Feeds:
Posts
Comments

Posts Tagged ‘FDG PET’


Alzheimer Disease Developments – Spring 2015

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

 

Cognitive Stimulation Modulates Platelet Total Phospholipases A2 Activity in Subjects with Mild Cognitive Impairment

 

JNK: A Putative Link Between Insulin Signaling and VGLUT1 in Alzheimer’s Disease

Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive ImpairmentOpenly Available
Oulhaj, Abderrahim | Jernerén, Fredrik | Refsum, Helga | Smith, A. David | de Jager, Celeste A.

Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic EncephalopathyOpenly Available
Stern, Robert A. | Tripodis, Yorghos | Baugh, Christine M. | Fritts, Nathan G. | Martin, Brett M. | Chaisson, Christine | Cantu, Robert C. | Joyce, James A. | Shah, Sahil | Ikezu, Tsuneya | Zhang, Jing | Gercel-Taylor, Cicek | Taylor, Douglas D

AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate KineticsOpenly Available
Eketjäll, Susanna | Janson, Juliette | Kaspersson, Karin | Bogstedt, Anna | Jeppsson, Fredrik | Fälting, Johanna | Haeberlein, Samantha Budd | Kugler, Alan R. | Alexander, Robert C. | Cebers, Gvido

Predictive Value of Cerebrospinal Fluid Visinin-Like Protein-1 Levels for Alzheimer’s Disease Early Detection and Differential Diagnosis in Patients with Mild Cognitive Impairment
Babić Leko, Mirjana | Borovečki, Fran | Dejanović, Nenad | Hof, Patrick R. | Šimić, Goran

Plasma Phospholipid and Sphingolipid Alterations in Presenilin1 Mutation Carriers: A Pilot Study
Chatterjee, Pratishtha | Lim, Wei L.F. | Shui, Guanghou | Gupta, Veer B. | James, Ian | …… | Wenk, Marcus R. | Bateman, Randall J. | Morris, John C. | Martins, Ralph N.

Cognitive reserve in ageing and Alzheimer’s disease / Stern Y / Lancet Neurol. 2012 Nov; 11(11):1006-12. PMID: 23079557.

A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline/ Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, et al. / Nature. 2012 Aug 2; 488(7409):96-9. PMID: 22801501.

 Propagation of tau pathology in a model of early Alzheimer’s disease / de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, et al. / Neuron. 2012 Feb 23; 73(4):685-97. PMID: 22365544.

Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years/ Braak H, Thal DR, Ghebremedhin E, Del Tredici K / J Neuropathol Exp Neurol. 2011 Nov; 70(11):960-9. PMID: 22002422.

Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy / McGeer EG, McGeer PL / J Alzheimers Dis. 2010; 19(1):355-61. PMID: 20061650.

Metallothioneins in Prion- and Amyloid-Related Diseases

MICROGLIA

Microglia are the immune cells of the CNS and account for approximately 10% of the CNS cellpopulation, with regional variation in density [27, 28]. During embryonic development, microglia originate from yolk sac progenitor cells that migrate into the developing CNS during early embryogenesis [29,30].Following construction of the blood-brain barrier (BBB), microglia are renewed by local turnover [31]. In the healthy brain, microglia actively support neurons through the release of insulin-like growth factor 1, nerve growth factor, ciliary neurotrophic factor, and brain-derived neurotrophic factor (BDNF) [32–34]. Microglia also provide indirect support to neurons by clearance of debris to maintain the extracellular environment, and phagocytosis of apoptotic cells to facilitate neurogenesis [35, 36]. In the adult brain, microglia coordinate much of their activity with astrocytes and activate in response to similar stimuli [37, 38]. Dysfunctional signaling between microglia and astrocytes often results in chronic inflammation, a characteristic of many neurodegenerative diseases [39, 40].

Historically, it has been thought that microglia ‘rest’ when not responding to inflammatory stimuli or damage [41, 42]. However, this notion is being increasingly recognized as inaccurate [43]. When not involved in active inflammatory signaling, microglia constantly patrol the neuropil by extension and retraction of their finely branched processes [44]. Microglial activation is often broadly classified into two states; pro-inflammatory (M1) or anti-inflammatory (M2) [36, 45], based on similar phenotypes in peripheral macrophages [46]. M1 activated microglia are characterized by increased expression of pro-inflammatory mediators and cytokines, including inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β, often under the control of the transcription factor nuclear factor-κB [45]. Pro-inflammatory microglia rapidly retract their processes and adopt an amoeboid morphology and often migrate closer to the site of injury [47]. Anti-inflammatory M2 activation of microglia, often referred to as alternative activation, represents the other side of microglial behavior. Anti-inflammatory activation is characterized by increased expression of cytokines including arginase 1 and interleukin-10, and is associated with increased ramification of processes [45]. The polarization of microglia into M1 or M2 throughout the brain is well characterized, especially in neurodegenerative diseases [48]. In the AD brain, microglia expressing markers of M1 activation are typically localized to brain regions such as the hippocampus that are most heavily affected in the disease [49]. However, it is important to note that M1 and M2 classifications of microglia may over-simplify microglial phenotypes and may only represent the extremes of microglial activation [50]. It has been more recently proposed that microglia likely occupy a continuum between these phenotypes [39, 51].

Do microglia have multiple roles in AD?

Classical pro-inflammatory activation of microglia has long been associated with AD [39, 49]. Samples taken from late-stage AD brains contain characteristic signs of inflammation, including amoeboid morphology of microglia, high levels of pro-inflammatory cytokines in the cerebrospinal fluid, and evidence of neuronal damage due to chronic exposure to pro-inflammatory cytokines and oxidative stress [52, 53]. The cause of this inflammation may be in response to direct toxicity of Aβ to neurons resulting in activation of nearby microglia and astrocytes [53, 54]. However, Aβ may also induce inflammatory activation of microglia and astrocytes. Activated immune cells are typically present surrounding amyloid plaques [55–57], with such peri-plaque cells exhibiting strong evidence of pro-inflammatory activation [56, 58–60]. The presence of undigested Aβ particles within these activated microglia may suggest that the Aβ peptide itself is a pro-inflammatory signal for microglia [61–64]. In vitro experiments provide supporting evidence for the in vivo studies, with Aβ promoting pro-inflammatory microglial activation [65, 66], and also acting as a potent chemotactic signal [67].

However, it is important to note that although widespread inflammation is characteristic of late-stage AD, it remains unclear what role inflammation could play in early stages of the disease. Some evidence suggests that reducing inflammation through the long-term use of some non-steroidal anti-inflammatory drugs (NSAIDs) can reduce the risk of AD [68]. However, these findings have not yet been verified in clinical trials [69, 70]. Little is understood about how NSAIDs and related compounds affect the delicate balance of pro- versus anti-inflammatory microglial activity within the brain. Although there is considerable evidence to suggest that chronic inflammation may contribute to pathology in the later stages of AD, it is important to note that inflammation normally only represents a small aspect of microglial function. The non-inflammatory functions of microglia may play a more important role in early disease; specifically, microglial functions relating to maintenance of the CNS.

Phagocytosis: A vital role of microglia that may be lost in AD    

SYNAPTIC PRUNING: MICROGLIA CAN REGULATE NETWORK ACTIVITY

Recently, a new function has been proposed for microglia. A number of studies have provided evidence that microglia prune synapses throughout life. Microglia are known to remove extraneous synapses during development to ensure that only meaningful connections remain [43]. It was, however, thought that differentiated astrocytes performed the majority of synaptic pruning in the adult brain [91]. The discovery that microglial processes are constantly active within the brain and are often positioned near synapses raised the question of whether microglial synaptic pruning continued throughout life [44, 47, 92–94]. This question was answered in 2014 in a study that demonstrated that microglia do prune synapses into adulthood, and that this activity is important for normal brain function [95]. These findings supported those found a year earlier in a study reporting that ablation of microglia from brain slices increases synapse density and results in abnormal firing of hippocampalneurons [96].

Altered microglial behavior may underlie altered neuronal firing in AD  

Altered neuronal activity is an early phenomenon in AD

The cause of DMN hypoactivity in AD is not yet clear; however studies performed in cohorts that are genetically predisposed to AD suggest that DMN hypoactivity is preceded by a period of hyperactivity and increased functional connectivity [123, 136], often manifesting as an absence of normal DMN deactivation during external tasks [137–140]. DMN hyperactivity may interfere with hippocampal memory encoding, leading to the memory deficits that are present in mild cognitive impairment [141, 142]. It has been proposed that hippocampal hyperexcitability in AD may develop as a protective mechanism against increased input from the DMN [142–144]. As AD progresses, the initial hyperexcitability of the DMN and hippocampus may result in hypoactivity due to exhaustion of compensatory mechanisms [123, 136]. Evidence from both transgenic AD mice and longitudinal human studies supports an exhaustion model of hyperactivation leading to later hypoactivation [143, 145–147]. Interestingly, a number of studies report a lower incidence of AD among those who regularly practice meditation which specifically ‘calms’ the DMN [148].

Our understanding of AD as a disease is changing. Historically considered to be primarily a disease of neuronal degeneration, this neurocentric view has widened to encompass non-neuronal cells such as astrocytes into our understanding of the disease process and pathogenesis. A proposed model for microglia in AD is shown in Fig. 2. Microglia perform a wide range of functions in the CNS and although this includes induction of an inflammatory reaction in response to damage, they also have critical roles for maintaining normal function in the brain. Recent evidence shows that microglia regulate neuronal activity through synaptic pruning throughout life as an extension on their normal phagocytosis behavior. The discovery of a large number of AD risk genes associated with reduced immune cell function suggests that perturbed microglial phagocytosis could lead to AD. In our model, altered microglial phagocytosis of synapses results in network dysfunction and onset of AD, occurring downstream of Aβ.

The immune system and microglia represent a novel target for intervention in AD. Importantly, a large number of anti-inflammatory drugs are already in use for other conditions. What is important to know at this stage is exactly how to best target immune cell function. The studies outlined here provide evidence that an indiscriminate dampening down of all microglial activity may result in a worse outcome for individuals by suppressing normal microglial regulatory functions. We currently do not know whether future microglial-based therapies should focus on reducing chronic inflammation or conversely, whether they should be aimed at boosting microglial phagocytosis. It is also likely that future treatment strategies may use a combination of approaches to target Aβ, immune cell phagocytosis and network activity. An increasing view in the AD field is that any drug or therapy needs to be provided very early in the disease process to maximize its beneficial effects. Although we are currently unable to effectively target those at risk of AD at such an early stage, advances in neuroimaging for subtle changes in network activity, or in assays for immune cell function, may provide new avenues for identification of early damage and risk of disease.

REFERENCES

[1]

Selkoe DJ ((2011) ) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3: , pii: a004457.

[2]

Masters CL , Simms G , Weinman NA , Multhaup G , McDonald BL , Beyreuther K ((1985) ) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82: , 4245–4249.

[3]

Glenner GG , Wong CW ((1984) ) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: , 885–890.

[4]

Goldgaber D , Lerman MI , McBride OW , Saffiotti U , Gajdusek DC ((1987) ) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: , 877–880.

[5]

Kang J , Lemaire HG , Unterbeck A , Salbaum JM , Masters CL , Grzeschik KH , Multhaup G , Beyreuther K , Muller-Hill B ((1987) ) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: , 733–736.

[6]

Robakis NK , Ramakrishna N , Wolfe G , Wisniewski HM ((1987) ) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci U S A 84: , 4190–4194.

[7]

Levy E , Carman MD , Fernandez-Madrid IJ , Power MD , Lieberburg I , van Duinen SG , Bots GT , Luyendijk W , Frangione B ((1990) ) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248: , 1124–1126.

[8]

Levy-Lahad E , Wasco W , Poorkaj P , Romano DM , Oshima J , Pettingell WH , Yu CE , Jondro PD , Schmidt SD , Wang K , et al ((1995) ) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: , 973–977.

[9]

Rogaev EI , Sherrington R , Rogaeva EA , Levesque G , Ikeda M , Liang Y , Chi H , Lin C , Holman K , Tsuda T , et al ((1995) ) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: , 775–778.

[10]

Sherrington R , Rogaev EI , Liang Y , Rogaeva EA , Levesque G , Ikeda M , Chi H , Lin C , Li G , Holman K , Tsuda T , Mar L , Foncin JF , Bruni AC , Montesi MP , Sorbi S , Rainero I , Pinessi L , Nee L , Chumakov I , Pollen D , Brookes A , Sanseau P , Polinsky RJ , Wasco W , Da Silva HA , Haines JL , Perkicak-Vance MA , Tanzi RE , Roses AD , Fraser PE , Rommens JM , St George-Hyslop PH ((1995) ) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: , 754–760.

 

Late-Onset Metachromatic Leukodystrophy with Early Onset Dementia Associated with a Novel Missense Mutation in the Arylsulfatase A Gene

Microbes and Alzheimer’s DiseaseOpenly Available
Itzhaki, Ruth F. | Lathe, Richard | Balin, Brian J. | Ball, Melvyn J. | Bearer, Elaine L. | Braak, Heiko | Bullido, Maria J. | Carter, Chris | Clerici, Mario | Cosby, S. Louise | Del Tredici, Kelly | Field, Hugh | Fulop, Tamas | Grassi, Claudio | Griffin, W. Sue T. | Haas, Jürgen | Hudson, Alan P. | Kamer, Angela R. | Kell, Douglas B. | Licastro, Federico | Letenneur, Luc | Lövheim, Hugo | Mancuso, Roberta | Miklossy, Judith | Otth, Carola | Palamara, Anna Teresa | Perry, George | Preston, Christopher | Pretorius, Etheresia | Strandberg, Timo | Tabet, Naji | Taylor-Robinson, Simon D. | Whittum-Hudson, Judith A.

Longitudinal Relationships between Caloric Expenditure and Gray Matter in the Cardiovascular Health StudyOpenly Available
Raji, Cyrus A. | Merrill, David A. | Eyre, Harris | Mallam, Sravya | Torosyan, Nare | Erickson, Kirk I. | Lopez, Oscar L. | Becker, James T. | Carmichael, Owen T. | Gach, H. Michael | Thompson, Paul M. | Longstreth Jr., W.T. | Kuller, Lewis H.

Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic EncephalopathyOpenly Available
Stern, Robert A. | Tripodis, Yorghos | Baugh, Christine M. | Fritts, Nathan G. | Martin, Brett M. | Chaisson, Christine | Cantu, Robert C. | Joyce, James A. | Shah, Sahil | Ikezu, Tsuneya | Zhang, Jing | Gercel-Taylor, Cicek | Taylor, Douglas D.

Unraveling Alzheimer’s: Making Sense of the Relationship between Diabetes and Alzheimer’s Disease1Openly Available
Schilling, Melissa A.

Pain Assessment in Elderly with Behavioral and Psychological Symptoms of DementiaOpenly Available
Malara, Alba | De Biase, Giuseppe Andrea | Bettarini, Francesco | Ceravolo, Francesco | Di Cello, Serena | Garo, Michele | Praino, Francesco | Settembrini, Vincenzo | Sgrò, Giovanni | Spadea, Fausto | Rispoli, Vincenzo

Editor’s Choice from Volume 50, Number 4 / 2016

Post Hoc Analyses of ApoE Genotype-Defined Subgroups in Clinical Trials
Kennedy, Richard E. | Cutter, Gary R. | Wang, Guoqiao | Schneider, Lon S.

Protective Effect of Amyloid-β Peptides Against Herpes Simplex Virus-1 Infection in a Neuronal Cell Culture Model
Bourgade, Karine | Le Page, Aurélie | Bocti, Christian | Witkowski, Jacek M. | Dupuis, Gilles | Frost, Eric H. | Fülöp, Tamás

Association Between Serum Ceruloplasmin Specific Activity and Risk of Alzheimer’s Disease
Siotto, Mariacristina | Simonelli, Ilaria | Pasqualetti, Patrizio | Mariani, Stefania | Caprara, Deborah | Bucossi, Serena | Ventriglia, Mariacarla | Molinario, Rossana | Antenucci, Mirca | Rongioletti, Mauro | Rossini, Paolo Maria | Squitti, Rosanna

Effects of Hypertension and Anti-Hypertensive Treatment on Amyloid-β (Aβ) Plaque Load and Aβ-Synthesizing and Aβ-Degrading Enzymes in Frontal Cortex
Ashby, Emma L. | Miners, James S. | Kehoe , Patrick G. | Love, Seth

AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate KineticsOpenly Available
Eketjäll, Susanna | Janson, Juliette | Kaspersson, Karin | Bogstedt, Anna | Jeppsson, Fredrik | Fälting, Johannad | Haeberlein, Samantha Budd | Kugler, Alan R. | Alexander, Robert C. | Cebers, Gvido

Read Full Post »


Imaging Technology in Cancer Surgery

Author and curator: Dror Nir, PhD

The advent of medical-imaging technologies such as image-fusion, functional-imaging and noninvasive tissue characterisation is playing an imperative role in answering this demand thus transforming the concept of personalized medicine in cancer into practice. The leading modality in that respect is medical imaging. To date, the main imaging systems that can provide reasonable level of cancer detection and localization are: CT, mammography, Multi-Sequence MRI, PET/CT and ultrasound. All of these require skilled operators and experienced imaging interpreters in order to deliver what is required at a reasonable level. It is generally agreed by radiologists and oncologists that in order to provide a comprehensive work-flow that complies with the principles of personalized medicine, future cancer patients’ management will heavily rely on computerized image interpretation applications that will extract from images in a standardized manner measurable imaging biomarkers leading to better clinical assessment of cancer patients.

As consequence of the human genome project and technological advances in gene-sequencing, the understanding of cancer advanced considerably. This led to increase in the offering of treatment options. Yet, surgical resection is still the leading form of therapy offered to patients with organ confined tumors. Obtaining “cancer free” surgical margins is crucial to the surgery outcome in terms of overall survival and patients’ quality of life/morbidity. Currently, a significant portion of surgeries ends up with positive surgical margins leading to poor clinical outcome and increase of costs. To improve on this, large variety of intraoperative imaging-devices aimed at resection-guidance have been introduced and adapted in the last decade and it is expected that this trend will continue.

The Status of Contemporary Image-Guided Modalities in Oncologic Surgery is a review paper presenting a variety of cancer imaging techniques that have been adapted or developed for intra-operative surgical guidance. It also covers novel, cancer-specific contrast agents that are in early stage development and demonstrate significant promise to improve real-time detection of sub-clinical cancer in operative setting.

Another good (free access) review paper is: uPAR-targeted multimodal tracer for pre- and intraoperative imaging in cancer surgery

Abstract

Pre- and intraoperative diagnostic techniques facilitating tumor staging are of paramount importance in colorectal cancer surgery. The urokinase receptor (uPAR) plays an important role in the development of cancer, tumor invasion, angiogenesis, and metastasis and over-expression is found in the majority of carcinomas. This study aims to develop the first clinically relevant anti-uPAR antibody-based imaging agent that combines nuclear (111In) and real-time near-infrared (NIR) fluorescent imaging (ZW800-1). Conjugation and binding capacities were investigated and validated in vitro using spectrophotometry and cell-based assays. In vivo, three human colorectal xenograft models were used including an orthotopic peritoneal carcinomatosis model to image small tumors. Nuclear and NIR fluorescent signals showed clear tumor delineation between 24h and 72h post-injection, with highest tumor-to-background ratios of 5.0 ± 1.3 at 72h using fluorescence and 4.2 ± 0.1 at 24h with radioactivity. 1-2 mm sized tumors could be clearly recognized by their fluorescent rim. This study showed the feasibility of an uPAR-recognizing multimodal agent to visualize tumors during image-guided resections using NIR fluorescence, whereas its nuclear component assisted in the pre-operative non-invasive recognition of tumors using SPECT imaging. This strategy can assist in surgical planning and subsequent precision surgery to reduce the number of incomplete resections.

INTRODUCTION
Diagnosis, staging, and surgical planning of colorectal cancer patients increasingly rely on imaging techniques that provide information about tumor biology and anatomical structures [1-3]. Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are preoperative nuclear imaging modalities used to provide insights into tumor location, tumor biology, and the surrounding micro-environment [4]. Both techniques depend on the recognition of tumor cells using radioactive ligands. Various monoclonal antibodies, initially developed as therapeutic agents (e.g. cetuximab, bevacizumab, labetuzumab), are labeled with radioactive tracers and evaluated for pre-operative imaging purposes [5-9]. Despite these techniques, during surgery the surgeons still rely mostly on their eyes and hands to distinguish healthy from malignant tissues, resulting in incomplete resections or unnecessary tissue removal in up to 27% of rectal cancer patients [10, 11]. Incomplete resections (R1) are shown to be a strong predictor of development of distant metastasis, local recurrence, and decreased survival of colorectal cancer patients [11, 12]. Fluorescence-guided surgery (FGS) is an intraoperative imaging technique already introduced and validated in the clinic for sentinel lymph node (SLN) mapping and biliary imaging [13]. Tumor-specific FGS can be regarded as an extension of SPECT/PET, using fluorophores instead of radioactive labels conjugated to tumor-specific ligands, but with higher spatial resolution than SPECT/PET imaging and real-time anatomical feedback [14]. A powerful synergy can be achieved when nuclear and fluorescent imaging modalities are combined, extending the nuclear diagnostic images with real-time intraoperative imaging. This combination can lead to improved diagnosis and management by integrating pre-intra and postoperative imaging. Nuclear imaging enables pre-operative evaluation of tumor spread while during surgery deeper lying spots can be localized using the gamma probe counter. The (NIR) fluorescent signal aids the surgeon in providing real-time anatomical feedback to accurately recognize and resect malignant tissues. Postoperative, malignant cells can be recognized using NIR fluorescent microscopy. Clinically, the advantages of multimodal agents in image-guided surgery have been shown in patients with melanoma and prostate cancer, but those studies used a-specific agents, following the natural lymph drainage pattern of colloidal tracers after peritumoral injection [15, 16]. The urokinase-type plasminogen activator receptor (uPAR) is implicated in many aspects of tumor growth and (micro) metastasis [17, 18]. The levels of uPAR are undetectable in normal tissues except for occasional macrophages and granulocytes in the uterus, thymus, kidneys and spleen [19]. Enhanced tumor levels of uPAR and its circulating form (suPAR) are independent prognostic markers for overall survival in colorectal cancer patients [20, 21]. The relatively selective and high overexpression of uPAR in a wide range of human cancers including colorectal, breast, and pancreas nominate uPAR as a widely applicable and potent molecular target [17,22]. The current study aims to develop a clinically relevant uPAR-specific multimodal agent that can be used to visualize tumors pre- and intraoperatively after a single injection. We combined the 111Indium isotope with NIR fluorophore ZW800-1 using a hybrid linker to an uPAR specific monoclonal antibody (ATN-658) and evaluated its performance using a pre-clinical SPECT system (U-SPECT-II) and a clinically-applied NIR fluorescence camera system (FLARE™).

Fig1 Fig2 Fig3

Robotic surgery is a growing trend as a form of surgery, specifically in urology. The following review paper propose a good discussion on the added value of imaging in urologic robotic surgery:

The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons

 Abstract

Background

With the development of novel augmented reality operating platforms the way surgeons utilize imaging as a real-time adjunct to surgical technique is changing.

Methods

A questionnaire was distributed via the European Robotic Urological Society mailing list. The questionnaire had three themes: surgeon demographics, current use of imaging and potential uses of an augmented reality operating environment in robotic urological surgery.

Results

117 of the 239 respondents (48.9%) were independently practicing robotic surgeons. 74% of surgeons reported having imaging available in theater for prostatectomy 97% for robotic partial nephrectomy and 95% cystectomy. 87% felt there was a role for augmented reality as a navigation tool in robotic surgery.

Conclusions

This survey has revealed the contemporary robotic surgeon to be comfortable in the use of imaging for intraoperative planning it also suggests that there is a desire for augmented reality platforms within the urological community. Copyright © 2014 John Wiley & Sons, Ltd.

 Introduction

Since Röntgen first utilized X-rays to image the carpal bones of the human hand in 1895, medical imaging has evolved and is now able to provide a detailed representation of a patient’s intracorporeal anatomy, with recent advances now allowing for 3-dimensional (3D) reconstructions. The visualization of anatomy in 3D has been shown to improve the ability to localize structures when compared with 2D with no change in the amount of cognitive loading [1]. This has allowed imaging to move from a largely diagnostic tool to one that can be used for both diagnosis and operative planning.

One potential interface to display 3D images, to maximize its potential as a tool for surgical guidance, is to overlay them onto the endoscopic operative scene (augmented reality). This addresses, in part, a criticism often leveled at robotic surgery, the loss of haptic feedback. Augmented reality has the potential to mitigate this sensory loss by enhancing the surgeons visual cues with information regarding subsurface anatomical relationships [2].

Augmented reality surgery is in its infancy for intra-abdominal procedures due in large part to the difficulties of applying static preoperative imaging to a constantly deforming intraoperative scene [3]. There are case reports and ex vivo studies in the literature examining the technology in minimal access prostatectomy [3-6] and partial nephrectomy [7-10], but there remains a lack of evidence determining whether surgeons feel there is a role for the technology and if so for what procedures they feel it would be efficacious.

This questionnaire-based study was designed to assess first, the pre- and intra-operative imaging modalities utilized by robotic urologists; second, the current use of imaging intraoperatively for surgical planning; and finally whether there is a desire for augmented reality among the robotic urological community.

Methods

Recruitment

A web based survey instrument was designed and sent out, as part of a larger survey, to members of the EAU robotic urology section (ERUS). Only independently practicing robotic surgeons performing robot-assisted laparoscopic prostatectomy (RALP), robot-assisted partial nephrectomy (RAPN) and/or robotic cystectomy were included in the analysis, those surgeons exclusively performing other procedures were excluded. Respondents were offered no incentives to reply. All data collected was anonymous.

Survey design and administration

The questionnaire was created using the LimeSurvey platform (www.limesurvey.com) and hosted on their website. All responses (both complete and incomplete) were included in the analysis. The questionnaire was dynamic with the questions displayed tailored to the respondents’ previous answers.

When computing fractions or percentages the denominator was the number of respondents to answer the question, this number is variable due to the dynamic nature of the questionnaire.

Demographics

All respondents to the survey were asked in what country they practiced and what robotic urological procedures they performed. In addition to what procedures they performed surgeons were asked to specify the number of cases they had undertaken for each procedure.

 Current imaging practice

Procedure-specific questions in this group were displayed according to the operations the respondent performed. A summary of the questions can be seen in Appendix 1. Procedure-nonspecific questions were also asked. Participants were asked whether they routinely used the Tile Pro™ function of the da Vinci console (Intuitive Surgical, Sunnyvale, USA) and whether they routinely viewed imaging intra-operatively.

 Augmented reality

Before answering questions in this section, participants were invited to watch a video demonstrating an augmented reality platform during RAPN, performed by our group at Imperial College London. A still from this video can be seen in Figure 1. They were then asked whether they felt augmented reality would be of use as a navigation or training tool in robotic surgery.

f1

Figure 1. A still taken from a video of augmented reality robot assisted partial nephrectomy performed. Here the tumour has been painted into the operative view allowing the surgeon to appreciate the relationship of the tumour with the surface of the kidney

Once again, in this section, procedure-specific questions were displayed according to the operations the respondent performed. Only those respondents who felt augmented reality would be of use as a navigation tool were asked procedure-specific questions. Questions were asked to establish where in these procedures they felt an augmented reality environment would be of use.

Results

Demographics

Of the 239 respondents completing the survey 117 were independently practising robotic surgeons and were therefore eligible for analysis. The majority of the surgeons had both trained (210/239, 87.9%) and worked in Europe (215/239, 90%). The median number of cases undertaken by those surgeons reporting their case volume was: 120 (6–2000), 9 (1–120) and 30 (1–270), for RALP, robot assisted cystectomy and RAPN, respectively.

 

Contemporary use of imaging in robotic surgery

When enquiring about the use of imaging for surgical planning, the majority of surgeons (57%, 65/115) routinely viewed pre-operative imaging intra-operatively with only 9% (13/137) routinely capitalizing on the TilePro™ function in the console to display these images. When assessing the use of TilePro™ among surgeons who performed RAPN 13.8% (9/65) reported using the technology routinely.

When assessing the imaging modalities that are available to a surgeon in theater the majority of surgeons performing RALP (74%, 78/106)) reported using MRI with an additional 37% (39/106) reporting the use of CT for pre-operative staging and/or planning. For surgeons performing RAPN and robot-assisted cystectomy there was more of a consensus with 97% (68/70) and 95% (54/57) of surgeons, respectively, using CT for routine preoperative imaging (Table 1).

Table 1. Which preoperative imaging modalities do you use for diagnosis and surgical planning?

  CT MRI USS None Other
RALP (n = 106) 39.8% 73.5% 2% 15.1% 8.4%
(39) (78) (3) (16) (9)
RAPN (n = 70) 97.1% 42.9% 17.1% 0% 2.9%
(68) (30) (12) (0) (2)
Cystectomy (n = 57) 94.7% 26.3% 1.8% 1.8% 5.3%
(54) (15) (1) (1) (3)

Those surgeons performing RAPN were found to have the most diversity in the way they viewed pre-operative images in theater, routinely viewing images in sagittal, coronal and axial slices (Table 2). The majority of these surgeons also viewed the images as 3D reconstructions (54%, 38/70).

Table 2. How do you typically view preoperative imaging in the OR? 3D recons = three-dimensional reconstructions

  Axial slices (n) Coronal slices (n) Sagittal slices (n) 3D recons. (n) Do not view (n)  
RALP (n = 106) 49.1% 44.3% 31.1% 9.4% 31.1%
(52) (47) (33) (10) (33)
RAPN (n = 70) 68.6% 74.3% 60% (42) 54.3% 0%
(48) (52) (38) (0)
Cystectomy (n = 57) 70.2% 52.6% 50.9% 21.1% 8.8%
(40) (30) (29) (12) (5)

The majority of surgeons used ultrasound intra-operatively in RAPN (51%, 35/69) with a further 25% (17/69) reporting they would use it if they had access to a ‘drop-in’ ultrasound probe (Figure 2).

f2

Figure 2. Chart demonstrating responses to the question – Do you use intraoperative ultrasound for robotic partial nephrectomy?

Desire for augmented reality

Overall, 87% of respondents envisaged a role for augmented reality as a navigation tool in robotic surgery and 82% (88/107) felt that there was an additional role for the technology as a training tool.

The greatest desire for augmented reality was among those surgeons performing RAPN with 86% (54/63) feeling the technology would be of use. The largest group of surgeons felt it would be useful in identifying tumour location, with significant numbers also feeling it would be efficacious in tumor resection (Figure 3).

f3

Figure 3. Chart demonstrating responses to the question – In robotic partial nephrectomy which parts of the operation do you feel augmented reality image overlay would be of assistance?

When enquiring about the potential for augmented reality in RALP, 79% (20/96) of respondents felt it would be of use during the procedure, with the largest group feeling it would be helpful for nerve sparing 65% (62/96) (Figure 4). The picture in cystectomy was similar with 74% (37/50) of surgeons believing augmented reality would be of use, with both nerve sparing and apical dissection highlighted as specific examples (40%, 20/50) (Figure 5). The majority also felt that it would be useful for lymph node dissection in both RALP and robot assisted cystectomy (55% (52/95) and 64% (32/50), respectively).

f4

Figure 4. Chart demonstrating responses to the question – In robotic prostatectomy which parts of the operation do you feel augmented reality image overlay would be of assistance?

f5

Figure 5. Chart demonstrating responses to the question – In robotic cystectomy which parts of the operation do you feel augmented reality overlay technology would be of assistance?

Discussion

The results from this study suggest that the contemporary robotic surgeon views imaging as an important adjunct to operative practice. The way these images are being viewed is changing; although the majority of surgeons continue to view images as two-dimensional (2D) slices a significant minority have started to capitalize on 3D reconstructions to give them an improved appreciation of the patient’s anatomy.

This study has highlighted surgeons’ willingness to take the next step in the utilization of imaging in operative planning, augmented reality, with 87% feeling it has a role to play in robotic surgery. Although there appears to be a considerable desire for augmented reality, the technology itself is still in its infancy with the limited evidence demonstrating clinical application reporting only qualitative results [3, 7, 11, 12].

There are a number of significant issues that need to be overcome before augmented reality can be adopted in routine clinical practice. The first of these is registration (the process by which two images are positioned in the same coordinate system such that the locations of corresponding points align [13]). This process has been performed both manually and using automated algorithms with varying degrees of accuracy [2, 14]. The second issue pertains to the use of static pre-operative imaging in a dynamic operative environment; in order for the pre-operative imaging to be accurately registered it must be deformable. This problem remains as yet unresolved.

Live intra-operative imaging circumvents the problems of tissue deformation and in RAPN 51% of surgeons reported already using intra-operative ultrasound to aid in tumour resection. Cheung and colleagues [9] have published an ex vivo study highlighting the potential for intra-operative ultrasound in augmented reality partial nephrectomy. They report the overlaying of ultrasound onto the operative scene to improve the surgeon’s appreciation of the subsurface tumour anatomy, this improvement in anatomical appreciation resulted in improved resection quality over conventional ultrasound guided resection [9]. Building on this work the first in vivo use of overlaid ultrasound in RAPN has recently been reported [10]. Although good subjective feedback was received from the operating surgeon, the study was limited to a single case demonstrating feasibility and as such was not able to show an outcome benefit to the technology [10].

RAPN also appears to be the area in which augmented reality would be most readily adopted with 86% of surgeons claiming they see a use for the technology during the procedure. Within this operation there are two obvious steps to augmentation, anatomical identification (in particular vessel identification to facilitate both routine ‘full clamping’ and for the identification of secondary and tertiary vessels for ‘selective clamping’ [15]) and tumour resection. These two phases have different requirements from an augmented reality platform; the first phase of identification requires a gross overview of the anatomy without the need for high levels of registration accuracy. Tumor resection, however, necessitates almost sub-millimeter accuracy in registration and needs the system to account for the dynamic intra-operative environment. The step of anatomical identification is amenable to the use of non-deformable 3D reconstructions of pre-operative imaging while that of image-guided tumor resection is perhaps better suited to augmentation with live imaging such as ultrasound [2, 9, 16].

For RALP and robot-assisted cystectomy the steps in which surgeons felt augmented reality would be of assistance were those of neurovascular bundle preservation and apical dissection. The relative, perceived, efficacy of augmented reality in these steps correlate with previous examinations of augmented reality in RALP [17, 18]. Although surgeon preference for utilizing augmented reality while undertaking robotic prostatectomy has been demonstrated, Thompson et al. failed to demonstrate an improvement in oncological outcomes in those patients undergoing AR RALP [18].

Both nerve sparing and apical dissection require a high level of registration accuracy and a necessity for either live imaging or the deformation of pre-operative imaging to match the operative scene; achieving this level of registration accuracy is made more difficult by the mobilization of the prostate gland during the operation [17]. These problems are equally applicable to robot-assisted cystectomy. Although guidance systems have been proposed in the literature for RALP [3-5, 12, 17], none have achieved the level of accuracy required to provide assistance during nerve sparing. In addition, there are still imaging challenges that need to be overcome. Although multiparametric MRI has been shown to improve decision making in opting for a nerve sparing approach to RALP [19] the imaging is not yet able to reliably discern the exact location of the neurovascular bundle. This said, significant advances are being made with novel imaging modalities on the horizon that may allow for imaging of the neurovascular bundle in the near future [20].

 

Limitations

The number of operations included represents a significant limitation of the study, had different index procedures been chosen different results may have been seen. This being said the index procedures selected were chosen as they represent the vast majority of uro-oncological robotic surgical practice, largely mitigating for this shortfall.

Although the available ex vivo evidence suggests that introducing augmented reality operating environments into surgical practice would help to improve outcomes [9, 21] the in vivo experience to date is limited to small volume case series reporting feasibility [2, 3, 14]. To date no study has demonstrated an in vivo outcome advantage to augmented reality guidance. In addition to this limitation augmented reality has been demonstrated to increased rates of inattention blindness among surgeons suggesting there is a trade-off between increasing visual information and the surgeon’s ability to appreciate unexpected operative events [21].

 

Conclusions

This survey shows the contemporary robotic surgeon to be comfortable with the use of imaging to aid intra-operative planning; furthermore it highlights a significant interest among the urological community in augmented reality operating platforms.

Short- to medium-term development of augmented reality systems in robotic urology surgery would be best performed using RAPN as the index procedure. Not only was this the operation where surgeons saw the greatest potential benefits, but it may also be the operation where it is most easily achievable by capitalizing on the respective benefits of technologies the surgeons are already using; pre-operative CT for anatomical identification and intra-operative ultrasound for tumour resection.

 

Conflict of interest

None of the authors have any conflicts of interest to declare.

Appendix 1

Question Asked Question Type
Demographics
In which country do you usually practise? Single best answer
Which robotic procedures do you perform?* Single best answer
Current Imaging Practice
What preoperative imaging modalities do you use for the staging and surgical planning in renal cancer? Multiple choice
How do you typically view preoperative imaging in theatre for renal cancer surgery? Multiple choice
Do you use intraoperative ultrasound for partial nephrectomy? Yes or No
What preoperative imaging modalities do you use for the staging and surgical planning in prostate cancer? Multiple choice
How do you typically view preoperative imaging in theatre for prostate cancer? Multiple choice
Do you use intraoperative ultrasound for robotic partial nephrectomy? Yes or No
Which preoperative imaging modality do you use for staging and surgical planning in muscle invasive TCC? Multiple choice
How do you typically view preoperative imaging in theatre for muscle invasive TCC? Multiple choice
Do you routinely refer to preoperative imaging intraoperativley? Yes or No
Do you routinely use Tilepro intraoperativley? Yes or No
Augmented Reality
Do you feel there is a role for augmented reality as a navigation tool in robotic surgery? Yes or No
Do you feel there is a role for augmented reality as a training tool in robotic surgery? Yes or No
In robotic partial nephrectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
In robotic nephrectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
In robotic prostatectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
Would augmented reality guidance be of use in lymph node dissection in robotic prostatectomy? Yes or No
In robotic cystectomy which parts of the operation do you feel augmented reality image overlay technology would be of assistance? Multiple choice
Would augmented reality guidance be of use in lymph node dissection in robotic cystectomy? Yes or No
*The relevant procedure related questions were displayed based on the answer to this question

References

1. Foo J-L, Martinez-Escobar M, Juhnke B, et al.Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization. J Laparoendosc Adv Surg Tech A 2013; 23(1):65–70.

2. Hughes-Hallett A, Mayer EK, Marcus HJ, et al.Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology 2014; 83(2): 266–273.

3. Sridhar AN, Hughes-Hallett A, Mayer EK, et al.Image-guided robotic interventions for prostate cancer. Nat Rev Urol 2013; 10(8): 452–462.

4. Cohen D, Mayer E, Chen D, et al.Eddie’ Augmented reality image guidance in minimally invasive prostatectomy. Lect Notes Comput Sci 2010; 6367: 101–110.

5. Simpfendorfer T, Baumhauer M, Muller M, et al.Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 2011; 25(12): 1841–1845.

6. Teber D, Simpfendorfer T, Guven S, et al.In vitro evaluation of a soft-tissue navigation system for laparoscopic prostatectomy. J Endourol 2010; 24(9): 1487–1491.

7. Teber D, Guven S, Simpfendörfer T, et al.Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo Eur Urol 2009; 56(2): 332–338.

8. Pratt P, Mayer E, Vale J, et al.An effective visualisation and registration system for image-guided robotic partial nephrectomy. J Robot Surg 2012; 6(1): 23–31.

9. Cheung CL, Wedlake C, Moore J, et al.Fused video and ultrasound images for minimally invasive partial nephrectomy: a phantom study. Med Image Comput Comput Assist Interv 2010; 13(Pt 3): 408–415.

10. Hughes-Hallett A, Pratt P, Mayer E, et al.Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical experience. Eur Urol 2014; 65(3): 671–672.

11. Nakamura K, Naya Y, Zenbutsu S, et al.Surgical navigation using three-dimensional computed tomography images fused intraoperatively with live video. J Endourol 2010; 24(4): 521–524.

12. Ukimura O, Gill IS. Imaging-assisted endoscopic surgery: Cleveland clinic experience. J Endourol2008; 22(4):803–809.

13. Altamar HO, Ong RE, Glisson CL, et al.Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery. J Endourol 2011; 25(3): 511–517.

14. Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol2011; 20(3): 189–201.

15. Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. Eur Urol2012; 61(1): 211–217.

16. Pratt P, Hughes-Hallett A, Di Marco A, et al. Multimodal reconstruction for image-guided interventions. In:Yang GZ, Darzi A (eds) Proceedings of the Hamlyn symposium on medical robotics: London. 2013; 59–61.

17. Mayer EK, Cohen D, Chen D, et al.Augmented reality image guidance in minimally invasive prostatectomy. Eur Urol Supp 2011; 10(2): 300.

18. Thompson S, Penney G, Billia M, et al.Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 2013; 111(7): 1081–1090.

19. Panebianco V, Salciccia S, Cattarino S, et al.Use of multiparametric MR with neurovascular bundle evaluation to optimize the oncological and functional management of patients considered for nerve-sparing radical prostatectomy. J Sex Med 2012; 9(8): 2157–2166.

20. Rai S, Srivastava A, Sooriakumaran P, Tewari A. Advances in imaging the neurovascular bundle. Curr Opin Urol2012; 22(2): 88–96.

21. Dixon BJ, Daly MJ, Chan H, et al.Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg Endosc 2013; 27(2): 454–461.

Read Full Post »


Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging

 Reporter: Dror Nir, PhD

Early this year I have posted on: Whole-body imaging as cancer screening tool; answering an unmet clinical need? F-PET/CT was discussed in this post as a leading modality in that respect. Here I report on an article dedicated to the sources for misdiagnosis; i.e. false negatives and false positives when applying this technology:

Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging, Niamh M. Long and Clare S. Smith /Insights into Imaging© European Society of Radiology 201010.1007/s13244-010-0062-3

Abstract

Background

18F-FDG is a glucose analogue that is taken up by a wide range of malignancies. 18F-FDG PET-CT is now firmly established as an accurate method for the staging and restaging of various cancers. However, 18F-FDG also accumulates in normal tissue and other non-malignant conditions, and some malignancies do not take up F18-FDG or have a low affinity for the tracer, leading to false-positive and false-negative interpretations.

Methods

PET-CT allows for the correlation of two separate imaging modalities, combining both morphological and metabolic information. We should use the CT to help interpret the PET findings. In this article we will highlight specific false-negative and false-positive findings that one should be aware of when interpreting oncology scans.

Results

We aim to highlight post-treatment conditions that are encountered routinely on restaging scans that can lead to false-positive interpretations. We will emphasise the importance of using the CT component to help recognise these entities to allow improved diagnostic accuracy.

Conclusion

In light of the increased use of PET-CT, it is important that nuclear medicine physicians and radiologists be aware of these conditions and correlate the PET and CT components to avoid misdiagnosis, over staging of disease and unnecessary biopsies.

Introduction

[18F] 2-fluoro-2deoxy-D-glucose (18F-FDG) PET-CT imaging has become firmly established as an excellent clinical tool in the diagnosis, staging and restaging of cancer. 18F-FDG (a glucose analog) is taken up by cells via glucose transporter proteins. The glucose analog then undergoes phosphorylation by hexokinase to FDG-6 phosphate. Unlike glucose, FDG-phosphate does not undergo further metabolism and so becomes trapped in the cell as the cell membrane is impermeable to FDG-6 phosphate following phosphorylation [1].

Malignant tumors have a higher metabolic rate and generally express higher numbers of specific membrane transporter proteins than normal cells. This results in increased uptake of 18F-FDG by tumor cells and forms the basis of FDG-PET imaging [2]. Glucose however acts as a basic energy substrate for many tissues, and so 18F-FDG activity can be seen both physiologically and in benign conditions. In addition, not all tumors take up FDG [35]. The challenge for the interpreting physician is to recognize these entities and avoid the many pitfalls associated with 18F-FDG PET-CT imaging.

In this article we discuss false-positive and false-negative 18F-FDG PET-CT findings, common and atypical physiological sites of FDG uptake, and benign pathological causes of FDG uptake. We will focus on post-treatment conditions that can result in false-positive findings. We will highlight the importance of utilizing the CT component of the study, not only for attenuation correction but also in the interpretation of the study. The CT component of 18F-FDG PET-CT imaging can provide high-resolution anatomical information, which enables more accurate staging and assessment. For the purposes of this article, we refer to the descriptive terms “false-positive” and “false-negative” findings in the context of oncology imaging.

The authors acknowledge that there are recognized causes of FDG uptake that are not related to malignancy; however in this paper we refer to false-positive findings as FDG uptake that is not tumor related.

Patient preparation

Tumor uptake of FDG is reduced in the presence of raised serum glucose as glucose competes with FDG for uptake by the membrane transporter proteins. In order to prevent false-negative results, it is necessary for the patient to fast for at least 4–6 h prior to the procedure [6]. Induction of a euglycamic hypoinsulinaemic state also serves to reduce the uptake of glucose by the myocardium and skeletal muscle. In the fasting state, the decreased availability of glucose results in predominant metabolism of fatty acids by the myocardium. This reduces the intensity of myocardial uptake and prevents masking of metastatic disease within the mediastinum [6].

The radiotracer is administered intravenously (dose dependent on both the count rate capability of the system used and the patient’s weight), and the patient is left resting in a comfortable position during the uptake phase (60–90 min). Patient discomfort and anxiety can result in increased uptake in skeletal muscles of the neck and paravertebral regions. Muscular contraction immediately prior to or following injection can result in increased FDG activity in major muscle groups [6].

Patients are placed in a warm, quiet room with little stimulation, as speech during the uptake phase is associated with increased FDG uptake in the laryngeal muscles [7].

At our institution we perform the CT component with arms up except for head and neck studies where the arms are placed down by the side. This minimizes artifacts on CT. Depending on the type of cancer, oral contrast to label the bowel and intravenous contrast may also be given. The CT is performed with a full dose similar to a diagnostic CT, and lungs are analyzed following reconstruction with a lung algorithm. The PET scan is performed with 3–4 min per bed position; however the time per bed position will vary in different centers depending on both the dose of FDG administered and the specifications of the camera used for image acquisition. It is beyond the scope of this article to provide detailed procedure guidelines for 18F-FDG PET-CT imaging, and for this purpose we refer the reader to a comprehensive paper by Boellaard et al. [8].

Technical causes of false positives

Misregistration artifact

The evaluation of pulmonary nodules provides a unique challenge for combined PET-CT scanning due to differences in breathing patterns between CT and PET acquisition periods. CT imaging of the thorax is classically performed during a breath-hold; however PET images are acquired during tidal breathing, and this can contribute significantly to misregistration of pulmonary nodules on fused PET-CT images. Misregistration is particularly evident at the lung bases, which can lead to difficulty differentiating pulmonary nodules from focal liver lesions (Fig. 1) [9].

f1

Fig. 1

18F-FDG PET-CT performed in a 65-year-old male with colorectal cancer. On the coronal PET images, a focus of increased FDG uptake is seen at the right lung base (black arrow). Contrast CT does not show any pulmonary nodules but does demonstrate a liver metastasis in the superior aspect of the right lobe of the liver (yellow arrow)

Acquiring CT imaging of the thorax during quiet respiration can help to minimize misregistration artifacts. It is also important to correlate your PET and CT findings by scrolling up and down to make sure that lesions match.

Injected clot

A further diagnostic pitfall in staging of intrathoracic disease can be caused by injected clot. Injection of radioactive clot following blood withdrawal into the syringe at the time of radiotracer administration can result in pulmonary hotspots [10]. The absence of a CT correlate for a pulmonary hotspot should raise the possibility of injected clot; however this is a diagnosis of exclusion, and it is important to carefully evaluate the adjacent slices to ensure the increased radiotracer activity does not relate to misregistration of a pulmonary nodule or hilar lymph node. The area of abnormal radiotracer uptake should also be closely evaluated on subsequent restaging CT to ensure there has been no interval development of an anatomical abnormality in the region of previously diagnosed injected clot (Fig. 2) [11].

f2

Fig. 2

18F-FDG PET-CT performed in a 28-year-old male with an osteosarcoma of the femur. A focus of increased FDG uptake (yellow arrow) is identified in the left lower lobe with no CT correlate (a). A 3-month follow-up CT thorax again does not demonstrate any pulmonary nodules confirming that the uptake seen originally on the PET-CT was due to injected clot (b)

Injection artifact

Leakage of radiotracer into the subcutaneous tissues at the injection site or tissued injection can result in subcutaneous tracking of FDG along lymphatic channels in the arm. This can result in spurious uptake in axillary nodes distal to the injection site [12]. Careful attention must be paid to the technical aspects of the study to ensure accurate staging. Injection at the side contralateral to the site of disease is advised where feasible to allow differentiation between artifactual and metastatic uptake, particularly in breast cancer patients. The side of injection should also be clearly documented during administration of radiotracer, and this information should be available to the reader in order to ensure pathological FDG uptake is not spuriously attributed to injection artifact (Fig. 3).

f3

Fig. 3

18F-FDG PET-CT performed in a 56-year-old woman with colorectal cancer. Some low grade FDG uptake is identified in non-enlarged right axillary nodes (yellow arrow) consistent with injection artifact

Imaging of metallic implants

The use of CT for attenuation correction negates the need for traditional transmission attenuation correction, reducing scanning time. There are however technical factors relating to the use of CT imaging for attenuation correction, which lead to artefacts when imaging metal [9]. The presence of metal implants in the body produces streak artifact on CT imaging and degrades image quality. When CT images are used for attenuation correction, the presence of metal results in over attenuation of PET activity in this region and can result in artifactual ‘hot spots.’ Metal prostheses, dental fillings, indwelling ports and breast expanders and sometimes contrast media are common causes of streak artifact secondary to high photon absorption and can cause attenuation correction artifacts [9]. In order to avoid false positives, particularly when imaging metallic implants careful attenuation should be paid to the nonattenuation corrected images, which do not produce this artifact.

Sites of physiological FDG uptake

Physiological uptake in a number of organs is readily recognized and rarely confused with malignancy. These include cerebral tissue, the urinary system, liver and spleen. Approximately 20% of administered activity is renally excreted in the 2 h post-injection resulting in intense radiotracer activity in the renal collecting systems, ureters and bladder [13]. In order to minimize the intensity of renal activity, patients are advised to void prior to imaging. Moderate physiological FDG uptake is noted in the liver, spleen, GI tract and salivary glands. Uptake in the cecum and right colon tends to be higher than in the remainder of the colon due to the presence of glucose-avid lymphocytes [14].

Other sites of physiological FDG activity can be confused with malignancy. Examples include activity within brown fat, adrenal activity, uterus and ovaries.

Brown fat

FDG uptake in hyper-metabolic brown adipose tissue is well recognized as a potential source of false positive in 18F-FDG PET-CT imaging. The incidence of FDG uptake in brown fat has been reported as between 2.5–4% [1516].

Hypermetabolic brown fat is more commonly identified in children than in adults and is more prevalent in females than in males. It occurs more frequently in patients with low body mass index and in cold weather [15].

Glucose accumulation within brown fat is increased by sympathetic stimulation as brown fat is innervated by the sympathetic nervous system. In view of this, administration of oral propranolol is advised by some authors as it has been shown to reduce the uptake of FDG by brown fat [17]. This is not performed at our institution; however, attempts are made to reduce FDG uptake in brown fat by maintaining a warm ambient temperature and providing patients with blankets during the uptake phase.

The typical distribution of brown fat in a bilateral symmetric pattern in the supraclavicular and neck regions is rarely confused with malignancy. In cases where hypermetabolic brown fat is seen to surround lymph nodes, the CT images should be separately evaluated to allow morphological assessment of the lymph nodes. The classical CT features of pathological replacement of lymph nodes should be sought, namely increased short axis diameter, loss of the fatty hilum and loss of the normal concavity of the lymph node. If the morphology of the lymph node is entirely normal, malignancy can be confidently excluded and the increased uptake attributed to brown fat [18].

Atypical brown fat in the mediastinum can be misinterpreted as nodal metastases and has been identified in the paratracheal, paraoesophageal, prevascular regions, along the pericardium and in the interatrial septum. Extramediastinal sites of brown fat uptake include the paravertebral regions, perinephric, perihepatic and subdiaphragmatic regions and in the intraatrial septum [16].

The absence of an anatomical lesion on CT imaging in areas of FDG uptake should raise the possibility of brown fat to the reader. Careful evaluation of the CT images must be performed to confirm the presence of adipose tissue in the anatomical region correlating to the increased FDG activity on 18F-FDG PET before this activity be attributed to brown fat.

An awareness of the possibility of brown fat in atypical locations is vital to avoid overstaging, and correlation with CT imaging increases reader confidence in differentiating brown fat from malignancy (Fig. 4).

f4

Fig. 4

18F-FDG PET-CT surveillance scan performed in a 36-year-old male with a history of seminoma. Symmetrical uptake is noted in the neck, supraclavicular fossa and paravertebral regions consistent with typical appearance of brown fat activity (black arrow). Brown fat uptake is also seen in the left supradiaphragmatic region and left paraoesophageal region (yellow arrow) (a). 18F-FDG PET-CT performed in a 48-year-old male with a history of colorectal cancer. Increased FDG uptake is noted within brown fat associated with lipomatous hypertrophy of the intra-atrial septum (b)

Uterine and ovarian uptake

In premenopausal women endometrial uptake of FDG varies cyclically and is increased both at ovulation and during the menstrual phase of the cycle with mean SUV values of 3.5–5 [19]. Endometrial uptake in postmenopausal women is abnormal and warrants further investigation; however benign explanations for increased FDG uptake include recent curettage, uterine fibroids and endometrial polyps [19].

Benign ovarian uptake of FDG in premenopausal women can be associated with ovulation. In postmenopausal women, ovarian uptake of FDG should be further investigated (Fig. 5).

f5

Fig. 5

18F-FDG PET-CT performed in a 42-year-old premenopausal female with breast cancer. She was scanned during menstruation. FDG uptake is noted within metastatic right axillary nodes (black arrow). Increased FDG uptake is also noted within the endometrial canal of the uterus (yellow arrow), which is thickened on CT, consistent with active menstruation (a). 18F-FDG PET-CT performed in the same 42-year-old woman at a different stage in her menstrual cycle showing resolution of the previously identified uterine uptake (yellow arrow) (b)

Adrenal uptake

18F-FDG PET imaging is commonly used for evaluation of adrenal masses in patients with diagnosed malignancies. Similarly incidental adrenal lesions are commonly identified on staging 18F-FDG PET-CT imaging. The positive predictive value of 18F-FDG PET-CT evaluation of adrenal lesions has been reported as high as 95% with a similarly high negative predictive value of 94% [20].

Causes of false-positive adrenal lesions include angiomyolipoma, adrenal hyperplasia and adrenal adenomas (up to 5%) [2124]. FDG activity greater than that of the liver is generally associated with malignancy; however benign lesions have been reported with greater activity than liver [21].

Evaluation of the CT component can provide additional diagnostic information with identification of HU attenuation values of <10 on noncontrast CT for adrenal adenomas or fat-containing myelolipomata [21].

Symmetrical intense FDG activity with no identifiable abnormality on CT is associated with benign physiological FDG uptake (Fig. 6).

f6 f6-b

Fig. 6

18F-FDG PET-CT performed in a 50-year-old woman with inflammatory breast cancer. Diffuse increased FDG uptake is noted within the right breast (yellow arrow) and in a right axillary node (black arrow), consistent with malignancy (a). Increased symmetrical uptake is also noted within both adrenal glands with no abnormal correlate on CT (yellow arrow) (b). Post-chemotherapy PET-CT performed 5 months later demonstrates resolution of the activity within the breast, increased uptake in the bone marrow consistent with post treatment effect (black arrow) and persistent increased uptake in the adrenal glands (yellow arrow), confirming benign physiological activity (c)

Thyroid uptake

Thyroid uptake is incidentally identified on 18F-FDG PET imaging with a frequency of almost 4%, with a diffuse uptake pattern in roughly half of cases and a focal pattern in the remainder [22]. The majority of diffuse uptake represents chronic thyroiditis, multinodular goiter or Graves’ disease, whereas focal uptake is associated with a risk of malignancy that ranges from 30.9–63.6% in published studies [2223]. Focal thyroid uptake requires further investigation with ultrasound and tissue biopsy.

Uptake in the gastrointestinal tract

The pattern of physiological uptake within the GI tract is highly variable. Low-grade linear uptake is likely related to smooth muscle activity and swallowed secretions. More focal increased uptake in the distal esophagus is sometimes seen with Barrett’s esophagus. In view of this, referral for OGD may be reasonable in cases of increased uptake in the distal esophagus [1424].

The typical pattern of FDG uptake in the stomach is of low-grade activity in a J-shaped configuration. Small bowel typically demonstrates mild heterogeneous uptake throughout. Common pitfalls of small bowel evaluation relate to spuriously high uptake in underdistened or overlapping loops of bowel [1425].

Within the colon, FDG uptake is highly variable, however can be quite avid particularly in the cecum, right colon and rectosigmoid regions. Focal areas of FDG activity within the colon that are of greater intensity than background liver uptake should raise the suspicion of a colonic neoplasm (Fig. 7) [2526].

f7

Fig. 7

18F-FDG PET-CT restaging scan performed in a 65-year-old female with a history of breast cancer. Incidental focal uptake is identified in the ascending colon where some abnormal thickening is seen on the CT component (yellow arrow). Colonoscopy confirmed the presence of a T3 adenocarcinoma

In a review of over 3,000 patients’ focal areas of abnormal FDG uptake within the gastrointestinal tract (GIT) were identified in 3% of cases of staging 18F-FDG PET-CT studies.

Incidental malignant lesions were identified in 19% of these patients with pre-malignant lesions including adenomas in 42% of the patients [27]. In view of this endoscopy referral is recommended in the absence of a clear benign correlate for focal areas of avid uptake on CT imaging.

Treatment-related causes of false-positive uptake

There are a number of conditions that can occur in patients undergoing treatment for cancer. When imaging these patients to assess for response, we often see these treatment-related conditions. It is important to recognize the imaging features to avoid misdiagnosis.

Thymus/thymic hyperplasia

Thymic hyperplasia post-chemotherapy is a well-described phenomenon. It is generally seen in children and young adults at a median of 12 months post chemotherapy [28]. The presence of increased FDG uptake in the anterior mediastinum can be attributed to thymic hyperplasia by identification of a triangular soft tissue density seen retrosternally on CT with a characteristic bilobed anatomical appearance [29]. In the presence of thymic hyperplasia, there is generally preservation of the normal shape of the gland despite an increase in size [30].

Superior mediastinal extension of thymic tissue is an anatomical variant that has been described in children and young adults (Fig. 8).

f8

Fig. 8

A 3.5-year-old boy with abdominal Burkitt’s lymphoma. Coronal 18F-FDG PET scan obtained 5 months after completion of treatment shows increased activity in the thymus in an inverted V configuration and in superior thymic extension (white arrow). Note physiologic activity within the right neck in the sternocleidomastoid muscle (a). Axial CT image from the same 18F-FDG PET-CT study performed 5 months after treatment shows a nodule (white arrow) anteromedial to the left brachiocephalic vein (b). Axial fusion image shows that the FDG activity in the superior mediastinum corresponds to this enlarged nodule anteromedial to left brachiocephalic vein (white arrow) (c). Axial fusion image shows increased activity in an enlarged thymus consistent with thymic hyperplasia (white arrow; standardized uptake value 3.0) of similar intensity to activity in superior mediastinum (d)

It presents as a soft tissue nodule anteromedial to the left brachiocephalic vein and represents a remnant of thymic tissue along the path of migration in fetal life. In patients with thymic hyperplasia, a superior mediastinal nodule in this location may represent accessory thymic tissue. An awareness of this physiological variant is necessary to prevent misdiagnosis [28].

G-CSF changes

Granulocyte colony-stimulating factor is a glycoprotein hormone that regulates proliferation and differentiation of granulocyte precursors. It is used to accelerate recovery from chemotherapy-related neutropaenia in cancer patients. Intense increased FDG uptake is commonly observed in the bone marrow and spleen following GCSF therapy; however the bone marrow response to GCSF can be differentiated from pathological infiltration by its intense homogeneous nature without focally increased areas of FDG uptake. Increased FDG uptake attributable to GCSF uptake rapidly decreases following completion of therapy and generally resolves within a month (Fig. 9).

f9

Fig. 9

18F-FDG PET-CT performed in a 46-year-old male post four cycles of chemotherapy for lymphoma and 2 weeks post administration of G-CSF. Note the diffuse homogeneous increased uptake throughout the bone marrow and the increased uptake in the spleen (yellow arrow)

Marked uptake in the bone marrow can also be seen following chemotherapy, reflecting marrow activation [3132].

Radiation pneumonitis

Inflammatory morphological changes in the radiation field post-irradiation of primary or metastatic lung tumor can result in false-positive diagnosis. Radiation pneumonitis typically occurs following high doses of external beam radiotherapy (>40 Gy). In the acute phase (1–8 weeks) radiation pneumonitis is characterized by ground-glass opacities and patchy consolidation. This can commonly lead to a misdiagnosis of infection. Chronic CT appearances of fibrosis and traction bronchiectasis in the radiation field allow correct interpretation of increased FDG uptake as radiation pneumonitis as opposed to disease recurrence [3334]. Other organs are also sensitive to radiation, and persistent uptake due to inflammatory change can persist for up to 1 year. It is important to elicit a history of radiation from the patient and to correlate the increased uptake with the CT findings to avoid missing a disease recurrence (Fig. 10).

f 10

Fig. 10

18F18-FDG PET-CT performed in a 52-year-old male with newly diagnosed esophageal carcinoma. Increased FDG uptake is identified within the esophagus (black arrow) and an upper abdominal lymph node (yellow arrow), consistent with malignancy (a). 18F18-FDG PET-CT performed 6 weeks post-completion of radiotherapy for esophageal carcinoma. Linear increased uptake is identified along the mediastinum in the radiation port (black arrow). This corresponds to areas of ground-glass change on CT (yellow arrow) consistent with acute radiation change (b)

Infection

Bone marrow suppression places chemotherapy patients at increased risk of infection.

Inflammatory cells such as neutrophils and activated macrophages at the site of infection or inflammation actively accumulate FDG [35].

In the post-therapy setting it has been reported that up to 40% of FDG uptake occurs in non-tumor tissue [12]. Infection is one of the most common causes of false-positive 18F-FDG PET-CT findings post-chemotherapy. Chemotherapy patients are susceptible to a wide variety of infections, including upper respiratory chest infections, pneumonia, colitis and cholecystitis. Reactivation of tuberculous infection can occur in immunocompromised patients post,chemotherapy, and correlation with CT imaging can prevent misdiagnosis in suspected cases.

Atypical infections such as cryptococcosis and pneumocystis can also present as false-positives on FDG imaging (Fig. 11) [36].

f 11

Fig. 11

18F-FDG PET-CT performed in a 57-year-old male 2 weeks following chemotherapy for lung cancer. Increased FDG uptake is noted within the cecum (black arrow). On CT there is some thickening of the cecal wall and stranding of the pericecal fat (yellow arrow) consistent with typhilits

Surgery and radiotherapy

There are inherent challenges in the interpretation of 18F-FDG PET-CT imaging in the postoperative patient. Non-tumor-related uptake of FDG is frequently identified in post-operative wound sites, at colostomy sites or at the site of post-radiation inflammatory change. 18F-FDG PET-CT imaging during the early postoperative/post-radiotherapy period may result in overstaging of patients because of non-neoplastic uptake of FDG [12]. Careful evaluation of the CT component in this setting is vital as CT imaging can provide valuable additional information regarding benign inflammatory conditions commonly encountered in the postoperative setting such as abscesses or wound infection. These conditions are often readily apparent on CT, particularly when oral and/or IV contrast CT is administered.

The reader should also bear in mind that avid uptake of FDG at postoperative/post radiotherapy sites may mask malignant FDG uptake in neighboring structures. In order to minimize non-tumoral uptake of FDG, it is advisable to allow at least 6 weeks post-surgery or completion of radiotherapy prior to performing staging 18F-FDG PET-CT [24].

Talc pleurodesis

Talc pleurodesis is a commonly performed procedure for the treatment of persistent pneumothorax or pleural effusion. The fibrotic/inflammatory reaction results in increased FDG uptake on 18F-FDG PET imaging with corresponding high-density areas of pleural thickening on CT. SUV values of between 2–16.3 have been seen years after the procedure [37].

When increased FDG uptake is indentified in the pleural space in a patient with a known history of pleurodesis, correlation with CT is recommended to detect pleural thickening of increased attenuation that suggests talc rather than tumor.

It is extremely important that a comprehensive history with relevant surgical interventions is available to the reader in order to ensure accurate diagnosis and staging (Fig. 12).

f 12

Fig. 12

18F-FDG PET-CT performed in a 69-year-old male with a history of non-Hodgkin’s lymphoma. The patient had a previous talc pleurodesis for a persistent left pleural effusion. Increased FDG activity is identified within the left pleura (black arrow). CT demonstrates a pleural effusion with high density material along the left pleural surface consistent with talc (yellow arrow)

Flare phenomenon

Bone healing is mediated by osteoblasts, and an early increase in osteoblast activity on successful treatment of metastatic disease has been described [38]. “Bone flare” refers to a disproportionate increase in bone lesion activity on isotope bone scan despite evidence of a therapeutic response to treatment in other lesions and has been well described in breast, prostate and lung tumors. ‘Flare phenomenon’ has also been described on 18F-FDG PET-CT in patients with lung and breast cancer who are receiving chemotherapy [39].

Differentiating between increased FDG uptake due to flare response and true disease progression may not be possible in the early post-treatment studies. While it is recognized that bone flare is a rare phenomenon, an increase in baseline skeletal activity and appearance of new bone lesions despite apparent response or stable disease elsewhere should be interpreted with caution to avoid erroneously suggesting progressive disease.

Osteonecrosis

Osteonecrosis or avascular necrosis has been well described as a complication of combination chemotherapy treatment, especially where it includes intermittent high-dose corticosteroids (e.g., lymphoma patients) [40]. Commonly encountered sites include the hip and less frequently the proximal humerus. Occasionally we can see a discrete entity known as jaw osteonecrosis. Patients receiving IV bisphosphonates for the management of bone metastases are at an increased risk of developing this [41]. The development of osteonecrosis in the mandible is frequently preceded by tooth extraction. Radiographic findings that may be visualized on CT include osteosclerosis, dense woven bone, thickened lamina dura and sub-periosteal bone deposition [42]. FDG uptake can be seen in areas of osteonecrosis (Fig. 13).

f 13

Fig. 13

18F-FDG PET-CT performed in a 46-year-old gentleman with a history of non-Hodgkin’s lymphoma. Increased FDG uptake is identified in the right proximal humerus (black arrow). CT of the area demonstrates a corresponding vague area of sclerosis (yellow arrow). Biopsy of the area yielded osteonecrosis with no evidence of metastatic disease

Insufficiency fractures

Pelvic insufficiency fractures have been described following irradiation for gynecological, colorectal, anal and prostate cancer. They commonly occur within 3–12 months post-radiation treatment, and osteoporosis is often a precipitating factor. FDG uptake in insufficiency fractures ranges from mild and diffuse to intense and heterogeneous. The maximum SUV values are variable with reported values of between 2.4–7.2 [43]. Differentiating insufficiency fractures from bone metastases can prove challenging; however they are often bilateral and occur in characteristic locations within the radiation field—sacral ala, pubic rami and iliac bones. Biopsy of insufficiency fractures can lead to irreparable damage and so careful correlation of 18F-FDG PET imaging with the CT component along with radiation history is vital for correct diagnosis. CT allows evaluation of the bone cortex and adjacent soft tissues, which can confirm the diagnosis of a pathological fracture or a metastatic deposit.

Follow-up of suspected insufficiency fractures demonstrates a reduction in FDG uptake over time (Fig. 14) [43].

f 14

Fig. 14

18F-FDG PET-CT performed in a 46-year-old female, 3 years post-chemo-radiation for cervical carcinoma. Low grade FDG uptake is identified in the left acetabulum and right pubic bone (black arrow). CT demonstrates pathological fractures in these areas consistent with insufficiency fractures (yellow arrow)

Sarcoidosis

Sarcoidosis is a chronic multisystem disorder characterized by non-caseating granulomas and derangement of normal tissue architecture [36]. Sarcoidosis has been reported in association with a variety of malignancies either synchronously or post-chemotherapy. Aggregation of inflammatory cells post-chemotherapy is associated with accumulation of FDG, and the intensity of FDG uptake may correlate with disease activity [36].

When suspected disease recurrence presents with signs and symptoms compatible with sarcoidosis (i.e., mediastinal and bihilar lymphadenopathy), this must be excluded by clinical, radiological and pathological correlation to prevent mistreatment (Fig. 15).

f 15

Fig. 15

18F-FDG PET-CT performed in a 67-year-old male for restaging of laryngeal carcinoma. Increased FDG uptake is noted in the left lower neck and left mediastinum (black arrow). CT demonstrates lymphadenopathy in these areas (yellow arrow), some of which are calcified. Biopsy of the left lower neck node confirmed sarcoidosis

FDG-PET negative tumors

There are a number of malignancies that can be FDG-PET negative. Examples include bronchoalveolar carcinoma and carcinoid tumors in the lung, renal cell carcinomas and hepatomas, mucinous tumors of the GIT and colon, and low grade lymphomas [34448]. Careful evaluation of the CT component of the study however will prevent a misdiagnosis (Fig. 16).

f 16

Fig. 16

18F-FDG PET-CT performed in a 52-year-old female with breast cancer and chronic hepatitis. On the CT component a hyper-enhancing mass is identified in segment 4 of the liver (yellow arrow). No increased FDG activity is identified in this area on the PET component. Biopsy of the mass confirmed the diagnosis of a hepatocellular carcinoma

Osteoblastic metastases

Bone metastases are diagnosed in up to 85% of patients with advanced breast cancer, leading to significant morbidity and mortality. Sclerotic bone metastases are commonly associated with breast carcinoma [49].18F-FDG PET imaging is superior to nuclear bone scan in detection of osteolytic breast metastases; however it commonly fails to diagnose osteoblastic or sclerotic metastases [50]. Review of bony windows on CT imaging allows identification of sclerotic metastases and ensures accurate staging of metastatic bone disease (Fig. 17).

f 17

Fig. 17

Staging 18F-FDG PET-CT performed in a 45-year-old female with newly diagnosed breast cancer. CT demonstrates multiple small sclerotic foci in the spine and pelvis (yellow arrow), consistent with bony metastases. These are FDG negative on the PET component of the study

Discussion/conclusion

18F-FDG PET imaging has dramatically changed cancer staging, and findings of restaging studies commonly effect changes in treatment protocols. 18F-FDG however is not tumor specific. As interpreting physicians we need to be aware of these false positives and false negatives. In this review we have outlined atypical physiological sites of FDG uptake along with common causes of FDG uptake in benign pathological conditions, many of which are treatment related. With 18F-FDG PET-CT we have the advantage of two imaging modalities. The PET component gives us functional information and the CT, anatomical data. We have discussed the importance of dual-modality imaging and correlation with CT imaging of the above conditions. Furthermore CT imaging provides important diagnostic information in evaluation of tumors that poorly concentrate FDG. In light of the increased reliance of 18F-FDG PET-CT for cancer staging, it is vital that radiologists and nuclear medicine physicians be aware of pitfalls in 18F-FDG PET-CT imaging and correlate PET and CT components to avoid misdiagnosis, overstaging of disease and unnecessary biopsies.

Other research papers related to the use of 18F-PET in management of cancer were published on this Scientific Web site:

State of the art in oncologic imaging of Lymphoma.

State of the art in oncologic imaging of Colorectal cancers.

State of the art in oncologic imaging of Prostate.

State of the art in oncologic imaging of lungs.

State of the art in oncologic imaging of breast.

Whole-body imaging as cancer screening tool; answering an unmet clinical need?

 

References

1.

Pauwels EK, Ribeiro MJ, Stoot JH et al (1998) FDG accumulation and tumor biology. Nucl Med Biol 25:317–322PubMedCrossRef

2.

Wahl RL (1996) Targeting glucose transporters for tumor imaging: “sweet” idea, “sour” result. J Nucl Med 37(6):1038–1041PubMed

3.

Kim BT, Kim Y, Lee KS, Yoon SB, Cheon EM, Kwon OJ, Rhee CH, Han J, Shin MH (1998) Localized form of bronchioalveolar carcinoma: FDG PET findings. AJR 170(4):935–939PubMed

4.

Hoh CK, Hawkins RA, Glaspy JA, Dahlbom M, Tse NY, Hoffman EJ, Schiepers C, Choi Y, Rege S, Nitzsche E (1993) Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 17(4):582–589PubMedCrossRef

5.

Fenchel S, Grab D, Nuessle K, Kotzerke J, Rieber A, Kreienberg R, Brambs HJ, Reske SN (2002) Asymptomatic adnexal masses: correlation of FDG PET and histopathologic findings. Radiology 223(3):780–788PubMedCrossRef

6.

Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19(1):61–77, quiz 150–151PubMed

7.

Abouzied MM, Crawford ES, Nabi HA (2005) 18 F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33(3):145–155PubMed

8.

Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, Oyen WJ, Kotzerke J, Hoekstra OS, Pruim J, Marsden PK, Tatsch K, Hoekstra CJ, Visser EP, Arends B, Verzijlbergen FJ, Zijlstra JM, Comans EF, Lammertsma AA, Paans AM, Willemsen AT, Beyer T, Bockisch A, Schaefer-Prokop C, Delbeke D, Baum RP, Chiti A, Krause BJ (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37(1):181–200PubMedCrossRef

9.

Sureshbabu W, Mawlawi O (2005) PET/CT imaging artifacts. J Nucl Med Technol 33(3):156–161, quiz 163–164PubMed

10.

Lin E, Alavi A (2009) PET and PET/CT: A Clinical Guide: 2nd Edn. Thieme New York p 145

11.

Hany TF, Heuberger J, von Schulthess GK (2003) Iatrogenic FDG foci in the lungs: a pitfall of PET image interpretation. Eur Radiol 13(9):2122–2127, Epub 2002 Oct 17PubMedCrossRef

12.

Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA (2005) FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 25(1):191–207PubMedCrossRef

13.

Swanson DP, Chilton HM, Thrall JH (1990) Pharmaceuticals in medical imaging. Macmillan, New York

14.

Prabhakar HB, Sahani DV, Fischman AJ, Mueller PR, Blake MA (2007) Bowel hot spots at PET-CT. Radiographics 27(1):145–159PubMedCrossRef

15.

Yeung HW, Grewal RK, Gonen M, Schöder H, Larson SM (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 44(11):1789–1796PubMed

16.

Truong MT, Erasmus JJ, Munden RF, Marom EM, Sabloff BS, Gladish GW, Podoloff DA, Macapinlac HA (2004) Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. Am J Roentgenol 183(4):1127–1132

17.

Söderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34(7):1018–1022PubMedCrossRef

18.

Sumi M, Ohki M, Nakamura T (2001) Comparison of sonography and CT for differentiating benign from malignant cervical lymph nodes in patients with squamous cell carcinoma of the head and neck. AJR 176(4):1019–1024PubMed

19.

Lerman H, Metser U, Grisaru D, Fishman A, Lievshitz G, Even-Sapir E (2004) Normal and abnormal 18 F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med 45(2):266–271PubMed

20.

Lu Y, Xie D, Huang W, Gong H, Yu J (2010) 18 F-FDG PET/CT in the evaluation of adrenal masses in lung cancer patients. Neoplasma 57(2):129–134PubMedCrossRef

21.

Boland GW, Blake MA, Holalkere NS, Hahn PF (2009) PET/CT for the characterization of adrenal masses in patients with cancer: qualitative versus quantitative accuracy in 150 consecutive patients. AJR Am J Roentgenol 192(4):956–962PubMedCrossRef

22.

Chen W, Parsons M, Torigian DA, Zhuang H, Alavi A (2009) Evaluation of thyroid FDG uptake incidentally identified on FDG-PET/CT imaging. Nucl Med Commun 30(3):240–244PubMedCrossRef

23.

Choi JY, Lee KS, Kim HJ, Shim YM, Kwon OJ, Park K, Baek CH, Chung JH, Lee KH, Kim BT (2006) Focal thyroid lesions incidentally identified by integrated 18 F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 47(4):609–615PubMed

24.

Blake MA, Slattery J, Sahani DV, Kalra MK (2005) Practical issues in abdominal PET/CT. Appl Radiol 34(11):8–18

25.

Kei PL, Vikram R, Yeung HW, Stroehlein JR, Macapinlac HA (2010) Incidental finding of focal FDG uptake in the bowel during PET/CT: CT features and correlation with histopathologic results. AJR Am J Roentgenol 194(5):W401–W406PubMedCrossRef

26.

Pandit-Taskar N, Schöder H, Gonen M, Larson SM, Yeung HW (2004) Clinical significance of unexplained abnormal focal FDG uptake in the abdomen during whole-body PET. AJR Am J Roentgenol 183(4):1143–1147PubMed

27.

Kamel EM, Thumshirn M, Truninger K, Schiesser M, Fried M, Padberg B, Schneiter D, Stoeckli SJ, von Schulthess GK, Stumpe KD (2004) Significance of incidental 18 F-FDG accumulations in the gastrointestinal tract in PET/CT: correlation with endoscopic and histopathologic results. J Nucl Med 45(11):1804–1810PubMed

28.

Smith CS, Schöder H, Yeung HW (2007) Thymic extension in the superior mediastinum in patients with thymic hyperplasia: potential cause of false-positive findings on 18 F-FDG PET/CT. AJR Am J Roentgenol 188(6):1716–1721PubMedCrossRef

29.

Ferdinand B, Gupta P, Kramer EL (2004) Spectrum of thymic uptake at 18 F-FDG PET. Radiographics 24(6):1611–1616PubMedCrossRef

30.

Baron RL, Lee JK, Sagel SS, Levitt RG (1982) Computed tomography of the abnormal thymus. Radiology 142(1):127–134PubMed

31.

Hollinger EF, Alibazoglu H, Ali A, Green A, Lamonica G (1998) Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 23(2):93–98PubMedCrossRef

32.

Kazama T, Swanston N, Podoloff DA, Macapinlac HA (2005) Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32(12):1406–1411PubMedCrossRef

33.

Claude L, Pérol D, Ginestet C, Falchero L, Arpin D, Vincent M, Martel I, Hominal S, Cordier JF, Carrie C (2004) A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 71(2):175–181PubMedCrossRef

34.

Frank A, Lefkowitz D, Jaeger S, Gobar L, Sunderland J, Gupta N, Scott W, Mailliard J, Lynch H, Bishop J et al (1995) Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 32(5):1495–1512PubMedCrossRef

35.

Love C, Tomas MB, Tronco GG, Palestro CJ (2005) FDG PET of infection and inflammation. Radiographics 25(5):1357–1368PubMedCrossRef

36.

Chang JM, Lee HJ, Goo JM, Lee HY, Lee JJ, Chung JK, Im JG (2006) False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 7(1):57–69PubMedCrossRef

37.

Kwek BH, Aquino SL, Fischman AJ (2004) Fluorodeoxyglucose positron emission tomography and CT after talc pleurodesis. Chest 125(6):2356–2360PubMedCrossRef

38.

Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29(8):1354–1359PubMed

39.

Krupitskaya Y, Eslamy HK, Nguyen DD, Kumar A, Wakelee HA (2009) Osteoblastic Bone Flare on F18-FDG PET in Non-small Cell Lung Cancer (NSCLC) Patients Receiving Bevacizumab in addition to standard Chemotherapy. J Thorac Oncol 4(3):429–431PubMedCrossRef

40.

Talamo G, Angtuaco E, Walker RC, Dong L, Miceli MH, Zangari M, Tricot G, Barlogie B, Anaissie E (2005) Avascular necrosis of femoral and/or humeral heads in multiple myeloma: results of a prospective study of patients treated with dexamethasone-based regimens and high-dose chemotherapy. J Clin Oncol 23(22):5217–5223PubMedCrossRef

41.

Catalano L, Del Vecchio S, Petruzziello F, Fonti R, Salvatore B, Martorelli C, Califano C, Caparrotti G, Segreto S, Pace L, Rotoli B (2007) Sestamibi and FDG-PET scans to support diagnosis of jaw osteonecrosis. Ann Hematol 86(6):415–423PubMedCrossRef

42.

Arce K, Assael LA, Weissman JL, Markiewicz MR (2009) MR imaging findings in bisphosphonate-related osteonecrosis of jaws. J Oral Maxillofac Surg 67(5 Suppl):75–84PubMedCrossRef

43.

Oh D, Huh SJ, Lee SJ, Kwon JW (2009) Variation in FDG uptake on PET in patients with radiation-induced pelvic insufficiency fractures: a review of 10 cases. Ann Nucl Med 23(6):511–516PubMedCrossRef

44.

Erasmus JJ, McAdams HP, Patz EF Jr, Coleman RE, Ahuja V, Goodman PC (1998) Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol 170(5):1369–1373PubMed

45.

Kang DE, White RL Jr, Zuger JH, Sasser HC, Teigland CM (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171(5):1806–1809PubMedCrossRef

46.

Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, Collins BT, Di Bisceglie AM (2000) Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 32(5):792–797PubMedCrossRef

47.

Berger KL, Nicholson SA, Dehdashti F, Siegel BA (2000) FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am J Roentgenol 174(4):1005–1008PubMed

48.

Jerusalem G, Beguin Y, Najjar F, Hustinx R, Fassotte MF, Rigo P, Fillet G (2001) Positron emission tomography (PET) with 18 F-fluorodeoxyglucose (18 F-FDG) for the staging of low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol 12(6):825–830PubMedCrossRef

49.

Tateishi U, Gamez C, Dawood S, Yeung HW, Cristofanilli M, Macapinlac HA (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology 247(1):189–196PubMedCrossRef

50.

Huyge V, Garcia C, Vanderstappen A, Alexiou J, Gil T, Flamen P (2009) Progressive osteoblastic bone metastases in breast cancer negative on FDG-PET. Clin Nucl Med 34(7):417–420PubMedCrossRef

Read Full Post »


State of the art in oncologic imaging of breast.

Author-Writer: Dror Nir, PhD

In the coming posts I will address the state of the art in oncologic imaging based on a review paper; Advances in oncologic imaging that provides updates on the latest approaches to imaging of 5 common cancers: breast, lung, prostate, colorectal cancers, and lymphoma. This paper is published at CA Cancer J Clin 2012. © 2012 American Cancer Society.

The paper gives a fair description of the use of imaging in interventional oncology based on literature review of more than 200 peer-reviewed publications.

In this post I summaries the chapter on breast cancer imaging.

Breast Cancer Imaging

As a start the authors describes the evolution in the ACS imaging guidelines for breast cancer screening. Most interesting to learn is how age limits are changing. The most recent: “In 2010, the Society of Breast Imaging and the Breast Imaging Commission of the ACS issued recommendations for breast cancer screening to provide guidance in light of the controversies and emerging technologies.5 These recommendations were based on multiple prospective randomized trials as well as population-based experience.

Recommendations for screening with non-mammographic imaging are based not on evidence showing mortality reduction but largely on surrogate indicators, i.e., tumor size and nodal status, suggesting improved survival compared with women who are not screened.” I have referred to these guidelines in my recent post: Not applying evidence-based medicine drives up the costs of screening for breast-cancer in the USA.

As long as imaging interpretation is based mainly on observations related to lesion morphology:

“The imaging characteristics of malignant lesions are nonspecific and usually do not allow a definitive diagnosis. When a biopsy is recommended based on mammography, it has a 25% to 45% likelihood of resulting in a diagnosis of carcinoma.11 Similar positive predictive values are reported for biopsies recommended based on MRI.”

It is worthwhile noting that these results do not reflect purely the specificity of the imaging device but rather the specificity of the whole workflow; i.e imaging, biopsy and histopathology. All imaging techniques have false negatives: Mammography screening of general population misses approximately 20% of the cancers. This rate increases as breast density increases. MRI is not applied to general population. When applied to highly suspicious cases MRI misses ~10% of the invasive cancers. Although ultrasound has proven to be useful in detecting cancer especially in women with dense breasts: Automated Breast Ultrasound System (‘ABUS’) for full breast scanning: The beginning of structuring a solution for an acute need! Based on the literature reviewed by the authors of this paper they do not recommend routine sonography for these women.

For women with locally advanced breast cancer (Fig. 2) who undergo neoadjuvant therapy before breast surgery, the authors recommends post-treatment staging using MRI, which has been found to predict complete response with sensitivity above 60% and specificity as high as 90%.26

A 27-year-old female with locally advanced poorly differentiated invasive ductal carcinoma underwent evaluation of extent of disease before starting neoadjuvant chemotherapy. Sagittal fat-suppressed T1-weighted postcontrast MR images demonstrate an almost 6-cm heterogeneously enhancing mass (A) involving the skin of the lower breast (arrow) with (B) right axillary (arrow) and (C) right internal mammary adenopathy (arrow).

A 27-year-old female with locally advanced poorly differentiated invasive ductal carcinoma underwent evaluation of extent of disease before starting neoadjuvant chemotherapy. Sagittal fat-suppressed T1-weighted postcontrast MR images demonstrate an almost 6-cm heterogeneously enhancing mass (A) involving the skin of the lower breast (arrow) with (B) right axillary (arrow) and (C) right internal mammary adenopathy (arrow).

Same is recommended for women who have undergone lumpectomy if the surgical margins are positive. As post therapy follow-up, a new baseline mammogram of the treated breast is recommended followed by annual mammography.

In regards to emerging technology the following are discussed: Mammographic tomosynthesis – see also Improving Mammography-based imaging for better treatment planning

Contrast-enhanced digital mammography – “involves the injection of iodinated contrast material, as is done for computed tomography (CT); this enables hypervascular lesions to be seen with modified mammography technology, potentially providing the same information obtained through MRI. Little has been published on the clinical application of this technology, but diagnostic accuracy better than that of mammography and approaching that of MRI has been reported.3132

MR choline spectroscopy – has been shown to improve the positive predictive value of breast MRI and may be useful in reducing the number of lesions that require biopsy (Fig. 4).33 Studies of spectroscopy have reported sensitivities of 70% to 100% and specificities of 67% to 100% in the detection of breast cancer. Decreasing choline concentrations may also be a useful indication of tumor response to treatment before any change in tumor volume can be detected.3435 Technical factors have limited the use of spectroscopy to lesions 1 cm in size or larger.”

Sagittal fat-suppressed T1-weighted postcontrast MR image is shown (A) of the right breast of a 48-year-old female who was status post–contralateral mastectomy for DCIS with the spectroscopy voxel placed over an enhancing mass (arrow). The magnified spectrum (B) demonstrated no choline peak. Biopsy yielded fibroadenoma.

Sagittal fat-suppressed T1-weighted postcontrast MR image is shown (A) of the right breast of a 48-year-old female who was status post–contralateral mastectomy for DCIS with the spectroscopy voxel placed over an enhancing mass (arrow). The magnified spectrum (B) demonstrated no choline peak. Biopsy yielded fibroadenoma.

Diffusion-weighted MRI (DW-MRI) – “adding DW-MRI data to other imaging characteristics of lesions on breast MRI may increase the positive predictive value of the examination, in turn decreasing the number of benign lesions requiring biopsy for diagnosis.” See also Imaging: seeing or imagining? (Part 2).

Axial T1-weighted fat-suppressed postcontrast MR image is shown (A) of the left breast of a 42-year-old female with biopsy-proven contralateral cancer undergoing evaluation of disease extent. An enhancing mass (arrow) was seen in the left breast. This mass (arrow) was also demonstrated on the axial diffusion-weighted MR image (B). Biopsy yielded fibroadenoma with atypical ductal hyperplasia and lobular carcinoma in situ.

Axial T1-weighted fat-suppressed postcontrast MR image is shown (A) of the left breast of a 42-year-old female with biopsy-proven contralateral cancer undergoing evaluation of disease extent. An enhancing mass (arrow) was seen in the left breast. This mass (arrow) was also demonstrated on the axial diffusion-weighted MR image (B). Biopsy yielded fibroadenoma with atypical ductal hyperplasia and lobular carcinoma in situ.

Ultrasound-elastography – “Ultrasound elastography has been reported to differentiate benign from malignant breast lesions with sensitivities of 78% to 100% and specificities of 21% to 98%.39 When added to other US techniques, it may improve radiologists’ performance in distinguishing malignant breast lesions.”

Positron emission tomography (PET) – “alone or combined with CT, allows noninvasive, quantitative assessment of biochemical and functional processes at the molecular level in the body. It is most often performed with the radiolabeled glucose analogue [18F] fluorodeoxyglucose ([18F]FDG) to detect the elevated glucose metabolism that is a hallmark of cancer. In breast cancer, its utility depends on the pretest probability for advanced disease, and thus the clinical stage.” The authors found that the use of [18F] FDG PET to patients with stage I and II disease is “limited”. Specifically, they claim that it is not sufficiently accurate for axillary nodal staging in this subset of patients.40 The did find enough evidence to recommend the use of FDG PET in patients with advanced disease: “where it accurately defines disease extent,41 and frequently eliminates the need for other imaging tests, and provides an early readout of treatment response as well as prognostic information.”

Combined PET/MRI is mentioned as a promising technology for predicting response to therapy “but this remains to be proven”.

Positron emission mammography (PEM) – “adapts full-body PET imaging to the breast. In a multicenter study, the interpretation of PEM in conjunction with mammographic and clinical findings yielded a sensitivity of 91% and a specificity of 93% for breast cancer.47 “. However, the authors mention that its use for screening (applying to healthy women) has been criticized because of the need to administer a radioactive tracer.

Lung Cancer Imaging

To be followed…

Other research papers related to the management of breast cancer were published on this Scientific Web site:

The unfortunate ending of the Tower of Babel construction project and its effect on modern imaging-based cancer patients’ management

 Automated Breast Ultrasound System (‘ABUS’) for full breast scanning: The beginning of structuring a solution for an acute need!

Introducing smart-imaging into radiologists’ daily practice.

Will Bio-Tech make Medical Imaging redundant?

Improving Mammography-based imaging for better treatment planning

Not applying evidence-based medicine drives up the costs of screening for breast-cancer in the USA.

New Imaging device bears a promise for better quality control of breast-cancer lumpectomies – considering the cost impact

Harnessing Personalized Medicine for Cancer Management, Prospects of Prevention and Cure: Opinions of Cancer Scientific Leaders @ http://pharmaceuticalintelligence.com

Predicting Tumor Response, Progression, and Time to Recurrence

“The Molecular pathology of Breast Cancer Progression”

Personalized medicine gearing up to tackle cancer

Whole-body imaging as cancer screening tool; answering an unmet clinical need?

What could transform an underdog into a winner?

Mechanism involved in Breast Cancer Cell Growth: Function in Early Detection & Treatment

Nanotech Therapy for Breast Cancer

A Strategy to Handle the Most Aggressive Breast Cancer: Triple-negative Tumors

Optical Coherent Tomography – emerging technology in cancer patient management

Breakthrough Technique Images Breast Tumors in 3-D With Great Clarity, Reduced Radiation

Closing the Mammography gap

Imaging: seeing or imagining? (Part 1)

Imaging: seeing or imagining? (Part 2)

 

Read Full Post »