Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
SNU-BioTalk 2025: Symphony of Cellular Signals in Metabolism and Immune Response – International Conference at Sister Nivedita University, Kolkata, India on 16 & 17 January 2025
Joint Convenor: Dr. Sudipta Saha (Member of LPBI since 2012)
About the Conference:
The International Conference on ‘Symphony of Cellular Signals in Metabolism and Immune Response’ focuses on the complex signalling pathways governing cellular functions in health and disease. It will explore the cellular mechanisms that regulate metabolism, immune responses, and survival, highlighting advances in medical science and biotechnology. Bringing together leading experts and emerging researchers, the conference will feature keynote lectures, panel discussions, research presentations, and interactive sessions, all designed to foster collaboration and innovation. By promoting an exchange of ideas, the event aims to drive transformative insights and solutions that impact human health and sustainable healthcare practices.
The conference will also be livestreamed on YouTube and Facebook
This programme will also host I-STEM: Indian Science, Technology and Engineering facilities Map (I-STEM) is a dynamic and interactive national portal for research cooperation.
Thrust areas:
Intracellular signalling processes of cellular metabolism
Signalling pathways in physiological and pathological processes
Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use
In this curation we wish to present two breaking through goals:
Goal 1:
Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer
Goal 2:
Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.
According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.
These eight subcellular pathologies can’t be measured at present time.
In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.
Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases
Glycation
Oxidative Stress
Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
Membrane instability
Inflammation in the gut [mucin layer and tight junctions]
Epigenetics/Methylation
Autophagy [AMPKbeta1 improvement in health span]
Diseases that are not Diseases: no drugs for them, only diet modification will help
Image source
Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease
These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:
Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL
In the Bioelecronics domain we are inspired by the work of the following three research sources:
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC
PENDING
THE VOICE of Stephen J. Williams, PhD
Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes
25% of US children have fatty liver
Type II diabetes can be manifested from fatty live with 151 million people worldwide affected moving up to 568 million in 7 years
A common myth is diabetes due to overweight condition driving the metabolic disease
There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
Thirty percent of ‘obese’ people just have high subcutaneous fat. the visceral fat is more problematic
there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects. Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
At any BMI some patients are insulin sensitive while some resistant
Visceral fat accumulation may be more due to chronic stress condition
Fructose can decrease liver mitochondrial function
A methionine and choline deficient diet can lead to rapid NASH development
Reporter: Danielle Smolyar, Research Assistant 3 – Text Analysis for 2.0 LPBI Group’s TNS #1 – 2020/2021 Academic Internship in Medical Test Analysis (MTA)
Recently, researchers have found many ways to manipulate and alter gene activity in specific cells. As a result of seeing this alteration, it has caused much development and progress in understanding cancer, brain function, and immunity.
IMAGE SOURCE: 3D-model of DNA. Credit: Michael Ströck/Wikimedia/ GNU Free Documentation Lic
Tissues and Organs are composed of cells that look the same but have different roles. For example, single-cell analysis allows us to research and test the cells within an organ or cancerous tumor. However, the single-cell study has its boundaries and limits in trying a more significant number of cells. This result is not an accurate data and analysis of the cells.
Mulqueen, R. M., Pokholok, D., O’Connell, B. L., Thornton, C. A., Zhang, F., O’Roak, B. J., Link, J., Yardımcı, G. G., Sears, R. C., Steemers, F. J., & Adey, A. C. (2021, July 5). High-content single-cell combinatorial indexing. Nature News. https://www.nature.com/articles/s41587-021-00962-z
states that the new method gives us the ability to have a ten-fold improvement in the amount of DNA produced from a single DNA sequence. A DNA sequence is composed of units which are called bases. The sequence puts the bases in chronological order for it to code correctly.
To understand cancer better, single-cell studies are a crucial factor in doing so. Different cells catch on to other mutations in the DNA sequence in a cancerous tumor, which ultimately alters the DNA sequence. This results in tumor cells with new alterations, which could eventually spread to the rest of the body.
Adey and his team provided evidence that the method they had created can show DNA alterations that have come from cells present in tumor samples from patients with pancreatic cancer. Adey stated,
quote “For example, you can potentially identify rare cell subtypes within a tumor that are resistant to therapy.”
Abey and his team have been working with OHSU Knight Cancer Institute, and with them, they are testing a single-cell method to see if patients’ tumors have changed by doing chemo or drug therapy.
This new method allows itself to create DNA libraries and fragments of DNA that helps analyze the different genes and mutations within the sequence. This method uses something called an enzymatic reaction that attaches primers to the end of each DNA fragment. For the cells to be analyzed, each primer must be present on both ends of the fragment.
As a result of this new method, all library fragments present must-have primers on both ends of the fragments. At the same time, it improves efficiency by reducing its sequencing price overall, that these adapters can be used instead of the regular custom workflows.
4.1.2 The race to map the human body — one cell at a time, A host of detailed cell atlases could revolutionize understanding of cancer and other diseases
4.1.3 Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute
4.1.7 Norwich Single-Cell Symposium 2019, Earlham Institute, single-cell genomics technologies and their application in microbial, plant, animal and human health and disease, October 16-17, 2019, 10AM-5PM
4.2.1 How to build a human cell atlas – Aviv Regev is a maven of hard-core biological analyses. Now she is part of an effort to map every cell in the human body.
4.2.2 Featuring Computational and Systems Biology Program at Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute (SKI), The Dana Pe’er Lab
4.3.2 eProceedings 2019 Koch Institute Symposium – 18th Annual Cancer Research Symposium – Machine Learning and Cancer, June 14, 2019, 8:00 AM-5:00 PM ET MIT Kresge Auditorium, 48 Massachusetts Ave, Cambridge, MA
4.4.1 iBioChips integrate diagnostic assays and cellular engineering into miniaturized chips that achieve cutting-edge sensitivity and high-throughput. We have resolved traditional biotech challenges with innovative biochip approaches
4.4.2 Targeted Single-Cell Solutions for High Impact Applications – Mission Bio’s Tapestri® Platform is the only technology that provides single-cell targeted DNA sequencing at single-base resolution.