Advertisements
Feeds:
Posts
Comments

Archive for the ‘CT’ Category


Autocrine selection of GLP-1 binding site

Larry H. Bernstein, MD, FCAP, Curator

LPBI

Update 12/15/2015

TSRI Team Finds Unique Anti-Diabetes Compound

Scientists from The Scripps Research Institute (TSRI) have deployed a powerful new drug discovery technique to identify an anti-diabetes compound with a novel mechanism of action

http://www.technologynetworks.com/HTS/news.aspx?ID=186055

The finding may lead to a new type of diabetes treatment. Just as importantly, it demonstrates the potential of the new technique, which enables researchers to quickly find drug candidates that activate cellular receptors in desired ways.

“In principle, we can apply this technique to hundreds of other receptors like the one we targeted in this study to find disease treatments that are more potent and have fewer side effects than existing therapies. It has been a very productive cross-campus collaboration, so we’re hoping to build on its success as we continue to collaborate on interrogating potential therapeutic targets,” said Patricia H. McDonald, an assistant professor at TSRI’s Jupiter, Florida campus and a senior investigator of the study.

McDonald’s laboratory collaborated on the study with the laboratory of Richard A. Lerner, the Lita Annenberg Hazen Professor of Immunochemistry at TSRI’s La Jolla campus, and with other TSRI groups. Lerner has pioneered techniques for generating and screening large libraries of antibodies or proteins to find new therapies.

In Search of a Better Activator

Three years ago, Lerner and colleagues devised a technique called autocrine selection, which enables scientists to screen very large libraries of molecules to find those that not only bind a given cellular receptor but also activate it to bring about a desired therapeutic effect. Since then, the Lerner laboratory and collaborating scientists have used the technique to find new molecules that block cold virus infection, boost red blood cell production and kill cancer cells, among other effects.

For the new study, Lerner and his laboratory used the technique to target a receptor linked to type 2 diabetes, a life-shortening disease estimated to affect 30 million people in the US alone.

The GLP-1 receptor, as it is known, is expressed by insulin-producing “beta cells” in the pancreas. Several drugs that activate this receptor—drugs called GLP-1 receptor agonists—are already approved for treating type 2 diabetes. In this case, the TSRI team’s aim was to find a molecule that activates the GLP-1 receptor in a unique way.

The GLP-1 receptor belongs to a large class of receptors known as G protein-coupled receptors (GPCRs). Scientists recently have come to understand that when a molecule activates a GPCR, it doesn’t necessarily trigger a single chain of biochemical signals within the cell. In fact, most GPCR agonists trigger signals via multiple distinct pathways—one being via a so-called G protein and another via a protein known as beta-arrestin. In some cases, a “biased agonist” that principally activates just one of these pathways would work better than one that activates both.

In this case, Lerner and his laboratory teamed up with McDonald, an expert on GPCRs and metabolic disease, to find a molecule that would preferentially activate the GLP-1 receptor’s G protein pathway.

To start, researchers in Lerner’s laboratory, including Hongkai Zhang, a senior staff scientist and co-first author of the study, generated a library of candidate molecules—based on a known GLP-1 receptor agonist, Exendin-4, a small protein (peptide) originally found in the venom of Gila monster lizards; a synthetic version of this protein is now used as a type 2 diabetes medication. Zhang created about one million new peptides by randomly varying one end of Exendin-4—the end that normally activates the G protein and beta arrestin pathways.

“The idea was that at least one of these many variants would induce a change in the shape of the GLP-1 receptor that would activate the G-protein pathway without activating the beta arrestin pathway,” Zhang said.

Using the autocrine selection system, Zhang and colleagues rapidly screened these variant peptides and eventually isolated one, P5, that potently and selectively activated the GLP-1 receptor’s G-protein pathway. An initial test in healthy mice showed that P5 worked well at boosting glucose tolerance—at about one-hundredth the dose of Exendin-4 needed for the same effect.

Protein expert Philip E. Dawson, an associate professor at TSRI’s La Jolla campus, synthesized sufficient quantities of P5, and McDonald and her laboratory performed more advanced tests in cultured cells and in mice.

A Different Mechanism

Exendin-4 and and other GLP-1 receptor agonists work in part by strongly stimulating pancreatic beta cells to produce more insulin—which signals muscle and fat cells to draw glucose from the blood, thus lowering blood glucose levels.

McDonald and her team found that although P5 equals or outperforms Exendin-4 in standard mouse models of diabetes, it stimulates insulin production only weakly.

“We didn’t expect that, but in fact, it was a nice finding because less reliance on stimulating insulin could mean less stress on the beta cells,” said Emmanuel Sturchler, staff scientist in the McDonald laboratory and co-first author of the study.

Investigating further, the team found that while the peptide doesn’t make mice fatter or heavier, it triggers the growth of new fat cells. In typical obesity-related diabetes, fat cells grow larger, not more numerous, and as they grow larger, they lose their ability to respond to insulin (insulin resistance). The proliferation of fat cells with P5 was accompanied by signs of increased insulin sensitivity in those cells, suggesting that the peptide works in part by alleviating insulin resistance.

Exendin-4 induces a feeling of satiety, causing mice (and people) to modestly lower food intake and thus lose weight. But the researchers found that P5 lacks this mechanism and appears to have no effect on appetite or weight.

“P5’s mechanisms of action turned out to be quite different from Exendin-4’s, and we think that this finding could lead to new therapeutics,” Sturchler said.

The team will now look for opportunities to develop P5 into a new diabetes drug. The researchers also see this as the first of many discoveries of GPCR-targeting compounds with unique and potentially valuable properties—as well as discoveries in basic GPCR biology.

 

New screening tech at Scripps spotlights diabetes drug candidates

Wednesday, December 9, 2015 | By John Carrol

 

The Scripps Research Institute has used a new drug screening platform to identify a drug which researchers believe has strong potential for treating diabetes.

Working with a technique dubbed autocrine selection, investigators are able to screen molecules in search of targets that can bind to and activate cellular receptors in order to achieve a sought-after drug effect.

In this latest study, published in Nature Communications, the Scripps team went after the GLP-1 receptor, which is already the target of a number of GLP-1 agonists. Scripps, though, wanted to activate the GLP-1 receptor’s G protein pathway.

Hongkai Zhang focused on the GLP-1 agonist Extendin-4, whipping up a million peptides that could alter the end of the protein that activates the G protein and beta arrestin pathways.

“The idea was that at least one of these many variants would induce a change in the shape of the GLP-1 receptor that would activate the G-protein pathway without activating the beta arrestin pathway,” Zhang said.

They then identified the one in a million that improved glucose tolerance at a radically reduced dose of Extendin-4, testing it on mice.

“P5’s mechanisms of action turned out to be quite different from Exendin-4’s, and we think that this finding could lead to new therapeutics,” said Emmanuel Sturchler, a staff scientist in the McDonald laboratory and co-first author of the study.

https://www.scripps.edu/news/press/2015/20151207lerner-mcdonald.html

Scientists from The Scripps Research Institute (TSRI) have deployed a powerful new drug discovery technique to identify an anti-diabetes compound with a novel mechanism of action.

The finding, which appeared online ahead of print in Nature Communications, may lead to a new type of diabetes treatment. Just as importantly, it demonstrates the potential of the new technique, which enables researchers to quickly find drug candidates that activate cellular receptors in desired ways.

“In principle, we can apply this technique to hundreds of other receptors like the one we targeted in this study to find disease treatments that are more potent and have fewer side effects than existing therapies. It has been a very productive cross-campus collaboration, so we’re hoping to build on its success as we continue to collaborate on interrogating potential therapeutic targets,” said Patricia H. McDonald, an assistant professor at TSRI’s Jupiter, Florida campus and a senior investigator of the study.

 

‘Fingerprints’ for Major Drug Development Targets

For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have created detailed “fingerprints” of a class of surface receptors that have proven highly useful for drug development.

http://www.technologynetworks.com/HTS/news.aspx?ID=185860

These detailed “fingerprints” show the surprising complexity of how these receptors activate their binding partners to produce a wide range of signaling actions.

The study focuses on interactions of G protein-coupled receptors (GPCRs) with their signaling mediators known as G proteins. GPCRs—currently accounting for about 40 percent of all prescription pharmaceuticals on the market—play key roles in many physiological functions because they transmit signals from outside the cell to the interior. When an outside substance binds to a GPCR, it activates a G protein inside the cell to release components and create a specific cellular response.

“Until now, it was generally believed that GPCRs are very selective, activating only a few G proteins they were designed to work with,” said TSRI Associate Professor Kirill Martemyanov, who led the study. “It turns out the reality is much more complex.”

Ikuo Masuho, a senior research associate in the Martemyanov lab, added, “Our imaging technology opens a unique avenue of developing drugs that would precisely control complex GPCR-G protein coupling, maximizing therapeutic potency by activating G proteins that contribute to therapeutic efficacy while inhibiting other G proteins that cause adverse side effects.”

The study found that individual GPCRs engage multiple G proteins with varying efficacy and rates, much like a dance where the most desirable partner, the GPCR, is surrounded by 14 suitors all vying for attention. The results, as in any dance, depend on which G proteins bind to the receptor—and for how long. The same receptor changes G protein partners—and the signaling outcome—depending on the action of the signal received from outside of the cell.

This finding was made possible by novel imaging technology used by the Martemyanov lab to monitor G protein activation in live cells. Using a pair of light-emitting proteins, one attached to the G protein, the other attached to what’s known as a reporter molecule, Martemyanov and his colleagues were able to measure simultaneously both the signal and activation rates of most G proteins present in the body.

“Our approach looks at 14 different types of G proteins at once—and we only have 16 in our bodies,” he said. “This is as close as it can get to what is actually happening in real time.”

In the accompanying commentary in Science Signaling, Alan Smrcka, a professor at University of Rochester Medical School and a prominent GPCR researcher, wrote, “[The findings] suggest the power of the GPCR fingerprinting approach, in that it could predict the G protein coupling specificity of a GPCR in a native system, which was previously undetected by conventional analysis. This could be very helpful for identifying previously unappreciated signaling pathways downstream of individual GPCRs that could be useful therapeutically or identified as potential side effects of GPCRs.”

 

Long-Acting Glucagon-Like Peptide 1 Receptor Agonists  

A review of their efficacy and tolerability

Alan J. Garber, MD, PHD

Diabetes Care May 2011; 34(Supplement 2): S279-S284    http://dx.doi.org/10.2337/dc11-s231

Targeting the incretin system has become an important therapeutic approach for treating type 2 diabetes. Two drug classes have been developed: glucagon-like peptide (GLP)-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors. Clinical data have revealed that these therapies improve glycemic control while reducing body weight (GLP-1 receptor agonists, specifically) and systolic blood pressure (SBP) in patients with type 2 diabetes. Furthermore, incidence of hypoglycemia is relatively low with these treatments (except when used in combination with a sulfonylurea) because of their glucose-dependent mechanism of action. There are currently two GLP-1 receptor agonists available (exenatide and liraglutide), with several more currently being developed. This review considers the efficacy and safety of both the short- and long-acting GLP-1 receptor agonists. Head-to-head clinical trial data suggest that long-acting GLP-1 receptor agonists produce superior glycemic control when compared with their short-acting counterparts. Furthermore, these long-acting GLP-1 receptor agonists were generally well tolerated, with transient nausea being the most frequently reported adverse effect.

Careful consideration should be given to the selection of therapies for managing type 2 diabetes. In particular, antidiabetic agents that offer improved glycemic control without increasing cardiovascular risk factors or rates of hypoglycemia are warranted. At present, many available treatments for type 2 diabetes fail to maintain glycemic control in the longer term because of gradual disease progression as β-cell function declines. Where sulfonylureas or thiazolidinediones (common oral antidiabetic drugs) are used, the risk of hypoglycemia and weight gain can increase (1,2). The development of new therapies for the treatment of type 2 diabetes that, in addition to maintaining glycemic control, could reduce body weight and hypoglycemia risk (3,4), may help with patient management. Indeed, guidelines have been developed that support the consensus that blood pressure, weight reduction, and avoidance of hypoglycemic events should be targeted in type 2 diabetes management alongside glycemic targets. For example, the American Diabetes Association (ADA) defines multiple goals of therapy that include A1C <7.0% and SBP <130 mmHg and no weight gain (or, in the case of obese subjects, weight loss) (5). In particular, incretin-based therapies (GLP-1 receptor agonists, specifically) can help meet these new targets by offering weight reduction, blood pressure reduction, and reduced hypoglycemia in addition to glycemic control.

WHAT IS GLP-1?

The incretin effect, responsible for 50–70% of total insulin secretion after oral glucose administration, is defined as the difference in insulin secretory response from an oral glucose load compared with intravenous glucose administration (6) (Supplementary Fig. 1).

There are two naturally occurring incretin hormones that play a role in the maintenance of glycemic control: glucose-dependent insulinotropic polypeptide and GLP-1, both of which have a short half-life because of their rapid inactivation by DPP-4 (7). In patients with type 2 diabetes, the incretin effect is reduced or, in some cases, absent (8). In particular, the insulinoptropic action of glucose-dependent insulinotropic polypeptide is lost in patients with type 2 diabetes. However, it has been shown that, after administration of pharmacological levels of GLP-1, the insulin secretory function can be restored in this population (9), and thus GLP-1 has become an important target for research into new therapies for type 2 diabetes.

GLP-1 has multiple physiological effects that make it an attractive candidate for type 2 diabetes therapy. It increases insulin secretion while inhibiting glucagon release, but only when glucose levels are elevated (6,10), thus offering the potential to lower plasma glucose while reducing the likelihood of hypoglycemia. Furthermore, gastric emptying is delayed (10) and food intake is decreased after GLP-1 administration. Indeed, in a 6-week study investigating continuous GLP-1 infusion, patients with type 2 diabetes achieved a significant weight loss of 1.9 kg and a reduction in appetite from baseline compared with patients receiving placebo, where there was no significant change in weight or appetite (11). Preclinical studies reveal other potential benefits of GLP-1 receptor agonist treatment in individuals with type 2 diabetes, which include the promotion of β-cell proliferation (12) and reduced β-cell apoptosis (13). These preclinical results indicate that GLP-1 could be beneficial in treating patients with type 2 diabetes. However, because native GLP-1 is rapidly inactivated and degraded by the enzyme DPP-4 and has a very short half-life of 1.5 min (14), to achieve the clinical potential for native GLP-1, patients would require 24-h administration of native GLP-1 (15). Because this is impractical as a therapeutic option for type 2 diabetes, it was necessary to develop longer-acting derivatives of GLP-1.

DEVELOPMENT OF DPP-4–RESISTANT GLP-1 RECEPTOR AGONISTS

Two classes of incretin-based therapy have been developed to overcome the clinical limitations of native GLP-1: GLP-1 receptor agonists (e.g., liraglutide and exenatide), which exhibit increased resistance to DPP-4 degradation and thus provide pharmacological levels of GLP-1, and DPP-4 inhibitors (e.g., sitagliptin, vildagliptin, saxagliptin), which reduce endogenous GLP-1 degradation, thereby providing physiological levels of GLP-1. In this review, we focus on the GLP-1 receptor agonist class of incretin-based therapies. The efficacy and tolerability of the DPP-4 inhibitors have been reviewed elsewhere (16). Two GLP-1 receptor agonists are licensed at present in Europe, the U.S., and Japan: exenatide (Byetta, Eli Lilly) (17) and liraglutide (Victoza, Novo Nordisk) (18). For the purposes of this review, we refer to “short-acting” GLP-1 receptor agonists as those agents having duration of action of <24 h and “long-acting” as those agents with duration of action >24 h (Table 1).

….. more        http://care.diabetesjournals.org/content/34/Supplement_2/S279.full.pdf+html

 

Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

Hongkai ZhangEmmanuel SturchlerJiang ZhuAinhoa NietoPhilip A. Cistrone,…., Patricia H. McDonald & Richard A. Lerner
Nature Communications Dec 2015; 6(8918)
       
     http://dx.doi.org:/10.1038/ncomms9918

Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias’. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycemia and lowering hemoglobin A1clevels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM.

Figure 1: Autocrine-based system for selection of agonists from large combinatorial peptide libraries

Autocrine-based system for selection of agonists from large combinatorial peptide libraries.

(a) Schematic representation of the peptide libraries. (b) Schematic representation of the membrane-tethered Exendin-4 (top) and FACS analysis of mCherry and GFP expression 2 days after transduction of HEK293-GLP-1R-GFP cells with the membrane-tethered Exendin-4 displaying different linker size (bottom). (c) Schematic representation of the autocrine-based selection of combinatorial peptide library. The lentivirus peptide libraries are preparred from lentiviral plasmids (step 1). The CRE-responsive GLP-1R reporter cell line is transduced with lentiviral library (step 2). GFP expressing cells are sorted (step 3) and peptide-encoding genes are amplified from genomic DNA of sorted cells to make the library for the next selection round (step 4). After iterative rounds of selection, enriched peptide sequences are analysed by deep sequencing (step 5). (d) Enrichment of GFP positive cells during three rounds of FACS selection. (e) N termini sequences of top 13 peptides (frequency>1.0% representation).

 

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by hyperglycaemia arising from a combination of insufficient insulin secretion together with the development of insulin resistance. The incretin, glucagon-like peptide-1 (GLP-1) is an endogenous peptide hormone secreted from intestinal endocrine cells in response to food intake1. GLP-1 lowers postprandial glucose excursion by potentiating glucose-stimulated insulin secretion from pancreatic β-cells and has also recently been shown to promote β-cell survival in rodents2. In addition, GLP-1 exerts extra-pancreatic actions such as promoting gastric emptying, weight loss and increasing insulin sensitivity in peripheral tissues3. Hence, incretin-based therapies represent a strategy for the treatment of T2DM.

GLP-1 exerts its action through the GLP-1 receptor (GLP-1R)4 expressed in the pancreas, other peripheral tissues, and the central nervous system. Activation of GLP-1R triggers Gαs-protein coupling leading to an elevation of cyclic AMP (cAMP), modulates intracellular calcium concentration5 and induces β-arrestin recruitment6, 7. Historically, β-arrestins were believed to serve an exclusive role in G-protein coupled receptor (GPCR) desensitization8. However, it has since been shown that β-arrestins can also function to activate signalling cascades9, 10. In this regard, in the pancreatic β-cell, elevation of both cAMP and cytosolic Ca2+ and β-arrestin signalling downstream of GLP-1R activation are critical events in promoting glucose-dependent insulin secretion.

Recently, the concept of ‘functional selectivity’ or ‘ligand bias’ has emerged whereby ligand binding promotes engagement of only a particular subset of the full GPCR signalling repertoire to the exclusion of others11. A better understanding of GLP-1R pleiotropic signalling and the underlying physiological consequences might provide new avenues for the development of drugs with novel modes of action that have the potential to provide greater therapeutic value while possibly avoiding unwanted side effects12, 13. Therefore we developed an autocrine-based system, to screen large and diverse, combinatorial peptide libraries containing up to 100 million different members with the aim of identifying potent, selective, G-protein-biased GLP-1R agonists. We identified one such ligand, designated P5 and have characterized its in vitro pharmacological phenotype, and explored its therapeutic potential.

P5 is a selective and potent G-protein-biased GLP-1R agonist

To assess potential signalling bias, the active peptides were further characterized in vitro using distinct assays that monitor receptor proximal signals. Cell-based assays for Gαs-protein (cAMP production), Gαq-protein (intracellular Ca2+ mobilization) and β-arrestin (1 and 2) signalling were used to determine the potency (EC50; effector concentration for half-maximum response) and maximal efficacy (Emax (%)) of peptides relative to the reference ligand Ex4 (Table 1). Peptides P1, P2, P5 and P10 all stimulated cAMP production. However, only P5 functioned as a full agonist (Emax=100%) displaying sub-nanomolar potency at both the human (hGLP-1R) and mouse receptor (mGLP-1R) (Fig. 2a,b; Table 1). The P5 EC50 was similar to the endogenous ligand GLP-1 but was slightly right shifted when compared with the reference peptide Ex4 (Fig. 2a,b; Table 1). Importantly, P5-induced cAMP production was inhibited by the selective GLP-1R antagonist Ex 9–39 in a concentration-dependent manner (Supplementary Fig. 1a,b). In addition, P5-induced cAMP production was negligible in HEK293 cells expressing the human glucagon receptor (Supplementary Fig. 1c). These data suggest that P5 selectively interacts with the GLP-1R.

 

In line with previous reports43, 44, 45 our data support the notion that non β-cell actions of GLP-1 agonists can improve glycaemic control. Importantly, GLP-1R is expressed in adipose tissue, in both the stromal vascular and the adipocyte fraction and its expression level has been found to correlate with the degree of insulin resistance46. In addition, the GLP-1 peptide has been reported to regulate adipogenesis in vitro47, 48. Given that P5, a G-protein-biased agonist with a severely blunted β-arrestin response has less propensity to induce GLP-1R desensitization, sustained activation of the receptor in adipose tissue may lead to the changes we observed in eWAT. Consistent with this notion, increased expression of adipogenic genes and a decrease in resistin expression was reported in β-arrestin 1 knockout mice49. Nevertheless, considering the multitude of metabolic pathways regulated by β-arrestin, further studies are warranted to determine the role of β-arrestin signalling downstream of GLP-1R activation in adipogenesis. Additionally, we found that chronic treatment with P5 increased circulating level of GIP to a greater extent than Ex4. Several studies demonstrated that GIP acts as an insulin sensitizer in adipocytes and disruption of the GIP/GIP-R axis has been reported in insulin-resistant states such as obesity50, 51. Interestingly, PPARγ activation was shown to increase GIP-R levels during adipocyte differentiation52. Thus, by increasing GIP and PPARγ levels, P5 chronic treatment may restore GIP/GIP-R signalling in adipocytes. Furthermore, previous studies have demonstrated that the simultaneous activation of the GLP-1R and the GIP-R results in enhanced glycaemic control, and lower HbA1c levels in human and rat, when compared with GLP-1R alone53, suggesting a GIP and GLP-1 synergism. Thus, the superior glycaemic control observed with the G-protein-biased agonist may result from P5-induced increases in GIP level and concomitant receptor activation. In addition, the GLP-1R can form homodimers as well as ligand-induced heterodimers with the GIP-R54. It is conceivable, that P5 may promote the formation of new and pharmacologically distinct homo/heterodimers displaying different signalling capacity. However, further studies are required to delineate more precisely the molecular and cellular mechanisms and the consequences of P5-induced increase in GIP levels.

In summary, high-throughput autocrine-based functional screening of combinatorial peptide libraries enabled the discovery of a high potency G-protein-biased GLP-1R agonist demonstrating new pharmacological virtues. In a series of translational preclinical studies we demonstrate that P5 is a weak insulin secretagogue yet displays superior antidiabetic effect (Fig. 7). Thus, GLP-1R G-protein-biased ligands may offer new and unappreciated advantages in the context of chronic treatment such as promoting adipocyte hyperplasia, restoring insulin responsiveness and long-term glycaemic control while preserving pancreatic β-cell function by minimizing the insulin secretory burden.

 

Figure 7: Schematic depicting the identification and characterization of a novel GLP-1R-biased agonist.

Schematic depicting the identification and characterization of a novel GLP-1R-biased agonist.

Using an autocrine-based system coupled to FACS, we screened large, diverse, combinatorial peptide libraries and identified P5, a potent and selective G-protein-biased GLP-1R agonist. P5 displayed a decreased insulinotropic effect, yet significantly improved glucose tolerance and insulin responsiveness by promoting white adipocyte tissue hyperplasia.

 

Exendin-4 Is a High Potency Agonist and Truncated Exendin-(9-39)- amide an Antagonist at the Glucagon-like Peptide 1-(7-36)-amide Receptor of Insulin-secreting ,&Cells*

Riidiger Goke, Hans-Christoph Fehmann, Thomas LinnS, Harald Schmidt, Michael Krause9, John EngT, and Burkhard GokeII
J Biol Chem  Sept 1993;268(26):19650-19655      http://www.jbc.org/content/268/26/19650.full.pdf

Exendin-4 purified from Heloderma suspecturn venom shows structural relationship to the important incretin hormone glucagon-like peptide 1-(7-36)- amide (GLP-1). We demonstrate that exendin-4 and truncated exendin-(9-39)-amide specifically interact with the GLP-1 receptor on insulinoma-derived cells and on lung membranes. Exendin-4 displaced “‘IGLP- 1, and unlabeled GLP- 1 displaced lZ6I-exendin-4 from the binding site at rat insulinoma-derived RINmSF cells. Exendin-4 had, like GLP-1, a pronounced effect on intracellular CAMP generation, which was reduced by exendin-(9-39)-amide. When combined, GLP-1 and exendin-4 showed additive action on CAMP. They each competed with the radiolabeled version of the other peptide in cross-linking experiments. The apparent molecular mass of the respective ligand-binding protein complex was 63,000 Da. Exendin-(9-39)-amide abolished the cross-linking of both peptides. Exendin-4, like GLP-1, stimulated dose dependently the glucose-induced insulin wcretion in isolated rat islets, and, in mouse insulinoma TC-1 cells, both peptides stimulated the proinsulin gene expression at the level of transcription. Exendin- (9-39)-amide reduced these effects. In conclusion, exendin-4 is an agonist and exendin-(9-39)-amide is a specific GLP- 1 receptor antagonist.

 

Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes mellitus

Kathleen Dungan, MDAnthony DeSantis, MD
http://www.uptodate.com/contents/glucagon-like-peptide-1-receptor-agonists-for-the-treatment-of-type-2-diabetes-mellitus

Despite advances in options for the treatment of diabetes, optimal glycemic control is often not achieved. Hypoglycemia and weight gain associated with many antidiabetic medications may interfere with the implementation and long-term application of “intensive” therapies [1]. Current treatments have centered on increasing insulin availability (either through direct insulin administration or through agents that promote insulin secretion), improving sensitivity to insulin, delaying the delivery and absorption of carbohydrate from the gastrointestinal tract, or increasing urinary glucose excretion.

Glucagon-like peptide-1 (GLP-1)-based therapies (eg, GLP-1 receptor agonists, dipeptidyl peptidase 4 [DPP-4] inhibitors) affect glucose control through several mechanisms, including enhancement of glucose-dependent insulin secretion, slowed gastric emptying, and reduction of postprandial glucagon and of food intake (table 1). These agents do not usually cause hypoglycemia in the absence of therapies that otherwise cause hypoglycemia.

This topic will review the mechanism of action and therapeutic utility of GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus. DPP-4 inhibitors are discussed separately. A general discussion of the initial management of blood glucose and the management of persistent hyperglycemia in adults with type 2 diabetes is also presented separately. (See “Dipeptidyl peptidase 4 (DPP-4) inhibitors for the treatment of type 2 diabetes mellitus”.)

GLUCAGON-LIKE PEPTIDE-1

Glucose homeostasis is dependent upon a complex interplay of multiple hormones: insulin and amylin, produced by pancreatic beta cells; glucagon, produced by pancreatic alpha cells; and gastrointestinal peptides, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP; gastric inhibitory polypeptide) (figure 1). Abnormal regulation of these substances may contribute to the clinical presentation of diabetes. The role of GLP-1 in glucose homeostasis is illustrative of the incretin effect, in which oral glucose has a greater stimulatory effect on insulin secretion than intravenous glucose [2]. This effect is mediated by several gastrointestinal peptides, particularly GLP-1, that are released in the setting of a meal and stimulate insulin synthesis and insulin secretion, which does not occur when carbohydrate is administered intravenously.

GLP-1 is produced from the proglucagon gene in L-cells of the small intestine and is secreted in response to nutrients (figure 1) [3]. GLP-1 binds to a specific GLP-1 receptor, which is expressed in various tissues including pancreatic beta cells, pancreatic ducts, gastric mucosa, kidney, lung, heart, skin, immune cells, and the hypothalamus [2,4]. GLP-1 exerts its main effect by stimulating glucose-dependent insulin release from the pancreatic islets [2]. It has also been shown to slow gastric emptying [5], inhibit inappropriate post-meal glucagon release [3,6], and reduce food intake (table 1) [3]. Owing in part to the effects of GLP-1 on slowed gastric emptying and appetite centers in the brain, therapy with GLP-1 and its receptor agonists is associated with weight loss, even among patients without significant nausea and vomiting.

 

Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes.
Impaired insulin signaling pathway in the brain in type 2 diabetes (T2D) is a risk factor for Alzheimer disease (AD). Glucagon-like peptide-1 (GLP-1) and its receptor agonist are widely used for treatment of T2D. Here we studied whether the effects of exendin-4 (EX-4), a long-lasting GLP-1 receptor agonist, could reduce the risk of AD in T2D.  RESULTS: The levels of phosphorylated tau protein at site Ser199/202 and Thr217 level in the hippocampus of T2D rats were found to be raised notably and evidently decreased after EX-4 intervention. In addition, brain insulin signaling pathway was ameliorated after EX-4 treatment, and this result was reflected by a decreased activity of PI3K/AKT and an increased activity of GSK-3β in the hippocampus of T2D rats as well as a rise in PI3K/AKT activity and a decline in GSK-3β activity after 4 weeks intervention of EX-4. CONCLUSIONS: These results demonstrate that multiple days with EX-4 appears to prevent the hyperphosphorylation of AD-associated tau protein due to increased insulin signaling pathway in the brain. These findings support the potential use of GLP-1 for the prevention and treatment of AD in individuals with T2D.
Advertisements

Read Full Post »


Experience with Thyroid Cancer

Author: Larry H. Bernstein, MD, FCAP

 

 

I retired from my position as pathologist in charge of clinical laboratories after five years at New York Methodist Hospital, with great satisfaction in mentoring students from the high schools and university undergraduate programs nearby interested in science.  I was fortunate to experience the Brooklyn “cityscape” and vibrance, and to work with other physician educators in surgery and cardiology and pulmonary medicine. Most of my students participated in presenting papers at professional meetings, and some coauthored published work.  But I was about to enter a new phase of life.  I returned to my home in Connecticut and immediately accepted a temporary position for less than a year as the Blood Bank – Transfusion Medicine Director at Norwalk Hospital, which also afforded the opportunity to help with the installation of an automated hematology system, and to help in the quality monitoring in Chemistry.  It was a good reprieve from the anxiety of having nothing to do after an intense professional  career.  When that ended I went to Yale University Department of Mathematics  and found a collaborative project with a brilliant postdoc and his mentor, Professor and Emeritus Chairman Ronald Coifman.  A colleague of mine many years ago had done a project with the automated hematology, but it was too early for a good interpretive hemogram.  I had sufficient data in 8,000 lines of data containing all of the important information.  We managed to develop an algorithm in over a year that would interpret the data and provide a list of probabilities for the physician, and we used part of the data set for creating the algorithm and another set for validation.   In the meantime I also became engaged in twice weekly sessions in Yoga, Pilates, and massage therapy, and did some swimming.  I also participated in discussions with a group of retired men up to 20 years senior to me. I also did two rounds of walking around the condonium that was home to my wife and I.

 

Then I noticed that I became weak and short of breath in walking around the condominium streets and had to stop and hold a tree or streetlamp.  I was long-term diabetic and was followed by a pulmonologist for sleep apnea for some five years.  This was an insidious health presentation, as I had had good pulmonary and cardiac status at that point in time.  Then an “aha!” moment occurred when my laboratory results showed a high level of thyroid stimulating hormone.  It was one of a rare instances of hyperparathyroidism occurring with a thyroid tumor.

I then had radiological testing of the head and neck, which led to a thyroid biopsy.  I then chose to referral to Yale University Health Sciences Center, where there was an excellent endocrinologist, and it was a leading center for head and neck surgery.  All of this took many trips, much testing, biopsies of thyroid and its removal.  There also were 3 proximate lymph nodes.  In undergoing the tests the technicians said that they had never had a patient like me because of my questions and comments.  It was a papillary thyroid cancer involving the center and right lobe, with a characteristic appearance and identified by a histologically stained biomarker that I reviewed with my longtime friend and colleague, Dr. Marguerite Pinto.  The surgery and followup went well.

 

However, I developed  double-vision (diplopia) and was referent to one of a handful of neuro-ophthalmologists in Connecticut.  Perhaps related to the hyperthyroid condition, I had developed an anti-thyroid antibody that disturbed the lower muscle that moves the right eye.  This required many test over months, and my wearing a special attachable lens gradient to equalize the vision in both eyes.  The next requirement was to watch and wait. It could be corrected by surgery if it remained after a year.  Nevertheless, it subsided over a period of perhaps 9 months and I removed the attachment with sufficient return of my previous sight.

In the meantime I was writing a lot over this period, and I also began to watch MSNBC and Turner Classic Movies on a regular basis and found relief.  I’m not a “laugher” and have had a long-term anxiety state.  I enjoyed watching the magic of Charlie Chaplin, Al Jolson, Lassie, and whatever caught my fancy.

My daughter was accepted for a tenure earning faculty position competing against a large field of candidates for an Assistant Professorship at Holyoke Community College in Western Massachusetts. Her husband had invested 15 years as a Navy physician and neurologist, having graduated from the Armed Services Medical School in Bethesda, and given this opportunity, decided to forgo further service  would pay for their child’s future college education.  He is very bright, knowledgable, and a blessing for a son-in-law.  We went through the sale of our house and the search for a living arrangement near our daughter, all while I was going through my therapy.  It was undoubtedly the best thing to moving near the daughter.

The move became an enormous challenge.  It took time to sell the condominium, which was  desirable in  a difficult market.  I became engaged in trashing what I need not save, but I had to review hundreds of published work, unpublished papers, saved publications, and hundreds of photographs large and small, that I had kept over many years.  I had to dispense of my darkroom equipment, and we managed to give much away.  It was very engaging.  It was impossible to be overwhelmed, but also tiring over the long haul.

Prior to moving, my wife had trouble swallowing, and she was subsequently found to have an esophageal carcinoma at 20 cm, and invading the submucosa.  We made arrangement for treatment by Massachusetts General Hospital, which could be done at its cancer affiliate in Northampton, MA.  The move was made, and we have temporary residence in a townhouse in Northampton, woon to move to an adult living facility.  My wife is lucky enough to have a squamous cell carcinoma, not adenocarcinoma.  Her treatment needed careful adjustments.  She decided to live it out whatever the outcome.  However, she has done well.  She maintained her weight, underwent radiation and chemotherapy, which is finished, and is returning to eating more than soft food and protein shakes. She has enjoyed being a grandmother to an incredible kid in kindergarten only a block away, and engaged in reading and all sorts of puzzles and games.

My own health has seen a decline in ease of motion. I am starting physical therapy and also pulmonary therapy for my asthma.  Having a grandson is both a pleasure and an education. Being a grandparent, one is relieved of the responsibility of being a parent.

In following my wife’s serious illness, which precluded surgery, we have had phone calls from her sister daily, weekend visits nonstop, and more to come.  She has been very satisfied with the quality of care.
My triplet sister calls often for both of us.  We also call my 95 year old aunt, who is my mother’s sister.  My mother’s younger brother enjoyed life, left Hungary as a medical student in 1941 and became an insurance salesman in Cleveland. He lived to 99 years old.  He outlived 3 wives, all friends of my mother.
His daughter has called me for a medical second opinion for a good fifteen years.  She was a very rare patient who had a pituitary growth hormone secreting adenocarcinoma (Addison’s Disease) for which she had two surgeries, and regularly visits the Cleveland Clinic and the Jewish Hospital of Los Angeles.

 

 

 

Read Full Post »


Variability of Gene Expression and Drug Resistance

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

New Data Suggest Extreme Genetic Diversity of Tumors May Impart Drug Resistance

NEW YORK (GenomeWeb) – Researchers from the University of Chicago and the Beijing Institute of Genomics have undertaken one of the most extensive analyses of the genome of a single tumor and found far greater genetic diversity than anticipated. Such variation, they said, may enable even small tumors to resist treatment.

“With 100 million mutations, each capable of altering a protein in some way, there is a high probability that a significant minority of tumor cells will survive, even after aggressive treatment,” Chung-I Wu, a University of Chicago researcher and senior author of the study, said in a statement. “In a setting with so much diversity, those cells could multiply to form new tumors, which would be resistant to standard treatments.”

 

Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution

Shaoping Linga,1Zheng Hua,1Zuyu Yanga,1Fang Yanga,1Yawei LiaPei LinbKe ChenaLili DongaLihua CaoaYong TaoaLingtong HaoaQingjian ChenbQiang Gonga, et al.

Shaoping Ling,  PNAS   http://dx.doi.org:/10.1073/pnas.1519556112      http://www.pnas.org/content/early/2015/11/11/1519556112

A tumor comprising many cells can be compared to a natural population with many individuals. The amount of genetic diversity reflects how it has evolved and can influence its future evolution. We evaluated a single tumor by sequencing or genotyping nearly 300 regions from the tumor. When the data were analyzed by modern population genetic theory, we estimated more than 100 million coding region mutations in this unexceptional tumor. The extreme genetic diversity implies evolution under the non-Darwinian mode. In contrast, under the prevailing view of Darwinian selection, the genetic diversity would be orders of magnitude lower. Because genetic diversity accrues rapidly, a high probability of drug resistance should be heeded, even in the treatment of microscopic tumors.

The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model,MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

Semantically Related Articles

 

 

 

The findings, which appeared in the Proceedings of the National Academy of Sciences this week, also call into question the widely held view that evolution at the cellular level is driven by Darwinian selection, revealing a level of rapid and extensive genetic diversity beyond what would be expected under this model.

In the study, the researchers focused on a single hepatocellular carcinoma tumor, roughly the size of a ping pong ball. They sampled 286 regions from a single slice of the tumor, studying each one with either whole-exome sequencing or genotyping under both the infinite-site and infinite-allele models of population genetics.

Based on their analyses, the team estimated more than 100 million coding region mutations in what they called an “unexceptional” tumor — more mutations than would ordinarily be expected by orders of magnitude, according to Wu.

This extreme genetic diversity, the study’s authors wrote, implies evolution under the non-Darwinian mode, which is driven by random mutations largely unaffected by natural selection. It also raises the question of why there is so little apparent Darwinian selection in the tumor.

The scientists speculated that in solid tumors, cells remain together and do not migrate, “so that when an advantageous mutation indeed emerges, cells carrying it are competing mostly with themselves. These mutations may confer advantages in fighting for space or extracting nutrients, but they are stifled by their own advantages,” they wrote.

Beneficial mutations may emerge on occasion, but in solid tumors the cell populations are “so structured that selection may often be blunted,” they stated. “The physiological effect has to be very strong to overcome those constraints.” Cancer drugs could remove those constraints, loosening up a cell population and allowing competition to occur, the investigators added.

Wu and his colleagues see the presence of so many mutations in a tumor as creating problems when it comes to treatment. “It almost guarantees that some cells will be resistant,” study co-author and University of Chicago oncologist Daniel Catenacci said in the statement. “But it also suggests that aggressive treatment could push tumor cells into a more Darwinian mode.”

Overall, the findings highlight the need to consider non-Darwinian evolution and the vast genetic diversity it can confer as factors when developing treatment strategies, even for small tumors, the researchers concluded.

Read Full Post »


Proteins, Imaging and Therapeutics

Larry H Bernstein, MD, FCAP, Curator

LPBI

 

Dissecting the Structure of Membrane Proteins
http://www.genengnews.com/gen-articles/dissecting-the-structure-of-membrane-proteins/5583/

Kathy Liszewski

  • EM for Structural Analysis

Electron microscopy (EM) not only provides a straightforward approach to scrutinize the ultrastructure of cells and tissues, but it is also gaining momentum as a means to derive structural information on membrane proteins.

According to Bridget Carragher, Ph.D., co-director, Simons Electron Microscopy Center, New York Structural Biology Center, “EM is a widely applied technique to study the structure of proteins and membranes, but it is still less common than X-ray diffraction of prepared crystals. However, crystallization of membrane proteins has been particularly challenging. Since EM does not require obtaining crystals, it is becoming an increasingly used tool for performing structural analysis of membrane proteins and their complexes.”

As an example, Dr. Carragher described the use of single particle EM to directly visualize the conformational spectra of two homologous ATP-binding cassette (ABC) exporters. Single particle EM determines structure from multiple images of individual particles and uses methods like multivariate statistical analysis to separate heterogeneous particles into homogeneous classes.

“ABC transporters constitute a large family of membrane proteins that use the energy of ATP hydrolysis to translocate (either export or import) substances such as nutrients, lipids, and ions across the lipid bilayers,” said Dr. Carragher. “They are medically important because they also transport drugs and contribute to antibiotic or antifungal resistance.

“In a collaborative study, we utilized an unbiased approach employing newly developed amphiphiles in complex with lipids to create a membrane-mimicking environment for stabilizing membrane proteins. Visualization of the complexes using single particle EM analysis revealed striking conformational differences between the two transporters with respect to the effect of binding nucleotides and substrates. Overall, these studies provided a comprehensive view of the conformational flexibility of these two ABC exporters.”

As improvements continue to be made in the technology, resolution is nearing the 3 to 5 angstrom range, at least for some proteins and protein complexes.

“EM is becoming competitive with X-ray diffraction for solving some protein structures. It is not likely to replace other techniques, but rather will be complementary to them,” she added.

  • Bacterial Membrane Dynamics

reengineered nanopore

 

Structural model of a re-engineered nanopore
[Lukas Tamm, Ph.D., University of Virginia]
 

 The outer membranes of gram negative bacteria, such as Pseudomonas and E. coli, consist of multiple proteins and densely packed lipopolysaccharides (LPS or endotoxin). This structure provides a formidable barrier to antibiotics, most of which are targeted to intracellular processes.

  • “Understanding outer membrane structure and how molecules are recognized and transported across the bacterial membrane are critical to creating more effective antibiotics,” noted Lukas K. Tamm, Ph.D., professor molecular physiology and biological physics, University of Virginia.
  • The Tamm laboratory studies the dynamics of membrane proteins especially via solution NMR spectroscopy. His laboratory provided the first structure of the outer membrane ion channel of E. coli, OmpA. The group also studies OmpG, an outer membrane protein whose single polypeptide chain forms a membrane nanopore.
  • “Engineered protein nanopores have attracted interest to detect rare metal ions and neurotransmitters in solution, to sequence DNA and RNA, and to measure folding and unfolding kinetics of single proteins,” he explained. “We developed a new approach to loop immobilization that revealed cross-talk patterns between different loops of the OmpG nanopore. This will be useful to engineer new functions into OmpG and for analyzing other membrane nanopores.”
  • Dr. Tamm also studies the outer membrane protein H (OprH) from Pseudomonas aeruginosa, a multidrug resistant pathogen that is the most common cause of pneumonia and mortality in cystic fibrosis patients. It is the major cause of hospital-acquired infections.
  • “The impermeability of this pathogen’s outer membrane contributes substantially to its notorious antibiotic resistance. We utilized in vivo and in vitro assays that demonstrated the importance of the interaction of OprH with LPS in the outer membrane. Additionally, beyond determining the structure of OprH, our studies revealed that solution NMR can be a powerful tool for investigating interaction of integral membrane proteins with specific lipids. This cannot be easily done by crystallography.”
  • Dr. Tamm explained that there are many challenges remaining before antibiotic resistance can be overcome.
  • “The substrate is unknown for many of the outer membrane proteins. To develop better targeted antibiotics, it will be important to define specific substrates. Also, determining the structure of outer membrane proteins will likely also provide new insights for understanding how protein-lipid interactions contribute to antibiotic resistance. We aren’t there yet, but we are close to getting better answers.”
  • Membrane proteins, such as receptors, ion channels, and transporters, comprise nearly 30% of all proteins in eukaryotic cells. They also constitute more than 50% of all drug targets.

Yet, membrane proteins continue to present considerable challenges to the field of structural biology. Their surface is relatively hydrophobic, usually requiring potentially harmful detergent solubilization. Conformational flexibility and instability also may create roadblocks for the expression and purification required for structural analysis.

The recent Argonne National Laboratory Conference on Membrane Protein Structures highlighted advances in the field such as use of smaller and more intense beams for X-ray micro-crystallography, novel protein engineering of fusion proteins for structure determination, nanodiscs that mimic native cell environments, visualization strategies employing single particle electron microscopy, and bacterial nanopore studies that may help surmount antibiotic resistance.

  • X-Ray Micro-Crystallography

membrane proteins structure

 

Schematic view of the planned upgrade of the GM/CA beamline 23-ID-D at the Advanced Photon Source (APS) at Argonne National Laboratory. Top panel: cartoon of the X-ray optics to focus the beam. Bottom panel: elevation view of the endstation focusing optics, sample goniometry, and detector. The beam line upgrade will reduce the minimum beam size from 5 µm to 1 µm in the near future. The proposed APS-MBA upgrade will allow the beam to be focused to <500 nm with a 100-fold increase in intensity. The small, high intensity X-ray beam will enable structure determination for some of the most challenging problems in structural biology.

 

  • Many physiological processes are controlled and regulated by conformational changes in GPCRs and other integral membrane proteins. “We are studying at the atomic level how allosteric changes in such proteins regulate cell signaling,” explained Daniel M. Rosenbaum, Ph.D., assistant professor, biophysics, biochemistry, University of Texas Southwestern Medical Center.X-ray crystallography has been a workhorse technology for structural biologists for many years. Scientists generate a minute crystal by carefully optimizing conditions, shoot a high-powered X-ray beam at it, measure the angle and intensity of the diffracted beams, and derive a complete or partial structure by analyzing the results with sophisticated analytical programs.
  • “Membrane proteins are notoriously difficult to crystallize, and often yield very small, weakly diffracting, radiation-sensitive crystals that are intractable to large-beam crystallography. However, high-resolution structures can be obtained by using a micro-beam,” noted Robert F. Fischetti, Ph.D., associate division director and group leader, X-ray Science Division, Argonne National Laboratory.
  • Dr. Fischetti said the Advanced Photon Source (APS), a DOE user facility at Argonne, leads the field in deriving membrane protein structures.
  • “G-Protein Coupled Receptors (GPCRs) are one very important class of membrane proteins. There are more than 800 GPCRs, and over 40% of all drugs target them. Of the 30 known protein structures, 21 were solved at the APS.”
  • According to Dr. Fischetti, a number of key improvements and innovative approaches are needed.
  • “Stability of the beam intensity and the relative alignment of the beam and crystal are paramount in micro-crystallography. One problem is that X-ray beams cause both primary and secondary (diffusional) structural damage to the crystal. To overcome that issue smaller, hotter beams and more rapid detectors are being used in the race against radiation damage.”
  • Dr. Fischetti said the field is also seeing the emergence of breakthrough techniques, including novel sample delivery systems such as the acoustic drop and microfluidic technologies. Further, throughput is advancing.
  • “We’re approaching the ability to perform data collection on many thousands of microcrystals complexed to a variety of compounds. This is enabling pharmaceutical applications.”
  • One of the most exciting changes at APS and throughout the scientific community is the development of a new storage ring magnet lattice design, the multibend achromat (MBA). The technology promises a revolutionary increase in brightness that could reach two to three orders of magnitude beyond the current capability.
  • According to Dr. Fischetti, “This fourth generation storage ring will be nearly diffraction-limited and provide key improvements such as focusing X-rays down to the nanometer level with much higher intensity than is currently available. We expect the proposed MBA to be available in the 2020s. With this and other advances, it is clear that we are entering a new frontier in X-ray science.”
  • Disease-Related Receptors

In particular, Dr. Rosenbaum and his laboratory use protein engineering, X-ray crystallography, and NMR spectroscopy to study the structure and dynamics of molecules involved in hormone signaling and lipid homeostasis.

“GPCRs and other membrane proteins are not easily amenable to structural studies,” he said. “This limitation can often be overcome by protein engineering methods such as creating fusion proteins or thermostable mutants and using lipid-mediated crystallization methods.”

For example, Dr. Rosenbaum and colleagues studied the human β2 adrenergic receptor (β2AR) that binds epinephrine and is involved in the fight or flight response. Using the inactive structure of β2AR as guide, the team designed a β2AR agonist that could be covalently attached to a specific site on the receptor. “With this approach, we were able to crystallize a covalent agonist-bound β2AR fusion protein in lipid bilayers and determine its structure at 3.5 angstroms resolution.”

Another example of using fusion proteins to overcome membrane protein crystallization limitations is that of the human orexin receptor, OX2R. The orexin system modulates behaviors in mammals such as sleep, arousal, and feeding. Dysfunctions can lead to narcolepsy and cataplexy. The FDA recently approved the first-in-class drug, suvorexant, which became available in early 2015.

Dr. Rosenbaum and colleagues used lipid-mediated crystallization and protein engineering with a novel fusion chimera to solve the structure of the OX2R, bound to suvorexant at 2.5 angstom resolution.

“Elucidation of the molecular architecture of the human OX2R enhances our knowledge of how it recognizes ligands. Such studies provide powerful tools for designing improved therapeutics that can activate or inactivate orexin signaling.”

These studies have an overarching significance as well. “Looking at the bigger picture, these methods may lead to the design of new classes of small molecules that modulate key signaling pathways by controlling protein conformational changes within cellular membranes,” Dr. Rosenbaum concluded.

  • Nanodisc Technology

Although membrane proteins can be purified following cell lysis and detergent solubilization or after expression in heterologous systems, their true structure and function can be significantly compromised or lost entirely in the process. Ideally one would like membrane proteins to remain in a solubilized state for easier purification, functional assays, and structure determination. However, the native membrane environment is often necessary for full functionality. Detergents pose many technical obstacles including being hazardous for protein stability and interfering in many assay techniques.

Enter Nanodisc technology, a new approach for providing accessibility to the world of membrane proteins.

“We’ve always had a dream of engineering a process that would not only incorporate any membrane protein into a soluble bilayer structure, but also one that would employ a self-assembly process that would be applicable to all individual membrane proteins regardless of their structure and topology,” explained Stephen G. Sligar, Ph.D., director of the School of Molecular and Cellular Biology, University of Illinois, Urbana Champaign.

“Recently, that dream became realized by the creation of Nanodisc technology. Nanodiscs are self-assembling nanoscale phospholipid bilayers that are stabilized using engineered membrane scaffold proteins. The Nanodiscs allow membrane proteins to remain soluble and thus closely mimics native environment.”

There are many uses for the new technology according to Dr. Sligar. “Technological applications can take advantage of Nanodisc properties such as its small size, reduced light scattering, faster diffusion, enhanced stability, access to both sides of the bilayer and for surface attachment (e.g., surface plasmon resonance studies).”

Dr. Sligar and colleagues even demonstrated how to utilize the new technology for high throughput screening (HTS) assays.

“We wanted to identify antagonists that would interfere with the binding of membrane proteins to Alzheimer’s-associated amyloid β oligomers (AβOs), which are the neurotoxic ligands that instigate Alzheimer’s dementia. In collaboration with Professor William Klein and co-workers at Northwestern University, we created a solubilized membrane protein library (SMPL). This consisted of a complete set of membrane proteomes derived from biological tissue containing a heterogeneous mixture of individual proteins.

“Screening an extensive library of drug-like compounds and natural products identified yielded several ‘hits’, thus providing proof of concept for using SMPLs in HTS applications. An initial publication appeared recently in PLOS ONE.”

The results need to be confirmed in animal studies, Dr. Sligar noted. Overall, he is enthusiastic about the Nanodisc platform for uses that range from determination of structure/function to HTS applications.

“The unique properties of Nanodiscs make them ideal candidates to address important functional and structural questions involving membrane proteins in a more native environment.”

 

Twists and Turns in Protein Expression

In Early Drug Discovery it’s Often Unclear Which Recombinant Proteins Will Be Affected by Changing the Host Cell

http://www.genengnews.com/gen-articles/twists-and-turns-in-protein-expression/5589/

  • When drug developers use different cell lines for manufacturing and preclinical research, they risk generating inconsistent results, proteins with various structures and functions. Then, confounded by variability, drug developers may lavish attention on irrelevant candidates and overlook promising candidates.

To avoid misleading themselves, drug developers must find ways to avoid or account for protein variants, which include post-translational modifications, particularly alternative glycosylations. Such variants occur all too frequently among different host cell lines, an extensive body of literature documents.

“Variability is most evident when comparisons are made between mammalian and nonmammalian cells,” says James Brady, Ph.D., vice president of technical applications and customer support at MaxCyte. “But depending on the protein that is being produced, even different mammalian cell lines, such as HEK and CHO, will exhibit substantial differences in post-translational modifications.” Differences can lead to altered protein stability, activity, or in vivo half-life.

It is often unclear during the early drug discovery process which recombinant proteins will be affected by changing the host cell. However, misleading early-stage data are associated with significant costs and extended timelines. It therefore makes sense to adopt a single host cell for all stages of the development pipeline. That is the rationale behind MaxCyte’s flow electroporation transfection platform.

  • Large-Scale Electroporation

Chemical transfection based on lipids or polymers are the most common alternatives to electroporation for large-scale transient transfection. However, reagent costs, lot-to-lot reagent variability, scale-up difficulties, and low transfection efficiency with certain cell types often are significant challenges of chemical transfection, particularly in biomanufacturing-relevant cells such as CHO.

Viral transfection vectors are another possibility. “While viral vectors may be more effective than chemical methods for introducing genes into certain difficult-to-transfect cell types, producing viral vectors often requires the development of packaging or producer cell lines,” Dr. Brady explains. “There are also biosafety concerns associated with some viral vectors.”

Unlike stable transfection, transient gene expression does not involve integration of the transgene into the host chromosome. Therefore, influences of the integration site on protein expression levels or other protein attributes are not evident. Rather the host cell’s genetic background, media/feed formulation, and culture conditions are the most significant factors influencing product quality, regardless of whether the protein is produced by stable or transient expression.

While high-end titers for stably transfected cells are now advancing into the low double-digit grams per liter, average titers are still in the lower single digits. Thus, the titers of 2–3 g/L that have recently been reported for transient expression via flow electroporation in nonengineered CHO cells are beginning to rival those of stable cell lines.

“So far, upper limits to titer by stable or transient expression have not been reached,” Dr. Brady tells GEN. “It is likely that innovations in vector design, advances in cell-line engineering, and improvements to cell-culture processes will lead to continued advances in both stable and transient titers.”

  • Monitoring Expression
  • Analytical methods are crucial for quantifying not only protein expression but also quality. A group at Fujifilm Diosynth Biotechnologies led by Greg Adams, Ph.D., the company’s director of analytical development, is promoting analytical techniques applicable throughout a molecule’s life cycle.

A scientist at Fujifilm Diosynth Biotechnologies operating an ambr250 mini-bioreactor system from Sartorius Stedim Biotech business unit TAP Biosystems.

 

  • Depending on the expression system, the Fujifilm Diosynth team focuses mostly on aggregation, glycosylation, and heterogeneity. The team employs a mix of rapid and conventional analyses, for example, mass spectrometry, ultra-performance liquid chromatography (UPLC), glycan analysis with rapid 2-aminobenzamide (2-AB) labeling and normal-phase UPLC, and capillary electrophoresis (CE) techniques such as imaged CE (iCE) and the CE-sodium dodecyl sulfate (CE-SDS) method. “Our objective,” declares Dr. Adams, “is same-day quality attribute analysis for understanding what’s happening in a bioreactor while designing the upstream process.”
  • Note that all the aforementioned techniques are standard analysis methods. The novelty is the context in which Fujifilm Diosynth uses them. Another distinction is the company’s high-throughput approach. The company uses liquid-handling workstations with pre-loaded tips for culture purification over protein A. The 30–60-minute preparation provides purified, active, concentrated antibody that may be analyzed in a number of ways. “We are able to analyze multiple ambr™ minireactor or 2 L bioreactor samples in hours versus days,” asserts Dr. Adams.
  • When it is applied to cell-line development, the rapid analysis philosophy holds that the same methods should be used from early development through GMP manufacturing. In practice, this is easier with antibodies because molecules of this class lend themselves to affinity purification and rapid method optimization through design of experiment (DOE), potentially beginning with transfectant pool material.
  • “Hopefully, we can have a method that we don’t have to change for the lifetime of the program,” Dr. Adams says. “It certainly helps to be able to trace data back through clinical phases and not have to worry about chromatographic profile and column changes. This has been very successful in several programs using the newer techniques, where the development phase is assisted by the speed by which you can run each method.”
  • The next challenge is to transfer this methodology to products expressed in microbial fermentation, which Dr. Adams refers to as the “next generation” of this approach to analytics.
  • Improving Solubility

Escherichia coli became the workhorse of recombinant protein expression because of its simple genetics, ease of culturing, scalability, rapid expression, and prodigious productivity. Negatives include a lack of eukaryotic post-translational machinery, codon usage bias, and difficulty with high-molecular-weight proteins.

Pros and cons must be weighed in terms of the target protein’s intended use. Quality and purity requirements for research-only proteins vary significantly, and may be worlds apart from therapeutic proteins. “The end application dictates to a large degree the choice of expression host, purity requirements, how you design the construct, and which tags to use,” says Keshav Vasanthavada, marketing specialist at GenScript.

A disadvantage in E. coli on par with low expression is insoluble expression, which results in aggregates (inclusion bodies). Researchers can deal with this phenomenon at the process level or molecular level. But before they embark on an improvement project, they should, Vasanthavada advises, check the literature to see if other researchers have produced the target protein in adequate yield and at acceptable quality. If so, it would be worthwhile to look at the other researchers’ methods and see if they can be reproduced.

Process-level strategies, which do not require target reengineering, include changing expression conditions, in vitro protein refolding, switching E. coli strains, adjusting media and buffers, or incorporating chaperone co-expression. Molecular-level approaches involve eliminating undesirable elements through truncations or mutations.

“The easiest approach is adoption of a fusion partner-based strategy,” Vasanthavada tells GEN. “It involves the use of a solubilizing partner upstream of the target protein to enhance target protein solubility.”

While this approach is generally beneficial, it has its drawbacks. For example, while a fusion partner will solubilize the target protein, there is no guarantee that the target protein will remain in solution once the tag is cleaved off. “Sometimes, you cannot ‘cleave off’ the fusion partner. The proteolytic enzyme won’t reach the cleavage site because of interference from itself,” Vasanthavada explains. “On other occasions, your fusion partner will start sticking to your target protein post-cleavage.”

 

Riboswitch Flip Kills Bacteria

Scientists discover a novel antibacterial molecule that targets a vital RNA regulatory element.

By Ruth Williams | September 30, 2015

http://www.the-scientist.com//?articles.view/articleNo/44129/title/Riboswitch-Flip-Kills-Bacteria/

 

Part of a riboswitch

http://www.the-scientist.com/images/News/September2015/Riboswitch.jpg

Researchers at the pharmaceutical company Merck have identified a new bacteria-killing compound with an unusual target—an RNA regulatory structure called a riboswitch. The team used its drug, described in Nature today (September 30), to successfully reduce an experimental bacterial infection in mice, suggesting that the molecule could lead to the creation of a new antibiotic. Moreover, the results indicate that riboswitches—and other RNA elements—might be hitherto unappreciated targets for antibiotics and other drugs.

“Finding an antibiotic with a new target . . . has always been one of the holy grails of antibiotics discovery,” said RNA biochemist Thomas Hermann of the University of California, San Diego, who was not involved in the work. “It looks like that’s what the Merck group has now accomplished.”

The team’s research began with the idea of finding a compound that blocks the bacterial riboflavin synthesis pathway. Riboflavin is an essential nutrient for humans and bacteria alike, but while humans must consume it as part of their diet, bacteria can either scavenge riboflavin from the environment or, if supplies are lacking, make their own. “We targeted the riboflavin pathway because it is specific to bacteria so you have a built in safety margin,” said John Howe of the Merck research laboratories in Kenilworth, New Jersey, who led the research.

The team devised a simple but “very smart phenotypic screen,” said Hermann. The researchers tested roughly 57,000 antibacterial synthetic small molecules on cultures of E. coli bacteria looking for ones whose killing ability was neutralized by the presence of riboflavin. “If the effect of that antibacterial was suppressed by riboflavin,” said Howe, “then we had a good chance that the small molecule . . . was targeting the riboflavin pathway.”

The team found one molecule that fit the criteria and called it ribocil. To investigate the molecule’s mechanism of action, they applied it to cultures of E. coli cells until colonies emerged that were resistant to its effect. The researchers then sequenced the whole genomes of each of the resistant bacterial strains to find which genes were mutated.

The majority of drugs target proteins, explained Howe, “so we assumed that the mutations would be in one of the enzymes in the riboflavin synthesis pathway.” But as it turned out, while all of the 19 resistant strains did have mutations in a gene called RibB (which produces one of the riboflavin synthesis enzymes), the mutations did not affect the protein itself. They altered a non-coding part of the messenger RNA transcript: the riboswitch.

Riboswitches are regulatory elements at the beginning of messenger RNA transcripts. They bind molecules—normally metabolites—that typically suppress the transcript’s expression. “So instead of regulating the enzyme itself, [ribocil] is regulating the production of the enzyme,” Howe said.

Indeed, through reporter assays and crystallization experiments, the team confirmed that ribocil directly interacted with the RibB riboswitch, preventing expression of the protein.

“Ninety-nine-point-nine percent of drug targets are proteins,” said Hermann, “but they were prepared for the 0.1 percent outcome, and I think that’s what I really liked about this work.”

The team went on to tweak ribocil’s chemical structure, improving its killing efficiency and prolonging its effectiveness inside the body. The researchers then showed that this enhanced version of ribocil could effectively reduce bacterial burden in mice infected with a weakened E. coli strain; the bacteria are unable to efficiently expel drugs.

Weakened E. coli were used because wild-type E. coli are adept at ejecting ribocil and other compounds before they can take effect. Finding a way to keep ribocil in the bacteria and making other improvements will be necessary before it can be used as an actual antibiotic, explained Howe.

“I’ve [got] no idea if ribocil will end up being a drug candidate,” biochemist Gerry Wright of McMaster University in Ontario, Canada, wrote in an email to The Scientist, “but the work is a proof of principle, which is very important, and it makes us look to new areas of biology as targets for antibiotics.”

J.A. Howe et al., “Selective small-molecule inhibition of an RNA structural element,” Nature,doi: 10.1038/nature15542, 2015.

Tags

riboswitchnoncoding RNAdrug developmentdisease/medicinecell & molecular biology and antibiotics

 

Assay Drug Dev Technol. 2015 Sep;13(7):402-14. doi: 10.1089/adt.2015.655.

High-Content Assays for Characterizing the Viability and Morphology of 3D Cancer Spheroid Cultures.

Sirenko O1Mitlo T1Hesley J1Luke S1Owens W1Cromwell EF2.

Author information

Abstract

There is an increasing interest in using three-dimensional (3D) spheroids for modeling cancer and tissue biology to accelerate translation research. Development of higher throughput assays to quantify phenotypic changes in spheroids is an active area of investigation. The goal of this study was to develop higher throughput high-content imaging and analysis methods to characterize phenotypic changes in human cancer spheroids in response to compound treatment. We optimized spheroid cell culture protocols using low adhesion U-bottom 96- and 384-well plates for three common cancer cell lines and improved the workflow with a one-step staining procedure that reduces assay time and minimizes variability. We streamlined imaging acquisition by using a maximum projection algorithm that combines cellular information from multiple slices through a 3D object into a single image, enabling efficient comparison of different spheroid phenotypes. A custom image analysis method was implemented to provide multiparametric characterization of single-cell and spheroid phenotypes. We report a number of readouts, including quantification of marker-specific cell numbers, measurement of cell viability and apoptosis, and characterization of spheroid size and shape. Assay performance was assessed using established anticancer cytostatic and cytotoxic drugs. We demonstrated concentration-response effects for different readouts and measured IC50 values, comparing 3D spheroid results to two-dimensional cell cultures. Finally, a library of 119 approved anticancer drugs was screened across a wide range of concentrations using HCT116 colon cancer spheroids. The proposed methods can increase performance and throughput of high-content assays for compound screening and evaluation of anticancer drugs with 3D cell models.

 

Molecules Hold the Mirror Up to Cancer

Imaging Technologies are Critical Tools for Basic Research and Translational and Clinical Applications

http://www.genengnews.com/gen-articles/molecules-hold-the-mirror-up-to-cancer/5582/

The Center for Biomedical Imaging in Oncology (CBIO) at the Dana-Farber Cancer Institute in Boston is a centralized cancer imaging research enterprise that was established to enable translational cancer research and drug development through the integration of preclinical and clinical imaging, access to preclinical/clinical multidisciplinary and multimodality imaging expertise, as well as drug/imaging probe development.

cancr imaging_DanaFarber_CBIO_OraganizatonalChart6613014019

 

http://www.genengnews.com/Media/images/Article/thumb_DanaFarber_CBIO_OraganizatonalChart6613014019.jpg

  • The molecular processes behind cancer were once seen as through a glass, darkly. But now they are being reflected more clearly, thanks to advances in probe synthesis, preclinical cancer modeling, and multimodal imaging. These advances have positioned imaging as a key tool for basic research, as well as for translational and clinical applications.

To bring cancer visualization trends to light, CHI recently held a conference, Translational Imaging in Cancer Drug Development, as part of the World Preclinical Congress in Boston. This conference attracted leading imaging experts from industry and academia, including scientists and clinicians who use their expertise to accelerate cancer research. Many of the experts described how, with a little creativity, imaging modalities can be used to translate scientific discoveries into clinical applications.

Several examples of creative imaging from the conference are discussed in this article. To start, this article will highlight one investigator’s new take on a familiar technique, positron emission tomography (PET).

“Along with the scientific challenge posed by President Obama’s Precision Medicine Initiative, molecular imaging probes have substantially improved and expanded to include the noninvasive characterization of tumors and tumor microenvironments,” said Quang-Dé Nguyen, Ph.D., director of the Lurie Family Imaging Center (LFIC) at the Dana Farber Cancer Institute. “PET is becoming a method of choice for studying tumor biology in real time.”

LFIC is fully equipped to meet the creative demands of translational molecular imaging. It is an integral part of the Center for Biomedical Imaging in Oncology (CBIO), which also includes a clinical imaging research group. In addition to LFIC and CBIO, the Dana Farber Cancer Institute includes medicinal chemistry capabilities and expertise, and has recently established the Molecular Cancer Imaging Facility housing the only PET cyclotron in the state dedicated entirely to the development of novel radiotracers for cancer research.

“A unique attribute of our Cancer Center is the fully developed Mouse Hospital, mirroring every aspect of human cancer diagnostics and care,” noted Dr. Nguyen. The center uses genetically engineered mouse models that can be matched to the specific genotype of a given individual patient. Alternatively, the Center can rapidly generate xenograft mice and orthotopic murine tumor models using human tumor cells obtained from biopsies. In either case, the resulting mouse model is a faithful genetic mirror of the patient’s tumor.

Dr. Nguyen’s team deploys PET imaging to inform patient treatment in co-clinical trials. Once a patient’s genotype is identified, an appropriate mouse model is selected, sometimes in combination with additional mutations. The mouse is treated with a desired therapy, and functional and molecular outcomes can be rapidly detected by PET imaging. Mouse-derived data can then inform the design of the clinical trial and be fully integrated with clinical data.

In a seminal study, lung tumors carrying several combinations of cancer mutations were simultaneously tested in genetically engineered mouse models and in patients with lung cancer enrolled in a clinical trial to assess response to a combination therapy with a novel drug compared to standard of care. The radiolabeled glucose analog was used to visualize the lung tumors by PET in both mice and patients.

Remarkably, within 24 hours after therapy initiation, preclinical PET imaging demonstrated treatment response to the combined regimen for some but not all the mutations. This information helped identify the resistant mutation in patients being considered for enrollment in the clinical trial and allowed enrichment of the patient population by selecting patients carrying those mutations that had showed metabolic response in the preclinical setting.

more…

Read Full Post »


Lonely Receptors: RXR – Jensen, Chambon, and Evans

Larry H. Bernstein, MD, FCAP, Curator

Leaders in Pharmaceutical Intelligence

Series E. 2; 7.2

 

Nuclear receptors provoke RNA production in response to steroid hormones

Albert Lasker Basic Medical Research Award

Pierre Chambon, Ronald Evans and Elwood Jensen

For the discovery of the superfamily of nuclear hormone receptors and elucidation of a unifying mechanism that regulates embryonic development and diverse metabolic pathways.

Hormones control a vast array of biological processes, including embryonic development, growth rate, and body weight. Scientists had known since the early 1900s that tiny hormone doses dramatically alter physiology, but they had no idea that these signaling molecules did so by prodding genes. The 1950s, when Jensen began his work, was the great era of enzymology. Conventional wisdom held that estradiol—the female sex hormone that instigates growth of immature reproductive tissue such as the uterus—entered the cell and underwent a series of chemical reactions that produced a particular compound as a byproduct. This compound—NADPH—is essential for many enzymes’ operations but its small quantities normally limit their productivity. A spike in NADPH concentrations would stimulate growth or other activities by unleashing the enzymes, the reasoning went.

In 1956, Jensen (at the University of Chicago) decided to scrutinize what happened to estradiol within its target tissues, but he had a problem: The hormone is physiologically active in minute quantities, so he needed an extremely sensitive way to track it. He devised an apparatus that tagged it with tritium—a radioactive form of hydrogen—at an efficiency level that had not previously been achieved. This innovation allowed him to detect a trillionth of a gram of estradiol.

When he injected this radioactive substance into immature rats, he noticed that most tissues—skeletal muscle, kidneys and liver, for example—started expelling it within 15 minutes. In contrast, tissues known to respond to the hormone—those of the reproductive tract—held onto it tightly. Furthermore, the hormone showed up in the nuclei of cells, where genes reside. Something there was apparently grabbing the estradiol.

Jensen subsequently showed that his radioactive hormone remained chemically unchanged once inside the cell. Estrogen did not act by being metabolized and producing NADPH, but presumably by performing some job in the nucleus. Subsequent work by Jensen and Jack Gorski established that estradiol converts a protein in the cytoplasm, its receptor, into a form that can migrate to the nucleus, embrace DNA, and turn on specific genes.

From 1962 to 1980, molecular endocrinologists built on Jensen’s work to discover the receptors for the other major steroid hormones—testosterone, progesterone, glucocorticoids, aldosterone, and the steroid-like vitamin D. In addition to Jensen and Gorski, many scientists—notably Bert O’Malley, Jan-Ake Gustafsson, Keith Yamamoto, and the late Gordon Tompkins—made crucial observations during the early days of steroid receptor research.

Clinical Applications of Estrogen-Receptor Detection

Clinicians knew that removing the ovaries or adrenal glands of women with breast cancer would stop tumor growth in one out of three patients, but the molecular basis for this phenomenon was mysterious. Jensen showed that breast cancers with low estrogen-receptor content do not respond to surgical treatment. Receptor status could therefore indicate who would benefit from the procedure and who should skip an unnecessary operation. In the mid-1970s, Jensen and his colleague Craig Jordan found that women with cancers that contain large amounts of estrogen receptor are also likely to benefit from tamoxifen, an anti-estrogen compound that mimics the effect of removing the ovaries or adrenal glands. The other patients—those with small numbers of receptors—could immediately move on to chemotherapy that might combat their disease rather than waiting months to find out that the tumors were growing despite tamoxifen treatment. By 1980, Jensen’s test had become a standard part of care for breast cancer patients.

In the meantime, Jensen set about generating antibodies that bound the receptor—a tool that provided a more reliable way to measure receptor quantities in excised breast tumor specimens. His work has transformed the treatment of breast cancer patients and saves or prolongs more than 100,000 lives annually.

Long-Lost Relatives

By the early 1980s, interest in molecular endocrinology had shifted toward the rapidly developing area of gene control. Chambon and Evans had long wondered how genes turn on and off, and recognized nuclear hormone signaling as the best system for studying regulated gene transcription. They wanted to know exactly how nuclear receptors provoke RNA production in response to steroid hormones. To manipulate and analyze the receptors, they would need to isolate the genes for them.

By late 1985 and early 1986, Evans (at the Salk Institute in La Jolla) and Chambon (at the Institute of Genetics and Molecular and Cellular Biology in Strasbourg, France) had pieced together the glucocorticoid and estrogen receptor genes, respectively. They noticed that the sequences resembled that of v-erbA, a miscreant viral protein that fosters uncontrolled cell growth. This observation raised the possibility that v-erbA and its well-behaved cellular counterpart, c-erbA, would also bind DNA and control gene activity in response to some chemical activator, or ligand. In 1986, Evans and Björn Vennström simultaneously reported that c-erbA was a thyroid hormone receptor that was related to the steroid hormone receptors, thus uniting the fields of thyroid and steroid biology.

Chambon and Evans set to work deconstructing the glucocorticoid and estrogen receptors. By creating mutations at different spots and probing which activities the resulting proteins lost, they dissected the receptor into three domains: one bound hormone, one bound DNA, and one activated target genes. The structure of each domain strongly resembled the analogous one in the other receptor.

Chambon and Evans wanted to match other members of the growing receptor gene family with their chemical triggers. Because the DNA- and ligand-binding regions functioned independently, it was possible to hook the DNA-binding domain of, say, the glucocorticoid receptor to the ligand-binding domain of another receptor whose ligand was unknown. The ligand for that receptor would then activate a glucocorticoid-responsive test gene.

Evans would use this method to identify ligands for several novel members of the nuclear receptor family, and both he and Chambon exploited it to discover a physiologically crucial receptor. In the late 1970s, scientists had suggested that the physiologically active derivative of vitamin A, retinoic acid, could exert its effects by binding to a nuclear receptor. This nutrient is essential from fertilization through adulthood, and researchers were eager to understand its activities on a molecular level. During embryonic development, deficiency of retinoic acid impairs formation of most organs, and the compound can hinder cancer cell proliferation. So Chambon set out to find a receptor that responded to retinoic acid. He isolated a member of the nuclear receptor gene family whose production increased in breast cancer cells that slowed their growth upon exposure to the chemical. Simultaneously, Evans identified the same protein. He tested whether more than a dozen compounds activated an unknown receptor and one passed: retinoic acid.

Remarkably, in 1986, the two scientists had independently—and unbeknownst to each other—identified the same retinoic acid receptor, a molecule of tremendous significance. The discovery of this molecule provided an entry point for detailing vitamin A biology.

Rx for Lonely Receptors: RXR

The list of presumptive nuclear receptors was growing quickly as scientists realized that the common DNA sequences provided a handle with which to grab these molecules from the genome. Because their chemical activators weren’t known, they were called “orphan” receptors, and researchers were keen on “adopting” them to ligands. Some of these ligands, they reasoned, would represent previously unknown classes of gene activators. The test system that Chambon and Evans used to match up retinoic acid with its receptor, in which they stitched an unknown ligand-binding domain to a DNA-binding domain for a receptor with known target sequences, could be harnessed to accomplish this task.

Evans had identified some potential nuclear receptors from fruit flies. He decided to pursue a human orphan receptor that closely resembled one of these receptor genes, reasoning that a protein that functioned in both flies and mammals was likely to perform an important job.

This receptor responded to retinoic acid in intact cells but did not bind it in the test tube, so Evans called it the Retinoid X Receptor (RXR), thinking that its ligand was some retinoic acid derivative. In cells, enzymes convert retinoic acid to metabolites and it seemed possible that one of these compounds was RXR’s ligand. In 1992, Evans’s group and one at Hoffmann-La Roche discovered that 9-cis-retinoic acid, a stereoisomer of retinoic acid, could activate RXR, identifying the first new receptor ligand in 25 years. This finding launched the orphan receptor field because it provided strong evidence that the strategy could unearth previously unknown ligands.

In the meantime, Chambon had found that the purified retinoic acid receptor, in contrast to the estrogen receptor, did not bind efficiently to its target DNA. Other nuclear receptors, too, needed help grasping genes. In the test tube, the retinoic acid, thyroid hormone, and vitamin D3 receptors could attach well to their target DNA only when supplemented with cellular material, which presumably contained some crucial substance. Chambon and Michael Rosenfeld independently purified a single protein that performed this feat, and it turned out to be none other than RXR. This ability of RXR to pair with other receptors—forming so-called heterodimers—would turn out to be key for switching on many orphan receptors. These heterodimeric couplings yield large numbers of distinct gene-controlling entities.

Chambon revealed the power of mixing and matching in these molecular duos through his thorough and extensive genetic manipulations in mice. He has shown that vitamin A exerts its wide-ranging effects on organ development in the embryo through the action of eight different forms of the retinoic acid receptor and six different forms of RXR, interacting with each other in a multitude of combinations.

Clinical Applications of the Superfamily Work

The concept of RXR as a promiscuous heterodimeric partner for certain nuclear receptors led to the unexpected identification of a number of clinically relevant receptors. These proteins include the peroxisome proliferator-activated receptor (PPAR), which stimulates fat-cell maturation and sits at the center of Type 2 diabetes and a number of lipid-related disorders; the liver X receptors (LXRs) and bile acid receptor (FXR), which help manage cholesterol homeostasis; and the steroid and xenobiotic receptor (PXR), which turns on enzymes that dispose of chemicals that need to be detoxified, such as drugs.

Because the nuclear receptors wield such physiological power, they have provided excellent targets for disease treatment. The anti-diabetes compounds glitazones, for example, work by stimulating PPAR, and the clinically used lipid-lowering medications called fibrates work by binding a closely related receptor, PPAR. Retinoic acid therapy has dramatically altered the prognosis of people with acute promyelocytic leukemia by triggering specialization of the immature white blood cells that accumulate in these individuals. The three-dimensional structure of nuclear receptors with and without their ligands, which Chambon and his colleagues first solved, promises to accelerate drug discovery in the whole field.

Nuclear hormone receptors have touched on human health in other ways as well. Genetic perturbations in the genes for these proteins cause a variety of illnesses. For example, certain forms of rickets arise from mutations in the vitamin D receptor and several disorders of male sexual differentiation stem from defects in the androgen receptor.

The discoveries of Jensen, Chambon, and Evans revealed an unimagined superfamily of proteins. At the start of this work almost 50 years ago, no one would have anticipated that steroids, thyroid hormone, retinoids, vitamin D, fatty acids, bile acids, and many lipid-based drugs transmit their signal through similar pathways. Four dozen human nuclear receptors are now known, and scientists are working out the roles of these proteins in normal and aberrant physiology. These discoveries have revolutionized the fields of endocrinology and metabolism, and pointed toward new tactics for drug discovery.

by Evelyn Strauss, Ph.D.

 

The 2004 Lasker Award for Basic Medical Research will be presented to Elwood Jensen, Ph.D., the Charles B. Huggins Distinguished Service Professor Emeritus in the Ben May Institute for Cancer Research at the University of Chicago, one of three scientists whose discoveries “revolutionized the fields of endocrinology and metabolism,” according to the award citation. Jensen’s work had a rapid, direct and lasting impact on treatment and prevention of breast cancer.

The Lasker Awards are the nation’s most distinguished honor for outstanding contributions to basic and clinical medical research. Often called “America’s Nobels,” the Lasker Award has been awarded to 68 scientists who subsequently went on to receive the Nobel Prize, including 15 in the last 10 years.

Jensen will share the basic medical research award with two colleagues, Pierre Chambon, of the Institute of Genetics and Molecular and Cellular Biology (Strasbourg, France), and Ronald M. Evans of the Salk Institute for Biological Studies (La Jolla, California) and the Howard Hughes Medical Institute.

They were selected for their discovery of the “superfamily of nuclear hormone receptors and the elucidation of a unifying mechanism that regulates embryonic development and diverse metabolic pathways.” The implications of this research for understanding human disease and accelerating drug discovery “have been profound and hold much promise for the future,” notes the announcement from the Lasker Foundation.

Jensen is being honored for his pioneering research on how steroid hormones, such as estrogen, exert their influence. His discoveries explained how these hormones work, which has led to the development of drugs that can enhance or inhibit the process.

Hormones control a vast array of biological processes, including embryonic development, growth rate and body weight. Before Jensen, however, the way which hormones cause these effects was “a complete mystery,” recalled Gene DeSombre, Ph.D., professor emeritus at the University of Chicago, who worked with Jensen in the Ben May Institute as a post-doctoral fellow and then as a colleague.

In the 1950s, biochemists thought a hormone entered a cell, where a series of oxidation and reductions reactions with the estrogen provided needed energy for the growth stimulation and other specific actions shown by estrogens.

From the late 1950s to the 1970s Jensen entirely overturned that notion. Working with estrogen, he proved that hormones do not undergo chemical change. Instead, they bind to a receptor protein within the cell. This hormone-receptor complex then travels to the cell nucleus, where it regulates gene expression.

At the time, this idea was heresy. “That really got him into some hot water,” recalled DeSombre. “Jensen struggled quite a lot,” echoes Shutsung Liao, Ph.D., another Ben May colleague, who subsequently found a similar system for testosterone action. But for Jensen, just getting into hot water was a struggle. When he first presented preliminary data at a 1958 meeting in Vienna, only five people attended, three of whom were the other speakers. More than 1,000 attended a simultaneous symposium on the metabolic processing of estrogen.

In the next 20 years, Jensen convinced his colleagues by publishing a series of major and highly original discoveries in four related areas of hormone research:

  • Jensen discovered the estrogen receptor, the first receptor found for any hormone. In 1958, using a radioactive marker, he showed that only the tissues that respond to estrogen, such as those of the female reproductive tract, were able to concentrate injected estrogen from the blood. This specific uptake suggested that these cells must contain binding proteins, which he called “estrogen receptors.”
  • In 1967, Jensen and Jack Gorski of the University of Wisconsin showed that these putative receptors were macromolecules that could be extracted from these tissues. With this method, Jensen showed that when estrogen bound to this receptor, the compound then migrated to the nucleus where it bound avidly and activated specific genes, stimulating new RNA synthesis.
  • By 1968, Jensen had devised a reliable test for the presence of estrogen receptors in breast cancer cells. It had been known for decades that about one-third of premenopausal women who had advanced breast cancer would respond to estrogen blockade brought about by removing their ovaries, the source of estrogen, but there was no way to predict which women would respond. In 1971, Jensen showed that women with receptor-rich breast cancers often have remissions following removal of the sources of estrogen, but cancers that contain few or no estrogen receptors do not respond to estrogen-blocking therapy.
  • By 1977, Jensen and Geoffrey Greene, Ph.D., also in the University of Chicago’s Ben May Institute, had developed monoclonal antibodies directed against estrogen receptors, which enabled then to quickly and accurately detect and count estrogen receptors in breast and other tumors. By 1980, this test had become a standard part of care for breast cancer patients

This work “transformed the treatment of breast cancer patients,” notes the Lasker Foundation, “and saves or prolongs more than a 100,000 lives annually.”

”Jensen’s revolutionary discovery of estrogen receptors is beyond doubt one of the major achievements in biochemical endocrinology of our time,” said DeSombre. “His work is hallmarked by great technical ingenuity and conceptual novelty. His promulgation of simple yet profound ideas concerning the role of receptors in estrogen action have been of the greatest importance for research on the basic and clinical physiology not only of estrogens but also of all other categories of steroid hormones.”

By the early 1970s, Jensen was searching for chemical, rather than surgical, ways to shield estrogen-dependent tumors from circulating hormones. He and colleague Craig Jordan (then at the Worcester Foundation for Experimental Biology in Massachusetts) subsequently found that women with cancers that contain large amounts of estrogen receptor are also likely to benefit from tamoxifen, a compound that blocks some of the effects of estrogen. Patients with few or no receptors could immediately move on to chemotherapy rather than waiting months to find out that the tumors were growing despite tamoxifen treatment.

Following Jensen’s lead, researchers soon found that the receptors for the other major steroid hormones, such as testosterone, progesterone, and cortisone, worked essentially the same way.

In 1986, Pierre Chambon and Ronald Evans separately but simultaneously discovered that the steroid hormone receptors were merely the tip of the iceberg of what would turn out to be a large family of structurally related nuclear receptors, now known to consist of 48 members. Evans and Chambon unearthed a number of these receptors, which revealed new regulatory systems that control the body’s response to essential nutrients (such as Vitamin A), fat-soluble signaling molecules (such as fatty acids and bile acids), and drugs (such as the glitazones used to treat Type 2 diabetes and retinoic acid for certain forms of acute leukemia).

These three individuals “created the field of nuclear hormone receptor research, which now occupies a large area of biological and medical investigation,” said Dr. Joseph L. Goldstein, chairman of the international jury of researchers that selects recipients of the Lasker Awards, and recipient of the Lasker Award for Basic Medical Research and the Nobel Prize in Medicine in 1985.

They revealed the “unexpected and unifying mechanism by which many signaling molecules regulate a plethora of key physiological pathways that operate from embryonic development through adulthood. They discovered a family of proteins that allows chemicals as diverse as steroid hormones, Vitamin A, and thyroid hormone to perform in the body.”

Jensen, known for concluding his lectures in verse, neatly summed up what his extraordinary series of discoveries might mean to a woman who has been diagnosed with breast cancer:

“A lady with growth neoplastic
Thought surgical ablation too drastic.
She preferred that her ill
Could be cured with a pill,
Which today is no longer fantastic.”

JBC THEMATIC MINIREVIEW SERIES 2011

Nuclear Receptors in Biology and Diseases

Thematic Minireview Series on Nuclear Receptors in Biology and Diseases

Sohaib Khan and Jerry B Lingrel

Although a connection between breast cancer and the ovary was made by Sir George Beatson in 1896 and estrogen was purified in 1920, it remained puzzling as to how the hormone exerted its biological effects. In the late 1950s, when Elwood Jensen delved into this problem by asking, essentially, “What does tissue do with this hormone?” little did he know that his quest would lead to the establishment of the nuclear receptor field. The late 1950s was the era of intermediary metabolism and enzymology, when steroid hormones were considered likely substrates in the formation of metabolites that functioned as cofactors in an essential metabolic pathway. The biological responses to estrogens and other steroids were thought to be mediated by enzymes. Against this background and prevailing dogma, Jensen and colleagues defined the biochemical mechanisms by which steroid hormones exert their effects. While working at the University of Chicago’s Ben May Institute for Cancer Research, they synthesized tritium-labeled estradiol and concurrently developed a new method to measure its uptake in biological material. These tools enabled them to determine the biochemical fate of physiological amounts of hormone. They discovered that the reproductive tissues of the immature rat contain characteristic hormone-binding components with which estradiol reacts to induce uterine growth without itself being chemically changed. From the close correlation between the inhibition of binding and inhibition of growth response, Jensen established that the binding substances were receptors. Thus, we saw the birth of the first member of the nuclear receptor family (known as the estrogen receptor). These findings stimulated the search for other physiological receptors, and the pioneering works by Pierre Chambon, Ronald Evans, Jan-Åke Gustafsson, Bert W. O’Malley, and Keith Yamamoto led to the discoveries of the glucocorticoid receptor (GR),2 progesterone receptor, retinoic acid receptor, and orphan receptors. In a rather short span of time, the nuclear receptor family has grown into a 49-member-strong “superfamily.” This is a family whose members, functioning as sequence-specific transcription factors, have defined the many intricacies of the mechanism of transcription. These ligand-dependent transcription factors generally possess similar “domain organizations,” of which the DNA-binding domain and the ligand-binding domain are critical in amplifying the hormonal signals via the receptor target genes. The nuclear receptor family is divided into four groups: (i) Group 1 is composed of steroid hormone receptors that control target gene transcription by binding as homodimers to response element (RE) palindromes; (ii) in Group 2, the nuclear receptors heterodimerize with retinoid X receptor and generally bind to direct repeat REs; (iii) Group 3 consists of those orphan receptors that function as homodimers and bind to direct repeat REs; and (iv) orphan receptors in Group 4 function as monomers and bind to single REs.

Since the early demonstration by Jack Gorski and Jensen that the estrogen receptor (ER) activates transcription, the nuclear receptor field has come a long way. In addition to the first cloning of the polymerase II transcription factors (GR and ER cDNAs), of note is the discovery of steroid receptor coactivators (SRCs), a truly major piece of the transcriptional jigsaw puzzle, described by the laboratories of O’Malley and Myles Brown. The induction of coactivators and corepressors in the transcriptional machinery has expanded tremendously our understanding of this complex process. We now know that ligand binding to the respective receptors triggers a fascinating chain of events, including the translocation of the receptors to the nucleus, ligand-induced changes in the receptor conformations, receptor dimerization, interaction with the target gene promoter elements, recruitment of coactivators (or corepressors), chromatin remodeling, and subsequent interaction with the polymerase II complex to initiate transcription.

By virtue of their abilities to regulate a myriad of human developmental and physiological functions (reproduction, development, metabolism), nuclear receptors have been implicated in a wide range of diseases, such as cancer, diabetes, obesity, etc. Not surprisingly, drug companies are spending billions of dollars to develop medicines for cancer and metabolic disorders that involve nuclear receptors. More than 50 years after the discovery of the ER, the scientific community owes Jensen and other founding members of the nuclear receptor family much gratitude, for they have taken us through a remarkable expedition filled with eureka moments to understand how hormones and other ligands function!

This thematic minireview series will cover a range of topics in the nuclear receptor field. The minireviews include the current studies of identifying subtypes of the GR. Different receptors arise from alternative mRNA splicing and from the use of different promoter start sites and post-translational modifications, such as phosphorylation. The series covers the physiological roles of the different GRs. The field of orphan nuclear receptors and the search for possible ligands also are reviewed. One minireview concentrates largely on the following nuclear receptors: peroxisome proliferator-activated receptor (PPAR) α, PPARγ, Rev-erbα, and retinoic acid receptor-related orphan receptor α. ERα was the first identified and has been studied the most, whereas ERβ has not been studied in the same detail. ERβ is very important, and one of the minireviews provides a summary of the new biological functions that are being ascribed to it. Also, the development of small molecule inhibitors for the ER will be considered. An important aspect of nuclear receptor function is how these receptors function in transcription. The role of transcriptional coactivators in nuclear receptor gene regulation will be reviewed as well as how signal amplification and interaction are involved in transcription regulation by steroids. The SRC/p160 family of coregulators includes SRC-1, SRC-2, and SRC-3, and the latter has been shown to act as an oncogene, particularly in breast cancer. Molecular analysis of its role in breast cancer progression and metastasis will be the focus of one of the minireviews. In addition, interactions of nuclear receptors with the genome will be reviewed, as will the role of the homeodomain protein HoxB13 in specifying the cellular response to androgens. Mining nuclear receptor cistromes and how nuclear receptors reset metabolism also will be considered. The association of nuclear receptors (e.g. PPARδ) with physiological functions, such as circadian rhythm and muscle functions, will also be addressed. Finally, the role of nuclear receptors in disease using the retinoid X receptor α/β knock-out and transgenic mouse model skin syndromes and asthma will be reviewed. These are diverse and important topics that are critical in understanding the regulation of nuclear receptors and the biological roles they play in normal function and disease.

The Nuclear Receptor Superfamily: A Rosetta Stone for Physiology

Ronald M. Evans
Howard Hughes Medical Institute, Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
Molecular Endocrinology 19(6):1429–143   http://dx.doi.org:/10.1210/me.2005-0046

In the December 1985 issue of Nature, we described the cloning of the first nuclear receptor cDNA encoding the human glucocorticoid receptor (GR) (1). In the 20 yr since that event, our field has witnessed a quantum leap by the subsequent discovery and functional elaboration of the nuclear receptor superfamily (2)—a family whose history is linked to the evolution of the entire animal kingdom and whose actions, by decoding the genome, span the vast diversity of biological functions from development to physiology, pathology, and treatment. A messenger is an envoy or courier charged with transmitting a communication or message. In one sense, the cloning of that first messenger (the GR) represented the completion of a prediction that began with Elwood Jensen’s characterization of the first steroid receptor protein (3) and continued with the pioneering work of others in the steroid receptor field (including Gorski, O’Malley, Gustafsson, and Yamamoto). Yet, like the discovery of the Rosetta stone in 1799, the revelation of the GR sequence heralded a completely unpredictable demarcation in the field, helping to solve mysteries unearthed nearly 100 yr ago as well as opening a portal to the future. The beginnings of the adventure lie in disciplines such as medicine and nutrition, which gave rise to the emergent field of endocrinology in the first half of the last century. The purification of chemical messengers ultimately known as hormones from organs and vitamins from foods spurred the study of these compounds and their physiologic effects on the body. At about the same time, the field of molecular biology was emerging from the disciplines of chemistry, physics, and their application to biological problems such as the structure of DNA and the molecular events surrounding its replication and transcription. It would not be until the late 1960s and 1970s that endocrinology and molecular biology would begin to intersect as the link between receptors and transcriptional control were being laid down. During this time, the work of Jensen (4) and Gorski (5) identified a high-affinity estrogen receptor (ER) that suggested an action in the nucleus. Gordon Tomkins and his associates (J. Baxter, G. Ringold, E. B. Thompson, H. Samuels, H. Bourne, and others) were one of the most creative forces studying glucocorticoid action (6). Concurrent work by O’Malley, Gustafsson, and Yamamoto provided further, important evidence supporting a link between steroid receptor action and transcription (see accompanying perspective articles in this issue of Molecular Endocrinology). But whereas the steroid hormone field continued to evolve in this direction, it is of interest to note that the mechanism of action of thyroid hormone and retinoids remained clouded and controversial until the eventual cloning of their receptors in the late 1980s. Likewise, no one had foreseen the possibility that other lipophilic molecules (like oxysterols, bile acids, and fatty acids) would also function through a similar mechanism, or that other steroid receptor-like proteins existed that would play an important role in transcriptional regulation of so many diverse pathways. Thus, the GR isolation in 1985 led to the concept of a hidden superfamily of receptors that in a very real way provided the needed molecular code to unravel the puzzle of physiologic homeostasis.

Unconventional Gene-Ology

The study of RNA tumor viruses was ascendant, and the concept that they evolved by pirating key signaling pathways greatly influenced my future studies. With this training, I went on to work with Jim Darnell at the Rockefeller University on adenovirus transcription, a model brought to the lab by Lennart Philipson. At the time, adenovirus was one of the best tools to study programmed gene expression in an animal cell. My sole focus was to localize the elusive major late promoter, which provided my first Nature paper (7). Ed Ziff, a newly hired assistant professor from Cambridge, brought innovative unpublished DNA and RNA sequencing techniques that, after much technical angst, allowed us to sequence the major late promoter and derive the structure of the first eukaryotic polymerase II promoter (8). This thrilling result convinced me that the problem of gene control could be solved at the molecular level. Our next goal, which I shared with Michael Harpold in the Darnell lab, was to translate the concepts developed around adenovirus into cellular systems. My model was to analyze the glucocorticoid and thyroid hormone regulation of the GH gene. Under the strict federal guidelines for newly approved recombinant DNA research, we cloned the GH cDNA in 1977 and the first genomic clones in 1978 (9) after I moved on to The Salk Institute. However, to fully address the hormone signaling problem, I realized that it would be necessary to clone the GR and thyroid hormone receptors (TRs), which began in earnest in 1981. Up until that time, the purification and cloning of any polymerase II transcription factor had eluded researchers because of their low abundance. Four years later, the GR would be the first transcription factor for a defined response element to be cloned, sequenced, and functionally identified.

A Rock and A Hard Place

A key question was whether the GR protein encoded by the receptor was sufficient, when expressed in a heterologous cell, to convey the hormonal message. Before the publication, a new postdoc, Vincent Giguere, began tinkering with the isolated GR, trying to address this question. The rate of development of any field is limited by the existing techniques and depends on the development of new ones. Vincent devised a revolutionary technique—the cotransfection assay that required two plasmids to be taken up in the same cell, the expression vector to be transcribed, the encoded protein to be functional and an inducible promoter linked to a chloramphenicol acetyltransferase reporter in the nucleus ready to flicker on (10, 12). With so many variables and unknowns, I was stunned and expressionless when it worked the very first time. Cotransfection was an easy, fast, and quantitative technique. It would become (and still remains) the dominant assay to characterize receptor function. It would also become the mainstay for drug discovery in the pharmaceutical industry. The development of this technique proved a great advantage because existing technology involved creating stable cell lines, a tedious process prone to integration artifacts that ultimately could not match the explosive pace of the field. Indeed, within 4 months Stan and Vincent had fully characterized 27 insertional mutants delineating the DBD, LBD, and two activation domains (12). The route to understanding the signaling mechanism now had a solid structural foundation. A serendipitous gift to my retroviral origins was the homology of the GR sequence to the v-erbA oncogene product of the avian erythroblastosis virus genome (13). With this discovery, erbA advanced to a candidate nuclear transcription factor potentially involved in a signal transduction pathway. Thus, while Stan concentrated on the GR, Cary began to delve into the erbA discovery. Within months of the GR publication, the human c-erbA gene was in hand (14). Unbeknownst to us, Bjorn Vennstrom, one of the first to characterize the avian erythroblastosis virus genome, had also isolated c-erbA and was searching for a function. Based on the low homology of the LBD region to the GR and ER, both groups deduced that the imaginary erbA ligand would be nonsteroidal.

The work of our two groups (15, 16), published in December of 1986, broadened the principles of the signal transduction pathway by demonstrating that thyroid and steroid hormone receptor signaling had a common evolutionary origin and provided an entree to understand how mutations within a receptor could activate it to an oncogene. Although we did not know it at the time, this work would also lead us to the concept of the corepressor. In the meantime, my student, Catherine Thompson, zeroed in on an erb-A-related gene and soon identified a second TR expressed at high levels in the central nervous system (17). Thus came into existence the and forms of the TR. Jeff Arriza, the third graduate student in the lab, purified a genomic fragment that had weakly hybridized to the GR resulting in the isolation of the human mineralocorticoid receptor (MR) (18). MR proved to have an at least 10-fold higher affinity for glucocorticoids than the GR itself and was further distinguished by its ability to bind and be activated by aldosterone. This enabled the development of GR- and MR-selective drugs such as the recent MR antagonist eplerenone. Thus, in a 2-yr time span our lab had progressed on three distinct, albeit related, receptor systems, and in doing so molecular biology and endocrinology were irrevocably linked. The field of molecular endocrinology (and coincidentally the eponymous journal) was born.

Ligands From Stone

I have often been asked how we could handle so many divergent systems. Indeed, from a medical perspective, these systems seem widely unrelated. Studies of ER, progesterone receptor, and androgen receptor (AR) fall under reproductive physiology, vitamin D under bone and mineral metabolism, with vitamin A part of nutritional science. Medical fields are naturally idiosyncratic because of the specialized knowledge required to conduct experiments. With my training as a molecular biologist, physiology was the complex output of genes and thus control of gene expression was the overriding problem. This conceptual approach had a great unifying effect because all receptors transduce their signaling through the gene. As an “outsider,” my goal was to exploit multiple receptor systems to seek general principles. This philosophical approach afforded us a freedom to redefine the signaling problem from the nucleus outward and thus even poorly characterized, even unknown, physiologic systems fell into the crosshairs of our molecular gun.

Vincent, while screening a testes Fig. 1. Models of Nuclear Receptor Structure Top, Original hand-shaped wire model (circa 1992) of the nuclear receptor DBD. Bottom, Schematic representation of the GR DBD. Conserved residues in zinc fingers, P-box and D-box are indicated isolated what would become the vitamin A or retinoic acid receptor (RAR) (19). Initially, Vincent thought he had isolated the AR, although this later proved not to be the case. By that stage, the lab had perfected a new technique—the domain swap—by which the GR DBD could be introduced into any receptor and confers on the chimeric protein the ability to activate a mouse mammary tumor virus reporter. This clever technique, independently developed in the Chambon lab, would prove to be essential. Effectively, the domain swap would enable us to screen for ligands without any knowledge of their physiologic function. Activation of a target gene was all that was needed! By creating this GR chimera, Vincent was able to screen the new receptor against a ligand cocktail including androgens, steroids, thyroid hormone, cholesterol, and the vitamin A metabolite retinoic acid. From the first assay, it was clear that he had isolated a high-affinity selective RAR that had no response to any other test ligand. Thus, without knowing any true direct target gene for retinoic acid, we were nonetheless able to isolate and characterize its receptor. Remarkably, Martin Petkovich in the Chambon lab isolated the same gene. Once again, this is an example where a new technique offered an entirely new approach to a problem. Both papers were published in the December 1987 issue of Nature (19, 20). With the combination of steroids, thyroid hormones, and vitamin A, the three elemental components of the nuclear receptor superfamily were in hand. By the time the RAR papers were published, Vincent with Na Yang, had already isolated two estrogen-related receptors termed ERR1 and 2 that would represent the first true orphan receptors in the evolving superfamily (21). A third receptor (ERR3) would be isolated 10 yr later (22). The three ERRs are distinguished by their ability to activate through ER response elements, but required no ligand. However, of potential major medical relevance, estrogen antagonists such as 4-hydroxy-tamoxifen silences ERR constitutive activity (23). The superfamily was growing exponentially, transforming into a new field, driven by a new breed of exceptional students and fellows attracted by the mechanics of transcription and its emerging link to physiology. For example, the RAR and TR offered an unprecedented look at understanding the action of vitamin A as a morphogen and the role of thyroxin in setting the basal metabolic rate of the body. We were a relatively small group, and our decision to work on multiple different receptor systems created a unique environment. Because there was so little overlap between projects, postdocs and students readily discussed all results, exchanged reagents and freely collaborated, resulting in a tremendous acceleration of progress. The high level of camaraderie was powered by the joie de vivre of the exciting discoveries and the ability of our family of students and postdocs to each adopt their own receptors. We all felt we were in a golden age and even more was to come.

In 1989, Jan Sap in Vennstrom’s group and Klaus Damm in our group demonstrated that the TR becomes oncogenic by mutation in the LBD (24, 25). Although we expected ligand-independent activation, it was clearly a constituitive repressor becoming the first example of a dominant-negative oncogene. The concept of the dominant-negative oncogene had been proposed one year earlier by Ira Herskowitz (26). This discovery changed our thinking on hormone action, and repression soon would be shown to be a common feature of receptor antagonists. David Mangelsdorf, who had arrived in the lab the year before was captivated by the glow of weakly hybridizing DNA bands and, in 1989, had amassed his own collection of orphan receptors, among which was the future retinoid X receptor (RXR) (27). In search for biological activity, a candidate ligand was found in lipid extracts from outdated human blood. However, the key test came from demonstrating that addition of all-trans retinoic acid to cultured cells would lead to its rapid metabolism coupled with the release of an inducing activity for RXR, which we termed retinoid X. David and his benchmate, Rich Heyman, began working on the chemistry of this inducer along with Gregor Eichele and Christine Thaller, then at Baylor College of Medicine (Houston, TX). This work led to the identification of 9-cis retinoic acid by our lab and a group at Hoffman LaRoche (Nutley, NJ) (28, 29). Like the retinal molecule in rhodopsin, 9-cis-retinoic acid represents the exploitation of retinoid isomerization by nature to control a key signaling pathway. More importantly, in the 39 yr since the discovery of aldosterone in 1953, this revelation would reawaken and reinvent the single most defining but dormant tool of endocrinology—ligand discovery. Indeed, the discovery that new receptors could lead to new ligands opened up an entirely new avenue of research. Like the puzzle of the structure of the benzene ring, which was solved in 1890 when Fredrick Kekule dreamed of a snake biting its own tail, the physiologic head of the “endocrine snake” and the molecular biology tail had come full circle. The era of reverse endocrinology was now upon us.

Response Elements: Deciphering The Scripts

One problem in addressing the downstream effects of our newly discovered receptors was that their response elements and target genes were by definition unknown. Kaz Umesono delved into this mystery and would produce a paradigm shift that would both solve the problem and further unify the field. With the view that the DBD functioned as a molecular receptor for its cognate hormone response element, meticulous mutational studies revealed two key DBD sequences, termed the P-box and D-box, that controlled the process (30).

The D-box was shown to direct dimerization, a feature previously thought to be unique to the LBD. One perplexing point was that the P-boxes of the nonsteroidal receptors were conserved, leading to the improbable prediction that many different receptors would recognize the same target sequence. By manual compilation and comparison of all known response elements, Kaz proposed a core hexamer— AGGTCA—as the prototypic common target sequence. By requiring the half-site to be an obligate hexamer an underlying pattern—the direct repeat—emerged. In the direct repeat paradigm, we proposed that half-site spacing, not sequence difference, was the key ingredient to distinguishing the response elements. The metric was referred to as the 3-4-5 rule (31). According to the rule, direct repeats of AGGTCA spaced by three nucleotides, would be a vitamin D response element (DR-3), the same repeat spaced by four nucleotides a thyroid hormone response element (DR-4), and the same repeat spaced by five nucleotides a vitamin A response element (DR-5). Eventually, all steps from 0–5 on the DR ladder would be filled (Fig. 2). The validity of this paradigm was ensured by a crystal structure solved in collaboration with Paul Sigler’s group at Yale (32). Indeed, of the remaining 40 nonsteroidal receptors, all but three can be demonstrated to have a preferred binding site within some component of the direct repeat ladder. Exceptions include SHP and DAX, which lack DBDs, and farnesoid X receptor (FXR) that binds to the ecdysone response element as a palindrome with zero spacing. Kaz’s insight, by drawing commonality from diversity, came to solve a problem that impacted on virtually every receptor. Remarkably, each new receptor in the superfamily could immediately be assigned a place on the ladder. The ladder also provided a simple means to conduct a ligand screening assay in absence of any knowledge of an endogenous target gene. Kaz’s ladder was a turbo charge for the field. The next major advance in the field was the discovery of the RXR heterodimer. Although we knew that retinoid and thyroid receptors required a nuclear competence factor for DNA binding, its identity was unknown. We tested RXR, but our initial experiments were flawed. Of the first four papers describing the discovery, that from Chambon’s lab was most elegant because they simply purified an activity to homogeneity to find RXR (33)! Rosenfeld was first to publish, and Ozato, Pfahl and Kliewer all concurred (34–37). Tony Oro and Pang Yao in our lab soon published that the ecdysone receptor functions as a heterodimer with ultraspiracle, the insect homolog of RXR (38, 39), revealing that the ancient origins of the heterodimer which arose before the divergence of vertebrates and invertebrates.

Reverse Endocrinology: Decoding Physiology

The orphan receptors would transform our view of endocrine physiology with unexpected links to toxicology, nutrition, cholesterol, and triglyceride metabolism as well as to a myriad of diseases including atherosclerosis, diabetes, and cancer. The three RXR isoforms formed the core with 14 heterodimer partners including the vitamin D receptor (VDR), TR/, and RAR//. The initial adopters of orphan receptors included Giguere, Mangelsdorf, Weinberger, Bruce Blumberg, Steve Kliewer, and Barry Forman. Barry unlocked the first secret to for peroxisome proliferator-activated receptor (PPAR) by identifying prostaglandin J2 (PGJ2) as a high-affinity ligand (40). The second step, in collaboration with Peter Tontonoz in Bruce Spiegleman’s lab, revealed that PGJ2 was adipogenic in cell lines and perhaps more importantly that the synthetic antidiabetic drug Troglitazone was a potent PPAR agonist (41). Similar work was conducted and published by Kliewer, who had now moved to Glaxo (42). By acquiring a ligand, a physiologic response, and a drug, PPAR was suddenly transported to the center of a physiologic cyclone that would spin into its own specialty field. Since 1995, more than 1000 papers (see PubMed) have been published on PPAR and its natural and synthetic ligands. This early work illuminated the molecular strategy of reverse endocrinology and the emerging importance of the orphan receptors in human disease and drug discovery. Cary returned to the lab for a sabbatical and, with Barry, demonstrated that FXR was responsive to farnesoids and other molecules in the mevalonate pathway. The findings by Mangelsdorf that liver X receptors (LXRs) bound oxysterols (43) and by Kliewer, Mangelsdorf, and Forman that FXR is a bile acid receptor (44–46) provided a whole new conceptual approach to cholesterol and triglyceride homeostasis. The steroid and xenobiotic receptors (SXR)/pregnane X receptor (PXR) (47–49) and the constituitive androstane receptor (CAR) (50) respond to xenobiotics to activate genes for P450 Fig. 2. Examples of Receptor Heterodimer Combinations that Fill the Direct Repeat (DR) Response Element Ladder from DR1 to DR5 Evans enzymes, conjugation and transport systems that detoxify drugs, foreign chemicals, and endogenous steroids. RXR and its associated heterodimeric partners quickly established a new branch of physiology, shedding its dependence on endocrine glands and allowing the body to decode signals from environmental toxins, dietary nutrients, and common metabolites of intermediary metabolism.

Continued…

ROCK OF AGES

The human body is, after all a living machine, a complex device that consumes and uses energy to sustain itself, defend against predators, and ultimately reproduce. One might reasonably ask, “If the superfamily acts through a common molecular template, can the family as a whole be viewed as a functional entity?” In other words, is there yet some overarching principle that we have yet to grasp. . . and might this imaginary principle lie at the heart of systems physiology? Simply stated, what led to the evolution of integrated physiology as the functional output of the superfamily? One obvious speculation is survival. To survive, all organisms must be able to acquire, absorb, distribute, store, and use energy. The receptors are exquisitely evolved to manage fuel—everything from dietary and endogenous fats (PPARs), cholesterol (LXR, FXR), sugar mobilization (GR), salt (MR), and calcium (VDR) balance and maintenance of basal metabolic rate (TR). Because only a fraction of the material we voluntarily place in our bodies is nutritional, the xenobiotic receptors (PXR, CAR) are specialized to defend against the innumerable toxins in our environment. Survival also means reproduction, which is controlled by the gonadal steroid receptors (progesterone receptor, ER, AR). However, fertility is dependent on nutritional status, indicating the presumptive communication between these two branches of the family. The third key component managed by the nuclear receptor family is inflammation. During viral, bacterial, or fungal infection, the inflammatory response defends the body while suppressing appetite, conserving fuel, and encouraging sleep (associated with cytokine release). However, if needed, even an ill body is capable of defending itself by releasing adrenal steroids, mobilizing massive amounts of fuel, and transiently suppressing inflammation. In fact, clinically, (with the exception of hormone replacement) glucocorticoids are only used as antiinflammatory agents. Other receptors including the RARs, LXRs, PPAR and , and vitamin D receptor protect against inflammation. Thus, nature evolved within the structure of the receptor the combined ability to manage energy and inflammation, indicating the important duality between these two systems. In aggregate, this commonality between distinct physiologic branches suggests that the superfamily might be approached as an intact functional dynamic entity.

Historically, endocrinologists and geneticists rarely saw eye to eye. As I have indicated in this perspective article, the disciplines have now become united in a new subject—transcriptional physiology. With this in mind, we might expect the existence of larger organizational principles that establish how the various evolutionary branches of the superfamily integrate to form whole body physiology. The existence of molecular rules governing the function and evolution of a megagenetic entity like the nuclear receptor superfamily, if correct, may be useful in understanding complex human disease and provide a conceptual basis to create more effective pharmacology. With so much accomplished in the last 20 yr (see Fig. 3), there are glimpses of clarity—enough to see the enormity and wonder of the problem and enough to know there is still a long and challenging voyage ahead. But who knows, the next breakthrough may only be a stone’s throw away.

http://press.endocrine.org/doi/pdf/10.1210/me.2005-0046

 

Pierre Chambon MD

Recipient of the Canada Gairdner International Award, 2010
“For the elucidation of fundamental mechanisms of transcription in animal cells and to the discovery of the nuclear receptor superfamily.”

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France

Dr. Pierre Chambon is Honorary Professor at the College de France (Paris), and Emeritus Professor at the Faculté de Médecine of the Strasbourg University. He was the Founder and former Director of the IGBMC, and also the Founder and former Director of the Institut Clinique de la Souris (ICS/MCI), in Strasbourg.

Dr. Pierre Chambon is a world expert in the fields of gene structure, and transcriptional control of gene expression. During the last 25 years his studies on the structure and function of nuclear receptors has changed our concept of signal transduction and endocrinology. By cloning the estrogen and progesterone receptors, and discovering the retinoic acid receptor family, he markedly contributed to the discovery of the superfamily of nuclear receptors and to the elucidation of their universal mechanism of action that links transcription, physiology and pathology. Through extensive site-directed mutagenesis and genetic studies in the mouse, Pierre Chambon has unveiled the paramount importance of nuclear receptor signaling in embryonic development and homeostasis at the adult stage. The discoveries of Pierre Chambon have revolutionized the fields of development, endocrinology and metabolism, and their disorders, pointing to new tactics for drug discovery, and finding important applications in biotechnology and modern medicine.

These scientific achievements are logically inscribed in an uninterrupted series of discoveries made by Pierre Chambon over the last 45 years in the field of transcriptional control of gene expression in higher eukaryotes: discovery of PolyADPribose (1963), discovery of multiple RNA polymerases differently sensitive to a-amanitin (1969), contribution to elucidation of chromatin structure: the Nucleosome (1974), discovery of animal split genes (1977), discovery of enhancer elements (1981), discovery of multiple promoter elements and their cognate factors (1980-1993).

Pierre Chambon has received numerous international awards, including the 2004 Lasker Basic Medical Research Award for the discovery of the superfamily of nuclear hormone receptors and the elucidation of a unifying mechanism that regulates embryonic development and diverse metabolic pathways. He is a member of the French Académie des Sciences, and also a Foreign Member of the National Academy of Sciences (USA) and of the Royal Swedish Academy of Sciences. Pierre Chambon serves on a number of editorial boards, including Cell, and Molecular Cell. Pierre Chambon is author of more than 900 publications. He has been ranked fourth among most prominent life scientists for the 1983-2002 period.

An Interview with Pierre Chambon
2004 Albert Lasker Basic Medical Research Award
http://www.laskerfoundation.org/media/v_chambon.htm

Pierre Chambon, MD

​Honorary Professor at the Collège-de-France and Professor of Molecular Biology and Genetics, Institute for Advanced Study, University of Strasbourg; Group Leader, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, Strasburg, France

A pioneer in the fields of gene structure and transcriptional control of gene expression, Dr. Chambon has fundamentally changed our understanding of signal transduction, which has led to revolutionary new tactics for drug discovery. His work elucidated how molecules that promote gene transcription are organized and regulated in eukaryotic organisms and, independently of Dr. Ronald Evans, he discovered in 1987 the retinoid receptor families, which led to the discovery and characterization of the superfamily of nuclear hormone receptors, including steroid and retinoid receptors.

Dr. Chambon’s previous research led to the discovery of PolyADPribose, multiple RNA polymerases differentially sensitive to α-amaniti, and has markedly contributed to the elucidation of the nucleosome and chromatin structure, as well as to the discovery of animal split genes, DNA sequences called enhancer elements, and multiple promoter elements and their cognate factors. These discoveries have greatly enhanced understanding of embryonic development and cell differentiation. To further studies of various nuclear receptors, Dr. Chambon has developed a method that allows in the mouse the generation of somatic mutations of any gene, at any time, and in any specific cell type, a tool valuable in generating mouse models of cancer.

In 1994, Dr. Chambon took on the role of founding a major research institute in France. As the first director of IGBMC, he built the institute to encompass hundreds of top researchers and multiple research programs funded by public agencies and private industry. In 2002, he founded and was the first director of the Institut Clinique de la Souris in Strasbourg. In these positions, he has succeeded in supporting and influencing a generation of scientists.

Career Highlights

​2010  Canada Gairdner International Award

2004  Albert Lasker Basic Medical Research Award

2003  Alfred P. Sloan, Jr., Prize, General Motors Cancer Foundation

1999  Louisa Gross Horwitz Prize, Columbia University

1998  Robert A. Welch Award in Chemistry

1991  Prix Louis-Jeantet de médecine, Fondation Louis-Jeantet

1990  Sir Hans Krebs Medal, Federation of European Biochemical Societies

1988  King Faisal International Prize for Science, King Faisal Foundation

1987  Harvey Prize, Technicon-Israel Institute of Technology

more…

 

Minireviews In This Series:

Thematic Minireview Series on Nuclear Receptors in Biology and Diseases

Sohaib Khan and Jerry B Lingrel

Steroid Receptor Coactivator (SRC) Family: Masters of Systems Biology

Brian York and Bert W. O’Malley

Estrogen Signaling via Estrogen Receptor β

Chunyan Zhao, Karin Dahlman-Wright, and Jan-Åke Gustafsson

Small Molecule Inhibitors as Probes for Estrogen and Androgen Receptor Action

David J. Shapiro, Chengjian Mao, and Milu T Cherian

Cellular Processing of the Glucocorticoid Receptor Gene and Protein: New Mechanisms for Generating Tissue Specific Actions of Glucocorticoids

Robert H Oakley and John A Cidlowski

Endogenous Ligands for Nuclear Receptors: Digging Deeper

Michael Schupp and Mitchell A. Lazar

 

 

 

Read Full Post »


Imaging Technology in Cancer Surgery

Author and curator: Dror Nir, PhD

The advent of medical-imaging technologies such as image-fusion, functional-imaging and noninvasive tissue characterisation is playing an imperative role in answering this demand thus transforming the concept of personalized medicine in cancer into practice. The leading modality in that respect is medical imaging. To date, the main imaging systems that can provide reasonable level of cancer detection and localization are: CT, mammography, Multi-Sequence MRI, PET/CT and ultrasound. All of these require skilled operators and experienced imaging interpreters in order to deliver what is required at a reasonable level. It is generally agreed by radiologists and oncologists that in order to provide a comprehensive work-flow that complies with the principles of personalized medicine, future cancer patients’ management will heavily rely on computerized image interpretation applications that will extract from images in a standardized manner measurable imaging biomarkers leading to better clinical assessment of cancer patients.

As consequence of the human genome project and technological advances in gene-sequencing, the understanding of cancer advanced considerably. This led to increase in the offering of treatment options. Yet, surgical resection is still the leading form of therapy offered to patients with organ confined tumors. Obtaining “cancer free” surgical margins is crucial to the surgery outcome in terms of overall survival and patients’ quality of life/morbidity. Currently, a significant portion of surgeries ends up with positive surgical margins leading to poor clinical outcome and increase of costs. To improve on this, large variety of intraoperative imaging-devices aimed at resection-guidance have been introduced and adapted in the last decade and it is expected that this trend will continue.

The Status of Contemporary Image-Guided Modalities in Oncologic Surgery is a review paper presenting a variety of cancer imaging techniques that have been adapted or developed for intra-operative surgical guidance. It also covers novel, cancer-specific contrast agents that are in early stage development and demonstrate significant promise to improve real-time detection of sub-clinical cancer in operative setting.

Another good (free access) review paper is: uPAR-targeted multimodal tracer for pre- and intraoperative imaging in cancer surgery

Abstract

Pre- and intraoperative diagnostic techniques facilitating tumor staging are of paramount importance in colorectal cancer surgery. The urokinase receptor (uPAR) plays an important role in the development of cancer, tumor invasion, angiogenesis, and metastasis and over-expression is found in the majority of carcinomas. This study aims to develop the first clinically relevant anti-uPAR antibody-based imaging agent that combines nuclear (111In) and real-time near-infrared (NIR) fluorescent imaging (ZW800-1). Conjugation and binding capacities were investigated and validated in vitro using spectrophotometry and cell-based assays. In vivo, three human colorectal xenograft models were used including an orthotopic peritoneal carcinomatosis model to image small tumors. Nuclear and NIR fluorescent signals showed clear tumor delineation between 24h and 72h post-injection, with highest tumor-to-background ratios of 5.0 ± 1.3 at 72h using fluorescence and 4.2 ± 0.1 at 24h with radioactivity. 1-2 mm sized tumors could be clearly recognized by their fluorescent rim. This study showed the feasibility of an uPAR-recognizing multimodal agent to visualize tumors during image-guided resections using NIR fluorescence, whereas its nuclear component assisted in the pre-operative non-invasive recognition of tumors using SPECT imaging. This strategy can assist in surgical planning and subsequent precision surgery to reduce the number of incomplete resections.

INTRODUCTION
Diagnosis, staging, and surgical planning of colorectal cancer patients increasingly rely on imaging techniques that provide information about tumor biology and anatomical structures [1-3]. Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are preoperative nuclear imaging modalities used to provide insights into tumor location, tumor biology, and the surrounding micro-environment [4]. Both techniques depend on the recognition of tumor cells using radioactive ligands. Various monoclonal antibodies, initially developed as therapeutic agents (e.g. cetuximab, bevacizumab, labetuzumab), are labeled with radioactive tracers and evaluated for pre-operative imaging purposes [5-9]. Despite these techniques, during surgery the surgeons still rely mostly on their eyes and hands to distinguish healthy from malignant tissues, resulting in incomplete resections or unnecessary tissue removal in up to 27% of rectal cancer patients [10, 11]. Incomplete resections (R1) are shown to be a strong predictor of development of distant metastasis, local recurrence, and decreased survival of colorectal cancer patients [11, 12]. Fluorescence-guided surgery (FGS) is an intraoperative imaging technique already introduced and validated in the clinic for sentinel lymph node (SLN) mapping and biliary imaging [13]. Tumor-specific FGS can be regarded as an extension of SPECT/PET, using fluorophores instead of radioactive labels conjugated to tumor-specific ligands, but with higher spatial resolution than SPECT/PET imaging and real-time anatomical feedback [14]. A powerful synergy can be achieved when nuclear and fluorescent imaging modalities are combined, extending the nuclear diagnostic images with real-time intraoperative imaging. This combination can lead to improved diagnosis and management by integrating pre-intra and postoperative imaging. Nuclear imaging enables pre-operative evaluation of tumor spread while during surgery deeper lying spots can be localized using the gamma probe counter. The (NIR) fluorescent signal aids the surgeon in providing real-time anatomical feedback to accurately recognize and resect malignant tissues. Postoperative, malignant cells can be recognized using NIR fluorescent microscopy. Clinically, the advantages of multimodal agents in image-guided surgery have been shown in patients with melanoma and prostate cancer, but those studies used a-specific agents, following the natural lymph drainage pattern of colloidal tracers after peritumoral injection [15, 16]. The urokinase-type plasminogen activator receptor (uPAR) is implicated in many aspects of tumor growth and (micro) metastasis [17, 18]. The levels of uPAR are undetectable in normal tissues except for occasional macrophages and granulocytes in the uterus, thymus, kidneys and spleen [19]. Enhanced tumor levels of uPAR and its circulating form (suPAR) are independent prognostic markers for overall survival in colorectal cancer patients [20, 21]. The relatively selective and high overexpression of uPAR in a wide range of human cancers including colorectal, breast, and pancreas nominate uPAR as a widely applicable and potent molecular target [17,22]. The current study aims to develop a clinically relevant uPAR-specific multimodal agent that can be used to visualize tumors pre- and intraoperatively after a single injection. We combined the 111Indium isotope with NIR fluorophore ZW800-1 using a hybrid linker to an uPAR specific monoclonal antibody (ATN-658) and evaluated its performance using a pre-clinical SPECT system (U-SPECT-II) and a clinically-applied NIR fluorescence camera system (FLARE™).

Fig1 Fig2 Fig3

Robotic surgery is a growing trend as a form of surgery, specifically in urology. The following review paper propose a good discussion on the added value of imaging in urologic robotic surgery:

The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons

 Abstract

Background

With the development of novel augmented reality operating platforms the way surgeons utilize imaging as a real-time adjunct to surgical technique is changing.

Methods

A questionnaire was distributed via the European Robotic Urological Society mailing list. The questionnaire had three themes: surgeon demographics, current use of imaging and potential uses of an augmented reality operating environment in robotic urological surgery.

Results

117 of the 239 respondents (48.9%) were independently practicing robotic surgeons. 74% of surgeons reported having imaging available in theater for prostatectomy 97% for robotic partial nephrectomy and 95% cystectomy. 87% felt there was a role for augmented reality as a navigation tool in robotic surgery.

Conclusions

This survey has revealed the contemporary robotic surgeon to be comfortable in the use of imaging for intraoperative planning it also suggests that there is a desire for augmented reality platforms within the urological community. Copyright © 2014 John Wiley & Sons, Ltd.

 Introduction

Since Röntgen first utilized X-rays to image the carpal bones of the human hand in 1895, medical imaging has evolved and is now able to provide a detailed representation of a patient’s intracorporeal anatomy, with recent advances now allowing for 3-dimensional (3D) reconstructions. The visualization of anatomy in 3D has been shown to improve the ability to localize structures when compared with 2D with no change in the amount of cognitive loading [1]. This has allowed imaging to move from a largely diagnostic tool to one that can be used for both diagnosis and operative planning.

One potential interface to display 3D images, to maximize its potential as a tool for surgical guidance, is to overlay them onto the endoscopic operative scene (augmented reality). This addresses, in part, a criticism often leveled at robotic surgery, the loss of haptic feedback. Augmented reality has the potential to mitigate this sensory loss by enhancing the surgeons visual cues with information regarding subsurface anatomical relationships [2].

Augmented reality surgery is in its infancy for intra-abdominal procedures due in large part to the difficulties of applying static preoperative imaging to a constantly deforming intraoperative scene [3]. There are case reports and ex vivo studies in the literature examining the technology in minimal access prostatectomy [3-6] and partial nephrectomy [7-10], but there remains a lack of evidence determining whether surgeons feel there is a role for the technology and if so for what procedures they feel it would be efficacious.

This questionnaire-based study was designed to assess first, the pre- and intra-operative imaging modalities utilized by robotic urologists; second, the current use of imaging intraoperatively for surgical planning; and finally whether there is a desire for augmented reality among the robotic urological community.

Methods

Recruitment

A web based survey instrument was designed and sent out, as part of a larger survey, to members of the EAU robotic urology section (ERUS). Only independently practicing robotic surgeons performing robot-assisted laparoscopic prostatectomy (RALP), robot-assisted partial nephrectomy (RAPN) and/or robotic cystectomy were included in the analysis, those surgeons exclusively performing other procedures were excluded. Respondents were offered no incentives to reply. All data collected was anonymous.

Survey design and administration

The questionnaire was created using the LimeSurvey platform (www.limesurvey.com) and hosted on their website. All responses (both complete and incomplete) were included in the analysis. The questionnaire was dynamic with the questions displayed tailored to the respondents’ previous answers.

When computing fractions or percentages the denominator was the number of respondents to answer the question, this number is variable due to the dynamic nature of the questionnaire.

Demographics

All respondents to the survey were asked in what country they practiced and what robotic urological procedures they performed. In addition to what procedures they performed surgeons were asked to specify the number of cases they had undertaken for each procedure.

 Current imaging practice

Procedure-specific questions in this group were displayed according to the operations the respondent performed. A summary of the questions can be seen in Appendix 1. Procedure-nonspecific questions were also asked. Participants were asked whether they routinely used the Tile Pro™ function of the da Vinci console (Intuitive Surgical, Sunnyvale, USA) and whether they routinely viewed imaging intra-operatively.

 Augmented reality

Before answering questions in this section, participants were invited to watch a video demonstrating an augmented reality platform during RAPN, performed by our group at Imperial College London. A still from this video can be seen in Figure 1. They were then asked whether they felt augmented reality would be of use as a navigation or training tool in robotic surgery.

f1

Figure 1. A still taken from a video of augmented reality robot assisted partial nephrectomy performed. Here the tumour has been painted into the operative view allowing the surgeon to appreciate the relationship of the tumour with the surface of the kidney

Once again, in this section, procedure-specific questions were displayed according to the operations the respondent performed. Only those respondents who felt augmented reality would be of use as a navigation tool were asked procedure-specific questions. Questions were asked to establish where in these procedures they felt an augmented reality environment would be of use.

Results

Demographics

Of the 239 respondents completing the survey 117 were independently practising robotic surgeons and were therefore eligible for analysis. The majority of the surgeons had both trained (210/239, 87.9%) and worked in Europe (215/239, 90%). The median number of cases undertaken by those surgeons reporting their case volume was: 120 (6–2000), 9 (1–120) and 30 (1–270), for RALP, robot assisted cystectomy and RAPN, respectively.

 

Contemporary use of imaging in robotic surgery

When enquiring about the use of imaging for surgical planning, the majority of surgeons (57%, 65/115) routinely viewed pre-operative imaging intra-operatively with only 9% (13/137) routinely capitalizing on the TilePro™ function in the console to display these images. When assessing the use of TilePro™ among surgeons who performed RAPN 13.8% (9/65) reported using the technology routinely.

When assessing the imaging modalities that are available to a surgeon in theater the majority of surgeons performing RALP (74%, 78/106)) reported using MRI with an additional 37% (39/106) reporting the use of CT for pre-operative staging and/or planning. For surgeons performing RAPN and robot-assisted cystectomy there was more of a consensus with 97% (68/70) and 95% (54/57) of surgeons, respectively, using CT for routine preoperative imaging (Table 1).

Table 1. Which preoperative imaging modalities do you use for diagnosis and surgical planning?

  CT MRI USS None Other
RALP (n = 106) 39.8% 73.5% 2% 15.1% 8.4%
(39) (78) (3) (16) (9)
RAPN (n = 70) 97.1% 42.9% 17.1% 0% 2.9%
(68) (30) (12) (0) (2)
Cystectomy (n = 57) 94.7% 26.3% 1.8% 1.8% 5.3%
(54) (15) (1) (1) (3)

Those surgeons performing RAPN were found to have the most diversity in the way they viewed pre-operative images in theater, routinely viewing images in sagittal, coronal and axial slices (Table 2). The majority of these surgeons also viewed the images as 3D reconstructions (54%, 38/70).

Table 2. How do you typically view preoperative imaging in the OR? 3D recons = three-dimensional reconstructions

  Axial slices (n) Coronal slices (n) Sagittal slices (n) 3D recons. (n) Do not view (n)  
RALP (n = 106) 49.1% 44.3% 31.1% 9.4% 31.1%
(52) (47) (33) (10) (33)
RAPN (n = 70) 68.6% 74.3% 60% (42) 54.3% 0%
(48) (52) (38) (0)
Cystectomy (n = 57) 70.2% 52.6% 50.9% 21.1% 8.8%
(40) (30) (29) (12) (5)

The majority of surgeons used ultrasound intra-operatively in RAPN (51%, 35/69) with a further 25% (17/69) reporting they would use it if they had access to a ‘drop-in’ ultrasound probe (Figure 2).

f2

Figure 2. Chart demonstrating responses to the question – Do you use intraoperative ultrasound for robotic partial nephrectomy?

Desire for augmented reality

Overall, 87% of respondents envisaged a role for augmented reality as a navigation tool in robotic surgery and 82% (88/107) felt that there was an additional role for the technology as a training tool.

The greatest desire for augmented reality was among those surgeons performing RAPN with 86% (54/63) feeling the technology would be of use. The largest group of surgeons felt it would be useful in identifying tumour location, with significant numbers also feeling it would be efficacious in tumor resection (Figure 3).

f3

Figure 3. Chart demonstrating responses to the question – In robotic partial nephrectomy which parts of the operation do you feel augmented reality image overlay would be of assistance?

When enquiring about the potential for augmented reality in RALP, 79% (20/96) of respondents felt it would be of use during the procedure, with the largest group feeling it would be helpful for nerve sparing 65% (62/96) (Figure 4). The picture in cystectomy was similar with 74% (37/50) of surgeons believing augmented reality would be of use, with both nerve sparing and apical dissection highlighted as specific examples (40%, 20/50) (Figure 5). The majority also felt that it would be useful for lymph node dissection in both RALP and robot assisted cystectomy (55% (52/95) and 64% (32/50), respectively).

f4

Figure 4. Chart demonstrating responses to the question – In robotic prostatectomy which parts of the operation do you feel augmented reality image overlay would be of assistance?

f5

Figure 5. Chart demonstrating responses to the question – In robotic cystectomy which parts of the operation do you feel augmented reality overlay technology would be of assistance?

Discussion

The results from this study suggest that the contemporary robotic surgeon views imaging as an important adjunct to operative practice. The way these images are being viewed is changing; although the majority of surgeons continue to view images as two-dimensional (2D) slices a significant minority have started to capitalize on 3D reconstructions to give them an improved appreciation of the patient’s anatomy.

This study has highlighted surgeons’ willingness to take the next step in the utilization of imaging in operative planning, augmented reality, with 87% feeling it has a role to play in robotic surgery. Although there appears to be a considerable desire for augmented reality, the technology itself is still in its infancy with the limited evidence demonstrating clinical application reporting only qualitative results [3, 7, 11, 12].

There are a number of significant issues that need to be overcome before augmented reality can be adopted in routine clinical practice. The first of these is registration (the process by which two images are positioned in the same coordinate system such that the locations of corresponding points align [13]). This process has been performed both manually and using automated algorithms with varying degrees of accuracy [2, 14]. The second issue pertains to the use of static pre-operative imaging in a dynamic operative environment; in order for the pre-operative imaging to be accurately registered it must be deformable. This problem remains as yet unresolved.

Live intra-operative imaging circumvents the problems of tissue deformation and in RAPN 51% of surgeons reported already using intra-operative ultrasound to aid in tumour resection. Cheung and colleagues [9] have published an ex vivo study highlighting the potential for intra-operative ultrasound in augmented reality partial nephrectomy. They report the overlaying of ultrasound onto the operative scene to improve the surgeon’s appreciation of the subsurface tumour anatomy, this improvement in anatomical appreciation resulted in improved resection quality over conventional ultrasound guided resection [9]. Building on this work the first in vivo use of overlaid ultrasound in RAPN has recently been reported [10]. Although good subjective feedback was received from the operating surgeon, the study was limited to a single case demonstrating feasibility and as such was not able to show an outcome benefit to the technology [10].

RAPN also appears to be the area in which augmented reality would be most readily adopted with 86% of surgeons claiming they see a use for the technology during the procedure. Within this operation there are two obvious steps to augmentation, anatomical identification (in particular vessel identification to facilitate both routine ‘full clamping’ and for the identification of secondary and tertiary vessels for ‘selective clamping’ [15]) and tumour resection. These two phases have different requirements from an augmented reality platform; the first phase of identification requires a gross overview of the anatomy without the need for high levels of registration accuracy. Tumor resection, however, necessitates almost sub-millimeter accuracy in registration and needs the system to account for the dynamic intra-operative environment. The step of anatomical identification is amenable to the use of non-deformable 3D reconstructions of pre-operative imaging while that of image-guided tumor resection is perhaps better suited to augmentation with live imaging such as ultrasound [2, 9, 16].

For RALP and robot-assisted cystectomy the steps in which surgeons felt augmented reality would be of assistance were those of neurovascular bundle preservation and apical dissection. The relative, perceived, efficacy of augmented reality in these steps correlate with previous examinations of augmented reality in RALP [17, 18]. Although surgeon preference for utilizing augmented reality while undertaking robotic prostatectomy has been demonstrated, Thompson et al. failed to demonstrate an improvement in oncological outcomes in those patients undergoing AR RALP [18].

Both nerve sparing and apical dissection require a high level of registration accuracy and a necessity for either live imaging or the deformation of pre-operative imaging to match the operative scene; achieving this level of registration accuracy is made more difficult by the mobilization of the prostate gland during the operation [17]. These problems are equally applicable to robot-assisted cystectomy. Although guidance systems have been proposed in the literature for RALP [3-5, 12, 17], none have achieved the level of accuracy required to provide assistance during nerve sparing. In addition, there are still imaging challenges that need to be overcome. Although multiparametric MRI has been shown to improve decision making in opting for a nerve sparing approach to RALP [19] the imaging is not yet able to reliably discern the exact location of the neurovascular bundle. This said, significant advances are being made with novel imaging modalities on the horizon that may allow for imaging of the neurovascular bundle in the near future [20].

 

Limitations

The number of operations included represents a significant limitation of the study, had different index procedures been chosen different results may have been seen. This being said the index procedures selected were chosen as they represent the vast majority of uro-oncological robotic surgical practice, largely mitigating for this shortfall.

Although the available ex vivo evidence suggests that introducing augmented reality operating environments into surgical practice would help to improve outcomes [9, 21] the in vivo experience to date is limited to small volume case series reporting feasibility [2, 3, 14]. To date no study has demonstrated an in vivo outcome advantage to augmented reality guidance. In addition to this limitation augmented reality has been demonstrated to increased rates of inattention blindness among surgeons suggesting there is a trade-off between increasing visual information and the surgeon’s ability to appreciate unexpected operative events [21].

 

Conclusions

This survey shows the contemporary robotic surgeon to be comfortable with the use of imaging to aid intra-operative planning; furthermore it highlights a significant interest among the urological community in augmented reality operating platforms.

Short- to medium-term development of augmented reality systems in robotic urology surgery would be best performed using RAPN as the index procedure. Not only was this the operation where surgeons saw the greatest potential benefits, but it may also be the operation where it is most easily achievable by capitalizing on the respective benefits of technologies the surgeons are already using; pre-operative CT for anatomical identification and intra-operative ultrasound for tumour resection.

 

Conflict of interest

None of the authors have any conflicts of interest to declare.

Appendix 1

Question Asked Question Type
Demographics
In which country do you usually practise? Single best answer
Which robotic procedures do you perform?* Single best answer
Current Imaging Practice
What preoperative imaging modalities do you use for the staging and surgical planning in renal cancer? Multiple choice
How do you typically view preoperative imaging in theatre for renal cancer surgery? Multiple choice
Do you use intraoperative ultrasound for partial nephrectomy? Yes or No
What preoperative imaging modalities do you use for the staging and surgical planning in prostate cancer? Multiple choice
How do you typically view preoperative imaging in theatre for prostate cancer? Multiple choice
Do you use intraoperative ultrasound for robotic partial nephrectomy? Yes or No
Which preoperative imaging modality do you use for staging and surgical planning in muscle invasive TCC? Multiple choice
How do you typically view preoperative imaging in theatre for muscle invasive TCC? Multiple choice
Do you routinely refer to preoperative imaging intraoperativley? Yes or No
Do you routinely use Tilepro intraoperativley? Yes or No
Augmented Reality
Do you feel there is a role for augmented reality as a navigation tool in robotic surgery? Yes or No
Do you feel there is a role for augmented reality as a training tool in robotic surgery? Yes or No
In robotic partial nephrectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
In robotic nephrectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
In robotic prostatectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
Would augmented reality guidance be of use in lymph node dissection in robotic prostatectomy? Yes or No
In robotic cystectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
Would augmented reality guidance be of use in lymph node dissection in robotic cystectomy? Yes or No
*The relevant procedure related questions were displayed based on the answer to this question

References

1. Foo J-L, Martinez-Escobar M, Juhnke B, et al.Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization. J Laparoendosc Adv Surg Tech A 2013; 23(1):65–70.

2. Hughes-Hallett A, Mayer EK, Marcus HJ, et al.Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 2014; 83(2): 266–273.

3. Sridhar AN, Hughes-Hallett A, Mayer EK, et al.Image-guided robotic interventions for prostate cancer. Nat Rev Urol 2013; 10(8): 452–462.

4. Cohen D, Mayer E, Chen D, et al.Eddie’ Augmented reality image guidance in minimally invasive prostatectomy. Lect Notes Comput Sci 2010; 6367: 101–110.

5. Simpfendorfer T, Baumhauer M, Muller M, et al.Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 2011; 25(12): 1841–1845.

6. Teber D, Simpfendorfer T, Guven S, et al.In vitro evaluation of a soft-tissue navigation system for laparoscopic prostatectomy. J Endourol 2010; 24(9): 1487–1491.

7. Teber D, Guven S, Simpfendörfer T, et al.Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo Eur Urol 2009; 56(2): 332–338.

8. Pratt P, Mayer E, Vale J, et al.An effective visualisation and registration system for image-guided robotic partial nephrectomy. J Robot Surg 2012; 6(1): 23–31.

9. Cheung CL, Wedlake C, Moore J, et al.Fused video and ultrasound images for minimally invasive partial nephrectomy: a phantom study. Med Image Comput Comput Assist Interv 2010; 13(Pt 3): 408–415.

10. Hughes-Hallett A, Pratt P, Mayer E, et al.Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical experience. Eur Urol 2014; 65(3): 671–672.

11. Nakamura K, Naya Y, Zenbutsu S, et al.Surgical navigation using three-dimensional computed tomography images fused intraoperatively with live video. J Endourol 2010; 24(4): 521–524.

12. Ukimura O, Gill IS. Imaging-assisted endoscopic surgery: Cleveland clinic experience. J Endourol2008; 22(4):803–809.

13. Altamar HO, Ong RE, Glisson CL, et al.Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery. J Endourol 2011; 25(3): 511–517.

14. Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol2011; 20(3): 189–201.

15. Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. Eur Urol2012; 61(1): 211–217.

16. Pratt P, Hughes-Hallett A, Di Marco A, et al. Multimodal reconstruction for image-guided interventions. In:Yang GZ, Darzi A (eds) Proceedings of the Hamlyn symposium on medical robotics: London. 2013; 59–61.

17. Mayer EK, Cohen D, Chen D, et al.Augmented reality image guidance in minimally invasive prostatectomy. Eur Urol Supp 2011; 10(2): 300.

18. Thompson S, Penney G, Billia M, et al.Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 2013; 111(7): 1081–1090.

19. Panebianco V, Salciccia S, Cattarino S, et al.Use of multiparametric MR with neurovascular bundle evaluation to optimize the oncological and functional management of patients considered for nerve-sparing radical prostatectomy. J Sex Med 2012; 9(8): 2157–2166.

20. Rai S, Srivastava A, Sooriakumaran P, Tewari A. Advances in imaging the neurovascular bundle. Curr Opin Urol2012; 22(2): 88–96.

21. Dixon BJ, Daly MJ, Chan H, et al.Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg Endosc 2013; 27(2): 454–461.

Read Full Post »


Angiogenesis Inhibitors [9.5]

Writer and Curator: Larry H Bernstein, MD, FCAP

This article has the following structure:

9.5.1 Motesanib (AMG 706)

9.5.2 Drugs that block cancer blood vessel growth (anti angiogenics)

9.5.3 Recent Advances in Anti-Angiogenic Therapy of Cancer

9.5.4 Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales

9.5.5 LUCITANIB a VEGFR/FGFR dual kinase inhibitor in Phase 2 trials

9.5.1 Motesanib (AMG 706)

by DR ANTHONY MELVIN CRASTO Ph.D

http://newdrugapprovals.org/2015/05/15/motesanib-amg-706/

Motesanib (AMG 706) is an experimental drug candidate originally developed by Amgen[1] but is now being investigated by theTakeda Pharmaceutical Company. It is an orally administered small molecule belonging to angiokinase inhibitor class which acts as an antagonist of VEGF receptorsplatelet-derived growth factor receptors, and stem cell factor receptors.[2] It is used as the phosphate salt motesanib diphosphate.

Motesanib, also known as AMG-706, is an orally administered multikinase inhibitor that selectively targets VEGF receptors, platelet-derived growth factor receptors, and Kit receptors.

N-(3,3-Dimethylindolin-6-yl){2-[(4-pyridylmethyl)amino](3-pyridyl)}carboxamide

motesanib-amg-706-a10608

motesanib-amg-706-a10608

http://www.adooq.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/m/o/motesanib-amg-706-a10608.gif

http://www.chemblink.com/products/453562-69-1.htm

9.5.2 Drugs that block cancer blood vessel growth (anti angiogenics)

http://www.cancerresearchuk.org/about-cancer/cancers-in-general/treatment/biological/types/drugs-that-block-cancer-blood-vessel-growth

When it has reached 1 to 2mm across, a tumor needs to grow its own blood vessels in order to continue to get bigger. Some cancer cells make a protein called vascular endothelial growth factor (VEGF). The VEGF protein attaches to receptors on cells that line the walls of blood vessels within the tumour.

Drugs that block blood vessel growth factor

Some drugs block vascular endothelial growth factor (VEGF) from attaching to the receptors on the cells that line the blood vessels. This stops the blood vessels from growing.

A drug that blocks VEGF is bevacizumab (Avastin). It is also a monoclonal antibody.

Drugs that block signalling within the cell

Some drugs stop the VEGF receptors from sending growth signals into the blood vessel cells. These treatments are also called cancer growth blockers or tyrosine kinase inhibitors (TKIs).

Sunitinib (Sutent) is a type of TKI that blocks the growth signals inside blood vessel cells. It is used to treat kidney cancer and a rare type of stomach cancer called gastrointestinal stromal tumour (GIST).

Drugs that affect signals between cells

Some drugs act on the chemicals that cells use to signal to each other to grow. This can block the formation of blood vessels. Drugs that works in this way include thalidomide and lenalidomide (Revlimid).

Each drug has different side effects. You can look up the name of your drug in our cancer drug section to find out about the side effects you may have.

To find trials using anti angiogenesis treatment go to our clinical trials database and type ‘angiogenesis’ into the search box.

http://www.cancer.gov/about-cancer/treatment/types/immunotherapy/angiogenesis-inhibitors-fact-sheet

Tumors can cause their blood supply to form by giving off chemical signals that stimulate angiogenesis. Tumors can also stimulate nearby normal cells to produce angiogenesis signaling molecules. The resulting new blood vessels “feed” growing tumors with oxygen and nutrients, allowing the cancer cells to invade nearby tissue, to move throughout the body, and to form colonies of cancer cells, called metastases. Because tumors cannot grow beyond a certain size or spread without a blood supply, scientists are trying to find ways to block tumor angiogenesis.

Angiogenesis requires the binding of signaling molecules, such as vascular endothelial growth factor (VEGF), to receptors on the surface of normal endothelial cells. When VEGF and other endothelial growth factors bind to their receptors on endothelial cells, signals within these cells are initiated that promote the growth and survival of new blood vessels.

Angiogenesis inhibitors interfere with various steps in this process. For example, bevacizumab (Avastin®) is a monoclonal antibody that specifically recognizes and binds to VEGF (1). When VEGF is attached to bevacizumab, it is unable to activate the VEGF receptor. Other angiogenesis inhibitors, including sorafenib and sunitinib, bind to receptors on the surface of endothelial cells or to other proteins in the downstream signaling pathways, blocking their activities (2).

The U.S. Food and Drug Administration (FDA) has approved bevacizumab to be used alone forglioblastoma that has not improved with other treatments and to be used in combination with other drugs to treat metastatic colorectal cancer, some non-small cell lung cancers, and metastatic renal cell cancer. Bevacizumab was the first angiogenesis inhibitor that was shown to slow tumor growth and, more important, to extend the lives of patients with some cancers.

The FDA has approved other drugs that have antiangiogenic activity, including sorafenib (Nexavar®), sunitinib(Sutent®), pazopanib (Votrient®), and everolimus (Afinitor®). Sorafenib is approved for hepatocellular carcinoma and kidney cancer, sunitinib and everolimus for both kidney cancer and neuroendocrine tumors, and pazopanib for kidney cancer.

Angiogenesis inhibitors are unique cancer-fighting agents because they tend to inhibit the growth of blood vessels rather than tumor cells. In some cancers, angiogenesis inhibitors are most effective when combined with additional therapies, especially chemotherapy. It has been hypothesized that these drugs help normalize the blood vessels that supply the tumor, facilitating the delivery of other anticancer agents, but this possibility is still being investigated.

Angiogenesis inhibitor therapy does not necessarily kill tumors but instead may prevent tumors from growing. Therefore, this type of therapy may need to be administered over a long period.

Initially, it was thought that angiogenesis inhibitors would have mild side effects, but more recent studies have revealed the potential for complications that reflect the importance of angiogenesis in many normal body processes, such as wound healing, heart and kidney function, fetal development, and reproduction. Side effects of treatment with angiogenesis inhibitors can include problems with bleeding, clots in the arteries (with resultant stroke or heart attack), hypertension, and protein in the urine (35). Gastrointestinal perforation and fistulas also appear to be rare side effects of some angiogenesis inhibitors.

In addition to the angiogenesis inhibitors that have already been approved by the FDA, others that target VEGF or other angiogenesis pathways are currently being tested in clinical trials (research studies involving patients). If these angiogenesis inhibitors prove to be both safe and effective in treating human cancer, they may be approved by the FDA and made available for widespread use.

In addition, phase I and II clinical trials are testing the possibility of combining angiogenesis inhibitor therapy with other treatments that target blood vessels, such as tumor-vascular disrupting agents, which damage existing tumor blood vessels (6).

9.5.3 Recent Advances in Anti-Angiogenic Therapy of Cancer

Rajeev S. Samant and Lalita A. Shevde
Oncotarget. 2011 Mar; 2(3): 122–134.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260813/

More than forty anti-angiogenic drugs are being tested in clinical trials all over the world. This review discusses agents that have approved by the FDA and are currently in use for treating patients either as single-agents or in combination with other chemotherapeutic agents.

Tumor angiogenesis is generation of a network of blood vessels within the cancerous growth. This process can occur two ways: The more accepted model involves the release of signaling molecules by the tumor cells; these molecules activate the surrounding tissue to promote growth of new blood vessels. This stimulates vascular endothelial cells to divide rapidly [910]. The other model proposes the generation of new vasculature by vasculogenic mimicry. This model argues that the tumor cells trans-differentiate in endothelial-like cells and create structures from inside of the tumor tapping into a nearby blood vessel [4].

Escape of the tumor cell from the confines of the primary tumor to distant body parts is the pre-requisite for hematogenous metastasis. This escape route is provided by the tumor vasculature. Thus, it was envisioned that inhibition of angiogenesis will also lead to inhibition of metastasis. This phenomenon was demonstrated by very elegant mouse model studies using angiostatin [1112]. Angiostatin was also demonstrated to be secreted by some primary tumors leading to restricted growth of the metastasis leading to “dormancy” of the metastasis. Mice deficient in angiogenesis (Id1 & Id3 deficient) showed significantly less tumor take rates [13]. Independent studies showed absence of metastasis in angiogenesis deficient mice [1415]. Defective angiogenesis was attributed to impaired VEGF-dependent recruitment of precursor endothelial cells from the bone marrow to the newly developing tumor vasculature [16].

Metastasis of malignant tumors to regional lymph nodes is one of the early signs of cancer spread in patients, and it occurs at least as frequently as hematogenous metastasis [17]. Particularly, in cancers, such as breast cancer, lymphatic metastasis is a predominant route for tumor spread. The contribution of lymphatic system to the tumor growth is an area that is relatively less studied. However, lymphatic vessels are speculated to contribute to tumor growth and metastasis in a variety of ways. The VEGF, FGF2 and PDGF produced by vascular endothelial cells are proposed to be involved in the activation of lymphatic endothelial cells, which in turn produce matrix metalloproteases and urokinase plasminogen activator (uPA) that can promote malignant tumor growth. Thus, there exists a synergistic crosstalk between the tumor and the lymphatic vessels and blood vessels.

Angiogenesis is a complex and intricately regulated process. Like all other regulated biological phenomena, angiogenesis has activators or pro-angiogenic factors and inhibitors or anti-angiogenic factors [9].

The Activators

Tumor cells activate signaling pathways that promote uncontrolled proliferation and survival. These include the PI3K/AKT/mTOR pathway, Hedgehog pathway and, Wnt pathway [1824] that produce pro-angiogenic signaling intermediates [2526]. Among the several reported activators of angiogenesis present in cells two proteins appear to be the most important for sustaining tumor growth: vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). VEGF and bFGF are secreted by the tumor into the surrounding tissue. They bind to their cognate receptors on endothelial cells. This activates a signaling cascade that transmits a nuclear signal prompting target genes to activate endothelial cell growth. Activated endothelial cells also produce matrix metalloproteinases (MMPs). These MMPs break down the extracellular matrix and allow the migration of endothelial cells. The division and migration of the endothelial cells leads to formation of new blood vessels [2728].

The Inhibitors

If angiogenesis is so critical for the tumor growth, then agents that inhibit angiogenesis would have great therapeutic value. With the discovery of endostatin, the concept of anti-angiogenic therapy was launched and popularized by Dr. Folkman [29]. Angiogenesis inhibitors have been discovered from a variety of sources. Some are naturally present in the human body e.g. specific fragments of structural proteins such as collagen or plasminogen (angiostatin, endostatin, tumstatin) [30]. Others are natural products in green tea, soy beans, fungi, mushrooms, tree bark, shark tissues, snake venom etc. [31]. A plethora of synthetic compounds are also characterized to have anti-angiogenic properties [32].

ANTI-ANGIOGENIC TREATMENT OF CANCER

Since angiogenesis is an event critical to primary tumor growth as well as metastasis, anti-angiogenic treatment of tumors is a highly promising therapeutic avenue [33]. Thus, for over last couple of decades, there has been a robust activity aimed towards the discovery of angiogenesis inhibitors [3435]. More than forty anti-angiogenic drugs are being tested in human cancer patients in clinical trials all over the world. From the several anti-angiogenic agents reported, we have focused this review on discussing those agents that have received FDA approval in the United States and are currently in use for treating patients either as a single-agent or in combination with other chemotherapeutic agents (Figure ​(Figure1).1). Based on functionality, the anti-angiogenic drugs can be sub-divided into three main groups:

angiogenesis inhibitors oncotarget-02-122-g001

angiogenesis inhibitors oncotarget-02-122-g001

Figure 1

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260813/bin/oncotarget-02-122-g001.jpg

Targets of FDA-approved angiogenesis inhibitors: Angiogenesis inhibitors impact both, the tumor as well as the endothelial cells resulting in the disruption of the effects of the microenvironment in promoting tumor growth and angiogenesis

Drugs that inhibit growth of endothelial cells

e.g. Endostatin and combretastatin A4, cause apoptosis of the endothelial cells [36]. Thalidomide is also a potent inhibitor of endothelial cell growth [37].

Drugs that block angiogenesis signaling

e.g. anti-VEGF antibodies (Avastin, FDA approved for colorectal cancer), Interferon-alpha (inhibits the production of bFGF and VEGF) [36].

Drugs that block extracellular matrix breakdown

e.g. inhibitors of MMPs [38].

ANTI-ANGIOGENIC THERAPIES THAT HAVE RECEIVED USA-FDA APPROVAL

Conventional chemotherapy is usually a systemic therapy that tries to capture a narrow therapeutic window offered by rapid proliferation of tumor cells compared to the normal cells. Chemotherapy has significant side effects such as hair loss, diarrhea, mouth ulcer, infection, and low blood counts. Anti-angiogenic therapy has several advantages over chemotherapy as it is mostly not directed towards directly killing cells but stopping the blood vessel formation, an event that is rare in tissues other than growing tumor. Hence it is well tolerated by the patients and has fewer side effects [29]. There are currently seven approved anti-cancer therapies in two primary categories:

  1. Monoclonal antibodies directed against specific pro-angiogenic growth factors and/or their receptors
  2. Small molecule tyrosine kinase inhibitors (TKIs) of multiple pro-angiogenic growth factor receptors.

Besides these, inhibitors of mTOR (mammalian target of rapamycin), proteasome inhibitors and thalidomide have also been reported to indirectly inhibit angiogenesis through mechanisms that are not completely understood.

MONOCLONAL ANTIBODY THERAPIES

Four monoclonal antibody therapies are approved to treat several tumor types:

Bevacizumab (Avastin®)

The first FDA approved angiogenesis inhibitor, Avastin is a humanized monoclonal antibody that binds biologically active forms of vascular endothelial growth factor (VEGF) and prevents its interaction with VEGF receptors (VEGFR-1 and VEGFR-2), thereby inhibiting endothelial cell proliferation and angiogenesis. Bevacizumab has been tested in phase I studies in combination with chemotherapy with a good safety profile [39]. This treatment is approved for metastatic colorectal cancer and non-small cell lung cancer [4043]. Bevacizumab has also evolved as a first line of treatment in combination with paclitaxel in breast cancer patients by virtue of its ability to double median progression-free survival (PFS) [44]. In combination with chemoendocrine therapy (including capecitabine and vinorelbine, and letrozole) bevacizumab treatment significantly decreased the percentage of viable circulating endothelial cells and prevented the chemotherapy-induced mobilization of circulating progenitors [45]. In combination with irinotecan, bevacizumab significantly increased PFS in glioma patients [4647]. VEGF has emerged as a compelling therapeutic target for leukemias. Inhibition of angiogenesis in hematological malignancies interdicts the angiogenesis within the bone marrow ecosystem comprised of multiple cell types, including fibroblasts, endothelial progenitor cells, endothelial cells, dendritic cells and, malignant cells, blocking the availability of nutrients to cancer cells and disrupting crosstalk between the various cell types to curtail the malignant phenotype [48].

Cetuximab (Erbitux®)

This is a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), preventing ligand binding and activation of the receptor resulting in internalization and degradation of the receptor culminating in inhibition of cell proliferation and angiogenesis. Cetuximab downregulated VEGF expression in a dose-dependent manner in a human colorectal carcinoma (CRC) cell line and in human CRC mouse xenografts [49]. The xenografts also showed a significant reduction in blood vessel counts following several rounds of cetuximab treatment [49], indicating that the tumor-promoting effects of EGFR overexpression may be mediated through VEGF stimulation and tumor angiogenesis. This treatment is approved for metastatic CRC and head and neck cancer [50] in patients who are refractory to irinotecan-based chemotherapy. In combination with irinotecan (an inhibitor of topoisomerase I), cetuximab is the first monoclonal antibody that has been approved by the FDA as second-line treatment for metastatic colorectal cancer [5152]. In Phase I and Phase III trials [5354] cetuximab significantly improved the effects of radiotherapy in patients with unresectable (cannot be removed by surgery) squamous cell carcinoma of the head and neck (SCCHN). Cetuximab has also been shown to sensitize cells to radiation and chemotherapy, potentially through blocking EGFR nuclear import and the associated activation of DNA protein kinase enzymes necessary for repairing radiation- and chemotherapy-induced DNA damage [55]. Compared to radiation alone, cetuximab plus radiation therapy can nearly double the median survival in patients with a certain kind of head and neck cancer that has not spread to other parts of the body [54] making cetuximab the only drug achieving interesting response rate in second line treatment of advanced SCCHN [56]. Cetuximab was also found to be tolerated well in combination with cisplatin, or carboplatin, and fluorouracil [5758].

Panitumumab (Vectibix™)

It is a fully humanized anti-EGFR monoclonal antibody that binds specifically to the human EGFR. Panitumumab is a recombinant human monoclonal antibody [59]; therefore, the risk of an infusion reaction is minimized. Vectibix® is indicated as a single agent for the treatment of EGFR-expressing, metastatic colorectal carcinoma with disease progression on or following fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens [6062]. The effectiveness of Vectibix® as a single agent for the treatment of EGFR-expressing, metastatic CRC is based on progression-free survival [6364]. Panitumumab is used in patients who are not responding to regimens containing fluorouracil, oxaliplatin, and irinotecan [60]. Patients often receive panitumumab after receiving bevacizumab or cetuximab. Panitumumab can be given with FOLFOX (oxaliplatin, leucovorin, and fluorouracil) or FOLFIRI (irinotecan, leucovorin, and fluorouracil) regimens, or as a single agent. Currently no data are available that demonstrate an improvement in disease-related symptoms or increased survival with Vectibix® in colon cancer [65]. This drug is also being tested for aerodigestive track and head and neck cancer [6667].

Trastuzumab (Herceptin®)

Is a humanized monoclonal antibody that binds the extracellular domain of HER-2, which is overexpressed in 25-30% of invasive breast cancer tumors [68]. HER2-positive breast cancer is highly aggressive disease with high recurrence rate, poorer prognosis with decreased survival compared with HER2-negative breast cancer [69]. Herceptin® is designed to target and block the function of HER2 protein overexpression. This is the first humanized antibody is approved for Breast cancer [70]. Herceptin® is approved by the FDA to treat HER2 positive breast cancer that has metastasized after treatment with other anticancer drugs [71]. It is also approved to be used with other drugs to treat HER2-positive breast cancer that has spread to the lymph nodes to be used after surgery. The FDA first approved Herceptin in September 1998 [7173]. In November 2006, the FDA approved Herceptin as part of a treatment regimen containing doxorubicin, cyclophosphamide and paclitaxel, for the adjuvant treatment of patients with HER2-positive, node-positive breast cancer (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/default.htm). In January 2008, the FDA approved Herceptin as a single agent for the adjuvant treatment of HER2-overexpressing node-negative (ER/PR-negative or with one high-risk feature) or node-positive breast cancer, following multi-modality anthracycline-based therapy (http://biopharminternational.findpharma.com/biopharm/News/FDA-Approves-Expanded-Adjuvant-Indications-for-Her/ArticleStandard/Article/detail/518867). Trastuzumab is also being studied in the treatment of other types of cancers such as pancreatic [74], endometrial [75], lung [76], cervical [77] and ovarian cancer [78]

SMALL MOLECULE TYROSINE KINASE INHIBITORS (TKIs)

Protein tyrosine kinases have emerged as crucial targets for therapeutic intervention in cancer especially because they play an important role in the modulation of growth factor signaling. As per ClinicalTrials.gov (www.clinicaltrials.gov), there are 43 ongoing studies on tyrosine kinase inhibitors in angiogenesis. Since discussing all of them is beyond the scope of this article, we have focused our discussion on the three TKIs that are currently approved as anti-cancer therapies:

Erlotinib (Tarceva®)

Erlotinib hydrochloride (originally coded as OSI-774) is an orally available, potent, reversible, and selective inhibitor of the EGFR (ErbB1) tyrosine kinase activity. Erlotinib hydrochloride has been approved by FDA for treatment of patients with locally advanced or metastatic NSCLC after failure of at least one prior chemotherapy regimen [7980]. Interesting recent studies have demonstrated that since Erlotinib and Bevacizumab act on two different pathways critical to tumor growth and dissemination, administering these drugs concomitantly may confer additional clinical benefits to cancer patients with advanced disease. This combination therapy may prove to be a viable second-line alternative to chemotherapy in patients with NSCLC [81]. Also, for patients with locally advanced, unresectable or metastatic pancreatic carcinoma, Erlotinib has received FDA approval for the treatment in combination with gemcitabine [8283]. Erlotinib is also being studied in the treatment of other types of cancers. For example combination of Erlotinib with Bevacizumab has been evaluated in metastatic breast cancer [84], hepatocellular carcinoma [85] and in metastatic renal cancer [86] as phase II trials. Outcomes for prostate, cervical and colorectal cancers treated with Erlotinib are cautiously optimistic [8789].

Sorafenib (Nexavar®)

Sorafenib is an orally active inhibitor of VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-β, and Raf-1 tyrosine kinase activity [90]. It has received the approval of FDA for the treatment of patients with unresectable hepatocellular carcinoma [91] and advanced renal cell carcinoma [92]. However, not all advanced hepatocellular carcinoma patients were able to tolerate sorafenib and some patients experienced tumor progression [91]. Sorafenib has shown improvements in PFS in patients with renal cell carcinoma [93]. It is one of the aggressively studied drugs. According to the NCI clinical trials search results, there are about 168 active clinical trials involving sorafenib in a variety of cancers.

Sunitinib (Sutent®)

Sunitinib targets activity of multiple tyrosine kinases such as VEGFR-1, VEGFR-2, VEGFR-3, PDGFR- β, and RET [94]. It is approved by FDA as Sunitinib malate for treating advanced (metastatic) renal cell carcinoma [95]. It is also approved by FDA for gastrointestinal stromal tumor (GIST) in patients whose disease has progressed or who are unable to tolerate treatment with imatinib (Gleevec), the current treatment for GIST patients [9596]. Sunitinib has shown early evidence of anti-tumor activity in Phase II trials in US, European and Asian patients with locally advanced, unresectable and metastatic hepatocellular carcinoma. A Phase III trial of sunitinib in hepatocellular carcinoma is ongoing [97]. According to the NCI clinical trials search results, Sunitinib is currently evaluated in about 150 active clinical trials. It is evaluated for ovarian [98], breast [99] and non small cell lung cancer [100] among others [101].

Inhibitors of mTOR

mTOR plays a part in the PI3 kinase/AKT pathway involved in tumor cell proliferation and angiogenesis [102]. Rapamycin and related mTOR inhibitors inhibit endothelial cell VEGF expression, as well as VEGF-induced endothelial cell proliferation [103]. Inhibitors of mTOR are an important class of anti-angiogenic agents. These include: deforolimus, everolimus, rapamycin (sirolimus), and temsirolimus [104105]. Temsirolimus (Toricel™) is a small molecule inhibitor of mTOR, approved for treating advanced renal cell carcinoma [106]. It is a type of rapamycin analog and a type of serine/threonine kinase inhibitor, it is also called CCI-779. In pre-clinical models combination therapy for treating breast cancer using anti-estrogen, ERA-923, and temsirolimus has been successfully tested [107]. It is found to be highly effective against human melanoma when tested in combination with cisplatin and DTIC (in independent studies) in a SCID mouse xenotranplantation model [108109]. There are over 41 active studies of Temsirolimus for a variety of solid tumors [110]. mTOR inhibition has also been strongly advocated in as a putative cancer therapeutic strategy for urologic malignancies [111]. In a pilot study (6 patients) with imatinib-resistant CML, rapamycin induced major and minor leukocyte responses, with an observed decrease in the mRNA levels of VEGFA in circulating leukaemic cells [112]. Combination treatments for breast cancer with aromatase inhibitor [113] and letrozol [114] are also being evaluated. Rapamycin treatment brought partial responses (>50% reduction in the absolute number of blood blasts) and stable disease in adult refractory/relapsed AML [115]. In a recent report, Deforolimus was studied in a Phase 2 trial in pretreated patients with various hematological malignancies, including ALL, AML, CLL, CML, MDS, agnogenic myeloid metaplasia, mantle cell lymphoma and T-cell leukemia/lymphoma [116]. Overall, 40% of deforolimus-treated patients experienced hematological improvement or stable disease.

OTHER ANGIOGENIC AGENTS

Bortezomib (Velcade®)

Is a proteasome inhibitor that disrupts signaling of cancer cells, leading to cell death and tumor regression. It is the first compound in its class to be used in clinical practice. It has indirect anti-angiogenic properties [117]. While its exact mechanism is not understood, it induces the pro-apoptotic BH3-only family member NOXA in a p53 independent fashion triggering of a caspase cascade culminating in apoptosis in melanoma and myeloma cells [118]. It is FDA-approved for the treatment of myeloma that has relapsed after two prior treatments (or where resistance has developed following the last treatment). It was also found to induce high quality responses as third line salvage therapy with acceptable toxicity in a significant proportion of homogeneously pre-treated myeloma patients with progressive disease after autologous transplantation and thalidomide. [119]. In a Phase 3 trial involving 669 myeloma patients treated with at least one prior therapy, bortezomib increased median, improved overall survival, and increased response rate, compared with high-dose dexamethasone [120]. In combination with doxorubicin and gemcitabine, bortezomib was also found to be effective in heavily pretreated, advanced Cutaneous T cell Lymphomas (CTCL) [121]. Bortezomib was also reported to be active as a single agent for patients with relapsed/refractory CTCL and Peripheral T Cell Lymphoma (PTCL) with skin involvement [122]. On the contrary, the use of bortezomib was discouraged after a phase II study revealed that found in combination with dexamethasone, bortezomib is not active in heavily pre-treated patients with relapsed Hodgkin’s lymphoma [123124].

Thalidomide (Thalomid®)

Possesses immunomodulatory, anti-inflammatory, and anti-angiogenic properties, although the precise mechanisms of action are not fully understood. Thalidomide was the first angiogenesis inhibitor to demonstrate clinical efficacy in multiple myeloma [37125]. Specifically in myeloma, thalidomide down-regulated VEGF secretion from bone marrow endothelial cells obtained from patients with active disease. In a landmark Phase 2 clinical trial, 169 previously treated patients with refractory myeloma received thalidomide monotherapy [126]. Partial response, was achieved in 30% of patients, and 14% achieved a complete or nearly complete remission. The survival rate at 2 years was 48%. These results led to many subsequent clinical studies of thalidomide in myeloma, leading ultimately to FDA approval of the drug in 2006, for the treatment of newly diagnosed multiple myeloma, in combination with dexamethasone. In the pivotal Phase 3 trial, the response rate in patients receiving thalidomide plus dexamethasone was 63% compared to 41% with dexamethasone alone [127]. Long-term outcome measures, including time-to-progression (TTP) and PFS, were recently reported for a 470 patient randomized, placebo-controlled Phase 3 clinical trial of a similar protocol in newly diagnosed multiple myeloma, with comparable overall response rates [128]. Significant increases resulted in both median TTP and median PFS for the thalidomide plus dexamethasone group versus dexamethasone alone.

Thalidomide was found to be moderately tolerated and minimally effective in patients with histologically proven advanced hepatocellular carcinoma [129]. Thalidomide provided no survival benefit for patients with multiple, large, or midbrain metastases when combined with WBRT (whole-brain radiation therapy) [130]. On the contrary, thalidomide did not significantly add to the efficacy of the fludarabine, carboplatin, and topotecan (FCT) regimen in poor prognosis AML patients [131] and was also ineffective in improving prognosis or decreasing plasma VEGF levels in patients with persistent or recurrent leiomyosarcoma of the uterus [132].

METRONOMIC THERAPY

While conventional anti-angiogenic therapy is based on Maximum Tolerated Doses (MTD), the cells involved in angiogenesis may regenerate during the three- to four-week interval between cycles of the chemotherapy. Taking advantage of the fact that endothelial cells are about 10–100 times more susceptible to chemotherapeutic agents than cancer cells, therapy based on daily, oral, low-dose chemotherapeutic drugs was designed. Metronomic chemotherapy refers to the close, rhythmic administration of low doses of cytotoxic drugs, with minimal or no drug-free breaks, over prolonged periods. Metronomic therapy appears promising mainly due to the fact that its anti-angiogenic and anti-tumorigenic effects are accompanied by low toxicity, limited side effects, no need for hospitalization and allowing for feasible combinations with selective inhibitors of angiogenesis. There are several foreseeable advantages and opportunities for metronomic chemotherapy: activity against the parenchymal and stromal components, pro-apoptotic activity, reduction of the likelihood of emergence of acquired resistance, feasibility of long term administration and acceptable systemic side effects [133]. In a pilot phase II study conducted by Correale et al [134] to investigate the toxicity and activity of the novel metronomic regimen of weekly cisplatin and oral etoposide in high-risk patients with NSCLC, the objective response rate was 45.2%, disease control was 58.1%, meantime to progression and survival were 9 and 13 months, respectively. Pharmacokinetic analysis showed that this regimen allowed a greater median monthly area under the curve of the drugs than conventional schedules. In a Phase I trial of metronomic dosing of docetaxel and thalidomide, of the 26 patients with advanced tumors enrolled, prolonged freedom from disease progression was observed in 44.4% of the evaluable patients [135].

Circulating endothelial progenitor cells (EPCs) also participate in tumor angiogenesis. In a study comparing the effects of metronomic chemotherapy over conventional dose-dense chemotherapy, it was found that the numbers of circulating EPCs and the plasma levels of VEGF increased sharply, doubling pre-therapeutic levels at day 21 after conventional chemotherapy, whereas under low-dose metronomic chemotherapy, the numbers of circulating EPCs decreased significantly and VEGF plasma concentrations remained unchanged. These observations provide evidence that conventional dose-dense chemotherapy leads to rebound EPC mobilization even when given with adjuvant intention, while low-dose metronomic scheduling of cytotoxic substances such as trofosfamide may sharply reduce EPC release into the circulation. [136].

Combined bevacizumab and metronomic oral cyclophosphamide was also discovered to be a safe and effective regimen for heavily pre-treated ovarian cancer patients [137]. Treatment with metronomic capecitabine and cyclophosphamide in combination with bevacizumab was shown to be effective in advanced breast cancer and additionally was minimally toxic [138]. Metronomic treatment with carboplatin and vincristine associated with fluvastatin and thalidomide significantly increased survival of pediatric brain stem tumor patients. Tumor volume showed a significant reduction accompanied by increased quality of life [139]. Thus, given the fact that the most evident effect of selective anti-angiogenic agents (i.e. bevacizumab) is the significant prolonging of the duration of response obtainable by chemotherapy alone, with minimal possible side effects of cytotoxic agents given in association metronomic chemotherapy should be considered both as novel up-front or maintenance treatment in patients with biologically poorly aggressive advanced cancer diseases [140].

Overall, metronomic chemotherapy was able to induce tumor stabilization and prolong the duration of clinical benefit, without much associated toxicity. Emerging evidence suggests that metronomic chemotherapy could also activate the host immune system and potentially induce tumor dormancy [141143].

CONCLUSIONS AND FUTURE PERSPECTIVES

While angiogenesis as a hallmark of tumor development and metastasis is now a validated target for cancer treatment, the overall benefits of anti-angiogenic drugs from the perspective of impacting survival have left much to desire, endorsing a need for developing more effective therapeutic regimens e.g., combining anti-angiogenic drugs with established chemotherapeutic drugs [144145]. There are now several agents that target the tumor vasculature through different pathways, either by inhibiting formation of the tumor neovasculature or by directly targeting the mature tumor vessels. The main body of evolving evidence suggests that their effects are compounded by their synergistic use with conventional chemotherapy rather than individual agents. Anti-angiogenic drugs such as bevacizumab can bring about a transient functional normalization of the tumor vasculature. This can have an additive effect when co-administered with chemo/radiotherapy. But long term inhibition of angiogenesis reduces tumor uptake of co-administered chemotherapeutic agents. This underscores the need for discovering new targets for anti-angiogenic therapy in order to effectively prohibit angiogenesis and circumvent mechanisms that contribute to resistance mechanisms that emerge with long term use of anti-angiogenic therapies. It also warrants a need to define reliable surrogate indicators of effectiveness of the anti-angiogenic therapy as well as dependable markers for identifying the patients who are most likely to benefit from the combination of anti-angiogenic therapy and conventional chemotherapy.

Several new frontiers are emerging. New advances in understanding endothelial cells, which constitute the tumor vasculature, towards developing antiangiogenic strategies are one of the important ones [146147]. Novel cellular targets such as integrins and microRNAs and novel treatment options such as possible use of pharmaconutrients to modulate angiogenic pathways need careful testing and evaluation [148151]. Finally, the administration of these drugs in a metronomic schedule is likely to improve the overall response to anti-angiogenic drugs making it feasible to administer them with conventionally toxic chemotherapeutic drugs, thus increasing the armamentarium of drug combinations that can be employed for treatment.

9.5.4 Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales

El-Kenawi AE1, El-Remessy AB.
Br J Pharmacol. 2013 Oct; 170(4):712-29.
http://dx.doi.org:/10.1111/bph.12344

Angiogenesis, a process of new blood vessel formation, is a prerequisite for tumor growth to supply the proliferating tumor with oxygen and nutrients. The angiogenic process may contribute to tumour progression, invasion and metastasis, and is generally accepted as an indicator of tumor prognosis. Therefore, targeting tumor angiogenesis has become of high clinical relevance. The current review aimed to highlight mechanistic details of anti-angiogenic therapies and how they relate to classification and treatment rationales. Angiogenesis inhibitors are classified into either direct inhibitors that target endothelial cells in the growing vasculature or indirect inhibitors that prevent the expression or block the activity of angiogenesis inducers. The latter class extends to include targeted therapy against oncogenes, conventional chemotherapeutic agents and drugs targeting other cells of the tumor micro-environment. Angiogenesis inhibitors may be used as either monotherapy or in combination with other anticancer drugs. In this context, many preclinical and clinical studies revealed higher therapeutic effectiveness of the combined treatments compared with individual treatments. The proper understanding of synergistic treatment modalities of angiogenesis inhibitors as well as their wide range of cellular targets could provide effective tools for future therapies of many types of cancer.

Two major processes of blood vessel formation are implicated in the development of vascular system: vasculogenesis and angiogenesis. Vasculogenesis prevails in the embryo and refers to the formation ofde novo blood vessels by in situ differentiation of the mesoderm-derived angioblasts and endothelial precursors. Angiogenesis is the formation of new capillaries from pre-existing vessels and circulating endothelial precursors (Polverini, 2002; Chung et al., 2010; Ribatti and Djonov, 2012). Angiogenesis is a tightly controlled dynamic process that can occur physiologically in those tissues that undergo active remodeling in response to stress and hypoxia (Carmeliet, 2003; Folkman, 2007). However, it can be aberrantly activated during many pathological conditions such as cancer, diabetic retinopathy as well as numerous ischemic, inflammatory, infectious and immune disorders (Carmeliet, 2003; Ali and El-Remessy, 2009; Willis et al., 2011). Although the concept of proposing angiogenesis inhibitors as anticancer drugs received considerable skepticism when first presented by Dr. Folkman in the early 1970s (Folkman, 1971), active research in the field and subsequent clinical trials eventually resulted in US Food and Drug Administration (FDA) approval of bevacizumab for colorectal cancer in 2004 (Cohen et al., 2007). Since then, several angiogenic inhibitors have been identified. This review will provide an overview of the key mechanisms involved in tumor angiogenesis, classification of angiogenesis inhibitors as well as treatment rationales from the mechanistic point of view.

Sustained angiogenesis as a hallmark of cancer

Proliferating tumours tend to activate an angiogenic phenotype to fulfil their increased demand of oxygen and nutrients (Hanahan and Folkman, 1996; Carmeliet, 2005). Additionally, paracrine release of anti-apoptotic factors from activated endothelial cells in the newly formed vasculature supplies tumour cells with a survival privilege (Folkman, 2003). Consequently, in order to progress, tumors tend to activate an event called ‘angiogenic switch’ by shifting the balance of endogenous angiogenesis inducers and inhibitors towards a pro-angiogenic outcome. As a result, dormant lesion progresses into outgrowing vascularized tumor and eventually into a malignant phenotype (Hanahan and Folkman, 1996; Baeriswyl and Christofori, 2009). Hypoxia drives such imbalance through up-regulation of the transcription factor hypoxia inducible factor-1α (HIF-1α), which in turn increases the expression of many angiogenesis inducers as well as suppresses the expression of endogenous angiogenesis inhibitors (Pugh and Ratcliffe, 2003). In spite of that, accumulating evidence indicates that angiogenic cascade can be also driven by alternative HIF-1-independent pathways (Mizukami et al., 2007; Arany et al., 2008; Lee, 2013).

As summarized in Table 1, the angiogenesis inducers are a wide range of mediators that include many growth factors, a plethora of cytokines, bioactive lipids, matrix-degrading enzymes and a number of small molecules (Folkman, 1995; Folkman, 2003; Lopez-Lopez et al., 2004; Bouis et al., 2006; El-Remessy et al., 2007; Bid et al., 2011; MacLauchlan et al., 2011; Murakami, 2011; Fagiani and Christofori, 2013; Qin et al., 2013). Pro-angiogenic growth factors mostly activate a series of surface receptors in a series of paracrine and autocrine loops with the VEGF-A signaling representing the critical rate-limiting step, physiologically and pathologically. VEGF-A (traditionally known as VEGF) is the most potent VEGF isoform that acts mainly on VEGF receptor 2 (VEGFR2) to mediate vascular permeability, endothelial proliferation, migration and survival (Takahashi and Shibuya, 2005; Bouis et al., 2006). In spite of the well-established master roles of VEGF signaling in literature, those processes are probably accomplished through a highly regulated interplay between VEGF and other pro-angiogenic factors. In this context, basic fibroblast growth factor (bFGF) activation of the endothelium is required for maintenance of VEGFR2 expression and the ability to respond to VEGF stimulation (Murakami et al., 2011). Similarly, sphingosine-1-phosphate (S1P), a pleiotropic bioactive lipid that can directly contribute to tumor angiogenesis (reviewed in Sabbadini, 2011), is needed for VEGF-induced blood vessel formation, indicating the cooperation between S1P and VEGF in tumor angiogenesis (Visentin et al., 2006). As a net result, the pro-angiogenic interplay of those ligands and others dominates over the activities of two dozen endogenous angiogenesis inhibitors that can be either matrix-derived inhibitors or non–matrix-derived inhibitors (Nyberg et al., 2005).

Table 1. Pro-angiogenic mediators implicated in tumor angiogenesis

Category Examples References
Growth factors VEGFs Bouis et al., 2006
FGFs Ibid
TGFs Ibid
PDGFs Ibid
Insulin-like growth factors Lopez-Lopez et al., 2004; Bid et al., 2011
ANGs Fagiani and Christofori, 2013
Cytokines IL-8 Strieter et al., 2004
CSF-1 Lin et al., 2006
Bioactive lipids PGE2 Wang and Dubois, 2010
S1P Murakami, 2011
Matrix-degrading enzymes MMPs Bourboulia and Stetler-Stevenson, 2010
Heparanases Vlodavsky and Friedmann, 2001
Small mediators NO MacLauchlan et al., 2011
Peroxynitrite El-Remessy et al., 2007
Serotonin Qin et al., 2013
Histamine Qin et al., 2013

The multistep angiogenic process starts with vasodilation and increased permeability of existing vessels in response to tumor cell-secreted VEGF. This is accompanied by loosening of pericytes covering mediated by angiopoietin-2 (ANG2), a ligand of tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) receptor (Bergers and Benjamin, 2003; Jain, 2003; Fagiani and Christofori, 2013). Meanwhile, many secreted matrix-degrading enzymes, such as MMPs and heparanases, function in concert to dissolve the basement membrane and to remodel the extracellular matrix (ECM) as well as to liberate more pro-angiogenic growth factors (bFGF and VEGF) from matrix heparan sulfate proteoglycans (HSPGs) respectively (Houck et al., 1992; Whitelock et al., 1996; Vlodavsky and Friedmann, 2001; Tang et al., 2005; van Hinsbergh and Koolwijk, 2008). The overall chemotactic angiogenic stimuli guide endothelial cells to migrate, to align into tube-like structures and to eventually form new blood vessels. However, such blood vessels are characterized by being disorganized, chaotic, hemorrhagic and poorly functioning (Bergers and Benjamin, 2003).

The angiogenic phenotype in tumor micro-environment can further be sustained and extravagated by the recruitment of other types of stromal cells. Stromal cells such as fibroblasts, mesenchymal stem cells and various bone marrow-derived myeloid cells including macrophages, TIE2-expressing monocytes, neutrophils and mast cells contribute to tumor angiogenesis through their production of growth factors, cytokines and proteases (Murdoch et al., 2008; Joyce and Pollard, 2009; Cirri and Chiarugi, 2011). For example, in response to cancer cell-derived TGF-β, PDGF or bFGF, fibroblasts are transformed to an activated phenotype with a higher proliferative activity and myofibroblastic characteristics (Kalluri and Zeisberg, 2006; Cirri and Chiarugi, 2011). Such carcinoma-associated fibroblasts (CAFs) were shown to promote angiogenesis and metastasis by secreting large amounts of MMP-2 and MMP-9 as well as by expressing many cytokines and chemokines that resulted in immune cell infiltration (Gerber et al., 2009; Giannoni et al., 2010). Furthermore, it has been shown that PDGF-C produced by CAFs is able to elicit VEGF production from tumor cells, thereby sustaining the angiogenic shift (Crawford et al., 2009). Similarly, tumor-associated macrophages (TAMs), one of the bone marrow myeloid-derived cells, are induced to develop into polarized type II (alternatively activated or M2 macrophages), upon exposure to tumor hypoxia and tumor cell-derived cytokines (Leek et al., 2002; Rogers and Holen, 2011). M2 macrophages tend to produce many pro-angiogenic growth factors, cytokines and matrix-degrading enzymes such as VEGF, PDGF, bFGF, TNF-α, COX-2, MMP-9, MMP-7 and MMP-12 (Lewis and Pollard, 2006).

From another perspective, angiogenesis may be dispensable for progression of some malignancies. For example, some tumours may co-opt pre-existent vessels as an alternative way to obtain blood supply. Vessel co-option was first described in the brain, one of the most densely vascularized organs, in which tumours may develop in earlier stages without the activation of angiogenic response (Holashet al., 1999; Leenders et al., 2002; Bergers and Benjamin, 2003; Hillen and Griffioen, 2007). In another example, hypovascularized tumors such as pancreatic ductal adenocarcinoma may involve certain adaptation to flourish in the absence of prominent angiogenesis (Bergers and Hanahan, 2008). Obviously, in both cases, tumors may be intrinsically indifferent to angiogenesis inhibitors. However, in most other cases, therapy directed towards the vasculature of solid tumors is being considered as an important direction in cancer treatment.

Classification of angiogenesis inhibitors

Growth of newly formed vessels in tumor micro-environment can be inhibited directly by targeting endothelial cells in the growing vasculature or indirectly by targeting either tumor cells or the other tumor-associated stromal cells. Therefore, angiogenesis inhibitors can be classified into direct and indirect inhibitors (Kerbel and Folkman, 2002; Folkman, 2007).

Direct endogenous inhibitors of angiogenesis

Direct endogenous inhibitors of angiogenesis, such as angiostatin, endostatin, arrestin, canstatin, tumstatin and others, are fragments released on proteolysis of distinct ECM molecules. Endogenous inhibitors prevent vascular endothelial cells from proliferating, migrating in response to a spectrum of angiogenesis inducers, including VEGF, bFGF, IL-8 and PDGF (Kerbel and Folkman, 2002; Abdollahi et al., 2004; Mundel and Kalluri, 2007; Ribatti, 2009). This direct anti-angiogenic effect may be mediated by interference with endothelial integrins along with several intracellular signaling pathways (Mundel and Kalluri, 2007). For example, the ability of tumstatin-derived active peptide to inhibit angiogenesis and tumour growth is associated with the expression of the adhesion receptor, αvβ3 integrin, on tumor endothelial cells (Eikesdal et al., 2008). Through binding αvβ3 integrin, full tumstatin was found to inhibit endothelial cell activation of focal adhesion kinase, PI3K, Akt, mammalian target of rapamycin (mTOR) and others (Maeshima et al., 2002). Direct targeting of those signaling pathways by endogenous inhibitors was thought to be the least likely to induce acquired drug resistance because they target endothelial cells with assumed genetic stability rather than unstable mutating tumour cells (Kerbel and Folkman, 2002). However, endostatin has not yet led to any documented benefit to patients in randomized phase III trials, or even modest activity in phase II trials (Ellis and Hicklin, 2008).

Indirect inhibitors of angiogenesis

Indirect inhibitors of angiogenesis classically prevent the expression or block the activity of pro-angiogenic proteins (Folkman, 2007). For example, Iressa, an EGF receptor (EGFR) TK inhibitor (TKI), blocks tumour expression of many pro-angiogenic factors; bevacizumab, a monoclonal antibody, neutralizes VEGF after its secretion from tumour cells whereas sunitinib, a multiple receptor TKI, blocks the endothelial cell receptors (VEGFR1, VEGFR2 and VEGFR3), preventing their response to the secreted VEGF (Folkman, 2007; Roskoski, 2007). In addition, this class extends to include conventional chemotherapeutic agents, targeted therapy against oncogenes and drugs targeting other cells of the tumor micro-environment (Kerbel et al., 2000; Ferrara and Kerbel, 2005).

Conventional chemotherapeutic agents

Conventional chemotherapeutic agents have been shown to have anti-angiogenic properties in addition to the ability to induce direct cancer cell death. Such chemotherapeutic agents can affect the endothelial cell population in the tumour bed during treatment cycles because they have significantly higher proliferation rates than resting endothelium outside a tumor, making them more susceptible to cytotoxic effect (Kerbel et al., 2000; Folkman, 2003). However, the cyclic treatment rationale of cytotoxic drugs allows the potential damage to the tumour vasculature to be repaired during the long breaks. Thus, continuous low doses of chemotherapeutic agents were suggested as a way to reduce side effects and drug resistance (Drevs et al., 2004). This modality is termed metronomic therapy, and clinically, it refers to the daily administration of 5–10% of the phase II-recommended dose of the chemotherapeutic agent (Penel et al., 2012). The extended use of such low doses of cytotoxic agents elicits an anti-angiogenic activity through induction of endothelial cell apoptosis and decreasing the level of circulating endothelial precursors (Hamano et al., 2004; Shahrzad et al., 2008). In clinical investigations, metronomic dosing of cyclophosphamide and others showed promising efficacy in patients with advanced, multiple metastasized and/or multiple pretreated solid tumours (Lord et al., 2007; Fontana et al., 2010; Nelius et al., 2011; Gebbia et al., 2012; Briasoulis et al., 2013; Navid et al., 2013).

VEGF-targeted therapy

VEGF-targeted therapy includes neutralizing antibodies to VEGF (e.g. bevacizumab) or VEGFRs (e.g. ramucirumab), soluble VEGFR/VEGFR hybrids (e.g. VEGF-Trap) and TKIs with selectivity for VEGFRs (e.g. sunitinib and sorafenib; Baka et al., 2006; Ellis and Hicklin, 2008; Hsu and Wakelee, 2009). Bevacizumab, a humanized monoclonal antibody against all isoforms of VEGF-A, has been approved for the treatment of colorectal, lung, glioblastoma and renal cell carcinoma (Hsu and Wakelee, 2009). Many other clinical trials with promising efficacy were also conducted in other cancers such as head and neck cancer, hepatocellular carcinoma, ovarian cancer, metastatic melanoma and gastric cancer (Argiris et al., 2011; 2013; Burger et al., 2011; Ohtsu et al., 2011; Fang et al., 2012; Minor, 2012; Schuster et al., 2012; Van Cutsem et al., 2012). However, for metastatic breast cancer, bevacizumab had been initially granted an accelerated FDA approval, which was later withdrawn due to lack of improvement evidence in disease-related symptoms or overall survival (Burstein, 2011; Montero et al., 2012). Similarly, clinical trials showed that the addition of bevacizumab to the treatment regimens of advanced pancreatic cancer did not extend overall survival (Chiu and Yau, 2012). The neutralization of VEGF-A can also be achieved by soluble receptor construct (VEGF-Trap) that monomerically ‘traps’ the different isoforms of VEGF-A, in addition to VEGF-B and placental growth factor (Rudge et al., 2007). VEGF-Trap showed clinical benefit in a phase III trial of oxaliplatin pretreated metastatic patients with colorectal cancer, and is currently being investigated in a prostate cancer phase III trial (Gaya and Tse, 2012). TKIs are small molecules with different chemical structures that have the ability to interact physically with the highly conserved kinase domain shared by different VEGFRs as well as PDGF receptors (PDGFRs), FGF receptors (FGFRs), EGFR, Raf kinases and c-Kit (a receptor of the pluripotent cell growth factor, stem cell factor). Such interaction directly inhibits tyrosine phosphorylation and the subsequent many downstream pro-angiogenic signaling networks (Baka et al., 2006; Ivy et al., 2009). Those multi-targeted TKIs demonstrated efficacy against various solid malignancies in different clinical trials, some of which have lead eventually to FDA approval of sunitinib and sorafenib. Sunitinib, known to inhibit several receptor TKs (RTKs) including VEGFR1–3, PDGFR-α, PDGFR-β, c-Kit, colony-stimulating factor-1 receptor (CSF-1R) and Flt-3, was approved for the treatment of renal cell carcinoma and gastrointestinal stromal cell tumours. Sorafenib that acts also by inhibiting VEGFR1–3 and PDGFR-β in addition to the serine–threonine kinases Raf-1, B-Raf, was approved for hepatocellular carcinoma in addition to renal cell carcinoma (Llovet et al., 2008; Ivy et al., 2009; Huang et al., 2010).

FGF-targeted therapies

FGF-targeted therapies were recently reconsidered as promising anti-angiogenic and anti-tumor agents after a long period of little attention for drug development, partly due to redundancy (Bono et al., 2013). The FGFR superfamily with its 18 ligands and four receptors has been involved in endothelial cell migration, proliferation and differentiation (Presta et al., 2005). Therapeutic targeting of FGF/FGFR signalling was accomplished by either monoclonal antibodies that inhibit FGFs binding, small molecules that inhibit FGFR TK activity or allosteric modulators that bind the extracellular FGFR domain. Monoclonal antibodies against bFGF displayed potent anti-tumor and anti-angiogenic effects in different preclinical cancer models, which warrant further clinical evaluation (Zhao et al., 2010; Wang et al., 2012). Pan inhibitors of the FGFR TKs such as AZD4547 (blocks the activity of FGFR1–3) and ponatinib (blocks all the FGFR isoforms) elicited potent anti-tumor activities in preclinical investigations so they are currently being evaluated in clinical trials. Those inhibitors displayed the greatest potency in FGFR-driven cancer models, which may be attributed to the interference with the oncogenic functions of either amplified or constitutively active FGFR (Dutt et al., 2011; Zhao et al., 2011; Gavine et al., 2012; Gozgit et al., 2012). Accordingly, further studies are needed to evaluate the relative contribution of angiogenic versus oncogenic inhibitory mechanisms towards the overall anti-tumor activity. The allosteric antagonist of the FGFR, SSR128129E, showed a strong anti-angiogenic activity in addition to tumour growth and metastasis inhibitory effects in animal models of arthritis and cancer respectively. Because allosteric modulators leave a residual level of baseline signalling, they have the ability to fine-tune target biological responses. As a result, allosteric multi-FGFR inhibitors may have an improved benefit/risk ratio that is not attainable with the other TKIs (Bonoet al., 2013; Herbert et al., 2013). However, preclinical findings suggest that long-term clinical outcomes may improve with blockade of additional pro-angiogenic RTKs that may also reduce the risk of drug resistance (Hilberg et al., 2008). For example, dual inhibition of VEGFRs and FGFRs using brivanib produced enduring tumour stasis and angiogenic blockade following the failure of VEGF-targeted therapies (Allen et al., 2011). Furthermore, triple inhibition of FGFRs, VEGFRs and PDGFR(s) using dovitinib (TKI258) or nintedanib (BIBF 1120) displayed broad-spectrum anti-tumour activities in several tumour xenograft models as well as promising data in clinical trials. Combined inhibition of FGFR/VEGFR/PDGFR targets not only tumour cells, but also endothelial cells, pericytes and smooth muscle cells, resulting in an effective inhibition of tumour growth, angiogenesis and metastasis even in advanced tumour stages (Hilberg et al., 2008; Ledermann et al., 2011; Taeger et al., 2011; Chenet al., 2012; Angevin et al., 2013).

Oncogene-targeted therapy

Oncogenes, genes that cause the transformation of normal cells into cancerous cells, are thought to up-regulate many pro-angiogenic proteins. Therefore, anticancer drugs that were developed for their capacity to block an oncogene also have an indirect anti-angiogenic activity (Kerbel et al., 2000; Bergers and Benjamin, 2003; Folkman, 2003). For example, dasatinib and other inhibitors of sarcoma (Src), an aberrantly activated non-RTK associated with many human malignancies, showed potent anti-angiogenic effects through the down-regulation of VEGF and IL-8 (Summy et al., 2005; Han et al., 2006; Haura et al., 2010). Another example is to target the oncogenic Ras using farnesyl transferase (FT) inhibitors, which inhibit post-translational farnesylation of Ras that governs the latter’s activity (Awada et al., 2002). FT inhibitors were found to inhibit tumor VEGF expression and block FTase-dependent Ras activation, which is critically involved in VEGF-elicited angiogenic signal transduction and angiogenesis (Han et al., 2005; Izbicka et al., 2005; Kim et al., 2010). In addition to classical oncogenes inhibition, interference with other tumor-deregulated signaling pathways would offer another approach in targeting angiogenesis. For example, inhibitors of heat shock protein 90 (HSP90), a chaperone molecule known to protect oncoproteins from misfolding and degradation in the protein-rich intracellular environment, were found to prevent VEGF production and to disrupt multiple pro-angiogenic signalling pathways in numerous cancer cells. They were also shown to inhibit tumour growth and vascularity of different human tumor xenografts (Sanderson et al., 2006; Langet al., 2007; Eccles et al., 2008; Trepel et al., 2010; Moser et al., 2012). Proteasome inhibitors, such as bortezomib (PS-341) or MG-132, were also shown to reduce tumour growth and vascularity of squamous cell carcinoma and pancreatic cancer xenograft probably through inhibition of NF–κB-dependent release of pro-angiogenic gene products, VEGF and IL-8 (Sunwoo et al., 2001; Nawrocki et al., 2002; Matsuo et al., 2009). Similarly, inhibition of B-cell lymphoma 2 (Bcl-2), a prosurvival protein that regulates apoptosis by preventing the mitochondrial release of pro-apoptogenic factors, was shown to prevent NF-κB-mediated release of the pro-angiogenic factors IL-8 and CXC chemokine ligand 1 (CXCL1) as well as VEGF in tumor-associated endothelial cells and pancreatic cell lines respectively (Karl et al., 2005; Wang et al., 2008). Moreover, (−)-gossypol, a natural BH3 mimetic that inhibits BH3 domain of Bcl-2 as well as related prosurvival proteins (Bcl-xL and Mcl-1), was shown to remarkably decrease microvessel density in human prostate tumour PC-3 xenografts through decrease of VEGF and IL-8 release as well as blocking multiple steps in VEGF-activated biological events (Karaca et al., 2008; Pang et al., 2011).

Matrix degrading and remodelling-targeted therapy

Matrix degrading and remodelling are activated by tumors to modify local micro-environment, which in turn promote their angiogenic potential (Bergers et al., 2000; Vlodavsky and Friedmann, 2001). Up-regulation of expression and activity of several endogenous MMPs including MMP-2, MMP-9 as well as MMP-3 and MMP-7 have been identified in invasive tumors (for a review, see Bourboulia and Stetler-Stevenson, 2010). Consequently, inhibitors of MMPs were extensively pursued as a therapeutic strategy for treating cancer. Unfortunately, MMPs intervention strategies had met with limited clinical success because of severe toxicities and associated metastasis-promoting effect (Coussens et al., 2002; Devy et al., 2009). Furthermore, the paradoxical roles of tissue inhibitors of metalloproteinases (TIMPs) may contribute to such failure depending on the net balance of TIMPs and MMPs in tumour stroma (Jiang et al., 2002). As a result, efforts were directed at therapies exploiting endogenous MMP inhibitors, TIMPs or monoclonal antibodies against individual MMPs (Martens et al., 2007; Jarvelainen et al., 2009). For example, DX-2400, a highly selective fully human MMP-14 inhibitory antibody, was found to block pro-MMP-2 processing on tumor and endothelial cells, inhibited angiogenesis, and slowed tumor progression and formation of metastatic lesions (Devy et al., 2009). Alternatively, in order to reduce toxicity and enhance drug delivery, polymeric nanoparticulate delivery systems could be used to target individual components of ECM. For example, targeted delivery of antisense inhibitors of laminin-8, a vascular basement membrane component, by conjugation to the natural drug carrier β-poly(L-malic acid) significantly reduced tumour microvessel density and increased animal survival in an experimental model of glioblastoma (Fujita et al., 2006). Similarly, a nano delivery system that incorporate peptides against proteolytically processed type IV collagen significantly accumulated in tumors and blocked angiogenesis in experimental models (Mueller et al., 2009). However, the highly sulfated oligosaccharides, Heparan (HS) mimetics highly sulfated oligosaccharides, were shown to have a heparanase-inhibiting effect sequestering, in turn, many heparan sulfate proteoglycan (HSPG)-binding factors (Johnstone et al., 2010; Dredge et al., 2011). In preclinical studies, HS mimetics have effectively targeted multiple HSPG-dependent functions and have resulted in decreased in vivo tumor growth, tumor invasion, tumor metastasis and angiogenesis (Johnstone et al., 2010; Dredge et al., 2011; Zhou et al., 2011). Clinically, the heparanase inhibitor PI-88 showed preliminary efficacy as an adjunct therapy for post-operative hepatocellular carcinoma (Liu et al., 2009).

Tumour-associated stromal cell-targeted therapy

Tumour-associated stromal cells crosstalk is a perquisite for the formation of a tumour vasculature, an essential step for tumour progression (Lorusso and Ruegg, 2008). Interference with those crosstalk circuits through intervention of cellular adhesion (highlighted in next paragraph) or tumor-induced recruitment of different stromal cells may be considered as an indirect way of anti-angiogenic therapy (Ferrara and Kerbel, 2005). The latter can be supported by studies in which inhibition of macrophage infiltration, for example, by either genetic ablation of the macrophage CSF-1 or liposomal clodronate-induced macrophage depletion, was shown to delay the angiogenic switch and malignant transition (Giraudo et al., 2004; Lin et al., 2006). Furthermore, CSF-1R kinase inhibitors were found to reduce tumor-associated vascularity in two different tumor mouse models (Kubota et al., 2009; Mantheyet al., 2009). In addition, clodronate and other related bisphosphonates, originally used to treat skeletal complications in patients with tumour-induced osteolysis, were shown to exert potent anti-tumour and anti-angiogenic effects in many other studies (Fournier et al., 2002; Santini et al., 2003; Stathopoulos et al., 2008). Zoledronic acid, a third-generation bisphosphonate, was also found to reduce a number of tumour-associated macrophages and shift their phenotype from M2 to M1, resulting in a reduction in TAM-associated production of VEGF in murine models of spontaneous mammary carcinogenesis and mesothelioma (Coscia et al., 2010; Veltman et al., 2010). Clinically, repeated low-dose therapy with zoledronic acid, which maintains active drug plasma concentration, was able to induce an early remarkable and long-lasting decrease of VEGF levels in patients with cancer (Santini et al., 2007). In another example, inhibition of mobilization of neutrophils, from bone marrow and their infiltration into tumour, using neutralizing anti–prokineticin-2, an antibody against a secreted protein known also as BV8, was shown to impair the initial angiogenic switch in a multistage pancreatic beta cell tumorigenesis model (Shojaei et al., 2008). Furthermore, the neutralizing anti-BV8 was found to prevent myeloid cell-dependent tumour angiogenesis in several xenograft models (Shojaei et al., 2007). Cancer-associated fibroblasts (CAF) can also be targeted with thapsigargin analogue coupled with peptides specific for fibroblast activation protein (FAP), a CAF membrane-bound protease whose catalytic site has access to the peritumoural fluid of the tumor micro-environment. This extracellular activation results in the death of CAFs as well as pericytes and endothelial cells within milieu of different human tumor xenografts (Brennen et al., 2012).

Cell adhesion molecules (CAMs)-targeted therapy

CAMs are cell surface proteins known to be involved in binding with other counter-receptors on adjacent cells or surrounding ECM macromolecules (Aplin et al., 1998). Many CAMs, such as αv-integrins, E-selectin, N-cadherin and VE-cadherin, have been implicated in tumour angiogenesis (Bischoff, 1997; Tei et al., 2002; Nakashima et al., 2003; Weis and Cheresh, 2011). For example, αv-integrins are expressed on surface of endothelial cells and can determine whether cells can adhere to and survive in a particular micro-environment. A number of matrix-derived fragments have the ability to act as endogenous angiogenesis inhibitors through binding to integrins on endothelial cells, disrupting physical connections and suppressing signalling events associated with cell survival, migration and proliferation (Nyberg et al., 2005). Consequently, integrins antagonism using peptidomimetics (e.g. cilengitide), monoclonal antibodies (e.g. volociximab) or oral small-molecule compounds have been investigated in a wide range of malignancies (Huveneers et al., 2007). Cilengitide is a cyclized pentapeptide peptidomimetic designed to compete for the arginine-glycine-aspartic acid (RGD) peptide sequence, thereby blocking the ligation of the αvβ3 and αvβ5 integrins to matrix proteins (Hariharan et al., 2007). Cilengitide is mainly under clinical development for glioblastoma; however, clinical trials of other malignancies such as head and neck cancer as well as lung cancer were also initiated (Reardon and Cheresh, 2011; Vermorken et al., 2012; Manegold et al., 2013). Alternatively, cyclic peptides containing RGD motif could guide nanoparticulate delivery system, which incorporates anti-angiogenic cytotoxic agents such as doxorubicin, paclitaxel or combretastatin A4, to accumulate specifically in tumor vasculature with no overt systemic toxicity (Murphy et al., 2008; Ruoslahti et al., 2010; Wang et al., 2011). Volociximab, a chimeric humanized monoclonal antibody that selectively inhibits the αvβ1 integrin interaction with fibronectin, has been evaluated also in clinical trials for solid tumours such as renal cell carcinoma, recurrent ovarian cancer, advanced non–small-cell lung cancer and metastatic pancreatic cancer (Figlin et al., 2006; Evans et al., 2007; Jarvelainen et al., 2009; Vergote et al., 2009; Besse et al., 2013). Cadherins constitute a superfamily of molecules that mediate calcium-dependent cell–cell adhesions. The intracellular domains of cadherins directly bind to β-catenin and link with cytoskeletal components, providing the molecular basis for stable cell–cell adhesion (Zhang et al., 2010). Targeting cadherin signalling may also represent another way for tumor angiogenesis intervention. For example, ADH-1, a cyclic pentapeptide containing the cell adhesion recognition site (His-Ala-Val) required for N-cadherin adhesion, was shown to possess anti-angiogenic and anti-tumour activity (Blaschuk et al., 2005; Blaschuk, 2012). Similarly, monoclonal antibody directed against specific region of VE-cadherin was able to inhibit tumor angiogenesis and growth with no side effects on normal vasculature (Corada et al., 2002; May et al., 2005).

Inflammatory angiogenesis-targeted therapy

Targeting inflammatory angiogenesis, responsible for a substantial part of tumour vascularization initiated by infiltrating leukocytes, may be considered as another indirect anti-angiogenic strategy (Albini et al., 2005). Moreover, as mentioned before, tumour-infiltrating leukocytes contribute into malignant progression through production of many pro-inflammatory cytokines, chemokines and enzymes that can mostly induce angiogenic cascade (Balkwill et al., 2005). Such vital roles have been supported by the early observation that nonsteroidal anti-inflammatory drugs can inhibit tumour angiogenesis and, in turn, tumor progression (Albini et al., 2005). For example, ibuprofen was found to decrease tumor growth and metastatic potential in mice models through modulation of angiogenesis (Yao et al., 2005). Moreover, selective inhibitors of COX-2, an inducible enzyme that catalyses the production of prostanoids from arachidonic acid, were also shown to inhibit angiogenesis (Tsujii et al., 1998; Wei et al., 2004). The anti-angiogenic effect of COX-2 inhibitors may be contributed, in part, by decreasing the COX-2 metabolic product PGE2, the predominant PG in solid tumors known to stimulate cancer cells to produce pro-angiogenic factors such as VEGF and bFGF as well as many other factors belonging to CXC chemokines family (Strieter et al., 2004; Wang et al., 2006; Wang and Dubois, 2010). Members of the CXC chemokine family are heparin-binding proteins that possess disparate regulative roles in angiogenesis. For example, the ELR+ CXC chemokines, characterized by highly conserved three amino acid motifs (Glu-Leu-Arg; ‘ELR’ motif), are potent promoters of angiogenesis, whereas the IFN-inducible (ELR−) CXC chemokines are inhibitors of angiogenesis (Strieter et al., 2004). The use of repertaxin, originally designed to target the ELR+ CXC chemokine receptors CXCR1 and CXCR2 on neutrophils to prevent their migration to sites of inflammation, was found to inhibit tumor angiogenesis, thereby suppressing tumour progression in a genetic model of pancreatic ductal adenocarcinoma (Ijichi et al., 2011). It would be beneficial to explore other small-molecule CXCR2 antagonists that have already been developed for the treatment of inflammatory diseases in different preclinical models of cancer, especially inflammation-associated cancers (refer to Chapman et al., 2009 for a list of newly developed CXCR2 antagonists used in the treatment of inflammatory diseases of the lung).

Mechanisms of enhanced therapeutic efficacy

  • Dual targeting of tumor vasculature
  • Targeting different cell types of tumor micro-environment
  • Normalization of tumor vasculature
  • Chemosensitization of tumor cells
  • Interference with the repair of cytotoxic drug-induced damage and resistance mechanisms

Consequences of anti-angiogenic therapy with other anticancer therapy

  • Contrary to initial expectations, treatment with angiogenesis inhibitors was associated with unexpected toxicities. The toxicity profiles of those inhibitors reflect the systemic disturbance of growth factor signalling pathways that mediate their anti-angiogenic activity (Elice and Rodeghiero, 20102012). In this context, disturbance of the tight endothelial cell-platelet interaction that maintains vascular integrity results in bleeding complications, gastrointestinal perforations, and disturbed wound and ulcer healing (Verheul and Pinedo, 2007). In general, the incidence of those adverse effects increases when anti-angiogenic agent is combined with chemotherapy. For example, bleeding complications have been observed in patients with colorectal cancer treated with chemotherapy in combination with bevacizumab (Kabbinavar et al., 2003; Giantonio et al., 2006). In non–small-cell lung cancer, some patients treated with bevacizumab in combination with carboplatin and paclitaxel experienced severe or fatal pulmonary haemorrhage (Johnson et al., 2004). Furthermore, a higher incidence of gastrointestinal perforation was observed in patients with colorectal cancer given bevacizumab in combination with chemotherapy compared with chemotherapy alone (Hurwitz et al., 2004). Similarly, thrombotic events have been observed in patients treated with angiogenesis inhibitors, especially when these agents are given in combination with chemotherapy (Verheul and Pinedo, 2007). Treatment of patients with cancer with angiogenesis inhibitors is frequently associated with hypertension, which may require the addition of regular anti-hypertensive agent (Izzedine et al., 2009).

Summary and future directions

  • Angiogenesis is a critical process that occurs pathologically in many malignancies due to changing balance of endogenous angiogenesis inducers and inhibitors, leading to the activation of nearby endothelial cells to form new vasculature. Consequently, angiogenesis can be targeted to restrict initiation, growth and progression of most of angiogenesis-dependent malignancies. Numerous angiogenic inhibitors have been identified, some of which are currently being investigated in clinical trials and some others were even approved for cancer therapies. These angiogenesis inhibitors were classified based on their target into two main classes: direct and indirect inhibitors. Indirect angiogenesis inhibitors can be further subclassified based on their interference mechanisms with the angiogenic cascade. A list of major categories and molecular targets for angiogenesis inhibitors is shown in Table 2.
  • Most angiogenesis inhibitors conferred clinical benefits mainly when combined with other chemotherapeutic/targeted therapies rather than being used as monotherapy. Unfortunately, many anti-angiogenic agents were shown to be associated with overt systemic toxicity as well as resistance emergence and disease recurrence. Drug resistance in anti-angiogenic therapy may result from a plethora of pro-angiogenic factors released by inappropriately functioning host cells in the tumor micro-environment as a compensatory mechanism. Therefore, the strategy of targeting endothelial cells alone may not be enough as explained in the previous texts, requiring the proposal of different rationales in which other cellular compartments of tumor micro-environment are targeted to attain proper anti-angiogenic and anti-tumor response. That highlights the importance of considering tumor micro-environment as a dynamic system, as depicted in Figure 1 in which interference with any of its components may be an approach to interfere with cancer hallmarks, including angiogenesis.

9.5.5 LUCITANIB a VEGFR/FGFR dual kinase inhibitor in Phase 2 trials

Dr.  Anthony Melvin Crasto

source: http://medcheminternational.blogspot.com/2015/01/lucitanib-vegfrfgfr-dual-kinase.html

Lucitanib.png
LUCITANIB
6-[7-[(1-aminocyclopropyl)methoxy]-6-methoxyquinolin-4-yl]oxy-N-methylnaphthalene-1-carboxamide
6-(7-((l-aminocyclopropyl)methoxy)-6-methoxyquinolin-4-yloxy)- N-methyl- 1 -naphthamide
1058137-23-7 (E-3810 free base); 1058137-84-0  (E-3810 HCl salt)
E-3810, E-3810 amine, UNII-PP449XA4BH, E3810, Lucitanib [INN], AL3810
Molecular Formula:C26H25N3O4
Molecular Weight:443.4944 g/mol
PATENT SUBMITTED GRANTED
Spiro Substituted Compounds As Angiogenesis Inhibitors [US8163923] 2008-09-18 2012-04-24
A 4-(3-methoxypropoxy)-3-methylpyridinyl derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS.
For in advanced solid tumors.
Lucitanib (E-3810): Lucitanib, also known as E-3810,  is a novel dual inhibitor targeting human vascular endothelial growth factor receptors (VEGFRs) and fibroblast growth factor receptors (FGFRs) with antiangiogenic activity. VEGFR/FGFR dual kinase inhibitor E-3810 inhibits VEGFR-1, -2, -3 and FGFR-1, -2 kinases in the nM range, which may result in the inhibition of tumor angiogenesis and tumor cell proliferation, and the induction of tumor cell death. Both VEGFRs and FGFRs belong to the family of receptor tyrosine kinases that may be upregulated in various tumor cell type
Lucitanib (E-3810) Structure

Overview

Lucitanib is an oral, potent inhibitor of the tyrosine kinase activity of fibroblast growth factor receptors 1 through 3 (FGFR1-3), vascular endothelial growth factor receptors 1 through 3 (VEGFR1-3) and platelet-derived growth factor receptors alpha and beta (PDGFR α-ß). We own exclusive development and commercial rights to lucitanib on a global basis, excluding China. Lucitanib rights to markets outside of the U.S. and Japan have been sublicensed to Les Laboratoires Servier (Servier). We are collaborating with Servier on the global clinical development of lucitanib.

Read Full Post »

« Newer Posts - Older Posts »