Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
APOE was marker for defining a long term survivor and short term survivor for ovarian cancer patients; the markers were in the stroma
there is spatial communication between tumor and underlying stroma
it is imperative to understand how your multiomics equipment images a tumor area before it laser captures and send to the MS system; can lose a lot of tissue and information based on differences in resolution
many of these multiomics systems are validated for the clinic in EU not US
multiomics spatial analysis allows you to image protein, metabolite, mRNA expression in the 3 dimensional environment of the tumor (tumor cells and stroma)
they are making a human tumor atlas
they say a patient who had tumor went home during COVID and took vaccine but got ill with vaccine; but came back to check tumor and tumor had greatly regressed because prevaccine the tumor was immunologically cold and post COVID vaccine any left over tumor showed great infiltration of immune cells
BD Bioscience multiomics platform is modular and can add more omics levels in the platorm
for example someone wanted to look at T cells
people have added CRISPR screens on the omics platform
most people are using single cell spatial omics
they have a FACS on their platform too so you can look at single cell spatial omics and sort different cellular populations
very comparative to 10X Genomics platform
their proteomics is another layer you can add on their platform however with proteomics you can high background notice with spatial proteomics or a limited panel of biomarkers
Their OMICS Protein One panels are optimized for biology and tumor type.
get high quality multiomics data and proteomics data but in a 3D spatial format
developed Cellismo Data Visualization software tool
4:55-5:10
Harsha Gowda, PhD, Senior Principal Scientist, Director, Research & Lab Operations, Signios Bio
Signios Biosciences (Signios Bio) is the US-based arm of MedGenome, a global leader in genetic testing services, genomics research, and drug discovery solutions.
Signios Bio is a multiomics and bioinformatics company dedicated to revealing the intricate signals within biological data. We leverage the power of multiomics—integrating data from genomics, transcriptomics, proteomics, epigenomics, metabolomics, and microbiomics—to gain a comprehensive understanding of disease biology. Our AI-powered bioinformatics platform allows us to efficiently analyze these complex datasets, uncovering hidden patterns and accelerating the development of new therapies and diagnostics.
Through the integration of cutting-edge multiomics technologies, advanced bioinformatics, and the expertise of world-class scientists, we enable researchers and clinicians with comprehensive, end-to-end solutions to improve drug discovery and development and advance precision medicine.
As part of MedGenome, we have access to real-world evidence (RWE) from global research networks across the US, Europe, Asia, Africa, Middle East, and Latin America. This access enables us to work with our partners to uncover insights that can lead to new biomarkers and drug targets, ensuring that precision medicine is inclusive and effective for all.
The Payload Revolution: Redefining the Future of Antibody-Drug Conjugates (ADCs)
Curator: Dr. Sudipta Saha, Ph. D.
Antibody-Drug Conjugates (ADCs) are at the forefront of targeted cancer therapy. While much attention has focused on antibody engineering and linker technology, the real breakthrough may lie in the payload—the cytotoxic compound delivered to tumor cells.
Historically, ADC payloads have relied on microtubule inhibitors like MMAE and MMAF, and topoisomerase I inhibitors such as SN-38 and Exatecan. These payloads are potent but limited in diversity, making differentiation difficult in a crowded therapeutic landscape.
The next wave of innovation introduces unconventional payloads with novel mechanisms:
ISACs (Immune-Stimulating ADCs) activate the immune system locally.
Protein degraders eliminate cancer-critical proteins without inhibiting them directly.
Urease-based and membrane-disrupting agents affect the tumor microenvironment.
RNA polymerase inhibitors and peptide-based payloads offer precision with reduced systemic toxicity.
This shift also places new demands on linker design. Linkers must now accommodate payloads with diverse chemical properties and release them selectively at the tumor site. A payload–linker mismatch could compromise both safety and efficacy.
Ultimately, the focus is shifting toward payloads not just as cytotoxins, but as precision-guided interventions. This evolution could redefine how ADCs are developed and positioned in treatment regimens, enabling breakthroughs in resistant and heterogeneous cancers. The ADC revolution is payload-powered—and the future belongs to those who can innovate at the molecular level.
Protein Switches: The Programmable Future of Bio-therapeutics
Curator: Dr. Sudipta Saha, Ph. D.
A PNAS paper entitled “A protein therapeutic modality founded on molecular regulation” presents a pioneering approach to creating protein switches—engineered enzymes that activate only in specific molecular environments. This design introduces a new class of context-dependent therapeutics for precision medicine.
Using domain-insertion techniques, researchers inserted ligand-binding domains into scaffold proteins like β-lactamase. These proteins remain inactive until encountering a specific small molecule, which triggers a conformational change and restores enzymatic activity. This offers precise spatiotemporal control—ideal for minimizing off-target effects.
One key innovation is the systematic insertional mutagenesis that identifies functional switch sites across the protein scaffold. This enables the construction of vast protein libraries, increasing the likelihood of finding optimal switch configurations. Furthermore, the approach is modular—different binding domains and enzymes can be combined to create switches tailored to specific clinical contexts.
These smart proteins can be programmed to respond to cancer biomarkers, metabolite levels, or disease-specific molecular cues. By activating only under disease conditions, they provide a blueprint for next-generation bio-therapeutics—potent, selective, and safer.
The method also opens avenues for drug delivery systems, diagnostics, and biosensors, where conditional activation is critical. Overall, this work represents a conceptual leap in synthetic biology and bioengineering, with implications spanning oncology, infectious disease, and regenerative medicine.
Immuno-Timebombs: The Hidden Drivers of Age-Related Illness
Curator: Dr. Sudipta Saha, Ph. D.
There are two converging biological processes that drive most age-related diseases: immunosenescence and inflammaging. Together, they explain how a deteriorating immune system and chronic low-grade inflammation contribute to neurodegenerative diseases, cancer, cardiovascular disorders, and frailty.
Immunosenescence refers to the waning competence of both innate and adaptive immune systems. With age, T and B cells become less effective, and macrophage function declines. This makes older individuals more susceptible to infections and less efficient at clearing dysfunctional cells.
Inflammaging, on the other hand, is the persistent presence of inflammation without infection. Factors like gut microbiome alterations, senescent cell accumulation, and epigenetic drift contribute to this condition. Over time, this “silent fire” damages tissues and lays the groundwork for disease.
These drivers don’t just correlate with disease—they often precede it. This positions inflammaging and immunosenescence as targets for prevention, not just treatment. Interventions like exercise, caloric modulation, and anti-inflammatory diets may attenuate their effects. Emerging therapies such as senolytics and immune rejuvenation approaches (e.g., thymic regeneration) are showing promise.
This article also calls for a paradigm shift in medical science—from reactive disease management to proactive longevity interventions. As we unravel the biological clocks of aging, strategies targeting immune recalibration may delay or prevent multiple diseases simultaneously.
The future of healthy aging may well depend on how early we can intervene in this immuno-inflammatory loop—before pathology sets in.
A multicenter retrospective cohort study published in The Lancet has evaluated the effectiveness of GLP-1 receptor agonists (GLP-1 RAs), including semaglutide and tirzepatide, versus bariatric surgery in managing type 2 diabetes and obesity. The study was conducted using data from real-world clinical settings involving adults with type 2 diabetes and a body mass index (BMI) over 30.
Patients treated with GLP-1 RAs were found to have significant improvements in glycemic control and weight loss; however, bariatric surgery led to more pronounced and sustained reductions in HbA1c and body weight over a 2-year follow-up. Cardio-metabolic benefits, including blood pressure and lipid profile improvements, were also more prominent in the surgery group.
Despite this, GLP-1 RAs were associated with a lower incidence of early complications and shorter recovery times. Adverse gastrointestinal events were commonly reported in both groups, though surgical complications were more severe but less frequent.
This study suggested that while bariatric surgery remains the most effective intervention for sustained weight and glycemic outcomes, GLP-1 RAs offer a safer, non-invasive alternative with substantial benefit, particularly for patients ineligible or unwilling to undergo surgery. The potential for GLP-1 RA therapy to delay or reduce the need for surgical intervention was also discussed.
These findings have emphasized the importance of personalized treatment strategies based on patient comorbidities, preferences, and risk profiles.
Unlocking the Secrets of Longevity: A 117-Year-Old Woman’s Genes Defied Aging
Curator: Dr. Sudipta Saha, Ph.D.
A recent study led by the University of Barcelona has shed light on the genetic factors contributing to exceptional human longevity. The research focused on Maria Branyas Morera, who was recognized as the world’s oldest living person until her passing at age 117 in August 2024. The findings revealed that her unique genetic makeup allowed her cells to function as if they were 17 years younger, and her gut microbiota resembled that of an infant.
Branyas Morera attributed her remarkable lifespan to “luck and good genetics.” Beyond her genetic advantages, she maintained a healthy lifestyle characterized by a Mediterranean diet, regular physical activity, and strong family bonds. These factors likely contributed to her prolonged cognitive clarity and minimal health issues, primarily limited to joint pain and hearing loss.
This study adds to a growing body of research exploring the genetic foundations of longevity. For instance, the Okinawa Centenarian Study has examined over 600 centenarians from Okinawa, Japan, uncovering genetic markers associated with extended lifespan and reduced incidence of age-related diseases.
Similarly, the New England Centenarian Study has identified specific genetic variations linked to longevity, providing insights into the biological mechanisms that allow some individuals to live significantly longer than average.
Researchers hope that understanding these genetic factors can inform the development of treatments for age-related diseases, challenging the notion that aging and illness are inextricably linked. By studying individuals like Branyas Morera, scientists aim to uncover strategies to promote healthier aging across the broader population.
However, it’s important to note that while genetics play a crucial role in exceptional longevity, lifestyle factors such as diet, exercise, and social connections also significantly impact overall health and lifespan. The interplay between genetic predisposition and environmental influences continues to be a critical area of research in understanding human aging.
Nearly half of the global population—and 80 percent of patients in therapeutic areas such as immunology—are women. Yet, treatments are frequently developed without tailored insights for female patients, often ignoring critical biological differences such as hormonal impacts, genetic factors, and cellular sex. Historically, women’s health has been narrowly defined through the lens of reproductive organs, while for non-reproductive conditions, women were treated as “small men.” This lack of focus on sex-specific biology has contributed to significant gaps in healthcare.
A recent analysis found that women spend 25 percent more of their lives in poor health compared with men due to the absence of sex-based treatments. Addressing this disparity could not only improve women’s quality of life but also unlock over $1 trillion in annual global GDP by 2040.
Four key factors contribute to the women’s health gap: limited understanding of sex-based biological differences, healthcare systems designed around male physiology, incomplete data that underestimates women’s disease burden, and chronic underfunding of female-focused research. For instance, despite women representing 78 percent of U.S. rheumatoid arthritis patients, only 7 percent of related NIH funding in 2019 targeted female-specific studies.
However, change is happening. Companies have demonstrated how targeted R&D can drive better outcomes for women. These therapies achieved expanded FDA approvals after clinical trials revealed their unique benefits for female patients. Similarly, addressing sex-based treatment gaps in asthma, atrial fibrillation, and tuberculosis could prevent millions of disability-adjusted life years.
By closing the women’s health gap, biopharma companies can drive innovation, improve therapeutic outcomes, and build high-growth markets while addressing long-standing inequities. This untapped opportunity holds the potential to transform global health outcomes for women and create a more equitable future.
Regulatory T cells (Tregs) are important for sperm tolerance and male fertility
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
Regulatory T cells (Tregs) are specialized immune cells that modulate tissue homeostasis. They are a specialized subset of T lymphocytes that function as suppressive immune cells and inhibit various elements of immune response in vitro and in vivo. While there are constraints on the number or function of Tregs which can be exploited to evoke an effective anti-tumor response, sufficient expansion of Tregs is essential for successful organ transplantation and for promoting tolerance of self and foreign antigens. Current studies have provided evidence that a defect in the number or function of Tregs contributes to the etiology of several reproductive diseases.
In the male reproductive tract, prevention of autoimmune responses against antigenic spermatozoa, while ensuring protection against stressors, is a key determinant of fertility. Using an autoimmunity-induced model, it was uncovered that the role of Tregs in maintaining the tolerogenic state of the testis and epididymis. The loss of tolerance induced an exacerbated immune cell infiltration and the development of anti-sperm antibodies, which caused severe male subfertility. By identifying immunoregulatory mechanisms in the testis and epididymis.
Tregs modulate tissue homeostatic processes and immune responses. Understanding tissue-Treg biology will contribute to developing precision-targeting treatment strategies. Here, it was reported that Tregs maintain the tolerogenic state of the testis and epididymis, where sperm are produced and mature. It was found that Treg depletion induces severe autoimmune orchitis and epididymitis, manifested by an exacerbated immune cell infiltration [CD4 T cells, monocytes, and mononuclear phagocytes (MPs)] and the development of anti-sperm antibodies (ASA).
In Treg-depleted mice, MPs increased projections toward the epididymal lumen as well as invading the lumen. ASA-bound sperm enhance sperm agglutination and might facilitate sperm phagocytosis. Tolerance breakdown impaired epididymal epithelial function and altered extracellular vesicle cargo, both of which play crucial roles in the acquisition of sperm fertilizing ability and subsequent embryo development. The affected mice had reduced sperm number and motility and severe fertility defects.
Deciphering these immunoregulatory mechanisms may lead to the development of therapies for infertility and identifying potential targets for immuno-contraception. Ultimately, such knowledge fills gaps related to reproductive mucosa, which is an understudied facet of human male health.
Mimicking vaginal cells and microbiome interactions on chip microfluidic culture
Reporter and Curator: Dr. Sudipta Saha, Ph.D.
Scientists at Harvard University’s Wyss Institute for Biologically Inspired Engineering have developed the world’s first “vagina-on-a-chip,” which uses living cells and bacteria to mimic the microbial environment of the human vagina. It could help to test drugs against bacterial vaginosis, a common microbial imbalance that makes millions of people more susceptible to sexually transmitted diseases and puts them at risk of preterm delivery when pregnant. Vaginal health is difficult to study in a laboratory setting partly because laboratory animals have “totally different microbiomes” than humans. To address this, scientists have created an unique chip, which is an inch-long, rectangular polymer case containing live human vaginal tissue from a donor and a flow of estrogen-carrying material to simulate vaginal mucus.
The organs-on-a-chip mimic real bodily function, making it easier to study diseases and test drugs. Previous examples include models of the lungs and the intestines. In this case, the tissue acts like that of a real vagina in some important ways. It even responds to changes in estrogen by adjusting the expression of certain genes. And it can grow a humanlike microbiome dominated by “good” or “bad” bacteria. The researchers have demonstrated that Lactobacilli growing on the chip’s tissue help to maintain a low pH by producing lactic acid. Conversely, if the researchers introduce Gardnerella, the chip develops a higher pH, cell damage and increased inflammation: classic bacterial vaginosis signs. So, the chip can demonstrate how a healthy / unhealthy microbiome affects the vagina.
The next step is personalization or subject specific culture from individuals. The chip is a real leap forward, it has the prospect of testing how typical antibiotic treatments against bacterial vaginosis affect the different bacterial strains. Critics of organ-on-a-chip technology often raise the point that it models organs in isolation from the rest of the body. There are limitations such as many researchers are interested in vaginal microbiome changes that occur during pregnancy because of the link between bacterial vaginosis and labor complications. Although the chip’s tissue responds to estrogen, but it does not fully mimic pregnancy without feedback loops from other organs. The researchers are already working on connecting the vagina chip to a cervix chip, which could better represent the larger reproductive system.
All these information indicate that the human vagina chip offers a new model to study host-vaginal microbiome interactions in both optimal and non-optimal states, as well as providing a human relevant preclinical model for development and testing of reproductive therapeutics, including live bio-therapeutics products for bacterial vaginosis. This microfluidic human vagina chip that enables flow through an open epithelial lumen also offers a unique advantage for studies on the effect of cervicovaginal mucus on vaginal health as clinical mucus samples or commercially available mucins can be flowed through this channel. The role of resident and circulating immune cells in host-microbiome interactions also can be explored by incorporating these cells into the vagina chip in the future, as this has been successfully done in various other organ chip models.
#TUBiol5227: Biomarkers & Biotargets: Genetic Testing and Bioethics
Curator: Stephen J. Williams, Ph.D.
The advent of direct to consumer (DTC) genetic testing and the resultant rapid increase in its popularity as well as companies offering such services has created some urgent and unique bioethical challenges surrounding this niche in the marketplace. At first, most DTC companies like 23andMe and Ancestry.com offered non-clinical or non-FDA approved genetic testing as a way for consumers to draw casual inferences from their DNA sequence and existence of known genes that are linked to disease risk, or to get a glimpse of their familial background. However, many issues arose, including legal, privacy, medical, and bioethical issues. Below are some articles which will explain and discuss many of these problems associated with the DTC genetic testing market as well as some alternatives which may exist.
As you can see,this market segment appears to want to expand into the nutritional consulting business as well as targeted biomarkers for specific diseases.
Rising incidence of genetic disorders across the globe will augment the market growth
Increasing prevalence of genetic disorders will propel the demand for direct-to-consumer genetic testing and will augment industry growth over the projected timeline. Increasing cases of genetic diseases such as breast cancer, achondroplasia, colorectal cancer and other diseases have elevated the need for cost-effective and efficient genetic testing avenues in the healthcare market.
For instance, according to the World Cancer Research Fund (WCRF), in 2018, over 2 million new cases of cancer were diagnosed across the globe. Also, breast cancer is stated as the second most commonly occurring cancer. Availability of superior quality and advanced direct-to-consumer genetic testing has drastically reduced the mortality rates in people suffering from cancer by providing vigilant surveillance data even before the onset of the disease. Hence, the aforementioned factors will propel the direct-to-consumer genetic testing market overt the forecast timeline.
Nutrigenomic Testing will provide robust market growth
The nutrigenomic testing segment was valued over USD 220 million market value in 2019 and its market will witness a tremendous growth over 2020-2028. The growth of the market segment is attributed to increasing research activities related to nutritional aspects. Moreover, obesity is another major factor that will boost the demand for direct-to-consumer genetic testing market.
Nutrigenomics testing enables professionals to recommend nutritional guidance and personalized diet to obese people and help them to keep their weight under control while maintaining a healthy lifestyle. Hence, above mentioned factors are anticipated to augment the demand and adoption rate of direct-to-consumer genetic testing through 2028.
Browse key industry insights spread across 161 pages with 126 market data tables & 10 figures & charts from the report, “Direct-To-Consumer Genetic Testing Market Size By Test Type (Carrier Testing, Predictive Testing, Ancestry & Relationship Testing, Nutrigenomics Testing), By Distribution Channel (Online Platforms, Over-the-Counter), By Technology (Targeted Analysis, Single Nucleotide Polymorphism (SNP) Chips, Whole Genome Sequencing (WGS)), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020 – 2028” in detail along with the table of contents: https://www.gminsights.com/industry-analysis/direct-to-consumer-dtc-genetic-testing-market
Targeted analysis techniques will drive the market growth over the foreseeable future
Based on technology, the DTC genetic testing market is segmented into whole genome sequencing (WGS), targeted analysis, and single nucleotide polymorphism (SNP) chips. The targeted analysis market segment is projected to witness around 12% CAGR over the forecast period. The segmental growth is attributed to the recent advancements in genetic testing methods that has revolutionized the detection and characterization of genetic codes.
Targeted analysis is mainly utilized to determine any defects in genes that are responsible for a disorder or a disease. Also, growing demand for personalized medicine amongst the population suffering from genetic diseases will boost the demand for targeted analysis technology. As the technology is relatively cheaper, it is highly preferred method used in direct-to-consumer genetic testing procedures. These advantages of targeted analysis are expected to enhance the market growth over the foreseeable future.
Over-the-counter segment will experience a notable growth over the forecast period
The over-the-counter distribution channel is projected to witness around 11% CAGR through 2028. The segmental growth is attributed to the ease in purchasing a test kit for the consumers living in rural areas of developing countries. Consumers prefer over-the-counter distribution channel as they are directly examined by regulatory agencies making it safer to use, thereby driving the market growth over the forecast timeline.
Favorable regulations provide lucrative growth opportunities for direct-to-consumer genetic testing
Europe direct-to-consumer genetic testing market held around 26% share in 2019 and was valued at around USD 290 million. The regional growth is due to elevated government spending on healthcare to provide easy access to genetic testing avenues. Furthermore, European regulatory bodies are working on improving the regulations set on the direct-to-consumer genetic testing methods. Hence, the above-mentioned factors will play significant role in the market growth.
Focus of market players on introducing innovative direct-to-consumer genetic testing devices will offer several growth opportunities
Few of the eminent players operating in direct-to-consumer genetic testing market share include Ancestry, Color Genomics, Living DNA, Mapmygenome, Easy DNA, FamilytreeDNA (Gene By Gene), Full Genome Corporation, Helix OpCo LLC, Identigene, Karmagenes, MyHeritage, Pathway genomics, Genesis Healthcare, and 23andMe. These market players have undertaken various business strategies to enhance their financial stability and help them evolve as leading companies in the direct-to-consumer genetic testing industry.
For example, in November 2018, Helix launched a new genetic testing product, DNA discovery kit, that allows customer to delve into their ancestry. This development expanded the firm’s product portfolio, thereby propelling industry growth in the market.
The following posts discuss bioethical issues related to genetic testing and personalized medicine from a clinicians and scientisit’s perspective
Question:Each of these articles discusses certain bioethical issues although focuses on personalized medicine and treatment. Given your understanding of the robust process involved in validating clinical biomarkers and the current state of the DTC market, how could DTC testing results misinform patients and create mistrust in the physician-patient relationship?
Question: If you are developing a targeted treatment with a companion diagnostic, what bioethical concerns would you address during the drug development process to ensure fair, equitable and ethical treatment of all patients, in trials as well as post market?
Articles on Genetic Testing, Companion Diagnostics and Regulatory Mechanisms
Question: What type of regulatory concerns should one have during the drug development process in regards to use of biomarker testing?From the last article on Protecting Your IP how important is it, as a drug developer, to involve all payers during the drug development process?