing B cells. Recombination activating gene (RAG)-dependent processes of V-(D)-J rearrangement of immunoglobulin (Ig) gene segments in developing B cells are now known to be able to generate an enormous amount of antibody diversity (theoretically at least 1016 possible variants).

With so much already known, B cell biology might be considered ‘‘done’’ with only incremental advances still to be made, but instead, there is great activity in the field today with numerous major challenges that remain. For example, efforts are underway to develop vaccines that induce broadly neutralizing antibody responses, to understand how autoantigen- and allergen-reactive antibodies arise, and to harness B cell-depletion therapies to correct non-autoantibody-mediated diseases, making it evident that there is still an enormous amount we do not know about B cells and much work to be done.

Multiple self-tolerance checkpoints exist to remove autoreactive specificities from the B cell repertoire or to limit the ability of such cells to secrete autoantigen-binding antibody. These include receptor editing and deletion in immature B cells, competitive elimination of chronically autoantigen binding B cells in the periphery, and a state of anergy that disfavors PC (plasma cell) differentiation. Autoantibody production can occur due to failures in these checkpoints or in T cell self-tolerance mechanisms. Variants in multiple genes are implicated in increasing the likelihood of checkpoint failure and of autoantibody production occurring.

Autoantibodies are pathogenic in a number of human diseases including SLE (Systemic lupus erythematosus), pemphigus vulgaris, Grave’s disease, and myasthenia gravis. B cell depletion therapy using anti-CD20 antibody has been protective in some of these diseases such as pemphigus vulgaris, but not others such as SLE and this appears to reflect the contribution of SLPC (Short lived plasma cells) versus LLPC (Long lived plasma cells) to autoantibody production and the inability of even prolonged anti-CD20 treatment to eliminate the later. These clinical findings have added to the importance of understanding what factors drive SLPC versus LLPC development and what the requirements are to support LLPCs.

B cell depletion therapy has also been efficacious in several other autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes, and rheumatoid arthritis (RA). While the potential contributions of autoantibodies to the pathology of these diseases are still being explored, autoantigen presentation has been posited as another mechanism for B cell disease-promoting activity.

In addition to autoimmunity, B cells play an important role in allergic diseases. IgE antibodies specific for allergen components sensitize mast cells and basophils for rapid degranulation in response to allergen exposures at various sites, such as in the intestine (food allergy), nose (allergic rhinitis), and lung (allergic asthma). IgE production may thus be favored under conditions that induce weak B cell responses and minimal GC (Germinal center) activity, thereby enabling IgE+ B cells and/or PCs to avoid being outcompeted by IgG+ cells. Aside from IgE antibodies, B cells may also contribute to allergic inflammation through their interactions with T cells.

B cells have also emerged as an important source of the immunosuppressive cytokine IL-10. Mouse studies revealed that B cell-derived IL-10 can promote recovery from EAE (Experimental autoimmune encephalomyelitis) and can be protective in models of RA and type 1 diabetes. Moreover, IL-10 production from B cells restrains T cell responses during some viral and bacterial infections. These findings indicate that the influence of B cells on the cytokine milieu will be context dependent.

The presence of B cells in a variety of solid tumor types, including breast cancer, ovarian cancer, and melanoma, has been associated in some studies with a positive prognosis. The mechanism involved is unclear but could include antigen presentation to CD4 and CD8 T cells, antibody production and subsequent enhancement of presentation, or by promoting tertiary lymphoid tissue formation and local T cell accumulation. It is also noteworthy that B cells frequently make antibody responses to cancer antigens and this has led to efforts to use antibodies from cancer patients as biomarkers of disease and to identify immunotherapy targets.

Malignancies of B cells themselves are a common form of hematopoietic cancer. This predilection arises because the gene modifications that B cells undergo during development and in immune responses are not perfect in their fidelity, and antibody responses require extensive B cell proliferation. The study of B cell lymphomas and their associated genetic derangements continues to be illuminating about requirements for normal B cell differentiation and signaling while also leading to the development of targeted therapies.

Overall this study attempted to capture some of the advances in the understanding of B cell biology that have occurred since the turn of the century. These include important steps forward in understanding how B cells encounter antigens, the co-stimulatory and cytokine requirements for their proliferation and differentiation, and how properties of the B cell receptor, the antigen, and helper T cells influence B cell responses. Many advances continue to transform the field including the impact of deep sequencing technologies on understanding B cell repertoires, the IgA-inducing microbiome, and the genetic defects in humans that compromise or exaggerate B cell responses or give rise to B cell malignancies.

Other advances that are providing insight include:

  • single-cell approaches to define B cell heterogeneity,
  • glycomic approaches to study effector sugars on antibodies,
  • new methods to study human B cell responses including CRISPR-based manipulation, and
  • the use of systems biology to study changes at the whole organism level.

With the recognition that B cells and antibodies are involved in most types of immune response and the realization that inflammatory processes contribute to a wider range of diseases than previously believed, including, for example, metabolic syndrome and neurodegeneration, it is expected that further

  • basic research-driven discovery about B cell biology will lead to more and improved approaches to maintain health and fight disease in the future.

References:

https://www.cell.com/cell/fulltext/S0092-8674(19)30278-8

https://onlinelibrary.wiley.com/doi/full/10.1002/hon.2405

https://www.pnas.org/content/115/18/4743

https://onlinelibrary.wiley.com/doi/full/10.1111/all.12911

https://cshperspectives.cshlp.org/content/10/5/a028795

https://www.sciencedirect.com/science/article/abs/pii/S0049017218304955

Read Full Post »

Immunoediting can be a constant defense in the cancer landscape

Immuno-editing can be a constant defense in the cancer landscape, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

There are many considerations in the cancer immunoediting landscape of defense and regulation in the cancer hallmark biology. The cancer hallmark biology in concert with key controls of the HLA compatibility affinity mechanisms are pivotal in architecting a unique patient-centric therapeutic application. Selection of random immune products including neoantigens, antigens, antibodies and other vital immune elements creates a high level of uncertainty and risk of undesirable immune reactions. Immunoediting is a constant process. The human innate and adaptive forces can either trigger favorable or unfavorable immunoediting features. Cancer is a multi-disease entity. There are multi-factorial initiators in a certain disease process. Namely, environmental exposures, viral and / or microbiome exposure disequilibrium, direct harm to DNA, poor immune adaptability, inherent risk and an individual’s own vibration rhythm in life.

 

When a human single cell is crippled (Deranged DNA) with mixed up molecular behavior that is the initiator of the problem. A once normal cell now transitioned into full threatening molecular time bomb. In the modeling and creation of a tumor it all begins with the singular molecular crisis and crippling of a normal human cell. At this point it is either chop suey (mixed bit responses) or a productive defensive and regulation response and posture of the immune system. Mixed bits of normal DNA, cancer-laden DNA, circulating tumor DNA, circulating normal cells, circulating tumor cells, circulating immune defense cells, circulating immune inflammatory cells forming a moiety of normal and a moiety of mess. The challenge is to scavenge the mess and amplify the normal.

 

Immunoediting is a primary push-button feature that is definitely required to be hit when it comes to initiating immune defenses against cancer and an adaptation in favor of regression. As mentioned before that the tumor microenvironment is a “mixed bit” moiety, which includes elements of the immune system that can defend against circulating cancer cells and tumor growth. Personalized (Precision-Based) cancer vaccines must become the primary form of treatment in this case. Current treatment regimens in conventional therapy destroy immune defenses and regulation and create more serious complications observed in tumor progression, metastasis and survival. Commonly resistance to chemotherapeutic agents is observed. These personalized treatments will be developed in concert with cancer hallmark analytics and immunocentrics affinity and selection mapping. This mapping will demonstrate molecular pathway interface and HLA compatibility and adaptation with patientcentricity.

References:

 

https://www.linkedin.com/pulse/immunoediting-cancer-landscape-john-catanzaro/

 

https://www.cell.com/cell/fulltext/S0092-8674(16)31609-9

 

https://www.researchgate.net/publication/309432057_Circulating_tumor_cell_clusters_What_we_know_and_what_we_expect_Review

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840207/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.frontiersin.org/articles/10.3389/fimmu.2018.00414/full

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593672/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190561/

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388310/

 

https://www.linkedin.com/pulse/cancer-hallmark-analytics-omics-data-pathway-studio-review-catanzaro/

 

Read Full Post »

Older Posts »