Feeds:
Posts
Comments

Archive for the ‘Calcium Signaling’ Category

Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle

Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle

Reporter: Stephen S Williams, PhD

Article ID #180: Metabolic Genomics and Pharmaceutics, Vol. 1 of BioMed Series D available on Amazon Kindle. Published on 8/15/2015

WordCloud Image Produced by Adam Tubman

Leaders in Pharmaceutical Business Intelligence would like to announce the First volume of their BioMedical E-Book Series D:

Metabolic Genomics & Pharmaceutics, Vol. I

SACHS FLYER 2014 Metabolomics SeriesDindividualred-page2

which is now available on Amazon Kindle at

http://www.amazon.com/dp/B012BB0ZF0.

This e-Book is a comprehensive review of recent Original Research on  METABOLOMICS and related opportunities for Targeted Therapy written by Experts, Authors, Writers. This is the first volume of the Series D: e-Books on BioMedicine – Metabolomics, Immunology, Infectious Diseases.  It is written for comprehension at the third year medical student level, or as a reference for licensing board exams, but it is also written for the education of a first time baccalaureate degree reader in the biological sciences.  Hopefully, it can be read with great interest by the undergraduate student who is undecided in the choice of a career. The results of Original Research are gaining value added for the e-Reader by the Methodology of Curation. The e-Book’s articles have been published on the Open Access Online Scientific Journal, since April 2012.  All new articles on this subject, will continue to be incorporated, as published with periodical updates.

We invite e-Readers to write an Article Reviews on Amazon for this e-Book on Amazon.

All forthcoming BioMed e-Book Titles can be viewed at:

http://pharmaceuticalintelligence.com/biomed-e-books/

Leaders in Pharmaceutical Business Intelligence, launched in April 2012 an Open Access Online Scientific Journal is a scientific, medical and business multi expert authoring environment in several domains of  life sciences, pharmaceutical, healthcare & medicine industries. The venture operates as an online scientific intellectual exchange at their website http://pharmaceuticalintelligence.com and for curation and reporting on frontiers in biomedical, biological sciences, healthcare economics, pharmacology, pharmaceuticals & medicine. In addition the venture publishes a Medical E-book Series available on Amazon’s Kindle platform.

Analyzing and sharing the vast and rapidly expanding volume of scientific knowledge has never been so crucial to innovation in the medical field. WE are addressing need of overcoming this scientific information overload by:

  • delivering curation and summary interpretations of latest findings and innovations on an open-access, Web 2.0 platform with future goals of providing primarily concept-driven search in the near future
  • providing a social platform for scientists and clinicians to enter into discussion using social media
  • compiling recent discoveries and issues in yearly-updated Medical E-book Series on Amazon’s mobile Kindle platform

This curation offers better organization and visibility to the critical information useful for the next innovations in academic, clinical, and industrial research by providing these hybrid networks.

Table of Contents for Metabolic Genomics & Pharmaceutics, Vol. I

Chapter 1: Metabolic Pathways

Chapter 2: Lipid Metabolism

Chapter 3: Cell Signaling

Chapter 4: Protein Synthesis and Degradation

Chapter 5: Sub-cellular Structure

Chapter 6: Proteomics

Chapter 7: Metabolomics

Chapter 8:  Impairments in Pathological States: Endocrine Disorders; Stress

                   Hypermetabolism and Cancer

Chapter 9: Genomic Expression in Health and Disease 

 

Summary 

Epilogue

 

 

Read Full Post »

Archives of Medicine (AOM) to Publish from “Leaders in Pharmaceutical Business Intelligence (LPBI)” Open Access On-Line Scientific Journal http://pharmaceuticalintelligence.com

Reporter: Aviva Lev-Ari, PhD, RN

From our series on Calcium and Cardiovascular Diseases: A Series of Twelve Articles in Advanced Cardiology

AOM Editor-in Chief’s Article Selection and Assignment of manuscript number: iMedPub Journals includes the following and is updated as soon as additional selections are made

Part I:

Identification of Biomarkers that are Related to the Actin Cytoskeleton

Larry H Bernstein, MD, FCAP

  

Part II: has been been assigned the following manuscript number: iMedPub Journals-15-472

Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility

Larry H. Bernstein, MD, FCAP, Stephen Williams, PhD and Aviva Lev-Ari, PhD, RN

 

Part III:

Renal Distal Tubular Ca2+ Exchange Mechanism in Health and Disease

Larry H. Bernstein, MD, FCAP, Stephen J. Williams, PhD
 and Aviva Lev-Ari, PhD, RN

  

Part IV: has been been assigned the following manuscript number: iMedPub Journals-15-471

The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, ArterialSmooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets

Larry H Bernstein, MD, FCAP, Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

 

Part V: has been been assigned the following manuscript number: iMedPub Journals-15-516

Heart, Vascular Smooth Muscle, Excitation-Contraction Coupling (E-CC), Cytoskeleton, Cellular Dynamics and Ca2 Signaling

Larry H Bernstein, MD, FCAP, Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

 

Part VI:

Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD

Aviva Lev-Ari, PhD, RN

 

Part VII:

Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmias and Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

  

Part VIII

Disruption of Calcium Homeostasis: Cardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism – Part VIII

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Part IX

Calcium-Channel Blockers, Calcium Release-related Contractile Dysfunction (Ryanopathy) and Calcium as Neurotransmitter Sensor – Part IX

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Part X – has been been assigned the following manuscript number: iMedPub Journals-15-517

Synaptotagmin functions as a Calcium Sensor: How Calcium Ions Regulate the fusion of vesicles with cell membranes during Neurotransmission – Part X

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Part XI

Sensors and Signaling in Oxidative Stress – Part XI

Larry H. Bernstein, MD, FCAP

 

Part XII

Atherosclerosis Independence: Genetic Polymorphisms of Ion Channels Role in the Pathogenesis of Coronary Microvascular Dysfunction and Myocardial Ischemia (Coronary Artery Disease (CAD)) – Part XII

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

Part XIII has been been assigned the following manuscript number: iMedPub Journals-15-471

Ca2+-Stimulated Exocytosis:  The Role of Calmodulin and Protein Kinase C in Ca2+ Regulation of Hormone and Neurotransmitter

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

Read Full Post »

Diabetes is caused by Leaky Calcium Channels in Pancreatic Beta Cells – research @Columbia University Medical Center: The Role of RyR2 in Regulation of Insulin Release and Glucose Homeostasis

Reporter: Aviva Lev-Ari, PhD, RN

Cellular Defect Linked to Diabetes

Leaky calcium channels in pancreatic beta cells can lead to high blood sugar

VIEW VIDEO

http://newsroom.cumc.columbia.edu/blog/2015/04/07/cellular-defect-linked-diabetes/?elq=c55ba8ff64104a0b8e2c82d78749fe88&elqCampaignId=9&elqaid=12507&elqat=1&elqTrackId=aefc67f3855b40fe8b0a4461f3b0ca74

“Pancreatic beta cells were found to have leaky RyR2s, which were disrupting the function of mitochondria that provide cells with energy required for insulin release. The dysfunction was consistent with mitochondrial alterations that have been described in pancreatic beta cells from patients with type 2 diabetes,” said Dr. Santulli.

See article

http://newsroom.cumc.columbia.edu/blog/2015/04/07/cellular-defect-linked-diabetes/?elq=c55ba8ff64104a0b8e2c82d78749fe88&elqCampaignId=9&elqaid=12507&elqat=1&elqTrackId=aefc67f3855b40fe8b0a4461f3b0ca74

 

pancreatic beta cells

Electron microscope image of a pancreatic beta cell, showing malformed mitochondria resulting from calcium leakage; the purple circle represents an insulin granule. (Credit: Dr. Gaetano Santulli)

 

About:

 

The paper is titled, “Calcium release channel RyR2 regulates insulin release and glucose homeostasis.”

The other contributors are: Gennaro Pagano (Imperial College, London, UK, University of Molise, Campobasso, Italy, and Federico II University, Naples, Italy), Celestino Sardu (Leiden University Medical Center, Leiden, Netherlands, Second University of Naples, Naples, Italy, and Catholic University of the Sacred Heart, John Paul II Foundation for Research and Treatment, Campobasso, Italy), Wenjun Xie (CUMC), Steven Reiken (CUMC), Salvatore Luca D’Ascia (Department of Cardiology and Arrhythmology, Clinical Institute Città Studi Hospital, Milan, Italy), Michele Cannone (Giuseppe Tatarella Hospital, Cerignola, Foggia, Italy), Nicola Marziliano (Niguarda Ca’ Granda Hospital, Milan, Italy, and University Hospital of Parma, Parma, Italy), Bruno Trimarco (Federico II University), Theresa A. Guise (Indiana University School of Medicine, Indianapolis, Indiana), and Alain Lacampagne (14U1046 INSERM, UMR 9214, CNRS, CHRU Montpellier, Montpellier, France)

The study was funded by grants from the American Heart Association (13POST16810041), the Schaefer Foundation, the Phillip Foundation, and the National Institutes of Health (R01HL061503, R01HL102040, and R01AR060037).

Dr. Marks is a consultant and board member of ARMGO Pharma, Inc., which is targeting RyR channels for therapeutic purposes. The other authors declare no financial or other conflicts of interest.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

 

Other related articles on the role of Calcium in Health and in Disease were published in this Open Access Online Scientific Journal, include the following: 

 

Identification of Biomarkers that are Related to the Actin Cytoskeleton – Part I

Larry H Bernstein, MD, FCAP

 

Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility – Part II

Larry H. Bernstein, MD, FCAP, Stephen Williams, PhD and Aviva Lev-Ari, PhD, RN

 

Renal Distal Tubular Ca2+ Exchange Mechanism in Health and Disease – Part III

Larry H. Bernstein, MD, FCAP, Stephen J. Williams, PhD
 and Aviva Lev-Ari, PhD, RN

 

The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets – Part IV

Larry H Bernstein, MD, FCAP, Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

 

Ca2+-Stimulated Exocytosis:  The Role of Calmodulin and Protein Kinase C in Ca2+ Regulation of Hormone and Neurotransmitter – Part V

Larry H Bernstein, MD, FCAP
and
Aviva Lev-Ari, PhD, RN

 

Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD – Part VI

Aviva Lev-Ari, PhD, RN

 

Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmias and Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses – Part VII

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Disruption of Calcium Homeostasis: Cardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism – Part VIII

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Calcium-Channel Blockers, Calcium Release-related Contractile Dysfunction (Ryanopathy) and Calcium as Neurotransmitter Sensor – Part IX

Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Synaptotagmin functions as a Calcium Sensor: How Calcium Ions Regulate the fusion of vesicles with cell membranes during Neurotransmission – Part X

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Sensors and Signaling in Oxidative Stress – Part XI

Larry H. Bernstein, MD, FCAP

 

Atherosclerosis Independence: Genetic Polymorphisms of Ion Channels Role in the Pathogenesis of Coronary Microvascular Dysfunction and Myocardial Ischemia (Coronary Artery Disease (CAD)) – Part XII

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

 

Read Full Post »

Protein-binding, Protein-Protein interactions & Therapeutic Implications

Writer and Curator: Larry H. Bernstein, MD, FCAP 

7.3  Protein-binding, Protein-Protein interactions & Therapeutic Implications

7.3.1 Action at a Distance. Allostery_Delabarre_allostery review

7.3.2 Chemical proteomics approaches to examine novel histone modifications

7.3.3 Misfolded Proteins – from Little Villains to Little Helpers… Against Cancer

7.3.4 Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

7.3.5 Putting together structures of epidermal growth factor receptors

7.3.6 Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor

7.3.7 IGFBP-2.PTEN- A critical interaction for tumors and for general physiology

7.3.8 Emerging-roles-for-the-Ph-sensing-G-protein-coupled-receptor

7.3.9 Protein amino-terminal modifications and proteomic approaches for N-terminal profiling

7.3.10 Protein homeostasis networks in physiology and disease

7.3.11 Proteome sequencing goes deep

7.3.1 Action at a Distance. Allostery_Delabarre_allostery review

DeLaBarre B1Hurov J1Cianchetta G1Murray S1Dang L2.
Chem Biol. 2014 Sep 18; 21(9):1143-61
http://dx.doi.org:/10.1016/j.chembiol.2014.08.007

Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.

Based on knowledge acquired to date, there is no doubt that cancer metabolism provides a wealth of novel therapeutic targets and multiple innovative ways in which to exploit metabolic vulnerabilities for therapeutic benefit. More comprehensive reviews cover the breadth of metabolic targets that are currently under investigation (Stine and Dang, 2013; Vander Heiden, 2011). The following sections of this review focus on PKM2, glutaminase, and mutated IDH1/2 as exemplary metabolism targets under investigation for development of cancer therapies.
Drugging Glycolysis: Targeting Pyruvate Kinase Muscle Isozyme Alternative Splice Variant 2 PK catalyzes the last step of glycolysis, converting phosphoenolpyruvate (PEP) to pyruvate, while producing one molecule of ATP. The reaction encompasses two chemical steps: the first involves a phosphoryl transfer from PEP to ADP, forming an enolate intermediate and ATP, and the second involves protonation of the enolate intermediate, forming pyruvate (Robinson and Rose, 1972). PKM2 is one of four PK isoforms in humans. PKM1 and PKM2 result from the alternative splicing of exons 9 and 10 of the PKM gene, which encode a stretch of amino acids that differ at 23 positions between PKM1 and PKM2. PKM1 is constitutively active in skeletal muscle and brain tissue, but is not allosterically regulated. PKM2 is expressed in fetal and proliferating tissues, has low basal activity compared with PKM1, and is allosterically regulated. R-type pyruvate kinase (PKR) and L-type pyruvate kinase (PKL) are transcribed via different promoters from the PKLR gene. PKR is expressed in erythrocytes and PKL in the liver. PKR, PKL, and PKM1 exist as stable tetramers,whereas PKM2 forms tetramers (high activity form), dimers (low activity form), and monomers (Mazurek, 2011).

Figure 1. Central Metabolic Pathways Utilized by Cancer Cells *denotes mutated isoenzyme.

Pyruvate Kinase Muscle Isozyme Alternative Splice Variant 2 in Cancer Cell Metabolism Cancer cells predominantly express PKM2, which can be downregulated by tyrosine kinase growth factor signaling pathways, allowing metabolic flexibility. Phosphotyrosine peptides have been shown to suppress PKM2 activity by binding tightly to PKM2, thereby catalyzing the release of fructose 1,6-bisphosphate (FBP), resulting in a switch to the low activity dimer state (Christofk et al., 2008b; Hitosugi et al., 2009). This downregulation is thought to support tumor growth and proliferation by allowing for the shunting of glycolytic intermediates toward other biosynthetic pathways (i.e., pentose phosphate and serine pathways). In keeping with this model, the activation of PKM2 in cancer cells using small molecule agonists resulted in serine auxotrophy (Kung et al., 2012). Consistent with the hypothesis that PKM2 is a critical metabolic switch, there is growing evidence that, depending on the cellular stress environment, PKM2activity canberegulated byposttranslational modification such as acetylation (Lv et al., 2011), phosphorylation (Hitosugi et al., 2009), cysteine oxidation (Anastasiou et al., 2011), and proline hydroxylation (Luo et al., 2011). The utility of PKM2 activators in the clinic has yet to be determined, but recent work with tumor xenografts with a PKM2 activator suggests that this may be a viable approach (Parnell et al., 2013). As PKM2 tetramers show greater than 50-fold higher activity than PKM2 monomers (Anastasiou et al., 2012), one consideration when designing drugs to activate PKM2 for therapeutic means would be the need for small-molecule ligands capable of driving the enzyme toward its optimally active tetrameric form, thus forcing cancer cells into a less flexible metabolic state.

Structure of Pyruvate Kinase Muscle Isozyme Alternative Splice Variant 2 The structure of the PKM2 tetramer is summarized in Figure 2A. PKM2 is allosterically activated in a ‘‘feedforward’’ manner by the upstream glycolytic metabolite, FBP, which induces a shift to the active tetrameric conformation (Christofk et al., 2008b; Dombrauckas et al., 2005). PKM2 can be independently allosterically activated by serine (Chaneton et al., 2012), which binds in a distinct pocket that can also accommodate the inhibitor phenylalanine (Protein Data Bank [PDB] ID: 4FXJ). The binding of phenylalanine results in a tetrameric form distinct from the active conformer (Morgan et al., 2013). It is not clear how the change from serine to phenylalanine elicits such a dramatic change in protein behavior, or whether there is any biological interaction between serine activation and phenylalanine inhibition of PKM2 in cancer cells. Of note, PKM1 and PKL/R are not activated by serine, despite the conservation of the serine binding site in all PK isoforms.
Figure 2. Three Different Metabolic Enzymes and Their Allosteric Inhibitors Protomers are depicted as cartoon ribbons in blue, green, yellow, and cyan. Synthetic allostery is depicted in stick format with red highlight. (A) Structure of tetrameric PKM2:AGI-980 (4:2 complex) from PDB 4G1N. AGI-980 is shown in stick rendering near the center of tetramer. Each PK monomer consists of four domains, usually designated A, B, C, and N (Dombrauckas et al., 2005). The tetramer is a dimer-of-dimers with approximate D2 symmetry. The dimer is formed between the A domains of each monomer, while the tetramer is formed via dimerization along the C subunit interfaces of each dimer. The active site of PKM2 lies within a cleft between the A and B domain, illustrated by a PEP analog (red spheres). The FBP binding pocket is located entirely within the C domain (pink spheres). The natural allosteric site of serine is also shown (black spheres). (B)Tetrameric GAC:BPTES (4:2 complex) from PDB 3UO9. Glutamate molecules are shown as spheres. (C) Dimeric IDH2R140Q:AGI-6780 (2:1 complex) from PDB 4JA8 (Wang et al., 2013). NADP molecules are shown as spheres.
Discovery of Allosteric Activators of Pyruvate Kinase Muscle Isozyme Alternative Splice Variant 2 A number of small molecules that potently activate PKM2 have been discovered by various groups (Table 1). Interestingly, all seven X-rayco-complexescurrentlyavailableshowcompoundsbound at a novel binding pocket distinct from the FBP and serine binding sites, which would otherwise allow cells to overcome negative regulation by phosphotyrosines (Kung et al., 2012). The compounds found in structures 3GQY, 3GR4 (Boxer et al., 2010), 3H6O (Jiang et al., 2010), 3ME3, and 3U2Z (Anastasiou et al., 2012) were identified by screening the NIH Small Molecule Repository, and can be classified into two distinct chemical series, both of which establish very similar interactions with PKM2 (Table 1). Analogues in these two classes selectively activated PKM2 allosterically with good selectivity against PKM1, PKL, and PKR (Anastasiou et al., 2012; Boxer et al., 2010; Jiang et al., 2010). The molecule found in the structure 4JPG (Guo et al., 2013) is similar to the two series described above, where the pyrimidone ring is found between the two Phe26 residues (Table 1). Interestingly, the activator found in the 4G1N structure (Kung et al., 2012) sits in the same pocket as the NIH compounds. However, the interactions are quite different, with the side chains of the two Phe26 that line the pocket assuming distinct conformations. This activator wraps around the two aromatic residues, which pushes it closer to the walls of the pocket, allowing for a richer series of interactions with PKM2 (Table 1). There are two additional series of PKM2 activators that have been reported for which no structural information is available (Table 1)(Parnell et al., 2013; Xu et al., 2014; Yacovan et al., 2012). Members of this series were shown to have an activation level comparable to that of FBP, with selectivity for PKM2 over PKL, PKR, and PKM1. PKM2 offers a very interesting example of an allosterically regulated enzyme. Different allosteric sites have so far been identified for three different types of activator (FBP, serine, and small-molecule ligands) and all activate PKM2 by stabilizing the tetrameric form. It is remarkable that molecules as small as serine can dramatically alter this protein’s conformational landscape and aggregation state and lead to an active enzyme. This unusual allosteric site revealed by the small-molecule ligands is of particular curiosity, largely because neither its function nor its native ligands are known. All of the drug-like activators described above bind at the dimer–dimer interface and seem to act by displacing water from the mainly apolar pocket, thus contributing to the stabilization of the tetramer. While these PKM2 activators show promising preclinical data, none have yet entered clinical development.

Table 1. Biochemical Properties of Small Molecule PKM2 Inhibitors Series PDB ID Ligand Reference Binding Characteristics

Substituted N,N’diarylsulfonamide 3GQY (Boxer et al., 2010)

  •  All completely buried within A-A’ interface, 35A ˚ from FBP pocket
  •  Binding pocket lined with residues equivalent to those of PKM2 molecules forming A-A’ interface
  •  All sandwiched between phenyl rings of the two Phe26 from different monomers
  •  All additionally interact with side chain of Phe26 through slightly distorted T-shaped p-p interactions (two such interactions for substituted N,N0diarylsulfonamides and one for thieno[3,2-b]pyrrole[3,2-] pyridazinones)
  1. 3GR4 (Boxer et al., 2010) 3ME3 (Anastasiou et al., 2012)
  2. Thieno[3,2-b]pyrrole [3,2-d]pyridazinone 3H6O (Jiang et al., 2010)
  3. 3U2Z (Anastasiou et al., 2012)
  4. 2-((1H-benzo[d]imidazol1-yl)methyl)-4H-pyrido [1,2-a]pyrimidin-4-ones
  5. 4JPG (Guo et al., 2013)
  • Pyrimidone ring found between the two Phe26 residues forming p-p interactions with the aromatic rings
  • Carbonyl interacts with a bridging water molecule
  • Benzimidazole reaches a region of the activator pocket that is not occupied in any of the published crystal structures
  • One of the imidazole nitrogens forms an H-bond with Lys311, which is normally part of a salt bridge to Asp354

Quinolone sulfonamides 4G1N (Kung et al., 2012)

  •  Quinoline moiety sits on a flat, mainly apolar surface defined by Phe26, Leu27 and Met30 from chain A and Phe26, Tyr390 and Leu394 from chain A’
  •  One of the two oxygen atoms of the sulfonamide accepts an H bond from the backbone oxygen of Tyr390, the other interacts with a water molecule
  •  The oxygen of the amide moiety forms an H-bond with side-chain nitrogen of Lys311
  •  Terminal aromatic ring sits in the other copy of the quinoline pocket d Aromatic rings of the side chains of the two Phe26 lining the pocket almost perpendicular (not parallel); activator wrapped around the two aromatic residues

3-(trifluoromethyl)-1Hpyrazole-5-carboxamide (Parnell et al., 2013; Xu et al., 2014)

  • Cocrystal structure of one compound bound to tetrameric PKM2 obtained but file not available for download from PDB: described as bound to the allosteric site at the dimer–dimer interface

5-((2,3-dihydrobenzo[b] [1,4]dioxin-6-yl)sulfonyl)-2methyl-1-(methylsulfonyl) indoline scaffold (Yacovan et al., 2012)

  • Cocrystal structure of one compound bound to PKM2 obtained but not available for download from the PDB: described as bound to dimer interface
  • Interactions very similar to those established by thieno [3,2-b]pyrrole[3,2-d]pyridazinone series above

Drugging Glutaminolysis: Targeting the Glutaminase C Variant Glutaminase catalyzes the conversion of glutamine to glutamate and ammonia. Glutamate can be oxidized to a-ketoglutarate (aKG), which then anaplerotically feeds into the TCA cycle as a means of providing proliferating cells with biosynthetic intermediates and ATP (Figure 1); glutamate is also used as a substrate for the generation of glutathione, which provides protection from redox stress (Hensley et al., 2013; Shanware et al., 2011). The ammonia produced during the reaction can be used in certain tissues like the kidney to provide pH homeostasis, and nitrogen derived from glutamine is utilized in nucleotide biosynthetic and glycosylation pathways.

Table 2. Characteristics of Small Molecule Glutaminase Inhibitors

BPTES N-(5–[1,3,4]thiadiazol-2yl)-2-phenylacetamide 6 (Shukla et al., 2012)

  • Similar potency but better water solubility vs. BPTES d Attenuated growth of P493 human lymphoma B cells in vitro d Diminished tumor growth in P493 tumor xenograft SCID mice with no apparent toxicity

CB-839 (Calithera) (Gross et al., 2014)

  • Orally bioavailable d Binds at allosteric sites of GLS1 KGA and GAC d Potent, selective, time-dependent reversible inhibition with slow recovery time
  • Anti-proliferative activity (double-digit nM potency) in cellular proliferation assays in wide range of tumors
  • Currently in Phase I trials of locally-advanced/metastatic refractory solid tumors (triple negative breast cancer, NSCLC, RCC, mesothelioma) and hematological cancers [Clinicaltrials.gov: NCT02071927, NCT02071862, NCT02071888]

Dibenzophenanthridines Compound 968 (Katt et al., 2012; Wang et al., 2010)

  • Modest potency in the low mM concentrations d Loses all inhibitory activity against glutaminase activated by preincubation with inorganic phosphate (phosphate does not affect BPTES potency)
  • Anti-proliferative activity in breast cancer cell line at 10 mmol/L concentration

There are three isoforms of IDH. IDH1 is located in both the peroxisome and the cytosol, whereas IDH2 and IDH3 are located in mitochondria. It is unclear what the relative contributions of the IDH2 and IDH3 isoforms are to overall mitochondrial TCA function. IDH1 and IDH2 are both obligatory homodimeric proteins and use NADP+ as a cofactor, whereas IDH3 uses NAD+ as a cofactor and is a heterotrimeric protein comprising alpha, beta, and gamma subunits. All three isozymes require either Mg2+ or Mn2+ asdivalent metal cofactors for catalysis.The dimeric structure of IDH2 is shown in Figure 2C.

Mutant Isocitrate Dehydrogenase in Cancer Cell Metabolism The role of IDH mutations in cancer metabolism was recognized following the observation of frequent and recurrent mutations of IDH1 and IDH2 in patients with glioma and AML, initially identified by genomic deep sequencing and subsequent comparative genetic analyses (Parsons et al., 2008; Yan et al., 2009). These mutations were originally characterized as loss of function (Mardis etal.,2009; Parsonsetal.,2008; Yanet al.,2009), suggesting that mutated IDH acts as a tumor suppressor due to the loss of catalytic conversion of isocitrate to aKG (Zhaoetal., 2009). However, with the exception of cases of haploinsufficiency, the heterozygous mutation pattern of IDH is more consistent with an oncogene role. Subsequently, IDH mutations were shown to possess the neomorphic activity to generate the oncometabolite, 2-hydroxyglutarate (2HG) (Dang et al., 2009; Gross et al., 2010; Ward et al., 2010). With a single codon substitution, the kinetic properties of the mutant IDH isozyme are significantly altered, resulting in an obligatory sequential ordered reaction in the reverse direction (Rendina et al., 2013). Indeed, the critical kinetic observation of mutant IDH was not only the loss of affinity for isocitrate, but also a dramatic increase in NADPH affinity by three orders of magnitude (Dang et al.,2009), suggesting a substantial change in protein dynamics imparted by the mutation. The only known homeostatic 2HG clearance mechanism is the relatively inefficient reconversion of 2HG back to aKG by D-2hydroxyglutarate dehydrogenase. Therefore, 2HG accumulates when over-produced by mutant IDH. 2HG itself has been shown to be sufficient to drive the malignant phenotype (Rakheja et al., 2013). Abnormally high 2HG levels impair aKG-dependent dioxygenases through competitive inhibition, including those that modify DNA and histones (i.e., Jumonji domain-containing histone demethylases and the ten-eleven translocation (TET) family of 50-methylcytosine hydroxylases) (Chowdhury et al., 2011; Figueroa et al., 2010), as well as EglN prolyl hydroxylase in regulating hypoxia-inducible factor (Losman et al., 2013). This results in altered epigenetic status that blocks cell differentiation. These findings, combined with the inhibitory effects of fumarate and succinate on the same families of aKG-dependent enzymes, highlight a critical and fascinatingnetwork that ties together central metabolic pathways and epigenetic control. Remarkably, mutations in TET2 are mutually exclusive with IDH mutations in AML, strongly suggesting that, in this context, the tumorigenic effects of 2HG are at least in part driven by inhibition of TET2. The precise targets of IDH mutations with associated 2HG production (and TET2 mutations) that promote tumorigenesis are currentlyunknown;however,itisclearthatIDH1/2andTET2mutations lead to a block in hematopoietic cell differentiation (Figueroa et al., 2010; Lu et al., 2012; Moran-Crusio et al., 2011; Wang et al., 2013). To date, no IDH3 mutation associated with cancer has been reported (Krell et al., 2011; Reitman and Yan, 2010), suggesting that the role of IDH1/2 has a greater impact on tumorigenesis. Targeting mutated isoforms of IDH1/2 therefore presents a logical approach to cancer therapy. A consideration in designing suchdrugsistheheterozygoussomaticnatureoftheIDH1/2mutation, which likely yields a mixture of homo- and heterodimers; statistically, heterodimers should be the major species in vivo. Mutant homodimers and wild-type-mutant heterodimers both efficiently catalyze the production of 2HG from aKG (Dang et al., 2009; Rendina et al., 2013). However, the heterodimer is potentially more oncogenic, as it is more efficient at producing 2HG than homodimeric mutants (Pietrak et al., 2011) due to an increased local concentration of substrate while conserving NADPH. The heterodimer as a molecular target therefore becomes an important consideration in this scenario.

Structure of Isocitrate Dehydrogenase Structurally, both IDH1 and IDH2 comprise three main domains: the large domain, the small domain, and the clasp region (Yang et al., 2010). A simplified description of protein motion is provided in Figure 3 (Rendina et al., 2013; Xu et al., 2004). The dynamic of motion may differ slightly between IDH1 and IDH2 mutants. IDH1 mutants appear to open wider than IDH2 mutants to the point of unwinding a helix termed ‘‘seg2’’ (Yang et al., 2010). In contrast, the open form of IDH2 does not involve the melting of any secondary structure, and as a consequence has a much narrower range of motion (Taylor et al., 2008; Wang et al., 2013). This differential in protein dynamics could possibly explain the differential responses of IDH1 and IDH2 to inhibitors. X-ray structures of IDH3 have not yet been reported, but it appears to be distinct from IDH1 and IDH2 in terms of primary sequence and predicted quaternary organization (Kim et al., 1995; Ramachandran and Colman, 1980). There are three arginine residues in the enzyme active site that are predicted to play a central role in electrostatic stabilization and proper geometric orientation of isocitrate via its acidic moieties as the substrate binds in the active site. With the exception of the novel G97D or G97N codon mutation (Ward et al., 2012), virtually all confirmed IDH mutations that generate high levels of 2HG occur in one of these arginines (i.e., IDH1-R132 and IDH2-R172/R140) (Losman and Kaelin, 2013) and have in common a substitution of one of the diffuse positive charges of the respective arginine’s guanidinium moiety.
Discovery of Inhibitors against Mutated Isocitrate Dehydrogenase Several inhibitors of mutant IDH isoforms that block 2HG production in vitro and in vivo have been recently described. The first potent and specific IDH1 inhibitors reported were the phenylglycine series, specifically AGI-5198 (Popovici-Muller et al., 2012; Rohle et al., 2013) and subsequently ML309 (Davis et al., 2014)(Table 3), which were shown to be rapid-equilibrium inhibitors specific for IDH1-R132-codon mutations. These compounds inhibited IDH1-R132H competitively with respect to aKG and uncompetitively with respect to NADPH, suggesting that they preferably bind to the enzyme-NADPH ternary complex. Notably, they do not appreciably cross-react against the IDH2-R140Q mutant isozyme, suggesting a unique binding mode in IDH1-R132 that does not favorably exist in IDH2R140. Because no X-ray co-complex has been reported for this series, the exact mode of binding cannot be ascertained at this time. Preclinical data indicated 2HG inhibition and antitumor effects in vitro and in vivo (Table 3). These phenylglycine compounds appear to be excellent chemical tools for tumor biology investigation, but optimization of their properties is likely required for further therapeutic development. Co-complexes of IDH1-R132H with two different 1-hydroxypyridin-2-one inhibitors have been reported (Zheng et al., 2013), but the quality of the crystal structure data supporting the mechanism of inhibition is poor. AG-120, a selective, potent inhibitor of mutated IDH1, is currently in clinical development for the treatment of cancers with IDH1 mutations (Table 3), but there is currently no published information on this inhibitor. Another inhibitor of mutated IDH1 has been reported recently (Table 3) (Deng et al., 2014). Co-complex X-ray studies revealed that Compound1 binds mutated IDH1 allosterically at the dimer interface resulting in an asymmetric open conformation. Distinctively, Compound 1 displaces the conserved catalytic Tyr139 and further disrupts the Mg2+ binding network, consistent with kinetic results of competitive inhibition with respect to Mg2+, but not with aKG substrate. Others have reported modeling of inhibitors into the active site of IDH1, but experimental evidence is lacking (Chaturvedi et al., 2013; Davis et al., 2014). The first reported potent and selective IDH2 inhibitor was the urea-sulfonamide series, AGI-6780 (Wang et al., 2013), a timedependent slow-tight binder to IDH2-R140Q exhibiting noncompetitive inhibition with respect to substrate and uncompetitive inhibition with respect to NADPH, and nanomolar potency for 2HG inhibition (Table 3). This compound showed good inhibitory selectivity for IDH2-R140Q, with no effect on the closely related IDH1 and IDH1-R132H isozymes. At doses that effectively blocked 2HG to basal levels, AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human AML cells in vitro, suggesting potential to reverse leukemic phenotype in AML tumors harboring the IDH2 mutation. Unlike the case of IDH1 above, the published structure of AGI-6780 co-complexed with IDH2-R140Q allows for detailed analysis of its inhibitory mechanism (Wang et al., 2013). In the X-ray structure, a single molecule
of AGI-6780 binds at the interface of two protomers (Figure 2C). The allosteric inhibition appears to arise from the ability of AGI6780 to keep the IDH2-R140Q mutant enzyme in an open orientation, thereby preventing the NADPH cofactor and substrate aKG from coming close to the catalytic Mg2+ binding site (see Figure 3). The highly symmetric AGI-6780 binding pocket extends deep into the protein interface and is closed over by loops composed of residues 152–167, which also fold over the binding pocket, providing anexplanation for the time-dependent inhibition kinetics. AGI-6780 makes several direct H-bond interactions from its urea group and amide nitrogen to Gln316, but a significant amount of binding energy arises from van der Waals contacts between the protein and hydrophobic surfaces of AGI-6780. The in vivo potential for this compound is not known, since its pharmacokinetic properties were not reported. Nevertheless, this effective mode of inhibition serves as an important molecular model for the design of bioisosteric compounds. OtherIDH2inhibitorsareunderdevelopment,notablyAG-221, a first-in-class, orally available inhibitor (Table 3) which demonstrated a survival advantage in a preclinical study of a primary human IDH2 mutant AML xenograft mouse model (Yen et al., 2013). Early phase I clinical trial data for AG-221 show promise, with meaningful clinical responses in evaluable AML patients harboring IDH2 mutations (Stein et al., 2014). To date, there is no published example of a molecule that inhibits both IDH1 and IDH2 mutant isoforms with equipotency.

Table 3.Characteristics of Small Molecule Inhibitors of Mutant IDH

PhenylglycineAGI-5198 (Popovici-Mulleretal., 2012; Rohleetal.,2013)
N-cyclohexyl-2-(N-(3-fluorophenyl)-2(2-methyl-1H-imidazol-1-yl)acetamido)2-(o-tolyl)acetamide IDH1-R132H

  • Good potency against enzyme and in U87cell line overexpressing R132H mutation (IC50= 70nM)
  • Good oral exposure in rodents at high doses (>300mg/kg), which were likely at levels saturating hepatic clearance mechanisms
  • Plasma 2HG inhibition > 90% (BID dosing) in xenograft model of U87-R132H tumors
  • Promoted differentiation of glioma cells via induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation at near-complete 2HG inhibition
  • inhibited plasma 2HG and delayed growth of IDH1-mutant but not wild-type glioma xenografts in mice

ML309 (Davis et al.,2014)
2-(2-(1H-benzo[d]imidazol-1-yl)-N-(3fluorophenyl)acetamido)-N-cyclopentyl2-o-tolylacetamide IDH1-R132H IDH1-R132C dIC50=68nM(R132H)

  • Inhibited 2HG production in glioblastoma cell line (IC50 = 250 nM) with minimal cytotoxicity
  • 1-hydroxypyridin2-one Compounds2and3 (Zhengetal.,2013)
    6-substituted1-hydroxypyridin-2-oneIDH1-R132H IDH1-R132C
  • K i= 190 and 280 nM (forR132H)
  • Inhibited production of 2HG in IDH1 mutated cells

Undisclosed
AG-120 (Agios)
Undisclosed
IDH1

  • Orally available, selective, potent inhibitor
  • PhaseI studies ongoing in advanced solid tumors (NCT02073994; NCT02074839)

Allostery as an Approach to Drugging Metabolic Enzymes Is Important in Cancer All enzymes discussed in this article are allosterically targeted by small molecule modulators. With the exception of the enzymes of lipid metabolism, it is striking that there are very few examples of the regulation of metabolic enzymes by drug-like molecules at the catalytic site. We believe that this observation will hold true for the wider set of metabolic enzymes. Metabolic pathways are typically regulated by upstream and downstream metabolites through feedforward and feedback mechanisms. This regulation occurs typically through binding at allosteric sites, which have distinctly different properties relative to active sites. Therefore regulation can come from effectors that may have very different properties to the substrate. This review describes the potential therapeutic impact of specific allosteric regulators of PKM2, glutaminase, and IDH. Additionally, preclinical studies of tool compounds demonstrated that allosteric regulators of other enzymes involved in cancer cell metabolism could provide more therapeutic opportunities (Table 4). Substrates and products of metabolic enzymes tend to be small and very polar, and often include crucial metal ions and their ligands, so it is likely that targeting their catalytic pockets will yield molecules with similar properties. From a drug-discovery point of view, targeting allosteric sites is appealing as hydrophilic substrate-binding sites are generally not hospitable to strong interactions with small molecule drugs, which gain potency to a large extent through hydrophobic interactions. In addition, as activity of most metabolic enzymes is regulated by multimerization, the formation of multimers provides opportunity for binding sites to form at protein–protein interfaces.

Table 4. Examples of Allostery in Cancer Cell Metabolism

TH           Tyrosine hydroxylase         Haloperidol                                           Activator             Catecholamine metabolism               (Casu and Gale, 1981)
PDK1      Pyruvate dehydrogenase
kinase isozyme1                  3,5-diphenylpent-2-enoicacids                         Activator             TCAcycle                                                (Stroba et al., 2009)
BCKDK  Branched chain keto acid
dehydrogenase kinase   (S)-a-chloro-phenylpropionicacid[(S)-CPP]     Inhibitor              Branch-chain amino acid                   (Tso et al., 2013)
ACACA   Acetyl-CoA carboxylase
alpha                                 5-tetradecyloxy-2-furoicacid (TOFA)                  Inhibitor              Fatty acid  synthesis                            (Wang et al.,2009)

FBP1     Fructose-1,6
bisphosphatase1               Benzoxazole benzene sulfonamide1                    Inhibitor              Glycolysis                                        (von Geldern et al., 2006)
ALADA minolevulinate
dehydratase                     wALAD in1 benzimidazoles                                     Inhibitor              Haem synthesis                                    (Lentz et al., 2014)
TYR       Tyrosinase         2,3-dithiopropanol                                                   Inhibitor              Melanin metabolism                    (Wood and Schallreuter, 1991)
DBHD  opamine beta
hydroxylase-2H-phthalazinehydrazone (hydralazine;HYD)
2-1H-pyridinonehydrazone (2-hydrazinopyridine;HP)
2-quinoline-carboxylicacid (QCA)
1H-imidazole-4-aceticacid (imidazole-4-aceticacid;IAA)                             Inhibitor         Neurotransmitter synthesis                    (Townes et al.,1990)
DCTD   dCMP
deaminase        5-iodo-2’-deoxyuridine5’-triphosphate                                 Inhibitor          Nucleotide metabolism                      (Prusoff and Chang, 1968)
TYMP  Thymidine
phosphorylase     5’-O-tritylinosine (KIN59)                                                    Inhibitor          Nucleotide metabolism                         (Casanova et al.,2006)
TYMS Thymidylate
synthase         1,3-propanediphosphonicacid (PDPA)                                     Inhibitor          Nucleotide   metabolism                        (Lovelace et al.,2007)

Figure 3. Simplified Description of IDH Protein Motion The large domain (residues 1–103 and 286–414) forms nearly all of the NADPH cofactor binding residues and roughly half of the substrate binding residues.The small domain(residues 104–136 and 186–285) contains the remaining substrate binding residues and the metal binding residues. The interface between the two protomers is formed by both the small domain and the clasp region (residues 137–185). The large domain moves away from the small domain to facilitate NADPH cofactor exchange and substrate binding. The large domain then closes up against the small domain, thereby completing the substrate binding pocket and bringing the cofactor, substrate, and metal into close contact with each other and with the key catalytic residues to facilitate hydride transfer between substrate and cofactor and enzyme-assisted carboxylation/decarboxylation. Subsequent opening of the large domain from the small domain would enable product release and cofactor exchange to complete the catalytic cycle (Rendina et al., 2013; Xu et al., 2004).

7.3.2 Chemical proteomics approaches to examine novel histone modifications

Xin LiXiang David Li
Current Opinion in Chemical Biology Feb 2015; 24:80–90
http://dx.doi.org/10.1016/j.cbpa.2014.10.015

Highlights

  • A variety of novel histone PTMs have been identified by MS-based methods.
  • Regulatory mechanisms and cellular functions of most novel histone PTMs remain unknown, due to lack of knowledge about their readers, erasers and writers.
  • Chemical proteomics approaches provide valuable tools to characterize novel histone PTMs.
  • The application of photoaffinity probes helps the profiling of histone PTMs’ readers, erasers and writers.

Histone posttranslational modifications (PTMs) play key roles in the regulation of many fundamental cellular processes, such as gene transcription, DNA damage repair and chromosome segregation. Significant progress has been made on the detection of a large variety of PTMs on histones. However, the identification of these PTMs’ regulating enzymes (i.e. ‘writers’ and ‘erasers’) and functional binding partners (i.e. ‘readers’) have been a relatively slow-paced process. As a result, cellular functions and regulatory mechanisms of many histone PTMs, particularly the newly identified ones, remain poorly understood. This review focuses on the recent progress in developing chemical proteomics approaches to profile readers, erasers and writers of histone PTMs. One of such efforts involves the development of the Cross-Linking-Assisted and SILAC-based Protein Identification (CLASPI) approach to examine PTM-mediated protein–protein interactions.

Table 1    Novel histone PTMs                      functions
1             Lysine formylation             Arising from oxidative damage of DNA modification sites overlap with lysine acetylation and methylation, potentially interfere with normal regulation of these PTMs

2      Lysine propionylation  p300,c CREB-binding protein,c Sirt1,c Sirt2,c Sirt3c
Structurally similar with lysine acetylation, regulated by same set of enzymes, H3K23pr may be regulatory for cell metabolism
3    Lysine butyrylation       p300,c CREB-binding protein,c Sirt1,c Sirt2,c Sirt3c
Structurally similar with lysine acetylation, regulated by same set of enzymes
4    Lysine malonylation    Sirt5c
Changing the positively charged lysine to negatively charged residue, likely to affect the chromatin structure
5   Lysine succinylation    Sirt5c
A  mutation to mimic crotonyl lysine that changes lysine to glutamic acid of histone H4K31, reduces cell viability
6  Lysine crotonylation   Sirt1,c Sirt2,c Sirt3
Enriched at active gene promoters potential enhancers in mammalian genomes, male germ cell differentiation
7 Lysine 2-hydroxyiso
butyrylation                     HDAC1-3c
Associated with gene transcription
8  Lysine 4-oxononoylation    Modified by 4-oxo-2-nonenal, generated under oxidative stress, prevents nucleosome assembly in vitro
9 Lysine 5-hydroxylation   JMJD6
suppress lysine acetylation and methylation
10 Glutamine methylation   Nop1  (yeast), fibrillarin (huma)
human histone H2AQ105
11 Serine and
threonine GlcNAcylation  O-GlcNAc transferase
H2BS112 GlcNAcylation promotes K120 monoubiquitination, H3S10 GlcNAcylation suppresses phosphorylation of site
12 Serine and threonine acetylation
13 Serine palmitoylation   Lpcat1
catalyzed H4S47 palmitoylation, Ca2+-dependent, regulates global RNA synthesis
14  Cysteine glutathionylation
H3.2 and H3.3
conserved cysteine, but not H3.1, destabilize the nucleosomal structure
15 Cysteine fatty-acylation
H3.2 C110
16 Tyrosine hydroxylation

Fig. 1. Schematic description of a MS-based method for the identification of novel histone PTMs.

http://ars.els-cdn.com/content/image/1-s2.0-S1367593114001562-gr1.sml

Fig. 2. Chemical proteomics approaches to profile readers and erasers of histone PTMs.
(a) Photo-cross-linking strategy to capture proteins recognizing histone PTMs.
(b) Chemical structure of photoaffinity peptide probes.
Modifications of interest were labeled in green; photo-cross-linkers were labeled in red; chemical handles (alkyne) were labeled in blue; the sequence of probe C and probes 1–5 were derived from the
histone H3 1–15 amino acids residues, the sequence of probe 6 was derived from the histone H4 1–19 amino acids residues.
(c) Schematic for the CLASPI strategy to profile proteins that bind certain histone mark in whole-cell proteomes

http://ars.els-cdn.com/content/image/1-s2.0-S1367593114001562-gr2.sml

Consistent with our findings, Tate and coworkers [57] recently reported the development of a photoaffinity probe based on a succinylated glutamate dehydrogenase (GDH) peptide for capturing Sirt5
as the corresponding desuccinylase. In addition to the application of photo-cross-linking strategy for examining the histone PTMs with known erasers, we recently used CLASPI with a photoaffinity
probe (probe 5, Figure 2b) to profile proteins that recognize a novel histone mark, crotonylation at histone H3K4 (H3K4cr, Table 1, Entry 6) [25], whose erasers were unknown. This study revealed,
for the first time, that Sirt3 can recognize the H3K4cr mark and efficiently catalyze the removal of histone crotonylation marks. More importantly, Sirt3 was found to regulate histone Kcr level in
cells and may potentially modulate gene transcription through its decrotonylase activity [58]. By converting bisubstrate inhibitors of HATs (histone peptides with certain lysine residues covalently
attached to Ac-CoA) to clickable photoaffinity probes (for example, probe 6, Figure 2b), they carried out the first systematic profiling of HATs in whole-cell proteomes [59].  We  anticipate  that  similar methods can be used to search for writers of novel histone PTMs such as Kmal, Ksucc, Kcr and Khib (Table 1) since the corresponding acyl-CoAs are presumed to be the acyl donors.

We have shown, in this review, the applications and recent advances of chemical tools, in combination with MS-based proteomics approaches, for the detection and characterization of histone
PTMs and their readers, erasers and writers.

This article belongs to a special issue

Omics Edited By Benjamin F Cravatt and Thomas Kodadek

Editorial overview: Omics: Methods to monitor and manipulate biological systems: recent advances in ‘omics’

Benjamin F Cravatt, Thomas Kodadek
Current Opinion in Chemical Biology Feb 2015; 24:v–vii
http://dx.doi.org/10.1016/j.cbpa.2014.12.023

7.3.3 Misfolded Proteins – from Little Villains to Little Helpers… Against Cancer

Ansgar Brüning1,* and Julia Jückstock
Front Oncol. 2015; 5: 47
http://dx.doi.org/10.3389.2Ffonc.2015.00047

The application of cytostatic drugs targeting the high proliferation rates of cancer cells is currently the most commonly used treatment option in cancer chemotherapy. However, severe side effects and resistance mechanisms may occur as a result of such treatment, possibly limiting the therapeutic efficacy of these agents. In recent years, several therapeutic strategies have been developed that aim at targeting not the genomic integrity and replication machinery of cancer cells but instead their protein homeostasis. During malignant transformation, the cancer cell proteome develops vast aberrations in the expression of mutated proteins, oncoproteins, drug- and apoptosis-resistance proteins, etc. A complex network of protein quality-control mechanisms, including chaperoning by heat shock proteins (HSPs), not only is essential for maintaining the extravagant proteomic lifestyle of cancer cells but also represents an ideal cancer-specific target to be tackled. Furthermore, the high rate of protein synthesis and turnover in certain types of cancer cells can be specifically directed by interfering with the proteasomal and autophagosomal protein recycling and degradation machinery, as evidenced by the clinical application of proteasome inhibitors. Since proteins with loss of their native conformation are prone to unspecific aggregations and have proved to be detrimental to normal cellular function, specific induction of misfolded proteins by HSP inhibitors, proteasome inhibitors, hyperthermia, or inducers of endoplasmic reticulum stress represents a new method of cancer cell killing exploitable for therapeutic purposes. This review describes drugs – approved, repurposed, or under investigation – that can be used to accumulate misfolded proteins in cancer cells, and particularly focuses on the molecular aspects that lead to the cytotoxicity of misfolded proteins in cancer cells.

Introduction:

How Do Proteins Fold and What Makes Misfolded Proteins Dangerous?

For an understanding of misfolded proteins, it is necessary to understand how cellular proteins attain and then further maintain their native conformation and how mature proteins and unfolded proteins are generated and converted into each other.

The principles and mechanisms of protein folding were one of the major research topics and achievements of biochemical research in the last century. For decades, Anfinsen’s model, which explained protein structure by thermodynamic principles applying to the polypeptide’s inherent amino acid sequence (1), was to be found in the introductory sections of all textbooks in protein biochemistry. According to Anfinsen’s thermodynamic hypothesis, the structure with the lowest conformational Gibbs free energy was finally taken by each single polypeptide due to a thermodynamic and stereochemical selection for side chain relations that form most stable and effective enzymes or structural proteins (1). Beyond this individual selection for the energetically most optimized conformation, evolution also selected for amino acid sequences that energetically allowed the smoothest and most “frustration-free” folding processes via a thermodynamic “folding funnel” (1–3).

Whereas Anfinsen’s model preferred the side chain elements as preferential organizing structures, recent hypotheses have inversely proposed the backbone hydrogen bonds as the driving force behind protein folding (4). According to the former theory, the finally folded protein was assumed to attain a single defined structure and shape (1, 4), and the unfolded conditions were described as being represented by a structureless statistical coil with nearly indefinite conformations – a so-called “featureless energy landscape” (4). The latter model assumes that a protein selects during its folding process from a limited repertoire of stable scaffolds of backbone hydrogen bond-satisfied α-helices and β-strands (4). This also implies that unfolded proteins are not structureless, shoelace-like linear amino acid alignments as often depicted in cartoons for graphical reasons, but actually, at least in part, retain discrete and stable scaffolds.

Once the protein has attained its final conformation, the problem of stabilizing this structure arises. Hydrophobic interactions that press non-polar side chains into the center of the protein are assumed to be a major force in protein stabilization (5, 6). At the protein surface, polar interactions, mainly by hydrogen bonds of polar side chains and backbone structure, are assumed to be of similar importance (6). Salt bridges and covalent disulfide bonds were identified as further forces supporting the stability of proteins (6). Accordingly, all conditions that interfere with these stabilizing forces, including extreme temperature, salt concentrations, and redox conditions, may lead to protein misfolding.

Another aspect that must be taken into account when studying protein folding relates to the very different conditions found in viable cells when compared to test tube conditions. Considering the life-cycle of a protein, each protein begins as a growing polypeptide chain protruding from the ribosomal exit tunnel and with several of its future interacting amino acid binding partners not even yet attached to the growing chain of the nascent polymer. In these ribosomal exit tunnels, first molecular interactions and helical structures are formed, and evidence exists to support the notion that the speed of translation is regulated by slow translating codon sequences just to optimize these first folding processes (7). After leaving the ribosomal tunnel, nascent polypeptides are also directly welcomed by chaperoning protein complexes, which facilitate and further guide the folding process of newly synthesized proteins (8). It is believed that a high percentage of nascent proteins are subject to immediate degradation due to early folding errors (9). Since many nascent proteins are synthesized in parallel at polysomes, the temporal and spatial proximity of unfolded peptides brings the additional risk of protein aggregation (10). Moreover, as mentioned above, even incomplete folding intermediates and partially folded states may form energetically but not physiologically active metastable structures (11, 12). An immediate, perinatal guidance and chaperoning of newborn proteins is therefore essential to creating functional, integrative proteins and to avoiding misfolded, function-less polypeptides with potentially cytotoxic features.

Since protein structure and function are coupled, misfolded proteins are, at first, loss-of-function proteins that might reduce cell viability, in particular when generated in larger quantities. A more dangerous feature of misfolded proteins, however, lies in their strong tendency toward abnormal protein–protein interactions or aggregations, which is reflected by the involvement of misfolded proteins and their aggregates in several amyloidotic diseases, including neurodegenerative syndromes such as Alzheimer’s disease and Parkinson’s disease (13, 14). The fact that several of these intracellular and extracellular protein aggregates contain β-sheet-like structures and form filamentous structures also supports the notion that misfolded proteins are not necessarily structureless protein coils or unspecific aggregates, at least when they are formed by homogenous proteins as in the case of several neurodegenerative diseases (13). Paradoxically, these larger aggregates appear to reflect a cell protective mechanism so as to sequester or segregate smaller, but highly reactive, nucleation cores of condensing protein aggregates (13).

Unspecific hydrophobic interactions, in particular, have been held responsible for protein aggregations that form when terminally folded proteins lose their native conformation and expose buried hydrophobic side chains on their surface (15, 16). These hydrophobic interactions are also believed to be the most problematic issues with newly synthesized polypeptides on single ribosomes or polysomes (12). Once exposed to the surface, the hydrophobic structures will quickly find possible interaction partners. The intracellular milieu can be regarded as a “crowded environment” (17), fully packed with proteins in close contact and near to their solubility limit (8, 12). Thus, misfolded proteins not only aggregate among each other but may also attach to normal native proteins and inhibit their function and activity. Since such misfolding effects and interactions can also include nuclear DNA replication and repair enzymes (18), misfolded proteins may not only exert proteotoxic but also genotoxic effects, thereby endangering the entire cellular “interactome” (19) by interfering both with the integrity of the proteome (proteostasis) and the genome. Therefore, a misfolded protein is not simply a loss-of-function protein but also a promiscuous little villain that might act like a free radical, exerting uncontrolled danger to the cell.

The way in which cells deal with misfolded proteins strongly depends on the nature, strength, length, and location of the damage induced by the various insults. Management of misfolded proteins can be achieved by heat shock protein (HSP)-mediated protein renaturation (repair); proteasomal, lysosomal, or autophagosomal degradation (recycling); intracellular disposal (aggregation); or – in its last consequence if overwhelmed – by programed cell death (despair). In the following paragraphs, the cellular management of misfolded proteins is described and therapeutic options to induce misfolded proteins in cancer cells are presented.

Hsp90 and Hsp90 Inhibitors

The best-known and evolutionarily most-conserved mechanism to protect against protein misfolding is the binding and refolding process mediated by so-called heat shock proteins (HSPs). HSPs recognize unfolded or misfolded proteins and facilitate their restructuring in either an ATP-dependent (large HSPs) or energy-independent manner (low weight HSPs). HSP of 90 kDa (hsp90) is a constitutively expressed HSP and is regarded as the most common and abundantly expressed HSP in eukaryotic cells (20, 21). Although commonly referred to as hsp90, it consists of a variety of isoforms that are encoding for cytosolic (hsp90α1, α2, β), mitochondrial (TRAP1), or endoplasmic reticulum (ER)-resident (GRP94) forms. Its primary function is less that of a stress response protein and more to bind to a certain group of client proteins unable to maintain a stable configuration without being assisted by hsp90 (20, 22, 23). Steroid hormone receptors (estrogen receptor, glucocorticoid receptor), cell cycle regulatory proteins (CDK4, cyclin D, polo-like kinase), and growth factor receptors and their downstream targets (epidermal growth factor receptor 1, HER2, AKT) are among the best-studied client proteins of hsp90 (20–22). Also, several cancer-specific mutations generating otherwise instable oncoproteins, such as mutant p53 or bcr-abl, rely on hsp90 chaperoning to keep them in a soluble form, thereby facilitating the extravagant but vulnerable “malignant lifestyle” of hsp90-addicted cancer cells (21, 24). Accordingly, hsp90 has been assumed to be a prominent target, in particular for hormone-responsive and growth factor receptor amplification-dependent cancer types.

The microbial antibiotics geldanamycin and radicicol are the prototypes of hsp90 inhibitors. Based on intolerable toxicity, these molecules had to be chemically modified for application in humans, and most of the ongoing clinical studies with hsp90 inhibitors are aimed at identifying semi-synthetic derivatives of these lead compounds with an acceptable risk profile. Unfortunately, most recent studies using geldanamycin derivatives have provided disappointing results because of toxicities and insufficient efficacy (22, 25–27). Studies with radicicol (resorcinol) derivatives, in particular with ganetespib, appear to be more promising because of fewer adverse effects (22, 25–27). Liver and ocular (retinal) toxicities have been described as main adverse effects of hsp90 inhibition, and appeared to be experienced less with ganetespib than with most of the first generation hsp90 inhibitors (28).

Since both geldanamycin and radicicol target the highly conserved and unique ATP-binding domain of hsp90, new synthetic inhibitors have also been generated by rational drug design (22, 25–27). However, none of the various natural or synthetic hsp90 inhibitors under investigation have yet provided convincing clinical data, and future studies will show whether hsp90 can eventually be added to the list of effective cancer targets.

Hsp70, Hsp40, Hsp27, and HSF1

Hsp90 is assisted by several other HSPs and non-chaperoning co-factors, finally forming a large protein complex that recruits and releases client proteins in an energy-dependent manner (21, 22, 29). Client proteins for hsp90 are first bound to hsp70, which transfers the prospective client to hsp90 through the mediating help of an hsp70–hsp90 organizing protein (HOP). Binding of potential hsp90 client proteins to hsp70 is facilitated by its co-chaperone hsp40 (23, 30). Exposed hydrophobic amino acids, the typical feature of misfolded proteins, have been described as the main recognition signal for hsp70 proteins (15, 16, 31). Hsp70 proteins are not only supporter proteins for hsp90 but also represent a large chaperone family capable of acting independently of hsp90 and that can be found in all cellular compartments, including cytosol and nucleus (hsp70, hsp72, hsc70), mitochondria (GRP75 = mortalin), and the ER (GRP78 = BiP). Hsp70 chaperones may act on misfolded or nascent proteins either as “holders” or “folders” (31), which means that they prevent protein aggregation either by sheltering these aggregation-prone protein intermediates or by allowing these proteins to fold/refold into their native form in an assisted mechanism within a protected environment (31). Hsc70 (HSPA8) is a constitutively expressed major hsp70 isoform that is an essential factor for normal protein homeostasis even in unstressed cells (16). Misfolded proteins can also be destined by hsp70 proteins for their ultimate degradation. Proteins that expose KFERQ amino acid motifs on their surface during their unfolding process are preferentially bound by hsc70 and can be directed to lysosomes in a process called chaperone-mediated autophagy (CMA) (32, 33). In another mechanism of targeted protein degradation, interaction of hsc70 with the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein) leads to ubiquitination of misfolded proteins and thus their destination of the ubiquitin-proteasome protein degradation pathway (34, 35). Since hsc70 is essential for normal protein homeostasis and its knock-out is lethal in mice (16, 36), hsc70 inhibition might not be an optimal target for cancer-specific induction of misfolded proteins. This contrasts with the inducible forms of hsp70 such as hsp72 (HSPA1), which are upregulated in a cell stress-specific manner and are often found to be constitutively overexpressed in cancer tissues (16, 36). Transcriptional activation of these inducible HSPs is mediated by the heat shock factor 1 (HSF1), which also regulates expression of hsp40 and the small HSP hsp27 by sharing a common promoter consensus sequence (heat shock response element) for HSF1 binding (37). HSF1 was also found to be constitutively activated in cancer tissues, modulating several cell cycle- and apoptosis-related pathways via its target genes (38–40). HSF1 itself is kept inactive in the cytosol by binding to hsp90, and the recruitment of hsp90 to misfolded proteins is considered a main activation mechanism to release monomeric HSF1 for its subsequent trimerization, post-translational activation, and nuclear translocation (24, 41). Also, since hsp90 inhibition causes hsp70 induction by HSF1 activation as a compensatory feed-back mechanism (24), combined inhibition of hsp90 and hsp70, or of hsp90 and HSF1 might be a more effective therapeutic approach for cancer treatment than single HSP targeting alone.

Indeed, several small-molecule inhibitors and aptamers for hsp70, hsp40, and hsp27 have been designed (16, 42–44), but most of them remain in pre-clinical development, or are either not applicable in humans or associated with intolerable side effects (16, 42–44). Notably, the natural bioflavonoid quercetin was shown to inhibit phosphorylation and transcriptional activity of the heat shock transcription factor HSF1, thus reducing HSP expression at its most basal level (45–48). This HSP and HSF1 inhibition may also contribute to the observed cancer-preventing effects of a flavonoid-rich diet, which includes fruits and vegetables. However, due to their low bioavailability, the concentrations of flavonoids needed to induce direct cytotoxic effects in cancer cells for (chemo-)therapeutic reasons are obviously not achievable in humans, even when applied as nutritional supplements (49). More effective and clinically more easily applicable inhibitors of HSF1 are therefore urgently sought. Promising HSF1 targeting strategies are currently under development, although are apparently not yet suited for clinical applications (24, 50, 51).

SP Williams Comment:

There is a new hsp90- inhibitor, ganetespib, which is active against ovarian cancer in vitro and in vivo. Clinical trials are looking at this in cisplatin refractory cases. This was identified by a network analysis from a previous siRNA screen on ovarian cancer cells for pathways related to growth inhibition in an effort to find possible targets against CP resistance. The reference ishttp://www.researchgate.net/publication/253647952_Network_analysis_identifies_an_HSP90-central_hub_susceptible_in_ovarian_cancer

Protein Ubiquitination and Proteasomal Degradation

Ubiquitin is a 76 amino acid polypeptide that can covalently be attached via its carboxy-terminus to free (lysyl) amino groups of proteins. Ubiquitination of proteins generates a cellular recognition motif that is involved in various functions ranging from transcription factor and protein kinase activation to DNA repair and protein degradation – depending on the extent and exact location of this post-translational modification (52, 53). Monoubiquitination of peptides of more than 20 amino acids was found to be a minimal requirement for protein degradation, but the canonical fourfold (poly-)ubiquitination with three further lysine (K48) side chain-linked ubiquitins appears to be most apt for an effective and rapid substrate recognition by the proteasome (54). This canonical polyubiquitin structure, as well as several other mixed polyubiquitin structures, can be recognized by the external 19S subunits of the 26S proteasome complex (54, 55). Prior to degradation of ubiquitinated proteins by the proteasomal 20S core subunit, the attached ubiquitin chains are released by the external 19S subunits for recycling, although they can also be co-degraded by the proteasome (56). After first passing the 19S subunit, the proteasomal target proteins are then unfolded in an energy-dependent manner and introduced into the narrow enzymatic cavity of proteasome for degradation. The barrel-shaped 20S proteasomal core complex contains three different proteolytic activities in duplicate (β1: caspase-like-, β2: tryptic-, and β5: chymotryptic activity), which initiate an efficient cleavage of the proteasomal target proteins into smaller peptides (57).

It is important to note that specific ubiquitination and ensuing proteasomal degradation is not an exclusive degradation mechanism of misfolded proteins but is also used to regulate the expression level of several native cell cycle regulatory proteins [cyclins, proliferating cell nuclear antigen (PCNA), p53], signaling pathway molecules (β-catenin, IκB), and survival factors (mcl-1) during the course of normal protein homeostasis and cell cycle progression (53, 55, 57, 58). Moreover, proteasomes are involved in protein maturation, including the processing and maturation of the NF-κB transcription factor subunit p50 and the drug-resistant protein MDR1 (57). Therefore, targeting proteasomal activity has not only been of interest for the generation of misfolded, cytotoxic proteins but also for interfering with the expression of proteins involved in several hallmarks of cancer, including cell cycle progression, signal transduction, and apoptosis.

Proteasome Inhibitors

Bortezomib (PS-341, Velcade ™) has long been known as a paragon of a clinically applicable proteasome inhibitor. Bortezomib has been approved for the treatment of multiple myeloma and mantle cell lymphoma (55, 59, 60). The great expectations of transferring the success of bortezomib to non-hematological solid cancer types have unfortunately not yet been fulfilled. It has been suggested that the high antibody-producing capacity of myeloma cells and thus the need for an efficient proteasomal degradation system to cope with the recycling process of misfolded ER-generated antibodies [ER-associated degradation process (ERAD); see below] might contribute to the high sensitivity of myeloma cells to bortezomib (9, 60, 61). Originally, bortezomib was developed to inhibit the proteasomal degradation of the NF-κB inhibitor IκB, thus targeting the pro-inflammatory, but also cancer-promoting, effect of the NF-κB transcription factor (55, 60, 62). Recent insights indicate that the anti-tumoral effect of bortezomib is not only mediated by its NF-κB inhibitory activity but also by its ability to induce accumulation of misfolded proteins in the cytosol and the ER (60, 62–65). However, the use of bortezomib, even for highly sensitive multiple myeloma, is limited by its strong tendency to induce a proteasome inhibition-independent peripheral neuropathy by acting on neuronal mitochondria (61). Since neurodegenerative diseases are associated with protein misfolding and aggregation, the neuropathological effects of bortezomib might also be assumed to be mediated by the possible proteotoxic effects of bortezomib in neuronal cells. However, although proteasome inhibitor-induced neurodegeneration and inclusion body formation have been described in animal models, similarities between proteasome inhibitor-induced neurodegeneration and Parkinson’s disease-like histopathological features could not be established (66).

Table 1 Drugs described in this review and their mechanism of action (MOA), status of approval, and main adverse effects.

Aggresome Formation and Re-Solubilization: Role of HDAC6

As depicted above, proteasome and HSP inhibition will eventually lead to the accumulation of misfolded and polyubiquitinated proteins. Based on their inherent cohesive properties mediated by their exposed hydrophobic surfaces, both ubiquitinated and non-ubiquitinated misfolded proteins tend to adhere as small aggregates (Figure ​(Figure1).1). Individual ubiquitinated proteins and small ubiquitinated aggregates can be recognized by specific ubiquitin-binding proteins such as HDAC6 via its zinc finger ubiquitin-binding domain. HDAC6 is an unusual histone deacetylase located in the cytosol that regulates microtubule acetylation and is also able to bind ubiquitinated proteins. Based on HDAC6’s additional ability to bind to microtubule motor protein dynein, these aggregates are actively transported along the microtubular system into perinuclear aggregates around the microtubule organizing center (MTOC) (108384). Recognition of small, scattered ubiquitinated aggregates by HDAC6 has been described as being mediated by unanchored ubiquitin chains, which are generated by aggregate-attached ubiquitin ligase ataxin-3 (85). Whereas proteasomal target proteins are primarily tagged by K-48 (lysine-48) linked ubiquitins; K-63 linked ubiquitin chains appear to be a preferential modification for aggresomal targeting by HDAC6 and were assumed to mediate a redirection from proteasomal degradation to aggresome formation in the case of proteasomal inhibition or overload (86). Accordingly, aggresome formation is not an unspecific protein aggregation but a specific, ubiquitin-controlled sorting process. Furthermore, these aggresomes consist not only of misfolded and deposited proteins but have also been shown to contain a large amount of associated HSPs and ubiquitin-binding proteins, including HDAC6 [Figure ​[Figure1;1; (108384)]. Aggresomes contain, and are also surrounded by, large numbers of proteasomes (108384), which help to resolubilize these aggregates not only through their intrinsic proteasomal digestion but also by generating unanchored K63-branched polyubiquitin chains, which then stimulate HDAC6-mediated autophagy, another cellular disposal mechanism in involving HDAC6 (87). Notably, HDAC6 has also been shown to control further maturation of autophagic vesicles by stimulating autophagosome–lysosome fusion (Figure ​(Figure1)1) in a manner different from the normal autophagosome–lysosome fusion process (88).

Figure 1

Drugs that inhibit folding or disposal of misfolded proteins. Native mature proteins, nascent proteins, or misfolded proteins can be prevented from folding or refolding by small and large heat shock protein inhibitors, of which the hsp90 inhibitors based 

The HDAC6 multitalent also exerts its deacetylase activity on hsp90 and modifies hsp90 client binding by facilitating its chaperoning of steroid hormone receptors and HSF1 (8991). Recruitment of HDAC6 to ubiquitinated proteins leads to the dissociation of the repressive HDAC6/hsp90/HSF1 complex (91) and allows the release of transcriptionally active HSF1 to the nucleus. The engagement of HDAC6 at the aggresome–autophagy pathway hence also indirectly facilitates HSF1 activity. p97/VCP (valosin-containing protein), another binding partner of HDAC6 and itself a multi-interactive, ATP-dependent chaperone (9294), is assumed to be involved not only in the specific separation of hsp90 and HSF1 by its “segregase” activity but also in the binding and remodeling of polyubiquitinated proteins before their delivery to the proteasome (9395). Additionally, p97/VCP dissociates polyubiquitinated proteins bound to HDAC6 (91). Accumulation of polyubiquitinated proteins thus leads to HDAC6-dependent HSF1 activation and HSP induction, p97/VCP-dependent recruitment and “preparation” of polyubiquitinated proteins to proteasomes, and, in the case of pharmacological proteasome inhibition or physiological overload, to an HDAC6-dependent detoxification of polyubiquitinated proteins by the aggresome/autophagy pathway.

Pharmacological Inhibition of Aggresome Formation: HDAC6 Inhibitors

The central involvement of HDAC6 in aggresome formation and clearance makes HDAC6 one of the most interesting druggable targets for the induction of proteotoxicity in cancer cells. Also, HDAC6 has been found to be overexpressed in various cancer tissues, associated with advanced cancer stages and increased neoplastic transformation (96). Several pan-histone deacetylase inhibitors have been developed and tested in clinical studies for a variety of diseases, including different types of cancer (9798). Although hematological malignancies responded best to most of the already clinically tested pan-histone deacetylase inhibitors, the efficacy on solid cancer types was disappointingly poor and also associated with intolerable side effects (98). The unforeseeable pleiotropic epigenetic mechanism caused by non-specific (nuclear) histone deacetylase inhibitors may also limit their application for use in cancer treatment or HDAC6 inhibition, and has led to the search for selective HDAC6 inhibitors with no inhibitory effects on transcription modifying histone deacetylases. Through screening of small molecules under the rationale of selecting for tubulin deacetylase inhibitors with no cross-reactive histone deacetylase activity, the HDAC6 inhibitor tubacin was identified, and suggested for use in the treatment of neurodegenerative diseases or to reduce cancer cell migration and angiogenesis (99). Hideshima et al. then proved the hypothesis that the combined use of bortezomib with tubacin leads to an accumulation of non-disposed cytotoxic proteins and aggregates in cancer cells (100). Indeed, a synergistic effect of these two drugs against multiple myeloma cells could be observed with no detectable toxic effect on peripheral blood mononuclear cells (100). This and follow-up studies also revealed the efficacy of tubacin as a single agent against leukemia cells (100101) and a chemo-sensitizing effect on cytotoxic drugs in breast- and prostate-cancer cells (102).

Endoplasmic Reticulum Stress

Besides the cytosol, the ER is a major site for protein synthesis, in particular for those proteins destined for extracellular secretion, the cell membrane, or their retention within the endomembrane system. At the rough ER, nascent proteins are co-translationally transported across the ER membrane into the ER lumen (107), where they immediately encounter ER-resident chaperones, most prominently represented by hsp70 family member BiP/GRP78 and hsp90 family member GRP94 to help proper protein folding (15108). Most of these proteins also undergo post-translational modifications, including N- or O-linked glycosylation or protein disulfide bridge-building (109110), thereby adding further mechanisms of protein stabilization but also challenges for proper protein folding.

Similar to the situation in cytosolic protein biosynthesis, a large proportion of nascent proteins in the ER are assumed to misfold and to go “off-pathway” even under normal physiological conditions. Furthermore, the ER lumen, narrowly sandwiched between two phospholipid membranes, has been described as an even more densely crowded environment than the cytosol, additionally facilitating unspecific protein attachments and aggregations (15). Since, with the exception of bulk reticulophagy, the lumen of the ER contains no endogenous protein degradation system, and the anterograde transport of ER proteins to the Golgi, lysosomes, endosomes, or the extracellular environment requires properly folded proteins, a retrograde transport of ER proteins into the cytosol remains the only possible mechanism of preventing misfolded protein accumulation within the ER. In this ERAD, misfolded proteins are re-exported across the ER membrane by a specific multi protein complex, ubiquitinated by ER membrane-integrated ubiquitin ligases, and finally become degraded by cytosolic proteasomes (111112). Notably, association of the cytosolic p97/VCP protein, an important interacting partner with HDAC6, has also been described as being an essential factor for driving the luminal proteins through the ER membrane pore complex into the cytosol (92,112).

Accordingly, all agents and conditions that interfere with these folding, maturation, and retranslocation processes can lead to protein misfolding and aggregation within this sensitive organelle. Chemicals that act as glycosylation inhibitors (tunicamycin), calcium ionophore inhibitors (A23187, thapsigargin), heavy metal ions (cadmium, lead), reducing agents (dithiothreitol), as well as conditions like hypoxia or oxidative stress, all lead to a phenomenon called ER stress (113116). In the ER-stress response, a triad of ER membrane-resident signaling receptors and transducers, IRE1, ATF6, and PERK1, become activated and lead to the transcriptional activation of cytosolic and ER-resident chaperones to cope with the increasing number of misfolded proteins. Induction of autophagy (reticulophagy; ER-phagy) may also occur and supports the removal of damaged regions of the ER (117). Under very intensive or even unmanageable ER-stress conditions, a variety of pro-apoptotic pathways ensue, including CHOP induction, c-JUN-kinase activation, and caspase cleavage (118120), which eventually prevails over the cytoprotective arm of the ER-stress response and may lead to apoptosis. Targeting of protein folding within the ER is therefore a very promising strategy to induce apoptosis in cancer cells, in particular in those cancer cells characterized by an unphysiologically high protein secretion rate, such as, for example, multiple myeloma cells. Whereas the above-mentioned drugs such as tunicamycin or thapsigargin are valuable tools for cell biology studies, they display unacceptable toxicities in humans and are not suited for therapeutic applications. Interestingly, several already established drugs used for non-cancerous diseases have been described as inducing ER stress at pharmacologically relevant concentrations in humans as an off-target effect (113116). The non-steroidal anti-inflammatory COX-2 inhibitor celecoxib is an approved drug to treat various forms of arthritis and pain, but has also been described as exerting ER stress by functioning as a SERCA (sarco/ER Ca2+ ATPase) inhibitor (113116). However, although well tolerated in humans, the ER-stress-inducing ability of celecoxib seems to be weaker than that of direct SERCA inhibitors such as thapsigargin, and the usefulness of celecoxib against advanced cancer has been questioned (116). Various HIV protease inhibitors have been described as inducing ER stress in human tissue cells as a side effect (121123). In particular the HIV drugs lopinavir, saquinavir, and nelfinavir appear to be potent inducers of the ER-stress reaction, leading to a focused interest in these drugs for the induction of ER stress and apoptosis in cancer cells (116124128). In fact, with currently over 27 clinical studies in cancer patients2, nelfinavir, either used as a single agent or in combination therapy, is on the list of the most promising prospective candidates to induce selective proteotoxicity in cancer cells at pharmacologically relevant concentrations. Although the exact mechanism by which nelfinavir induces ER stress is not yet clear, it was shown that nelfinavir causes the upregulation of cytosolic and ER-resident HSPs, and induces apoptosis in cancer cells associated with caspase activation and induction of the pro-apoptotic transcription factor CHOP (125126). Nelfinavir was also shown to be combinable with bortezomib to enhance its activity on cancer cells (129). Since the retrograde transport of misfolded ER proteins is inhibited by the p97/VCP inhibitor eeyarestatin (130131), we recently tested the combination of eeyarestatin with nelfinavir but found no synergistic effect between these two agents in cervical cancer cells (132). In contrast, eeyarestatin markedly sensitized cervical cancer cells to bortezomib treatment (132), which was also observed in preceding studies in which eeyarestatin was used to augment the ER-stress-inducing ability of bortezomib in leukemia cells (131).

Induction of proteotoxicity through the accumulation of misfolded proteins has evolved as a new treatment modality in the fight against cancer. Clinically approved drugs such as bortezomib and carfilzomib provide evidence of the functionality of this approach. Newly developed agents like the HDAC6 inhibitor ACY-1215 or repurposed drugs like nelfinavir or disulfiram are currently being tested in clinical trials with cancer patients and will hopefully further broaden our arsenal of anti-cancer drugs. Notably, most proteotoxic agents that have been approved or are in clinical trials target the ubiquitin-proteasome-system (UPS) and are mainly effective in multiple myeloma cells, which rely on a functional ER/ERAD/UPS for excessive and proper antibody production. Similarly, it can be assumed that other cancer cell types with a marked secretory phenotype may also be affected by ER/ERAD/UPS inhibitors. In accordance with this notion, a recent dose-escalating Phase Ia study with nelfinavir as a single agent, that covered a large variety of solid cancer entities, revealed response rates primarily in patients with neuroendocrine tumors (140). In most other solid cancer types, however, the chemo-sensitizing or combination effects of proteotoxic drugs may prevail, and have become the focus of an increasing number of very promising clinical and pre-clinical studies.

7.3.4 Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

Friend or Foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

Chen S1Zhang D2

FEBS Open Bio. 2015 Jan 30; 5:91-8
http://dx.doi.org:/10.1016/j.fob.2015.01.004

The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer.

The endoplasmic reticulum (ER) is found in all eukaryotic cells and is complex membrane system constituting of an extensively interlinked network of membranous tubules, sacs and cisternae. It is the main subcellular organelle that transports different molecules to their subcellular destinations or to the cell surface [10,85].

The ER contains a number of molecular chaperones involved in protein synthesis and maturation. Of the ER chaperones, protein disulfide isomerase (PDI)-like proteins are characterized by the presence of a thioredoxin domain and function as oxido-reductases, isomerases and chaperones [33]. ERp29 lacks the active-site double-cysteine (CxxC) motif and does not belong to the redox-active PDIs [5,47]. ERp29 is recognized as a characterized resident of the cellular ER, and it is expressed ubiquitously and abundantly in mammalian tissues [50]. Protein structural analysis showed that ERp29 consists of N-terminal and C-terminal domains [5]: N-terminal domain involves dimerization whereas the C-terminal domain is essential for substrate binding and secretion [78]. The biological function of ERp29 in protein secretion has been well established in cells [8,63,67].

ERp29 is proposed to be involved in the unfolded protein response (UPR) as a factor facilitating transport of synthesized secretory proteins from the ER to Golgi [83]. The expression of ERp29 was demonstrated to be increased in cells exposed to radiation [108], sperm cells undergoing maturation [42,107], and in certain cell types both under the pharmacologically induced UPR and under the physiological conditions (e.g., lactation, differentiation of thyroid cells) [66,82]. Under ER stress, ERp29 translocates the precursor protein p90ATF6 from the ER to Golgi where it is cleaved to be a mature and active form p50ATF by protease (S1P and S2P) [48]. In most cases, ERp29 interacts with BiP/GRP78 to exert its function under ER stress [65].

ERp29 is considered to be a key player in both viral unfolding and secretion [63,67,77,78] Recent studies have also demonstrated that ERp29 is involved in intercellular communication by stabilizing the monomeric gap junction protein connexin43 [27] and trafficking of cystic fibrosis transmembrane conductance regulator to the plasma membrane in cystic fibrosis and non-cystic fibrosis epithelial cells [90]. It was recently reported that ERp29 directs epithelial Na(+) channel (ENaC) toward the Golgi, where it undergoes cleavage during its biogenesis and trafficking to the apical membrane [40]. ERp29 expression protects axotomized neurons from apoptosis and promotes neuronal regeneration [111]. These studies indicate a broad biological function of ERp29 in cells.

Recent studies demonstrated a tumor suppressive function of ERp29 in cancer. It was found that ERp29 expression inhibited tumor formation in mice [4,87] and the level of ERp29 in primary tumors is inversely associated with tumor development in breast, lung and gallbladder cancer [4,29].

However, its expression is also responsible for cancer cell survival against genotoxic stress induced by doxorubicin and radiation [34,76,109]. The most recent studies demonstrate other important roles of ERp29 in cancer cells such as the induction of mesenchymal–epithelial transition (MET) and epithelial morphogenesis [3,4]. MET is considered as an important process of transdifferentiation and restoration of epithelial phenotype during distant metastasis [23,52]. These findings implicate ERp29 in promoting the survival of cancer cells and also metastasis. Hence, the current review focuses on the novel functions of ERp29 and discusses its pathological importance as a “friend or foe” in epithelial cancer.

2. ERp29 regulates mesenchymal–epithelial transition

2.1. Epithelial–mesenchymal transition (EMT) and MET

The EMT is an essential process during embryogenesis [6] and tumor development [43,96]. The pathological conditions such as inflammation, organ fibrosis and cancer progression facilitate EMT [16]. The epithelial cells after undergoing EMT show typical features characterized as: (1) loss of adherens junctions (AJs) and tight junctions (TJs) and apical–basal polarity; (2) cytoskeletal reorganization and distribution; and (3) gain of aggressive phenotype of migration and invasion [98]. Therefore, EMT has been considered to be an important process in cancer progression and its pathological activation during tumor development induces primary tumor cells to metastasize [95]. However, recent studies showed that the EMT status was not unanimously correlated with poorer survival in cancer patients examined [92].

In addition to EMT in epithelial cells, mesenchymal-like cells have capability to regain a fully differentiated epithelial phenotype via the MET [6,35]. The key feature of MET is defined as a process of transdifferentiation of mesenchymal-like cells to polarized epithelial-like cells [23,52] and mediates the establishment of distant metastatic tumors at secondary sites [22]. Recent studies demonstrated that distant metastases in breast cancer expressed an equal or stronger E-cadherin signal than the respective primary tumors and the re-expression of E-cadherin was independent of the E-cadherin status of the primary tumors [58]. Similarly, it was found that E-cadherin is re-expressed in bone metastasis or distant metastatic tumors arising from E-cadherin-negative poorly differentiated primary breast carcinoma [81], or from E-cadherin-low primary tumors [25]. In prostate and bladder cancer cells, the nonmetastatic mesenchymal-like cells were interacted with metastatic epithelial-like cells to accelerate their metastatic colonization [20]. It is, therefore, suggested that the EMT/MET work co-operatively in driving metastasis.

2.2. Molecular regulation of EMT/MET

E-cadherin is considered to be a key molecule that provides the physical structure for both cell–cell attachment and recruitment of signaling complexes [75]. Loss of E-cadherin is a hallmark of EMT [53]. Therefore, characterizing transcriptional regulators of E-cadherin expression during EMT/MET has provided important insights into the molecular mechanisms underlying the loss of cell–cell adhesion and the acquisition of migratory properties during carcinoma progression [73].

Several known signaling pathways, such as those involving transforming growth factor-β (TGF-β), Notch, fibroblast growth factor and Wnt signaling pathways, have been shown to trigger epithelial dedifferentiation and EMT [28,97,110]. These signals repress transcription of epithelial genes, such as those encoding E-cadherin and cytokeratins, or activate transcription programs that facilitate fibroblast-like motility and invasion [73,97].

The involvement of microRNAs (miRNAs) in controlling EMT has been emphasized [11,12,18]. MiRNAs are small non-coding RNAs (∼23 nt) that silence gene expression by pairing to the 3′UTR of target mRNAs to cause their posttranscriptional repression [7]. MiRNAs can be characterized as “mesenchymal miRNA” and “epithelial miRNA” [68]. The “mesenchymal miRNA” plays an oncogenic role by promoting EMT in cancer cells. For instance, the well-known miR-21, miR-103/107 are EMT inducer by repressing Dicer and PTEN [44].

The miR-200 family has been shown to be major “epithelial miRNA” that regulate MET through silencing the EMT-transcriptional inducers ZEB1 and ZEB2 [13,17]. MiRNAs from this family are considered to be predisposing factors for cancer cell metastasis. For instance, the elevated levels of the epithelial miR-200 family in primary breast tumors associate with poorer outcomes and metastasis [57]. These findings support a potential role of “epithelial miRNAs” in MET to promote metastatic colonization [15].

2.3. ERp29 promotes MET in breast cancer

The role of ERp29 in regulating MET has been established in basal-like MDA-MB-231 breast cancer cells. It is known that myosin light chain (MLC) phosphorylation initiates to myosin-driven contraction, leading to reorganization of the actin cytoskeleton and formation of stress fibers [55,56]. ERp29 expression in this type of cells markedly reduced the level of phosphorylated MLC [3]. These results indicate that ERp29 regulates cortical actin formation through a mechanism involved in MLC phosphorylation (Fig. 1). In addition to the phenotypic change, ERp29 expression leads to: expression and membranous localization of epithelial cell marker E-cadherin; expression of epithelial differentiation marker cytokeratin 19; and loss of the mesenchymal cell marker vimentin and fibronectin [3] (Fig. 1). In contrast, knockdown of ERp29 in epithelial MCF-7 cells promotes acquisition of EMT traits including fibroblast-like phenotype, enhanced cell spreading, decreased expression of E-cadherin and increased expression of vimentin [3,4]. These findings further substantiate a role of ERp29 in modulating MET in breast cancer cells.

Fig. 1  ERp29 triggers mesenchymal–epithelial transition. Exogenous expression of ERp29 in mesenchymal MDA-MB-231 breast cancer cells inhibits stress fiber formation by suppressing MLC phosphorylation. In addition, the overexpressed ERp29 decreases the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329646/bin/gr1.gif

2.4. ERp29 targets E-cadherin transcription repressors

The transcription repressors such as Snai1, Slug, ZEB1/2 and Twist have been considered to be the main regulators for E-cadherin expression [19,26,32]. Mechanistic studies revealed that ERp29 expression significantly down-regulated transcription of these repressors, leading to their reduced nuclear expression in MDA-MB-231 cells [3,4] (Fig. 2). Consistent with this, the extracellular signal-regulated kinase (ERK) pathway which is an important up-stream regulator of Slug and Ets1 was highly inhibited [4]. Apparently, ERp29 up-regulates the expressions of E-cadherin transcription repressors through repressing ERK pathway. Interestingly, ERp29 over-expression in basal-like BT549 cells resulted in incomplete MET and did not significantly affect the mRNA or protein expression of Snai1, ZEB2 and Twist, but increased the protein expression of Slug [3]. The differential regulation of these transcriptional repressors of E-cadherin by ERp29 in these two cell-types may occur in a cell-context-dependent manner.

Fig. 2  ERp29 decreases the expression of EMT inducers to promote MET. Exogenous expression of ERp29 in mesenchymal MDA-MB-231 breast cancer cells suppresses transcription and protein expression of E-cadherin transcription repressors (e.g., ZEB2, SNAI1 and Twist), ..

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329646/bin/gr2.gif

2.5. ERp29 antagonizes Wnt/ β-catenin signaling

Wnt proteins are a family of highly conserved secreted cysteine-rich glycoproteins. The Wnt pathway is activated via a binding of a family member to a frizzled receptor (Fzd) and the LDL-Receptor-related protein co-receptor (LRP5/6). There are three different cascades that are activated by Wnt proteins: namely canonical/β-catenin-dependent pathway and two non-canonical/β-catenin-independent pathways that include Wnt/Ca2+ and planar cell polarity [84]. Of note, the Wnt/β-catenin pathway has been extensively studied, due to its important role in cancer initiation and progression [79]. The presence of Wnt promotes formation of a Wnt–Fzd–LRP complex, recruitment of the cytoplasmic protein Disheveled (Dvl) to Fzd and the LRP phosphorylation-dependent recruitment of Axin to the membrane, thereby leading to release of β-catenin from membrane and accumulation in cytoplasm and nuclei. Nuclear β-catenin replaces TLE/Groucho co-repressors and recruits co-activators to activate expression of Wnt target genes. The most important genes regulated are those related to proliferation, such as Cyclin D1 and c-Myc [46,94], which are over-expressed in most β-catenin-dependent tumors. When β-catenin is absent in nucleus, the transcription factors T-cell factor/lymphoid enhancer factors (TCF/LEF) recruits co-repressors of the TLE/Groucho family and function as transcriptional repressors.

β-catenin is highly expressed in the nucleus of mesenchymal MDA-MB-231 cells. ERp29 over-expression in this type of cells led to translocation of nuclear β-catenin to membrane where it forms complex with E-cadherin [3] (Fig. 3). This causes a disruption of β-catenin/TCF/LEF complex and abolishes its transcription activity. Indeed, ERp29 significantly decreased the expression of cyclin D1/D2 [36], one of the downstream targets of activated Wnt/β-catenin signaling [94], indicating an inhibitory effect of ERp29 on this pathway. Meanwhile, expression of ERp29 in this cell type increased the nuclear expression of TCF3, a transcription factor regulating cancer cell differentiation while inhibiting self-renewal of cancer stem cells [102,106]. Hence, ERp29 may play dual functions in mesenchymal MDA-MB-231 breast cancer cells by: (1) suppressing activated Wnt/β-catenin signaling via β-catenin translocation; and (2) promoting cell differentiation via activating TCF3 (Fig. 3). Because β-catenin serves as a signaling hub for the Wnt pathway, it is particularly important to focus on β-catenin as the target of choice in Wnt-driven cancers. Though the mechanism by which ERp29 expression promotes the disassociation of β-catenin/TCF/LEF complex in MDA-MB-231 cells remains elusive, activating ERp29 expression may exert an inhibitory effect on the poorly differentiated, Wnt-driven tumors.

Fig. 3  ERp29 over-expression “turns-off” activated Wnt/β-catenin signaling. In mesenchymal MDA-MB-231 cells, high expression of nuclear β-catenin activates its downstream signaling involved in cell cycles and cancer stem cell 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329646/bin/gr3.gif

3. ERp29 regulates epithelial cell integrity

3.1. Cell adherens and tight junctions

Adherens junctions (AJs) and tight junctions (TJs) are composed of transmembrane proteins that adhere to similar proteins in the adjacent cell [69]. The transmembrane region of the TJs is composed mainly of claudins, tetraspan proteins with two extracellular loops [1]. AJs are mediated by Ca2+-dependent homophilic interactions of cadherins [71] which interact with cytoplasmic catenins that link the cadherin/catenin complex to the actin cytoskeleton [74].

The cytoplasmic domain of claudins in TJs interacts with occludin and several zona occludens proteins (ZO1-3) to form the plaque that associates with the cytoskeleton [99]. The AJs form and maintain intercellular adhesion, whereas the TJs serve as a diffusion barrier for solutes and define the boundary between apical and basolateral membrane domains [21]. The AJs and TJs are required for integrity of the epithelial phenotype, as well as for epithelial cells to function as a tissue [75].

The TJs are closely linked to the proper polarization of cells for the establishment of epithelial architecture[86]. During cancer development, epithelial cells lose the capability to form TJs and correct apico–basal polarity [59]. This subsequently causes the loss of contact inhibition of cell growth [91]. In addition, reduction of ZO-1 and occludin were found to be correlated with poorly defined differentiation, higher metastatic frequency and lower survival rates [49,64]. Hence, TJs proteins have a tumor suppressive function in cancer formation and progression.

3.2. Apical–basal cell polarity

The apical–basal polarity of epithelial cells in an epithelium is characterized by the presence of two specialized plasma membrane domains: namely, the apical surface and basolateral surface [30]. In general, the epithelial cell polarity is determined by three core complexes. These protein complexes include: (1) the partitioning-defective (PAR) complex; (2) the Crumbs (CRB) complex; and (3) the Scribble complex[2,30,45,51]. PAR complex is composed of two scaffold proteins (PAR6 and PAR3) and an atypical protein kinase C (aPKC) and is localized to the apical junction domain for the assembly of TJs [31,39]. The Crumbs complex is formed by the transmembrane protein Crumbs and the cytoplasmic scaffolding proteins such as the homologue of Drosophila Stardust (Pals1) and Pals-associated tight junction protein (Patj) and localizes to the apical [38]. The Scribble complex is comprised of three proteins, Scribble, Disc large (Dlg) and Lethal giant larvae (Lgl) and is localized in the basolateral domain of epithelial cells [100].

Fig. 4  ERp29 regulates epithelial cell morphogenesis. Over-expression of ERp29 in breast cancer cells induces the transition from a mesenchymal-like to epithelial-like phenotype and the restoration of tight junctions and cell polarity. Up-regulation and membrane 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329646/bin/gr4.gif

The current data from breast cancer cells supports the idea that ERp29 can function as a tumor suppressive protein, in terms of suppression of cell growth and primary tumor formation and inhibition of signaling pathways that facilitate EMT. Nevertheless, the significant role of ERp29 in cell survival against drugs, induction of cell differentiation and potential promotion of MET-related metastasis may lead us to re-assess its function in cancer progression, particularly in distant metastasis. Hence, it is important to explore in detail the ERp29’s role in cancer as a “friend or foe” and to elucidate its clinical significance in breast cancer and other epithelial cancers. Targeting ERp29 and/or its downstream molecules might be an alternative molecular therapeutic approach for chemo/radio-resistant metastatic cancer treatment

7.3.5 Putting together structures of epidermal growth factor receptors

Bessman NJ, Freed DM, Lemmon MA
Curr Opin Struct Biol. 2014 Dec; 29:95-101
http://dx.doi.org:/10.1016/j.sbi.2014.10.002

Highlights

  • Several studies suggest flexible linkage between extracellular and intracellular regions. • Others imply more rigid connections, required for allosteric regulation of dimers. • Interactions with membrane lipids play important roles in EGFR regulation. • Cellular studies suggest half-of-the-sites negative cooperativity for human EGFR.

Numerous crystal structures have been reported for the isolated extracellular region and tyrosine kinase domain of the epidermal growth factor receptor (EGFR) and its relatives, in different states of activation and bound to a variety of inhibitors used in cancer therapy. The next challenge is to put these structures together accurately in functional models of the intact receptor in its membrane environment. The intact EGFR has been studied using electron microscopy, chemical biology methods, biochemically, and computationally. The distinct approaches yield different impressions about the structural modes of communication between extracellular and intracellular regions. They highlight possible differences between ligands, and also underline the need to understand how the receptor interacts with the membrane itself.

http://ars.els-cdn.com/content/image/1-s2.0-S0959440X14001304-gr1.sml

http://ars.els-cdn.com/content/image/1-s2.0-S0959440X14001304-gr2.sml

Growth factor receptor tyrosine kinases (RTKs) such as the epidermal growth factor receptor (EGFR) have been the subjects of intense study for many years [1,2]. There are 58 RTKs in the deduced human
proteome, and all play key roles in regulating cellular processes such as proliferation, differentiation, cell survival and metabolism, cell migration, and cell cycle control [3].  Importantly, aberrant activation
of RTK signaling by mutation, gene amplification, gene translocation or other mechanisms has been causally linked to cancers, diabetes, inflammation, and other diseases. These observations have prompted
the development of many targeted therapies that inhibit RTKs such as EGFR [4], Kit, VEGFR, or their ligands — typically employing therapeutic antibodies [5] or small molecule tyrosine kinase inhibitors [6].
Following the initial discoveries for EGFR [7] and the platelet-derived growth factor receptor (PDGFR) [8] that ligand-stabilized dimers are essential for RTK signaling, structural studies over the past decade
or so have guided development of quite sophisticated mechanistic views[1]. Each RTK has a ligand-binding extracellular region (ECR) that is linked by a single transmembrane a-helix to an intracellular
tyrosine kinase domain (TKD). Structures of the isolated ECRs and TKDs from several RTKs point to surprising mechanistic diversity across the larger family [1]. Unliganded RTKs exist as an equilibrium
mixture of inactive monomers, inactive dimers and active dimers (Figure 1), except for the extreme case of the insulin receptor (IR), which is covalently dimerized [9]. Extracellular ligand can bind to monomers,
to inactive dimers, or to active dimers — in each case pushing the equilibria shown in Figure 1 towards the central ligand-bound active dimer. Thus, ligand binding can drive receptor dimerization (Figure 1,
upper), or can promote inactive-to-active conformational transitions in dimers (Figure 1, lower). Regardless of pathway, the intracellular TKD of the ligand-stabilized dimer becomes activated either through
trans-autophosphorylation or through induced allosteric changes [1,10]. Roles for other parts of the receptor in RTK activation, including the juxtamembrane (JM) and transmembrane (TM) segments, have
also become clearer. The key current challenge for the field is to assemble data from many studies of isolated RTK parts into coherent views of how the intact receptors are regulated in their native membranes.
We will focus here on recent efforts to do this for the EGFR (or ErbB receptor) family. The missing links in intact RTKs: flexible or rigid? A central goal in extrapolating to the intact RTKs from studies of
isolated soluble domains is to understand how the individual parts of the receptor communicate with one another. The methods that have been used to produce and study the isolated domains inevitably
yield the impression that inter-domain linkers are flexible and disordered. For example, extracellular juxtamembrane regions have typically only been observed as C-terminal extensions of  the soluble ECR.
Similarly, intracellular juxtamembrane regions have been encountered predominantly as N-terminal extensions of TKD constructs, or as short peptides. In each of these contexts, the JM regions are incomplete,
and may appear disordered and flexible simply because key structural restraints have been removed. Nonetheless, this possible artifact has strongly influenced thinking about linkages between the extracellular
and intracellular regions [11], and in turn about mechanisms of RTK signaling. Highly flexible linkages between extracellular and intracellular regions of RTKs are fully consistent with simpler ligand-induced
dimerization models for transmembrane signaling by RTKs. It is more difficult, however, to understand how subtle allosteric communication across the membrane could be achieved if the linkages are truly
flexible. For example, since flexible linkage implies structural independence of the extracellular and intracellular regions, it is difficult to envision how a transition from inactive to active dimer in Figure 1
could be controlled precisely by ligand without more rigid (or restricted) connections.

Recent experimental studies with intact — or nearly intact — EGFR differ in the impressions they provide about how flexibly or rigidly the extracellular and intracellular regions are linked. Springer’s laboratory used cysteine crosslinking and mutagenesis approaches to investigate this issue for EGFR expressed in Ba/F3 cells [12]. They were unable to identify any specific JM or TM region interfaces
that were required for EGFR signaling, leading them to argue that the linkage across the membrane is too flexible to transmit a specific orientation between the extracellular and intracellular regions.
Consistent with this, negative-stain electron microscopy studies of (nearly) full-length EGFR in dodecylmaltoside micelles showed that a given extracellular dimer can be linked to several different
arrangements of the intracellular kinase domain [13,14]. Similarly, dimers driven by inhibitor binding to the intracellular TKD could couple to multiple different ECR conformations [13]. Biochemical
studies are also consistent with such structural independence of the extracellular and intracellular  regions [15,16]. Contrasting with these observations, however, Schepartz and colleagues have
reported that different precise conformations within the EGFR intracellular region can be induced by distinct activating ligands [17]. They used a method called bipartite tetracysteine display that
reports on formation of a chemically detectable tetracysteine motif when two cysteine pairs come together at  the dimer  interface. EGF activation of the receptor led to formation of a  tetracysteine
motif that requires the intracellular JM helix  [18] shown in Figure 2a to form antiparallel coiled-coil dimers  (Figure 2b/c) as proposed by Kuriyan and colleagues [19,20]. Surprisingly, transforming
growth factor-a (TGFa),which also activates EGFR, did not bring these two cysteine pairs together in the same way — arguing that TGFa does not induce formation of the same intracellular antiparallel
coiled-coil. Instead, activation of EGFR with TGFa (but not EGF) stabilized an alternative tetracysteine motif, consistent with a different intracellular JM structure. Evidence for ‘inside-out’ signaling
in EGFR has also been reported, where alterations in the intracellular JM region directly influence allosteric EGF binding to the ECR of the intact receptor analyzed in CHO cells [21–23]. The contradictory
views of flexibility versus rigidity  in linkages between the domains leave the path to understanding the intact receptor unclear, although it seems  reasonable doubt that  the inactive dimers known to
form in the absence of ligand [24–26] could be regulated by extracellular ligand if all linkages are always highly flexible.
Does the membrane hold the key?
All of the studies that support direct conformational communication between the extracellular and intracellular regions of EGFR were performed in cells [17,21,22]. By contrast, most of those that
explicitly suggest otherwise were performed in detergent micelles [13,14,15] — where the potentially important influences of specific membrane lipids (or membrane geometry) are absent. Studies of intact  EGFR in liposomes with defined lipid compositions [27] have shown that the ganglioside GM3 inhibits ligand-independent activation (and dimerization) of the receptor, apparently through interactions with a  site in its extracellular JM region. McLaughlin and colleagues [28,29] also proposed a model in which interaction of the intracellular JM region (and TKD) with anionic phospholipids in the inner leaflet of  the plasma membrane (notably PtdIns(4,5)P2) exerts an inhibitory effect that must be overcome in order for EGFR to signal. Association of the JM and TM regions with specific membrane lipids is likely to  define specific structures in the linkages between the EGFR extracellular and intracellular regions that are more well-defined (and potentially rigid) than is typically appreciated. Recent studies have begun to  shed some structural light on how membrane interactions with the intracellular JM region of EGFR might influence the signaling mechanism. Endres et al. [20] found that simply tethering the complete  intracellular region of EGFR to the inner leaflet of the plasma membrane maintains the TKD in a largely monomeric state and inhibits its kinase activity. Parallel computational studies [30] suggest that this  results from the previously proposed [29] inhibitory interaction of the JM and TKD regions of EGFR with the negatively charged membrane surface. The data of Endres et al. [20] further indicated that TM-mediated dimerization reverses this inhibitory effect. Moreover, NMR studies of a 60-residue peptide containing the TM and part of  the JM region solubilized in lipid bicelles led them to conclude that specific  TM dimerization through an N terminal GxxxG motif stabilizes formation of an antiparallel coiled-coil between the two JM fragments in the dimer — the same JM coiled-coil shown in Figure 2b/c that was  investigated in the bipartite tetracysteine display studies of  intact EGF-bound EGFR described above [17,19]. Independent solid-state NMR studies of a similar TM-JM peptide from the EGFR relative
ErbB2 in vesicles containing acidic phospholipids [31] further suggested that an activating mutation in the TM domain leads to release of  the JM region from the anionic membrane surface. Collectively,
these data suggest that ligand-induced dimerization of the receptor (or reorientation of receptors within a dimer) may engage the TM domain in a specific dimer that promotes both the formation of activating
interactions in the JM region and the disruption of inhibitory interactions between the JM region (and possibly TKD) and the membrane surface.

Negative cooperativity 
A key characteristic of ligand binding at the cell surface to EGFR [36], IR [37], and other receptors [38] is negative cooperativity — which is lost when soluble forms of the ECR from human EGFR [39]
or IR [40] are studied in isolation. Several studies have shown that intracellular and/or transmembrane regions are required for this negative cooperativity to be manifest [21,22,40,41], implying that
these parts of the receptor contribute to breaking the symmetry of the dimer — as required for the two sites to have distinct binding properties [42]. Such propagation of dimer asymmetry across the
membrane would surely require defined structures in the regions that connect extracellular and intracellular regions, and is difficult to reconcile with highly flexible JM linkers.
In brief, binding of one ligand stabilizes a singly-liganded asymmetric dimer in which the unoccupied ligand-binding site is compromised [43]. The binding affinity of the second ligand is thus reduced,
constituting a half-of-the-sites mode of negative cooperativity [44]. Leahy’s group has provided important evidence consistent with a similar mechanism in the cases of human EGFR and ErbB4 [16].
By comparing human ErbB receptor ECR dimer crystal structures with different bound ligands, Leahy and colleagues went on to identify two types of dimer interface [16], a ‘flush’ interface that resembles
the asymmetric (singly-liganded) dimer seen for the Drosophila EGFR [43] and a ‘staggered’ interface seen in the ECRs from EGFR (with bound EGF [12]) and ErbB4 (with bound neuregulin1b[16]).
These observations suggest that the ‘flush’ interface drives the most  stable dimers, which are singly liganded (Figure 2b). Binding of the second ligand is weaker, and also forces the dimer interface
into the less stable ‘staggered’ conformation (Figure 2c). Taken together, these findings suggest both a structural basis for negative cooperativity and a possible structural distinction between singly-liganded
and doubly-liganded ErbB receptor dimers.

A model for EGFR activation
The model shown in Figure 2 summarizes key proposed steps in the activation of human EGFR. In the absence of ligand, the ECR exists in a tethered conformation with the domain II ‘dimerization
arm’ engaged in an intramolecular interaction with domain IV that occludes the dimer interface [49]. The TKDs and the N-terminal portions of each intracellular JM region are thought to be engaged
in autoinhibitory interactions with the membrane surface [20,28,29,30].

Figure 2. More detailed view of EGF-induced activation of EGFR, as described in the text.
In the absence of ligand (a), the ECR adopts a tethered conformation, with an autoinhibitory tether interaction between domains II and IV. The TKD and JM regions lie against the membrane, making what
are believed to be additional autoinhibitory interactions. Domains I and III of the ECR are colored red, and domains II and IV are green. The JM helix is shown as a short cylinder and labeled in magenta.
The N-lobes and C-lobes of the kinase are also labeled, and both helix aC (blue) and the short helix in the activation loop (green) that interacts with aC to inhibit the TKD [50] are shown. The C-tail is
also depicted as a curve bearing 5 tyrosines. As described in the text, binding of a single ligand (b) induces formation of a singly-liganded dimer with a ‘flush’ (presumed asymmetric) ECR dimer interface.
The JM region forms an anti-parallel helix, as labeled in magenta, and the TKDs form an asymmetric dimer in which the activator (grey) allosterically activates the receiver (shown with an amber N-lobe).
It is not clear how the extracellular and intracellular asymmetry is structurally related, if at all. Finally, a second ligand binds to yield a more symmetric dimer with the ‘staggered’ ECR interface (c) described
in the text.

Conclusions Our mechanistic understanding of EGFR and its relatives has advanced dramatically in recent years, and the past year or two has seen substantial progress in putting the results of studies
with isolated domains together into initial views of how the intact receptor works. New insights into the origin of allosteric regulation of EGFR have been gained through a combination of innovative
structural, biochemical, cellular, and computational studies. A self-consistent picture is beginning to emerge. Two key issues remain unclear, however, and represent the current frontiers in studies of EGFR.
The first — for which we describe progress in this review — centers on the influence of specific interactions of the receptor with membrane lipids, which seem likely to define the structural ‘connections’
between extracellular and intracellular regions of the receptor. The second centers on the role of the carboxy-terminal 230 amino acids, which is believed to play a regulatory role for which little detail has
so far been defined [55].
(10PRE4140108).
DMF
is
supported
by

7.3.6 Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor

Bessman NJ1Bagchi A2Ferguson KM2Lemmon MA3.
Cell Rep. 2014 Nov 20; 9(4):1306-17.
http://dx.doi.org/10.1016/j.celrep.2014.10.010

Highlights

  • Preformed extracellular dimers of human EGFR are structurally heterogeneous • EGFR dimerization does not stabilize ligand binding
    • Extracellular mutations found in glioblastoma do not stabilize EGFR dimerization • Glioblastoma mutations in EGFR increase ligand-binding affinity

The epidermal growth factor receptor (EGFR) plays pivotal roles in development and is mutated or overexpressed in several cancers. Despite recent advances, the complex allosteric regulation of EGFR remains incompletely understood. Through efforts to understand why the negative cooperativity observed for intact EGFR is lost in studies of its isolated extracellular region (ECR), we uncovered unexpected relationships between ligand binding and receptor dimerization. The two processes appear to compete. Surprisingly, dimerization does not enhance ligand binding (although ligand binding promotes dimerization). We further show that simply forcing EGFR ECRs into preformed dimers without ligand yields ill-defined, heterogeneous structures. Finally, we demonstrate that extracellular EGFR-activating mutations in glioblastoma enhance ligand-binding affinity without directly promoting EGFR dimerization, suggesting that these oncogenic mutations alter the allosteric linkage between dimerization and ligand binding. Our findings have important implications for understanding how EGFR and its relatives are activated by specific ligands and pathological mutations.

http://www.cell.com/cms/attachment/2020816777/2040986303/fx1.jpg

X-ray crystal structures from 2002 and 2003 (Burgess et al., 2003) yielded the scheme for ligand-induced epidermal growth factor receptor (EGFR) dimerization shown in Figure 1. Binding of a single ligand to domains I and III within the same extracellular region (ECR) stabilizes an “extended” conformation and exposes a dimerization interface in domain II, promoting self-association with a KD in the micromolar range (Burgess et al., 2003, Dawson et al., 2005, Dawson et al., 2007). Although this model satisfyingly explains ligand-induced EGFR dimerization, it fails to capture the complex ligand-binding characteristics seen for cell-surface EGFR, with concave-up Scatchard plots indicating either negative cooperativity (De Meyts, 2008, Macdonald and Pike, 2008) or distinct affinity classes of EGF-binding site with high-affinity sites responsible for EGFR signaling (Defize et al., 1989). This cooperativity or heterogeneity is lost when the ECR from EGFR is studied in isolation, as also described for the insulin receptor (De Meyts, 2008).

Figure 1

Structural View of Ligand-Induced Dimerization of the hEGFR ECR

(A) Surface representation of tethered, unliganded, sEGFR from Protein Data Bank entry 1NQL (Ferguson et al., 2003). Ligand-binding domains I and III are green and cysteine-rich domains II and IV are cyan. The intramolecular domain II/IV tether is circled in red.

(B) Hypothetical model for an extended EGF-bound sEGFR monomer based on SAXS studies of an EGF-bound dimerization-defective sEGFR variant (Dawson et al., 2007) from PDB entry 3NJP (Lu et al., 2012). EGF is blue, and the red boundary represents the primary dimerization interface.

(C) 2:2 (EGF/sEGFR) dimer, from PDB entry 3NJP (Lu et al., 2012), colored as in (B). Dimerization arm contacts are circled in red.

http://www.cell.com/cms/attachment/2020816777/2040986313/gr1.sml

Here, we describe studies of an artificially dimerized ECR from hEGFR that yield useful insight into the heterogeneous nature of preformed ECR dimers and into the origins of negative cooperativity. Our data also argue that extracellular structures induced by ligand binding are not “optimized” for dimerization and conversely that dimerization does not optimize the ligand-binding sites. We also analyzed the effects of oncogenic mutations found in glioblastoma patients (Lee et al., 2006), revealing that they affect allosteric linkage between ligand binding and dimerization rather than simply promoting EGFR dimerization. These studies have important implications for understanding extracellular activating mutations found in EGFR/ErbB family receptors in glioblastoma and other cancers and also for understanding specificity of ligand-induced ErbB receptor heterodimerization

Predimerizing the EGFR ECR Has Modest Effects on EGF Binding

To access preformed dimers of the hEGFR ECR (sEGFR) experimentally, we C-terminally fused (to residue 621 of the mature protein) either a dimerizing Fc domain (creating sEGFR-Fc) or the dimeric leucine zipper from S. cerevisiae GCN4 (creating sEGFR-Zip). Size exclusion chromatography (SEC) and/or sedimentation equilibrium analytical ultracentrifugation (AUC) confirmed that the resulting purified sEGFR fusion proteins are dimeric (Figure S1). To measure KD values for ligand binding to sEGFR-Fc and sEGFR-Zip, we labeled EGF with Alexa-488 and monitored binding in fluorescence anisotropy (FA) assays. As shown in Figure 2A, EGF binds approximately 10-fold more tightly to the dimeric sEGFR-Fc or sEGFR-Zip proteins than to monomeric sEGFR (Table 1). The curves obtained for EGF binding to sEGFR-Fc and sEGFR-Zip showed no signs of negative cooperativity, with sEGFR-Zip actually requiring a Hill coefficient (nH) greater than 1 for a good fit (nH = 1 for both sEGFRWT and sEGFR-Fc). Thus, our initial studies argued that simply dimerizing human sEGFR fails to restore the negatively cooperative ligand binding seen for the intact receptor in cells.

One surprise from these data was that forced sEGFR dimerization has only a modest (≤10-fold) effect on EGF-binding affinity. Under the conditions of the FA experiments, isolated sEGFR (without zipper or Fc fusion) remains monomeric; the FA assay contains just 60 nM EGF, so the maximum concentration of EGF-bound sEGFR is also limited to 60 nM, which is over 20-fold lower than the KD for dimerization of the EGF/sEGFR complex (Dawson et al., 2005, Lemmon et al., 1997). This ≤10-fold difference in affinity for dimeric and monomeric sEGFR seems small in light of the strict dependence of sEGFR dimerization on ligand binding (Dawson et al., 2005,Lax et al., 1991, Lemmon et al., 1997). Unliganded sEGFR does not dimerize detectably even at millimolar concentrations, whereas liganded sEGFR dimerizes with KD ∼1 μM, suggesting that ligand enhances dimerization by at least 104– to 106-fold. Straightforward linkage of dimerization and binding equilibria should stabilize EGF binding to dimeric sEGFR similarly (by 5.5–8.0 kcal/mol). The modest difference in EGF-binding affinity for dimeric and monomeric sEGFR is also significantly smaller than the 40- to 100-fold difference typically reported between high-affinity and low-affinity EGF binding on the cell surface when data are fit to two affinity classes of binding site (Burgess et al., 2003, Magun et al., 1980).

Mutations that Prevent sEGFR Dimerization Do Not Significantly Reduce Ligand-Binding Affinity

The fact that predimerizing sEGFR only modestly increased ligand-binding affinity led us to question the extent to which domain II-mediated sEGFR dimerization is linked to ligand binding. It is typically assumed that the domain II conformation stabilized upon forming the sEGFR dimer in Figure 1C optimizes the domain I and III positions for EGF binding. To test this hypothesis, we introduced a well-characterized pair of domain II mutations into sEGFRs that block dimerization: one at the tip of the dimerization arm (Y251A) and one at its “docking site” on the adjacent molecule in a dimer (R285S). The resulting (Y251A/R285S) mutation abolishes sEGFR dimerization and EGFR signaling (Dawson et al., 2005, Ogiso et al., 2002). Importantly, we chose isothermal titration calorimetry (ITC) for these studies, where all interacting components are free in solution. Previous surface plasmon resonance (SPR) studies have indicated that dimerization-defective sEGFR variants bind immobilized EGF with reduced affinity (Dawson et al., 2005), and we were concerned that this reflects avidity artifacts, where dimeric sEGFR binds more avidly than monomeric sEGFR to sensor chip-immobilized EGF.

Surprisingly, our ITC studies showed that the Y251A/R285S mutation has no significant effect on ligand-binding affinity for sEGFR in solution (Table 1). These experiments employed sEGFR (with no Fc fusion) at 10 μM—ten times higher than KD for dimerization of ligand-saturated WT sEGFR (sEGFRWT) (KD ∼1 μM). Dimerization of sEGFRWT should therefore be complete under these conditions, whereas the Y251A/R285S-mutated variant (sEGFRY251A/R285S) does not dimerize at all (Dawson et al., 2005). The KD value for EGF binding to dimeric sEGFRWT was essentially the same (within 2-fold) as that for sEGFRY251A/R285S (Figures 2B and 2C; Table 1), arguing that the favorable Gibbs free energy (ΔG) of liganded sEGFR dimerization (−5.5 to −8 kcal/mol) does not contribute significantly (<0.4 kcal/mol) to enhanced ligand binding. …

Thermodynamics of EGF Binding to sEGFR-Fc

If there is no discernible positive linkage between sEGFR dimerization and EGF binding, why do sEGFR-Fc and sEGFR-Zip bind EGF ∼10-fold more strongly than wild-type sEGFR? To investigate this, we used ITC to compare EGF binding to sEGFR-Fc and sEGFR-Zip (Figures 3A and 3B ) with binding to isolated (nonfusion) sEGFRWT. As shown in Table 1, the positive (unfavorable) ΔH for EGF binding is further elevated in predimerized sEGFR compared with sEGFRWT, suggesting that enforced dimerization may actually impair ligand/receptor interactions such as hydrogen bonds and salt bridges. The increased ΔH is more than compensated for, however, by a favorable increase in TΔS. This favorable entropic effect may reflect an “ordering” imposed on unliganded sEGFR when it is predimerized, such that it exhibits fewer degrees of freedom compared with monomeric sEGFR. In particular, since EGF binding does induce sEGFR dimerization, it is clear that predimerization will reduce the entropic cost of bringing two sEGFR molecules into a dimer upon ligand binding, possibly underlying this effect.

Possible Heterogeneity of Binding Sites in sEGFR-Fc

Close inspection of EGF/sEGFR-Fc titrations such as that in Figure 3A suggested some heterogeneity of sites, as evidenced by the slope in the early part of the experiment. To investigate this possibility further, we repeated titrations over a range of temperatures. We reasoned that if there are two different types of EGF-binding sites in an sEGFR-Fc dimer, they might have different values for heat capacity change (ΔCp), with differences that might become more evident at higher (or lower) temperatures. Indeed, ΔCp values correlate with the nonpolar surface area buried upon binding (Livingstone et al., 1991), and we know that this differs for the two Spitz-binding sites in the asymmetric Drosophila EGFR dimer (Alvarado et al., 2010). As shown in Figure 3C, the heterogeneity was indeed clearer at higher temperatures for sEGFR-Fc—especially at 25°C and 30°C—suggesting the possible presence of distinct classes of binding sites in the sEGFR-Fc dimer. We were not able to fit the two KD values (or ΔH values) uniquely with any precision because the experiment has insufficient information for unique fitting to a model with four variables. Whereas binding to sEGFRWT could be fit confidently with a single-site binding model throughout the temperature range, enforced sEGFR dimerization (by Fc fusion) creates apparent heterogeneity in binding sites, which may reflect negative cooperativity of the sort seen with dEGFR. …

Ligand Binding Is Required for Well-Defined Dimerization of the EGFR ECR

To investigate the structural nature of the preformed sEGFR-Fc dimer, we used negative stain electron microscopy (EM). We hypothesized that enforced dimerization might cause the unliganded ECR to form the same type of loose domain II-mediated dimer seen in crystals of unliganded Drosophila sEGFR (Alvarado et al., 2009). When bound to ligand (Figure 4A), the Fc-fused ECR clearly formed the characteristic heart-shape dimer seen by crystallography and EM (Lu et al., 2010, Mi et al., 2011). Figure 4B presents a structural model of an Fc-fused liganded sEGFR dimer, and Figure 4C shows a calculated 12 Å resolution projection of this model. The class averages for sEGFR-Fc plus EGF (Figure 4A) closely resemble this model, yielding clear densities for all four receptor domains, arranged as expected for the EGF-induced domain II-mediated back-to-back extracellular dimer shown in Figure 1 (Garrett et al., 2002, Lu et al., 2010). In a subset of classes, the Fc domain also appeared well resolved, indicating that these particular arrangements of the Fc domain relative to the ECR represent highly populated states, with the Fc domains occupying similar positions to those of the kinase domain in detergent-solubilized intact receptors (Mi et al., 2011). …

Our results and those of Lu et al. (2012)) argue that preformed extracellular dimers of hEGFR do not contain a well-defined domain II-mediated interface. Rather, the ECRs in these dimers likely sample a broad range of positions (and possibly conformations). This conclusion argues against recent suggestions that stable unliganded extracellular dimers “disfavor activation in preformed dimers by assuming conformations inconsistent with” productive dimerization of the rest of the receptor (Arkhipov et al., 2013). The ligand-free inactive dimeric ECR species modeled by Arkhipov et al. (2013) in their computational studies of the intact receptor do not appear to be stable. The isolated ECR from EGFR has a very low propensity for self-association without ligand, with KD in the millimolar range (or higher). Moreover, sEGFR does not form a defined structure even when forced to dimerize by Fc fusion. It is therefore difficult to envision how it might assume any particular autoinhibitory dimeric conformation in preformed dimers. …

Extracellular Oncogenic Mutations Observed in Glioblastoma May Alter Linkage between Ligand Binding and sEGFR Dimerization

Missense mutations in the hEGFR ECR were discovered in several human glioblastoma multiforme samples or cell lines and occur in 10%–15% of glioblastoma cases (Brennan et al., 2013, Lee et al., 2006). Several elevate basal receptor phosphorylation and cause EGFR to transform NIH 3T3 cells in the absence of EGF (Lee et al., 2006). Thus, these are constitutively activating oncogenic mutations, although the mutated receptors can be activated further by ligand (Lee et al., 2006, Vivanco et al., 2012). Two of the most commonly mutated sites in glioblastoma, R84 and A265 (R108 and A289 in pro-EGFR), are in domains I and II of the ECR, respectively, and contribute directly in inactive sEGFR to intramolecular interactions between these domains that are thought to be autoinhibitory (Figure 5). Domains I and II become separated from one another in this region upon ligand binding to EGFR (Alvarado et al., 2009), as illustrated in the lower part of Figure 5. Interestingly, analogous mutations in the EGFR relative ErbB3 were also found in colon and gastric cancers (Jaiswal et al., 2013).

We hypothesized that domain I/II interface mutations might activate EGFR by disrupting autoinhibitory interactions between these two domains, possibly promoting a domain II conformation that drives dimerization even in the absence of ligand. In contrast, however, sedimentation equilibrium AUC showed that sEGFR variants harboring R84K, A265D, or A265V mutations all remained completely monomeric in the absence of ligand (Figure 6A) at a concentration of 10 μM, which is similar to that experienced at the cell surface (Lemmon et al., 1997). As with WT sEGFR, however, addition of ligand promoted dimerization of each mutated sEGFR variant, with KD values that were indistinguishable from those of WT. Thus, extracellular EGFR mutations seen in glioblastoma do not simply promote ligand-independent ECR dimerization, consistent with our finding that even dimerized sEGFR-Fc requires ligand binding in order to form the characteristic heart-shaped dimer. …

We suggest that domain I is normally restrained by domain I/II interactions so that its orientation with respect to the ligand is compromised. When the domain I/II interface is weakened with mutations, this effect is mitigated. If this results simply in increased ligand-binding affinity of the monomeric receptor, the biological consequence might be to sensitize cells to lower concentrations of EGF or TGF-α (or other agonists). However, cellular studies of EGFR with glioblastoma-derived mutations (Lee et al., 2006, Vivanco et al., 2012) clearly show ligand-independent activation, arguing that this is not the key mechanism. The domain I/II interface mutations may also reduce restraints on domain II so as to permit dimerization of a small proportion of intact receptor, driven by the documented interactions that promote self-association of the transmembrane, juxtamembrane, and intracellular regions of EGFR (Endres et al., 2013, Lemmon et al., 2014, Red Brewer et al., 2009).

Setting out to test the hypothesis that simply dimerizing the EGFR ECR is sufficient to recover the negative cooperativity lost when it is removed from the intact receptor, we were led to revisit several central assumptions about this receptor. Our findings suggest three main conclusions. First, we find that enforcing dimerization of the hEGFR ECR does not drive formation of a well-defined domain II-mediated dimer that resembles ligand-bound ECRs or the unliganded ECR from Drosophila EGFR. Our EM and SAXS data show that ligand binding is necessary for formation of well-defined heart-shaped domain II-mediated dimers. This result argues that the unliganded extracellular dimers modeled by Arkhipov et al. (2013)) are not stable and that it is improbable that stable conformations of preformed extracellular dimers disfavor receptor activation by assuming conformations that counter activating dimerization of the rest of the receptor. Recent work from the Springer laboratory employing kinase inhibitors to drive dimerization of hEGFR (Lu et al., 2012) also showed that EGF binding is required to form heart-shaped ECR dimers. These findings leave open the question of the nature of the ECR in preformed EGFR dimers but certainly argue that it is unlikely to resemble the crystallographic dimer seen for unligandedDrosophila EGFR (Alvarado et al., 2009) or that suggested by computational studies (Arkhipov et al., 2013).

This result argues that ligand binding is required to permit dimerization but that domain II-mediated dimerization may compromise, rather than enhance, ligand binding. Assuming flexibility in domain II, we suggest that this domain serves to link dimerization and ligand binding allosterically. Optimal ligand binding may stabilize one conformation of domain II in the scheme shown in Figure 1 that is then distorted upon dimerization of the ECR, in turn reducing the strength of interactions with the ligand. Such a mechanism would give the appearance of a lack of positive linkage between ligand binding and ECR dimerization, and a good test of this model would be to determine the high-resolution structure of a liganded sEGFR monomer (which we expect to differ from a half dimer). This model also suggests a mechanism for selective heterodimerization over homodimerization of certain ErbB receptors. If a ligand-bound EGFR monomer has a domain II conformation that heterodimerizes with ErbB2 in preference to forming EGFR homodimers, this could explain several important observations. It could explain reports that ErbB2 is a preferred heterodimerization partner of EGFR (Graus-Porta et al., 1997) and might also explain why EGF binds more tightly to EGFR in cells where it can form heterodimers with ErbB2 than in cells lacking ErbB2, where only EGFR homodimers can form (Li et al., 2012).

7.3.7 IGFBP-2/PTEN: A critical interaction for tumours and for general physiology?

IGFBP-2
The insulin-like growth factor family of proteins, together with insulin, form an evolutionarily conserved system that helps to coordinate the metabolic status and activity of organisms with their nutritional environment. When food is abundant, the IGF/insulin signalling pathway is switched on and cell proliferation and other activities are enhanced; while when food is limited, such activities are suppressed to conserve energy and resources [1,2]. The IGF axis consists of two ligands IGF-I and -II, a series of heterotetrameric tyrosine kinase receptors and six high affinity binding proteins IGFBP-1 to-6. These IGFBPs not only regulate the reservoir, availability and functions of IGFs but also have direct actions upon cell behaviour that are independent of IGF-binding [3]. The six IGFBPs are conserved in all placental mammals having evolved from serial duplication of genes that were present throughout vertebrate evolution [4]. Each of the six IGFBPs has evolved unique functions that presumably have conferred some evolutionary advantage and hence have been conserved across mammalian evolution. After IGFBP-3, IGFBP-2 is the second most abundant binding protein in the circulation throughout adult life in humans. While circulating IGFBP-3 levels peak during puberty and decrease thereafter, IGFBP-2 levels are highest in infancy and old age. Together with the other five IGFBPs, IGFBP-2 regulates IGF availability and actions and has pleiotropic effects on normal and neoplastic tissues [3]. One of the clear distinctive structural features of IGFBP-2 is that it contains an Arg-Gly-Asp (RGD) sequence that enables functional interactions with integrin receptors [4]. This structural element is only present in one of the other IGFBPs, IGFBP-1. Although the RGD sequence was only acquired in IGFBP-1 during mammalian evolution it was present within IGFBP-2 from early vertebrate evolution indicating that it has been a long retained functional characteristic of IGFBP-2 [4]. The integrin receptors are critical for the anchorage of cells to the extracellular matrix (ECM) within tissues and hence for maintaining tissue architecture [5,6]. In solid tissue an important safeguard is imposed by linking normal cell functions and proliferation to appropriate cues from the ECM that are mediated by signals from attachment receptors such as the integrin receptors. Anchoragedependent growth is a common feature of normal cells and loss of attachment results in a form of apoptosis called anoikis. The integrin receptors interact with growth factor receptors in an ancillary and permissive manner to ensure that the signals for growth and survival occur in the appropriate setting and not inappropriately in detached cells. It has also become clear that integrin receptors serve many other roles in regulating cell functions and integrating cues from the surrounding ECM [5,6]. Over the last few decades, as the role of IGFBPs as extracellular modulators of IGF-availability and actions has emerged, there has also been a gradual characterization of the intracellular counter-regulatory components that modulate the signals initiated by IGF-receptor activation. There has been considerable progress in charting the signalling cascades initiated from these receptors but it is evident that the reason needs to be mechanisms for inactivating the pathways in intervening periods in preparation for subsequent activation. Throughout the canonical kinase cascades, activated by receptor ligation, at each node there is a corresponding phosphatase that returns the pathway to the inactive state and modulates the signal. The extracellular regulators of these phosphatases have however received much less attention than the activating kinases. That the extracellular counter-regulators may act in synchrony and be linked to the intracellular counter-regulators has only recently started to be revealed. Transgenic over-expression of IGFBP-2 at supra-physiological levels in mice results in reduced somatic growth [7] and this growth deficit is more pronounced when these mice were crossed with mice with raised growth hormone/IGF-I [8] implying that the growth inhibitory effect was due to sequestration of IGF-I. As with most of the IGFBP-family [3], there are also however multiple lines of evidence that IGFBP-2 has cellular actions that are independent of its ability to bind IGFs. There is evidence that IGFBP-2 initiates intrinsic cellular signalling through specific binding of its RGD-motif to integrin receptors, particularly the α5β1 integrin.In addition IGFBP-2 appears to modulate IGF and epidermal growth factor signalling through interactions with α5β3 integrins [9]. A heparin binding domain also exists in IGFBP-2 and it has been shown to bind to glycosaminoglycans [10], heparin [11], and other proteoglycans such as the receptor protein tyrosine phosphatase-β (RPTPβ) [12,13]. In addition,IGFBP-2has been reported to be localized on the cell surface, in the cytoplasm and on the nuclear membrane[14]. Several groups have now reported nuclear localization of IGFBP-2 [15–17]. A functional nuclear localization sequence in the central domain of IGFBP-2 has been reported that appears to interact with importin-α [18]. In the nucleus IGFBP-2 has been reported to regulate the expression of vascular endothelial growth factor [19].
IGFBP-2 and metabolic regulation
Epidemiological studies of human populations have indicated that IGFBP-2 levels are reduced in obesity, metabolic syndrome and type 2 diabetes and are inversely correlated with insulin sensitivity [20]. That these associations were due to a metabolic role for IGFBP-2, rather thanitjustbeingamarkerofdisturbance,hasbeenconfirmedinanumber of animal models. Using a transgenic IGFBP-2 over-expressing mouse model, Wheatcroft and coworkers found that IGFBP-2 was able to protect mice from high-fat/high-energy induced obesity and insulin resistance, and also protected the mice from the age-related development of glucose intolerance and hypertension [21]. Over-expression of IGFBP-2 induced by Leptin in wild type or obese mice similarly resulted in reduced plasma glucose and insulin levels [22]. All these data indicate a metabolic role for IGFBP-2 in glucose homeostasis.
IGFBP-2 and cancer
As indicated above, the early reports had implied that IGFBP-2 was generally a negative regulator of IGF-activity; the systemic growth restriction observed in transgenic mice over-expressing IGFBP-2 was followed by observations that chemically induced colorectal cancers were inhibited in this model [23]. Despite this there has been an accumulation of evidence indicating that IGFBP-2 is positively associated with the malignant progression of a wide range of cancers, as has been reviewed previously [24]. Raised serum levels of IGFBP-2 have been reported and positive associations between tumor IGFBP-2 expression and malignancy or metastasis have been observed for a variety of cancers, including glioma [25], breast [26], prostate [27], lung [28], colon [29] and lymphoid tumor [30]. Subsequent work has generally been consistent with this association between IGFBP-2 and cancer progression. In view of the majority of evidence, indicating that IGFBP-2 interacting with IGFs generally inhibited cell growth, it was suggested thatIGF-independentactionswereprobablyresponsibleforpositiveassociations between IGFBP-2 and tumourgrowth and progression [24]. The explanation for the increased expression of IGFBP-2 that has beenreportedformanydifferentcancersappearstocomefromthefactorsthat have been shown to regulate IGFBP-2 expression.The tumor suppressor gene p53, which is the most mutated gene in many human cancers, has been reported to transcriptionally regulate IGFBP-2 [31].

There also appears to again be reciprocal feedback as p53 mRNA in the breast cancer cell line Hs578T increased significantly after treatment with human recombinant IGFBP-2, suggesting a close interaction between IGFBP-2 and p53 [14]. A number of hormonal regulators of IGFBP-2 expression have been described including hCG, FSH, TGF-β, IL1, estradiol, glucocorticoids, EGF, IGF-I, IGF-II and insulin [24]. The stimulation of IGFBP-2 expression by EGF, IGF-I, IGF-II and insulin has been shown to be via the PI3K/AKT/mTOR pathway in breast cancer cells [32] and in adipocytes [33]. This is one of the most well characterisedsignallingpathwaysactivatedbyinsulinandIGFs.Inaddition the critical counter-regulatory phosphatase that deactivates this pathway the phosphatase and tensin homologue PTEN has been shown to downregulate the expression of IGFBP-2 [34]. This suggests another autoregulatory loop in which activation of the PI3K/AKT/mTOR pathway by IGFs induces the expression of IGFBP-2 that then sequesters the IGFs and modulates the signal. As activating mutations in the PI3K pathway or loss of PTEN are very common across a variety of human cancers, this plus the effect of p53, probably accounts for the common dysregulation of IGFBP-2 observed across many cancers. Using prostate cancer cell lines it has also been shown that local IGFBP-2 expression is metabolically regulated; IGFBP-2 expression was increased in hyperglycemic conditions through acetylation of histones H3 and H4 associated with the IGFBP-2 promoter, furthermore this up-regulation of IGFBP-2 mediated hyperglycemia-induced chemo-resistance [35].

PI3K
The signaling kinase PI3K plays a fundamental role that has been maintained throughout most of evolution. The ability to control growth and development according to the availability of nutrients provides a survival advantage and therefore has been selectively retained throughout evolution. Evidence has accumulated to indicate that the PI3K pathway provides this control in all species from yeast to mammals.Various forms of the PI3K enzyme exist that are classified into three groups (classes I, II, and III). Only one of these forms is present in yeast and is equivalent to mammalian class III PI3K: this acts as a nutrient sensor and is directly activated by the availability of amino acids and then itself activates mTOR/S6K1 to regulate cell growth and development [36]. In mammals class 1API3K has evolved: this form is not directly activated by nutrients but consists of heterodimers comprising a catalytic p110 subunit and a regulatory p85 subunit that enables the enzyme to be controlled by receptor tyrosine kinases, classically the insulin and insulin-like growth factor receptors (IR and IGF-IR) [37]. This enables the regulation of PI3K by social nutritionally dependent signals rather than by nutrients directly. It is not by chance that the insulin/IGF/PI3K pathway plays a fundamental role in regulating both metabolism and growth as it clearly is an advantage to synchronize the set processes and this synchronized control has been maintained throughout evolution.

Phosphatase and tensin homolog (PTEN)
Of all the intracellular counter-regulators of the IGF-pathway the one that has received the most attention in relation to cancer is PTEN. PTEN is a lipid tyrosine phosphatase that negatively regulates the Akt/ PKB signaling pathway by specifically dephosphorylating phosphatidylinositol (3,4,5)-trisphosphate and thereby reduces AKT activation to reduce signals for cell metabolism, proliferation and survival [37]. PTEN is the second most often mutated tumor suppressor in human cancers, after p53[38]. Aberrant PTEN activity occurs due to mutation, homozygous deletion, loss of heterozygosity, or epigenetic silencing. Lost or reduced activity of PTEN has been observed in a great variety of cancers, including breast [39], prostate [40,41], colorectal [42], lung[43], glioblastoma [44], endometrial [45], etc. It has been demonstrated that deregulation of PTEN is involved in tumorigenesis, tumor progression and also the predisposition of many cancers [46]. AsPI3K/Akt signaling is critical for the metabolic effects of insulin. It is clear that PTEN will also play a role in modulating the metabolic actions of insulin. Consistent with this mice genetically modified to have haploinsufficiency of PTEN were observed to be hypersensitive to insulin [47]. Similarly humans with haplo-insufficiency due to mutations in PTEN were found to have enhanced insulin sensitivity [48]. Recently an increase in insulin sensitivity due to suppression of PTEN has been described in grizzly bears in preparation for hibernation, indicating that this is a mechanism for physiological adaptation [49]. Although the genetic defects resulting in PTEN loss in cancers and the intrinsic mechanisms for regulation of PTEN have been well characterised; there have been relatively few reports of external cell regulators. Of interest one of the few extrinsic regulators that has been described is IGF-II [50]. IGF-II is the most abundant growth factor present in most human tissues and activates the PI3K/AKT/mTOR pathway. Just as the induction of IGFBP-2 by activation of the PI3K pathway suggests an autoregulatory feedback loop extrinsic to the cell;the induction of PTEN by IGF-II via PI3K suggests an additional feedback loop that is intrinsic within the cell (Fig. 1). Activation of the pathway by IGF-II induces expression of PTEN that then attenuates the signal; conversely when the pathway is not activated then PTEN expression is reduced making the cell more responsive for when an activation signal is next received.One of the mechanisms that has emerged,to explain this feedback loop, indicates that the signaling output of the PI3K/PTEN pathway is balanced by asynchronous regulation of the activity of both PI3K and PTEN. The p85α regulatory subunit of PI3K that binds to and represses the activity of the p110 catalytic subunit also binds directly to PTEN at a regulatory site within PTEN where serine/threonine phosphorylation occurs to inactivatePTEN.The p85α subunit binds to unphosphorylated PTEN at this site and enhances its lipid phosphatase activity 3-fold [51]. The nature of this feedback loop has been further extended by reports that PTEN can suppress the expression of IGF-II [52,53]. As IGF-II induces PTEN, the ability of PTEN to subsequently reduce IGF-II expression may enable the cell to protect itself from over-stimulation. In contrast loss of PTEN may increase the expression of IGF-II resulting inactivation of the PI3K/AKT/mTOR pathway that is then unopposed.

PTEN/IGFBP-2 interactions
In view of the recognized importance of loss of PTEN for a variety of cancers there has been considerable interest in identifying biomarkers that could be used clinically to indicate loss of PTEN within tumors. An unbiased screen of human prostate cancer xenografts and human glioblastoma samples using microarray-based expression profiling found that the most significant gene was IGFBP-2 and it was confirmed in experimental models that IGFBP-2 was inversely regulated by PTEN [54]. This was consistent with all of the subsequent studies indicating that the expression of IGFBP-2 was regulated by the PI3K/AKT/mTOR pathway. An increase in tumor IGFBP-2 has also been associated with loss of PTEN in human breast cancer samples[55]. In the same year that a screen revealed IGFBP-2 as the best marker for loss of PTEN; the nature of the interaction between these two proteins was extended by the demonstration that at the cellular level IGFBP-2 can inversely regulate PTEN. With human breast cancer cells it was confirmed that IGF-II stimulated PTEN expression and that this was modulated by the binding of IGF-II to IGFBP-2, but when IGFBP-2 was not bound to IGF-II it was able to suppress PTEN via an interaction with cell surface integrin receptors (Fig. 1) [56]. Subsequent work with human prostate cancer cells indicated that the interaction of IGFBP-2 with integrin receptors could also result in PTEN inactivation via increasing its phosphorylation [57].

Fig.1. A proposed autoregulatory feedback loop of IGFBP-2/PTEN interaction. Binding of IGF-II to the IGF-IR activates the PI3K pathway. Induction of PI3K activates Akt and mTOR signaling and leads to cell proliferation and cell survival. The regulatory subunit of PI3K,p85, also binds and activates PTEN through dephosphorylation. This increased PTEN subsequently blocks IGFII production to avoid overstimulation. On the other hand, activated PI3K pathway induces IGFBP-2 expression, which when unbound to IGF-II, suppresses PTEN via an interaction with integrin receptors and/or the receptor protein tyrosine phosphatase β(RPTPβ). Thus the negative control of PTEN on PI3K signaling is counteracted. These feedback loops enable the extrinsic balance between IGF-II and IGFBP-2 to be tightly integrated to the intrinsic balance between PI3K and PTEN.

The ability of IGFBP-2 to regulate PTEN, originally observed in human cancer cell lines has subsequently been confirmed in a variety of normal cell types from different tissues. In IGFBP-2 knock-out mice a decrease in hematopoietic stem cell survival and cycling has been associated with an increase in PTEN and this appeared to be mediated by the heparin binding domain (HBD) within IGFBP-2 as the administration of a peptide analogue could restore the deficit [58]. Similarly a decrease in bone mass in the IGFBP-2 knock-out mice has been attributed to an increase in PTEN and again the use of a peptide analogue appeared to implicate the IGFBP-2HBD [59]. It was subsequently reported that the IGFBP-2HBD mediated an interaction with the RPTPβ resulting in dimerization and consequent inactivation of RPTPβ and that this reduction in phosphatase activity cooperated with IGF-I activation of the IGF-IR to enhance the phosphorylation and inactivation of PTEN [12]. Recently IGFBP-2 has been reported to also suppress PTEN in human skeletal muscle cells [60] and human visceral adipocytes [61] by interacting with integrin receptors. A similar association between IGFBP-2 and PTEN has been implicated as playing a role in murine skeletal muscle cell differentiation, although the functional regulation was not directly investigated in that study [62].

Summary
Evidence from a variety of different sources have indicated a close regulatory feedback loop between IGFBP-2 and PTEN. Work using a variety of different cell types from different tissues and different species has indicated that IGFBP-2 inversely regulates PTEN. There are reports that this is mediated via the IGFBP-2 RGD domain interacting with integrin receptors and by the IGFBP-2 HBD interacting with proteoglycans; the relative involvement of each of these domains and their functional interactions will require further work to elucidate. These studies however suggest a general mechanism that plays a role in a variety of normal physiological processes in addition to having important implications for the progression of many different cancers. The phosphatase PTEN has an important role in determining insulin sensitivity and the extent that IGFBP-2 exerts a metabolic role in regulating PTEN to determine insulin-sensitivity is yet to be examined. The extracellular balance between IGF-II and IGFBP-2 seems tightly linked with the intracellular balance between PI3K and PTEN (Fig. 1). When driving, in order to move forward there is a synchronous application of the accelerator and a removal of the brake. It appears that the cell also synchronizes activation of an essential regulatory pathway with the removal of the tightly linked inactivation pathway.

References
[1] B.C. Melnik, S.M. John, G. Schmitz, Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from Laron syndrome, Nutr. Metab. (Lond.) 8 (2011) 41. [2] J.M. Holly, C.M. Perks, Insulin-like growth factor physiology: what we have learned from human studies, Endocrinol. Metab. Clin. North. Am. 41 (2012) 249–263.
[3] J.Holly,C.Perks, The role ofinsulin-like growth factor binding proteins, Neuroendocrinology 83 (3–4) (2006) 154–160.
[4] D.O.Daza, etal.,Evolution of the insulin-like growth factor binding protein (IGFBP) family, Endocrinology 152 (6) (2011) 2278–2289.
[5] A.R. Ferreira, J.Felgueiras, M. Fardilha, Signaling pathways inanchoringjunctionsof epithelial cells: cell-to-cell and cell-to-extracellular matrix interactions, J. Recept. Signal Transduct. Res. (2014) 1–9.
[6] S.H. Kim, J. Turnbull, S. Guimond, Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor, J. Endocrinol. 209 (2) (2011) 139–151.
[7] A.Hoeflich,etal.,Overexpression ofinsulin-like growth factor-bindingprotein-2 in transgenic mice reduces postnatal body weight gain, Endocrinology 140 (12) (1999) 5488–5496.
[8] A. Hoeflich, et al., Growth inhibition in giant growth hormone transgenic mice by overexpression of insulin-like growth factor-binding protein-2, Endocrinology 142 (5) (2001) 1889–1898.
[9] G.K.Wang,etal., Aninteraction betweeninsulin-likegrowthfactor-bindingprotein 2 (IGFBP2) and integrin alpha5 is essential for IGFBP2-induced cell mobility, J. Biol. Chem. 281 (20) (2006) 14085–14091. [10] T.Arai,W.BusbyJr.,D.R.Clemmons,Bindingofinsulin-likegrowthfactor(IGF)IorII to IGF-binding protein-2 enables it to bind to heparin and extracellular matrix, Endocrinology 137 (11) (1996) 4571–4575. [11] J. Lund, et al., Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex, J. Mol. Endocrinol. 52 (3) (2014) 345–355.
[12] X. Shen, et al., Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosinephosphatase βandtheIGF-Ireceptorto regulate IGF-I-stimulated signaling, Mol. Cell. Biol. 32 (20) (2012) 4116–4130.
[13] V.C.Russo, etal.,Insulin-like growth factor binding protein-2 bindingto extracellularmatrixplaysacriticalroleinneuroblastomacellproliferation,migration,andinvasion, Endocrinology 146 (10) (2005) 4445–4455.
[14] K.W. Frommer, etal., IGF-independent effects of IGFBP-2 on the human breast cancer cell line Hs578T, J. Mol. Endocrinol. 37 (1) (2006) 13–23.
[15] K. Miyako, et al., PAPA-1 Is a nuclear binding partner of IGFBP-2 and modulates its growth-promoting actions, Mol. Endocrinol. 23 (2) (2009) 169–175.
[16] X.Terrien,etal.,IntracellularcolocalizationandinteractionofIGF-bindingprotein-2 with the cyclin-dependent kinase inhibitor p21CIP1/WAF1 during growth inhibition, Biochem. J. 392 (Pt 3) (2005) 457–465.
[17] R.M. Villani, et al., Patched1 inhibits epidermal progenitor cell expansion and basal cell carcinoma formation by limiting Igfbp2 activity, Cancer Prev. Res. (Phila.) 3 (10) (2010) 1222–1234.
[18] W.J. Azar, et al., IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells, Oncogene 33 (5) (2014) 578–588.
[19] W.J.Azar,etal.,IGFBP-2enhancesVEGFgenepromoteractivityandconsequentpromotion of angiogenesis by neuroblastoma cells, Endocrinology 152 (9) (2011) 3332–3342.
[20] S.B. Wheatcroft, M.T. Kearney, IGF-dependent and IGF-independent actions of IGFbinding protein-1 and -2: implications for metabolic homeostasis, Trends Endocrinol. Metab. 20 (4) (2009) 153–162. [21] S.B. Wheatcroft, et al., IGF-binding protein-2 protects against the development of obesity and insulin resistance, Diabetes 56 (2) (2007) 285–294.

7.3.8 Emerging roles for the pH-sensing G protein-coupled receptors in response to acidotic stress

Edward J Sanderlin, Calvin R Justus, Elizabeth A Krewson, Li V Yang
Cell Health & Cytoskel Mar 2015; 2015(7): 99—109
http://www.dovepress.com/emerging-roles-for-the-ph-sensing-g-protein-coupled-receptors-in-respo-peer-reviewed-article-CHC#

Protons (hydrogen ions) are the simplest form of ions universally produced by cellular metabolism including aerobic respiration and glycolysis. Export of protons out of cells by a number of acid transporters is essential to maintain a stable intracellular pH that is critical for normal cell function. Acid products in the tissue interstitium are removed by blood perfusion and excreted from the body through the respiratory and renal systems. However, the pH homeostasis in tissues is frequently disrupted in many pathophysiologic conditions such as in ischemic tissues and tumors where protons are overproduced and blood perfusion is compromised. Consequently, accumulation of protons causes acidosis in the affected tissue. Although acidosis has profound effects on cell function and disease progression, little is known about the molecular mechanisms by which cells sense and respond to acidotic stress. Recently a family of pH-sensing G protein-coupled receptors (GPCRs), including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), has been identified and characterized. These GPCRs can be activated by extracellular acidic pH through the protonation of histidine residues of the receptors. Upon activation by acidosis the pH-sensing GPCRs can transduce several downstream G protein pathways such as the Gs, Gq/11, and G12/13 pathways to regulate cell behavior. Studies have revealed the biological roles of the pH-sensing GPCRs in the immune, cardiovascular, respiratory, renal, skeletal, endocrine, and nervous systems, as well as the involvement of these receptors in a variety of pathological conditions such as cancer, inflammation, pain, and cardiovascular disease. As GPCRs are important drug targets, small molecule modulators of the pH-sensing GPCRs are being developed and evaluated for potential therapeutic applications in disease treatment.

Cellular metabolism produces acid as a byproduct. Metabolism of each glucose molecule by glycolysis generates two pyruvate molecules. Under anaerobic conditions the metabolism of pyruvate results in the production of the glycolytic end product lactic acid, which has a pKa of 3.9. Lactic acid is deprotonated at the carboxyl group and results in one lactate ion and one proton at the physiological pH. Under aerobic conditions pyruvate is converted into acetyl-CoA and CO2 in the mitochondria. CO2in water forms a chemical equilibrium of carbonic acid and bicarbonate, an important physiological pH buffering system. The body must maintain suitable pH for proper physiological functions. Some regulatory mechanisms to control systemic pH are respiration, renal excretion, bone buffering, and metabolism.14 The respiratory system can buffer the blood by excreting carbonic acid as CO2 while the kidney responds to decreased circulatory pH by excreting protons and electrolytes to stabilize the physiological pH. Bone buffering helps maintain systemic pH by Ca2+ reabsorption and mineral dissolution. Collectively, it is clear that several biological systems require tight regulation to maintain pH for normal physiological functions. Cells utilize vast varieties of acid-base transporters for proper pH homeostasis within each biological context.58 Some such transporters are H+-ATPase, Na+/H+exchanger, Na+-dependent HCO3/C1 exchanger, Na+-independent anion exchanger, and monocarboxylate transporters. Cells can also maintain short-term pH homeostasis of the intracellular pH by rapid H+ consuming mechanisms. Some such mechanisms utilize metabolic conversions that move acids from the cytosol into organelles. Despite these cellular mechanisms that tightly maintain proper pH homeostasis, there are many diseases whereby pH homeostasis is disrupted. These pathological conditions are characterized by either local or systemic acidosis. Systemic acidosis can occur from respiratory, renal, and metabolic diseases and septic shock.14,9 Additionally, local acidosis is characterized in ischemic tissues, tumors, and chronically inflamed conditions such as in asthma and arthritis caused by deregulated metabolism and hypoxia.1015

Acidosis is a stress for the cell. The ability of the cell to sense and modulate activity for adaptation to the stressful environment is critical. There are several mechanisms whereby cells sense acidosis and modulate cellular functions to facilitate adaptation. Cells can detect extracellular pH changes by acid sensing ion channels (ASICs) and transient receptor potential (TRP) channels.16 Apart from ASIC and TRP channels, extracellular acidic pH was shown to stimulate inositol polyphosphate formation and calcium efflux.17,18 This suggested the presence of an unknown cell surface receptor that may be activated by a certain functional group, namely the imidazole of a histidine residue. The identity of the acid-activated receptor was later unmasked by Ludwig et al as a family of proton-sensing G protein-coupled receptors (GPCRs). This group identified human ovarian cancer GPCR 1 (OGR1) which upon activation will produce inositol phosphate and calcium efflux through the Gq pathway.19 These pH-sensing GPCR family members, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), will be discussed in this review (Figure 1). The proton-sensing GPCRs sense extracellular pH by protonation of several histidine residues on their extracellular domain. The activation of these proton-sensing GPCRs facilitates the downstream signaling through the Gq/11, Gs, and G12/13 pathways. Their expression varies in different cell types and play critical roles in sensing extracellular acidity and modulating cellular functions in several biological systems.

Figure 1 Biological roles and G protein coupling of the pH-sensing GPCRs.
Abbreviation: GPCRs, G protein-coupled receptors.

Role for the pH-sensing GPCRs in the immune system and inflammation

Acidic pH is a main characteristic of the inflammatory loci.14,20,21 The acidic microenvironment in inflamed tissue is predominately due to the increased metabolic demand from infiltrating immune cells, such as the neutrophil. These immune cells increase oxygen consumption and glucose uptake for glycolysis and oxidative phosphorylation. When oxygen availability is limited, cells often undergo anaerobic glycolysis. This process generates increasing amounts of lactic acid, thereby creating a local acidic microenvironment within the inflammatory loci.22 This presents a role for the pH-sensing GPCR GPR65 (TDAG8) in inflammation and immune cell function.23 TDAG8 was originally identified by cloning as an orphan GPCR which was observed to be upregulated during thymocyte apoptosis.24,25GPR65 (TDAG8) is predominately expressed in lymphoid tissues such as the spleen, lymph nodes, thymus, and leukocytes.2426 It was demonstrated that GPR65 inhibited pro-inflammatory cytokine secretion, which includes IL-6 and TNF-α, in mouse peritoneal macrophages upon activation by extracellular acidification. This cytokine inhibition was shown to occur through the Gs-cAMP-protein kinase A (PKA) signaling pathway.23,27 Treatment with dexamethasone, a potent glucocorticoid, increased GPR65 expression in peritoneal macrophages. Following dexamethasone treatment, there was an inhibition of TNF-α secretion in a manner dependent on increased expression of GPR65.28Another report provides an anti-inflammatory role for GPR65 in arthritis.29 Type II collagen-induced arthritis was increased in GPR65-null mice in comparison to wild-type mice. These studies taken together suggest GPR65 serves as a negative regulator in inflammation.30 However, one study provided a function for GPR65 as a positive modulator in inflammation.31 GPR65 was reported to increase eosinophil viability in the acidic microenvironment by reducing apoptosis through the cAMP pathway. As eosinophils are central in asthmatic inflammation and allergic airway disease, GPR65 may play a role in increasing asthmatic inflammation.31 On the other hand, GPR65 has shown little involvement in immune cell development. One report indicates that GPR65 knockout mice had normal immune development and function.26 Modulation of inflammation by GPR65 is complex and must be examined within each specific pathology.23

In addition to GPR65, GPR4 is also involved in the inflammatory response. Endothelial cells compose blood vessels that often penetrate acidic tissue microenvironments such as the inflammatory loci. Among the pH-sensing GPCR family, GPR4 has the highest expression in endothelial cells. Response to inflammation by vascular endothelial cells facilitates the induction of inflammatory cytokines that are involved in the recruitment of leukocytes for adherence and transmigration into inflamed tissues. Activation of GPR4 by acidosis in human umbilical vein endothelial cells, among other endothelial cell types, increased the expression of a broad range of pro-inflammatory genes including chemokines, cytokines, PTGS2, NF-κB pathway genes, and adhesion molecules.32 Moreover, human umbilical vein endothelial cells, when treated with acidic pH, increased GPR4-mediated endothelial adhesion to leukocytes.32,33 Altogether, GPR65 and GPR4 provide differential regulation of the inflammatory response through their acid sensing capabilities. GPR65 predominately demonstrates function in the inhibition of the inflammatory response whereas GPR4 activation exacerbates inflammation.

Role for the pH-sensing GPCRs in the cardiovascular system

Taken together, both GPR4 and GPR68 play roles in regulating the function of the cardiovascular system. GPR4 regulates blood vessel stability and endothelial cell function and GPR68 increases cardiomyogenic and pro-survival gene expression while also mediating aortic smooth muscle cell gene expression.

Role for the pH-sensing GPCRs in the renal system

GPR4 is expressed in the kidney cortex, isolated kidney collecting ducts, inner and outer medulla, and in cultured inner and outer medullary collecting duct cells.59 In mice deficient for GPR4, renal acid excretion and the ability to respond to metabolic acidosis was reduced.59 In response to acidosis, inner and outer medullary collecting duct cells produced cAMP, a second messenger for the Gs G-protein pathway, through the GPR4 receptor.59 In renal HEK293 epithelial cells GPR4 overexpression was found to increase the activity of PKA.60 In addition, the protein expression of H+-K+-ATPase α-subunit (HKα2) was increased following GPR4 overexpression dependent on increased PKA activity.60

GPR68 has also been reported to alter proton export of HEK293 cells by stimulating the Na+/H+exchanger and H+-ATPase.58 The activation of GPR68 by acidosis was found to stimulate this effect through a cluster of extracellular histidine residues and the Gq/PKC signaling pathway.58 In GPR68-null mice the expression of the pH-sensitive kinase Pyk2 in the kidney proximal tubules was upregulated which might compensate for GPR68 deficiency.58 Taken together, GPR4 and GPR68 may both be necessary for successful systemic pH buffering by controlling renal acid excretion.

Role for the pH-sensing GPCRs in the respiratory system

Aoki et al demonstrated that GPR68-deficient mice were resistant to asthma along with inhibiting Th2 cytokine and immunoglobulin E production.68 This study concludes that GPR68 in dendritic cells is crucial for the onset of asthmatic responses.68 Moreover, GPR65 has been implicated as having a role in respiratory disorders as it is highly expressed in eosinophils, hallmark cells for asthmatic inflammation.69 Kottyan et al showed that GPR65 increased the viability of eosinophils within an acidic environment through the cAMP pathway in murine asthma models.31 In summary, GPR68 and GPR65 play important roles in the respiratory system and asthma. GPR68 regulates gene expression in airway epithelial, smooth muscle and immune cells while GPR65 enhances the survival of airway eosinophils in response to acidosis.

Role for the pH-sensing GPCRs in the skeletal system

GPR65 has also been reported as a pH sensor in bone. GPR65 is expressed in osteoclasts and its activity may inhibit Ca2+ resorption.81 Disruption of GPR65 gene exacerbated osteoclastic bone resorption in ovariectomized mice.81 The relative bone density of GPR65-null mice was less than control mice.81 In cultured osteoclast cells from mice deficient for GPR65, the normal inhibition of osteoclast formation in response to acidosis was abrogated.81 Taken together, this data suggest that the activation of GPR65 may enhance bone density, thus the GPR65 signaling may be important for disease processes such as osteoporosis and other bone density disorders.

Role for the pH-sensing GPCRs in the endocrine system

GPR68 has also been found to modify insulin production and secretion. In GPR68 knockout mice insulin secretion in response to glucose administration was reduced when compared to wild-type mice although blood glucose was not significantly altered.84 GPR68 deficiency in this respect may reduce insulin secretion but at the same time increase insulin sensitivity. In addition, stimulation of GPR68 in islet cells by acidosis increased the secretion of insulin through the Gq/11 G-protein signaling.84

Role for the pH-sensing GPCRs in the nervous system and nociception

Acidosis causes pain by exciting nociceptors located in sensory neurons. Several types of ion channels and receptors, such as ASICs, TRPV1, and proton-sensing GPCRs, have been identified as nociceptors in response to acidosis. ASICs and TRPV act as proton-gated membrane-bound channels, which are activated by acidic pH and mediate multimodal sensory perception including nociception.8688  GPR65 activation sensitized the response of TRPV1 to capsaicin. The results suggest high accumulation of protons post inflammation may not only stimulate nociceptive ion channels such as TRPV1 to trigger pain, but also activate proton-sensing GPCRs to regulate heightened sensitivity to pain.89 Furthermore, Hang et al demonstrated GPR65 activation elicited cancer-related bone pain through the PKA and phosphorylated CREB (pCREB) signaling pathway in the rat model.90 Collectively, GPR4, GPR65, and GPR68 are all expressed in the dorsal root ganglia; GPR65 is a functional receptor involved in nociception and the nervous system by sensitizing inflammatory pain and the evocation of cancer-related bone pain.

Role for the pH-sensing GPCRs in tumor biology

The tumor microenvironment is highly heterogeneous. Hypoxia, acidosis, inflammation, defective vasculature, poor blood perfusion, and deregulated cancer cell metabolism are hallmarks of the tumor microenvironment.9193 The acidity in the tumor microenvironment is owing to the altered cancer cell metabolism termed the “Warburg Effect”. This metabolic phenotype allows the cancer cells to preferentially utilize glycolysis over oxidative phosphorylation as a primary means of energy production.94 This process occurs even in normoxic tissue environments where sufficient oxygen is available. Due to this phenomenon, the Warburg Effect is often termed “aerobic glycolysis”. This unique metabolic phenotype produces vast quantities of lactic acid, which serve as a proton source for acidification. Upon disassociation of lactic acid to one lactate molecule and one proton, the monocarboxylate transporter and proton transporters export lactate and protons into the extracellular tumor microenvironment.95 The proton-sensing GPCRs are activated by acidic pH and facilitate tumor cell modulation in response to extracellular acidification. GPR4, GPR65, and GPR68 play roles in tumor cell apoptosis, proliferation, metastasis, angiogenesis, and immune cell function.19,27,32,33,44,45,96,97

GPR4 has had conflicting reports in terms of tumor suppressing or promoting activities. One study demonstrated that GPR4 could act as a tumor metastasis suppressor, when overexpressed and activated by acidic pH in B16F10 melanoma cells, by impeding migration and invasion of tumor cells.45 GPR4 overexpression also significantly inhibited the lung metastasis of B16F10 melanoma cells in mice.45 Another study utilizing the B16F10 melanoma cell line which overexpressed GPR4 showed an increase in mitochondrial surface area and a significant reduction in membrane protrusions by quantification of 3D morphology.98 These data point to a decrease in cancer cell migration when GPR4 is overexpressed and provides another example of GPR4 as exhibiting tumor metastasis suppressor function.98 However, in another report GPR4 malignantly transformed immortalized NIH3T3 fibroblasts.99 This presents GPR4 with tumor-promoting capabilities. The conflicting reports seem to indicate the functional ability of GPR4 to act as a tumor promoter and a tumor suppressor depending on the context of certain cell types and biological systems.

Reports with GPR65 involvement in cancer cells provide evidence in favor for cancer cell survival; however, opposing evidences suggest GPR65 functions as a tumor suppressor. In the same report suggesting GPR4 is oncogenic due to GPR4 transforming immortalized NIH3T3 fibroblasts, GPR65 overexpression was able to transform the mouse NMuMG mammary epithelial cell line.99 Another group demonstrated in NCI-H460 human non-small cell lung cancer cells that GPR65 promotes cancer cell survival in an acidic microenvironment.100 Conversely, a recent study showed that GPR65 inhibited c-Myc oncogene expression in human lymphoma cells.101 Furthermore, GPR65 messenger ribonucleic acid expression was reduced by more than 50% in a variety of human lymphoma samples when compared to normal lymphoid tissues, therefore implying GPR65 has a tumor suppressor function in lymphoma.101 GPR65 has also been shown to increase glucocorticoid-induced apoptosis in murine lymphoma cells.102 These reports highlight cell type dependency and biological context for GPR65 activity as a tumor suppressor or promoter.

GPR68 also has roles in tumor biology as a potential tumor suppressor or a tumor promoter. Reports have shown that GPR68 can inhibit cancer metastasis, reduce cancer cell proliferation, and inhibit migration. One study showed that when GPR68 was overexpressed in prostate cancer cells, metastasis to the lungs, diaphragm, and spleen was inhibited.97 When GPR68 was overexpressed in ovarian cancer (HEY) cells, cellular proliferation and migration were significantly reduced, and cell adhesion to the extracellular matrix was increased.96 Another study reported GPR68 expression was critical for the tumor cell induced immunosuppression in myeloid-derived cells. This study proposed that GPR68 promotes M2 macrophage development and inhibits T-cell infiltration, and thereby facilitates tumor development.103 In summary, the biological roles of GPR4, GPR65, and GPR68 in tumor biology are complex and both tumor-suppressing and tumor-promoting functions have been reported, primarily dependent on cell type and biological milieu.

Development of small molecule modulators of the pH-sensing GPCRs

GPCRs are critical receptors for the regulation of many physiological operations. It is of little surprise that GPCRs have become a central focus of pharmaceutical development. In fact, 30%–50% of therapeutics focuses on modulating GPCR activity.104,105 In view of the diverse roles of the pH-sensing GPCRs in the context of multiple biological systems, targeting these receptors with small molecules and other modulators could serve as potential therapeutics for diseases associated with deregulated pH homeostasis. There have been recent developments in the characterization of GPR4 antagonists along with agonists for GPR65 and GPR68.29,32,50,106 The GPR4 antagonist demonstrated effectiveness in vitro to reduce the GPR4-mediated inflammatory response to acidosis in endothelial cells.32 The GPR65 agonist, BTB09089, showed in vitro effects in GPR65 activation of immune cells to inhibit inflammatory response; however, the activity of BTB09089 was not strong enough for the use in animal models in vivo.29 The GPR68 agonist, lsx, exhibited pro-neurogenic activity and induced hippocampal neurogenesis in young mice.107 It was also demonstrated that lsx suppressed the proliferation of malignant astrocytes.108 To date, however, much advancement needs to be done in development of efficacious agonists and antagonists of the pH-sensing GPCRs coupled with a capacity to target specific tissue dysfunction in the midst of systemic drug administration to optimize therapeutic effects and minimize potential adverse effects.

Concluding remarks

Cells encounter acidotic stress in many pathophysiologic conditions such as inflammation, cancer, and ischemia. Intricate molecular mechanisms, including a large array of acid/base transporters and acid sensors, have evolved for cells to sense and respond to acidotic stress. Emerging evidence has demonstrated that a family of the pH-sensing GPCRs can be activated by extracellular acidotic stress and regulate the function of multiple physiological systems (Table 1). The pH-sensing GPCRs also play important roles in various pathological disorders. Agonists, antagonists and other modulators of the pH-sensing GPCRs are being actively developed and evaluated as potential novel treatment for acidosis-related diseases.

Table 1 The main biological functions of the pH-sensing GPCRs

7.3.9 Protein amino-terminal modifications and proteomic approaches for N-terminal profiling

Lai ZW1, Petrera A2, Schilling O3.
Curr Opin Chem Biol. 2015 Feb; 24:71-9
http://dx.doi.org:/10.1016/j.cbpa.2014.10.026

Amino-/N-terminal processing is a crucial post-translational modification affecting almost all proteins. In addition to altering the chemical properties of the N-terminus, these modifications affect protein activation, conversion, and degradation, which subsequently lead to diversified biological functions. The study of N-terminal modifications is of increasing interest; especially since modifications such as proteolytic truncation or pyroglutamate formation have been linked to disease processes. During the past decade, mass spectrometry has played an important role in facilitating the investigation of N-terminal modifications. Continuous progress is being made in the development and application of robust methods for the dedicated analysis of native and modified protein N-termini in a proteome-wide manner. Here we highlight recent progress in our understanding of protein N-terminal biology as well as outlining present enrichment strategies for mass spectrometry-based studies of protein N-termini.

Highlights

    • N-terminal acetylation, pyroglutamate formation, N-degrons and proteolysis are reviewed.• N-terminomics provide comprehensive profiling of modification at protein N-termini in a proteome-wide manner.• We outline a number of established methodologies for the enrichment of protein N-termini through positive and negative selection strategies.• Peptidomics-based approach is beneficial for the study of post-translational processing of protein N-termini.

 Introduction The life of every protein begins at the amino-terminus, also known as the N-terminus. During the initiation of mRNA translation into proteins or polypeptides, newly synthesized amino
acid chains form the N-termini and are the first to exit the ribosomes into the cytosol or the endoplasmic reticulum. The N-termini of these proteins or protein precursors often contain a signaling peptide
sequence proximal to the N-terminus, which may function as a ‘zip-code’ to direct the delivery of a protein to a cellular compartment as well as orchestrating protein maturation via different post-translational
modifications (PTMs) such as acetylation or proteolysis. These modifications often determine protein activity or stability; thus being crucial for the tight regulation of cellular homeostasis (Figure 1).
Mass spectrometry (MS) based analyses of protein N-termini, termed N-terminomics, is a promising tool to tackle these problems. In the past decade, we have witnessed significant progress in the
area of mass spectrometric investigation of post-translational modifications such as phosphorylation or glycosylation [1].  Similarly, MS-based studies of protein N-termini are gaining momentum.
Recent progress in positional proteomics using advanced MS platforms combined with a number of effective enrichment strategies has reinforced significant interest in N-terminomics.
Here we outline some of the most current highlights on proteomics-based studies on N-terminal modifications, including N-acetylation, pyroglutamate formation, proteolysis, and N-terminal degrons
(Figure 2). We also present a number of recent N-terminomic methodologies for the study of protein N-termini.

Acetylation of protein N-termini represents an abundant post-translational modification in eukaryotes, affecting nearly all cytoplasmic proteins. This  modification is catalyzed by the N-terminal
acetyltransferase (Nat) enzyme complex, which transfers an acetyl group to the N-termini of newly synthesized proteins during translation (Figure 2). Initial findings highlighted that N-terminal
acetylation protects proteins from degradation [2–4]. Recent studies however yield a more diverse picture. N-terminal acetylation may also play a role in protein delivery and localization [5–7],
protein complex formation and generation of specific degradation signals in cellular proteins via the N-degron pathway [9,10]. Loss of N-terminal acetylation through inactive acetyltransferases leads to
smaller aggregates of prion proteins [11]. In addition, N-terminal acetyltransferases have been described to also function as N-terminal proprionyltransferases [12].  Genetic mutation in the Naa10 gene,
encoding the NatA catalytic subunit, is known to cause N-terminal acetyltransferase deficient phenotypes. This genetic mutation has also been linked to X-linked disorder of infancy, causing lethality in
male infants[13]. The multifunctional roles of N-acetyltransferases as well as the importance of  N-terminal acetylation have been previously reviewed in [14]. Few MS-based studies have emerged that
specifically investigate acetylated N-termini in a proteome wide manner. The structural and functional integrity of actomyosin fibers depends on active NatB. A novel methodology determines the
extent of N-terminal acetylation in vivo through chemical, stable-isotope coded acetylation of proteins before their mass spectrometric analysis [16].

Pyroglutamate conversion of N-terminal glutamate and glutamine Many proteins and biologically active peptides exhibit an N-terminal pyroglutamic acid (pGlu) residue. This post
translational modification originates from the conversion of N-terminal glutamate and glutamine into pyroglutamic acid by glutaminyl cyclase or isoglutaminyl cyclase (Figure 2). N-terminal
pGlu influences structural stability as well as biological activity of peptides and proteins [17]. pGlu protects proteins from degradation by aminopeptidases [18] as well as regulating the
biological activity of peptide hormones, neuropeptides or chemokines [19]. Examples include thyrotropin releasing hormone (TRH), gonadotropin-releasing hormone, and the human
chemokines MCP-1 and 2. The presence of N-terminal pGlu in some amyloidogenic peptides, such as amyloid-b peptides, increases their hydrophobicity, resulting in an accelerated
aggregation [20]. Modulating the extent of N-terminal pGlu formation through pharmaceutical inhibition of glutaminyl cyclase is considered a promising strategy, for example, to
increase the degradation of inflammatory and neurotoxic peptides. Inhibition of glutaminyl cyclase has alleviated liver inflammation by destabilizing the chemokine MCP1 (CCL2) [21].
Proteolytic degradation of this promigratory chemokine by inhibiting glutaminyl cyclase was also proposed as an attractive novel strategy in preventing thyroid cancer metastasis [22].
Given the functional relevance of N-terminal pGlu in pathological conditions, an MS-based approach to profile this modification may be particularly useful.

N-terminal degrons N-terminal residues have a strong impact on protein stability and half-life. Firstly described in 1986 by Varshavsky and colleagues [25], the N-end rule pathway
has been identified in a broad range of species, from mammals to bacteria, and from yeast to plants [26]. This control of protein degradation in eukaryotes and bacteria is governed
by the formation and recognition of specific sequences at protein N-termini, called N-degrons. The main determinant of an N-degron is an N-terminal destabilizing residue. In eukaryotes,
two N-end rule pathways are being distinguished: the Ac/N-end rule pathway targets proteins through their N-terminally acetylated residues while the Arg/N-rule pathway targets
unacetylated N-terminal residues and involves N-terminal arginylation [26]. Proteolytic processing leading to new protein N-termini is increasingly recognized to play an important
role in the formation of N-degrons. In eukaryotes, N-degron mediated protein degradation occurs through the  ubiquitin–proteasome system. N degrons are recognized by E3
ubiquitin ligases called N-recognins, which induce protein ubiquitylation. Recent studies showed that the N-end rule pathway can be regulated by various mechanisms [26].
Hemin, the ferric (Fe3+) counterpart of heme, and short peptides can bind to components of the N-end rule pathway and impede their functionality [26]. Although the N-end rule
pathway has been molecularly dissected in great detail, numbers of identified physiological substrates undergoing N-end rule degradation have remained limited. A recent study
has expanded the range of substrates targeted by the Arg/N-end rule. Kim and colleagues have shown that N terminal Met followed by a hydrophobic residue functions as an N-degron
[27]. N-terminal Met followed by a small residue is typically removed by aminopeptidases in a cotranslational manner (Figure 2). However, approximately 15% of the genes in mammals
or yeast encode for an N-terminal Met followed by a larger hydrophobic residue. This specific N-degron is targeted by the Ac/N-end rule pathway when the N-terminal Met is acetylated.
The Arg/N-end rule acts instead on the non-acetylated N-terminal Met. As previously mentioned, novel N-degrons can be generated by preceding proteolysis. Piatkov and colleagues
investigated this concept for proteolytic cleavage products that occur during apoptosis [28]. They find that numerous proapoptotic fragments are short lived substrates of Arg/N-end
rule pathway, attributing to this pathway an anti-apoptotic role. Notably, the corresponding N-degron sequences are evolutionary conserved.

Figure 1 Protein N-termini are susceptible to various post-translational modification.
For a more comprehensive overview of all possible N terminal modification, see [60].

Figure 2 Examples of N-terminal mofications: acetylation, pyroglutamate conversion, proteolysis and N-degron processing via deamidation and amino acid conjugation.

Proteolytic processing of N-termini Proteolysis has long been regarded a degradation process. It is now increasingly recognized as an important posttranslational modification
with an array of proteases mediating cellular signaling via the precise processing of bioactive proteins and peptides. The study of cleavage events using N-terminomics is particularly
useful for the identification of proteolytic substrates. Proteolytic cleavage of proteins and polypeptides results in the generation of cleavage fragments with new N-termini and
C-termini. Numerous recent proteomic studies highlighted differential regulation of proteases in different disease settings. MALDI-TOF in combination with enzymatic assays
established reduced levels of dipeptidyl-peptidase (DPP)4 in the serum of patients suffering from metastatic prostate cancer [31]. Another proteomic based study,  using isotope
coded affinity tag (ICAT) labeling showed bacterial leucine aminopeptidase from Plasmodium chabaudi to be significantly upregulated in periodontal disease [32]. Mass spectrometry
was also used for the functional characterization of proteases.

7.3.10 Protein homeostasis networks in physiology and disease

Although most text books of biochemistry describe the process of protein folding to a three dimensional native state as an intrinsic property of the primary sequence, it is becoming increasingly clear that this process can go wrong in an almost infinite number of ways. In fact, many different diseases are caused by the misfolding and aggregation of certain proteins without genetic mutations in the primary sequence. An integrative view of the mechanisms that maintain protein folding homeostasis is emerging, which could be thought as a balanced and dynamic network of interconnected processes tightly regulated by a series of quality control mechanisms. This protein homeostasis network involves families of folding catalysts, co-factors under specific environmental and metabolic conditions. Maintaining protein homeostasis is particularly challenging in specialized secretory cells where the high demand for protein synthesis generates a constant source of stress that could lead to proteotoxicity.

Protein folding is assisted and monitored by diverse interconnected processes that follow a sequential pattern over time. The calnexin/calreticulin cycle ensures the proper folding of glycosylated proteins through the secretory pathway, which establishes the final pattern of disulfide bond formation through interactions with the disulfide isomerase ERp57. Coupled to this cycle is the ER-associated degradation (ERAD) pathway, which translocates terminally misfolded proteins to the cytosol for degradation by proteasomes. In addition, macroautophagy is becoming a relevant mechanism for the clearance of damaged proteins and abnormal protein aggregates through lysosomal hydrolysis, a process also referred to as ERAD-II. The folding status at the ER is constantly monitored by the Unfolded Protein Response (UPR), a specialized signaling pathway initiated by the activation of three types of stress sensors. The process underlying the surveillance of protein folding stress by the UPR is not fully understood, but it may require coupling to key folding mediators such as BiP or the direct recognition of the misfolded peptides by stress sensors. The UPR regulates genes and processs related to almost every folding step in the secretory pathway to reduce the load of misfolded proteins, including protein translation into the ER, translocation, folding, quality control, ERAD, the redox status, and many other related functions. Protein folding stress is observed in many disease conditions such as cancer, diabetes, and neurodegeneration. For example, abnormal protein aggregation and the accumulation of protein inclusions is associated with Parkinson’s and Alzheimer’s Disease, and amyotrophic lateral sclerosis. In those diseases and many others, neuronal dysfunction and disease progression correlates with the presence of a strong ER stress response; however, the direct in vivo role of the UPR in the disease process has been experimentally defined in only a few cases. Therapeutic strategies are currently being developed to increase protein folding and clearance of misfolded proteins, with the goal of alleviating ER stress.

In this issue of Current Opinion in Cell Biology we present a series of focused reviews from recognized experts in the field, that provide an overview of mechanisms underlying protein folding and quality control, and how balance of protein homeostasis is maintained in physiology and deregulated in diseases. Daniela Roth and William Balch integrate the concept of protein homeostasis networks into an interesting model termed FoldFx, showing how the interconnection between different pathways in the context of the cellular proteome determines the energetic barrier required to generate a functional folded peptide. The authors have previously proposed the term Proteostasis to refer to the set of interacting activities that maintain the health of the proteome and the organism (protein homeostasis). The ER is a central subcellular compartment for protein synthesis and quality control in the secretory pathway. Yukio Kimata and Kenji Kohno give an overview of the signaling pathways that control adaptation to ER stress and maintenance of protein folding homeostasis. The authors summarize the models proposed so far for the activation of UPR stress sensors, and discuss how this directly or indirectly relates to the accumulation of unfolded proteins in the ER lumen. Chronic or irreversible ER stress triggers cell death by apoptosis. Gordon Shore, Feroz Papa, and Scott Oakes summarize the complex signaling pathways initiating apoptosis by ER stress, where cross talk between the ER and the mitochondria play a central role. The authors focus on addressing the role of the BCL-2 protein family on the activation of intrinsic mitochondrial apoptosis pathways, highlighting different cytosolic and transcriptional events that determine the transition between adaptive responses to apoptosis programmed by the UPR to eliminate irreversibly injured cells.

Although diverse families of chaperones, foldases and co-factors are expressed at the ER, only a few protein folding networks have been well defined. However, molecular explanations for specific substrate recognition and quality control mechanisms are poorly defined. Here we present a series of reviews covering different aspects of protein maturation. Amy Lee summarizes what is known about the biology of the key ER folding chaperone BiP/Grp78, and its emerging role in diverse pathological conditions including cancer. In two reviews, David B. Williams and Linda M. Hendershot describe the best characterized mechanism of protein quality control at the ER, the calnexin cycle. In addition, they give an overview of the function of a family of ER foldases, the protein disulfide isomerases (PDIs), in folding, quality control and degradation of abnormally folded proteins. PDIs are also becoming key factors in establishing the redox tone of the ER. Riccardo Bernasconi and Maurizio Molinari overview the ERAD process and how this pathway affects the efficiency of the protein folding process at the ER and its relation to pathological conditions.

Lysosomal-mediated degradation is becoming a fundamental process for the control of the haft-life of proteins and the degradation of misfolded, aggregate prone proteins. Ana Maria Cuervo reviews the relevance of Chaperone-mediated autophagy in the selective degradation of soluble cytosolic proteins in lysosomes, and also points out a key role for Chaperone-mediated autophagy in the cellular defense against proteotoxicity. David Rubinsztein and Guido Kroemer present two reviews highlighting the emerging relevance of macroautophagy in maintaining the homeostasis of the nervous system. They also discuss the actual impact of macroautophagy in the clearance of protein aggregates related to neurodegenerative diseases, including Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease among others. In addition, recent evidence suggesting an actual impairment of macroautophagy as a causative factor in aging-related disorders is also discussed.

Alterations in protein homeostasis underlie the etiology of many diseases affecting the nervous system, in addition to cancer and diabetes. Fumiko Urano summarizes the impact of ER stress in β cell dysfunction and death during the progression of type 1 and type 2 diabetes, as well as in genetic forms of diabetes such as Wolfram syndrome. The occurrence of basal ER stress is observed in specialized secretory cells and organs, including plasma B cells. Roberto Sitia covers several aspects of how proteotoxic stresses physiologically contribute to regulate the biogenesis, function and lifespan of B cells, and speculates about the possible impact of ER stress in the treatment of multiple myeloma. Claudio Soto describes the specific role of calcineurin, a key phosphatase in the brain, in the occurrence of synaptic dysfunction and neuronal death in prion-related disorders. We also present provide a review summarizing the emerging role of ER stress and the UPR in most neurodegenerative diseases related to protein misfolding. We also discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress at the ER in these pathologies, and speculate about possible therapeutic interventions to treat neurodegenerative diseases.

Strategies to increase the efficiency of quality control mechanisms, to reduce protein aggregation and to enhance folding are suggested to be beneficial in the setting of diseases associated with the disruption of protein homeostasis. Finally, Jeffery Kelly overviews recent chemical and biological therapeutic strategies to restore protein homeostasis, which could be achieved by enhancing the biological capacity of the proteostasis network or through small molecule to stabilize misfolding-prone proteins. In summary, this volume ofCurrent Opinion in Cell Biology compiles the most recent advances in understanding the impact of protein folding stress in physiology and disease, and integrates a variety of complex mechanisms that evolved to maintain protein homeostasis in a dynamic way in the context of a changing environment. The biomedical applications of developing strategies to cope with protein folding stress have profound implications for the treatment of the most prevalent diseases in the human population.

7.3.11 Proteome sequencing goes deep
Advances in mass spectrometry (MS) have transformed the scope and impact of protein characterization efforts. Identifying hundreds of proteins from rather simple biological matrices, such as yeast, was a daunting task just a few decades ago. Now, expression of more than half of the estimated ∼20,000 human protein coding genes can be confirmed in record time and from minute sample quantities. Access to proteomic information at such unprecedented depths has been fueled by strides in every stage of the shotgun proteomics workflow-from sample processing to data analysis-and promises to revolutionize our understanding of the causes and consequences of proteome variation.
Highlights
    • Recent MS advances have transformed the depth of coverage of the human proteome.• Expression of half the estimated human protein coding genes can be verified by MS.• MS sample preparation, instrumentation, and data analysis techniques are highlighted.

http://ars.els-cdn.com/content/image/1-s2.0-S1367593114001586-gr1.sml

Mammalian proteomes  are complex [3]. The human proteome contains ~20,300 protein-coding genes; however, non-synonymous single nucleotide polymorphisms (nsSNPs), alternative
splicing events, and post-translational modifications (PTMs) all occur and exponentially increase the number of distinct proteoforms [4–6]. Detection of 5000 proteins in a proteomic
experiment was a considerable achievement just a few years ago [7–9]. More recently, two groups identified over 10,000 protein groups in a single experiment. Through extensive protein
and peptide fractionation (72 fractions) and digestion with multiple enzymes, Nagaraj et al. identified 10,255 protein groups from HeLa cells over 288 hours of instrument analysis [10].
A comparison with paired RNA-Seq data revealed nearly complete overlap between the detected proteins and the expressed transcripts. In that same year, a similar strategy enabled
the identification of 10,006 proteins from the U2OS cell line [11]. Kim and co-workers analyzed 30 human tissues and primary cells over 2000 LC–MS/MS experiments, resulting
in the detection of 293,000 peptides with unique amino acid sequences and evidence for 17,294 gene products [16]. Wilhelm et al. amassed a total of 16,857 LC–MS/MS experiments
from human cell lines, tissues, and body fluids. These experiments produced 946,000 unique peptides, which map to 18,097 protein coding genes [17]. Together, these two studies
provide direct evidence for protein translation of over 90% of  human genes (Figure 2). New developments in mass spectrometer technology have increased the rate at which proteomes
can be analyzed. We describe developments in sample preparation, MS instrumentation, and bioinformatics that have been key to obtaining comprehensive proteomic coverage.
Further, we consider how access to such proteomic detail will impact genomic  research.

Aurelian Udristioiu

Aurelian

Aurelian Udristioiu

Lab Director at Emergency County Hospital Targu Jiu

Mg²+ is critical for maintaining the positional integrity of closely clustered phosphate groups. These clusters appear in numerous and distinct parts of the cell nucleus and cytoplasm. The Mg²+ ion maintains the integrity of nucleic acids, ribosomes and proteins. In addition, this ion acts as an oligo-element with role in energy catalysis. Biological cell membranes and cell walls exhibit poly-anionic charges on the surface. This finding has important implications for the transport of ions, particularly because different membranes preferentially bind different ions. Both Mg²+ and Ca²+ regularly stabilize membranes by cross-linking the carboxylated and phosphorylated head groups of lipids.

Notable document –

Theor Biol Med Model. 2010 Jun 9;7:19.
Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations.
Matveev VV1.
Cell physiologist at Institute of Cytology, Russian Academy of Sciences

According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen’s dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity.”One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity.”Josiah Willard Gibbs (1839-1903).

http://www.ncbi.nlm.nih.gov/pmc/articles/instance/2901313/bin/1742-4682-7-19-1.gif

http://www.ncbi.nlm.nih.gov/pmc/articles/instance/2901313/bin/1742-4682-7-19-2.gif

To date, numerous mechanisms, signal pathways, and different factors have been found in the cell. Researchers are naturally eager to find commonalities in the mechanisms of cellular regulation. I would like to propose a substantial approach to problems of cell physiology – the structural ground that produces signals and underlies the diversity of cellular mechanisms.

The methodological basis for the proposed hypothesis results from studies by the scientific schools of Dmitrii Nasonov [1] and Gilbert Ling [26], which have gained new appreciation over the last 20-30 years owing to advances in protein physics [7] in the study of properties of globular proteins, their unfolding and folding, as well as the discovery of novel states of the protein molecule: the natively unfolded and the molten globule. The key statement for the rationale of the present paper is that the specificity of interactions of polypeptide chains with each other (at the intra- and inter-molecular levels) can be provided only by their secondary structures, primarily α-helices and β-sheets.

Nasonov’s school discovered and studied a fundamental phenomenon — the nonspecific reaction of the cell to external actions [1], while works by Ling [5] and his followers allow the mechanisms of this phenomenon to be understood.

The above-mentioned cell reaction has been called nonspecific because diverse physical and chemical factors produce the same complex of structural changes in the cell: an increase in the turbidity and macroscopic viscosity of the cytoplasm and in the adsorption of hydrophobic substances by cytoplasmic proteins. It is of primary importance that the same changes also occur in the cell during its transition into the active state: muscle contraction, action potential, enhancement of secretory activity (for details, see [8]). Hence, from the point of view of structural changes, there is no fundamental difference between the result of action on the cell of hydrostatic pressure and, for instance, muscle contraction. In both cases, proteins are aggregated.

Nasonov called the cause of these changes the stages of cell protein denaturation, as the changes of properties of isolated proteins during denaturation are very similar to the changes in the cytoplasm during the nonspecific reaction. As a result, the denaturational theory of cell excitation and damage was created [1]. The structural changes of protein denaturation were unclear in Nasonov’s time. Nowadays, it is assumed that the denaturation is the destruction of the tertiary and secondary structure of a protein. Below I give two definitions, for the denaturation of natively folded (globular) proteins and for natively unfolded proteins.

A key notion in physiology is the resting state of the cell. This is implicit in the concept of the threshold character of the action of stimuli on the cell, which has played a historical role in the development of physiological science. It is the threshold that is the boundary between two states — rest and activity. But in effect, all our knowledge about cells concerns active cells, not cells in the resting state. It is in the active cell that variable changes occur that can be recorded. Nothing happens in the resting cell, so there is nothing to be recorded in it. Nevertheless, it is obvious that the resting state is the initial cell state, the starting point for all changes occurring in the cell.

What characterizes the structural aspect of the cell in the state of rest? It is only in Ling’s work [5] that I have found a clear answer to this question. The answer can be interpreted as follows: if all resting cell proteins were arranged in one line, it would turn out that most of the peptide bonds in this superpolypeptide would be accessible to solvent (water), while only a few would be included in secondary structures. When the cell is activated, the ratio between the unfolded and folded areas is changed sharply to the opposite: the proportion of peptide bonds accessible to solvent decreases markedly, whereas the proportion included in secondary structures rises significantly. These two extreme states of cell proteins, suggested by Ling, provide a basis for further consideration.

If Ling’s approach is combined with Nasonov’s theory, we obtain several interesting consequences. First of all, it is clear that proteins with maximally unfolded structures form the structural basis of resting cells because they are inactive, i.e., do not interact with other proteins or other macromolecules. The situation changes when an action on the cell exceeds the threshold: completely or partially unfolded key proteins begin to fold when new secondary protein structures are formed. Owing to these new secondary structures, the proteins become capable of reacting, i.e., intramolecular aggregation (folding of individual polypeptides into globules) and intermolecular aggregation (interaction of some proteins with others) begin. A distinguishing feature of these aggregational processes is their absolutely specific character, which is ensured by the amino acid composition, shape, and size of the secondary structures. The structures appearing have physiological meaning, so such aggregation is native and the secondary structures causing it are centers of native aggregation. Another source of secondary structures necessary for native aggregation is the molten globule.

The ability of cells to return to the initial state, the state of rest, means that native aggregation is completely reversible, and the structures appearing in the course of native aggregation are temporary and are disassembled as soon as they cease to be necessary. Native aggregation can involve both the whole cell and individual organelles, compartments, and structures, and activation of proteins is of a threshold rather than a spontaneous character.

The meaning of the proposed hypothesis of native aggregation is that the primary cause of any functional changes in cell is the appearance, as a result of native aggregation, of temporary structures, continually appearing and disintegrating during the life of the cell. Since native aggregation is initiated by external stimuli or regulatory processes and the structures appearing have a temporary character, these structures can be called signal structures.

Signal structures can have different properties: (i) they can be centers of binding of ions, molecules (solutes), and proteins; (ii) they can have enzymatic activity; (iii) they can form channels and intercellular contacts; (iv) they can serve as matrices organizing the interactions of molecules in synthetic and transport processes; (iv) they can serve as receptors for signal molecules; (v) they can serve as the basis for constructing even more complex supramolecular structures. These structures “flash” in the cell space like signal lights, perform their role, and disappear, to appear in another place and at another time. The meaning of the existence of the structural “flashes” is that during transition into the active state the cell needs new resources, functions, mechanisms, regulators, and signals. As soon as the cell changes to the resting state, the need for these structures disappears, and they are disassembled. Extreme examples of native aggregation are muscle contraction, condensation of chromosomes, the appearance of the division spindle, and interactions of ligands with receptors.

Thus, the present paper will consider the meaning and significance of native aggregation as the universal structural basis of the active cell. The basis of pathological states is the inability of the cell to return to the resting state and errors in the formation of signal structures. The presentation of native aggregation is based on three pillars: (i) reversible protein aggregation is a structural basis of cell activity (Nasonov’s School); (ii) the operation of the living cell or its individual structures can be regarded as a repetitive sequence of transitions between two states (active and resting), a key role in which belongs to natively unfolded proteins (Ling’s approach); (iii) the specificity of interactions of separate parts of a single polypeptide chain with each other (folding) or the interaction of separate polypeptide chains among themselves (self-assembly, aggregation) can be provided only by protein secondary structures.

The goal of this paper is the enunciation of principles, rather than a review of facts corresponding to these principles.

Read Full Post »

Medical Headline Misinformation Strikes Again: Claims About Vitamin D

Reporter: Stephen J. Williams, Ph.D.

A recent posting by a group called the Vitamin D Council (and put on this site) had referred to, and misquoted, the Mayo Clinic site on the role of vitamin D on various diseases. At first I was curious if this was actually reported on the Mayo site on claims of prevention of various cancers (as results from retrospective studies had been conflicting) and originally had made some strong comments. From comments made from this post I do agree that there is strong evidence about vitamin D supplementation for the prevention of rickets but as Mayo reviewed claims about vitamin D supplementation and prevention of certain diseases such as cancers and heart disease may not be as strong as some suggest.  My main concern was : is the clinical evidence strong enough for the role of vitamin D supplementation in a wide array of diseases and did Mayo make the claims as suggested in some media reports?  Actually Mayo does a very thorough job of determining the clinical evidence and the focus of vitamins and cancer risk will be a point of further discussion.

After consulting the Mayo clinic website it appears that the Vitamin D Council site had indeed misquoted and misrepresented the medical information contained within the Mayo Clinic website.

Medical Misinformation Is Probably The Most Hazardous and Biggest Risk Impacting a Healthy Lifestyle

The site had made numerous claims on role of vitamin D3 (cholecalciferol) in numerous diseases; making it appear there were definitive links between low vitamin D3 and risk of hypertension, cancer, depression and diabetes.

A little background on Vitamin D

From Wikipedia

Vitamin D refers to a group of fat-soluble secosteroids responsible for enhancing intestinal absorption of calcium, iron, magnesium, phosphate and zinc. In humans, the most important compounds in this group are vitamin D3 (also known as cholecalciferol) and vitamin D2 (ergocalciferol).[1] Cholecalciferol and ergocalciferol can be ingested from the diet and from supplements.[1][2][3] Very few foods contain vitamin D; synthesis of vitamin D (specifically cholecalciferol) in the skin is the major natural sources of the vitamin. Dermal synthesis of vitamin D from cholesterol is dependent on sun exposure (specifically UVB radiation).Vitamin D has a significant role in calcium homeostasis and metabolism. Its discovery was due to effort to find the dietary substance lacking in rickets (the childhood form of osteomalacia).[4]

also from Widipedia on Vitamin D toxicity

Vitamin D toxicity

Vitamin D toxicity is rare.[20] It is caused by supplementing with high doses of vitamin D rather than sunlight. The threshold for vitamin D toxicity has not been established; however, the tolerable upper intake level (UL), according to some research, is 4,000 IU/day for ages 9–71.[7] Whereas another research concludes that in healthy adults, sustained intake of more than 1250 μg/day (50,000 IU) can produce overt toxicity after several months and can increase serum 25-hydroxyvitamin D levels to 150 ng/ml and greater;[20][56] those with certain medical conditions, such as primary hyperparathyroidism,[57] are far more sensitive to vitamin D and develop hypercalcemia in response to any increase in vitamin D nutrition, while maternal hypercalcemia during pregnancy may increase fetal sensitivity to effects of vitamin D and lead to a syndrome of mental retardation and facial deformities.[57][58]

After being commissioned by the Canadian and American governments, the Institute of Medicine (IOM) as of 30 November 2010, has increased the tolerable upper limit (UL) to 2,500 IU per day for ages 1–3 years, 3,000 IU per day for ages 4–8 years and 4,000 IU per day for ages 9–71+ years (including pregnant or lactating women).[7]

Published cases of toxicity involving hypercalcemia in which the vitamin D dose and the 25-hydroxy-vitamin D levels are known all involve an intake of ≥40,000 IU (1,000 μg) per day.[57] Recommending supplementation, when those supposedly in need of it are labeled healthy, has proved contentious, and doubt exists concerning long-term effects of attaining and maintaining high serum 25(OH)D by supplementation.[61]

From the Mayo Clinic Website on Vitamin D

The Mayo Clinic has done a wonderful job curating the uses and proposed uses of vitamin D for various diseases and rates the evidence using a grading system A-F (as shown below):

Key to grades

A STRONG scientific evidence FOR THIS USE

B GOOD scientific evidence FOR THIS USE

C UNCLEAR scientific evidence for this use

D Fair scientific evidence AGAINST THIS USE (it may not work)

F Strong scientific evidence AGAINST THIS USE (it likely does not work)

Mayo has information for other natural products as well. As described below (and on the Mayo site here) most of the supposed evidence fails their criteria for a strong clinical link between diseases such as heart disease, hypertension, cancer and vitamin D (either parental or D3) levels.

The important take-home from the Mayo site is that there is strong evidence for the use of vitamin D in diseases related to the known mechanism of vitamin D such as low serum phosphate either due to kidney disease (Fanconi syndrome) or familial hypophosphatemia or in diseases surrounding bone metabolism like osteomalacia, rickets, dental cavities and even as a treatment for psoriasis or underactive parathyroid.

However most indications like hypertension, stroke, cancer prevention or treatment (other than supportive therapy for low vitamin D levels) get a poor grade (C or D) for clinical correlation from Mayo Clinic.

A Post in the Near Future will be a Curation of Validated Clinical Studies on Effects of Vitamins on Cancer Risk.

Below is taken from the Mayo Site:

Evidence

These uses have been tested in humans or animals.  Safety and effectiveness have not always been proven.  Some of these conditions are potentially serious, and should be evaluated by a qualified healthcare provider.

Grading rationale

Evidence grade Condition to which grade level applies
A

Deficiency (phosphate)

Familial hypophosphatemia is a rare, inherited condition in which there are low blood levels of phosphate and problems with vitamin D metabolism. It is a form of rickets. Taking calcitriol or dihydrotachysterol by mouth along with phosphate supplements is effective for treating bone disorders in people with this disease. Those with this disorder should be monitored by a medical professional.

A

Kidney disease (causing low phosphate levels)

Fanconi syndrome is a kidney disease in which nutrients, including phosphate, are lost in the urine instead of being reabsorbed by the body. Taking ergocalciferol by mouth is effective for treating low phosphate levels caused by Fanconi syndrome.

A

Osteomalacia (bone softening in adults)

Adults who have severe vitamin D deficiency may experience bone pain and softness, as well as muscle weakness. Osteomalacia may be found among the following people: those who are elderly and have diets low in vitamin D; those with problems absorbing vitamin D; those without enough sun exposure; those who undergo stomach or intestine surgery; those with bone disease caused by aluminum; those with chronic liver disease; or those with bone disease associated with kidney problems. Treatment for osteomalacia depends on the cause of the disease and often includes pain control and surgery, as well as vitamin D and phosphate-binding agents.

A

Psoriasis (disorder causing skin redness and irritation)

Many different approaches are used to treat psoriasis, including light therapy, stress reduction, moisturizers, or salicylic acid. For more severe cases, calcipotriene (Dovonex®), a man-made substance similar to vitamin D3, may help control skin cell growth. This agent is a first-line treatment for mild-to-moderate psoriasis. Calcipotriene is also available with betamethasone and may be safe for up to one year. Vitamin D3 (tacalcitol) ointment or high doses of becocalcidiol applied to the skin are also thought to be safe and well-tolerated.

A

Rickets (bone weakening in children)

Rickets may develop in children who have vitamin D deficiency caused by a diet low in vitamin D, a lack of sunlight, or both. Babies fed only breast milk (without supplemental vitamin D) may also develop rickets. Ergocalciferol or cholecalciferol is effective for treating rickets caused by vitamin D deficiency. Calcitriol should be used in those with kidney failure. Treatment should be under medical supervision.

A

Thyroid conditions (causing low calcium levels)

Low levels of parathyroid hormone may occur after surgery to remove the parathyroid glands. Taking high doses of dihydrotachysterol, calcitriol, or ergocalciferol by mouth, with or without calcium, may help increase calcium levels in people with this type of thyroid problem. Increasing calcium intake, with or without vitamin D, may reduce the risk of underactive parathyroid glands.

A

Thyroid conditions (due to low vitamin D levels)

Some people may have overactive parathyroid glands due to low levels of vitamin D, and vitamin D is the first treatment for this disorder. For people who have overactive parathyroid glands due to other causes, surgery to remove the glands is often recommended. Studies suggest that vitamin D may help reduce the risk of further thyroid problems after undergoing partial or total removal of the parathyroid glands.

A

Vitamin D deficiency

Vitamin D deficiency is associated with many conditions, including bone loss, kidney disease, lung disorders, diabetes, stomach and intestine problems, and heart disease. Vitamin D supplementation has been found to help prevent or treat vitamin D deficiency.

B

Dental cavities

Much evidence has shown that vitamin D helps prevent cavities; however, more high-quality research is needed to further support this finding.

B

Renal osteodystrophy (bone problems due to chronic kidney failure)

Renal osteodystrophy refers to the bone problems that occur in people with chronic kidney failure. Calcifediol or ergocalciferol taken by mouth may help prevent this condition in people with chronic kidney failure who are undergoing treatment.

C

Autoimmune diseases

Vitamin D may reduce inflammation and help prevent autoimmune diseases, including rheumatoid arthritis, multiple sclerosis, and Crohn’s disease. However, further high-quality research is needed to confirm these results.

C

Bone density (children)

Vitamin D improves bone density in children who are vitamin D deficient. However, results are unclear and more research is needed.

C

Bone diseases (kidney disease or kidney transplant)

Vitamin D has been studied for people with chronic kidney disease. The use of substances similar to vitamin D has been found to increase bone density in people with kidney disease. The effect of vitamin D itself is unclear. Further research is needed before conclusions can be made.

C

Cancer prevention (breast, colorectal, prostate, other)

Many studies have looked at the effects of vitamin D on cancer. Positive results have been reported with the use of vitamin D alone or with calcium. Vitamin D intake with or without calcium has been studied for colorectal, cervical, breast, and prostate cancer. A reduced risk of colorectal cancer has been shown with vitamin D supplementation. However, there is a lack of consistent or strong evidence. Further study is needed.

C

Fibromyalgia (long-term, body-wide pain)

Vitamin D has been studied for the treatment of fibromyalgia, but evidence is lacking in support of its effectiveness. Further study is needed.

C

Fractures (prevention)

Conflicting results have been found on the use of vitamin D for fracture prevention. The combination of alfacalcidol and alendronate has been found to reduce the risk of falls and fractures. However, further high-quality research is needed before firm conclusions can be made.

C

Hepatic osteodystrophy (bone disease in people with liver disease)

Metabolic bone disease is common among people with chronic liver disease, and osteoporosis accounts for the majority of cases. Varying degrees of poor calcium absorption may occur in people with chronic liver disease due to malnutrition and vitamin D deficiency. Vitamin D taken by mouth or injected may play a role in the management of this condition.

C

High blood pressure

Low levels of vitamin D may be linked to high blood pressure. Blood pressure is often higher during the winter season, at a further distance from the equator, and in people with dark skin pigmentation. However, the evidence is unclear. More research is needed in this area. People who have high blood pressure should be managed by a medical professional.

C

Immune function

Early research suggests that vitamin D and similar compounds, such as alfacalcidol, may impact immune function. Vitamin D added to standard therapy may benefit people with infectious disease. More studies are needed to confirm these results.

C

Seasonal affective disorder (SAD)

SAD is a form of depression that occurs during the winter months, possibly due to reduced exposure to sunlight. In one study, vitamin D was found to be better than light therapy in the treatment of SAD. Further studies are necessary to confirm these findings.

C

Stroke

Higher levels of vitamin D may decrease the risk of stroke. However, further study is needed to confirm the use of vitamin D for this condition.

C

Type 1 diabetes

Some studies suggest that vitamin D may help prevent the development of type 1 diabetes. However, there is a lack of strong evidence to support this finding.

C

Type 2 diabetes

Vitamin D has mixed effects on blood sugar and insulin sensitivity. It is often studied in combination with calcium. Further research is needed to confirm these results.

D

Cancer treatment (prostate)

Evidence suggests a lack of effect of vitamin D as a part of cancer treatment for prostate cancer. Further study is needed using other formulations of vitamin D and other types of cancer.

D

Heart disease

Vitamin D is recognized as being important for heart health. Overall, research is not consistent, and some studies have found negative effects of vitamin D on heart health. More high-quality research is needed to make a firm conclusion.

D

High cholesterol

Many studies have looked at the effects of vitamin D alone or in combination with other agents for high cholesterol, but results are inconsistent. Some negative effects have been reported. More research is needed on the use of vitamin D alone or in combination with calcium.

Other related articles on Vitamins and Disease were published in this Open Access Online Scientific Journal, include the following:

Multivitamins – Don’t help Extend Life or ward off Heart Disease and Improve state of Memory Loss

Diet and Diabetes

What do you know about Plants and Neutraceuticals?

Malnutrition in India, high newborn death rate and stunting of children age under five years

Omega-3 fatty acids, depleting the source, and protein insufficiency in renal disease

American Diet is LOW in four important Nutrients that have a direct bearing on Aging and the Brain

Parathyroids and Bone Metabolism

Read Full Post »

Pancreatic Cancer and Crossing Roads of Metabolism

Curator: Demet Sag, PhD

 

PART I: Pancreatic Cancer

  • Intro
  • What is Pancreas cancer
  • What are the current and possible applications for treatment and early diagnosis
  • How pancreatic cancer is related to obesity, overweight, BMI, diabetes
  • Genetics of Pancreatic Cancer

PART II : Translational Research on Molecular Genetics Studies at Immune Response Mechanism 

  • Natural Killer Cells
  • IL-17
  • Chemokines

search_result- pancreatic cancer clinical trial studies

https://clinicaltrials.gov/ct2/results?term=Pancreatic+Cancer&Search=Searchpc 1

PART I: Pancreatic Cancer

Introduction:

Our body works a s a system even during complex diseases that is sometimes forgotten.  From nutrition to basic immune responses since we are born we start to change how we respond and push the envelope to keep hemostasis in our body.

During this time additional factors also increase or decrease the rate of changes such as life style, environment, inherited as well acquired genetic make-up, types of infections, weight and stress only some of them. As a result we customized our body so deserve a personalized medicine for a treatment. Customized approach is its hype with developing technology to analyze data and compare functional genomics of individuals.

However, still we need the basic cell differentiation to solve the puzzle to respond well and connect the dots for physiological problems.  At the stem of the changes there is a cell that respond and amplify its reaction to gain a support to defend at its best . Thus, in this review I like to make a possible connection for pancreatic cancer, obesity-diabetes and innate immune response through natural killer cells.

Pancreatic cancer is one of the most lethal malignancies. Pancreatic cancer is one of the most difficult cancers to treat. Fewer than 5% of patients survive more than 5 years after diagnosis. The 5-year survival rate is despite therapeutic improvements still only 6%. More than 80% of the pancreatic tumors are classified as pancreatic ductal adenocarcinoma (PDA).

When cells in the pancreas that secrete digestive enzymes (acinar cells) turn into duct-like structures, pancreatic cancer can develop. Oncogenic signaling – that which causes the development of tumors – can influence these duct-like cells to form lesions that are a cancer risk.

 

Crossing roads

The recent publication brought up the necessity to understand how pancreatic cancer and IL17 are connected.

Schematic diagram showing the central role of IL-17B–IL-17RB signaling in pancreatic cancer metastasis.

Adapted from an illustration by Heng-Hsiung Wu and colleagues

http://jem.rupress.org/content/212/3/284/F2.large.jpg

 

Simply, obesity and diabetes increases the risks of cancers, cardiovascular disease, hypertension, and type-2 DM.  There is a very big public health concern as obesity epidemic, the incidence of diabetes is increasing globally, with an estimated 285 million people, or 6.6% of the population from 20 to 79 years of age, affected this is especially more alarming as child obesity is on the rise.

According to a World Health Organization (WHO) report showing that 400 million people are obese in the world, with a predicted increase to 700 million by 2015  and in the US, 30–35 percent of adults are obese.  In addition, high BMI and increased risk of many common cancers, such as liver, endometrium, breast, pancreas, and colorectal cancers have a linear increasing relationship.

The BMI is calculated by dividing body weight in kilograms by height squared in meters kg/m2). The current standard categories of BMI are as follows: underweight, <18.5; normal weight, 18.5–24.9; overweight, 25.0–29.9; obese, 30.0–34.9; and severely obese, > or = 35.0).

Furthermore, natural killer cells not only control innate immune responses but have function in other immune responses that was not recognized well before.

Recently, there have been reports regarding Natural Killer cells on was about the function of IL17 that is produced by iNKT, a subtype of NK, for a possible drug target.  In addition, regulation of receptors that are up or downregulated by NK cells for a precise determination between compromised cells and healthy cells.

Therefore, instead of sole reliance on SNPs, or GWAS for early diagnostics or only organ system base pathology, compiling the overall health of the system is necessary for a proper molecular diagnostics and targeted therapies.

  • What is Pancreas cancer

SNAP SHOT:

Incidence

  • It is a rare type of cancer.
  • 20K to 200K US cases per year

 Medically manageable

Treatment can help

 Requires a medical diagnosis

  1. lab tests or imaging
  2. spreads rapidly and has a poor prognosis.
  3. treatments may include: removing the pancreas, radiation, and chemotherapy.

 Ages affected; even though person may develop this cancer from age 0 to 60+ there is a high rate of incidence after age 40.

 

People may experience:

  • Pain: in the abdomen or middle back
  • Whole body: nausea, fatigue, or loss of appetite
  • Also common: yellow skin and eyes, fluid in the abdomen, weight loss, or dark urine
  • The pancreas secretes enzymes that aid digestion and hormones that help regulate the metabolism of sugars.

Prescription

  • Chemotherapy regimen by injection: Irinotecan, Gemcitabine (Gemzar), Oxaliplatin (Eloxatin)
  • Other treatments: Leucovorin by injection, Fluorouracil by injection (Adrucil)

 

Also common

  • Chemotherapy regimen: Gemcitabine-Oxaliplatin regimen, Docetaxel-Gemcitabine regimen
  • Procedures: Radiation therapy, Pancreatectomy, surgery to remove pancreatic tumors

 

Specialists

  • Radiologist: Uses images to diagnose and treat disease within the body.
  • Oncologist: Specializes in cancer.
  • Palliative medicine: Focuses on improving quality of life for terminally ill patients.
  • General surgeon: Performs a range of surgeries on the abdomen, skin, breast, and soft tissue.
  • Gastroenterologist: Focuses on the digestive system and its disorders.

What are the current and possible applications for treatment and early diagnosis

Diagnostics

Several imaging techniques are employed in order to see if cancer exists and to find out how far it has spread. Common imaging tests include:

  • Ultrasound – to visualize tumor
  • Endoscopic ultrasound (EUS) – thin tube with a camera and light on one end
  • Abdominal computerized tomography (CT) scans – to visualize tumor
  • Endoscopic retrograde cholangiopancreatography (ERCP) – to x-ray the common bile duct
  • Angiogram – to x-ray blood vessels
  • Barium swallows to x-ray the upper gastrointestinal tract
  • Magnetic resonance imaging (MRI) – to visualize tumor
  • Positron emission tomography (PET) scans – useful to detect if disease has spread

 

New solutions in Diagnostics;

The study, published in Nature Communications, suggests that targeting the gene in question – protein kinase D1 (PKD1) – could lead to new ways of halting the development of one of the most difficult tumors to treat.

“As soon as pancreatic cancer develops, it begins to spread, and PKD1 is key to both processes. Given this finding, we are busy developing a PKD1 inhibitor that we can test further,” says the study’s co-lead investigator, Dr. Peter Storz.

Do we have new markers?

Is it possible check the cancer along with glucose levels or insulin at the point of care or companion diagnostics?

Therapy

New Solutions in Therapies

ABRAXANE (paclitaxel formulated as albumin bound nanoparticles; nab-paclitaxel), in combination with gemcitabine, has been recommended for use within NHS Scotland by the Scottish Medicines Consortium (SMC) for the treatment of metastatic adenocarcinoma of the pancreas.

The SMC decision is based on results from the MPACT (Metastatic Pancreatic Adenocarcinoma Clinical Trial) study, published in the October 2013 edition of the New England Journal of Medicine, which demonstrated an increase in median overall survival of 1.8 months when compared to gemcitabine alone [(8.5 months vs. 6.7 months respectively) (HR 0.72; 95% CI 0.62 to 0.83 P<0.001)]. 

Updated results from post-hoc analysis of the MPACT trial based on an extended data cut-off (8 months) at the time the trial was closed demonstrated an increase in the median overall survival benefit of 2.1 months when compared to gemcitabine alone [(8.7 months vs. 6.6 months respectively) (HR 0.72,95% CI = 0.62 to 0.83, P<.001)].

Using radioactive bacteria to stop the spread of pancreatic cancer – scientists from Albert Einstein College of Medicine of Yeshiva University used bacteria to carry radioisotopes commonly used in cancer treatment directly into pancreatic cancer cells. They found in animal experiments that the incidence of secondary tumors went down dramatically – i.e. the cancer was much less likely to spread (metastasize).

Targeting stroma is another approached that is followed by TGen to potentially extend patient survival in all cases including advanced cases based on a report at Clinical Cancer Research, published online by the American Association for Cancer Research. Thus this eliminates one of the limiting factor to reach tumor cells and destroying the accumulation of stroma — the supporting connective tissue that includes hyaluronan and few other collagen types.

One of the study leaders, Andrew Biankin, a Cancer Research UK scientist at the University of Glasgow in the UK said that “Being able to identify which patients would benefit from platinum-based treatments would be a game-changing moment for treating pancreatic cancer, potentially improving survival for a group of patients.” 

 In the journal Nature, the international team- including scientists from Cancer Research UK showed the evidence of large chunks of DNA being shuffled around, which they were able to classify according to the type of disruption they created in chromosomes.

The study concludes there are four subtypes of pancreatic cancer, depending on the frequency, location and types of DNA rearrangement. It terms the subtypes: stable, locally rearranged, scattered and unstable.

Can we develop an immunotherapy?

 Genetics of Pancreatic Cancer 

There are many ongoing studies to develop diagnostics technologies and treatments. However, the etiology of PC is not well understood. Pancreas has dual functions that include 2% of endocrine hormone secretion and 98% exocrine secretion, enzymes, to help digestion. As a result, pancreatic cancer is related to obesity, overweight, diabetes.

First, eliminating the risk factors can be the simplest path. Next approach is dropping the obesity and diabetes to prevent the occurrence of cancers since in the U.S. population, 50 percent are overweight, 30 percent are medically obese and 10 percent have diabetes mellitus (DM). Tobacco smoking, alcohol consumptions, chronic pancreatitis, and genetic risk factors, have been recognized as potential risk factors for the development and progression of PC.

Many studies showed that the administration of anti-diabetic drugs such as metformin and thiazolidinediones (TZD) class of PPAR-γ agonists decreases the risk of cancers.  Thus, these agents are thought to be the target to diagnose or cure PC.

Type 2 diabetes mellitus has been associated with an increased risk of several human cancers, such as liver, pancreatic, endometrial, colorectal, breast, and bladder cancer. The majority of the data show that metformin therapy decreases, while insulin secretagog drugs slightly increase the risk of certain types of cancers in type 2 diabetes.

Metformin can decrease cell proliferation and induce apoptosis in certain cancer cell lines. Endogenous and exogenous (therapy induced) hyperinsulinemia may be mitogenic and may increase the risk of cancer in type 2 diabetes. Type 2 diabetes mellitus accounts for more than 95% of the cases.

In PDA these cells have been reported to express specific genes such as Aldh1 or CD133. To date, more than 20 case-control studies and cohort and nested case-control studies with information on the association between diabetes and pancreatic cancer, BMI and cancer, and obesity and cancer have been reported.

Meta analysis and cohort studies:

 

  1. Meta studies for Diabetes and PC

Most of the diabetes and PC studies were included in two meta-analyses, in 1995 and in 2005, investigating the risk of pancreatic cancer in relation to diabetes.

The first meta-analysis, conducted in 1995, included 20 of these 40 published case-control and cohort studies and reported an overall estimated relative risk (RR) of pancreatic cancer of 2.1 with a 95% confidence interval (CI) of 1.6-2.8. These values were relatively unchanged when the analyses were restricted to patients who had diabetes for at least 5 years (RR, 2.0 [95% CI, 1.2-3.2]).

The second meta-analysis, which was conducted in 2005, included 17 case-control and 19 cohort and nested case-control studies published from 1996 to 2005 and demonstrated an overall odds ratio (OR) for pancreatic cancer of 1.8 and 95% CI of 1.7-1.9 .   Individuals diagnosed with diabetes within 4 years before their pancreatic cancer diagnosis had a 50% greater risk of pancreatic cancer than did those diagnosed with diabetes more than 5 years before their cancer diagnosis (OR, 2.1 [95% CI, 1.9-2.3] versus OR, 1.5 [95% CI, 1.3-1.8]; P = 0.005).

  1. In a recent pooled analysis of 2192 patients with pancreatic cancer and 5113 cancer-free controls in three large case-control studies conducted in the United States (results of two of the three studies were published after 2005),
  2. Risk estimates decreased as the number of years with diabetes increased.
  3. Individuals with diabetes for 2 or fewer, 3-5, 6-10, 11-15, or more than 15 years had ORs (95% CIs) of 2.9 (2.1-3.9), 1.9 (1.3-2.6), 1.6 (1.2-2.3), 1.3 (0.9-2.0), and 1.4 (1.0-2.0), respectively (P < 0.0001 for trend).

pc2

  1. Meta Studies between BMI and PC

Meta studies in 2003 and 2008 showed a week positive association between BMI and PC.  In 2003, a meta-analysis of six case-control and eight prospective studies including 6,391 PC cases 2% increase in risk per 1 kg/m2 increase in BMI. In 2008, 221 datasets, including 282,137 incidence of cancer cases with 3,338,001 subjects the results were similar  RR, 1.12; CI, 1.02–1.22.

In 2007, 21 prospective studies handled , 10 were from the United States, 9 were from Europe, and 2 were from Asia and studies was conducted including 3,495,981 individuals and 8,062 PC cases. There was no significant difference between men and women and the estimated summary risk ratio (RR) per 5 kg/m2 increase in BMI was 1.12 (95% CI, 1.06–1.17) in men and women combined.

This study concluded that concluded that there was a positive association between BMI and risk of PC, per  a 5 kg/m2 increase in BMI may be equal to  a 12% increased risk of PC.

  • The location and type of the obesity may also signal for a higher risk. The recent Women’s Health Initiative study in the United States among 138,503 postmenopausal showed that  women central obesity  in relation to PC (n=251) after average of 7.7 years of follow-up duration demonstrated that central adiposity is related to developing PC at a higher risk. Based on their result “women in the highest quintile of waist-to-hip ratio have a 70 percent (95% CI, 10–160%) greater risk of PC compared with women in the lowest quintile”
  • Age of obesity or being overweight versus risk of developing PC was also examined.
  • Regardless of their DM status they were at risk and decreased their survival even more so among men than women between age of 14-59.

overweight   14 to 39 years   (highest odds ratio [OR], 1.67; 95% CI, 1.20–2.34) or

obese            20 to 49 years     (highest OR, 2.58; 95% CI, 1.70–3.90)   , independent of DM status.

  • This association was different between men and women from the ages of 14 to 59:

stronger in men               (adjusted OR, 1.80; 95% CI, 1.45–2.23)

weaker in women            (adjusted OR, 1.32; 95% CI, 1.02–1.70).

  • The effect of BMI , obesity and overweight had reduced overall survival of PC regardless of disease stage and tumor resection status

high BMI (= or > 25)                          20 to 49 years , an earlier onset of PC by 2 to 6 years.

obese patients: hazard ratio,               1.86, 95% CI, 1.35–2.56).

overweight or obese                             30 to 79 years,  in the year prior to recruitment

overweight patients: hazard ratio,       1.26, 95% CI, 0.94–1.69;

Similarly, the authors concluded that:

  • Being overweight or obese during early adulthood was associated with a greater risk of PC and a younger age of disease onset, whereas obesity at an older age was associated with a lower overall survival in patients diagnosed with PC.
  • More recently, several large prospective cohort studies with a long duration of follow-up has been conducted in the U.S. showing a positive association between high BMI and the risk of PC (adjusted RR 1.13–1.54), suggesting the role of obesity and overweight with higher risk in the development and eventual death due to PC.
  • Although the role of smoking and gender in the association of obesity and PC is not clear, the new evidence strongly supports a positive association of high BMI with increased risk of PC, consistent with the majority of early findings; however, all recent studies strongly suggest that obesity and overweight are independent risk factor of PC.
  • Diabetes was associated with a 1.8-fold increase in risk of pancreatic cancer (95% CI, 1.5-2.1).

How pancreatic cancer is related to obesity, overweight, BMI, diabetes

 pc3

Connections in Physiology and Pathology:

Altogether cumulative data suggest that DM has a three-fold increased risk for the development of PC and a two-fold risk for biliary cancer insulin resistance and abnormal glucose metabolism, even in the absence of diabetes, is associated with increased risk for the development of PC.  Obesity alters the metabolism towards insulin resistance through affecting gene expression of inflammatory cytokines, adipose hormones such as adipokines, and PPAR-γ.

Furthermore, adiponectin also pointed out to be a negative link factor for cancers such as colon, breast, and PC.  Therefore, insulin resistance is one of the earliest negative effects of obesity, early altered glucose metabolism, chronic inflammation, oxidative stress and decreased levels of adipose hormone adiponectin and PPAR-γ, key regulators for adipogenesis.

Potential pathways directly linking obesity and diabetes to pancreatic cancer. Obesity and diabetes cause mutiple alterations in glucose and lipid hemastasis, microenvironments, and immune responses, which result in the activation of several oncogenic signaling pathways.

These deregulations increase cell survival and proliferation, eventually leading to the development and progression of pancreatic cancer. ROS, reactive oxygen species; IGF-1, insulin-like growth factor-1; IR, insulin receptors; IGF-1R, insulin-like growth factor-1 receptors; TNFR, tumor necrosis factor receptors; TLR, Toll-like receptors; HIF-1α, hypoxia-inducible factor-α1; AMPK, AMP kinase; IKK, IκB kinase; PPAR-γ, peroxisome proliferator-activated receptor-γ; VEGF, vascular endothelial growth factor; MAPK, MAP kinase; mTOR, mammalian target of rapamycin; TSC, tuberous sclerosis complex; Akt, protein kinase B. PI3K, phosphoinositide-3-kinase; STAT3, activator of transcription-3; JNK, c-Jun NH2-terminal kinase.

Top six pathways interacting with obesity or diabetes in modifying the risk of pancreatic cancer are Chemokine Signaling, Pathways in cancer, Cytokine-cytokine receptor interaction, Calcium signaling pathway. MAPK signaling pathway.

This analysis showed

  • GNGT2,
  • RELA,
  • TIAM1,
  • CBLC,
  • IFNA13, 
  • IL22RA1, 
  • IL2RA
  • GNAS,
  • MAP2K7,
  • DAPK3, 
  • EPAS1 and 
  • FOS as contributor genes.

  Furthermore, top overrepresented canonical pathways, including

  1. Role of RIG1-like Receptors in Antiviral Innate Immunity,
  2. Role of PI3K/AKT Signaling in the Pathogenesis of Influenza, and
  3. Molecular Mechanisms of Cancer

in genes interacting with risk factors (P < 10−8) are

  • TRAF6, 
  • RELA,
  • IFNA7,
  • IFNA4,
  • NFKB2,
  • IFNA10,
  • IFNA16,
  • NFKB1,
  • IFNA1/IFNA13,
  • IFNA5,
  • IFNA14,
  • IFNA,
  • GSK3B,
  • IFNA16,
  • IFNA14,
  • TP53,
  • FYN,
  • ARHGEF4,
  • GNAS,
  • CYCS ,
  • AXIN1,
  • ADCY4,
  • PRKAR2A,
  • ARHGEF1 ,
  • CDC42,
  • RAC,3
  • SIN3A,
  • RB1,
  • FOS ,
  • CDH1,
  • NFKBIA,
  • GNAT1,
  • PAK3,
  • RHOA,
  • RASGRP1,
  • PIK3CD,
  • BMP6,
  • CHEK2, and
KEGG code Pathway description Risk factor No. of genes/genes with marginal effecta No. of SNPs/eigenSNPs in the interaction analysisb PG x Ec Major contributing genesd
hsa04062e Chemokine Signalinge Obesity 175/27 695/181 3.29 × 10−6 GNGT2 RELA TIAM1
hsa05200 Pathways in cancer Obesity 315/37 806/212 5.35 × 10−4 CBLC RELA
hsa04060 Cytokine-cytokine receptor interaction Obesity 247/36 422/149 6.97 × 10−4 IFNA13 IL22RA1 IL2RA
hsa04020 Calcium signaling pathway Diabetes 171/24 759/190 1.57 × 10−4 GNAS
hsa04010 MAPK signaling pathway Diabetes 260/32 523/154 3.56 × 10−4 FOS MAP2K7
hsa05200 Pathways in cancer Diabetes 315/37 806/212 4.46 × 10−4 DAPK3 EPAS1 FOS

aNumber of genes making up the pathway/ number of genes survived the PCA-LRT (P ≤ 0.10).

bNumber of SNPs in the “reconstructed” pathways/number of principal components for LRT.

cP value was estimated by LRT in logistic regression model with adjustment of age, sex, study site, pack years(continuous), obesity or diabetes as appropriate, and five principal components for population structure.

dGenes with PG x E ≤ 0.05 in logistic regression and P ≤ 0.10 in PCA-LRT.

ePathways remained significant after Bonferroni correction (P < 1.45 × 10−4)

pc4

Top overrepresented canonical pathways in genes interacting with risk factors (P < 10−8)

Biological process Risk factor P Valuea Ratiob Contributing genes
Role of RIG1-like Receptors in Antiviral Innate Immunity Obesity 6.71 × 10−11 12/49 (0.25) TRAF6 RELA IFNA7 IFNA4 NFKB2 IFNA10 IFNA16 NFKB1
IFNA1/IFNA13 IFNA5 IFNA14 IFNA6
Role of PI3K/AKT Signaling in the Pathogenesis of Influenza Obesity 8.64 × 10−9 12/74 (0.12) RELA IFNA7 IFNA4 NFKB2 GSK3B IFNA10 IFNA16 NFKB1
IFNA1/IFNA13 IFNA5 IFNA14 IFNA6
Molecular Mechanisms of Cancer Diabetes 1.03 × 10−9 24/378 (0.063) TP53 FYN ARHGEF4 GNAS CYCS AXIN1 ADCY4 PRKAR2A
ARHGEF1 CDC42 RAC3 SIN3A RB1 FOS CDH1 NFKBIA GNAT1
PAK3 RHOA RASGRP1 PIK3CD BMP6 CHEK2 E2F2

aCalculated using Fisher’s exact test (right-tailed).

bNumber of genes interacting with a risk factor of interest (P ≤ 0.05) in a given pathway divided by total number of genes making up that pathway.

Pancreatic Cancer and Diabetes:

We conclude that diabetes type II has a fundamental influence on pancreatic ductal adenocarcinoma by stimulating cancer cell proliferation, while metformin inhibits cancer cell proliferation. Chronic inflammation had only a minor effect on the pathophysiology of an established adenocarcinoma.

  • Diabetes increases tumor size and proliferation of carcinoma cells
  • Diabetes does not decrease cell death in carcinomas
  • Diabetes II like syndrome reduces the number of Aldh1+cells within the tumor
  • Metformin decreases tumor size and proliferation of carcinoma cells

 

Much is known about factors increasing the likelihood to develop PDA. Identified risk factors include among others chronic pancreatitis, long lasting diabetes, and obesity. Patients with chronic and especially hereditary pancreatitis have a very high relative risk of developing pancreatic cancer of 13.3 and 69.0, respectively. Patients with diabetes and obesity have a moderately increased relative risk of 1.8 and 1.3. These studies indicate that a substantial number of patients with PDA also suffer from local inflammation or diabetes.

http://www.biomedcentral.com/1471-2407/15/51/figure/F3?highres=y

http://www.biomedcentral.com/content/figures/s12885-015-1047-x-4.jpg

pc5

Potential mechanisms underlying the associations of diabetes and cancer.

  • AdipoR1/R2, adiponectin receptor 1/2;
  • AMPK, 5′-AMPactivated protein kinase;
  • IGF-1, insulin-like growth factor-1;
  • IGF-1R, insulin-like growth factor-1 receptor;
  • IKK, IκA;B kinase; IR, insulin receptor;
  • IRS-1, insulin receptor substrate-1;
  • MAPK, mitogen-activated-protein-kinase;
  • mTOR, mammalian target of rapamycin;
  • NF-κA;B, nuclear factor-κA;B;
  • ObR, leptin receptor;
  • PAI-1, plasminogen activator inhibitor-1;
  • PI3-K, phosphatidylinositol 3-kinase;
  • ROS, Reactive oxygen species;
  • TNF-α, tumor necrosis factor- α;
  • TNF-R1, tumor necrosis factor-receptor 1;
  • uPA, urokinase-type plasminogen activator;
  • uPAR, urokinase-type plasminogen activator receptor;
  • VEGF, vascular endothelial growth factor;
  • VEGFR, vascular endothelial growth factor receptor.

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3238796_nihms-277874-f0001.jpg

Type 2 diabetes mellitus is likely the third modifiable risk factor for pancreatic cancer after cigarette smoking and obesity. The relationship between diabetes and pancreatic cancer is complex. Diabetes or impaired glucose tolerance is present in more than 2/3rd of pancreatic cancer patients.

Epidemiological investigations have found that long-term type 2 diabetes mellitus is associated with a 1.5-fold to 2.0-fold increase in the risk of pancreatic cancer. A causal relationship between diabetes and pancreatic cancer is also supported by findings from prediagnostic evaluations of glucose and insulin levels in prospective studies.

Insulin resistance and associated hyperglycemia, hyperinsulinemia, and inflammation have been suggested to be the underlying mechanisms contributing to development of diabetes-associated pancreatic cancer.

Stem Cells

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3410675_nihms295920f1.jpg

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932318/

pc6

“A study by Permert et al.using glucose tolerance tests in patients with newly diagnosed pancreatic cancer showed that 75% of patients met criteria for diabetes. Pannala et al. used fasting blood glucose values or previous use of antidiabetic medications to define diabetes in patients with pancreatic cancer (N.=512) and age-matched control non-cancer subjects attending primary care clinics (N.=933) “

Distribution of fasting blood glucose among pancreatic cancer cases and controls. From Pannala et al.

“ They reported a nearly seven-fold higher prevalence of diabetes in pancreatic cancer patients compared to controls (47% vs. 7%). In a retrospective study using similar criteria, Chari et al. found the prevalence of diabetes in pancreatic cancer patients to be 40%.  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932318/

 

Relationship between type 2 diabetes and risk of pancreatic cancer in case-control and nested case control studies. “Diamond: point estimate representing study-specific relative risks or summary relative risks with 95% CIs. Horizontal lines: represent 95% confidence intervals (CIs). Test for heterogeneity among studies: P<0.001, I2=93.6%. 1, cohort studies (N.=27) use incidence or mortality rate as the measurements of relative risk; 2, cohort studies (N.=8) use standardized incidence/mortality rate as the measurement of relative risk. From Benet al.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932318/

Table II

Sensitivity and specificity for biomarkers for pancreatic cancer.

Biomarker Study Sensitivity Specificity N.
CA19-9 Goonetilleke 68 79 82 Meta-analysis
Steinberg 69 81 90 Meta-analysis
CA125 Duraker 85 57 78 123
Haguland 86 45 76 95
CEA Ni 87 45 75 68
Haglund 86 54 76 95
Zhao 88 25 86 143
Duraker 85 39 91 123
SPan-1 Kiriyama 74 81 76 64
Chung 89 92 83 67
Kobayashi 90 82 85 200
Du-PAN 2 Satake 83 48 85 239
Sawabu 91 72 94 32
Kawa 92 64 200

NIHMS552557.html

PART II:  Targets for Immunomodulation to develop a therapy


Natural Killer Cells:

Natural Killer cells usually placed under non-specific immune response as a first defend mechanism during innate immunity.  NKs responses to innate immune reactions but not only viruses but also bacteria and parasitic infections develop a new line of defense.  These reactions involve amplification of many cytokines based on the specific infection or condition.  Thus, these activities help NKs to evolve.

However, their functions proven to be more than innate immune response since from keeping the pregnancy term to prevent recurrent abortions to complex diseases such as cancer, diabetes and cardiovascular conditions they have roles thorough awakening chemokines and engaging them specifically with their receptors to activate other immune cells.  For example, there is a signaling mechanism connection between NKs and DCs to respond attacks.  Furthermore, there are interactions between various types of immune cells and they are specific for example between NK and Tregs.

During pregnancy there is a special kind of interaction between NK cells and Tregs.

  • There can be several reasons such as to protect pregnancy from the immunosuppressive environment so then the successful implantation of the embryo and tolerance of the mother to the embryo can be established. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation.
  • During cancer development tumors want to build a microenvironment through an array of highly orchestrated immune elements to generate a new environment against the host. In normal pregnancy, decidua, the uterine endometrium,  is critical for the development of placental vasculature.
  • This is the region gets thicks and thin during female cycles to prevent or accept pregnancies. As a result, mother nature created that 70% of all human decidual lymphocytes are NK cells, defined as uterine or decidual NK (dNK) cells.
  • The NK cell of decidua (dNK) and  peripheral blood NK cells are different since  dNK cells are characterized as CD56brightCD16CD3, express killer cell immunoglobulin-like receptors and exhibit low killing capacity despite the presence of cytolytic granules, and a higher frequency of CD4+CD25bright   

The lesson learn here is that pregnancy and mammary tissue are great examples of controlling cellular differentiation and growth since after pregnancy all these cells go back to normal state.

Understanding these minute differences and relations to manipulate gene expression may help to:

  1. Develop better biomaterials to design long lasting medical devices and to deliver vaccines without side effects.
  2. Generate safer vaccines as NKcells are the secret weapons in DC vaccination and studying their behavior together with T-cell activation in vaccinated individuals might predict clinical outcome.
  3. Establish immunotherapies based on interactions between NK cells and Tregs for complex diseases not only cancer, but also many more such as autoimmune disorder, transplants, cardiovascular, diabetes.

pc 1

Trascription factors are the silence players of the gene expression that matches input to output as a cellular response either good or bad but this can be monitored and corrected with a proper meical device or diagnostics tool to provide successful treatment regimen.

  • Therefore, the effects of Tregs on NK during gene regulation analyzed and compared among other living organisms for concerved as well as signature sequence targets even though the study is on human.
  • Unfortunatelly we can’t mutate the human for experimental purposes so comparative developmental studies now its widely called stem cell biology with a system biology approach may help to establish the pathway.

NK and T reg regulation share a common interest called T box proteins. These proteins are conserved and also play role in development of heart at very early development, embryology.  What is shared among all T-box is simply lie behind the capacity for DNA binding through the T-box domain and transcriptional regulatory activity, which plays a role in controlling the expression of developmental gene in all animal species.

 The Special T box protein: T-bet

The first identified T-box protein was Brachyury (T). in a nut shell

  • The T-box domain is made up of about 180 amino-acid residues that includes a specific sequence of DNA
  • called T-box  domain,  TCACACCT between residues 135 and 326 in mouse.
  • However, T-bet which is the T-box protein expressed in T cells and also called as TBX21 is quite conserved in 18 members of the T-box protein (TBX) family
  • since it has a crucial dual role during development and for coordination of both innate and adaptive immune responses.

T-Bet was originally cloned for its role in Th1 lineage, it has a role in Th2 development, too. 

The whole mechanism based on direct activation and modulation mechanisms in that  T-Bet directly activates IFN-γ gene transcription and enhances development of Th1 cells at the same time modulates IL-2 and Th2 cytokines in an IFN-γ-independent manner that creates an attenuation of Th2 cell development.

Thus, certain lipids ligands or markers can be utilized during vaccine design to steer the responses for immune therapies against autoimmune diseases.   As a result, tumors can be removed and defeated by manipulating NKs action.

 

INKT:

NKT has functions in diabetes, asthma. One cell type that has been proposed to contribute immensely to the development of asthma is NKT cells, which constitute a small population of lymphocytes that express markers of both T cells (T-cell receptor, TCR) and NK cells (e.g., NK1.1, NKG2D). NKT cells can be subdivided into at least three subtypes, based on their TCR. Type I NKT cells or invariant NKT (iNKT) cells express invariant TCR chains (V14–J18 in mice and V24–J18 in humans) coupled with a limited repertoire of V chains (V8, V7 and V2 in mice and V11 in humans).

The studies in the past decade showed the protective mechanism of NKT cells during the development of Type 1 diabetes can be complex.

  1. First, NKT cells can impair the differentiation of anti-islet reactive T cells into Th1 effector cells in a cell–cell contact dependent manner, which did not require Th2 cytokine production or CD1d recognition.
  2. Second, NKT cells accumulating in the pancreas can indirectly suppress diabetogenic CD4+T cells via IFN-γ production.
  3. Last, anergic iNKT cells induced by protracted αGalCer stimulation can induce the production of noninflammatory DCs, which inhibit diabetes development in an Ag-specific fashion.

These findings point to an important protective role for NKT cells during autoimmune pathogenesis in the pancreas.

A crucial role has been suggested for invariant natural killer T cells (iNKT) in regulating the development of asthma, a complex and heterogeneous disease characterized by airway inflammation and airway hyperreactivity (AHR).

iNKT cells constitute a unique subset of T cells responding to endogenous and exogenous lipid antigens, rapidly secreting a large amount of cytokines, which amplify both innate and adaptive immunity.

IL17:

Terashima A et al (2008) identified a novel subset of natural killer T (NKT) cells that expresses the interleukin 17 receptor B (IL-17RB) for IL-25 (also known as IL-17E) and is essential for the induction of Airway hypersensitive reaction (AHR). IL-17RB is preferentially expressed on a fraction of CD4(+) NKT cells but not on other splenic leukocyte populations tested.

They strongly suggested that IL-17RB(+) CD4(+) NKT cells play a crucial role in the pathogenesis of asthma.

NKT connection can be established between through targeting IL17 and IL17RB. There is a functional specialization of interleukin-17 family members. Interleukin-17A (IL-17A) is the signature cytokine of the recently identified T helper 17 (Th17) cell subset. IL-17 has six family members (IL-17A to IL-17F).

Although IL-17A and IL-17F share the highest amino acid sequence homology, they perform distinct functions; IL-17A is involved in the development of autoimmunity, inflammation, and tumors, and also plays important roles in the host defenses against bacterial and fungal infections, whereas IL-17F is mainly involved in mucosal host defense mechanisms. IL-17E (IL-25) is an amplifier of Th2 immune responses.

 There is no one easy answer for the role of IL-17 in pancreatic cancer as there are a number of unresolved issues and but it can be only suggested that  pro-tumorigenic IL-17 activity is confined to specific subsets of patients with pancreatic cancer since there is a increased expression of IL-17RB in these patients about ∼40% of pancreatic cancers presented on their histochemical staining (IHC-  immunohistochemistry.

IL17 and breast cancer:

In addition, during breast cancer there is an increased signaling of interleukin-17 receptor B (IL-17RB) and IL-17B.  They promoted tumor formation in breast cancer cells in vivo and even created acinus formation in immortalized normal mammary epithelial cells in vitro cell culture assays.

  • Furthermore, the elevated expression of IL-17RB not only present itself  stronger than HER2 for a better prognosis but also brings the shortest survival rate if patients have increased  IL-17RB and HER2 levels.
  • However, decreased level of IL-17RB in trastuzumab-resistant breast cancer cells significantly reduced their tumor growth.  This may prompt a different independent  role for  IL-17RB and HER2  in breast cancer development.
  • In addition, treatment with antibodies specifically against IL-17RB or IL-17B effectively attenuated tumorigenicity of breast cancer cells.

These results suggest that the amplified IL-17RB/IL-17B signaling pathways may serve as a therapeutic target for developing treatment to manage IL-17RB-associated breast cancer.

IL 17 and Asthma:

A requirement for iNKT cells has also been shown in a model of asthma induced with air pollution, ozone and induced with respiratory viruses chronic asthma studied in detail. In these studies specific types of NKT cells found to that specific types of NK and receptors trigger of asthma symptoms. Taken together, these studies indicate that both Th2 cells (necessary for allergen-specific responses) and iNKT cells producing IL-4 and IL-13 are required for the development of allergen-induced AHR.

Although CD4+ IL-4/IL-13-producing iNKT cells (in concert with antigen-specific Th2 cells) are crucial in allergen-induced AHR, NK1.1IL-17-producing iNKT cells have a major role in ozone-induced AHR.

A main question in iNKT cell biology involves the identification of lipid antigens that can activate iNKT cells since this allow to identify which microorganisms to attack as  a result, the list of microorganisms that produce lipids that activate iNKT cells is rapidly growing.

Invariant natural killer T cells (iNKT) cell function in airway hyperreactivity (AHR). iNKT cells secrete various cytokines, including Th2 cytokines, which have direct effects on hematopoietic cells, airway smooth muscle cells, and goblet cells. Alternatively, iNKT cells could regulate other cell types that are known to be involved in asthma pathogenesis, e.g., neutrophils and alveolar macrophages.

http://www.nature.com/mi/journal/v2/n5/images/mi200996f1.jpg

Chemokines:

Chemokines  have a crucial role in organogenesis of various organs including lymph nodes, arising from their key roles in stem cell migration. Moreover, most homeostatic chemokines can control the movement of lymphocytes and dendritic cells and eventually adaptive immunity. Chemokines are heparin-binding proteins with 4 cysteine residues in the conserved positions.

The human chemokine system has about 48 chemokines. They are subgrouped based on:

  • Number of cysteines
  • Number of amino acid separating cysteines
  • Presence or absence of ELR motif includes, 3-amino acid sequence, glutamic acid-leucine-arginine
  • functionally classified as inflammatory, homeostatic, or both, based on their expression patterns

Chemokines are structurally divided into 4 subgroups :CXC, CC, CX3C, and C. X represent an aminoacid so the first 2 cysteines are separated by 1 is grouped as CXC and 3 amino acids is called CX3C chemokines but in CC  the first 2 cysteines are adjacent. In the C chemokines there is no second and fourth cysteines.

Various types of inflammatory stimuli induce abundantly the expression of inflammatory chemokines to induce the infiltration of inflammatory cells such as granulocytes and monocytes/macrophages.

  • inflammatory chemokines are CXC chemokines with ELR motif and CCL2.
  • homeostatic chemokines are expressed constitutively in specific tissues or cells.

cmi20132f2

Chemokines exert their biological activities by binding their corresponding receptors, which belong to G-protein coupled receptor (GPCR) with 7-span transmembrane portions. Thus, the target cell specificity of each chemokine is determined by the expression pattern of its cognate receptor .

Moreover, chemokines can bind to proteoglycans and glycosaminoglycans with a high avidity, because the carboxyl-terminal region is capable of binding heparin.

Consequently, most chemokines are produced as secretory proteins, but upon their secretion, they are immobilized on endothelium cells and/or in extracellular matrix by interacting with proteoglycans and glycosaminoglycans. The immobilization facilitates the generation of a concentration gradient, which is important for inducing the target cells to migrate in a directed way.

The human chemokine system.

Chemokine receptor Chemokines Receptor expression in
Leukocytes Epithelium Endothelium
CXCR1 CXCL6, 8 PMN +
CXCR2 CXCL1, 2, 3, 5, 6, 7, 8 PMN + +
CXCR3 CXCL4, 9, 10, 11 Th1, NK +
CXCR4 CXCL12 Widespread + +
CXCR5 CXCL13 B
CXCR6 CXCL16 Activated T +
CXCR7 (ACKR3) CXCL12, CXCL11 Widespread + +
Unknown CXCL14 (acts on monocytes)
CCR1 CCL3, 4, 5, 7, 14, 15, 16, 23 Mo, Mϕ, iDC, NK + +
CCR2 CCL2, 7, 8, 12, 13 Mo, Mϕ, iDC, NK
activated T, B
+ +
CCR3 CCL5, 7, 11, 13, 15, 24, 26, 28 Eo, Ba, Th2 +
CCR4 CCL2, 3, 5, 17, 22 iDC, Th2, NK, T, Mϕ
CCR5 CCL3, 4, 5, 8 Mo, Mϕ, NK, Th1
activated T
+
CCR6 CCL20 iDC, activated T, B +
CCR7 CCL19, 21 mDC, Mϕ, naïve T
activated T
+
CCR8 CCL1, 4, 17 Mo, iDC, Th2, Treg
CCR9 CCL25 T +
CCR10 CCL27, 28 Activated T, Treg +
Unknown CCL18 (acts on mDC and naïve T)
CX3CR1 CX3CL1 Mo, iDC, NK, Th1 +
XCR1 XCL1, 2 T, NK
Miscellaneous Scavenger receptors for chemokines
Duffy antigen (ACKR1) CCL2, 5, 11, 13, 14
CXCL1, 2, 3, 7, 8
D6 (ACKR2) CCL2, 3, 4, 5, 7, 8, 12
CCL13, 14, 17, 22
CCRRL1 (ACKR4) CCL19, CCL21, CCL25

Leukocyte anonyms are as follows. Ba: basophil, Eo: eosinophil, iDC: immature dendritic cell, mDC: mature dendritic cell, Mo: monocyte, Mϕ: macrophage, NK: natural killer cell, Th1: type I helper T cell, Th2: type II helper T cell, and Treg: regulatory T cell.

 pc9

There are differences between  human liver and peripheral NK cells. Regulation of NK cell functions by CD226, CD96 and TIGIT.close. CD226 binding to CD155 or CD112 at the cell surface of transformed or infected cells triggers cytotoxic granule exocytosis and target cell lysis by natural killer (NK) cells. TIGIT, CD226, CD96 and CRTAM ligand specificity and signalling.close.

Regulation of NK cell-mediated cancer immunosurveillance through CD155 expression.close.   CD155 is frequently overexpressed by cancer cells.

pc10

Liver NK cells Circulating NK cells References
CD3-CD56+ 30.6% (11.6–51.3%) 12.8% (1–22%) 17
CD56bright/total NK cell ~50% ~10% 18,19
CD56dim/total NK cell ~50% ~90% 18,19
CD27 high low 20,21
CD16 + 18,22
CD69 +/−, higher +/− 16
Chemokine receptor CCR7 and CXCR3
(CD56bright)
CXCR1, CX3CR1
(CD56dim)
13,23
Inhibitory receptor (NKG2A) high low 24
Natural cytotoxicity higher high 18,19
TRAIL high low 1
Perforin, Granzyme B high low 2
Cytokine production high
(MIP-1α/β, IL-10,
TNF-α, TNF-β, IFN-γ,
GM-CSF)
low
(TNF-α, TNF-β, IFN-γ,
GM-CSF, IL-10)
18
ADCC high 25
  • In conclusion, having to develop precise early diagnostics is about determining the overlapping genes as key among diabetes, obesity, overweight and pancreas functions even pregnancy can be suggested.

 

  • It seems feasible to develop an immunotherapy for pancreatic cancer with the focus on chemokines and primary  signaling between iNKT and Tregs such as one of the recent plausable target IL-17 and IL17 RB.

References:

 Heng-Hsiung Wu,1et al Targeting IL-17B–IL-17RB signaling with an anti–IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. Published March 2, 2015 // JEM vol. 212 no. 3 333-349 

MUNIRAJ1andS. T. CHARIMinerva Gastroenterol Dietol. 2012 Dec; 58(4): 331–345.PMCID: PMC3932318

Beaudoin L. et al. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic β cells. Immunity. 2002;17:725–736.

Wang J, Cho S, Ueno A, et al. Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation.J. Immunol. 2008;181:2438–2445.

Lee HH, Meyer EH, Goya S, et al. Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyper-reactivity. J. Immunol.2010;185:5225–5235.

Huang CK1, et al  6Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. Oncogene. 2014 Jun 5;33(23):2968-77.

Terashima A1 et al  A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J Exp Med. 2008 Nov 24;205(12):2727-33.

Isaksson B et al. Lifestyle factors and pancreatic cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer. 2002;98:480–482.

Larsson SC et al Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. Br J Cancer.2005;93:1310–1315.

Michaud DS et al Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA.2001;286:921–929.

Patel AV et al Obesity, recreational physical activity, and risk of pancreatic cancer in a large U.S. Cohort.Cancer Epidemiol Biomarkers Prev. 2005;14:459–466.

Rapp K et al  Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer. 2005;93:1062–1067.

Shibata A et al. A prospective study of pancreatic cancer in the elderly. Int J Cancer. 1994;58:46–49.

Howe GR, Jain M, Miller AB. Dietary factors and risk of pancreatic cancer: results of a Canadian population-based case-control study. Int J Cancer.1990;45:604–608.

Nilsen TI, Vatten LJ. A prospective study of lifestyle factors and the risk of pancreatic cancer in Nord-Trondelag, Norway. Cancer Causes Control.2000;11:645–652.

Zatonski W et al Nutritional factors and pancreatic cancer: a case-control study from south-west Poland. Int J Cancer. 1991;48:390–394.

Berrington de GA et al A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer. 2003;89:519–523.

Larsson SC, Orsini N, Wolk A. Body mass index and pancreatic cancer risk: A meta-analysis of prospective studies. Int J Cancer. 2007;120:1993–1998.

Renehan AG et al  Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–578.

Luo J et al Obesity and risk of pancreatic cancer among postmenopausal women: the Women’s Health Initiative (United States) Br J Cancer. 2008;99:527–531.

Li D et al Body mass index and risk, age of onset, and survival in patients with pancreatic cancer.JAMA. 2009;301:2553–2562.

Jiao L et al . Body mass index, effect modifiers, and risk of pancreatic cancer: a pooled study of seven prospective cohorts. Cancer Causes Control. 2010;21:1305–1314.

Johansen D et al Metabolic factors and the risk of pancreatic cancer: a prospective analysis of almost 580,000 men and women in the Metabolic Syndrome and Cancer Project. Cancer Epidemiol Biomarkers Prev. 2010;19:2307–2317.

Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci (Lond) 2010;118:315–332. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–481.

Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem. 2008;114:63–70.

Jazet IM, Pijl H, Meinders AE. Adipose tissue as an endocrine organ: impact on insulin resistance. Neth J Med. 2003;61:194–212.

Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846.

Shoelson et al  Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem. 2009;115:86–96.

Boyd DB. Insulin and cancer. Integr Cancer Ther. 2003;2:315–329.

Fisher WE, Boros LG, Schirmer WJ. Insulin promotes pancreatic cancer: evidence for endocrine influence on exocrine pancreatic tumors. J Surg Res.1996;63:310–313.

P Matangkasombut1,2, et al Natural killer T cells and the regulation of asthma Mucosal Immunology (2009) 2, 383–392;

Tahir SM, Cheng O, Shaulov A, et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 2001;167:4046–4050.

Motohashi S, Kobayashi S, Ito T, et al. Preserved IFN-α production of circulating Vα24 NKT cells in primary lung cancer patients. Int. J. Cancer.2002;102:159–165.

Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J. Immunol. 1999;163:2387–2391.

Chang DH, Osman K, Connolly J, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 2005;201:1503–1517.

Ambrosino E, Terabe M, Halder RC, et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 2007;179:5126–5136.  uncovered a new immunoregulatory axis where vNKT cells can inhibit the antitumor activity of iNKT cells and CD8+ T cells

Crowe NY, Coquet JM, Berzins SP, et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 2005;202:1279–1288.

Novak J, Beaudoin L, Park S, et al. Prevention of Type 1 diabetes by invariant NKT cells is independent of peripheral CD1d expression. J. Immunol.2007;178:1332–1340.

Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA. 1995;273:1605–9.

Huxley R et al Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.

Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur J Cancer.2011;47:1928–37.

Clinic, Mayo. “Mayo researchers identify gene that pushes normal pancreas cells to change shape.”Medical News Today. MediLexicon, Intl., 24 Feb. 2015. Web.10 Mar. 2015.

James D. Byrne et al Local iontophoretic administration of cytotoxic therapies to solid tumors

Sci Transl Med 4 February 2015: Vol. 7, Issue 273, p. 273ra14 Sci. Transl. Med. DOI: 10.1126/scitranslmed.3009951, published online 4 February 2015, abstract.

Mayo Clinic news release, accessed 20 February 2015 via Newswise.

Additional source: ACS, What are the key statistics about pancreatic cancer?, accessed 20 February 2015.

Additional source: ACS, What is pancreatic cancer?, accessed 20 February 2015.

Scottish Medicines Consortium. Treatment Assessment. February 2015

NHS England. Cancer Drugs Fund list Version 3. Available at http://www.england.nhs.uk/wp-content/uploads/2015/01/ncdf-list-dec14.pdf . Last accessed January 2015

NHS England. Cancer Drugs Fund: Albumin-bound paclitaxel decision summary. Available athttp://www.england.nhs.uk/wp-content/uploads/2015/01/ncdf-summ-albumin-pac.pdf. Accessed February 2015

Cancer Research UK. Pancreatic cancer key stats. Available athttp://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts/pancreatic-cancer/cancerstats-key-facts-on-pancreatic-cancer. Accessed February 2015

Cancer Research UK. Statistics and outlook for pancreatic cancer. Available athttp://www.cancerresearchuk.org/about-cancer/type/pancreatic-cancer/treatment/statistics-and-outlook-for-pancreatic-cancer Accessed February 2015

ISD Scotland. Cancer statistics: Pancreatic Cancer. Available at http://www.isdscotland.org/Health-Topics/Cancer/Cancer-Statistics/Pancreatic/ Accessed February 2015

Von Hoff DD, et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N Engl J Med. 2013;369:1691 – 1703. Available at:http://www.nejm.org/doi/full/10.1056/NEJMoa1304369 Accessed February 2015

Goldstein D et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. JNCI J Ntal Cancer Inst, 2015, 1-10. DOI: 10.1093/jnci/dju413. Accessed February 2015

The Translational Genomics Research Inst. “TGen study: Destroying tumor material that ‘cloaks’ cancer cells could benefit patients.” Medical News Today. MediLexicon, Intl., 27 Feb. 2015. Web. 10 Mar. 2015.

Mol Carcinog. 2012 Jan; 51(1): 64–74. doi:  10.1002/mc.20771

Mendonça FM1, de Sousa FR1, Barbosa AL1, Martins SC1, Araújo RL1, Soares R2, Abreu C1. Metabolism. 2015 Metabolic syndrome and risk of cancer: which link? Feb;64(2):182-9.

Huang CK1, et al  Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. Oncogene. 2014 Jun 5;33(23):2968-77.

 Jiao L et al  Dietary consumption of advanced glycation end products andpancreatic cancer in the prospective NIH-AARP Diet and Health Study.

 Cancer. 2014 Dec 1;120(23):3669-75. doi: 10.1002/cncr.28863. Epub 2014 Oct 14. Clinical and pathologic features of familial pancreatic cancer.

The Rockefeller University Press, doi: 10.1084/jem.20141702 Cancer Lett. 2015 Jan 28;356(2 Pt A):281-8. doi: 10.1016/j.canlet.2014.03.028. Epub 2014 Apr 2.

 Humphris JL1, et al  Australian Pancreatic Cancer Genome Initiative  Br J Cancer. 2014 Nov 25;111(11):2180-6. doi: 10.1038/bjc.2014.525. Epub 2014 Oct 2.

Søreide K1, Sund M2.  Epidemiological-molecular evidence of metabolic reprogramming on proliferation, autophagy and cell signaling in pancreas cancer.  Am J Clin Nutr. 2015 Jan;101(1):126-34. doi: 10.3945/ajcn.114.098061. Epub 2014 Nov 19.

Lin CC1, et al .Independent and joint effect of type 2 diabetes and gastric and hepatobiliary diseases on risk of pancreatic cancer risk: 10-year follow-up of population-based cohort.

Wang Z1 et al  Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014 Oct;106(1):19-26. doi: 10.1016/j.diabres.2014.04.007. Epub 2014 Apr 18.

Preziosi G1, Oben JA2, Fusai G3Obesity and pancreatic cancer.  Surg Oncol. 2014 Jun;23(2):61-71. doi: 10.1016/j.suronc.2014.02.003. Epub 2014 Mar 12.

Berger NA1Obesity and cancer pathogenesis. Ann N Y Acad Sci. 2014 Apr;1311:57-76. doi: 10.1111/nyas.12416.

De Souza AL1, Saif MW. Diabetes and pancreatic cancer. JOP. 2014 Mar 10;15(2):118-20. doi: 10.6092/1590-8577/2286.

Timofte D et al Metabolic disorders in patients operated for pancreatic cancer.  Rev Med Chir Soc Med Nat Iasi. 2014 Apr-Jun;118(2):392-8.

Lowenfels AB, Maisonneuve P. Epidemiologic and etiologic factors of pancreatic cancer. Hematol Oncol Clin North Am. 2002;16:1–16.

Lowenfels AB, Sullivan T, Fiorianti J, Maisonneuve P. The epidemiology and impact of pancreatic diseases in the United States. Curr Gastroenterol Rep.2005;7:90–95.

Michaud DS. Epidemiology of pancreatic cancer. Minerva Chir. 2004;59:99–111.

Schuster DP. Obesity and the Development of Type 2 Diabetes: the Effects of Fatty Tissue Inflamation. Dovepress; 2010. pp. 253–262.

WHO. World Health Organization Fact Sheet for World Wide Prevalence of Obesity. 2006. http://www.who.int/mediacentre/factsheets/fs311/en/index.html.

Chang S et al, State ranks of incident cancer burden due to overweight and obesity in the United States, 2003. Obesity (Silver Spring) 2008;16:1636–1650.

Lewis L. Lanie  Evolutionary struggles between NK cells and viruses Nature Reviews Immunology 8, 259-268 (April 2008) | doi:10.1038/nri2276

Seth, S. et alThe murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem. Biophys. Res. Commun. 364, 959–965 (2007).

de Andrade et al DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 92, 237–244 (2014).

Orange, J. S. Formation and function of the lytic NK-cell immunological synapse. Nature Rev. Immunol. 8, 713–725 (2008).

Lagrue, K. et alThe central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapseImmunol. Rev. 256, 203–221 (2013).

Vyas, Y. M. et alSpatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactionsJ. Immunol. 167, 4358–4367 (2001).

Shibuya, K. et alCD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferationJ. Exp. Med. 198,1829–1839 (2003).

Lozano, E. et al  The CD226/CD155 interaction regulates the proinflammatory (TH1/TH17)/anti-inflammatory (TH2) balance in humans. J. Immunol. 191, 3673–3680 (2013).

Maier, M. K. et alThe adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigensEur. J. Immunol. 37, 2214–2225(2007).

Pende, D. et alExpression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction.Blood 107, 2030–2036 (2006).

O’Leary et al  T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol. 7, 507–516(2006).

Sanchez-Correa, B. et alDecreased expression of DNAM-1 on NK cells from acute myeloid leukemia patientsImmunol. Cell Biol. 90, 109–115 (2012).

Mamessier, E. et alHuman breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

Nakai, R. et alOverexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 101, 1326–1330 (2010).

Tane, S. et alThe role of Necl-5 in the invasive activity of lung adenocarcinomaExp. Mol. Pathol. 94, 330–335 (2013).

Sloan, K. E. et alCD155/PVR plays a key role in cell motility during tumor cell invasion and migrationBMC Cancer 4, 73 (2004)

Chan, C. J., Smyth, M. J. & Martinet, L. Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ. 21, 5–14 (2014).

Li, M. et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-γ production of natural killer cells via β-arrestin 2-mediated negative signaling. J. Biol. Chem. 289, 17647–17657 (2014).

Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoireBlood 104, 3664–3671 (2004).

Sharma S. Natural killer cells and regulatory T cells in early pregnancy loss.

Int J Dev Biol. 2014;58(2-4):219-29. doi: 10.1387/ijdb.140109ss. Review.

Mukaida N, Sasaki S, Baba T. Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment.  Mediators Inflamm. 2014;2014:170381. doi: 10.1155/2014/170381. Epub 2014 May 22. Review.

Van Elssen CH, Oth T, Germeraad WT, Bos GM, Vanderlocht J.  Natural killer cells: the secret weapon in dendritic cell vaccination strategies.Clin Cancer Res. 2014 Mar 1;20(5):1095-103. doi: 10.1158/1078-0432.CCR-13-2302. Review.

Gardner AB, Lee SK, Woods EC, Acharya AP. Biomaterials-based modulation of the immune system. Biomed Res Int. 2013;2013:732182. doi: 10.1155/2013/732182. Epub 2013 Sep 22. Review.

Pedroza-Pacheco I, Madrigal A, Saudemont A. Interaction between natural killer cells and regulatory T cells: perspectives for immunotherapy. Cell Mol Immunol. 2013 May;10(3):222-9. doi: 10.1038/cmi.2013.2. Epub 2013 Mar 25. Review.

Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ.  The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013 Feb;138(2):105-15. doi: 10.1111/imm.12036. Review.

Tian Z, Chen Y, Gao B.Natural killer cells in liver disease.  Hepatology. 2013 Apr;57(4):1654-62. doi: 10.1002/hep.26115. Review.

Joyce S, Girardi E, Zajonc DM. J NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. Immunol. 2011 Aug 1;187(3):1081-9. doi: 0.4049/jimmunol.1001910. Review.

Diana J, Gahzarian L, Simoni Y, Lehuen A. Innate immunity in type 1 diabetes.  Discov Med. 2011 Jun;11(61):513-20. Review.

Wu L, Van Kaer L.Natural killer T cells in health and disease. Front Biosci (Schol Ed). 2011 Jan 1;3:236-51. Review.

Cantorna MT.  Why do T cells express the vitamin D receptor? Ann N Y Acad Sci. 2011 Jan;1217:77-82. doi: 10.1111/j.1749-6632.2010.05823.x. Epub 2010 Nov 29. Review.

Key Papers:

These papers, Gilfian et all and Iguchi-Manaka et al,  were the first to show the role of CD226 in NK cell- and CD8+ T cell-mediated tumour immunosurveillance using Cd226−/− mice.

  • Gilfillan, S.et alDNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med. 205, 2965–2973 (2008).
  • Iguchi-Manaka, A.et alAccelerated tumor growth in mice deficient in DNAM-1 receptor.  Exp. Med. 205, 2959–2964 (2008).

Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector functionCancer Cell 26, 923–937 (2014).
This study shows that TIGIT is expressed by PD1+ exhausted tumour-infiltrating T cells and that targeting these receptors with monoclonal antibodies represents a promising strategy to restore CD8+ T cell functions in cancer or in chronic infectious disease.

Khakoo, S. I. et alHLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infectionScience 305, 872–874 (2004).

Fang, M. et alCD94 is essential for NK cell-mediated resistance to a lethal viral disease.Immunity 34, 579–589 (2011).
This study using CD94-deficient mice shows that the activating receptor formed by CD94 and NKG2E is essential for the resistance of C57BL/6 mice to mousepox.

Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nature Rev. Immunol. 13, 764–769 (2013).
This is an outstanding review on the formulation of a new immune paradigm ‘the discontinuity theory’

Further Reading:

Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi
Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi

Patents

1.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08974784-20150310.html

Anti-pancreatic cancer antibodies: David M. Goldenberg, Mendham, NJ (US); Hans J. Hansen, Picayune, MS (US); Chien-Hsing Chang, Downingtown, PA (US); …

2.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week42/OG/html/1407-3/US08865413-20141021.html

A method of diagnosing pancreatic cancer in a human, the method comprising detecting the level of golgi apparatus protein 1 in a sample from the …

3.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08974802-20150310.html

A method for the treatment of pancreatic cancer, which comprises the administration to a human patient with pancreatic cancer of an effective …

4.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week50/OG/html/1409-3/US08912191-20141216.html

A method of treatment of melanoma, colorectal cancer, or pancreatic cancerwherein the treatment inhibits the progress of, reduces the rate of …

5.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08975401-20150310.html

A method of treating a cancer selected from breast cancer, hepatocellular carcinoma … gastric carcinoma, leukemia and pancreatic cancer in a subject …

6.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week42/OG/html/1407-3/US08865173-20141021.html

Treatments for pancreatic cancer metastases: Suzanne M. Spong, San Francisco, CA (US); Thomas B. Neff, Atherton, CA (US); and Stephen J. Klaus, San …

7.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week48/OG/html/1409-1/US08901093-20141202.html

Custom vectors for treating and preventing pancreatic cancer: Dennis L. Panicali, Acton, MA (US); Gail P. Mazzara, Winchester, MA (US); Linda R. …

8.       www.uspto.gov

http://www.uspto.gov/web/patents/patog/week09/OG/html/1412-1/US08969366-20150303.html

A method for treating a disease selected from the group consisting of melanoma, stomach cancer, liver cancer, colorectal cancerpancreatic …

9.       Drug composition cytotoxic for pancreatic cancer cells

http://www.uspto.gov/web/patents/patog/week13/OG/html/1401-1/US08685941-20140401.html

Drug composition cytotoxic for pancreatic cancer cells: James Turkson, Orlando, Fla. (US) Assigned to University of Central Florida Research …

10.    [PDF] J. John Shimazaki, Esq. 1539 Lincoln Way, Suite 204

http://www.uspto.gov/web/offices/com/sol/foia/tac/2.66/74713131.pdf

  1. John Shimazaki, Esq. 1539 Lincoln Way, Suite 204 … containing the Of fice Action because Applicant™s president™s father was ill withpancreatic

11.    [PDF] Written Comments on Genetic Diagnostic Testing Study

http://www.uspto.gov/aia_implementation/gen_e_lsi_20130207.pdf

Page 5 of 23 extracolonic cancers of LS include liver cancerpancreatic cancer, gall bladder duct cancer, prostate cancer, sarcomas, thyroid cancer …

12.    Detection of digestive organ cancer, gastric cancer …

http://www.uspto.gov/web/patents/patog/week02/OG/html/1410-2/US08932990-20150113.html

Detection of digestive organ cancer, gastric cancer, colorectal cancerpancreatic cancer, and biliary tract cancer by gene expression profiling

13.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week06/OG/html/1399-2/US08648112-20140211.html

wherein said cancer is selected from the group consisting of a sarcoma, … a nervous system cancer, prostate cancerpancreatic cancer, and colon can …

14.    Treatment of hyperproliferative diseases with vinca …

http://www.uspto.gov/web/patents/patog/week45/OG/html/1408-2/US08883775-20141111.html

A method of treating or ameliorating a hyperproliferative disorder selected from the group consisting of glioblastoma, lung cancer, breast cancer . …

15.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week30/OG/html/1404-5/US08791125-20140729.html

A method for treating a Weel kinase mediated cancer selected from the group consisting of breast cancer, lung cancerpancreatic cancer, colon …

16.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week08/OG/html/1411-4/US08962891-20150224.html

wherein said proliferative disorder is breast cancer or pancreatic cancer. …

17.    Immunoconjugates, compositions for making them, and …

http://www.uspto.gov/web/patents/patog/week40/OG/html/1407-1/US08852599-20141007.html

A method for treating a cancer in a subject suffering from such cancer, … pancreatic cancer, ovarian cancer, lymphoma, colon cancer, mesothelioma, …

18.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week11/OG/html/1400-3/US08673898-20140318.html

A method of treating cancer, … lung cancer, melanoma, neuroblastomas, oral cancer, ovarian cancerpancreatic cancer, prostate cancer , rectal cance …

19.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week43/OG/html/1407-4/US08871744-20141028.html

A method for treating a subject having breast cancer, ovarian cancer, or pancreatic cancer in need of therapy thereof comprising administering to …

20.    [PDF] Pamela Scudder <pscudder@windstream.net> Sent: Saturday …

http://www.uspto.gov/sites/default/files/aia_implementation/gene-comment-scudder.pdf

My daughter died of ovarian cancer. My other daughter and many … (mutation) is known to cause a higher incidence of pancreatic (for instance) cancer …

21.    Methods of treating cancer using pyridopyrimidinone …

http://www.uspto.gov/web/patents/patog/week48/OG/html/1409-1/US08901137-20141202.html

A method of treating pancreatic cancer which method comprises administering to a patient a therapeutically effective amount of a compound that is:

22.    Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo …

http://www.uspto.gov/web/patents/patog/week02/OG/html/1410-2/US08933086-20150113.html

A method of treating pancreatic cancer in a patient, comprising administering to said patient a therapeutically effective amount of a compound …

23.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week49/OG/html/1409-2/US08906934-20141209.html

… wherein the cell proliferative disorder is selected from the group consisting of cervical cancer, colon cancer, ovarian cancerpancreatic cancer, …

24.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week32/OG/html/1405-2/US08802703-20140812.html

A method of inhibiting MEK in a cancer cell selected from the group consisting of human melanoma cells and human pancreatic cancer cells …

25.    Antibody-based arrays for detecting multiple signal …

http://www.uspto.gov/web/patents/patog/week08/OG/html/1399-4/US08658388-20140225.html

A method for performing a multiplex, high-throughput immunoassay for facilitating a cancer diagnosis, the method comprising:

26.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week48/OG/html/1409-1/US08901147-20141202.html

A method for the treatment of colorectal cancer, lung cancer, breast cancer, prostatecancer, urinary cancer, kidney cancer, and pancreatic …

27.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week16/OG/patentee/alphaY.htm

Yamaue, Hiroki; to Onco Therapy Science, Inc. Combination therapy for pancreatic cancer using an antigenic peptide and chemotherapeutic agent 08703713 …

28.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week48/OG/patentee/alphaP_Utility.htm

… The Custom vectors for treating and preventing pancreatic cancer … system and apparatus for control of pancreatic beta cell function to improve …

29.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week16/OG/patentee/alphaW.htm

Whatcott, Cliff; and Han, Haiyong, to Translational Genomics Research Institute, The Therapeutic target for pancreatic cancer cells 08703736 Cl. …

30.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week10/OG/patentee/alphaG.htm

Goldenberg, David M.; Hansen, Hans J.; Chang, Chien-Hsing; and Gold, David V., to Immunomedics, Inc. Anti-pancreatic cancer antibodies 08974784 Cl. …

31.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week42/OG/patentee/alphaD.htm

… Narayan, Vaibhav; and Patterson, Scott, to Celera Corporation Pancreatic cancertargets and uses thereof 08865413 Cl. 435-7.1. Domsch, Matthew L.; …

32.    [PDF] 15 March 2005 – United States Patent and Trademark Office

http://www.uspto.gov/web/trademarks/tmog/20050315_OG.pdf

15 March 2005 – United States Patent and Trademark Office

33.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week10/OG/html/1412-2/US08975248-20150310.html

Combinations of therapeutic agents for treating cancer: … myeloma, colorectal adenocarcinoma, cervical carcinoma and pancreatic carcinoma, …

34.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week05/OG/patentee/alphaG_Utility.htm

… Inc. Medium-chain length fatty acids, salts and triglycerides in combination with gemcitabine for treatment of pancreatic cancer 08946190 Cl. …

35.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week13/OG/patentee/alphaT_Utility.htm

Turkson, James; to University of Central Florida Research Foundation, Inc. Drug composition cytotoxic for pancreatic cancer cells 08685941 Cl. 514-49.

36.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week31/OG/patentee/alphaG_Utility.htm

… David M., to Immunomedics, Inc. Anti-mucin antibodies for early detection and treatment of pancreatic cancer 08795662 Cl. 424-130.1. Gold, …

37.    [PDF] www.uspto.gov

http://www.uspto.gov/web/trademarks/tmog/20110816_OG.pdf

http://www.uspto.gov

38.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week29/OG/patentee/alphaG.htm

Goggins, Michael G.; and Sato, Norihiro, to Johns Hopkins University, The Aberrantly methylated genes in pancreatic cancer 08785614 Cl. 536-24.3. …

39.    www.uspto.gov

http://www.uspto.gov/web/patents/patog/week46/OG/html/1408-3/US08889697-20141118.html

wherein said cancer is pancreatic cnacer, chronic myelogenous leukemia (CML), acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL …

40.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week39/OG/patentee/alphaM_Utility.htm

Malafa, Mokenge P.; and Sebti, Said M., to University of South Florida Delta-tocotrienol treatment and prevention of pancreatic cancer 08846653 Cl. …

41.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week02/OG/patentee/alphaK_Utility.htm

… Taro, to National University Corporation Kanazawa University Detection of digestive organ cancer, gastric cancer, colorectal cancerpancreatic …

42.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week11/OG/patentee/alphaK_Utility.htm

Kirn, David; to Sillajen Biotherapeutics, Inc. Oncolytic vaccinia virus cancer therapy 08980246 Cl. 424-93.2. Kirn, Larry J.; …

43.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week39/OG/patentee/alphaM_Utility.htm

Malafa, Mokenge P.; and Sebti, Said M., to University of South Florida Delta-tocotrienol treatment and prevention of pancreatic cancer 08846653 Cl. …

44.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week35/OG/patentee/alphaS_Utility.htm

list of patentees to whom patents were issued on the 2nd day of september, 2014 and to whom reexamination certificates were issued during the week …

45.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week42/OG/patentee/alphaS.htm

… Therapeutics Inc. Compounds and compositions for stabilizing hypoxia inducible factor-2 alpha as a method for treating cancer 08865748 Cl. …

46.    [PDF] Paper No. 12 UNITED STATES PATENT AND TRADEMARK OFFICE …

http://www.uspto.gov/sites/default/files/ip/boards/bpai/decisions/prec/bhide.pdf

high incidence of ras involvement, such as colon and pancreatic tumors. By … withcancer or pre-cancerous states will serve to treat or palliate the …

47.    CPC Scheme – C07K PEPTIDES – United States Patent and …

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-C07K.html

PEPTIDES (peptides in … Cancer-associated SCM-recognition factor, CRISPP} [2013‑01] … Kazal type inhibitors, e.g. pancreatic secretory inhibitor, …

48.    Class Definition for Class 514 – DRUG, BIO-AFFECTING AND …

http://www.uspto.gov/web/patents/classification/uspc514/defs514.htm

… compound X useful as an anti-cancer … certain rules as to patent … Cystic fibrosis is manifested by faulty digestion due to a deficiency of pa …

49.    United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-G01N_3.html

Cancer-associated SCM-recognition factor, CRISPP . G01N 2333/4748. . . . . … Bovine/basic pancreatic trypsin inhibitor (BPTI, aprotinin) G01N …

50.    Class Definition for Class 530 – CHEMISTRY: NATURAL RESINS …

http://www.uspto.gov/web/patents/classification/uspc530/defs530.htm

CLASS 530 , CHEMISTRY: NATURAL … Typically the processes of this subclass include solvent extraction of pancreatic … as well as with some forms of …

51.    CPC Definition – A61K PREPARATIONS FOR MEDICAL, DENTAL, OR …

http://www.uspto.gov/web/patents/classification/cpc/html/defA61K.html

PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES … i.e. Pancreatic stem cells are classified in A61K 35/39, … preparations containing cancer a …

52.    Class 530: CHEMISTRY: NATURAL RESINS OR DERIVATIVES …

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/def/530.htm

Typically the processes of this subclass include solvent extraction of pancreatic … 828 for cancer -associated proteins … provided for in Class …

53.    United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-G01N_1.html

Home page of the United States Patent and … Pancreatic cells} G01N 33/5073 … – relevant features relating to a specifically defined cancer are …

54.    *****TBD***** – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/shadowFiles/defs514sf.htm?514_971&S&10E&10F

class 514, drug, bio-affecting and body treating compositions …

55.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week47/OG/patentee/alphaN_Utility.htm

… Dale E., to Buck Institute for Age Research, The Reagents and methods for cancertreatment and … useful for diagnosis and treatment of pancreati …

56.    United States Patent and Trademark Office

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-C12Y_2.html

Pancreatic ribonuclease (3.1.27.5) C12Y 301/27006. . Enterobacter ribonuclease (3.1.27.6) C12Y 301/27007. . Ribonuclease F (3.1.27.7) C12Y 301/27008. …

57.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week01/OG/patentee/alphaI_Utility.htm

Institute for Cancer Research: See … and Segev, Hanna, to Technion Research & Development Foundation Limited Populations of pancreatic …

58.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week53/OG/patentee/alphaC.htm

Cancer Research Technology Limited: See–Collins, Ian; Reader, John Charles; Klair, Suki; Scanlon, Jane; Addison, Glynn; and Cherry, Michael 08618121 …

59.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week12/OG/patentee/alphaP_Utility.htm

… to University Health Network Cyclic inhibitors of carnitine palmitoyltransferase and treating cancer … progenitor cells and pancreatic endocrine …

60.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week47/OG/patentee/alphaI.htm

… to King Fahd University of Petroleum and Minerals Cytotoxic compounds for treatingcancer … or preventing a pancreatic dysfunction 08894972 Cl …

61.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week50/OG/patentee/alphaC.htm

… and Taylor-Papadimitriou, Joyce, to Københavns Universitet Generation of a cancer-specific … to CuRNA, Inc. Treatment of pancreatic …

62.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week29/OG/patentee/alphaP_Utility.htm

… to Cedars-Sinai Medical Center Drug delivery of temozolomide for systemic based treatment of cancer … Pancreatic enzyme compositions and …

63.    Class 424: DRUG, BIO-AFFECTING AND BODY TREATING …

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/def/424.htm

… a disclosed or even specifically claimed utility (i.e., compound X having an attached radionuclide useful as an anti-cancer diagnostic or …

64.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week25/OG/patentee/alphaT_Utility.htm

… Chang-Jer, to Gold Nanotech Inc. Physical nano-complexes for preventing and treating cancer and … and protective solution for protecting pancrea …

65.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week27/OG/patentee/alphaA_Utility.htm

… Thomas T., to Penn State Research Foundation, The In vivo photodynamic therapy ofcancer via a near infrared … of pancreatic beta-cells by …

66.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week32/OG/patentee/alphaB_Utility.htm

Birnie, Richard; to University of York, The Cancer vaccine 08802619 Cl. 514-1. Birtwhistle, Daniel P.; Long, James R.; and Reinke, Robert E., …

67.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week20/OG/patentee/alphaC_Utility.htm

… to Cornell University Method for treating cancer 08729133 Cl. 514-673 … methods for promoting the generation of PDX1+ pancreatic cells …

68.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week49/OG/patentee/alphaL_Utility.htm

… Kurt, to Abbvie Biotherapeutics Inc. Compositions against cancer antigen LIV-1 and uses … H., to Amylin Pharmaceuticals, LLC Pancreatic …

69.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week11/OG/patentee/alphaS_Utility.htm

… Kenji; and Matsuda, Hirokazu, to Kyoto University Molecular probe for imaging ofpancreatic islets and use … use in the treatment of cancer …

70.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week36/OG/patentee/alphaK.htm

… Emi; Matsumi, Chiemi; and Saitoh, Yukie, to Actgen Inc Antibody having anti-cancer … The Plectin-1 targeted agents for detection and treatment …

71.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week53/OG/patentee/alphaK.htm

list of patentees to whom patents were issued on the 31th day of december, 2013 and to whom reexamination certificates were issued during the week …

72.    Patentee Index – United States Patent and Trademark Office

http://www.uspto.gov/web/patents/patog/week40/OG/patentee/alphaK_Utility.htm

… Uemoto, Shinji; and Kawaguchi, Yoshiya, to Kyoto University Method of culturingpancreatic islet-like tissues by a … of breast cancer 08853183 …

Clinical Trials:

Region Name   Number of Studies
World 1824  
Africa   [map]   10  
Central America   [map]   4  
East Asia   [map]   179  
Japan 40   [studies]
Europe   [map]   444  
Middle East   [map]   46  
North America 1189  
Canada   [map]   102   [studies]
Mexico 11   [studies]
United States   [map]   1144   [studies]
Alabama 60   [studies]
Alaska 4   [studies]
Arizona 107   [studies]
Arkansas 23   [studies]
California 235   [studies]
Colorado 79   [studies]
Connecticut 51   [studies]
Delaware 15   [studies]
District of Columbia 36   [studies]
Florida 187   [studies]
Georgia 77   [studies]
Hawaii 15   [studies]
Idaho 11   [studies]
Illinois 139   [studies]
Indiana 94   [studies]
Iowa 51   [studies]
Kansas 39   [studies]
Kentucky 48   [studies]
Louisiana 46   [studies]
Maine 11   [studies]
Maryland 189   [studies]
Massachusetts 142   [studies]
Michigan 116   [studies]
Minnesota 114   [studies]
Mississippi 14   [studies]
Missouri 91   [studies]
Montana 27   [studies]
Nebraska 42   [studies]
Nevada 32   [studies]
New Hampshire 25   [studies]
New Jersey 64   [studies]
New Mexico 27   [studies]
New York 230   [studies]
North Carolina 111   [studies]
North Dakota 22   [studies]
Ohio 136   [studies]
Oklahoma 41   [studies]
Oregon 54   [studies]
Pennsylvania 180   [studies]
Rhode Island 23   [studies]
South Carolina 72   [studies]
South Dakota 23   [studies]
Tennessee 115   [studies]
Texas 212   [studies]
Utah 36   [studies]
Vermont 11   [studies]
Virginia 69   [studies]
Washington 83   [studies]
West Virginia 12   [studies]
Wisconsin 74   [studies]
Wyoming 9   [studies]
North Asia   [map]   24  
Pacifica   [map]   39  
South America   [map]   30  
South Asia   [map]   23  
Southeast Asia   [map]   25  

Search Results for ‘pancreas cancer’

Genomics and Epigenetics: Genetic Errors and Methodologies – Cancer and Other Diseases on March 25, 2015 |  Read Full Post »

@Mayo Clinic: Inhibiting the gene, protein kinase D1 (PKD1), and its protein could stop spread of this form of Pancreatic Cancer on February 24, 2015  Read Full Post »

The Changing Economics of Cancer Medicine: Causes for the Vanishing of Independent Oncology Groups in the US on November 26, 2014 | Read Full Post »

Autophagy-Modulating Proteins and Small Molecules Candidate Targets for Cancer Therapy: Commentary of Bioinformatics Approaches on September 18, 2014 |  Read Full Post »

New Immunotherapy Could Fight a Range of Cancers on June 4, 2014  Read Full Post »

Locally Advanced Pancreatic Cancer: Efficacy of FOLFIRINOX  on June 1, 2014  Read Full Post »

 

ipilimumab, a Drug that blocks CTLA-4 Freeing T cells to Attack Tumors @DM Anderson Cancer Center on May 28, 2014 | Read Full Post »

NIH Study Demonstrates that a New Cancer Immunotherapy Method could be Effective against a wide range of Cancers  on May 12, 2014 |

Cancer Research: Curations and Reporting Posted in on May 6, 2014 | Read Full Post »

Cancer Research: Curations and Reporting: Aviva Lev-Ari, PhD, RN  on April 20, 2014 | Read Full Post »

Prologue to Cancer – e-book Volume One – Where are we in this journey? on April 13, 2014 | Read Full Post »

 

Epilogue: Envisioning New Insights in Cancer Translational Biology on April 4, 2014 | Read Full Post »

 

A Synthesis of the Beauty and Complexity of How We View Cancer

on March 26, 2014 Read Full Post »

 

Pancreatic Cancer Diagnosis: Four Novel Histo-pathologies Screening Characteristics offers more Reliable Identification of Cellular Features associated with Cancer

on November 13, 2013 | Read Full Post »

 

What`s new in pancreatic cancer research and treatment?

on October 21, 2013 | Read Full Post »

 

Family History of Cancer may increase the Risk of Close Relatives developing the Same Type of Cancer as well as Different Types

on July 25, 2013 Read Full Post »

 

2013 Perspective on “War on Cancer” on December 23, 1971

on July 5, 2013 Read Full Post »

 

Mesothelin: An early detection biomarker for cancer (By Jack Andraka) on April 21, 2013 |  Read Full Post »

Pancreatic Cancer: Genetics, Genomics and Immunotherapy

on April 11, 2013 |  Read Full Post »

New methods for Study of Cellular Replication, Growth, and Regulation on March 25, 2015 Read Full Post »

Diet and Diabetes on March 2, 2015 |  Read Full Post »

Neonatal Pathophysiology on February 22, 2015 |  Read Full Post »

Endocrine Action on Midbrain on February 12, 2015 | Read Full Post »

Gastrointestinal Endocrinology on February 10, 2015 | Read Full Post »

Parathyroids and Bone Metabolism on February 10, 2015 | Read Full Post »

Pancreatic Islets on February 8, 2015 | Read Full Post »

Pituitary Neuroendocrine Axis on February 4, 2015 |Read Full Post »

Highlights in the History of Physiology on December 28, 2014 | Read Full Post »

Outline of Medical Discoveries between 1880 and 1980 on December 3, 2014 | Read Full Post »

Diagnostics Industry and Drug Development in the Genomics Era: Mid 80s to Present on November 21, 2014  Read Full Post »

Implantable Medical Devices to 2015 – Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends on November 17, 2014 | Read Full Post »

Pharmacological Action of Steroid Hormones on October 27, 2014 | Read Full Post »

Metabolomics Summary and Perspective on October 16, 2014 | Read Full Post »

Pancreatic Tumors take nearly 20 years to become Lethal after the first Genetic Perturbations – Discovery @ The Johns Hopkins University  on October 15, 2014 |Read Full Post »

Isoenzymes in cell metabolic pathways on October 6, 2014 | Read Full Post »

Metformin, thyroid-pituitary axis, diabetes mellitus, and metabolism on September 28, 2014 | Read Full Post »

Carbohydrate Metabolism on August 13, 2014 | Read Full Post »

A Primer on DNA and DNA Replication on July 29, 2014 | Read Full Post »

The Discovery and Properties of Avemar – Fermented Wheat Germ Extract: Carcinogenesis Suppressor on June 7, 2014 | Read Full Post »

Previous Articles posted on Prostate Cancer

@Mayo Clinic: Inhibiting the gene, protein kinase D1 (PKD1), and its protein could stop spread of this form of Pancreatic Cancer 2012pharmaceutical 2015/02/24
Published
Thymoquinone, an extract of nigella sativa seed oil, blocked pancreatic cancer cell growth and killed the cells by enhancing the process of programmed cell death. larryhbern 2014/07/15
Published
Moringa Oleifera Kills 97% of Pancreatic Cancer Cells in Vitro larryhbern 2014/06/21
Published
The Gonzalez protocol: Worse than useless for pancreatic cancer sjwilliamspa 2014/06/17
Published
An alternative approach to overcoming the apoptotic resistance of pancreatic cancer 2012pharmaceutical 2014/06/03
Published
Locally Advanced Pancreatic Cancer: Efficacy of FOLFIRINOX 2012pharmaceutical 2014/06/01
Published
Consortium of European Research Institutions and Private Partners will develop a microfluidics-based lab-on-a-chip device to identify Pancreatic Cancer Circulating Tumor Cells (CTC) in blood 2012pharmaceutical 2014/04/10
Published
Pancreatic Cancer Diagnosis: Four Novel Histo-pathologies Screening Characteristics offers more Reliable Identification of Cellular Features associated with Cancer 2012pharmaceutical 2013/11/13
Published
What`s new in pancreatic cancer research and treatment? 2012pharmaceutical 2013/10/21
Published
Pancreatic Cancer: Genetics, Genomics and Immunotherapy tildabarliya 2013/04/11
Published
Pancreatic cancer genomes: Axon guidance pathway genes – aberrations revealed 2012pharmaceutical 2012/10/24
Published
Biomarker tool development for Early Diagnosis of Pancreatic Cancer: Van Andel Institute and Emory University 2012pharmaceutical 2012/10/24
Published
Personalized Pancreatic Cancer Treatment Option 2012pharmaceutical 2012/10/16
Published
Battle of Steve Jobs and Ralph Steinman with Pancreatic cancer: How we lost ritusaxena 2012/05/21
Published
Early Biomarker for Pancreatic Cancer Identified pkandala 2012/05/17
Published
Usp9x: Promising therapeutic target for pancreatic cancer ritusaxena 2012/05/14
Published
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert sjwilliamspa 2015/03/27
Published
Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease 2012pharmaceutical 2015/02/15
Published
Pancreatic Islets larryhbern 2015/02/08
Publ
Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi
Vol 13, No 4 (2012): July – p. 330-469 Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice? ABSTRACT  HTML  PDF
George H Sakorafas, Vasileios Smyrniotis
Vol 13, No 4 (2012): July – p. 330-469 Endoscopic Findings of Upper Gastrointestinal Lesions in Patients with Pancreatic Cancer ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Hiroyuki Watanabe, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Seiji Yano
Vol 13, No 5 (2012): September – p. 470-547 Two Avirulent, Lentogenic Strains of Newcastle Disease Virus Are Cytotoxic for Some Human Pancreatic Tumor Lines In Vitro ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Megan Delimata, Sooraj Tejaswi
Vol 14, No 3 (2013): May – p. 221-303 Duration of Diabetes and Pancreatic Cancer in a Case-Control Study in the Midwest and the Iowa Women’s Health Study (IWHS) Cohort ABSTRACT  HTML  PDF
Sarah A Henry, Anna E Prizment, Kristin E Anderson
Vol 16, No 1 (2015): January – p. 1-99 Endoscopic Management of Pain in Pancreatic Cancer ABSTRACT  HTML  PDF
Parit Mekaroonkamol, Field F Willingham, Saurabh Chawla
Vol 14, No 2 (2013): March – p. 109-220 Advancements in the Management of Pancreatic Cancer: 2013 ABSTRACT  HTML  PDF
Muhammad Wasif Saif
Vol 15, No 5 (2014): September – p. 413-540 New-onset Diabetes: A Clue to the Early Diagnosis of Pancreatic Cancer ABSTRACT  HTML  PDF
Suresh T Chari
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 2: Carcinogenesis Studies ABSTRACT  HTML  PDF
Fumiaki Nozawa, Mehmet Yalniz, Murat Saruc, Jens Standop, Hiroshi Egami, Parviz M Pour
Vol 14, No 5 (2013): September – p. 475-527 Synchronous Triple Cancers of the Pancreas, Stomach, and Cecum Treated with S-1 Followed by Pancrelipase Treatment of Pancreatic Exocrine Insufficiency ABSTRACT  HTML  PDF
Koushiro Ohtsubo, Daisuke Ishikawa, Shigeki Nanjo, Shinji Takeuchi, Tadaaki Yamada, Hisatsugu Mouri, Kaname Yamashita, Kazuo Yasumoto, Toshifumi Gabata, Osamu Matsui, Hiroko Ikeda, Yasushi Takamatsu, Sakae Iwakami, Seiji Yano
Vol 13, No 1 (2012): January – p. 1-123 Newcastle Disease Virus LaSota Strain Kills Human Pancreatic Cancer Cells in Vitro with High Selectivity ABSTRACT  HTML  PDF
Robert J Walter, Bashar M Attar, Asad Rafiq, Sooraj Tejaswi, Megan Delimata
Vol 13, No 3 (2012): May – p. 252-329 Rare Solid Tumors of the Pancreas as Differential Diagnosis of Pancreatic Adenocarcinoma ABSTRACT  HTML  PDF
Sabine Kersting, Monika S Janot, Johanna Munding, Dominique Suelberg, Andrea Tannapfel, Ansgar M Chromik, Waldemar Uhl, Uwe Bergmann
Vol 14, No 4 (2013): July – p. 304-474 A Proteomic Comparison of Formalin-Fixed Paraffin-Embedded Pancreatic Tissue from Autoimmune Pancreatitis, Chronic Pancreatitis, and Pancreatic Cancer ABSTRACT  HTML  PDF  SUPPL. TABLES 1-4 (PDF)
Joao A Paulo, Vivek Kadiyala, Scott Brizard, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 13, No 4 (2012): July – p. 330-469 Highlights on the First Line Treatment of Metastatic Pancreatic Cancer ABSTRACT  HTML  PDF
Krishna S Gunturu, Jamie Jarboe, Muhammad Wasif Saif
Vol 14, No 2 (2013): March – p. 109-220 Pancreatic Cancer: Updates on Translational Research and Future Applications ABSTRACT  HTML  PDF
Evangelos G Sarris, Konstantinos N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Pancreatic Cancer: What About Screening and Detection? ABSTRACT  HTML  PDF
Froso Konstantinou, Kostas N Syrigos, Muhammad Wasif Saif
Vol 14, No 4 (2013): July – p. 304-474 Diabetes and Pancreatic Cancer ABSTRACT  HTML  PDF
Najla Hatem El-Jurdi, Muhammad Wasif Saif
Vol 13, No 5 (2012): September – p. 470-547 Effects of Porcine Pancreatic Enzymes on the Pancreas of Hamsters. Part 1: Basic Studies ABSTRACT  HTML  PDF
Murat Saruc, Fumiaki Nozawa, Mehmet Yalniz, Atsushi Itami, Parviz M Pour
Vol 14, No 2 (2013): March – p. 109-220 Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation ABSTRACT  HTML  PDF  SUPPL.(XLS)  SUPPL.(PDF)
Joao A Paulo, Vivek Kadiyala, Aleksandr Gaun, John F K Sauld, Ali Ghoulidi, Peter A Banks, Hanno Steen, Darwin L Conwell
Vol 16, No 1 (2015): January – p. 1-99 Regulation Mechanisms of the Hedgehog Pathway in Pancreatic Cancer: A Review ABSTRACT  HTML  PDF
Kim Christin Honselmann, Moritz Pross, Carlo Maria Felix Jung, Ulrich Friedrich Wellner, Steffen Deichmann, Tobias Keck, Dirk Bausch
Vol 14, No 5S (2013): September (Suppl.) – p. 528-602 History of Previous Cancer in Patients Undergoing Resection for Pancreatic Adenocarcinoma ABSTRACT  PDF
Francesca Gavazzi, Maria Rachele Angiolini, Cristina Ridolfi, Maria Carla Tinti, Marco Madonini, Marco Montorsi, Alessandro Zerbi

Read Full Post »

Diarrheas – Bacterial and Nonbacterial

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

Diarrheas are one of the common problems of societies worldwide. However, the prevalence of cause of the diarrhea may be different depending on location, water quality, food source, age, and psychological stress factors.

Microbial and Parasitic Diseases

A Systematic Review on Neglected Important Protozoan Zoonoses

Yibeltal Muhie Mekonen and Simenew Keskes Melaku
Int. J. Adv. Res. Biol.Sci. 2(1): (2015): 53–65

Infectious protozoan parasites are transmitted to humans through several routes, including contaminated food and water, inadequately treated sewage/sewage products, and livestock and domestic pet handling. Several enteric protozoa cause severe morbidity and mortality in both humans and animals worldwide. In developed settings, enteric protozoa are often ignored as a cause of diarrheal illness due to better hygiene conditions, and as such, very little effort is used toward laboratory diagnosis. Although these protozoa contribute to the high burden of infectious diseases, estimates of their true prevalence are sometimes affected by the lack of sensitive diagnostic techniques to detect them in clinical and environmental specimens. Despite recent advances in the epidemiology, molecular biology, and treatment of protozoan illnesses, gaps in knowledge still exist, requiring further research. There is evidence that climate-related changes will contribute to their burden due to displacement of ecosystems and human and animal populations, increases in atmospheric temperature, flooding and other environmental conditions suitable for transmission, and the need for the reuse of alternative water sources to meet growing population needs. This review discusses the common enteric protozoa from a public health perspective, highlighting their epidemiology, modes of transmission, prevention and control and epidemiological pictures in Ethiopia. It also discusses the potential impact of climate changes on their epidemiology and the issues surrounding waterborne transmission and suggests a multidisciplinary approach to their prevention and control.

Approximately 60 percent of all human pathogens are zoonoses of microbes that are naturally transmitted between animals and humans. Neglect of their control persists because of a lack of information and awareness about their distribution, a lack of suitable tools and managerial capacity for their diagnosis, and a lack of appropriate and sustainable strategies for their prevention and control. Furthermore, many of the most affected countries have poor or non-existent veterinary public health infrastructures. This situation has marginalized control of zoonoses to the gap between veterinary responsibilities and medical needs, generating a false perception that their burden and impact on society are low. As a result, neither the human and animal health resources nor the research needed for their control are available spawning a category of non zoonotic diseases (Choffnes and Relman, 2011).

The neglected tropical diseases (NTDs) are the most common conditions affecting the poorest 500 million people living in sub-Saharan Africa (SSA), and together produce a burden of disease that may be equivalent to up to one-half of SSA’s malaria disease burden and more than double that caused by tuberculosis (Hotez and Kamath, 2009).Starting with an initial set of 13-15 diseases, there are now over 40 helminth, protozoal, bacterial, viral, fungal and ectoparasitic infections covered under the brand-name of the neglected tropical diseases. Gaps in our understanding of the epidemiology and control of many of the neglected tropical diseases remain, which calls for additional funding for innovative research (Jürg et al, 2012).

The health and socioeconomic impacts of zoonotic parasitic and related food-borne diseases are growing continuously and increasingly being felt most particularly by developing countries. Apart from causing human morbidity and mortality, they hamper agricultural production, decrease availability of food, and create barriers to international trade (Solaymani-Mohammadi and Petri, 2006). The problem of zoonoses has spread from predominantly restricted rural areas into regional and, in some cases, worldwide epidemics. This is due to the great changes of the previous decades, especially the increasing urbanization, most of which is inadequate planned. In addition, large movements of populations, opening up of badly needed new areas for food production, the increasing trade in meat, milk and other products of animal origin, the increasing number and speed of vehicles, and even tourism have contributed to expanding the impact of zoonotic diseases. The challenges of food-borne, waterborne, and zoonotic protozoan diseases associated with climate change are expected to increase, with a need for active surveillance systems, some of which have already been initiated by several developed countries. However, very little effects are attempting in the developing world which actually are the main victims.

The prevalence rates are generally higher in immunodeficient compared to immune-competent patients. However, most studies on prevalence have been carried out in developed countries where the laboratory and clinical infrastructure are more easily available. Protozoan pathogens and HIV interact in their host, modifying the immunopathology of disease and complicating therapeutic intervention. Disease prevalence and distribution and population movements impact greatly on HIV/protozoan parasite co-infections (Andeani et al, 2012).

In Ethiopia there are little reports regarding protozoan zoonoses. However, there are still reports from clinics and hospitals where these diseases are becoming major issues of concern. This review will examine published data on the neglected protozoan pathogens in Ethiopia and analyses their current importance to public health.

Important but Neglected Protozoan Zoonoses Dealt in this Critical Review

  • Amebiasis

This disease is caused by a single cell protozoan parasite called Entamoeba  spp. (E. histolytica, E. polecki). Invasive amebiasis is one of the world most prevalent and fatal infectious diseases. Around 500 million people are infected worldwide while 75,000 die of the disease annually. Behind malaria and schistosomiasis, amebiasis ranks third on the list of parasitic causes of death worldwide. The infection is common in developing countries and predominantly affects individuals with poor socioeconomic conditions, non hygienic practices, and malnutrition (Stanley, 2003).

A number of survey and routine diagnosis in Ethiopia indicate that amebiasis is one of the most widely distributed diseases. In a countrywide survey of amebiasis in 97 communities, the overall prevalence of Entamoeba histolytica infections, as measured by rate of cyst-passers, in schoolchildren and non-school communities were 15.0% and 3.5%, respectively (Erko et al, 1995). A study conducted on the prevalence of Entamoeba histolytica/dispar among children in Legedini, Adada and Legebira, Dire-Dawa administrative region was 33.7% (Dawit, 2006 Unpublished MSc Thesis).

  • Giardiasis

Giardiasis is caused by Giardia lamblia (also known as Giardia duodenalis or G. intestinalis) is a unicellular, flagellated intestinal protozoan parasite of humans isolated worldwide and is ranked among the top 10 parasites of man (Farthing and Kelly, 2005). Its occurrence is worldwide (Figure 1) and prevalence very high in areas with poor sanitation and in institutions. Human infections usually originate from other humans but may result from contact with dogs, cats, rodents, beavers, or nonhuman primates. The prevalence of the disease varies from 2% to 5% in developed to 20% to 30% in developing countries. The variation in prevalence might be attributed to factors such as the geographical area, the urban or rural setting of the society, the age group composition and the socio-economical conditions of the study subject.

Risk of disease caused by Giarda species

Risk of disease caused by Giarda species

Risk of disease caused by Giarda species with different degrees Source: Esch and Petersen (2013)

According to Birrie and Erko (1995) based on a countrywide survey of giardiasis, the overall prevalence among school children and residents were 8.9% and 3.1%, respectively and that of the non-school children were 4.4%. Recent report indicates that the prevalence of Giardia lamblia among diarrhea patients referred to EHNRI (Ethiopian Health and Nutrition Research Institute) was 8.6%. In a study conducted in South Western Ethiopia, the prevalence of Giardiasis was 13.7%. A study conducted for the determination of Prevalence of Giardiasis and Cryptosporidiosis among children in relation to water sources in selected Village of Pawi Special District in Benishangul-Gumuz Region, Northwestern Ethiopia showed that out of the 384 children examined, 102 for giardiasis.

  • Leishmaniasis

Leishmaniasis is an ancient disease caused by protozoans from the Leishmania genus and transmitted by the bite of a sand fly. It has four subtypes of varying severity, which include cutaneous and visceral infections. Cutaneous infection results in the formation of disfiguring lesions which frequently occur on the face, arms and legs. Lesions may last anywhere from a few weeks to over a year; secondary lesions may also occur years after the initial lesion has healed. Visceral cases can result in anemia, fever, debility and death if left untreated.

About 20 species of Leishmania infect mammals and many of them can cause human leishmaniasis. Motile infective forms of the parasite (metacyclic promastigotes with a long free flagellum) develop in the guts of competent sand fly vectors, which inoculate them into mammalian skin. Infections can spread, often via the lymphatic system, to cause secondary dermal lesions with forms and tissue tropisms in humans that show some parasite species specificity. Leishmaniasis can visceralize (for example Leishmania (Leishmania) tropica, which normally causes Oriental sore), but only two species of the subgenus Leishmania routinely do so, and these are the causative agents of most human visceral leishmaniasis (VL) worldwide.

Global burden of Leishmania

Global burden of Leishmania

Global burden of Leishmania as adapted from the “Leshimaniases and Leishmania HIV co-infection” WHO fact sheet No. 116, May 2000

The New World visceral leishmaniasis is in Latin America and southern United States. Of course the visceral form also is common in Asia, Africa, Europe and Latin America. Both VL and CL are important endemic vector‐borne diseases in Ethiopia. The Federal Ministry of Health (FMoH) estimates the annual burden of VL to be between 4,500 and 5,000 cases (FMoH Ethiopia, 2006 unpublished). Known VL endemic foci are in the arid southwest, and the Humera and Metema lowlands in the north‐west. About 2-12% of all visceral leishmaniasis cases involve HIV coinfections underlines the synergic aspect of both diseases; such proportions may reach 40%, as in Humera, northwest Ethiopia (WHO, 2007), where coinfections have increased two-fold in the last decade (Andreani et al, 2012).

  • Cryptosporidiosis

The causes of this disease are Cryptosporidium spp. (C. parvum, possibly others). In humans, abdominal pain, nausea, watery diarrhea lasting 3-4 days. In immune-deficient or immune-suppressed people, the disease is severe, with persistent diarrhea (6-25 evacuations per day) and malabsorption of nutrients. In normal persons the disease is self-limiting. In immune-compromised individuals, disease is severe and case fatality rate may be high. In animals normally a clinical disease can be seen only among young neonates. In ruminants, gastroenteritis and diarrhea are common.

  • Toxoplasmosis

Toxoplasmosis is among the global major zoonotic diseases and the third leading cause of food-related deaths in the USA. It is caused by Toxoplasma gondii, an Apicomplexa protozoan parasite, with cats as the definitive host. Cats are considered the key in the transmission of Toxoplasma gondii to humans because they are the only hosts that can excrete the environmentally resistant oocysts in their feces.

Human seroprevalece of Toxoplasma gondii

Human seroprevalece of Toxoplasma gondii

Human seroprevalece of Toxoplasma gondii.  Esch and Petersen (2013)

The clinical impact of zoonotic enteric protozoan infections is greatest in the developing world where inadequate sanitation, poor hygiene and proximity to zoonotic reservoirs, particularly companion animals and livestock are greatest. In such circumstances, it is not surprising that infections with more than one species of enteric protozoan are common, and in fact single infections are rare.

Impact of animal disease on human health

Impact of animal disease on human health

Impact of animal disease on human health

The protozoan zoonoses circulating in Ethiopia are major burden on public health and wellbeing. The magnitude and scope of this burden varies for each of the protozoan parasites discussed in this manuscript. Apart from causing human morbidity and mortality, they hamper agricultural production, decrease availability of food, and create barriers to international trade. It is generally believed that although these parasitic infections are distributed worldwide, their prevalence is higher in developing compared to developed countries. However, the relative importance of zoonotic infections especially in developing countries has not been studied in detail including. These protozoan zoonoses are the most neglected but very important in terms of human health and veterinary concerns. The main share belongs to cryptosporidiosis; giardiasis, toxoplasmosis, leishmaniasis and amebiasis are some of the major protozoan zoonoses.

Clinical Microbiology: Past, Present, and Future

Henry D. Isenberg
J Clin Microbiol, Mar. 2003; 41(3):917–918
http://dx.doi.org:/10.1128/JCM.41.3.917–918.2003

During the last two decades of the 19th century, a plethora of bacteria were isolated and designated etiological agents of human infectious diseases. As with many instances at the interface between cause and effective therapy, the further characterization of these alleged pathogens remained in the hands of a few devoted investigators until drugs with therapeutic potential became available. This vague period before the advent of proper cures for infections explains the shadowy origin of clinical or diagnostic microbiology. But, as R. Porter has stated, “history should be rooted in detail and as messy as life itself”; this is an undeniable description of the history of clinical microbiology, long the stepchild, frequently denied legitimacy, among the many siblings that constitute the science of microbiology. Yet the practice of clinical microbiology is the application of knowledge gained to the betterment of the human condition, the goal of clinical microbiologists.

The advances in the grouping and typing of streptococci, salmonellae, and shigellae, the separation of Staphylococcus aureus on the basis of the coagulase reaction, and the growing awareness of the need for safe water and uncontaminated food items established the need for laboratories to assume these responsibilities. It was only logical that microbiology should join endeavors such as chemistry, hematology, and serology under the rubric of clinical pathology. Differential media especially designed to sequester species increased dramatically during Word War II; military hospitals developed clinical microbiology sections devoted not only to recognizing agents endangering the health of troops in camps, in battle, and in foreign environments but also to assessing the responses of certain of the microorganisms isolated to several sulfonamides and that hitherto unknown agent, penicillin. The subsequent explosion of antimicrobial agents—streptomycin, chloramphenicol, tetracyclines, and erythromycin—suggested to the reigning powers of medical facilities that clinical microbiologists could be phased out, since infectious disease would disappear before the onslaught of agents discovered through human ingenuity.

In the interim, cotton plugs gave way to Bakelite, polypropylene, glass, metal, and plastic closures; in-house medium preparation was relieved in part by the beginnings of commercially manufactured ready-to-use media especially for mycobacteria and antimicrobial susceptibility testing. Alcohol, Bunsen, and Tyril burners were replaced by microincinerators, eventually followed by disposable loops and transfer needles. The prescient wisdom of hospital boards soon was shattered by the genetic versatility of the microbial world, dramatically demonstrated by the pandemic of S. aureus 80/81 in the late 1950s and early 1960s and the emergence of gram-negative rods that demonstrated the superiority of the bacterial physiology over the commercially prepared secondary microbial metabolites that initially appeared so promising. To be sure, the tug of war between antimicrobial agents—natural and synthetic—and the microorganisms continues unabated, with signs that the evolutionary potential of the microbial world will succeed in the long run.

Since the 1960s, numerous ingenious innovations have been introduced. Molecular biology techniques promise to revolutionize the diagnosis of infectious disease—to date a promise still in its infancy.  Systems approaches began to replace the single test tube with but one substrate. Perhaps the first was double sugar iron agar for the recognition of so-called enteric pathogens, followed by triple sugar iron agar and the next tentative shortcut, the r/b tube. Rollender and Beckford, the inventors of the r/b tube, must be credited with initiating manufacturers’ efforts to teach laboratory staffs the vagaries and problems of new system approaches. Shortly thereafter, the API system was introduced in the United States, bringing a novel numerical approach first to the identification of Enterobacteriaceae (enteric – gut bacteria) and then to that of several other categories of microorganisms. Similarly, the Roche Enterotube used fewer reaction substrates to decrease the time needed to identify isolates to the species level; initially it was used for members of the Enterobacteriaceae and eventually for other microbial representatives. All systems eventually addressed yeasts and nutritionally demanding bacteria, obviating the multiple-tube approaches in use.

Clinical microbiologists are acutely aware of the constantly emerging intruders into the intimate human biosphere. These agents appear as the traditional scourges of humanity are brought under control. But the application of antimicrobial agents to the food chain, cosmetics, and over-the-counter medications, and the advances in medical science, sparing individuals afflicted with a variety of diseases but accompanied by impaired immunity—all these factors have combined to increase nosocomial infections, placing the medical facility at the very apex of the selective-pressure pyramid. The selection results in colonization by microbiota with a minority of antimicrobial-tolerant or -resistant constituents; administration of antimicrobial therapy converts these organisms to a majority. These selected prokaryotes and eukaryotes,
along with the emerging viruses, coccidia, yeasts, and molds, pose a dynamic challenge to the clinical microbiologist and promise a continued need for her or his services. But these challenges must be met by the expansion of technical skills brought to bear on the changing nature of the challenging microbiota and the willingness of clinical microbiologists
to adopt and practice evolving technologies, to gain knowledge in addition to information, and to remain in the forefront of innovation and invention.

Gut microbiota: next frontier in understanding human health and development of biotherapeutics

Satya Prakash, L Rodes, M Coussa-Charley, C Tomaro-Duchesneau
Biologics: Targets and Therapy 2011:5 71–86
http://dx.doi.org/10.2147/BTT.S19099

The human gastrointestinal tract houses a huge microbial ecosystem, the gut microbiota. This intestinal ecosystem is partially responsible for maintaining human health. However, particular changes in the ecosystem might contribute to the development of certain diseases. With this in mind, there is a need for an exhaustive review on the functions of the gut microbiota, occurrence of gut dysbiosis (alteration of the microbiota), mechanisms by which intestinal bacteria can trigger development of disease, how this ecosystem can be exploited for understanding human health, development of biotherapeutics, expert opinion on current biotherapeutics, and future perspectives. This review presents a descriptive and comprehensive analysis on “the good, the bad, and the ugly” of the gut microbiota, and methods to study these and their modulation of human health.

The gut microbiota is a remarkable asset for human health. As a key element in the development and prevention of specific diseases, its study has yielded a new field of promising biotherapeutics. This review provides comprehensive and updated knowledge of the human gut microbiota, its implications in health and disease, and the potentials and limitations of its modification by currently available biotherapeutics to treat, prevent and/ or restore human health, and future directions. Homeostasis of the gut microbiota maintains various functions which are vital to the maintenance of human health. Disruption of the intestinal ecosystem equilibrium (gut dysbiosis) is associated with a plethora of human diseases, including autoimmune and allergic diseases, colorectal cancer, metabolic diseases,

and bacterial infections. Relevant underlying mechanisms by which specific intestinal bacteria populations might trigger the development of disease in susceptible hosts are being explored across the globe. Beneficial modulation of the gut microbiota using biotherapeutics, such as prebiotics, probiotics, and antibiotics, may favor health-promoting populations of bacteria and can be exploited in development of biotherapeutics. Other technologies, such as development of human gut models, bacterial screening, and delivery formulations e.g., microencapsulated probiotics, may contribute significantly in the near future. Therefore, the human gut microbiota is a legitimate therapeutic target to treat and/or prevent various diseases. Development of a clear understanding of the technologies needed to exploit the gut microbiota is urgently required.

Seven bacterial divisions constitute the gut microbiota, i.e., Firmicutes, Bacteroides, Proteobacteria, Fusobacteria, Verrucomicrobia, Cyanobacteria, and Actinobacteria, with Firmicutes and Bacteroides being the most abundant species. Bacterial communities exhibit quantitative and qualitative variations along the length of the gastrointestinal tract due to host factors (e.g., pH, transit time, bile acids, digestive enzymes, and mucus), nonhost factors (eg, nutrients, medication, and environmental factors), and bacterial factors (e.g., adhesion capacity, enzymes, and metabolic capacity).

Until recently, the analysis of bacterial ecosystems was performed by growth on defined media, which has some limitations because this method is labor-intensive and, more importantly, only 80% of stool bacteria can be cultivated. As a consequence, new molecular techniques have been developed. In terms of qualitative measurements of the microbiota, techniques such as fingerprinting (denaturing gradient gel electrophoresis), terminal restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and 16S ribosomal RNA sequencing are widely used. Specifically, genome sequencing has provided tremendous information in the microbial world, spearheading technologies such as microarrays. New automated parallel sequencing technologies, based on the 16S ribosomal RNA gene present in all prokaryotes, can offer a cost-effective solution for rapid sequencing and identification of bacterial species of the gut.

Essential metabolic functions

Metabolic functions of the gut microbiota include production of vitamin, amino acid synthesis, and bile acid biotransformation. Bile acid biotransformations, performed by microbial enzymes, have implications for cholesterol and glucose metabolism. Importantly, the microbiome provides biochemical pathways required for the fermentation of nondigestible substrates and endogenous mucus. Through fermentation, bacterial growth is stimulated, producing short-chain fatty acids and gases. The major short-chain fatty acids produced are acetate, butyrate, and propionate. Other bacterial end products include lactate, ethanol, succinate, formate, valerate, caproate, isobutyrate, 2-methyl-butyrate,
and isovalerate. Bacterial fermentation is present in the cecum and colon, where the short-chain fatty acids are absorbed, stimulating the absorption of salts and water.

Ensures protection

Pathogen displacement or “colonization resistance” is an accepted function of the gut microbiota. Commensal organisms prevent pathogenic colonization by competing for attachment sites and nutrients, and also through the production and secretion of antimicrobials. Those mechanisms are relevant for reducing the level of lipopolysaccharides, peptidoglycans, bacterial CpG-DNA motifs, and superantigens, which can all be detrimental to the host. The indigenous microbiota is also essential for development of the immune system. Short-chain fatty acids, such as butyrate, may exert potent immunomodulatory effects by suppressing nuclear factor-kB activation and/or by acting on G-coupled receptors, as demonstrated with acetate. These concepts illustrate a dynamic relationship between the immune system and the microbiota. The intestinal mucosa averts threats by signaling to the innate immune system through pattern recognition receptors, such as toll-like receptors. Pattern recognition receptors recognize and bind to specific microbial macromolecules, referred to as microbial-associated molecular patterns. These include lipopolysaccharide, flagellin, peptidoglycan, and N-formylated peptides.

Structural and histological function

The microbiota ensures intestinal structure and function. Firstly, the mucus layer, which reflects the balance between mucus secretion and bacterial degradation, constitutes an obstacle to the uptake of antigens and proinflammatory molecules. Secondly, some bacterial communities may strengthen the barrier at the level of the tight junctions, ie, protein clusters that form a barrier between the lumen and the lamina propria. Moreover, the gut microbiota is involved in cell and tissue development. Butyrate regulates cell growth and differentiation, inhibiting transformed cell growth while encouraging reversion of cells from a neoplastic to a non-neoplastic phenotype. Most of the structural and morphological development of the gut contributes to and manages the gut bacterial system.

Dysbiosis is a state in which the microbiota becomes altered as a consequence of an alteration in the composition of the microbiota, a change in bacterial metabolic activity, and/or a shift in local distribution of communities. Many factors can alter the gastrointestinal ecosystem, including antibiotics, psychological and physical stresses, radiation, altered peristalsis, and dietary changes. At present, the focus is on the description of dysbiosis in a plethora of human disorders.

  • Autoimmune disease

Autoimmune diseases occur when the body’s immune system attacks and destroys healthy cells and tissues, as is the case in type 1 diabetes mellitus, celiac disease, inflammatory bowel diseases, and allergic asthma. Most often, the immune response is initiated by unknown factors. Alteration of the gut microbiota as a result of modern lifestyles is an attractive hypothesis to explain the rise in prevalence of celiac disease, type 1 diabetes mellitus, and inflammatory bowel diseases.

Celiac disease is an inflammatory disease of the small intestine that is triggered and maintained by the storage proteins of wheat, barley, and rye. Studies have investigated the composition of the microbiota in patients with celiac disease. Fecal samples from patients with celiac disease had reduced the proportions of Bifidobacterium, Clostridium histolyticum, Clostridium lituseburense, Faecalibacterium prausnitzii, and increased proportions of Bacteroides/Prevotella.

Type 1 diabetes mellitus, characterized by insulin deficiency resulting from immune-mediated destruction of pancreatic β cells, is thought to be triggered by environmental factors in genetically susceptible individuals. Given that antibiotics prevented type 1 diabetes mellitus in biobreeding diabetes-prone rats and in nonobese diabetic mice, alteration of the microbiota has been associated with progression of type 1 diabetes mellitus. Evidence shows that bacterial communities from biobreeding diabetes-prone and diabetes-resistant rats differ, marked by a higher abundance of Lactobacillus and Bifidobacterium in diabetes-resistant rats.

Inflammatory bowel diseases include ulcerative colitis and Crohn’s disease. Crohn’s disease is characterized by patchy and transmural inflammation that may affect any part of the gastrointestinal tract, while ulcerative colitis is a chronic episodic inflammatory condition that involves only the large bowel. There is evidence that species belonging to the normal gut microbiota are involved in the etiology and/or maintenance of inflammatory processes. Reduced microbial diversity, increased Bacteroidetes and Enterobacteriaceae, and decreased Firmicutes were all observed in patients with inflammatory bowel diseases.

  • Irritable bowel syndrome

Irritable bowel syndrome is characterized by abdominal pain, bloating, and changes in bowel habit, in the absence of any overt mucosal abnormality. Observations have directed attention towards the gut microbiota, identifying a postinfectious variant of the syndrome, ie, evidence that antibiotics induced a reduction in the microbiota which may be a risk factor, and the proposal that some patients may have bacterial overgrowth in the small bowel.49 Studies have demonstrated that patients with irritable bowel syndrome have fewer intestinal Bifidobacteria, Collinsella aerofaciens, Coprococcus eutactus, and Clostridium cocleatum, and an increase in Veillonella and Enterobacteriaeae.

  • Bacterial infection

It is well established that a disruption in the commensal microbiota increases susceptibility to enteric infections. Antibiotic-treated mice are particularly useful for studying colitis induced by Salmonella spp, Shigella spp, and E. coli infections. In addition, in murine Citrobacter rodentium infections, pathogen colonization is associated with a reduced total density and a relative increase in γ-Proteobacteria. Furthermore, elderly patients with C. difficile-associated diarrhea demonstrate reduced numbers of Bacteroides, Prevotella, and Bifidobacteria, and a greater diversity of facultative species, ie, Lactobacilli and Clostridia. The evidence suggests an association between disruption of the gut microbiota and bacterial infections, further accentuating the dysbiosis.

Altered composition of the human gastrointestinal ecosystem can lead to physiological changes in the intestinal environment, disrupting the functions of the microbiota and having serious consequences for human health.

  1. Altered gut microbiota may trigger serious immune deregulation
  2. Specific gut dysbiosis can engender metabolic endotoxemia
  3. Bacterial infection might be promoted by gut dysbiosis
  4. Abnormal bacterial metabolite levels may trigger cancer

An altered microbial balance in the gut can lead to A) an increase in immune mediated disorders and B) chronic low-grade inflammation.

A mechanism based on the triggering of the host’s immune defenses was elucidated using models of C. rodentium (mimicking diarrheal pathogen associated inflammation), Campylobacter jejuni infection, and chemically and genetically induced models of intestinal inflammation are used for altered microbiota investigations. An overgrowth of Enterobacteriaceae was observed in all models, indicating that inflammation induced microbiota changes support colonization by aerotolerant bacteria.

Many etiological bacterial mechanisms have been hypothesized to promote carcinogenesis. Amongst those, hydrogen sulfide, a product of bacterial sulfate reduction, appears to be linked to the incidence of chronic disorders, such as ulcerative colitis and colorectal cancer. Because DNA strand breaks are associated with mutation and promotion of carcinogenesis, bacterial hydrogen sulfide may be responsible for the induction of mutations in the development of sporadic colorectal cancer.

  • Gut microbiota alters energy and lipid metabolism

Reared mice have more body and gonadal fat than germ-free mice, despite reduced chow consumption. The increase in fat was accompanied with increased fasting glucose and insulin levels and an insulin-resistant state.

– Prebiotics

Prebiotics are “nondigestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or the activity of one or a limited number of bacteria in the colon, and thus improves host health”. A prebiotic should not be hydrolyzed by human intestinal enzymes, but selectively fermented by bacteria, benefiting the host.

The relationship between health and the gastrointestinal system is established. Due to the inherent plasticity of microbiota, one can consider exploiting it to develop biotherapeutics.

Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist

Sama I. Sayin, Annika Wahlstrom, Jenny Felin, Sirkku Jantti, et al.
Cell Metabolism  Feb 5, 2013; 17, 225–235
http://dx.doi.org/10.1016/j.cmet.2013.01.003

Bile acids are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. Bile acid synthesis is under negative feedback control through activation of the nuclear receptor farnesoid X receptor (FXR) in the ileum and liver. Here we profiled the bile acid composition throughout the enterohepatic system in germfree (GF) and conventionally raised (CONV-R) mice.

We confirmed a dramatic reduction in muricholic acid, but not cholic acid, levels in CONV-R mice. Rederivation of Fxr-deficient mice as GF demonstrated that the gut microbiota regulated expression of fibroblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase (CYP7A1) in the liver by FXR-dependent mechanisms. Importantly, we identified tauroconjugated β- and α-muricholic acids as FXR antagonists. These studies suggest that the gut microbiota not only regulates secondary bile acid metabolism but also inhibits bile acid synthesis in the liver by alleviating FXR inhibition in the ileum.

 

Diet rapidly and reproducibly alters the human gut microbiome.

Lawrence A David, Corinne F Maurice, Rachel N Carmody, et al.
Nature 12/2013; http://dx.doi.org:/10.1038/nature12820

Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles

Honing in on enteric fever

Lyle R Mckinnon And Quarraisha Abdool Karim
eLife 2014;3:e03545. http://dx.doi.org:/10.7554/eLife.03545

Enteric fever, also known as typhoid, is a disease that affects about 22 million people and causes about 200,000 deaths every year, according to conservative estimates. Enteric fever is spread by bacteria belonging to the Salmonella genus, with two sub-species—Salmonella Typhi and Salmonella Paratyphi A—being responsible for most cases of the disease. And although the number of cases of enteric fever has fallen significantly over recent decades, there is a clear need for a diagnostic test for Salmonella that is rapid, affordable and accurate. Moreover, it is important to be able to distinguish between enteric fever caused by Salmonella Typhi and enteric fever caused by Salmonella Paratyphi A in order to ensure that the correct drugs are prescribed and to combat the development of antibiotic resistance.

The application of metabolomics is relatively new in infectious diseases research compared to the application of genomics and proteomics. Despite this, screening the metabolome in blood plasma has identified useful prognostic profiles of several diseases, including sepsis.  Using a combination of gas chromatography and mass spectrometry, Näsström et al. identified 695 distinct peaks that were associated with different metabolites: from these they selected six peaks that had significantly different heights in the three groups of patients. This meant that they were able to tell if the patient had S. Typhi, S. Paratyphi A, or neither. That this mass spectrometric analysis was able to distinguish two Salmonella groups that share many similarities is remarkable. Moreover, in addition to its diagnostic potential, this new approach might also provide insights into the antigenic and physiological differences between the two strains.

http://emedicine.medscape.com/article/186458-overview

Clostridium difficile colitis results from a disturbance of the normal bacterial flora of the colon, colonization by C difficile, and the release of toxins that cause mucosal inflammation and damage. Antibiotic therapy is the key factor that alters the colonic flora. C difficile infection (CDI) occurs primarily in hospitalized patients.

Essential update: CDC promotes improving inpatient antibiotic prescribing to reduce drug resistance and increase patient safety In a CDC analysis of data regarding antibiotic prescribing in hospitalized patients, Fridkin and colleagues estimated that a 30% reduction in use of broad-spectrum antibiotics would result in a 26% reduction in C difficile infections (CDIs).[1, 2] In addition, improvement in physician antibiotic prescribing habits from overuse and incorrect use would also help to reduce antibiotic resistance.

The authors recommend the following[2] :

Promptly initiate antibiotics for a presumed infection, but first obtain any recommended cultures.

Document and specify the drug’s indication, dose, and expected duration of use in the patient’s medical chart.

Reassess the patient within 48 hours based on test results and patient examination; adjust the antibiotic regimen (dose, duration) and/or the agent, or end the antibiotic treatment, as needed.

Signs and symptoms

Symptoms of C difficile colitis often include the following:

Mild to moderate watery diarrhea that is rarely bloody

Cramping abdominal pain

Anorexia

Malaise

Physical examination may reveal the following in patients with the disorder:

Fever: Especially in more severe cases

Dehydration

Lower abdominal tenderness

Rebound tenderness: Raises the possibility of colonic perforation and peritonitis

Regulatory T-cells in autoimmune diseases: Challenges, controversies and—yet—unanswered questions

Charlotte R. Grant, Rodrigo Liberal, Giorgina Mieli-Vergani, et al.
Autoimmunity Reviews 14 (2015) 105–116
http://dx.doi.org/10.1016/j.autrev.2014.10.012

Regulatory T cells (Tregs) are central to the maintenance of self-tolerance and tissue homeostasis. Markers commonly used to define human Tregs in the research setting include high expression of CD25, FOXP3 positivity and low expression/negativity for CD127. Many other markers have been proposed, but none unequivocally identifies bona fide Tregs. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways and the production of anti-inflammatory cytokines. Treg impairment has been reported in a number of human autoimmune conditions and includes Treg numerical and functional defects and conversion into effector cells in response to inflammation. In addition to intrinsic Treg impairment, resistance of effector T cells to Treg control has been described. Discrepancies in the literature are common, reflecting differences in the choice of study participants and the technical challenges associated with investigating this cell population. Studies differ in terms of the methodology used to define and isolate putative regulatory cells and to assess their suppressive function. In this review we outline studies describing Treg frequency and suppressive function in systemic and organ specific autoimmune diseases, with a specific focus on the challenges faced when investigating Tregs in these conditions.
Role of dendritic cells in the initiation, progress and modulation of systemic autoimmune diseases

Juan Pablo Mackern-Oberti, Carolina Llanos, Fabián Vega, et al.
Autoimmunity Reviews 14 (2015) 127–139
http://dx.doi.org/10.1016/j.autrev.2014.10.010

Dendritic cells (DCs) play a key role in the activation of the immune response against pathogens, as well as in the modulation of peripheral tolerance to self-antigens (Ags). Furthermore, an imbalance in the activating/inhibitory receptors expressed on the surface of DCs has been linked to increased susceptibility to develop autoimmune diseases underscoring their immunogenicity potential. It has been described that modulation of activating or inhibitory molecules expressed by DCs, such as CD86, TLRs, PDL-1 and FcγRs, can define the immunogenic phenotype. On the other hand, T cell tolerance can be achieved by tolerogenic DCs, which have the capacity of blocking undesired autoimmune responses in several experimental models, mainly by inducing T cell anergy, expansion of regulatory T cells and limiting B cell responses. Due to the lack of specific therapies to treat autoimmune disorders and the tolerogenic capacity of DCs shown in experimental autoimmune disease models, autologous tol-DCs are a potential therapeutic strategy for fine-tuning the immune system and reestablishing tolerance in human autoimmune diseases. New advances in the role of DCs in systemic lupus erythematosus (SLE) pathogenesis and the identification of pathogenic self-Ags may favor the development of novel tol-DC based therapies with amajor clinical impact. In this review, we discuss recent data relative to the role of DCs in systemic autoimmune pathogenesis and their use as a therapy to restore tolerance.

T cell subsets and their signature cytokines in autoimmune and inflammatory diseases

Itay Raphael, Saisha Nalawade, Todd N. Eagar, Thomas G. Forsthuber
Cytokine xxx (2014) xxx–xxx
http://dx.doi.org/10.1016/j.cyto.2014.09.011

CD4+ T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.

Irritable Bowel Syndrome and Gluten Sensitivity Without Celiac Disease: Separating the Wheat from the Chaff

Biesiekierski JR, Newnham ED, Irving PM, et al. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo controlled trial. Am J Gastroenterol 2011;106:508–514.

Courtney C. Ferch, William D. Chey
Gastroenterology 2012; 142:664–673

Over the past several years, there has been increasing discussion concerning the topic of gluten sensitivity as a cause of irritable bowel syndrome (IBS) symptoms in patients for whom celiac disease has been excluded. Biesiekierski et al performed a double-blind, placebo-controlled, dietary rechallenge trial to better understand the role of gluten ingestion in the development of gastrointestinal (GI) and non-GI symptoms in patients diagnosed with IBS. This study included a sample of 34 patients diagnosed with IBS by the Rome III criteria who had experienced symptom improvement with a gluten-free diet for 6 weeks before study enrollment. Celiac disease had been excluded in all study participants by either a negative HLADQ2/HLA-DQ8 haplotype or a normal duodenal biopsy. Patients with potentially important confounders such as cirrhosis, inflammatory bowel disease, nonsteroidal anti-inflammatory drug ingestion, or excessive alcohol use were excluded from the study.

Upon completion of the study period, it was found that a significantly greater proportion of patients in the gluten group compared with the gluten-free group answered “no” to the primary outcome question (68% vs 40%; P < .001). Compared with the gluten group, those who remained gluten free also reported significant improvements in pain (P < .016), bloating (P < .031), satisfaction with stool consistency (P <.024), and tiredness (P < .001), but showed no significant differences in wind (P < .053) or nausea (P < .69). The results of celiac antibodies at baseline and after the dietary intervention were similar. Intestinal permeability as measured by urine lactulose-to-rhamnose ratio was also unchanged by the dietary intervention. Fecal lactoferrin levels were persistently undetectable in all but 1 patient during the treatment period. High-sensitivity C-reactive protein levels remained normal before and after the dietary intervention. There were no differences in the likelihood of symptomatic response in those with and without HLA-DQ2 and HLA-DQ8 alleles, arguing against undiagnosed celiac disease as a cause for symptom response to a gluten-free diet.

The authors felt that these data support the existence of non–celiac-associated gluten sensitivity. They concluded that gluten is indeed associated with overall IBS symptoms, bloating, dissatisfaction with stool consistency, abdominal pain, and fatigue in a subset of patients.

A recent meta-analyses of studies from around the world found that patients with IBS symptoms were significantly more likely to have celiac disease than controls. (Arch Intern Med 2009;169:65165– 65168). As such, the American College of Gastroenterology Task Force has recommended that routine serologic screening for celiac sprue be pursued in patients with diarrhea-predominant IBS and IBS with a mixed bowel pattern (grade 1B recommendation; Am J Gastroenterol 2009;104[Suppl 1]:S1–S35). Although much of the recent discussion around the potential role of food in IBS symptoms has focused on celiac disease, it is important to note that data from the available US studies have not shown a significantly greater risk for celiac disease among patients with IBS symptoms and no warning signs (Am J Gastroenterol 2008;103[Suppl 1]:S472; Gastroenterology 2011;141:1187–1193). A recent prospective study from the United States reported a 0.4% prevalence of biopsy-proven celiac disease in 492 patients with IBS symptoms and 458 asymptomatic persons undergoing colonoscopy for colorectal cancer screening or surveillance (Gastroenterology 2011;141:1187–1193). Although not significantly different, it is interesting that 7.3% of the IBS group and 4.8% of controls had 1 abnormal celiac serology test result (adjusted odds ratio, 1.49; 95% confidence interval, 0.76 – 0.90; P =.25). Thus, this study suggests that the likelihood of an abnormal immunologic response to gluten is orders of magnitude more common than biopsy-proven celiac disease in IBS patients and controls from the United States. It has been suggested that ~20% of the general population reports symptoms in association with the ingestion of gluten. Such patients have been said to suffer from “gluten sensitivity.”

It is also interesting to consider the potential effects of food on gut immune function beyond celiac disease. There is emerging evidence to suggest that immune activation and/or low-grade inflammation may play a role in the pathogenesis of IBS (GI Clin North Am 2011;40:65–85). The data are currently conflicting, but alternations in the number of mast cells in close proximity to afferent neurons, mucosal lymphocytes, and certain pro-inflammatory or anti-inflammatory cytokines have been identified in a subset of patients with IBS. It is not difficult to envision that alterations in the gut immune system could occur as a consequence of an acute GI infection in a genetically susceptible individual. However, it is interesting to speculate that other environmental factors, such as an altered gut microbiota, physical or emotional abuse, stress, or food, might result in abnormal gut immune function translating clinically into IBS symptoms.

A better understanding of how differences in gut immune function, the microbiome, and fermentation might influence the development of IBS symptoms in association with the ingestion of gluten are all deserving of further investigation. The study by Biesiekierski et al is the first randomized, controlled trial to suggest that nonceliac IBS patients might benefit from a gluten-free diet. Although these results are certainly intriguing and hypothesis generating, they require validation in larger, randomized, controlled trials in other parts of the world. What is clear and important for providers to understand is that gluten sensitivity is here to stay and significantly more likely for them to encounter in day-to-day practice than celiac disease.

No Effects of Gluten in Patients With Self-Reported Non-Celiac Gluten Sensitivity After Dietary Reduction of Fermentable, Poorly Absorbed, Short-Chain Carbohydrates

Jessica R. Biesiekierski, Simone L. Peters, Evan D. Newnham, et al.
Gastroenterology 2013;145:320–328
http://dx.doi.org/10.1053/j.gastro.2013.04.051

Background & Aims: Patients with non-celiac gluten sensitivity (NCGS) do not have celiac disease but their symptoms improve when they are placed on gluten-free diets. We investigated the specific effects of gluten after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates (fermentable, oligo-, di-, monosaccharides, and polyols [FODMAPs]) in subjects believed to have NCGS. Methods: We performed a double-blind crossover trial of 37 subjects (aged 2461 y, 6 men) with NCGS and irritable bowel syndrome (based on Rome III criteria), but not celiac disease. Participants were randomly assigned to groups given a 2-week diet of reduced FODMAPs, and were then placed on high-gluten (16 g gluten/d), low-gluten (2 g gluten/d and 14 g whey protein/d), or control (16 g whey protein/d) diets for 1 week, followed by a washout period of at least 2 weeks. We assessed serum and fecal markers of intestinal inflammation/injury and immune activation, and indices of fatigue. Twenty-two participants then crossed over to groups given gluten (16 g/d), whey (16 g/d), or control (no additional protein) diets for 3 days. Symptoms were evaluated by visual analogue scales. Results: In all participants, gastrointestinal symptoms consistently and significantly improved during reduced FODMAP intake, but significantly worsened to a similar degree when their diets included gluten or whey protein. Gluten-specific effects were observed in only 8% of participants. There were no diet-specific changes in any biomarker. During the 3-day rechallenge, participants’ symptoms increased by similar levels among groups. Gluten-specific gastrointestinal effects were not reproduced. An order effect was observed. Conclusions: In a placebo controlled, cross-over rechallenge study, we found no evidence of specific or dose-dependent effects of gluten in patients with NCGS placed diets low in FODMAPs. www.anzctr.org.au.ACTRN12610000524099

Infection, inflammation, and the irritable bowel syndrome

Spiller, K. Garsed
Digestive and Liver Disease 41 (2009) 844–849
http://dx.doi.org:/10.1016/j.dld.2009.07.007

Infectious diarrhea is one of the commonest afflictions of mankind. Worldwide most of the burden, about 1 billion cases a year, is seen in children <5 years old, the vast majority in the developing world in communities where access to clean water and adequate sanitation is restricted. Here a child can expect to have 6–7 episodes per year compared to 1–2 in the developed world. Following recovery from an episode of gastroenteritis (GE) the vast majority of healthy adults and children develop some degree of immunity to the organism responsible and return to normal functioning. However 7–31% develop post-infectious irritable bowel syndrome (PI-IBS). The proportion of unselected IBS that is post-infectious varies from 6 to 17% in the USA and Europe but whether this differs in the developing world is unknown, though previous enteric infection is a known risk factor for IBS in Southern China.

This review will compare the epidemiology of infectious diarrhea in the developing and developed world and the link between mucosal inflammation and the development of IBS symptoms. The available evidence suggests that the acquisition of immunity in early childhood reduces the severity of subsequent gastroenteritis in adulthood. Since these are known risk factor for developing PI-IBS we hypothesize that this may underlie some of the regional differences in the incidence of both infection and IBS.

Gastrointestinal infection is ubiquitous worldwide though the pattern of infection varies widely. Poor hygiene and lack of piped water is associated with a high incidence of childhood infection, both viral and bacterial. However in developed countries bacterial infection is commoner in young adults. Studies of bacterial infections in developed countries suggest 75% of adults fully recover, however around 25% have long lasting changes in bowel habit and a smaller number develop the irritable bowel syndrome (IBS). Whether the incidence is similar in developing countries is unknown. Post-infective IBS (PI-IBS) shares many features with unselected IBS but by having a defined onset allows better definition of risk factors. These are in order of importance: severity of initial illness, smoking, female gender and adverse psychological factors. Symptoms may last many years for reasons which are unclear. They are likely to include genetic factors controlling the immune response, alterations in serotonin signaling, low grade mucosal inflammation maintained by psychological stressors and alterations in gut microbiota. As yet there are no proven specific treatments, though 5HT3 receptor antagonists, anti-inflammatory agents and probiotics are all logical treatments which should be examined in large well-designed randomized placebo controlled trials.

There are three key questions. Firstly is the incidence of IBS less in the developing world, secondly is the incidence increasing with the adoption of a western urban life style and finally is the disease itself different? The answer to all three is probably yes though interpretation of cross-cultural surveys is fraught with problems relating to the imprecise translation of questions into different cultures. Initial reports from small uncontrolled studies suggested that IBS was very uncommon and predominantly affected a subpopulation who pursued a “western life style”. More recent and robust work gives a range of values for prevalence from very low in Iran and India with just 5.8 and 4.2% respectively, to values in developed Asian countries that are generally lower but not dissimilar to those seen in the west. The key factors associated with rapid westernization that underlie this increase in numbers is unclear but could include the effect of improved hygiene, increased overcrowding, stress and changes in diet. The best evidence comes from studies in which the same populations have been studied over a number of years as has been done in Singapore where after a decade of steady industrial growth the prevalence of IBS has risen from 2.3% to 8.6%.

This raises is a most important question – why should these differences occur? It is clear that major differences in the epidemiology of gut infection exist between the west and the developing world. This is illustrated by Campylobacter jejuni enteritis, which causes a shorter, less severe illness in childhood than in adulthood, which is when most Europeans and North Americans are infected. The greater degree of inflammation which adults experience may increase the risk of developing subsequent PI-IBS which might partly account for the higher prevalence of IBS in the westernized nations.

Worldwide the average number of episodes of infection annually per person is 3. A poorly nourished child living in cramped conditions without access to sewerage and running water will have 8 or more infections in the first year of life, most frequently with enteric bacteria and parasites whereas a child in better sanitary conditions would have less infections and these would be more likely to be viral in origin. Even in England an estimated 1 in 5 people per year have an episode of diarrhea in the community adding up to 9.4 million cases in total a year, largely unreported since only 1 in 30 present to their doctor. It seems here that viral infections predominate in the very young, with bacterial infection particularly Campylobacter spp. being most common in adolescence and early adulthood. PCR analysis of stool in the same study showed that Norovirus and Rotavirus were the commonest pathogens detected across all age groups. Campylobacter spp. were most commonly found in age group 30–39 (16% compared to 6.7% of those aged 1–4).

Infectious diarrhea results from either an increase in fluid and electrolyte secretion, predominantly in the small intestine, or a decrease in absorption which can involve both the small and large bowel. During a diarrheal illness these two mechanisms frequently co-exist. Enterotoxins from Vibrio cholerae or enterotoxigenic E. coli induce profuse secretion while decreased intestinal absorption can be induced by mucosal injury caused by enteroinvasive organisms (e.g., Salmonella, Shigella, and Yersinia spp.). These invasive infections injure cells and excite an immune response and activate enteric nerves and mast cells resulting in an acute inflammatory infiltrate with the release of pro-inflammatory mediators and stimulation of secretion. Clinically the patient will have an acutely inflamed mucosa with ulceration and bleeding.

Campylobacter jejuni produces a range of toxins including cytolethal distending toxin, that first produces a secretory diarrhea in the small intestine in the early part of the illness after which there is invasion of the distal ileum and colon to produce an inflammatory ileocolitis, which can extend all the way to the rectum. The disease is less severe in developing countries than in developed countries, with watery stool, fever, abdominal pain, vomiting and dehydration predominating as opposed to the severe abdominal pain, weight loss, fever and bloody stool that is seen more frequently in infections in the west. Infants usually have milder disease with less fever and pain, which in some cases is due to immunity acquired during previous infection. The reasons for these differences between the developed and developing world are unclear.

The composition of the resident intestinal microbiota is highly variable between individuals but relatively stable for each individual, though IBS patients showamore unstable microbiota. This instability may be due to antibiotic therapy or alterations in diet, both of which are commoner in IBS. Patients given antibiotics are 4 times more likely than untreated controls to report bowel symptoms 4 months later, and antibiotic use is a risk factor for developing IBS with an adjusted OR of 3.70 (1.80–7.60). Antibiotic use increases the incidence of post-infective functional diseases following both Salmonella enteritidis and travellers’ diarrhea, in whom antibiotic treatment gave a relative risk of developing PI-IBS of 4.1 (1.1–15.3) compared with those not receiving treatment.

During acute infectious diarrhea there is a decrease in anaerobes. Mice infected with Citrobacter rodentium or C. jejuni or subjected to a chemically induced colitis show significant reduction in the total numbers of microbiota, which is mainly due to activation of the host immune response and only to a much lesser degree by bacterial factors. This loss of anaerobes is associated with a depletion in short chain fatty acids and an increase in the pH of the stool allowing overgrowth of other organisms which may contribute to disturbed bowel function.

The study of patients with PI-IBS has yielded many new insights for several reasons. Firstly the patients are a more homogenous group than unselected IBS, most having diarrhea with fewer psychological problems than unselected IBS. Secondly the direction of causation is easier to ascertain as they represent a “natural experiment”, with subjects “randomized” to receive an infection, thus producing an unbiased study group. Finally onset of symptoms on a clearly defined date in a previously well patient provides an opportunity to examine the prior host and bacterial factors that predispose to developing IBS.

The severity of injury is mediated not only by factors related to the infecting organism but also by the host’s own immune response which develops in early life and declines in old age. However little is known about the incidence of PI-IBS in the pediatric population and whether it is different to the condition seen in adults. Functional bowel disorders are common in children, with IBS affecting 14% of high school and 6% of middle school patients in a US community study and are classified according to the main complaints made by parents or children rather than in an organ-specific way. This makes comparisons with the adult population difficult however a single recent study reports a very high incidence of postinfectious symptoms in 88 children with positive bacterial stool culture results presenting to a single institution. These had a 36% prevalence of functional gastrointestinal disorders compared to 11% in age- and sex-matched healthy controls. This is much higher than most adult studies with the exception of the Walkerton outbreak. Unlike adults, female gender is not a risk factor for PI-IBS in children suggesting the gender effect depends on hormonal and/or psychosocial factors rather than being genetic.

Despite uncertainty about PI-IBS in childhood we do know that age in adulthood does have an effect on the likelihood of developing PI-IBS. A meta-analysis indicates that patients who develop PI-IBS are slightly younger and one study showed increasing age was protective with age >60 years giving a relative risk of PI-IBS of 0.36 (0.1–0.09) though not all studies have shown this.

Why should this inflammation persist in some and not others? As we have already discussed adverse life events, anxiety and epression may play a part however less psychological morbidity is seen in PI-IBS than IBS indicating the presence of other factors which predispose to an exaggerated or prolonged inflammatory response.  These factors might be genetic since a larger proportion of IBS patients have the high producing heterozygous TNF-α G/A polymorphism at position-308 than controls. Some PI-IBS patients were contained in this study but too few to examine as a subgroup. This study did not confirm an earlier finding of a decrease in the presumed immunoregulatory high IL-10 producing phenotype in IBS.

Although it is likely from animal work that infection does alter the gut microbiota there is no data on this in PI-IBS. There is some indirect evidence that altered microbiota may be important in IBS since fecal serine protease activity, which may be of bacterial origin, is increased in D-IBS. This is of great interest because these proteases can increase visceral sensitivity in rats, acting via the protease activated receptor-2 (PAR-2) group of receptors found in the mucosa and enteric nerves.

A recent small randomized placebo controlled trial of Mesalazine suggested this could reduce mast cell numbers and improve symptoms, a finding which needs repeating with larger numbers. Given the increase in 5HT availability and the effectiveness of 5HT3 receptor antagonists in animal studies and in unselected IBS-D patients a trial of a 5HT3 receptor antagonist would also be logical.

Gut motility and enteroendocrine secretion

Tongzhi Wu, Christopher K Rayner, Richard L Young and Michael Horowitz
Current Opinion in Pharmacology 2013, 13:928–934
http://dx.doi.org/10.1016/j.coph.2013.09.002
The motility of the gastrointestinal (GI) tract is modulated by complex neural and hormonal networks; the latter include gut peptides released from enteroendocrine cells during both the interdigestive and postprandial periods. Conversely, it is increasingly recognised that GI motility is an important determinant of gut hormone secretion, in that the transit of luminal contents influences the degree of nutrient stimulation of enteroendocrine cells in different gut regions, as well as the overall length of gut exposed to nutrient. Of particular interest is the relationship between gallbladder emptying and enteroendocrine secretion. The inter-relationships between GI motility and enteroendocrine secretion are central to blood glucose homeostasis, where an understanding is fundamental to the development of novel strategies for the management of diabetes mellitus.

Enteroendocrine cells account for release of more than 30 known peptides, including motilin and ghrelin during the interdigestive period, and cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) after meals. The latter are key mediators of the shift from an interdigestive to a postprandial GI motor pattern. Conversely, the delivery of luminal contents to be sensed by enteroendocrine cells in various gut regions is dependent on GI motor activity.

During the interdigestive period, both the stomach and small intestine undergo a cyclical motor pattern — the ‘migrating motor complex (MMC)’ — consisting of a quiescent phase (~40 min, phase I), a phase of irregular contraction (~50 min, phase II), and a period of maximum contraction (5–10 min, phase III). The MMC migrates from the stomach (or proximal small intestine) to the terminal ileum, and acts to sweep small intestinal contents (including bile, digestive juice and indigestible debris) towards the large intestine. Phase III of the MMC is also associated with spontaneous gallbladder emptying.

The cyclical occurrence of MMC activity during the interdigestive state closely parallels the secretion of motilin, and to a lesser degree, ghrelin. Increases in plasma motilin concentrations follow immediately each episode of spontaneous gallbladder emptying, while after phase III there is a decrease in motilin. The latter might be associated with the relative absence of luminal content due to the ‘house-keeping’ effect of phase III. Patients with gallstones have defective gallbladder emptying and lack the cyclical profile of motilin concentrations and exhibit a reduced frequency of phase III activity.

GI motility has a major impact on enteroendocrine secretion; conversely, enteroendocrine hormones play a pivotal role in the regulation of interdigestive and postprandial GI motility. The significance of these interrelationships is increasingly recognized as being central to the regulation of postprandial glycemia. Slowing gastric emptying and intestinal transit, accelerating gallbladder emptying and intestinal exposure to bile acids, and stimulating postprandial enteroendocrine hormones, all represent novel therapeutic approaches for the management of type 2 diabetes.

Enteroendocrine cell types revisited

Maja S Engelstoft, Kristoffer L Egerod, Mari L Lund and Thue W Schwartz
Current Opinion in Pharmacology 2013, 13:912–921
http://dx.doi.org/10.1016/j.coph.2013.09.018

The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa.

Go with the flow — membrane transport in the gut

Editorial overview, David T Thwaites
Current Opinion in Pharmacology 2013, 13:843–846
http://dx.doi.org/10.1016/j.coph.2013.09.019

The primary function of the gastrointestinal tract is the assimilation of nutrients from diet. The final stages of digestion and almost all absorption take place in the small intestine and, to a lesser extent, the large intestine. The intestinal epithelium is the single layer of polarized, differentiated cells that lines the wall of the intestine. It sits at the interface between the outside world and the internal environment of the human body. It is across this epithelial barrier that all essential nutrients, vitamins, electrolytes and fluid are absorbed. Many toxins and waste products can be secreted directly across the intestinal epithelium or excreted through the biliary route. The gastrointestinal tract is of great interest to the pharmacologist, and the pharmaceutical industry beyond, because most patients, if given the opportunity, would choose to take medication orally rather than have it delivered by any other route. In addition, many drugs and metabolites are lost from the body by active secretion from the intestine and liver. Thus, the intestinal epithelium is a major target for clinical intervention to improve bioavailability and modulate gut function.

To allow net transport in either the absorptive or secretory direction, the polarised cells in the small intestine (enterocytes), large intestine (colono-cytes) and liver (hepatocytes) express a distinct set of membrane transport proteins in their apical and basolateral membrane domains. Each epithelial cell type mediates net solute and ion movement through the coordinated activity of an array of membrane transport proteins (primary active transporters or pumps, secondary active cotransporters or antiporters, and channels).

Chloride channel-targeted therapy for secretory diarrheas

Jay R Thiagarajah and AS Verkman
Current Opinion in Pharmacology 2013, 13:888–894
http://dx.doi.org/10.1016/j.coph.2013.08.005

Secretory diarrheas caused by bacterial and viral enterotoxins remain a significant cause of morbidity and mortality. Enterocyte Cl channels represent an attractive class of targets for diarrhea therapy, as they are the final, rate-limiting step in enterotoxin-induced fluid secretion in the intestine. Activation of cyclic nucleotide and/or Ca2+ signaling pathways in secretory diarrheas increases the conductance of Cl channels at the enterocyte luminal membrane, which include the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca2+-activated Cl channels (CaCCs). High-throughput screens have yielded several chemical classes of small molecule CFTR and CaCC inhibitors that show efficacy in animal models of diarrheas. Natural-product diarrhea remedies with Cl channel inhibition activity have also been identified, with one product recently receiving FDA approval for HIV-associated diarrhea.

The intestinal epithelium consists of villi and crypts, with absorption occurring mainly in villi and secretion in crypts. Fluid absorption in the small intestine is driven by the luminal Na+/H+ exchanger (NHE3), Na+-glucose cotransporter (SGLT1), and Cl/HCO3 exchanger (DRA)(Figure 1, not shown). As in all epithelia the electrochemical driving force is established by a basolateral Na+K+-ATPase pump. The pro-absorptive solute transporters are constitutively active, though they can be modulated by second-messengers including cAMP and Ca2+. NHE3, SGLT1 and DRA are thus potential membrane transporter targets to increase intestinal fluid absorption. In the colon, fluid absorption is also facilitated by the epithelial Na+ channel (ENaC) and short-chain fatty acid (scfa) transporters (SMCT1).

Intestinal signal pathways controlling fluid secretion. Not shown. (a) Signaling pathways in CFTR activation by bacterial enterotoxins. Cholera toxin and heat stable enterotoxin (STa) bind to membrane receptors (GM1 —ganglioside receptor, guanylin receptor) causing increases in cyclic nucleotides (cAMP, cGMP) and neurotransmitters, resulting in CFTR activation. EC — enterochromaffin cells, 5-HT — 5-hydroxytryptamine, VIP — vasoactive intestinal peptide, ENS — enteric nervous system. (b) Signaling pathways in CaCC activation by rotavirus. Rotavirus releases NSP4 (non-structural protein 4), which causes elevation of cytoplasmic Ca2+ either: directly via binding to a membrane receptor (integrin α1β2); via neuropeptide galanin; or through activation of enteric nerves. Gal1-R — galanin 1 receptor. (c) Cross-talk between Ca2+ and cAMP pathways in intestinal epithelial cells. Epac — exchange protein directly activated by cAMP, PDE — phosphodiesterase, AC —adenylate cyclase, CaSR — calcium sensing receptor.

Natural-product ClS channel inhibitors Natural products have been identified with antidiarrheal efficacy in humans and a putative mechanism of action involving Cl channel inhibition. Crofelemer, a heterogeneous proanthocyanidin oligomer extracted from the bark latex of South American tree Croton lechleri, was approved recently for HIV-associated diarrhea following clinical trials showing efficacy in reducing the number and severity of diarrhea episodes. Whether CaCC inhibition by crofelemer can explain its efficacy in HIV-associated diarrhea is unclear.

Following a natural product screen that identified tannic acid as a general CaCC inhibitor, we found that red wines containing polyphenolic gallotannins fully inhibited intestinal CaCC without effect on CFTR. In recent follow-up work, we generated an alcohol-free red wine extract with potent CaCC inhibition activity, and showed its efficacy in a neonatal mouse model of rotaviral diarrhea (unpublished data). The wine extract inhibited intestinal Ca2+-activated Cl current and fluid secretion without affecting rotaviral infection of intestinal epithelial cells. CaCC inhibition may account for anecdotal reports of antidiarrheal action of red wines. Motivated by the possibility that known herbal antidiarrheal remedies might act by Cl channel inhibition, we recently screened a selection of diarrhea remedies from sources worldwide and identified a commonly used Thai herbal remedy that fully inhibited both CFTR and CaCC (unpublished observations). The herbal remedy showed efficacy in mouse models of cholera and rotaviral diarrhea.

Clinical relevance of drug efflux pumps in the gut

Shingen Misaka, Fabian Muller and Martin F Fromm
Current Opinion in Pharmacology 2013, 13:847–852
http://dx.doi.org/10.1016/j.coph.2013.08.010

Important export pumps expressed in the apical membrane of enterocytes are P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). They are believed to be a crucial part of the bodies’ defense mechanisms against potentially toxic, orally administered xenobiotics. In particular P-gp and BCRP also limit the bioavailability of drugs. Inhibition of these intestinal export pumps by concomitantly administered drugs leads to increased plasma concentrations, whereas induction can reduce absorption of the substrate drugs and decrease plasma concentrations. The role of polymorphisms in genes encoding for these transporters will also be discussed. Taken together this review will focus on the role of intestinal export pumps using selected examples from clinical studies in humans.

P-gp (gene: ABCB1) is a protein consisting of two homologous halves, each containing six transmembrane helices and one nuclear-binding domain. The protein expression of P-gp has been shown to increase from proximal to distal parts of the intestine. P-gp generally tends to transport hydrophobic, amphipathic or cationic compounds. Clinically important P-gp substrates include anticancer agents, cardiovascular drugs and immunosuppressants. It is of note that most of the listed drugs are also substrates of CYP3A4, and thus intestinal P-gp and intestinal CYP3A4 efficiently collaborate to enhance the removal of their substrates. ABCB1 mRNA expression is regulated by several nuclear receptors such as pregnane X receptor (PXR), constitutive androstane receptor (CAR), thyroid hormone receptor and vitamin D receptor (VDR).

Human intestinal P-gp limits bioavailability of drugs and induction and inhibition of intestinal P-gp are important mechanisms underlying drug–drug interactions in humans. Direct evidence for these processes in humans was largely generated using studies in healthy volunteers, who received P-gp drug substrates with negligible drug metabolism such as digoxin and talinolol. Further work is required regarding the importance of intestinal P-gp for drug disposition and drug–drug interactions for the majority of P-gp substrates, which are also metabolized, for example, by intestinal and hepatic CYP3A4, since inducers or inhibitors of P-gp frequently also affect CYP3A4 expression or function. For intestinal BCRP and intestinal MRP2, so far only a limited number of examples with specific drugs exist, which indicate their clinical importance in humans.

Gastrointestinal HCO3 S transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways

Ursula E Seidler
Current Opinion in Pharmacology 2013, 13:900–908
http://dx.doi.org/10.1016/j.coph.2013.10.001

The concept of a protective alkaline gastric and duodenal mucus layer is a century old, yet it is amazing how much new information on HCO3 transport pathways has emerged recently, made possible by the extensive utilization of gene deleted and transgenic mice and novel techniques to study HCO3  transport. This review highlights recent findings regarding the importance of HCO3  for mucosal protection of duodenum and other gastrointestinal epithelia against luminal acid and other damaging factors. Recently, methods have been developed to visualize HCO3  transport in vivo by assessing the surface pH in the mucus layer, as well as the epithelial pH. New information about HCO3  transport pathways, and emerging concepts about the intricate regulatory network that governs duodenal HCO3 secretion are described, and new perspectives for drug therapy discussed.

The lack of HCO3 ions in the pancreatic secretions of children with cystic fibrosis was recognized in the 1960s and the significance for impaired mucus release discussed. It is now evident that CFTR expression is essential for HCO3  secretion in most gastrointestinal epithelia, such as the esophagus, the small intestine, the biliary tract, and the pancreatic ducts, as well as the reproductive tract and the airways. The low pH in the acinar-ductal unit after release of the zymogen granules needs to be quickly neutralized to prevent acinar damage. Similarly, the bile ducts need a ‘biliary HCO3 umbrella’ to keep toxic bile acids ionized and thereby membrane-impermeable, and the esophagus needs HCO3  secretion to protect the epithelial surface from acid reflux, and this is possibly mediated also by CFTR-dependent mechanisms. HCO3 is essential for the release and proper expansion of mucin molecules. CF patients and CFTR-deficient mice have impaired lipid absorption, which in mice has been experimentally linked with the duodenal HCO3 deficit. Thus the HCO3 secretory defect of cystic fibrosis patients is closely linked to many of the pathophysiological GI manifestations of CF.

Fluid and electrolyte secretion in the inflamed gut: novel targets for treatment of inflammation-induced diarrhea

Melanie G Gareau and Kim E Barrett
Current Opinion in Pharmacology 2013, 13:895–899
http://dx.doi.org/10.1016/j.coph.2013.08.014

Diarrheal disease can occur in the context of both inflammatory and infectious challenges. Inflammation can result in changes in ion transporter expression or simply mislocalization of the protein. In addition to development of diarrhea, an altered secretory state can lead to changes in mucus secretion and luminal pH. Bacterial infection can lead to subversion of host cell signaling, leading to transporter mislocalization and hyposecretion, promoting bacterial colonization. Novel therapeutic strategies are currently being developed to ameliorate transporter defects in the setting of inflammation or bacterial infection including, for example, administration of probiotics and fecal microbiota transplantation. This review will highlight recent findings in the literature detailing these aspects of ion transport in the inflamed gut.

Inflammatory diarrhea can occur in many different pathological conditions including IBD, comprising Crohn’s disease (CD) and ulcerative colitis (UC). The resulting inflammation triggers production of cytokines, including TNFα and IFNϒ, that can modulate ion transporters directly, including Na+K+ATPase and Na+H+ exchanger (NHE)-1 (SLC9A1), and decrease barrier function. Inflammation can activate several potential mechanisms that can underlie diarrheal symptoms via distinct pathways.

The presence of immune cells, such as T cells, results in the production of cytokines that can inhibit Na+ absorption, activate Cl secretion, and cause mucosal barrier dysfunction, resulting in diarrhea. In the IL-10 deficient mouse model of colitis, inflammation is characterized by T cells and macrophages, and high levels of pro-inflammatory cytokines, including TNFα. This was accompanied by dysfunctional NHE3 (SLC9A3) transport activity in the absence of overall changes in gene expression and protein localization. A decrease in expression of PDZ adaptor proteins (NHERF2 and PDZK1 scaffolding proteins), which modulate NHE3 activity by regulating transporter interactions and signal transduction, was also observed.

Ion transporters and their regulatory mechanisms represent potential therapeutic targets for the treatment of inflammatory diarrhea. Probiotics, live microorganisms provided in adequate amounts to confer a benefit on the host beyond their inherent nutrition, have been demonstrated to provide a beneficial effect in various GI diseases, including diarrhea. Acute administration of Lactobacillus acidophilus to Caco-2 cells in vitro and to mice in vivo increased DRA expression. Administration of Bifidobacterium breve, but not Lactobacillus rhamnosus or Eubacterium rectale, to HT29 cells down-regulated both Ca2+ (carbachol [CCh]) and cAMP (FSK) mediated Cl secretion. This effect by B. breve was not seen at the expense of monolayer integrity or tight junction dysfunction, occurred downstream of Ca2+ mobilization and was hypothesized to occur via CFTR based on the observation that a CFTR inhibitor could block the effects of CCh. In contrast, administration of the probiotic strain Enterococcus faecium was able to improve intestinal barrier function in piglets, as measured by mannitol flux rates, whereas prostaglandin E2-induced short circuit current was increased, suggesting an increased secretory state.

Differing degrees of susceptibility to infection with C. rodentium within different strains of mice have been well established and characterized; however the precise mechanisms involved are not well defined. A decrease in DRA was found in C3H and FVB mice, which succumb to C. rodentium infection, compared to resistant C57BL/6 mice. It was recently demonstrated that gavaging C3H mice with the colonic microbiota of C57BL/6 mice, following antibiotic administration, could transfer the protection against death following infection with C. rodentium in C3H mice. Survival was accompanied with restoration of DRA gene expression and other transporters that are known to be involved in protection from diarrhea. While this is extremely preliminary, fecal microbiota transplant may serve as an alternative in a subset of cases of infectious diarrhea, separate from the well-established data on C. difficile.

Phospholipids are increasingly being recognized for their signaling roles in addition to their traditional roles in cell structure. Lysophosphatidic acid (LPA) is a naturally occurring glycerophospholipid that can serve as a signaling molecule via binding to its G-protein coupled receptors LPA1, LPA2, and LPA3. In colonic Caco-2 cells, administration of LPA for 24 hours induced DRA expression via LPA2, increasing its Cl/HCO3exchange activity via a PI3 kinase pathway. The ability of LPA to increase ion transporter activity in the setting of inflammation or infection needs to be tested directly, but the findings at least potentially suggest that LPA may serve as a useful anti-diarrheal agent. Studies in bronchial epithelial cells suggest that LPA can also ameliorate lipopoly-saccharide-induced barrier dysfunction, suggesting a similar effect may be present in the intestinal tract. The ability of LPA to increase migration and proliferation of intestinal epithelial cells, however, would warrant some concerns with long-term administration and would need to be carefully assessed.

Intestinal ion transporters represent a valid physiological target for limiting inflammatory and infectious diarrhea. Their ability to regulate both water secretion and absorption allows bidirectional mechanisms to be exploited, creating a wide range of possible therapeutic targets.

Discovery and Development of Antisecretory Drugs for Treating Diarrheal Diseases

Jay R. Thiagarajah, Eun–A Ko, L Tradtrantip, M Donowitz, and A. S. Verkman
Clinical Gastroenterology and Hepatology 2014;12:204–209
http://dx.doi.org/10.1016/j.cgh.2013.12.001

Diarrheal diseases constitute a significant global health burden and are a major cause of childhood mortality and morbidity. Treatment of diarrheal disease has centered on the replacement of fluid and electrolyte losses using oral rehydration solutions. Although oral rehydration solutions have been highly successful, significant mortality and morbidity due to diarrheal disease remains. Secretory diarrheas, such as those caused by bacterial and viral enterotoxins, result from activation of cyclic nucleotide and/or Ca2+ signaling pathways in intestinal epithelial cells, enterocytes, which increase the permeability of Cl channels at the lumen-facing membrane. Additionally, there is often a parallel reduction in intestinal Na+ absorption. Inhibition of enterocyte Cl channels, including the cystic fibrosis transmembrane conductance regulator and Ca2-activated Cl channels, represents an attractive strategy for antisecretory drug therapy. High-throughput screening of synthetic small-molecule collections has identified several classes of Cl channel inhibitors that show efficacy in animal models of diarrhea but remain to be tested clinically. In addition, several natural product extracts with Cl channel inhibition activity have shown efficacy in diarrhea models. However, a number of challenges remain to translate the promising bench science into clinically useful therapeutics, including efficiently targeting orally administered drugs to enterocytes during diarrhea, funding development costs, and carrying out informative clinical trials. Nonetheless, Cl channel inhibitors may prove to be effective adjunctive therapy in a broad spectrum of clinical diarrheas, including acute infectious and drug-related diarrheas, short bowel syndrome, and congenital enteropathies.

Cl- channels as targets for therapy of secretory diarrheas

Cl- channels as targets for therapy of secretory diarrheas

Cl channels as targets for therapy of secretory diarrheas. This diagram of fluid secretory mechanism in enterocytes lining intestinal crypts and villi illustrates active Cl transport from the blood or submucosa to the intestinal lumen facilitated by luminal membrane CFTR and CaCC channels.

Natural products represent a potentially attractive source of antidiarrheal therapeutics, because they are generally inexpensive and have the potential for rapid translation to the clinic. In addition, there is a long history of anecdotal evidence of efficacy of various antidiarrheal remedies in many parts of the world.

A number of hurdles remain in the translation of antidiarrheal drug candidates to widely used therapy. Although a number of compounds have been advanced through preclinical testing in murine models, new high throughput model systems of enterocyte fluid secretion, such as human intestinal enteroids, or genetically tractable systems, such as zebrafish, warrant development to identify novel compounds and antidiarrheal drug targets. A major translational roadblock, however, is the difficulty in designing and funding informative clinical trials.

Barriers to diarrheal drug development in developing countries include the need for very low manufacture cost, high stability in hot and humid environments, and obtaining funding to support commercial development of new chemical entities with relatively low profit potential.

For drugs targeting the enterocyte extracellular surface, an additional challenge is convective washout in which secreted fluid in intestinal crypts washes away inhibitor drugs. A mathematical model of intestinal convection-diffusion concluded that in severe secretory diarrheas, such as cholera, the antisecretory efficacy of an orally administered, surface-targeted inhibitor requires high inhibitor affinity to its target (low nanomolar Kd) to obtain sufficiently high luminal inhibitor concentration (>100-fold Kd), and sustained high luminal inhibitor concentration or slow inhibitor dissociation. Washout is a significant concern for small-molecule CFTR glycine hydrazides, such as iOWH032, and potentially for several of the natural product agents.

Current and emerging therapies in irritable bowel syndrome: from pathophysiology to treatment

Joseph Y. Chang and Nicholas J. Talley
Trends in Pharmacological Sciences 31 (2010) 326–334
http://dx.doi.org:/10.1016/j.tips.2010.04.008

Irritable bowel syndrome is a common functional gastrointestinal disorder with characteristic symptoms of abdominal pain/discomfort with a concurrent disturbance in defecation. It accounts for a significant healthcare burden, and symptoms may be debilitating for some patients. Traditional symptom-based therapies have been found to be ineffective in the treatment of the entire syndrome complex, and do not modify the natural history of the disorder. Although the exact etiopathogenesis of IBS is incompletely understood, recent advances in the elucidation of the pathophysiology and molecular mechanisms of IBS have resulted in the development of novel therapies, as well as potential future therapeutic targets. This article reviews current and emerging therapies in IBS based upon: IBS as a serotonergic disorder; stimulating intestinal chloride channels; modulation of visceral hypersensitivity; altering low-grade intestinal inflammation; and modulation of the gut microbiota.

Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by abdominal pain or discomfort that is associated with disturbances in defecation; bloating is common, and the symptoms are not estimates for North America being 10–15%. Only a minority seek care for their symptoms, but IBS has a dramatic impact on patients and utilization of healthcare resources. It is estimated that IBS accounts for 3.5 million physician visits annually in the USA, and is associated with annual direct costs of $1.6 billion and indirect costs of $19.2 billion; patients with IBS consistently report lower health-related quality of life (HRQOL).

Serotonin, or 5-hydroxytryptamine (5-HT), is a neurotransmitter which is largely stored in the enterochromaffin cells of the gut and plays a critical part in the motility, sensation, and secretion of the GI tract. There is growing evidence that a serotonergic mechanism may be involved in the pathophysiology of IBS. Some of the notable findings include: increased postprandial levels of circulating 5-HT in subjects with diarrhea-predominant IBS (D-IBS); D-IBS subjects were observed to have elevated platelet-depleted plasma 5-HT levels in fasting and fed states; the mucosal 5-Hydroxyindoleacetic acid (5-HIAA)/5-HT ratio was decreased in subjects with constipation-predominant IBS (C-IBS); and a lack of increase in plasma 5-HT levels after meal ingestion in those with C-IBS. These findings suggested that a subset of IBS may be a disorder centered on the serotonin disequilibrium, with 5-HT excess responsible for symptoms of D-IBS and insufficient release of 5-HT in the circulation being responsible for the features of C-IBS. However, not all studies support this disease model.

Given the possible role of serotonin in IBS, several 5-HT receptor-modulating agents have been developed as disease-specific therapeutic agents. The 5-HT3 antagonist alosetron has been shown in multiple randomized clinical trials as well as meta-analyses to be an effective agent in the treatment of D-IBS with improvements in global IBS symptoms, relief of abdominal pain, improvement of the consistency and frequency of bowel movements, and reduced fecal urgency. Furthermore, alosetron has been reported to inhibit intestinal secretion, delay colonic transit time, increase colonic compliance in response to distention, and have central effects that result in its beneficial effects on sensation in IBS.

Current and emerging therapies in irritable bowel syndrome

Serotonergic mechanisms·       Alosetron

·       Tegaserod

·       Prucalopride

Chloride channelsActivators

·       Lubiprostone

·       Linaclotide

Inhibitors

·       Crofelemer

Visceral hypersensitivityTricyclic antidepressants (TCAs)

·       Selective serotonin reuptake inhibitors (SSRIs)

·       ϒ-Aminobutyric acid analog (pregabalin)

K-opioid receptor agonists

·       Asimadoline

Corticotropin-releasing factor (CRF) receptor antag

Modulation of immune activation and inflammation·       5-aminosalicylic acid

·       Corticosteroids ?

Modulating intestinal floraProbiotics

·       Bifidobacteria

Prebiotics

Antibiotics

·       Rifaximin

Fiber supplementation·       Psyllium
Antispasmodics·       Hyoscine

·       Cimetropium

·       Pinaverium

·       Peppermint oil

Alternative therapiesDietary factors and modification

·       Food elimination diet (based on IgG antibodies)

·       Low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) diet

·       Gluten-free diet

Agonists to 5-HT4 receptors have been found to be effective in the treatment of C-IBS. 5-HT4 receptor agonists accelerate intestinal transit in the small intestine and colon. Tegaserod is an aminoguanidine indole and selective partial agonist of the 5-HT4 receptor that has been shown to provide improvements in global IBS symptoms and improve constipation in female C-IBS patients. Reports have supported the efficacy of tegaserod in CIBS in terms of global symptom improvement as well as improvement of constipation.

The GI tract contains numerous chloride channels that have an integral role in the transport and secretion of fluids. Type-2 chloride channels (ClC-2) have been investigated with respect to their role in C-IBS and constipation. The ClC-2 channel is an a-helical transmembrane protein located on the apical cell membrane of the intestines, is highly selective for chloride ions, and is involved in the transport and secretion of fluids as well as maintaining cellular membrane potential.  Activation of ClC-2 channels through second messenger induced phosphorylation causes an efflux of chloride ions into the lumen of the GI tract, which results in a subsequent efflux of sodium ions due to isoelectric balance. It is the efflux of sodium that results in the efflux of water into the lumen due to the maintenance of isotonic neutrality through the paracellular pathway. This resulting increase in intestinal secretion and fluid volume has been of interest in the development of chloride channel-directed therapies for C-IBS and constipation.

TCAs and SSRIs have been of interest in the treatment of IBS for their modulation of hyperalgesia and not for their psychotropic effects. TCAs have been demonstrated to be effective in the treatment of neuropathic pain, whereas SSRIs have been suggested to enhance the effectiveness of endogenous pain inhibition systems, and both have been effective the in treatment of various chronic pain disorders. Despite the analgesic effects of these agents, some authors have cited the lack of evidence based on well designed large clinical trials of these agents in IBS as reason for caution.

Gammaa Aminobutyric acid (GABA) analog: pregabalin

Pregabalin is a novel second-generation α2δ ligand that is structurally related to ϒ-aminobutyric acid (GABA). It has been shown to be effective in the treatment of inflammatory and neuropathic pain. Its precise mechanism of action is incompletely understood because it does not appear to have GABA-related functional activity or metabolites; it is believed to decrease depolarization-induced calcium influx at nerve terminals, and thereby inhibit release of excitatory neurotransmitters by acting on the α2δ auxiliary proteins associated with voltage-gated calcium channels. Its potential role in IBS is based upon a recent study demonstrating normalization of rectal distension sensory thresholds in IBS patients with rectal hypersensitivity. Placebo-controlled trials of pregabalin for IBS are currently ongoing.

Potential advances in the visceral modulation of IBS have been seen through studies of the role of opiate receptors in visceral pain. Specifically, peripheral K-opioid receptor agonists are of great interest because they are involved in the inhibition of noxious stimuli from the gut and are devoid of many of the adverse side effects (e.g. constipation, opioid dependence) seen in other opioid agonists that bind to µ receptors; K receptors are found most abundantly in the stomach and colon and in the brain. Asimadoline, a novel selective K-opioid receptor agonist, may be promising in the treatment of IBS. Its low blood–brain barrier permeability and low distribution in the central nervous system (CNS) suggest that its analgesic effects are mediated by reduction of excitability of nociceptors on peripheral nerve endings. Human pharmacodynamics studies of asimadoline demonstrated attenuation of visceral sensation without affecting gut motor function, a decrease in satiation and postprandial fullness independent of effects on gastric volume, and attenuation of pain intensity to colonic distension in IBS subjects. These findings led to the investigation of the possible role of asimadoline in IBS.

Read Full Post »

Heart-Lung-Kidney: Essential Ties

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

The basic functioning of the heart, and the kidney have been covered in depth elsewhere, and pulmonary function less, except in this series.  The relationship between them on the basis of endocrine, signaling, and metabolic balance is the focus in this piece.

Other elated articles can be found in http://pharmaceuticalintelligence.com:

The Amazing Structure and Adaptive Functioning of the Kidneys: Nitric Oxide – Part I
http://pharmaceuticalintelligence.com/2012/11/26/the-amazing-structure-and-adaptive-functioning-of-the-kidneys/

Nitric Oxide and iNOS have Key Roles in Kidney Diseases – Part II
http://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-and-inos-have-key-roles-in-kidney-diseases/

Stroke and Bleeding in Atrial Fibrillation with Chronic Kidney Disease
http://pharmaceuticalintelligence.com/2012/08/16/stroke-and-bleeding-in-atrial-fibrillation-with-chronic-kidney-disease/

Risks of Hypoglycemia in Diabetics with Chronic Kidney Disease (CKD)
http://pharmaceuticalintelligence.com/2012/08/01/risks-of-hypoglycemia-in-diabetics-with-ckd/

Acute Lung Injury
http://pharmaceuticalintelligence.com/2015/02/26/acute-lung-injury/

Neonatal Pathophysiology
http://pharmaceuticalintelligence.com/2015/02/22/neonatal-pathophysiology/

Altitude Adaptation
http://pharmaceuticalintelligence.com/2015/02/24/altitude-adaptation/

Action of Hormones on the Circulation
http://pharmaceuticalintelligence.com/2015/02/17/action-of-hormones-on-the-circulation/

Innervation of Heart and Heart Rate
http://pharmaceuticalintelligence.com/2015/02/15/innervation-of-heart-and-heart-rate/

Neural Activity Regulating Endocrine Response
http://pharmaceuticalintelligence.com/2015/02/13/neural-activity-regulating-endocrine-response/

Adrenal Cortex
http://pharmaceuticalintelligence.com/2015/02/07/adrenal-cortex/

Thyroid Function and Disorders
http://pharmaceuticalintelligence.com/2015/02/05/thyroid-function-and-disorders/

Highlights in the History of Physiology
http://pharmaceuticalintelligence.com/2014/12/28/highlights-in-the-history-of-physiology/

The Evolution of Clinical Chemistry in the 20th Century
http://pharmaceuticalintelligence.com/2014/12/13/the-evolution-of-clinical-chemistry-in-the-20th-century/

Complex Models of Signaling: Therapeutic Implications
http://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

Cholesterol and Regulation of Liver Synthetic Pathways
http://pharmaceuticalintelligence.com/2014/10/25/cholesterol-and-regulation-of-liver-synthetic-pathways/

A Brief Curation of Proteomics, Metabolomics, and Metabolism
http://pharmaceuticalintelligence.com/2014/10/03/a-brief-curation-of-proteomics-metabolomics-and-metabolism/

Natriuretic Peptides in Evaluating Dyspnea and Congestive Heart Failure
http://pharmaceuticalintelligence.com/2014/09/08/natriuretic-peptides-in-evaluating-dyspnea-and-congestive-heart-failure/

Omega-3 fatty acids, depleting the source, and protein insufficiency in renal disease
http://pharmaceuticalintelligence.com/2014/07/06/omega-3-fatty-acids-depleting-the-source-and-protein-insufficiency-in-renal-disease/

Summary – Volume 4, Part 2: Translational Medicine in Cardiovascular Diseases
http://pharmaceuticalintelligence.com/2014/05/10/summary-part-2-volume-4-translational-medicine-in-cardiovascular-diseases/

More on the Performance of High Sensitivity Troponin T and with Amino Terminal Pro BNP in Diabetes
http://pharmaceuticalintelligence.com/2014/01/20/more-on-the-performance-of-high-sensitivity-troponin-t-and-with-amino-terminal-pro-bnp-in-diabetes/

Diagnostic Value of Cardiac Biomarkers
http://pharmaceuticalintelligence.com/2014/01/04/diagnostic-value-of-cardiac-biomarkers/

Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker
http://pharmaceuticalintelligence.com/2013/12/10/epo-as-therapeutics-for-anemia-in-chf/

The Young Surgeon and The Retired Pathologist: On Science, Medicine and HealthCare Policy – Best writers Among the WRITERS
http://pharmaceuticalintelligence.com/2013/12/10/the-young-surgeon-and-the-retired-pathologist-on-science-medicine-and-healthcare-policy-best-writers-among-the-writers/

Renal Function Biomarker, β-trace protein (BTP) as a Novel Biomarker for Cardiac Risk Diagnosis in Patients with Atrial Fibrillation
http://pharmaceuticalintelligence.com/2013/11/13/renal-function-biomarker-%CE%B2-trace-protein-btp-as-a-novel-biomarker-for-cardiac-risk-diagnosis-in-patients-with-atrial-fibrilation/

Leptin signaling in mediating the cardiac hypertrophy associated with obesity
http://pharmaceuticalintelligence.com/2013/11/03/leptin-signaling-in-mediating-the-cardiac-hypertrophy-associated-with-obesity/

The Role of Tight Junction Proteins in Water and Electrolyte Transport
http://pharmaceuticalintelligence.com/2013/10/07/the-role-of-tight-junction-proteins-in-water-and-electrolyte-transport/

Selective Ion Conduction
http://pharmaceuticalintelligence.com/2013/10/07/selective-ion-conduction/

Translational Research on the Mechanism of Water and Electrolyte Movements into the Cell
http://pharmaceuticalintelligence.com/2013/10/07/translational-research-on-the-mechanism-of-water-and-electrolyte-movements-into-the-cell/

Landscape of Cardiac Biomarkers for Improved Clinical Utilization
http://pharmaceuticalintelligence.com/2013/09/22/landscape-of-cardiac-biomarkers-for-improved-clinical-utilization/

Calcium-Channel Blocker, Calcium as Neurotransmitter Sensor and Calcium Release-related Contractile Dysfunction (Ryanopathy)
http://pharmaceuticalintelligence.com/2013/09/16/calcium-channel-blocker-calcium-as-neurotransmitter-sensor-and-calcium-release-related-contractile-dysfunction-ryanopathy/

Disruption of Calcium Homeostasis: Cardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism
http://pharmaceuticalintelligence.com/2013/09/12/disruption-of-calcium-homeostasis-cardiomyocytes-and-vascular-smooth-muscle-cells-the-cardiac-and-cardiovascular-calcium-signaling-mechanism/

Renal Distal Tubular Ca2+ Exchange Mechanism in Health and Disease
http://pharmaceuticalintelligence.com/2013/09/02/renal-distal-tubular-ca2-exchange-mechanism-in-health-and-disease/

Cardiac Contractility & Myocardium Performance: Therapeutic Implications for Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses
http://pharmaceuticalintelligence.com/2013/08/28/cardiac-contractility-myocardium-performance-ventricular-arrhythmias-and-non-ischemic-heart-failure-therapeutic-implications-for-cardiomyocyte-ryanopathy-calcium-release-related-contractile/

Advanced Topics in Sepsis and the Cardiovascular System at its End Stage
http://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-sepsis-and-the-cardiovascular-system-at-its-end-stage/

The Cardio-Renal Syndrome (CRS) in Heart Failure (HF)
http://pharmaceuticalintelligence.com/2013/06/30/the-cardiorenal-syndrome-in-heart-failure/

More…

Sodium homeostasis

Icariin attenuates angiotensin IIinduced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen speciesdependent JNK and p38 pathways

H Zhou, Y Yuan, Y Liu, Wei Deng, Jing Zong, Zhou‑Yan Bian, Jia Dai and Qi‑Zhu Tang
Exper and Therapeutic Med 7: 1116-1122, 2014
http://dx.doi.org:/10.3892/etm.2014.1598

Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)‑induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart‑derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II‑induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B‑type natriuretic peptide, in a concentration‑dependent manner. The cell surface area of Ang II‑treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II‑induced cell apoptosis and protein expression levels of Bax and cleaved‑caspase 3, while the expression of Bcl‑2 was increased by icariin. In addition, 2′,7’‑dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c‑Jun N‑terminal kinase (JNK) and p38 in Ang II‑treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II‑induced hypertrophy and apoptosis by inhibiting the ROS‑dependent JNK and p38 pathways.

Short-term add-on therapy with angiotensin receptor blocker for end-stage inotrope-dependent heart failure patients: B-type natriuretic peptide reduction in a randomized clinical trial

Marcelo E. Ochiai, ECO Brancalhao, RSN Puig, KRN Vieira, et al.
Clinics. 2014; 69(5):308-313
http://dx.doi.org:/10.6061/clinics/2014(05)02

OBJECTIVE: We aimed to evaluate angiotensin receptor blocker add-on therapy in patients with low cardiac output during decompensated heart failure. METHODS: We selected patients with decompensated heart failure, low cardiac output, dobutamine dependence, and an ejection fraction ,0.45 who were receiving an angiotensin-converting enzyme inhibitor. The patients were randomized to losartan or placebo and underwent invasive hemodynamic and B-type natriuretic peptide measurements at baseline and on the seventh day after intervention. ClinicalTrials.gov: NCT01857999. RESULTS: We studied 10 patients in the losartan group and 11 patients in the placebo group. The patient characteristics were as follows: age 52.7 years, ejection fraction 21.3%, dobutamine infusion 8.5 mcg/kg.min, indexed systemic vascular resistance 1918.0 dynes.sec/cm5.m2, cardiac index 2.8 L/min.m2, and B-type natriuretic peptide 1,403 pg/mL. After 7 days of intervention, there was a 37.4% reduction in the B-type natriuretic peptide levels in the losartan group compared with an 11.9% increase in the placebo group (mean difference, – 49.1%; 95% confidence interval: -88.1 to -9.8%, p = 0.018). No significant difference was observed in the hemodynamic measurements. CONCLUSION: Short-term add-on therapy with losartan reduced B-type natriuretic peptide levels in patients hospitalized for decompensated severe heart failure and low cardiac output with inotrope dependence.

Development of a Novel Heart Failure Risk Tool: The Barcelona Bio-Heart Failure Risk Calculator (BCN Bio-HF Calculator)

Josep Lupon, Marta de Antonio, Joan Vila, Judith Penafiel, et al.
PLoS ONE 9(1): e85466. http://dx.doi.org:/10.1371/journal.pone.0085466

Background: A combination of clinical and routine laboratory data with biomarkers reflecting different pathophysiological pathways may help to refine risk stratification in heart failure (HF). A novel calculator (BCN Bio-HF calculator) incorporating N-terminal pro B-type natriuretic peptide (NT-proBNP, a marker of myocardial stretch), high-sensitivity cardiac troponin T (hs-cTnT, a marker of myocyte injury), and high-sensitivity soluble ST2 (ST2), (reflective of myocardial fibrosis and remodeling) was developed. Methods: Model performance was evaluated using discrimination, calibration, and reclassi-fication tools for 1-, 2-, and 3-year mortality. Ten-fold cross-validation with 1000 bootstrapping was used. Results: The BCN Bio-HF calculator was derived from 864 consecutive outpatients (72% men) with mean age 68.2612 years (73%/27% New York Heart Association (NYHA) class I-II/III-IV, LVEF 36%, ischemic etiology 52.2%) and followed for a median of 3.4 years (305 deaths). After an initial evaluation of 23 variables, eight independent models were developed. The variables included in these models were age, sex, NYHA functional class, left ventricular ejection fraction, serum sodium, estimated glomerular filtration rate, hemoglobin, loop diuretic dose, β-blocker, Angiotensin converting enzyme inhibitor/Angiotensin-2 receptor blocker and statin treatments, and hs-cTnT, ST2, and NT-proBNP levels. The calculator may run with the availability of none, one, two, or the three biomarkers. The calculated risk of death was significantly changed by additive biomarker data. The average C-statistic in cross-validation analysis was 0.79. Conclusions: A new HF risk-calculator that incorporates available biomarkers reflecting different pathophysiological pathways better allowed individual prediction of death at 1, 2, and 3 years.

TNF and angiotensin type 1 receptors interact in the brain control of blood pressure in heart failure

Tymoteusz Zera, Marcin Ufnal, Ewa Szczepanska-Sadowska
Cytokine 71 (2015) 272–277
http://dx.doi.org/10.1016/j.cyto.2014.10.019

Accumulating evidence suggests that the brain renin-angiotensin system and proinflammatory cytokines, such as TNF-α, play a key role in the neuro-hormonal activation in chronic heart failure (HF). In this study we tested the involvement of TNF-α and angiotensin type 1 receptors (AT1Rs) in the central control of the cardiovascular system in HF rats. Methods: we carried out the study on male Sprague–Dawley rats subjected to the left coronary artery ligation (HF rats) or to sham surgery (sham-operated rats). The rats were pretreated for four weeks with intracerebroventricular (ICV) infusion of either saline (0.25 µl/h) or TNF-α inhibitor etanercept (0.25 µg/0.25 µl/h). At the end of the pretreatment period, we measured mean arterial blood pressure (MABP) and heart rate (HR) at baseline and during 60 min of ICV administration of either saline (5 µl/h) or AT1Rs antagonist losartan (10 µg/5 µl/h). After the experiments, we measured the left ventricle end-diastolic pressure (LVEDP) and the size of myocardial scar. Results: MABP and HR of sham-operated and HF rats were not affected by pretreatments with etanercept or saline alone. In sham-operated rats the ICV infusion of losartan did not affect MABP either in saline or in etanercept pretreated rats. In contrast, in HF rats the ICV infusion of losartan significantly decreased MABP in rats pretreated with saline, but not in those pretreated with etanercept. LVEDP was significantly elevated in HF rats but not in sham-operated ones. Surface of the infarct scar exceeded 30% of the left ventricle in HF groups, whereas sham-operated rats did not manifest evidence of cardiac scarring. Conclusions: our study provides evidence that in rats with post-infarction heart failure the regulation of blood pressure by AT1Rs depends on centrally acting endogenous TNF-α.

Statins in heart failure—With preserved and reduced ejection fraction. An update

Dimitris Tousoulis , E Oikonomou, G Siasos, C Stefanadis
Pharmacology & Therapeutics 141 (2014) 79–91
http://dx.doi.org/10.1016/j.pharmthera.2013.09.001

HMG-CoA reductase inhibitors or statins beyond their lipid lowering properties and mevalonate inhibition exert also their actions through a multiplicity of mechanisms. In heart failure (HF) the inhibition of isoprenoid intermediates and small GTPases, which control cellular function such as cell shape, secretion and proliferation, is of clinical significance. Statins share also the peroxisome proliferator-activated receptor pathway and inactivate extracellular-signal-regulated kinase phosphorylation suppressing inflammatory cascade. By down-regulating Rho/Rho kinase signaling pathways, statins increase the stability of eNOS mRNA and induce activation of eNOS through phosphatidylinositol 3-kinase/Akt/eNOS pathway restoring endothelial function. Statins change also myocardial action potential plateau by modulation of Kv1.5 and Kv4.3 channel activity and inhibit sympathetic nerve activity suppressing arrhythmogenesis. Less documented evidence proposes also that statins have antihypertrophic effects – through p21ras/mitogen activated protein kinase pathway – which modulate synthesis of matrix metalloproteinases and procollagen 1 expression affecting interstitial fibrosis and diastolic dysfunction. Clinical studies have partly confirmed the experimental findings and despite current guidelines new evidence supports the notion that statins can be beneficial in some cases of HF. In subjects with diastolic HF, moderately impaired systolic function, low B-type natriuretic peptide levels, exacerbated inflammatory response and mild interstitial fibrosis evidence supports that statins can favorably affect the outcome. Under the lights of this evidence in this review article we discuss the current knowledge on the mechanisms of statins’ actions and we link current experimental and clinical data to further understand the possible impact of statins’ treatment on HF syndrome.

Since 1980 when the first 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor or statin was introduced in clinical practice, statins have been extensively used in the treatment of patients with dyslipidemia as well as of those with coronary artery disease (CAD). Importantly, large scale trials and metanalysis have documented their significant benefits in terms of primary and secondary CAD prevention which out-weigh any potential side effects. Statins’ benefits extend, according to recent studies, even in patients with normal or low cholesterol levels and beyond their lipid lowering effects, indicating their multiple protective mechanisms.

Heart failure (HF) is a complex syndrome with different definitions and its diagnosis is based on a combination of symptoms, clinical signs and imaging or laboratory data. different categorization schemes have been used dividing HF in acute or chronic, in systolic or diastolic, and in ischemic or dilated simply reflecting the complexity of the syndrome and the multiplicity of the pathophysiologic mechanisms implicated in the disease development and progression. In addition to the diverse pathophysiology of HF the syndrome is also characterized by high morbidity and mortality. Recent treatment advantages such as angiotensin converting enzyme inhibitors and beta blockers have not yet proven their clinical benefit in subjects with diastolic HF.

As the most common cause of HF is CAD and statins have proven their benefits in a wide spectrum of diseases directly or indirectly associated with atherosclerotic cardiovascular disease, HMG-CoA reductase inhibitors have been tested in subjects with HF. Interestingly, non-randomized, observational and retrospective early studies in subjects with HF of ischemic and non-ischemic etiology have suggested that statins are associated with improved outcomes. Thereafter, two large scale randomized control trials failed to demonstrate any benefits in mortality of HF patients treated with rosuvastatin and subsequently current HF guidelines do not include recommendations for statin use except from when they are indicated for comorbidities, such as established CAD.

Statins inhibit HMG-CoA reductase. This enzyme catalyzes the conversion of 3-hydroxy-3-methylglutaryl-coenzyme A to L-mevalonic acid, which is the rate-limiting step in the cholesterol synthesis pathway. Inhibition of the mevalonate pathway and of cholesterol synthesis triggers an increase in LDL receptor activity by stimulating production of mRNA for LDL receptor in liver. The induction of LDL receptors is responsible for the observed increase in plasma clearance of LDL cholesterol. CAD is the cause of approximately two-thirds of cases of systolic HF. The beneficial effects of statins-induced LDL reduction are well established in patients with atherosclerosis and CAD. Nevertheless, the results from statin treatment, even in ischemic HF cases, are not straightforward and several mechanisms have been proposed for this paradox.

multiplicity of HMG CoA reductase inhibitors mechanisms and their effects

multiplicity of HMG CoA reductase inhibitors mechanisms and their effects

The figure demonstrates the multiplicity of HMG CoA reductase inhibitors mechanisms and their effects. ↓: decrease; ↑ increase; FPP: farnesyl pyrophosphate: GGPP: geranylgeranyl pyrophosphate; Ras, Rac, Rho; small GTPases; eNOS: endothelial nitric oxide synthase; ATP: adenosine triphosphate; PI-3 kinase: phosphatidylinositol 3-kinase; AMPK: AMP activated protein kinase; GTP: Guanosine triphosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; ERK: extracellular-signal-regulated kinase; Shadow box represents adverse mechanism and actions of HGM CoA reductase inhibitors.

The anti-inflammatory effects of HMG CoA reductase inhibitors in atherosclerosis have been early recognized. Statins also have a potent anti-inflammatory effect in HF models. Importantly, there is a link between inflammation and HF pathogenesis and is now widely accepted that pro-inflammatory cytokines cause systolic dysfunction, myocardial hypertrophy, activate a fetal gene program in cardiac myocytes, disturb extracellular matrix structure, cause cardiac cachexia etc. In addition, data from the Vesnarinone trial (VEST) in 384 patients with HF demonstrate a decline in survival with increasing TNFα levels confirming the notion that circulating cytokines are associated with adverse prognosis of HF patients.

The proposed, by the aforementioned mechanisms, anti-inflammatory effects of statins have been confirmed experimentally. Indeed, in a rat HF model with preserved ejection fraction (EF), treatment with rosuvastatin resulted in a significant additional improvement in HF and cardiac remodeling, partly due to decreased myocardial inflammation. In rats after acute myocardial infarction simvastatin treatment for 4 weeks beneficially modified the levels of TNFα, interleukin (IL)-1, 6 and 10 in the infarct regions. Importantly, in 446 patients with systolic HF, followed up for a period of 24 months, statins’ treatment was associated with a decrease in serum levels of C-reactive protein (CRP), IL-6 and tumor necrosis factor-alpha receptor II. Recently, in a randomized study of 22 subjects with ischemic HF short term atorvastatin treatment achieved a significant decrease in serum levels of intracellular adhesion molecule-1.

Taken together we can conclude that HMG CoA reductase inhibitors can modify inflammatory status by modulation of PRAP and ERK pathways by down regulating Toll like receptor 4 mRNA expressions and LDL oxidation and by reducing soluble lipoprotein-associated phospholipase A2 mass and activity. Importantly, the theoretical anti-inflammatory properties were confirmed in experimental and clinical HF models.

Endothelial dysfunction contributes to the pathogenesis of HF and can enhance adverse left ventricle (LV) remodeling and increase afterload in subjects with HF. Interestingly, statins have been constantly associated with improved endothelial function in subjects with a variety of cardiovascular diseases. Endothelium derived nitric oxide (NO) is an important determinant of endothelial function and HMG-CoA reductase inhibitors can up regulate endothelial NO synthase (eNOS) by different mechanisms.

Statins induce down regulation of Rho/Rho kinase signaling pathways, increasing the stability of eNOS mRNA and its expression . In addition, in human endothelial cells the Rho-kinase inhibitor, hydroxyfasudil leads to the activation of the phosphatidylinositol 3-kinase/Akt/eNOS pathway. Statins also induce activation of eNOS through the rapid activation of the serine–threonine protein kinase Akt. The beneficial effects of Akt activation are not limited to eNOS phoshorylation but extend to the promotion of new blood vessels growth. HMG CoA reductase inhibitors can further affect endothelial function through their effect on caveolin-1. Caveolin-1 binds to eNOS inhibiting NO production. Incubation of endothelial cells with atorvastatin promotes NO production by decreasing caveolin-1 expression, regardless of the level of extracellular LDL-cholesterol. These effects were reversed with mevalonate highlighting the therapeutic potential of inhibiting cholesterol synthesis in peripheral cells to correct NO-dependent endothelial dysfunction associated with hypercholesterolemia and possibly other diseases.

Although the experimentally confirmed benefits of HMG CoA reductase inhibitors in diastolic dysfunction and left ventricle stiffness, few data exist concerning the underlying mechanisms. As diastolic dysfunction precedes myocardial hypertrophy the anti-hypertrophic pathways mentioned in the previous section (inhibition of RhoA/Ras/ERK, PRAPγ pathways, inhibition of a large G(h) protein-coupled pathway etc.), may also contribute to the restoration of diastolic function. Moreover, in angiotensin II induced diastolic dysfunction in hypertensive mice, pravastatin not only improved diastolic function but also down-regulated collagen I, transforming growth factor-beta, matrix metalloproteinases (MMPs)-2 and -3, atrial natriuretic factor, IL-6 TNFα, Rho kinase 1 gene expression, and upregulated eNOS gene expression. These findings suggest the potential involvement of Rho kinase 1 in the beneficial effects of pravastatin in diastolic HF. Taken together data suggest that HMG CoA reductase inhibitors might be beneficial in patients with diastolic HF, a hypothesis that remains to be confirmed by clinical studies. Nevertheless, mechanistic studies have not fully explored the pathways affecting diastolic function and most data until now are indirect. Therefore efforts should be focus on the underline mechanisms affecting collagen synthesis, MMPs activity extracellular matrix synthesis and overall diastolic function in HF subjects under statin treatment.

Statins through inhibition of small GTPases can modulate MMPs activity in several cell types such as endothelial cells and human macrophages. In rat and human cardiac fibroblasts, stimulated with either transforming growth factor β1 or angiotensin II, atorvastatin reduced collagen synthesis and α1-procollagen mRNA as well as gene expression of the profibrotic peptide connective tissue growth factor 4. This antifibrotic action may contribute to the anti-remodelling effect of statins. In mouse cardiac fibroblasts treated with angiotensin II, the combination of pravastatin and pioglitazone blocked angiotensin II p38 MAPK and p44/42 MAPK activation and procollagen expression-1.

Several studies have documented the impact of statin treatment on arrhythmia potential. The arrhythmic protective effects of statins can be attributed not only to anti-inflammatory properties but also to changes in myocardial action potential plateau by modulation of Kv1.5 and Kv4.3 channel activity. Atorvastatin and simvastatin block Kv1.5 and Kv4.3 channels shifting the inactivation curve to more negative potentials following a complex mechanism that does not imply the binding of the drug to the channel pore. Moreover, in hypertrophied neonatal rat ventricular myocytes simvastatin alleviated the reduction of Kv4.3 expression, I(to) currents in subepicardial myocardium from the hypertrophied left ventricle. Furthermore, pravastatin in an animal model attenuated reperfusion induced lethal ventricular arrhythmias by inhibition of calcium overload.

Taking together experimental and cellular evidence supporting an effect of statin treatment in myocardial contractility is spare and for the time being we cannot definitively conclude on the clinical impact of HMG CoA reductase inhibitors in myocardial systolic performance.

Half of the cases of HF are attributed to diastolic dysfunction and the prognosis of HF with preserved EF is as ominous as the prognosis of HF with systolic dysfunction. Unfortunately, no treatment has yet been shown, convincingly, to reduce morbidity and mortality in patients with HF and preserved EF, while this group of patients is usually excluded from large prospective randomized trials and accordingly few data exist for the role of statins in this heterogeneous population.

As there is substantially lack of evidence concerning the effects of HMG CoA reductase inhibitors in subjects with HF and preserved EF the first indirect hypothesis was extrapolated from observational prospective studies in subjects with ischemic heart disease and no evidence of congestive HF. Indeed, in a cohort of 430 consecutive patients with ischemic heart disease and a mean EF of 57% Okura et al. observed that subjects under HMG CoA reductase inhibitors treatment had decreased E/E′ ratio—corresponding to a better diastolic function—and a significantly higher survival rate (Okura et al., 2007). According to the authors those beneficially effects can be attributed to improved endothelial function and vasodilatory response to reactive hyperemia, attenuation of myocardial hypertrophy, and interstitial fibrosis.

Despite the positive results from mechanistic and experimental studies clinical studies have failed to confirm a definitive role of HMG CoA reductase inhibitors in HF. Nevertheless, by extrapolating experimental and mechanistic data in clinical settings we further understand how HMG-CoA reductase inhibitors can beneficially affect subgroups of HF subjects such as those with preserved EF, low B-type natriuretic peptide levels, exacerbated inflammatory response and limited interstitial fibrosis. Nevertheless, as a definitive mechanism is lacking, there is uncertainty about the decisive mode of action and further mechanistic studies are needed to reveal how HMG-CoA reductase inhibitors act in HF substrate.

Pro- A-Type Natriuretic Peptide, Proadrenomedullin, and N-Terminal Pro-B-Type Natriuretic Peptide Used in a Multimarker Strategy in Primary Health Care in Risk Assessment of Patients with Symptoms of Heart Failure

Urban Alehagen, Ulf Dahlstr€Om,  Jens F. Rehfeld, And Jens P. Goetze
J Cardiac Fail 2013; 19(1):31-39. http://dx.doi.org/10.1016/j.cardfail.2012.11.002

Use of new biomarkers in the handling of heart failure patients has been advocated in the literature, but most often in hospital-based populations. Therefore, we wanted to evaluate whether plasma measurement of N-terminal pro-B-type natriuretic peptide (NT-proBNP), midregional pro-A-type  atriuretic peptide (MR-proANP), and midregional proadrenomedullin (MR-proADM), individually or combined, gives prognostic information regarding cardiovascular and all-cause mortality that could motivate use in elderly patients presenting with symptoms suggestive of heart failure in primary health care. Methods and Results: The study included 470 elderly patients (mean age 73 years) with symptoms of heart failure in primary health care. All participants underwent clinical examination, 2-dimenstional echocardiography, and plasma measurement of the 3 propeptides and were followed for 13 years. All mortality was registered during the follow-up period. The 4th quartiles of the biomarkers were applied as cutoff values. NT-proBNP exhibited the strongest prognostic information with 4-fold increased risk for cardiovascular mortality within 5 years. For all-cause mortality MR-proADM exhibited almost 2-fold and NTproBNP 3-fold increased risk within 5 years. In the 5e13-year perspective, NT-proBNP and MR-proANP showed significant and independent cardiovascular prognostic information. NT-proBNP and MR-proADM showed significant prognostic information regarding all-cause mortality during the same time. In those with ejection fraction (EF) !40%, MR-proADM exhibited almost 5-fold increased risk of cardiovascular mortality with 5 years, whereas in those with EF O50% NT-proBNP exhibited 3-fold increased risk if analyzed as the only biomarker in the model. If instead the biomarkers were all below the cutoff value, the patients had a highly reduced mortality risk, which also could influence the handling of patients. Conclusions: The 3 biomarkers could be integrated in a multimarker strategy for use in primary health care.

Novel Biomarkers in Heart Failure with Preserved Ejection Fraction

Kevin S. Shah, Alan S. Maisel
Heart Failure Clin 10 (2014) 471–479
http://dx.doi.org/10.1016/j.hfc.2014.04.005

KEY POINTS

  • Heart failure with preserved ejection fraction (HFPEF) is a common subtype of congestive heart failure for which therapies to improve morbidity and mortality have been limited thus far.
  • Numerous biomarkers have emerged over the past decade demonstrating prognostic significance in HFPEF, including natriuretic peptides, galectin-3, soluble ST2, and high-sensitivity troponins.
  • These markers reflect the multiple mechanisms implicated in the pathogenesis of HFPEF, and future research will likely use these markers to not only help determine heart failure phenotypes but also target specific therapies.

Heart failure (HF) is a global epidemic, defined as an abnormality of cardiac function leading to the inability to deliver oxygen at a rate adequate to meet the requirements of tissues. It is truly a clinical syndrome of symptoms and signs resulting from this cardiac abnormality. Over the past decade, further characterization into 2 entities has occurred: HF with preserved ejection fraction (HFPEF) and HF with reduced ejection fraction (HFREF). HFPEF, previously termed diastolic HF, encompasses the syndrome of HF with a preserved ejection fraction. Cutoffs for this ejection fraction typically are from 45% to 50%. The prevalence of HF is upward of 1% to 2% of the adult population, with an increased prevalence found in elderly and female patients. Multiple studies have shown that the prevalence of HFPEF is actually comparable with the number of patients with HFREF. As expected, most deaths from HFPEF are cardiovascular, comprising 51% to 70% of mortality.

The pathophysiology of HFPEF is controversial and remains poorly understood. Originally, HFPEF was thought to be a primary manifestation of diastolic dysfunction of the left ventricle. However, patients with HFREF are known to also commonly have impaired ventricular relaxation. The primary mechanism of left ventricular (LV) dysfunction is based on structural remodeling and endothelial dysfunction, lending itself to LV stiffness, and increased left atrial pressure. This pressure change is what drives pulmonary venous congestion and subsequent symptomatology. The ventricular stiffness commonly seen in HFPEF is attributed to multiple mechanisms, including fibrosis, excessive collagen deposition, cardiomyocyte stiffness, and slow LV relaxation.

The natriuretic peptides (NPs) are the cornerstone biomarker in congestive HF (CHF). Many of the details of the role of NPs are covered in an article – Florea VG, Anand IS. Biomarkers. Heart Fail Clin 2012;8(2):207–24. The Breathing Not Properly trial originally helped establish the role of B-type natriuretic peptide (BNP) in the diagnosis of CHF. BNP and the N-terminal prohormone BNP (NT-proBNP) have been shown in numerous trials to be an excellent tool for ruling out CHF as a cause of acute dyspnea. Aside from a strong negative predictive value, NPs correlate with HF severity, prognostication, outpatient CHF management, and screening. When attempting to use NPs specifically to distinguish between HFPEF and HFREF, results have shown that NPs do not have a particular cutoff, but are typically elevated in HFPEF in comparison with patients without HF. These levels of NPs in HFPEF are typically lower than levels in patients with HFREF.

Although the role of novel renal biomarkers has not been fully explored specifically in HFPEF, they likely have an impactful role in the assessment and management of acute kidney injury (AKI) and the cardiorenal syndrome. Two biomarkers are briefly discussed here: neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C. NGAL is a 25-kDa protein in the lipocalin family of proteins with a role in inflammation and immune modulation.

The future of biomarkers and their utility in HF is very promising, starting with the potential for using biomarkers as end points in trials. Biomarkers serve as surrogates for various pathophysiologic mechanisms, and there are potential benefits in using them as trial end points. Advantages include the ability to obtain quick and early data, as well as possibly better understand the nature of the disease. However, the counterargument against using biomarkers as trial end points includes whether treatment effects on a biomarker reliably predict effects on a clinically meaningful end point.
Reduced cGMP signaling activates NF-κB in hypertrophied hearts of mice lacking natriuretic peptide receptor-A

Elangovan Vellaichamy, Naveen K. Sommana, Kailash N. Pandey
Biochemical and Biophysical Research Communications 327 (2005) 106–111
http://dx.doi.org:/10.1016/j.bbrc.2004.11.153

Mice lacking natriuretic peptide receptor-A (NPRA) develop progressive cardiac hypertrophy and congestive heart failure. However, the mechanisms responsible for cardiac hypertrophic growth in the absence of NPRA signaling are not yet known. We sought to determine the activation of nuclear factor-κB (NF-κB) in Npr1 (coding for NPRA) gene-knockout (Npr1-/-) mice exhibiting cardiac hypertrophy and fibrosis. NF-κB binding activity was 4-fold greater in the nuclear extract of Npr1-/-mutant mice hearts as compared with wild-type (Npr1+/+) mice hearts. In parallel, inhibitory κB kinase-b activity and IκB-α protein phosphorylation were also increased 3- and 4-fold, respectively, in hypertrophied hearts of mutant mice. cGMP levels were significantly reduced 5-fold in plasma and 10-fold in ventricular tissues of mutant mice hearts  relative to wild-type controls. The present findings provide direct evidence that ablation of NPRA/cGMP signaling activates NF-κB binding activity associated with hypertrophic growth of mutant mice hearts.

Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression

Renu Garg, Kailash N. Pandey
Peptides 26 (2005) 1009–1023
http://dx.doi.org:/10.1016/j.peptides.2004.09.022

Natriuretic peptide receptor-A (NPRA) is the biological receptor of the peptide hormones atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The level and activity of this receptor determines the biological effects of ANP and BNP in different tissues mainly directed towards the maintenance of salt and water homeostasis. The core transcriptional machinery of the TATA-less Npr1 gene, which encodes NPRA, consists of three SP1 binding sites and the inverted CCAAT box. This promoter region of Npr1 gene has been shown to contain several putative binding sites for the known transcription factors, but the functional significance of most of these regulatory sequences is yet to be elucidated. The present review discusses the current knowledge of the functional significance of the promoter region of Npr1 gene and its transcriptional regulation by a number of factors including different hormones, growth factors, changes in extracellular osmolarity, and certain physiological and patho-physiological conditions.

Atrial natriuretic peptide (ANP), a member of natriuretic peptide family is a polypeptide consisting of 28 amino acids and was discovered as a potent vasodilator and diuretic hormone produced in granules of the atrium. The natriuretic peptide family consists of the peptide hormones ANP, brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), each of which is derived from a separate gene. ANP and BNP are cardiac derived peptides, which are secreted and up-regulated in myocardium in response to different patho-physiological stimuli, while CNP is an endothelium-derived mediator that plays an important paracrine role in the vasculature. All of these natriuretic peptides elicit a number of vascular, renal, and endocrine effects mainly directed towards the maintenance of blood pressure and extracellular fluid volume by binding to their specific cell surface receptors. ANP exerts its effects at a number of sites including the kidney, where it produces natriuretic and diuretic responses; the adrenal gland, where it inhibits aldosterone synthesis and secretion; vascular smooth muscle cells, where it produces vasorelaxation; the endothelial cells, where it may regulate vascular permeability; gonadal cells, where it affects synthesis of androgen and estradiol. Each of these target sites of ANP activity has been shown to possess specific high affinity receptors for ANP. To date, three different subtypes of natriuretic peptide receptors have been characterized, purified, and cloned, i.e. natriuretic peptide receptors A, B, and C also designated as NPRA, NPRB, and NPRC, respectively. ANP and BNP specifically bind to NPRA, which contains guanylyl cyclase catalytic activity and produces intracellular secondary messenger cGMP in response to hormone binding.

NPRA is considered the biological receptor of ANP and BNP because most of the physiological effects of these hormones are triggered by generation of cGMP or its cell permeable analogs. Recent studies with mice lacking the Npr1 gene, demonstrated that genetic disruption of NPRA increases the blood pressure and causes hypertension in these animals. On the other hand, the effect of ANP was found to be increased linearly in Npr1 gene-duplicated mice
in a manner consistent with gene copy number. All this clearly indicates that the level of NPRA expression determines the extent of the biological effects of ANP and BNP. But the intervention strategies aimed at controlling NPRA expression are limited by the paucity of studies in this area. The cDNA and gene encoding NPRA designated as Npr1 has been cloned and characterized in mouse, rat, bull frog, euryhaline eel, and medaka fish. The primary structure of this gene is essentially same in all the different species and contains 22 exons interrupted by 21 introns.  The Npr1 gene sequence has been found to be interspersed with a number of repetitive elements including (SINES), (MER2), and tandem repeat elements in all the different species.

Although the Npr1 gene transcriptional regulation is only poorly understood, the activity and expression of NPRA assessed primarily through ANP stimulated cGMP accumulation are found to be regulated by a number of factors including auto-regulation by natriuretic peptides themselves, other hormones such as endothelin, glucocorticoids, and angiotensin II (ANG II), growth factors, changes in extracellular ion composition, and certain physiological and patho-physiological conditions.

The core molecular machinery of the TATA-less Npr1 gene consisting of SP1 binding sites and the inverted CCAAT box has been authenticated to be indeed functional in rat promoter element. It has been shown that the molecular machinery that regulates the basal expression of Npr1 gene consists of three SP1 binding sites in conjunction with an inverted CCAAT box present in the proximal promoter region. Mutation in any of these SP1 binding sites which
are located within 350 bp upstream of transcription start site in rat Npr1 promoter inhibited SP1 and SP3 binding and decreased the promoter activity by 50–75%, while simultaneous mutation of all the three led to a >90% reduction in promoter activity. The proximal SP1 binding site was much more effective than the distal sites in inducing the expression implying that the proximity to the core transcriptional machinery contributes to the magnitude of the observed effect. The over-expression of either SP1 or SP3 resulted in the induction of the wild type Npr1 promoter, confirming that these transcription factors serve as positive regulators of the Npr1 gene expression.

A number of natriuretic peptides such as ANP, BNP, CNP, and urodilatin (i.e. ANP95–126) can down-regulate ligand dependent NPRA activity after as little as 2 h prior exposure to the ligand, which remains suppressed until 48 h of exposure in cultured cells. The early reduction of NPRA activity is independent of changes in Npr1 gene expression as the pretreatment of cultured cells with actinomycin D (an inhibitor of transcription) for 1 h failed to block the response to ANP implying that ligand acts, at least early on, through a post transcriptional mechanism in reducing NPRA activity. The sustained reduction of NPRA activity, on the other hand, has been shown in fact due to reduction in NPRA mRNA levels (∼50%) by treatment with 100nM ANP for 48 h. This reduction could also be affected by treatment of cultured cells with 8-Br-cGMP with similar kinetic response and was amplified by phosphodiesterase inhibitors, but was not shared by NPRC-selective ligand cANF, suggesting that the down regulation of Npr1 gene expression is mediated by elevations of intracellular cGMP involving either NPRA or NPRB. .. The cGMP regulatory region was pinpointed to position−1372 to−1354 bp from the transcription start site of Npr1 by gel shift assays and footprinting analysis, which indicated its interaction with transcriptional factor(s). Further cross-competition experiments with mutated oligonucleotides led to the definition of a consensus sequence (−1372 bp AaAtRKaNTTCaAcAKTY −1354 bp) for the novel cGMP-RE, which is conserved in the human (75% identity) and mouse (95% identity) Npr1 promoters. The combination of these transcriptional and post-transcriptional ligand-dependent regulatory mechanisms provides the cells with greater flexibility in both initiating and maintaining the suppression of NPRA activity.

The peptide hormone Ang II is an important component of renin-angiotensin system (RAS) and exerts its biological effects such as blood pressure regulation, vasoconstriction, and cell proliferation in many tissues including the kidney, adrenal glands, brain, and vasculature. The two vasoactive peptide hormones, Ang II (vasoconstrictive) and ANP (vasodilatory), interact and mutually antagonize the biological effects of each other at various levels. ANP has been shown to inhibit Ang II-induced contraction of isolated glomeruli and cultured mesangial cells, as well as Ang II-stimulated activation of protein kinase C and mitogen activated protein kinase in vascular smooth muscle cells in a cGMP-dependent manner. Inversely, Ang II has been shown to down-regulate guanylyl cyclase activity of the biological receptor of ANP, NPRA, by activating protein kinase C and/or by stimulating protein tyrosine phosphatase activity, thereby inhibiting the ANP stimulated cGMP accumulation. Ang II also reduces the ANP dependent cGMP levels by stimulating cGMP hydrolysis, apparently
via a calcium dependent cGMP phosphodiesterase.

Endothelin is a vasoconstrictor peptide that was originally isolated from porcine endothelial cells. It is produced as three isoforms (ET1-3) that bind to two receptor subtypes (ETA and ETB). ET is produced in the kidney and subject to regulation by a number of local and systemic factors including immune cytokines and extracellular tonicity. Since, endothelin is avidly expressed in the nephron segment, where NPRA is up-regulated by osmotic stimulus, it was investigated whether endothelin plays a role in the control of basal or osmotically regulated Npr1 gene expression in these cells. The endogenous endothelin and not the exogeneously administered endothelin inhibit the basal but not osmotically stimulated expression of Npr1. The type A (BQ610) and type B (IRL 1038) endothelin receptor antagonists increased the level of NPRA mRNA by two to three-fold, whereas co-administration of exogenous endothelin resulted in partial reversal of this stimulatory effect of receptor antagonists. The increase in extracellular tonicity reduces the endothelin mRNA accumulation (∼15% of control levels) in inner medullary collecting duct cells but this reduction is not found to be linked to the stimulation of NPRA activity/expression in response to osmotic stress.

Glucocorticoids influence the cardiovascular system and induce a rapid increase in blood pressure. Glucocorticoids are known to regulate
transcription in many systems, possibly by interacting with glucocorticoid responsive elements and associated chromatin proteins. These have been shown to affect the atrial endocrine system by regulating both the synthesis and secretion of ANP in vitro and in vivo. Thus, it seems plausible that glucocorticoid may also interact with the atrial endocrine system by modulating ANP receptor levels. The stimulation of vascular smooth muscle cells from rat mesenteric artery with dexa-methasone (a highly specific synthetic glucocorticoid agonist) caused an increase in NPRA mRNA levels in a time dependent manner which reached a plateau after 48 h of glucocorticoid administration. This mRNA increase was mimicked by cortisol and inhibited by glucocorticoid receptor antagonists RU38486. Also cGMP generated by NPRA in dexamethasone treated cells was higher than in control cells and this production was mimicked by cortisol and blocked by RU 38486. These results suggest that glucocorticoids exert a positive effect on NPRA transcription in rat mesenteric arteries.

Previous studies have shown that guanylyl cyclase activity of NPRA is either activated, or inhibited by an increase in extracellular tonicity. Though none of these studies were definitive in terms of elucidating the mechanisms involved, they suggested that the activation predominates with longer exposure (∼24 h), while the inhibition with short-term exposure (minutes) to the osmotic stimulus. More recently, the mechanism(s) underlying the activation of NPRA expression by osmotic stimulus has been investigated. The NaCl (75 mM) or sucrose (150 mM), but not osmotically inert solute, urea (150 mM) increased NPRA activity, gene expression, and promoter activity after as early as 4 h reaching a maximum at 24 h in inner medullary collecting duct cells. The osmotic stimulus also activated extracellular signal regulated kinase (ERK), c-Jun-NH2-terminal kinase (JNK), and p38 mitogen activated protein kinase- (p38 MAPK-β). The inhibition of p38 MAPK-βwith SB20580 completely  blocked the osmotic stimulation of receptor activity and expression, and caused a dose-dependent reduction in promoter activity, whereas inhibition of ERK with PD98059 had no effect.

The expression of NPRB, the biological receptor of CNP, has been shown to be regulated by a number of factors including natriuretic peptide ligands, intracellular cAMP levels, water deprivation, TGF-1, dexamethasone treatment, as well as renal sodium status, as its mRNA levels were upregulated in the renal cortex of sodium depleted animals. NPRB expression has also been found to be regulated by alternative splicing. Three isoforms of NPRB have been identified of which NPRB1 is the full length form and responds maximally to CNP, NPRB2 isoform contains a 25 amino acid deletion in protein kinase homology domain and NPRB3 contains a partial extracellular ligand binding domain and fails to bind the ligand. The relative expression levels of the three isoforms vary across different tissues. Since, the smaller splice variants of NPRB act as dominant negative isoforms by blocking formation of active NPRB1 homodimers, these isoforms might play important role in the tissue specific regulation of receptor, NPRB.

The NPRC expression has also been found to be down-regulated by its ligands and their secondary messenger, cGMP, hormones, growth factors, dietary salt supplementation, β-adrenergic blocker, and physiological as well as patho-physiological conditions. On the other hand, NPRC expression gets augmented by TGF-β1, 1,25-dihydroxy VitaminD3 and during conditions like chronic heart failure.

Hypertension is the leading cause of human deaths in today’s world. The natriuretic peptide system plays a well defined role in the regulation of blood pressure and fluid volume. The cellular and physiological effects of natriuretic peptides (ANP, BNP, and CNP) are mediated by their specific receptors NPRA, NPRB, and NPRC. The transcriptional regulation of these receptors has been studied since their identification, but still remains poorly understood. Better understanding and the elucidation of different molecular mechanisms responsible for the regulation of NPRA expression would provide us the framework to develop the therapeutic strategies to manipulate the expression levels of this receptor and to control the biological actions of ANP and BNP during different patho-physiological conditions.

Inhibition of Heat Shock Protein 90 (Hsp90) in Proliferating Endothelial Cells Uncouples Endothelial Nitric Oxide Synthase Activity

Jingsong Ou, Zhijun Ou, AW Ackerman, KT Oldham, & KA Pritchard, Jr.
Free Radical Biol Med 2003; 34(2):269–276
PII S0891-5849(02)01299-6

Dual increases in nitric oxide (•NO) and superoxide anion (O2•-) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of •NO generation to offset the increase in O2•- that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase •NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of •NO and O2•-. Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 µM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated •NO production and increased Lω-nitroargininemethylester (L-NAME)-inhibitable O2•-generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O2•- generation, confirming that during proliferation eNOS generates •NO. Our findings demonstrate that hsp90 plays an important role in maintaining •NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit •NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future.

Natriuretic Peptides, Ejection Fraction, and Prognosis – Parsing the Phenotypes of Heart Failure

James L. Januzzi, JR
J Amer Coll Cardiol 2013; 61(14): 1507-9
http://dx.doi.org/10.1016/j.jacc.2013.01.039

Since the first pivotal studies introduced the natriuretic peptides as biomarkers for the diagnosis of heart failure (HF), use of both B-type natriuretic peptide (BNP) and its N-terminal equivalent (NT-proBNP) has grown not only for this indication, but also for establishing HF prognosis as well. Indeed, a vast array of studies has established the natriuretic peptides as the biomarker gold standard to prognosticate risk for a wide array of relevant complications in HF (ranging from ventricular arrhythmias to pump failure). In these studies, the prognostic information provided by BNP and NT-proBNP in HF was independent of a number of relevant covariates, including left ventricular ejection fraction (LVEF).

It has been known for quite a while that patients with heart failure and preserved ejection fraction (HFpEF) typically have lower natriuretic peptide values than do those with heart failure and reduced ejection fraction (HFrEF). A conundrum is thus present: whereas both BNP and NTproBNP tend to be lower in HFpEF, when these peptides are elevated in this setting, they remain prognostic; this intriguing circumstance has been relatively poorly studied. It is in this setting that van Veldhuisen et al. examined the impact of LVEF on the prognostic merits of BNP in the COACH (Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure) study in the present issue of the Journal. The investigators found—as expected—that BNP levels were lower in HFpEF, but for a given BNP concentration, prognosis of those with HFpEF in COACH was just as poor as those with HFrEF at matched BNP values. Stated differently, a high BNP in a patient with HFpEF imparted similar prognostic information as it would in someone with HFrEF. Actually, whereas LVEF was not obviously prognostically impactful, when considered across the range of ventricular function, an elevated BNP concentration in the most normal range of LVEF seemed to be associated with a higher risk than at the lower ranges of pump function. Although it is previously established that BNP or NT-proBNP are prognostic independently of LVEF, the well-executed analysis by van Veldhuisen et al. (van Veldhuisen DJ, Linssen GCM, Jaarsma T, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol 2013;61:1498–506.) allows for a more in-depth examination of this phenomenon and raises some important questions.

Phenotypic Definition of the Patient With Heart Failure

Phenotypic Definition of the Patient With Heart Failure

Phenotypic Definition of the Patient With Heart Failure

Natriuretic Peptides in Heart Failure with Preserved Ejection Fraction

Mark Richards, James L. Januzzi Jr, Richard W. Troughton
Heart Failure Clin 10 (2014) 453–470
http://dx.doi.org/10.1016/j.hfc.2014.04.006

KEY POINTS

  • Threshold values of B-type natriuretic peptide (BNP) and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) validated for diagnosis of undifferentiated acutely decompensated heart failure (ADHF) remain useful in patients with heart failure with preserved ejection fraction (HFPEF), with minor loss of diagnostic performance.
  • BNP and NT-proBNP measured on admission with ADHF are powerfully predictive of in-hospital mortality in both HFPEF and heart failure with reduced EF (HFREF), with similar or greater risk in HFPEF as in HFREF associated with any given level of either peptide.
  • In stable treated heart failure, plasma natriuretic peptide concentrations often fall below cut-point values used for the diagnosis of ADHF in the emergency department; in HFPEF, levels average approximately half those in HFREF.
  • BNP and NT-proBNP are powerful independent prognostic markers in both chronic HFREF and chronic HFPEF, and the risk of important clinical adverse outcomes for a given peptide level is similar regardless of left ventricular ejection fraction.
  • Serial measurement of BNP or NT-proBNP to monitor status and guide treatment in chronic heart failure may be more applicable in HFREF than in HFPEF.

 

The bioactivity of atrial NP (ANP) and B-type NP (BNP) encompasses short-term and longterm hemodynamic, renal, neurohormonal, and trophic effects. The relationship between cardiac hemodynamic load, plasma concentrations of ANP and BNP, and the cardioprotective profile of NP bioactivity have led to investigation of both biomarker and therapeutic potential of

NPs in HF.

PlasmaBNPandNT-proBNP thresholds (100pg/mL and 300 pg/mL, respectively) used in the diagnosis of undifferentiated ADHF retain good diagnosticperformance for acute HFPEF

 

Plasma NPs are related to multiple echo indicators of cardiac structure and function in both HFREF and HFPEF.
Box 1Causes of increased plasma cardiac natriuretic peptides

Cardiac

Heart failure, acute and chronic

Acute coronary syndromes

Atrial fibrillation

Valvular heart disease

Cardiomyopathies

Myocarditis

Cardioversion

Left ventricular hypertrophy

Noncardiac

Age

Female sex

Renal impairment

Pulmonary embolism

Pneumonia (severe)

Obstructive sleep apnea

Critical illness

Bacterial sepsis

Severe burns

Cancer chemotherapy

Toxic and metabolic insults

 

BNP and NT-proBNP fall below ADHF thresholds in stable HFREF in approximately 50% and 20% of cases, respectively. Levels in stable HFPEF are even lower, approximately half those in HFREF.
Whereas BNPs have 90% sensitivity for asymptomatic LVEF of less than 40% in the community (a precursor state for HFREF), they offer no clear guide to the presence of early community based HFPEF.
Guidelines recommend BNP and NT-proBNP as adjuncts to the diagnosis of acute and chronic HF and for risk stratification. Refinements for application to HFPEF are needed.
The prognostic power of NPs is similar in HFREF and HFPEF. Defined levels of BNP and NT-proBNP correlate with similar short-term and long-term risks of important clinical adverse outcomes in both HFREF and HFPEF.
Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely. a In the acute setting, mid-regional pro–atrial natriuretic peptide may also be used (cutoff point 120 pmol/L; ie, <120 pmol/L 5 heart failure unlikely). b Other causes of elevated natriuretic peptide levels in the acute setting are an acute coronary syndrome, atrial or ventricular arrhythmias, pulmonary embolism, and severe chronic obstructive pulmonary disease with elevated right heart pressures, renal failure, and sepsis. Other causes of an elevated natriuretic level in the nonacute setting are old age (>75 years), atrial arrhythmias, left ventricular hypertrophy, chronic obstructive pulmonary disease, and chronic kidney disease. c Exclusion cutoff points for natriuretic peptides are chosen to minimize the false-negative rate while reducing unnecessary referrals for echocardiography. d Treatment may reduce natriuretic peptide concentration, and natriuretic peptide concentrations may not be markedly elevated in patients with heart failure with preserved ejection fraction. BNP, B-type natriuretic peptide; ECG, electrocardiogram; NT-proBNP, N-terminal prohormone of B-type natriuretic peptide. (From McMurray JJ, Adamopoulos S, Anker SD, et al. The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur Heart J 2012;33:1787–847; with permission.)

Natriuretic Peptide Receptor-A Negatively Regulates Mitogen-Activated Protein Kinase and Proliferation of Mesangial Cells: Role of cGMP-Dependent Protein Kinase

Kailash N. Pandey, Houng T. Nguyen, Ming Li, and John W. Boyle
Biochem Biophys Res Commun 271, 374–379 (2000)
http://dx.doi.org:/10.1006/bbrc.2000.2627

peptide (ANP) and its guanylyl cyclase/natriuretic peptide receptor-A (NPRA) on mitogen-activated protein kinase/extracellular signal-regulated kinase 2 (MAPK/ERK2) activity in rat mesangial cells overexpressing NPRA. Agonist hormones such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), angiotensin II (ANG II), and endothelin-1 (ET-1) stimulated 2.5- to 3.5-fold immunoreactive MAPK/ERK2 activity in these cells. ANP inhibited agonist-stimulated activity of MAPK/ERK2 by 65–75% in cells overexpressing NPRA, whereas in vector transfected cells, its inhibitory effect was only 18–20%. NPRA antagonist A71915 and KT5823, a specific inhibitor of cGMP-dependent protein kinase (PKG) completely reversed the inhibitory effect of ANP on MAPK/ERK2 activity. ANP also inhibited the PDGF stimulated [3H]thymidine uptake by almost 70% in cells overexpressing NPRA, as compared with only 20–25% inhibition in vector-transfected cells. These
results demonstrate that ANP/NPRA system negatively regulates MAPK/ERK2 activity and proliferation of mesangial cells in a PKG-dependent manner.

 

Regulation of lipoprotein lipase by Angptl4

Wieneke Dijk and Sander Kersten
Trends in Endocrin and Metab, Mar2014; 25(3):146-155
http://dx.doi.org/10.1016/j.tem.2013.12.005

Triglyceride (TG)-rich chylomicrons and very low density lipoproteins (VLDL) distribute fatty acids (FA) to various tissues by interacting with the enzyme lipoprotein lipase (LPL). The protein angiopoietin-like 4 (Angptl4) is under sensitive transcriptional control by FA and the FA-activated peroxisome proliferator activated receptors (PPARs), and its tissue expression largely overlaps with that of LPL. Growing evidence indicates that Angptl4 mediates the physiological fluctuations in LPL activity, including the decrease in
adipose tissue LPL activity during fasting. This review focuses on the major ambiguities concerning the mechanism of LPL inhibition by Angptl4, as well as on the physiological role of Angptl4 in lipid metabolism, highlighting its function in a variety of tissues, and uses this information to make suggestions for further research.

Box 1. LPL and TG metabolism

LPL belongs to a family of lipases that also includes hepatic lipase, pancreatic lipase, and endothelial lipase. Because LPL is essential in the lipolytic processing of chylomicrons and VLDL, LPL is primarily expressed in tissues that either require large amounts of FA as fuel or are responsible for TG storage, which include heart, skeletal muscle, and adipose tissue. Upon production by the underlying parenchymal cells, LPL is released into the subendothelial space and is transported to the luminal side of the capillary endothelium by the GPI-anchored protein GPIHBP1, which after transport continues to anchor LPL to the capillary endothelium. The essential role for LPL in the clearance of plasma TG is well-demonstrated by the severe hypertriglyceridemia of patients carrying homozygous mutations in the LPL gene. Generalized deletion of LPL in mice results in severe hypertriglycer-idemia, resulting in the premature death of pups within 24 h after birth. Analogous to the deletion of LPL, the mislocalization of LPL to the subendothelial spaces due the absence or misfolding of GPIHBP1 also results in severe chylomicronemia and hypertriglyceridemia. The LPL enzyme is catalytically active as a non-covalent head-to-tail dimer with a catalytic N-terminal domain and a non-catalytic C terminal domain. Folding of LPL into its dimer conformation occurs in the endoplasmic reticulum, chaperoned by lipase maturation factor 1, calreticulin, and calnexin. In its active 3D conformation, the catalytic site of LPL is postulated to be covered by a lid, which can be opened by the binding of chylomicrons and VLDL to the C terminus. The active LPL dimers rapidly exchange subunits, indicating that a dynamic equilibrium exists between LPL dimers and dimerization-competent monomers. Dimerization-competent monomers have, however, not yet been isolated, and it is unclear whether this monomer is catalytically active. The enzymatic activity of LPL is lost when the LPL dimer is converted into inactive, folded monomers. This conversion to inactive monomers is mainly regulated via post-translational mechanisms and is dependent on nutritional state. Enzymatic activity of inactive monomers can be regained in vitro by the addition of calcium, indicating that inactivation of LPL is a reversible process.

One of the key questions is whether (patho)physiological variations in LPL activity are mediated via regulation of Angptl4 cleavage and/or oligomerization, and which factors are involved in modulating Angptl4 in vivo. Recent biochemical evidence suggests that FA may be able to promote dissociation of oligomers, which, by destabilizing the protein, would impair its ability to inhibit LPL. Destabilization of Angptl4 by FA is, however, seemingly at odds with the marked stimulatory effect of FA on Angptl4 production observed in vitro and in vivo.

The currently accepted molecular model for the inhibition of LPL by Angptl4 is that Angptl4 stimulates the conversion of catalytically active LPL dimers into inactive monomers – following in vitro studies showing that coincubation of LPL and Angptl4 increases the abundance of LPL monomers. Subsequent studies revealed that the proportion of LPL dimers is reduced in post-heparin plasma of mice that overexpress Angptl4 in favor of LPL monomers, providing in vivo support for the dimer-to monomer conversion. The elucidation of the purported biochemical mechanism has strengthened the status of Angptl4 as a LPL inhibitor, but several questions related to the in vivo mechanism remain unanswered. Whereas the original in vitro experiments favored the hypothesis that Angptl4 enzymatically and irreversibly catalyzes the LPL dimer-to-monomer conversion, an in vivo study of Angptl4 transgenic mice suggested that Angptl4 is physically bound to LPL monomers, thereby driving the LPL dimer–monomer equilibrium towards inactive monomers. The latter study also revealed that the relative decrease in post-heparin plasma LPL activity upon Angptl4 overexpression is much more pronounced than the relative decrease in heparin-releasable LPL dimers, pointing to an additional or alternative mechanism. In support, a recently published study suggests that Angptl4, instead of acting as a catalyst, functions as a conventional, non-competitive inhibitor that binds to LPL to prevent the hydrolysis of substrate LPL and Angptl4 are regulated by changes in nutritional state in a tissue-specific manner, reflecting the different functions of these tissues and the corresponding variations in physiological requirements for lipids. Below, we discuss current knowledge on the regulation of Angptl4 and LPL in response to various physiological stimuli and address the importance of Angptl4 in lipid uptake. An overview of the role of Angptl4 in physiological regulation of lipid metabolism is presented in Figure 2.

model for mechanisms of lipoprotein lipase (LPL) inhibition by Angptl4.

model for mechanisms of lipoprotein lipase (LPL) inhibition by Angptl4.

Figure 1. Hypothetical model for mechanisms of lipoprotein lipase (LPL) inhibition by Angptl4. Angiopoietin-like 4 (Angptl4) and LPL are expressed in the parenchymal cells of muscle, heart, and adipose tissue. Following secretion of LPL and Angptl4 into the subendothelial space, transport of LPL to the capillary lumen is mediated by two mechanisms. The principal transport mechanism (1) relies on GPIHBP1 [glycosylphosphatidylinositol (GPI)-anchored high density lipoprotein-binding protein] picking up LPL from the subendothelial space and transporting it to the capillary lumen. This action by GPIHBP1 is opposed by Angptl4, which is bound to extracellular matrix (ECM) proteins and which retains and inhibits LPL. In the presence of GPIHBP1, high expression levels of Angptl4 are needed to overcome the competition with GPIHBP1. Angptl4 secreted into the capillary lumen, primarily as N-terminal truncation fragment generated by cleavage by proprotein convertases (PCs), inhibits LPL activity on the endothelium by promoting the irreversible conversion of LPL dimers into inactive monomers and/or via a reversible mechanism that requires binding of Angptl4 to LPL. The second transport mechanism involves a so far unidentified carrier and can be disrupted by Angptl4. In the absence of GPIHBP1, Angptl4 fully retains LPL in the subendothelial space (a). The additional loss of Angptl4 liberates LPL and allows it to be transported to the endothelial surface via the unidentified carrier (b). This model suggests that Angptl4 and LPL start interacting before arrival in the capillary lumen, either in the parenchymal cells or in the subendothelial space. Abbreviation: HSPG, heparan sulfate proteoglycan.

Regulation and role of angiopoietin-like 4 (Angptl4)

Regulation and role of angiopoietin-like 4 (Angptl4)

Figure 2. Regulation and role of angiopoietin-like 4 (Angptl4) in lipid metabolism. Angptl4 is expressed in parenchymal cells of white adipose tissue (WAT), liver, intestine, heart and muscle, as well as in macrophages, where it is subject to cell- and tissue-specific regulation. Angptl4 is a sensitive target of peroxisome proliferator-activated receptor (PPAR) transcription factors in several tissues. In WAT the expression of Angptl4 is induced during fasting and by the transcription factors PPARg, glucocorticoid receptor (GR), and hypoxia inducible factor 1a (HIF1a). In WAT Angptl4 stimulates lipolysis of stored triglycerides (TG) and inhibits lipoprotein lipase (LPL) activity. Expression of Angptl4 in liver is stimulated by PPARa, PPARd, and GR. Because the liver does not express LPL, Angptl4 is mainly released into the blood, affecting LPL activity in peripheral tissues. Angptl4 may also impact upon hepatic lipase activity in liver. Expression of Angptl4 in heart and skeletal muscle is potently induced by fatty acids (FA) via PPARd activation. Angptl4 inhibits LPL activities in cardiac and likely skeletal muscle. FA also stimulate Angptl4 expression in macrophages via PPARd, leading to local inhibition of LPL activity. We hypothesize that macrophage LPL enables uptake of remnant particles containing lipid antigens, which are subsequently presented to natural killer T cells. In the intestine, FA stimulate Angptl4 expression via one of the PPARs. Angptl4 produced by enterocytes may be released towards the lumen and inhibit pancreatic lipase activity. Angptl4 produced by enteroendocrine cells is released towards the blood and may inhibit LPL in distant tissues.

Box 2. Outstanding questions

  1. What is the importance of Angptl4 cleavage and oligomerization to Angptl4 function in vivo?
  2. What is the precise biochemical mechanism behind the inhibition of LPL activity by Angptl4?
  3. At which cellular location(s) does the inhibition of LPL by Angptl4 occur and, if at multiple locations, what is the relative contribution of both tissue-produced Angptl4 compared to circulating Angptl4 with respect to inhibition of tissue LPL activity.
  4. What is the interplay between GPIHBP1 and Angptl4 in the regulation of LPL activity?
  5. What is the protein structure of Angptl4 and LPL?
  6. Does Angptl4 also regulate LPL activity in brown adipose tissue and skeletal muscle and, if so, how is the expression of Angptl4 regulated in these tissues?
  7. What is the potential of Angptl4 as a biomarker in the context of disorders of lipid metabolism?

In the past decade, angiopoietin-like proteins have been demonstrated to regulate plasma TG levels powerfully in mice and humans. The elucidation of these proteins as inhibitors of LPL activity has led to a paradigm shift in how clearance of circulating TG and thereby tissue uptake of FA are regulated. Most of our understanding of angiopoietin-like proteins has resulted from detailed study of Angptl4.

A major portion of the physiological variation in LPL activity in various tissues can be attributed to regulation of Angptl4 production. We predict that Angptl4 will turn out to be equally important for governing LPL activity in muscle during exercise, in brown adipose tissue during cold, and in several tissues during fasting.

Besides the increasing recognition of the pivotal role of Angptl4 in lipid metabolism as an inhibitor of LPL, major insight has been gained into the molecular mechanism of action of Angptl4. Key questions remain, however, especially related to the interaction between LPL, GPIHBP1, and Angptl4 on the endothelium and in the subendothelial space. Several points of interest have been highlighted throughout the text; these include the elucidation of the molecular structure for LPL and Angptl4 by X-ray crystallography and the clarification of in vivo Angptl4 cleavage and oligomerization.

Native Low-Density Lipoprotein Induces Endothelial Nitric Oxide Synthase Dysfunction: Role of Heat Shock Protein 90 And Caveolin-1

Kirkwood A. Pritchard, Jr., Allan W. Ackerman, Jingsong Ou, et al.
Free Radical Biol & Med 2002; 33(1):52–62 PII S0891-5849(02)00851-1

Although native LDL (n-LDL) is well recognized for inducing endothelial cell (EC) dysfunction, the mechanisms remain unclear. One hypothesis is n-LDL increases caveolin-1 (Cav-1), which decreases nitric oxide (•NO) production by binding endothelial nitric oxide synthase (eNOS) in an inactive state. Another is n-LDL increases superoxide anion (O2•-), which inactivates •NO. To test these hypotheses, EC were incubated with n-LDL and then analyzed for •NO, O2•-, phospho-eNOS (S1179), eNOS, Cav-1, calmodulin (CaM), and heat shock protein 90 (hsp90). n-LDL increased NOx by more than 4-fold while having little effect on A23187-stimulated nitrite production. In contrast, n-LDL decreased cGMP under basal and A23187-stimulated conditions and increased O2•-by a mechanism that could be inhibited by L-nitroargininemethylester (L-NAME) and BAPTA/AM. n-LDL increased phospho-eNOS by 149%, eNOS by [1]34%, and Cav-1 by 28%, and decreased the association of hsp90 with eNOS by 49%. n-LDL did not appear to alter eNOS distribution between membrane fractions (-85%) and cytosol (-15%). Only 3–6% of eNOS in membrane fractions was associated with Cav-1. These data support the hypothesis that n-LDL increases O2•-, which scavenges •NO, and suggest that n-LDL uncouples eNOS activity by decreasing the association of hsp90 as an initial step in signaling eNOS to generate O2•-.

In conclusion, n-LDL decreases the association of hsp90 with eNOS, increases phospho-eNOS levels, and increases eNOS-dependent O2•-generation. These findings suggest that activation of eNOS without adequate levels of hsp90 may signal eNOS to switch from •NO to O2•-generation. Such changes in eNOS radical product generation may play an important role in impairing endothelial and vascular function.

New insights into IGF-1 signaling in the heart

Rodrigo Troncoso, C Ibarra, JM Vicencio, E Jaimovich, and S Lavandero
Trends in Endocrin and Metab, Mar 2014; 25(3):128-131
http://dx.doi.org/10.1016/j.tem.2013.12.002

Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca2+ transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies.

The hormone insulin-like growth factor 1 (IGF-1) is a small peptide of 7.6 kDa, which is composed of 70 amino acids and shares 50% homology with insulin. IGF-1 plays key roles in regulating proliferation, differentiation, metabolism, and cell survival. It is mainly synthesized and secreted by the liver in response to hypothalamic growth hormone (GH); its plasma concentration is finely regulated (Box 1). However, other tissues also produce IGF-1, which acts locally as an autocrine and paracrine hormone. IGF-1 exhibits pleiotropic effects in many organs and is also involved in the development of several pathologies.

Box 1. IGF-1 synthesis and biodisponibilityInsulin-like growth factor 1 (IGF-1) is a 70 amino acid peptide

hormone with endocrine, paracrine, and autocrine effects. It shares

>60% structure homology with IGF-2 and 50% with pro-insulin. IGF-

1 is mainly synthesized in the liver in response to hypothalamic

growth hormone (GH). In the peripheral circulation it exerts negative

feedback on the somatotrophic axis suppressing pituitary GH

release. IGF-1 can also be generated in almost all tissues, but liver

synthesis accounts for nearly 75% of circulating IGF-1 levels. As a

hormone with a wide range of physiological roles, IGF-1 circulating

levels must be strictly controlled. Around 98% of circulating IGF-1 is

bound to insulin-like growth factor binding protein (IGFBP). Six

forms of high affinity IGFBP have been described, with IGFBP3

binding approximately 90% of circulating IGF-1. Also, IGFBP1–6 and

their fragments have significant intrinsic biological activity independent

of IGF-1 interaction.

Canonical and noncanonical IGF-1 signaling pathways Activation of IGF-1R requires the sequential phosphorylation of three conserved tyrosine residues within the activation loop of the catalytic domain. From these phosphorylated motifs, tyrosine 950 contained in an NPXY motif provides a docking site for the recruitment of adaptor proteins, such as insulin receptor substrate-1 (IRS-1) and Shc, as an obligatory step to initiate signaling cascades. Two canonical pathways are activated by IGF-1R in cardiomyocytes – the phosphatidylinositol-3 kinase (PI3K)/Akt pathway and the extracellular signal-regulated kinase (ERK) pathway. Both pathways have been extensively studied, and their involvement in the pro-hypertrophic and pro-survival actions in cardiomyocytes is well established. Interestingly, a noncanonical signaling mechanism for IGF-1R in cardiomyocytes has been described in several recent studies. These studies show that some of the effects of IGF-1 are inhibited by the heterotrimeric Gi protein blocker Pertussis toxin (PTX) in several cell lines, suggesting that IGF-1R is a dual-activity receptor that triggers tyrosine-kinase-dependent responses as well as Gi-protein-dependent pathways. This duality has been reported in cultured neonatal cardiomyocytes; IGF-1R can activate ERK and Akt but also phospholipase C (PLC), which increases inositol 1,4,5 triphosphate (InsP3; IP3) leading to nuclear Ca2+ signals.

The cardiac effects of IGF-1 are mediated by activation of the plasma membrane IGF-1R, which belongs to the receptor tyrosine kinase (RTK) family. IGF-1R comprises a α2β2 heterotetrameric complex of approximately 400 kDa. Structurally, IGF-1R has two extracellular a-subunits that contain the ligand-binding sites. Each α-subunit couples to one of two membrane-spanning β-subunits, which contain an intracellular domain with intrinsic tyrosine kinase activity. Both subunits of IGF-1R are the product of one single gene, which is synthesized as a 180 kDa precursor. The immature IGF-1R full peptide is further glycosylated, dimerized, and proteolytically processed for assembly of the mature receptor isoforms a and b. In neonatal and adult rat cardiomyocytes, the IGF-1R precursor peptide and the processed α and β receptor subunits have been detected. Binding of IGF-1 to its receptor initiates a complex signaling cascade in cardiomyocytes.

Figure 1. not shown. Canonical and noncanonical signaling pathways activated by insulin-like growth factor 1 (IGF-1) in cardiomyocytes. Binding of IGF-1 to plasma membrane IGF-1 receptor (IGF-1R) leads to receptor autophosphorylation in the intracellular β-subunits. Docking of Grβ2 to the phosphorylated IGF-1Rβ subunits leads to extracellular signal-regulated kinase (ERK) phosphorylation through the Ras/Raf/Mitogen-activated protein kinase (MEK) axis. Phosphorylated ERK can translocate to the nucleus to control gene expression. Phosphorylated β-subunits also provide docking sites for insulin receptor substrate-1 (IRS-1), which mediates phosphatidylinositol-3 kinase (PI3K) activation and Akt phosphorylation. Downstream targets of activated Akt are mechanistic target of rapamycin (mTOR), which suppresses autophagy and promotes protein synthesis by activating S6K and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). Akt also phosphorylates and inactivates Bad, thus inhibiting apoptosis. IGF-1R activation also promotes its interaction with a Pertussis-toxin-sensitive heterotrimeric Gi protein, which mediates the activation of phospholipase C (PLC) and hydrolysis of plasma membrane phosphatidylinositol 4,5 biphosphate (PIP2) to form inositol 1,4,5 triphosphate (InsP3; IP3) which activates InsP3 receptors located at the endoplasmin reticulum (ER)/nuclear envelope Ca2+ store, producing nucleoplasmic and cytoplasmic Ca2+ increases. The former is involved in the regulation of specific target genes and the latter promotes mitochondrial Ca2+ uptake, which increases mitochondrial respiration and metabolism, further preventing apoptosis and regulating autophagy. Canonical signaling pathways include the ERK and Akt axes, and are shown in red, whereas the noncanonical G protein pathway is shown in blue. Both pathways interact as Ca2+ contributes to ERK activation and additionally both Akt and ERK can compensate each other’s activation. Abbreviations: MEK, Mitogen-activated protein kinase; mTOR, mechanistic target of rapamycin; 4EBP1, eukaryotic translation initiation factor 4E binding protein 1; PIP2, phosphatidylinositol 4,5 biphosphate.

Figure 2. not shown. Classical versus proposed models of nuclear Ca2+ signaling in cardiomyocytes. The insulin-like growth factor 1 receptor (IGF-1R) can specifically regulate nuclear Ca2+ signaling independently of the role of Ca2+ on excitation–contraction coupling. On the classic model, inositol 1,4,5 triphosphate (InsP3; IP3) produced after IGF-1R activation travels from the peripheral plasma membrane to the nucleus, where it activates InsP3 receptors. In this model InsP3 bypasses its receptors present on the sarcoplasmic reticulum, which would lead to cytosolic Ca2+ signals. The novel model that we propose is based on recent findings, where the IGF-1R signaling complex is present in T-tubule invaginations toward the nucleus. In these compartments, IGF-1R activation leads to locally restricted InsP3 production that allows nuclear Ca2+ signals to regulate gene expression of genes associated with the development of cardiomyocyte hypertrophy. Abbreviations: RyR, ryanodine receptor; ECC, excitation–contraction coupling; PLC, phospholipase C; DHPR, dihydropyridine receptor.

The beneficial roles of IGF-1 in the cardiovascular system largely explain the interest in the development of new IGF-1-based treatments for cardiovascular disease. So far the FDA has approved two drugs for the treatment of IGF-1 deficiency: mecasermin (Increlex1), a human recombinant IGF-1 analog; and mecasermin rinfabate (IPLEX1), a binary protein complex of human recombinant IGF-1 and human recombinant IGBP-3. The safety of a chronic systemic IGF-1 therapy is open to question because it could promote severe adverse effects, such as an increased risk of cancer. To avoid these problems, several researchers have selectively overexpressed IGF-1 and IGF-1R in the heart.

Box 2. Outstanding questionsInsulin-like growth factor 1 (IGF-1) is an old friend of the heart. Despite the well-known protective effects of IGF-1 on cardiac function and the antiapoptotic effects of this peptide, novel evidence opens new questions to this longstanding relationship.

·       How do the multiple signaling pathways triggered by IGF-1 receptor (IGF-1R) interact with each other?

·       What lies further than extracellular signal-regulated kinase (ERK)/Akt/Ca2+ activation toward heart function?

·       Do these signaling pathways regulate cardiac fibroblast or endothelial cell function?

·       Which are the specific downstream signaling pathways of the different pools of IGF-1R and their role in regulating cardiomyocyte survival, hypertrophy, metabolism, proliferation?

·       What drives IGF-1R to such specific subcellular compartments?

·       What is the relevance of the hybrid IGF-1R/insulin receptors on cardiovascular disease?

·       Does a crosstalk exist between insulin receptor and IGF-1R in the heart under physiological and pathological conditions?

·       Is one pathway more beneficial than the other?

·       Will stem cell therapy of cardiac progenitors be able to provide concrete treatment opportunities?

·       Is IGF-1 a key regulator of this outcome?

Abundant evidence supports the key physiological roles of IGF-1 in the heart. In cardiomyocytes, IGF-1 activates multiple downstream signaling pathways for controlling cell death, metabolism, autophagy, differentiation, transcription, and protein synthesis (Figure 1). Of great interest are the findings that the entire IGF-1R complex is strategically located in perinuclear sarcolemmal invaginations that locally control nuclear Ca2+ signaling and transcriptional upregulation (Figure 2). This novel evidence changesmthe classical paradigm of IGF-1 signaling and adds a new level of complexity that may be relevant for other signaling receptors in the heart: interorganelle communication between plasma membrane invaginations and the nucleus.
The strategic localization of IGF-1R in these structures and the association with heterotrimeric G proteins may explain the differences in the phenotypic response induced by IGF-1 and others agonists, like endothelin-1 and angiotensin II, that also signal through intracellular Ca2+. By activating a noncanonical, selective mechanism of nuclear Ca2+ release, IGF-1 can regulate the expression of a specific set of cardiac genes via the generation of a particular signal-encoding pattern, leading to adaptive cardiac hypertrophy, antiapoptotic effects, and metabolic adaptation.

Pulmonary Hypertension in Heart Failure with Preserved Ejection Fraction – any Pathophysiological Role of Mitral Regurgitation

Marco Guazzi
http://dx.doi.org:/10.1016/j.jacc.2009.04.088

read with interest the study by Lam et al. (1) as an important contribution to the pathophysiological and clinical impact of pulmonary hypertension (PH) in hypertensive patients with heart failure and preserved left ventricular ejection fraction (HFpEF). Recent guidelines on arterial PH recognize HFpEF as a growing cause of left-sided PH, but a definitive appreciation of its true prevalence and prognostic relevance is lacking. The present study provides some new important information on this subject.

It is noteworthy that HFpEF was associated, in a high rate of cases (83%), with a typical hemodynamic pattern of precapillary PH, and a strong correlation was found between pulmonary artery systolic pressure and pulmonary capillary wedge pressure. Most important, pulmonary artery systolic pressure, rather than other echocardiography-derived measures of diastolic dysfunction, was the only significant multivariate predictor of mortality, a finding that was confirmed even when combined comorbid diseases potentially contributing to PH development, such as chronic obstructive pulmonary disease, were taken into account.

In patients with systolic heart failure, a major determinant of PH development is mitral regurgitation. Whether mitral regurgitation could be a putative factor in the pathogenesis of PH in HFpEF patients remains an open and intriguing question.

Accordingly, it would be of interest if the authors could provide some details on how many HFpEF patients exhibited mitral regurgitation, especially in comparison with control hypertensive patients without HFpEF.

Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol 2009; 53:1119–23.

Midregion Prohormone Adrenomedullin and Prognosis in Patients Presenting with Acute Dyspnea Results from the BACH (Biomarkers in Acute Heart Failure) Trial

Alan Maisel, MD, Christian Mueller, Richard M. Nowak,W. Frank Peacock, et al.
J Am Coll Cardiol 2011; 58(10):1057–67
http://dx.doi.org:/10.1016/j.jacc.2011.06.006

Objectives The aim of this study was to determine the prognostic utility of midregion proadrenomedullin (MR-proADM) in all patients, cardiac and noncardiac, presenting with acute shortness of breath.
Background
The recently published BACH (Biomarkers in Acute Heart Failure) study demonstrated that MR-proADM had superior accuracy for predicting 90-day mortality compared with B-type natriuretic peptide (area under the curve: 0.674 vs. 0.606, respectively, p < 0.001) in acute heart failure.
Methods The BACH trial was a prospective, 15-center, international study of 1,641 patients presenting to the emergency department with dyspnea. Using this dataset, the prognostic accuracy of MR-proADM was evaluated in all patients enrolled for predicting 90-day mortality with respect to other biomarkers, the added value in addition to clinical variables, as well as the added value of additional measurements during hospital admission.
Results Compared with B-type natriuretic peptide or troponin, MR-proADM was superior for predicting 90-day all-cause mortality in patients presenting with acute dyspnea (c index = 0.755, p < 0.0001). Furthermore, MR-proADM added significantly to all clinical variables (all adjusted hazard ratios: HR=3.28), and it was also superior to all other biomarkers. MRproADM added significantly to the best clinical model (bootstrap-corrected c index increase: 0.775 to 0.807; adjusted standardized hazard ratio: 2.59; 95% confidence interval: 1.91 to 3.50; p < 0.0001). Within the model, MR-proADM was the biggest contributor to the predictive performance, with a net reclassification improvement of 8.9%. Serial evaluation of MR-proADM performed in patients admitted provided a significant added value compared with a model with admission values only (p< 0.0005). More than one-third of patients originally at high risk could be identified by the biomarker evaluation at discharge as low-risk patients. Conclusions MR-proADM identifies patients with high 90-day mortality and adds prognostic value to natriuretic peptides in patients presenting with acute shortness of breath. Serial measurement of this biomarker may also prove useful for monitoring, although further studies will be required. (Biomarkers in Acute Heart Failure [BACH]; NCT00537628)

Invasive Hemodynamic Characterization of Heart Failure with Preserved Ejection Fraction

Mads J. Andersen, Barry A. Borlaug
Heart Failure Clin 10 (2014) 435–444
http://dx.doi.org/10.1016/j.hfc.2014.03.001

KEY POINTS

  • Invasive hemodynamic assessment in heart failure with preserved ejection fraction (HFpEF) was originally a primary research tool to advance the understanding of the pathophysiology of HFpEF.
  • The role of invasive hemodynamic assessment in HFpEF is expanding to the diagnostic arena where invasive assessment offers a robust, sensitive, and specific way to diagnose or exclude HFpEF in patients with unexplained dyspnea and normal ejection fraction.
  • In future years, invasive hemodynamic profiling may more rigorously phenotype patients to individualized therapy and, potentially, deliver novel device-based structural interventions.

The circulatory system serves to deliver substrates to the body via the bloodstream while removing the byproducts of cellular metabolism. Hemodynamics broadly refers to the study of the forces involved in the circulation of blood, which are governed by to the physical properties of the heart and vasculature and their dynamic regulation by the autonomic nervous system.

Afterload represents the forces opposing ventricular ejection and can be quantified by systolic left ventricular (LV) wall stress and aortic input impedance or its individual components (resistance, compliance, characteristic impedance). Wall stress is inconvenient because it depends on heart size and geometry, whereas impedance is cumbersome because it is a frequency-domain parameter that cannot be easily coupled with time-domain measures of ventricular function. Effective arterial elastance (Ea), defined by the ratio of LV end-systolic pressure (ESP) to stroke volume, provides a robust measure of total arterial load. Ea is not a directly measured parameter but, instead, a net or lumped stiffness of the vasculature that incorporates both mean and oscillatory components of afterload (Fig. 1). Preload reflects the degree of myofiber stretch before the onset of contraction, which, in turn, dictates the force and velocity of contraction according to the Frank-Starling principle. In everyday practice, preload is often conceptualized as equivalent to LV filling pressures. However, in fact, preload is most accurately reflected by the LV volume at end-diastole volume (EDV). Filling pressures are related to EDV by the LV diastolic chamber stiffness, which differs in healthy volunteers and subjects with HFpEF.

Fig. 1. Not shown. Ventricular-arterial coupling in the pressure-volume plane. Pressure volume loop at steady state is shown in dark black. The area subtended by the loop (shaded) represents the stroke work. Stroke volume is the difference between end-diastolic volume (EDV) and end-systolic volume (ESV). Ea is defined by the negative slope connecting the ESP and ESV coordinates with EDV and pressure = 0. With acute preload reduction (dotted line loops) there is progressive reduction in EDV, ESV, and ESP. The linear slope of the endsystolic pressure volume relationship (ESPVR) is LV end-systolic elastance (Ees). The curvilinear slope of the end diastolic pressure–volume relationship (EDVPR) is derived by fitting pressure volume coordinates measured during diastasis to the equation shown. The exponential power or stiffness constant (b) obtained is a measure of LV diastolic stiffness. (Adapted from Borlaug BA, Kass DA. Invasive hemodynamic assessment in heart failure. Heart Fail Clin 2009;5(2):217–28; with permission.)

Fig. 3. Not shown. Left ventricular diastolic reserve in HFpEF. In the normal healthy adult, the rate of LV pressure decay during isovolumic contraction (t) is rapid and increases markedly during exercise in association with a reduction in LVmin, allowing for suction of blood into the LV, with no increase in left atrial pressure or LV end-diastolic pressure (LVEDP) despite an increase in LV end-diastolic volume and marked shortening of the cycle length. In HFpEF, relaxation is prolonged at baseline (increased t) with inadequate hastening (shortening of t) during exercise, contributing to an inability to reduce LVmin and, consequently, a complete lack of suction effects. LV filling then completely depends on left atrial hypertension, which develops in tandem with marked elevation in LVEDP. (Data from Borlaug BA, Jaber WA, Ommen SR, et al. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart 2011;97(12):964–9.)

Fig. 4. Preload and filling pressures in HFpEF. (A) Cumulative distribution plot shows that acute changes in stroke volume with nitroprusside infusion are lower in HFpEF (black) compared with HFrEF (red). Because afterload (Ea) is lowered, any acute reduction in SV must be related to reduction in preload volume (EDV) and nearly 40% of HFpEF patients experienced stroke volume reduction with nitroprusside, despite high filling pressures (PCWP 20–25 mm Hg), indicating increased reliance on high pressures to achieve adequate EDV. *p<0.0001 compared with HFrEF. (B) LVEDP in a healthy adult (blue) and in a HFpEF patient with increased LV diastolic stiffness (green). At the same preload (EDV), pressure is more than twofold higher in HFpEF. In contrast, at the same LV diastolic pressure (15 mm Hg), LV volume is much lower in HFpEF, indicating decreased LV diastolic capacitance. V15, volume at end-diastolic pressure = 15 mm Hg; LVEDP. (Adapted from Schwartzenberg S, Redfield MM, From AM, et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 2012;59(5):442–51; with permission.)

Updated Clinical Classification of Pulmonary Hypertension

Gérald Simonneau, Ivan M. Robbins, Maurice Beghetti, et al.
J Am Coll of Cardiol   2009; 54(1), Suppl S
http://dx.doi.org:/10.1016/j.jacc.2009.04.012

The aim of a clinical classification of pulmonary hypertension (PH) is to group together different manifestations of disease sharing similarities in pathophysiologic mechanisms, clinical presentation, and therapeutic approaches. In 2003, during the 3rd World Symposium on Pulmonary Hypertension, the clinical classification of PH initially adopted in 1998 during the 2nd World Symposium was slightly modified. During the 4th World Symposium held in 2008, it was decided to maintain the general architecture and philosophy of the previous clinical classifications. The modifications adopted during this meeting principally concern Group 1, pulmonary arterial hypertension (PAH). This subgroup includes patients with PAH with a family history or patients with idiopathic PAH with germline mutations (e.g., bone morphogenetic protein receptor-2, activin receptor-like kinase type 1, and endoglin). In the new classification, schistosomiasis and chronic hemolytic anemia appear as separate entities in the subgroup of PAH associated with identified diseases. Finally, it was decided to place pulmonary venoocclusive disease and pulmonary capillary hemangiomatosis in a separate group, distinct from but very close to Group 1 (now called Group 1=). Thus, Group 1 of PAH is now more homogeneous. (J Am Coll Cardiol 2009; 54: S43–54)
Updated Evidence-Based Treatment Algorithm in Pulmonary Arterial Hypertension

Robyn J. Barst,  J. Simon R. Gibbs, Hossein A. Ghofrani, et al.
J Am Coll Cardiol 2009; 54(1), Suppl S,

Uncontrolled and controlled clinical trials with different compounds and procedures are reviewed to define the risk benefit profiles for therapeutic options in pulmonary arterial hypertension (PAH). A grading system for the level of evidence of treatments based on the controlled clinical trials performed with each compound is used to propose an evidence-based treatment algorithm. The algorithm includes drugs approved by regulatory agencies for the treatment of PAH and/or drugs available for other indications. The different treatments have been evaluated mainly in idiopathic PAH, heritable PAH, and in PAH associated with the scleroderma spectrum of diseases or with anorexigen use. Extrapolation of these recommendations to other PAH subgroups should be done with caution. Oral anticoagulation is proposed for most patients; diuretic treatment and supplemental oxygen are indicated in cases of fluid retention and hypoxemia, respectively. High doses of calcium-channel blockers are indicated only in the minority of patients who respond to acute vasoreactivity testing. Nonresponders to acute vasoreactivity testing or responders who remain in World Health Organization (WHO) functional class III, should be considered candidates for treatment with either an oral phosphodiesterase-5 inhibitor or an oral endothelin-receptor antagonist. Continuous intravenous administration of epoprostenol remains the treatment of choice in WHO functional class IV patients. Combination therapy is recommended for patients treated with PAH monotherapy who remain in WHO functional class III. Atrial septostomy and lung transplantation are indicated for refractory patients or where medical treatment is unavailable. (J Am Coll Cardiol 2009;54:S78–84)

Inhibition and down-regulation of gene transcription and guanylyl cyclase activity of NPRA by angiotensin II involving protein kinase C

Kiran K. Arise, Kailash N. Pandey
Biochem and Biophys Res Commun 349 (2006) 131–135
http://dx.doi.org:/10.1016/j.bbrc.2006.08.003

The objective of this study was to investigate the role of protein kinase C (PKC) in the angiotensin II (Ang II)-dependent repression of Npr1 (coding for natriuretic peptide receptor-A, NPRA) gene transcription. Mouse mesangial cells (MMCs) were transfected with Npr1 gene promoter-luciferase construct and treated with Ang II and PKC agonist or antagonist. The results showed that the treatment of MMCs with 10 nM Ang II produced a 60% reduction in the promoter activity of Npr1 gene. MMCs treated with 10 nM Ang II exhibited 55% reduction in NPRA mRNA levels, and subsequent stimulation with 100 nM ANP resulted in 50% reduction in guanylyl cyclase (GC) activity. Furthermore, the treatment of MMCs with Ang II in the presence of PKC agonist phorbol ester (100 nM) produced an almost 75% reduction in NPRA mRNA and 70% reduction in the intracellular accumulation of cGMP levels. PKC antagonist staurosporine completely reversed the effect of Ang II and phorbol ester. This is the first report to demonstrate that ANG II-dependent transcriptional repression of Npr1 gene promoter activity and down-regulation of GC activity of translated protein, NPRA is regulated by PKC pathways.

Transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-A gene

Prerna Kumar, Kiran K. Arise, Kailash N. Pandey
peptides 27 (2006) 1762–1769
http://dx.doi.org:/10.1016/j.peptides.2006.01.004

Activation of natriuretic peptide receptor-A (NPRA) produces the second messenger cGMP, which plays a pivotal role in maintaining blood pressure and cardiovascular homeostasis. In the present study, we have examined the role of trans-acting factor Ets-1 in transcriptional regulation of Npr1 gene (coding for NPRA).Using deletional analysis of the Npr1 promoter, we have defined a 400 base pair (bp) region as the core promoter, which contains consensus binding sites for transcription factors including: Ets-1, Lyf-1, and GATA-1/2. Over-expression of Ets-1 in mouse mesangial cells (MMCs) enhanced Npr1 gene transcription by 12-fold. However, overexpression of GATA-1 or Lyf-1 repressed Npr1 basal promoter activity by 50% and 80%, respectively. The constructs having a mutant Ets-1 binding site or lacking this site failed to respond to Ets-1 activation of Npr1 gene transcription. Collectively, the present results demonstrate that Ets-1 greatly stimulates Npr1 gene promoter activity, implicating its critical role in the regulation and function of NPRA at the molecular level.

Several agents that are known to upregulate Ets-1 transcription, include RA, TNF-alpha, VEGF, and TPA. Ets-1 is upregulated at exposure to agonists such as serum in vitro and is expressed in injured vasculature. MAPK-mediated phosphorylation positively regulates the transcriptional activation functions of Ets-1 by recruiting CBP/p300. Not much is known about Ets-1 expression or regulation in mesangial cells. A temporal increase of mesangial cell Ets-1 expression has been reported which correlates with mesangial cell activation
in mesangioproliferative glomerulonephritis suggesting involvement of PDGF-B. There might be a possibility that during glomerulonephritis increased Ets-1 expression upregulates Npr1 gene as a protective mechanism. Npr1 gene has been shown to negatively regulate mitogen-activated protein kinase and proliferation of mesangial cells.

In conclusion, our results demonstrate that the precise control of Npr1 gene transcriptional activity is achieved through a synergy of activators and repressors in which Ets-1 plays an integral role as a transcriptional activator. Comparatively, Lyf-1 and GATA-1 act as repressors, inhibiting and regulating the transcriptional activity of Npr1 gene promoter. The present findings suggest that Ets-1 plays a critical role in enhancing Npr1 gene transcription and may have an important influence in hypertension and cardiovascular homeostasis at the molecular level.

Krüppel-like transcription factor 11 (KLF11) overexpression inhibits cardiac hypertrophy and fibrosis in mice

Yue Zheng, Ye Kong, Feng Li
Biochem and Biophys Res Commun 443 (2014) 683–688
http://dx.doi.org/10.1016/j.bbrc.2013.12.024

The Krüppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins. The KLF family member KLF11 is originally identified as a transforming growth factor b (TGF-b)-inducible gene and is one of the most studied in this family. KLF11 is expressed ubiquitously and participates  in diabetes and regulates hepatic lipid metabolism. However, the role of KLF11 in cardiovascular system is largely unknown. Here in this study, we reported that KLF11 expression is down-regulated in failing human hearts and hypertrophic murine hearts. To evaluate the roles of KLF11 in cardiac hypertrophy, we generated cardiac-specific KLF11 transgenic mice. KLF11 transgenic mice do not show any difference from their littermates at baseline. However, cardiac-specific KLF11 overexpression protects mice from TAC-induced cardiac hypertrophy, with reduced radios of heart weight (HW)/body weight (BW), lung weight/BW and HW/tibia length, decreased left ventricular wall thickness and increased fractional shortening. We also observe lower expression of hypertrophic fetal genes in TAC-challenged KLF11 transgenic mice compared with WT mice. In addition, KLF11 reduces cardiac fibrosis in mice underwent hypertrophy. The expression of fibrosis markers are also down-regulated when KLF11 is overexpressed in TAC-challenged mice. Taken together, our findings identify a novel anti-hypertrophic and anti-fibrotic role of KLF11, and KLF11 activator may serve as candidate drug for heart failure patients.

Read Full Post »

Acute Lung Injury

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

 

Introduction

Acute lung injury is a serious phenomenon only recognized as having significant relevance to allogeneic blood transfusion in the last 15 years.  It is not limited to transfusion events, and is also related to SIRS and sepsis.  It is simulated in experimental models by lipoprotein, such as endotoxin.  It occurs in the pretransfused surgical patient, or in the medical patient as well.  Why it was not recognized earlier is a matter of conjecture.  The significant reduction in immune modulated blood type incompatibility reactions in Western countries is a factor.  The other factor is that the lipoprotein antigenic fractions involved are associated with component transfusions other than stored red cells. The following discussion will elaborate on what is increasingly recognized as a relevant issue in medicine today.
Transfusion Related Reaction

In medicinetransfusion related acute lung injury (TRALI) is a serious blood transfusion complication characterized by the acute onset of non-cardiogenic pulmonary edema following transfusion of blood products.[1]

Although the incidence of TRALI has decreased with modified transfusion practices, it is still the leading cause of transfusion-related fatalities in the United States from fiscal year 2008 through fiscal year 2012.

Transfusion Related Acute Lung Injury

TRALI-Hyaline_membranes_-_very_high_mag

TRALI-Hyaline_membranes_-_very_high_mag

Micrograph of diffuse alveolar damage, the histologic correlate of TRALI. H&E stain. Very high magnification micrograph of hyaline membranes, as seen in diffuse alveolar damage (DAD), the histologic correlate of acute respiratory distress syndrome (ARDS), transfusion related acute lung injury (TRALI), acute interstitial pneumonia (AIP).
http://upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Hyaline_membranes_-_very_high_mag.jpg/1024px-Hyaline_membranes_-_very_high_mag.jpg

TRALI is defined as an acute lung injury that is temporally related to a blood transfusion; specifically, it occurs within the first six hours following a transfusion.[3]

It is typically associated with plasma components such as platelets and Fresh Frozen Plasma, though cases have been reported with packed red blood cells since there is some residual plasma in the packed cells. The blood component transfused is not part of the case definition. Transfusion-related acute lung injury (TRALI) is an uncommon syndrome that is due to the presence of leukocyte antibodies in transfused plasma. TRALI is believed to occur in approximately one in every 5000 transfusions. Leukoagglutination and pooling of granulocytes in the recipient’s lungs may occur, with release of the contents of leukocyte granules, and resulting injury to cellular membranes, endothelial surfaces, and potentially to lung parenchyma. In most cases leukoagglutination results in mild dyspnea and pulmonary infiltrates within about 6 hours of transfusion, and spontaneously resolves;

Occasionally more severe lung injury occurs as a result of this phenomenon and Acute Respiratory Distress Syndrome (ARDS) results. Leukocyte filters may prevent TRALI for those patients whose lung injury is due to leukoagglutination of the donor white blood cells, but because most TRALI is due to donor antibodies to leukocytes, filters are not helpful in TRALI prevention. Transfused plasma (from any component source) may also contain antibodies that cross-react with platelets in the recipient, producing usually mild forms of posttransfusion purpura or platelet aggregation after transfusion.

Another nonspecific form of immunologic transfusion complication is mild to moderate immunosuppression consequent to transfusion. This effect of transfusion is not completely understood, but appears to be more common with cellular transfusion and may result in both desirable and undesirable effects. Mild immunosuppression may benefit organ transplant recipients and patients with autoimmune diseases; however, neonates and other already immunosuppressed hosts may be more vulnerable to infection, and cancer patients may possibly have worse outcomes postoperatively.

http://en.wikipedia.org/wiki/Transfusion-related_acute_lung_injury

 

 

Perioperative transfusion-related acute lung injury: The Canadian Blood Services experience

Asim Alam, Mary Huang, Qi-Long Yi, Yulia Lin, Barbara Hannach
Transfusion and Apheresis Science 50 (2014) 392–398
http://dx.doi.org/10.1016/j.transci.2014.04.008

Purpose: Transfusion-related acute lung injury (TRALI) is a devastating transfusion-associated adverse event. There is a paucity of data on the incidence and characteristics of TRALI cases that occur perioperatively. We classified suspected perioperative TRALI cases reported to Canadian Blood Services between 2001 and 2012, and compared them to non-perioperative cases to elucidate factors that may be associated with an increased risk of developing TRALI in the perioperative setting. Methods: All suspected TRALI cases reported to Canadian Blood Services (CBS) since 2001 were reviewed by two experts or, from 2006 to 2012, the CBS TRALI Medical Review Group (TMRG). These cases were classified based on the Canadian Consensus Conference (CCC) definitions and detailed in a database. Two additional reviewers further categorized them as occurring within 72 h from the onset of surgery (perioperative) or not in that period (non-perioperative). Various demographic and characteristic variables of each case were collected and compared between groups. Results: Between 2001 and 2012, a total of 469 suspected TRALI cases were reported to Canadian Blood Services; 303 were determined to be within the TRALI diagnosis spectrum. Of those, 112 (38%) were identified as occurring during the perioperative period. Patients who underwent cardiac surgery requiring cardiopulmonary bypass (25.0%), general surgery (18.0%) and orthopedics patients (12.5%) represented the three largest surgical groups. Perioperative TRALI cases comprised more men (53.6% vs. 41.4%, p = 0.04) than non-perioperative patients. Perioperative TRALI patients more often required supplemental O2 (14.3% vs. 3.1%, p = 0.0003), mechanical ventilation (18.8% vs. 3.1%), or were in the ICU (14.3% vs. 3.7%, p = 0.0043) prior to the onset of TRALI compared to non-perioperative TRALI patients. The surgical patients were transfused on average more components than non-perioperative patients (6.0 [SD = 8.3] vs. 3.6 [5.2] products per patient, p = 0.0002). Perioperative TRALI patients were transfused more plasma (152 vs. 105, p = 0.013) and cryoprecipitate (51 vs. 23, p < 0.01) than non-perioperative TRALI patients. There was no difference between donor antibody test results between the groups. Conclusion: CBS data has provided insight into the nature of TRALI cases that occur perioperatively; this  group represents a large proportion of TRALI cases.

 

Transfusion-related acute lung injury: a clinical review

Alexander P J Vlaar, Nicole P Juffermans
Lancet 2013; 382: 984–94
http://dx.doi.org/10.1016/S0140-6736(12)62197-7

Three decades ago, transfusion-related acute lung injury (TRALI) was considered a rare complication of transfusion medicine. Nowadays, the US Food and Drug Administration acknowledge the syndrome as the leading cause of transfusion-related mortality. Understanding of the pathogenesis of TRALI has resulted in the design of preventive strategies from a blood-bank perspective. A major breakthrough in efforts to reduce the incidence of TRALI has been to exclude female donors of products with high plasma volume, resulting in a decrease of roughly two-thirds in incidence. However, this strategy has not completely eradicated the complication. In the past few years, research has identified patient-related risk factors for the onset of TRALI, which have empowered physicians to take an individualized approach to patients who need transfusion.

Development of an international consensus definition has aided TRALI research, yielding a higher incidence in specific patient populations than previously acknowledged Patients suffering from a clinical disorder such as sepsis are increasingly recognized as being at risk for development of TRALI. Thereby, from a diagnosis by exclusion, TRALI has become the leading cause of transfusion-related mortality. However, the syndrome is still under diagnosed and under-reported in some countries.

Although blood transfusion can be life-saving, it can also be a life-threatening intervention. Physicians use blood transfusion on a daily basis. Increased awareness of the risks of this procedure is needed, because management of patient-tailored transfusion could reduce the risk of TRALI. Such an individualized approach is now possible as insight into TRALI risk factors evolves. Furthermore, proper reporting of TRALI could prevent recurrence.

Absence of an international definition for TRALI previously contributed to underdiagnosis. As such, a consensus panel, and the US National Heart, Lung and Blood Institute Working Group in 2004, formulated a case definition of TRALI based on clinical and radiological parameters. The definition is derived from the widely used definition of acute lung injury (panel 1). Suspected TRALI is defined as fulfilment of the definition of acute lung injury within 6 h of transfusion in the absence of another risk factor (panel 1).

Although this definition seems to be straightforward, the characteristics of TRALI are indistinguishable from acute lung injury due to other causes, such as sepsis or lung contusion. Therefore, this definition would rule out the possibility of diagnosing TRALI in a patient with an underlying risk factor for acute lung injury who has also received a transfusion. To identify such cases, the term possible TRALI was developed.

Although the TRALI definition is an international consensus definition, surveillance systems in some countries, including the USA, France and the Netherlands, use an alternative in which imputability is scored. Imputability aims to identify the likelihood that transfusion is the causal factor. Imputability scores mostly imply that other causes of acute lung injury can be ruled out, so that diagnosis of TRALI is by exclusion. However, observational and animal studies suggest that risk factors for TRALI include other disorders, such as sepsis. Therefore, an imputability definition would result in underdiagnosis of TRALI. The consensus definition accommodates the uncertainty of the association of acute lung injury to the transfusion in possible TRALI. The conventional definition of TRALI uses a timeframe of 6 h in which acute lung injury needs to develop after a blood transfusion. In critically ill patients, transfusion increases the risk (odds ratio 2·13, 95% CI 1·75–2·52) for development of acute lung injury 6–72 h after transfusion.  However, whether the pathogenesis of delayed TRALI is similar to that of TRALI is unclear.

A two-hit hypothesis has been proposed for TRALI. The first hit is underlying patient factors, resulting in adherence of primed neutrophils to the pulmonary endothelium. The second hit is caused by mediators in the blood transfusion that activate the endothelial cells and pulmonary neutrophils, resulting in capillary leakage and subsequent pulmonary edema. The second hit can be antibody-mediated or non-antibody-mediated.

Panel 1: Definition of transfusion-related acute lung injury (TRALI)

Suspected TRALI

  • Acute onset within 6 h of blood transfusion
    • PaO2/FIO2<300 mm Hg, or worsening of P to F ratio
    • Bilateral infi ltrative changes on chest radiograph
    • No sign of hydrostatic pulmonary oedema (pulmonary arterial occlusion
    pressure ≤18 mm Hg or central venous pressure ≤15 mm Hg)
    • No other risk factor for acute lung injury

Possible TRALI
Same as for suspected TRALI, but another risk factor present for acute lung injury

Delayed TRALI
Same as for (possible) TRALI and onset within 6–72 h of blood transfusion

Pathophysiology of two-hit mediated transfusion-related acute lung injury (TRALI).  The pre-phase of the syndrome consists of a fi rst hit, which is mainly systemic. This first hit is the underlying disorder of the patient (eg, sepsis or pneumonia) causing neutrophil attraction to the capillary of the lung. Neutrophils are attracted to the lung by release of cytokines and chemokines from upregulated lung endothelium. Loose binding by L-selectin takes place. Firm adhesion is mediated by E-selectin and platelet-derived P-selectin and intracellular adhesion molecules (ICAM-1). In the acute phase of the syndrome, a second hit caused by mediators in the blood transfusion takes place. This hit results in activation of inflammation and coagulation in the pulmonary compartment. Neutrophils adhere to the injured capillary endothelium and marginate through the interstitium into the air space, which is filled with protein-rich edema fluid. In the air space, cytokines interleukin-1, -6, and -8, (IL-1, IL-6, and IL-8, respectively) are secreted, which act locally to stimulate chemotaxis and activate neutrophils resulting in formation of the elastase-α1-antitrypsin (EA) complex. Neutrophils can release oxidants, proteases, and other proinflammatory molecules, such as platelet-activating factor (PAF), and form neutrophil extracellular traps (NETs). Furthermore, activation of the coagulation system happens, shown by an increase in thrombin-antithrombin complexes (TATc), as does a decrease in activity of the fibrinolysis system, shown by a reduction in plasminogen activator activity. The influx of protein-rich edema fluid into the alveolus leads to the inactivation of surfactant, which contributes to the clinical picture of acute respiratory distress in the onset of TRALI. PAI-1 = plasminogen activator inhibitor-1.

Antibody-mediated TRALI is caused by passive transfusion of HLA or human neutrophil antigen (HNA) and corresponding antibodies from the donor directed against antigens of the recipient. Neutrophil activation occurs directly by binding of the antibody to the neutrophil surface (HNA antibodies) or indirectly, mainly by binding to the endothelial cells with activation of the neutrophil (HLA class I antibodies) or to monocytes with subsequent activation of the neutrophil (HLA class II antibodies). The antibody titer and the volume of antibody containing plasma both increase the risk for onset of TRALI. Although the role of donor HLA and HNA antibodies from transfused blood is widely accepted, not all TRALI cases are antibody mediated. In many patients, antibodies cannot be detected. Furthermore, many blood products containing antibodies do not lead to TRALI. This finding has led to development of an alternative hypothesis for the onset of TRALI, termed non-antibody-mediated TRALI.

Non-antibody-mediated TRALI is caused by accumulation of proinflammatory mediators during storage of blood products, and possibly by ageing of the erythrocytes and platelets themselves. Although most preclinical studies have noted a positive correlation between storage time of cell-containing blood products and TRALI, the mechanism is controversial. Two mechanisms have been suggested, including either plasma or the aged cells. In a small-case study and animal experiments, accumulation of bioactive lipids and soluble CD40 ligand (sCD40L) in the plasma layer of cell-containing blood products has been associated with TRALI. Bioactive lipids are thought to cause neutrophil activation through the G-protein coupled receptor on the neutrophil.

The two-hit model suggests that patients in a poor clinical state are at risk for development of TRALI. However, cases have been described of antibody-mediated TRALI developing in fairly healthy recipients. To explain this discrepancy, a threshold model has been suggested in which a threshold must be overcome to induce a TRALI reaction. The threshold is dependent both on the predisposition of the patient (first hit) and the quantity of antibodies in the transfusion (second hit). A large quantity of antibody that matches the recipient’s antigen can cause severe TRALI in a recipient with no predisposition.

Threshold model of antibody-mediated transfusion-related acute lung injury (TRALI). A specific threshold must be overcome to induce a TRALI reaction. To overcome a threshold, several factors act together: the activation status of the pulmonary neutrophils at the time of transfusion, the strength of the neutrophil-priming activity of transfused mediators (A), and the clinical status of the patient (B).

Panel 2: Clinical characteristics of transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO)

TRALI
• Dyspnea
• Fever
• Usually hypotension
• Hypoxia
• Leukopenia
• Thrombocytopenia
• Pulmonary edema on chest x-ray
• Normal left ventricular function*
• Normal pulmonary artery occlusion pressure

TACO
• Dyspnea
• Usually hypertension
• Hypoxia
• Pulmonary edema on chest radiographs
• Normal or decreased left ventricular function
• Increased pulmonary artery occlusion pressure
• Raised brain natriuretic peptide

Restrictive transfusion policy

The most effective prevention is a restrictive transfusion strategy. In a randomised clinical trial in critically ill patients, a restrictive transfusion policy for red blood cells was associated with a decrease in incidence of acute lung injury compared with a liberal strategy (7·7% vs 11·4%), suggesting that some of these patients might have had TRALI. The restrictive threshold was well tolerated and has greatly helped in guidance of red blood cell transfusion in the intensive-care unit.

Patient-tailored transfusion policy

Transfusion cannot be avoided altogether. A multivariate analysis in patients in intensive care showed that patient related risk factors contributed more to the onset of TRALI than did transfusion-related risk factors, suggesting that development of a TRALI reaction is dependent more on host factors then on factors in the blood product. Therefore, a patient-tailored approach aimed at reducing TRALI risk factors could be effective to alleviate the risk of TRALI.

Despite limitations of diagnostic tests, TRALI incidence seems to be high in at-risk patient populations. Therefore, TRALI is an underestimated health-care problem. Preventive measures, such as mainly male donor strategies, have been successful in reducing risk of TRALI. Identification of risk factors further improves the risk–benefit assessment of a blood transfusion. Efforts to further decrease the risk of TRALI needs increased awareness of this syndrome among physicians.

 

Transfusion-related acute lung injury: Current understanding and preventive strategies

A.P.J. Vlaar
Transfusion Clinique et Biologique 19 (2012) 117–124
http://dx.doi.org/10.1016/j.tracli.2012.03.001

Transfusion-related acute lung injury (TRALI) is the most serious complication of transfusion medicine. TRALI is defined as the onset of acute hypoxia within 6 hours of a blood transfusion in the absence of hydrostatic pulmonary edema. The past decades have resulted in a better understanding of the pathogenesis of this potentially life-threating syndrome. The present notion is that the onset of TRALI follows a threshold model in which both patient and transfusion factors are essential. The transfusion factors can be divided into immune and non-immune mediated TRALI. Immune-mediated TRALI is caused by the passive transfer of human neutrophil antibodies (HNA) or human leukocyte antibodies (HLA) present in the blood product reacting with a matching antigen in the recipient. Non-immune mediated TRALI is caused by the transfusion of stored cell-containing blood products. Although the mechanisms behind immune-mediated TRALI are reasonably well understood, this is not the case for non-immune mediated TRALI. The increased understanding of pathways involved in the onset of immune-mediated TRALI has led to the design of preventive strategies. Preventive strategies are aimed at reducing the risk to exposure of HLA and HNA to the recipient of the transfusion. These strategies include exclusion of “at risk” donors and pooling of high plasma volume products and have shown to reduce the TRALI incidence effectively.

Studies show that, in at risk patient populations, up to 8% of transfused patients may develop TRALI. Since the syndrome TRALI has been recognized, evidence on the pathogenesis of TRALI has been accumulating. The present notion is that the onset of TRALI follows a threshold model in which both patient and transfusion factors are essential in the development of TRALI. The transfusion factors can be divided into immune and non-immune mediated TRALI. Immune-mediated TRALI is caused by the passive transfer of human neutrophil antibodies (HNA) or human leukocyte antibodies (HLA) present in the blood product, reacting with a matching antigen in the recipient. Non-immune mediated TRALI is caused by the transfusion of stored cell-containing blood products. In recent years, many countries have successfully implemented preventive strategies resulting in a decrease of the incidence of TRALI.

Definition of transfusion-related acute lung injury (TRALI).

  • Acute onset within 6 hours after a blood transfusion
  • PaO2/FiO2 < 300 mmHg
  • Bilateral infiltrative changes on the chest X-ray
  • No sign of hydrostatic pulmonary edema (PAOP < 18 mmHg or CVP < 15 mmHg)
  • No other risk factor for acute lung injury present

Possible TRALI

  • Other risk factor for acute lung injury present

PAOP: pulmonary arterial occlusion pressure; CVP: central venous pressure

The first landmark report creating the basis for the understanding of the pathogenesis of TRALI was published by Popovsky et al. in 1983. They provided evidence on the association between the presence of leucocyte antibodies in the donor serum and onset of acute lung injury in the recipient of the transfusion. It was also recognized that multiparous blood donors whose plasma contained these antibodies represented a potential transfusion hazard. It was this research group that was the first to identify TRALI as a distinct clinical entity. Subsequently, many other authors reported on the association between the presence of HLA or HNA antibodies in donor blood and the onset of TRALI in the recipient.

Although the role of transfused blood donor HLA and HNA antibodies was widely accepted to be involved in the onset of TRALI, not all cases could be explained by this theory. A significant part of reported TRALI cases have no detectable antibodies. Also, many antibody-containing blood products fail to produce TRALI.

The alternative hypothesis proposed by the group of Silliman posed that TRALI is a “two hit” event. The “first hit” is the underlying condition of the patient, resulting in priming of the pulmonary neutrophil. The “second hit” is the transfusion of a blood product causing activation of the neutrophils in the pulmonary compartment, causing pulmonary edema finally resulting in TRALI. The transfusion factors causing the “second hit” are divided in two groups; immune and non-immune mediated TRALI.

The “second hit” is the transfusion itself and is either immune or non-immune mediated TRALI. The mechanisms behind immune-mediated TRALI are widely accepted and proven in both pre-clinical and clinical studies.  The mechanisms involved in non-immune mediated TRALI are less clear.

The role of stored cell-containing blood products in the onset of non-immune TRALI has extensively been studied in preclinical and clinical studies. Although most of the pre-clinical studies find a positive correlation between the transfusion of stored cell-containing blood products in the presence of a “first hit” and the onset of TRALI, the mechanism behind the onset is controversial.

TRALI management consists mainly of preventing future adverse reactions and providing proper incidence estimates. All suspected TRALI cases should be reported to the blood bank for immunologic work-up as it is impossible to distinguish immune-mediated TRALI from non-immune mediated TRALI at bedside. Immunologic work-up includes testing of incompatibility by cross-matching donor plasma against recipient’s leucocytes. A donor with antibodies which are incompatible with the patient is excluded from further donation of blood for transfusion products. Furthermore, it is important to stress that the absence of a positive serologic work-up does not exclude the diagnosis of TRALI. TRALI is a clinical diagnosis and the immunologic work-up can be supportive but is not part of the diagnosis of TRALI. the two-event hypothesis and threshold hypothesis do not exclude the role of antibodies in the occurrence of TRALI in the presence of an inflammatory condition. Thus any patient fulfilling the TRALI definition (including possible TRALI) should be reported to the blood bank for an immunologic work-up of the recipient and the implicated donors on the presence of HLA and HNA antibodies.

Prevention of immune-mediated TRALI is achieved by exclusion of donors proven to have HLA or HNA antibodies in their plasma present or donors “at risk” to have these antibodies present.

  1. Exclusion of HLA or HNA positive donors
  2. Exclusion of donors “at risk” of being HLA or HNA positive
    Female donors – more specifically, multiparous donors
  3. Testing donors for HLA or HNA antibodies
  4. Multiple plasma pooling
    solvent/detergent plasma is produced from multiple donations, leading to an at least 500-fold dilution of a single plasma unit;
    neither HNA nor HLA antibodies are detectable in solvent/detergent fresh frozen plasma.
  5. To prevent non-immune mediated TRALI, the use of fresh blood only has been suggested

Strategies to prevent the onset of TRALI include the exclusion of female plasma donors and the pooling of plasma products. These strategies have already been implemented in some countries resulting in a reduction of the incidence of TRALI.
Transfusion-related immunomodulation (TRIM): An update

Eleftherios C. Vamvakas, Morris A. Blajchman
Blood Reviews (2007) 21, 327–348
http://dx.doi.org:/10.1016/j.blre.2007.07.003

Allogeneic blood transfusion (ABT)-related immunomodulation (TRIM) encompasses the laboratory immune aberrations that occur after ABT and their established or purported clinical effects. TRIM is a real biologic phenomenon resulting in at least one established beneficial clinical effect in humans, but the existence of deleterious clinical TRIM effects has not yet been confirmed. Initially, TRIM encompassed effects attributable to ABT by immunomodulatory mechanisms (e.g., cancer recurrence, postoperative infection, or virus activation). More recently, TRIM has also included effects attributable to ABT by pro-inflammatory mechanisms (e.g., multiple-organ failure or mortality). TRIM effects may be mediated by: (1) allogeneic mononuclear cells; (2) white-blood-cell (WBC)-derived soluble mediators; and/or (3) soluble HLA peptides circulating in allogeneic plasma. This review categorizes the available randomized controlled trials based on the inference(s) that they permit about possible mediator(s) of TRIM, and examines the strength of the evidence available for relying on WBC reduction or autologous transfusion to prevent TRIM effects.

Allogeneic blood transfusion (ABT) may either cause alloimmunization or induce tolerance in recipients. ABTs introduce a multitude of foreign antigens into the recipient, including HLA-DR antigens found on the donor’s dendritic antigen presenting cells (APCs). The presence or absence of recipient HLA-DR antigens on the donor’s white blood cells (WBCs) plays a decisive role as to whether alloimmunization or immune suppression will ensue following ABT. In general, allogeneic transfusions sharing at least one HLA-DR antigen with the recipient induce tolerance, while fully HLA-DR-mismatched transfusions lead to alloimmunization.

In addition to the degree of HLA-DR compatibility between donor and recipient, the immunogenicity of cellular or soluble HLA antigens associated with transfused blood components depends on the viability of the donor dendritic APCs and the presence of co-stimulatory signals for the presentation of the donor antigens to the recipient’s T cells. Nonviable APCs and/or the absence of the requisite co-stimulatory signals result in T-cell unreponsiveness.  Thus, when a multitude of antigens is introduced into the host by an ABT, the host response to some of these antigens is often decreased, and immune tolerance ensues. ABT has been shown to cause decreased helper T-cell count, decreased helper/suppressor T-lymphocyte ratio, decreased lymphocyte response to mitogens, decreased natural killer (NK) cell function, reduction in delayed-type hypersensitivity, defective antigen presentation, suppression of lymphocyte blastogenesis, decreased cytokine (IL-2, interferon-c) production, decreased monocyte/macrophage phagocytic function, and increased production of antiidiotypic and anticlonotypic antibodies.

All these laboratory immune aberrations that indicate immune suppression and occur in transfused patients could potentially be associated with clinically-manifest ABT effects. Thus a variety of beneficial or deleterious clinical effects, potentially attributable to ABT-related immunosuppression, have been described over the last 30 years. The constellation of all such ABT-associated laboratory and clinical findings is known as ABT-related immunomodulation (TRIM). Initially, TRIM encompassed effects attributable to ABT by means of immunologic mechanisms only; however more recently, the term has been used more broadly, to encompass additional effects that could be related to ABT by means of ‘‘proinflammatory’’ rather than ‘‘immunomodulatory’’ mechanisms.

Over 30 years ago, it was reported that pre-transplant ABTs could improve renal-allograft survival in patients who had undergone renal transplantation.  This beneficial immunosuppressive effect of ABT has been confirmed by animal data, observational clinical studies, and clinical experience worldwide, although it has not been proven in randomized controlled trials (RCTs). Before the advent of the AIDS pandemic, it had become standard policy in many renal units to deliberately expose patients on transplant waiting lists to one or more red blood cell (RBC) transfusions.

All the available data considered together indicate that TRIM is most likely a real biologic phenomenon, which results in at least one established beneficial clinical effect in humans, although the available evidence has not yet confirmed  the existence and/or magnitude of the deleterious clinical TRIM effects. In fact, the debate over the existence of such deleterious clinical TRIM effects has been long and sometimes acrimonious.

Many studies tended to indicate that patients receiving perioperative transfusion (compared with those not needing transfusion) almost always had a higher risk of developing postoperative bacterial infection. The studies also indicated that patients receiving ABT differed from those not receiving a transfusion in several prognostic factors that predisposed to adverse clinical outcomes.

The specific constituent(s) of allogeneic blood that mediate(s) either or both the immunomodulatory and the pro-inflammatory effect(s) of ABT remain
(s) unknown, and the published literature suggests that these TRIM effects
may be mediated by: (1) allogeneic mononuclear cells; (2) soluble biologic response modifiers released in a time dependent manner from WBC granules or membranes into the supernatant fluid of RBC or platelet concentrates
during storage; and/or  (3) soluble HLA class I peptides that circulate in allogeneic plasma. If each of these mediators do cause TRIM effects, ABT effects mediated by allogeneic mononuclear cells would be expected to be preventable by WBC reduction (performed either before or after storage of cellular blood components), as well as by autologous transfusion. The ABT effects mediated by soluble HLA peptides circulating in allogeneic plasma would be expected to be preventable only by autologous transfusion.

BENEFICIAL TRIM EFFECTS

  1. Enhanced survival of renal allografts
  2. Reduced recurrence rate of Crohn’s disease

DELETERIOUS

  1. Increased recurrence rate of resected malignancies
  2. Increased incidence of postoperative bacterial infections
  3. Activation of endogenous CMV or HIV infection
  4. Increased short-term (up to 3-month) mortality

Possible mechanisms and mediators of TRIM effects

Although the mechanisms of TRIM have been debated extensively, the exact mechanism(s) of this phenomenon has yet to be elucidated. A number of putative mechanisms have been postulated. The three major mechanisms accounting for much of the experimental data include:

  • clonal deletion,
  • induction of anergy, and
  • immune suppression.

Conceptually, clonal deletion refers to the inactivation and removal of alloreactive lymphocytes that would, for example, cause the rejection of an allograft; anergy implies immunologic nonresponsiveness; and immune suppression suggests that the responding cell is being inhibited of doing so by a cellular mechanism or by a cytokine. Antiidiotypic antibodies, which are predominantly of the VH6 gene family, have also been demonstrated in the sera of ABT recipients and in patients with long-term functioning renal allografts.

To date, no RCT has enrolled patients with sarcomas—tumors whose growth is stimulated by TGF-β—or patients with tumors for which the immune response plays a major role. (These would include skin tumors—such as melanomas, keratoacanthomas, squamous and basal-cell carcinomas—and certain virus-induced tumors—notably Kaposi’s sarcoma and certain lymphomas.) Instead, the 3 available RCTs of ABT and cancer recurrence enrolled patients with colorectal cancer—a tumor that is not sufficiently antigenic to render an impairment of host immunity capable of facilitating tumor growth, and a tumor whose cells have not been shown to be stimulated by TGF-β.

Fig not shown. Randomized controlled trials (RCTs) investigating the association of WBC-containing allogeneic blood transfusion (ABT) with cancer recurrence. For each RCT, the figure shows the odds ratio (OR) of cancer recurrence in recipients of non-WBC-reduced allogeneic versus autologous or WBC-reduced allogeneic RBCs, as calculated from an intention-to-treat analysis. A deleterious effect of ABT (and thus a benefit from autologous transfusion or WBC reduction) exists when the OR is greater than 1 as well as statistically significant. (In the figure, each OR is surrounded by its 95% confidence interval [CI]; if the 95% CI of the OR includes the null value of 1, the TRIM effect is not statistically significant [p > 0.05]).

Fig not shown. Randomized controlled trials (RCTs) investigating the association of WBC-containing allogeneic blood transfusions with postoperative infection (n = 17). For each RCT, the figure shows the odds ratio (OR) of postoperative infection in recipients of non-WBC reduced allogeneic versus autologous or WBC-reduced allogeneic RBCs, as calculated from an intention-to-treat analysis. A deleterious effect of ABT (and thus a benefit from autologous transfusion or WBC reduction) exists when the OR is greater than 1 as well as statistically significant. (In the figure, each OR is surrounded by its 95% confidence interval [CI]; if the 95% CI of the OR includes the null value of 1, the TRIM effect is not statistically significant [p > 0.05]).

The totality of the evidence from RCTs does not demonstrate a TRIM effect manifest across all clinical settings and transfused RBC products. Instead, WBC-containing ABT is associated with an increased risk of short-term (up to 3-month post transfusion) mortality from all causes combined specifically in cardiac surgery. The additional deleterious TRIM effect detected by the latest meta-analysis (i.e., the effect on postoperative infection prevented by poststorage filtration) contradicts current theories about the pathogenesis of TRIM, because it is not accompanied by a similar or larger effect prevented by prestorage filtration.

Thus, only in cardiac surgery (Fig. 5 – not shown) are the findings of RCTs pertaining to a deleterious TRIM effect consistent. Even in this setting, however, the reasons for the excess deaths attributed to WBC containing ABT remain elusive. The initial hypothesis suggested that WBC-containing ABT may predispose to MOF which, in turn, may predispose to mortality. However, hitherto, no cardiac-surgery RCT has demonstrated an association between WBC-containing ABT and MOF, and no other cause of death specifically attributed to WBC-containing ABT has been proposed.

The TRIM effect seen in cardiac surgery deserves further study to pinpoint the cause(s) of the excess deaths, but-now that the majority of transfusions in Western Europe and North America are WBC reduced- the undertaking of further RCTs comparing recipients of non-WBC-reduced versus WBC reduced allogeneic RBCs in cardiac surgery is unlikely. For countries that have not yet converted to universal WBC reduction, whether to opt for WBC reduction of all cellular blood components transfused in cardiac surgery-in the absence of information on the specific cause(s) of death ascribed to WBC-containing ABT-is a policy decision that will have to be made based on the hitherto available data.

 

Regulation of alveolar fluid clearance and ENaC expression in lung by exogenous angiotensin II

Jia Denga, Dao-xin Wanga, Wang Deng, Chang-yi Li, Jin Tong, Hilary Ma
Respiratory Physiology & Neurobiology 181 (2012) 53– 61
http://dx.doi.org:/10.1016/j.resp.2011.11.009

Angiotensin II (Ang II) has been demonstrated as a pro-inflammatory effect in acute lung injury, but studies of the effect of Ang II on the formation of pulmonary edema and alveolar filling remains unclear. Therefore, in this study the regulation of alveolar fluid clearance (AFC) and the expression of epithelial sodium channel (ENaC) by exogenous Ang II was verified. SD rats were anesthetized and were given Ang II with increasing doses (1, 10 and 100 [1]g/kg per min) via osmotic minipumps, whereas control rats received only saline vehicle. AT1 receptor antagonist ZD7155 (10 mg/kg) and inhibitor of cAMP degeneration rolipram (1 mg/kg) were injected intraperitoneally 30 min before administration of Ang II. The lungs were isolated for measurement of alveolar fluid clearance. The mRNA and protein expression of ENaC were detected by RT-PCR and Western blot. Exposure to higher doses of Ang II reduced AFC in a dose-dependent manner and resulted in a non-coordinate regulation of α-ENaC vs the regulation of β- and ϒ-ENaC, however Ang II type 1 (AT1) receptor antagonist ZD7155 prevented the Ang II-induced inhibition of fluid clearance and dysregulation of ENaC expression. In addition, exposure to inhibitor of cAMP degradation rolipram blunted the Ang II-induced inhibition of fluid clearance. These results indicate that through activation of AT1 receptor, exogenous Ang II promotes pulmonary edema and alveolar filling by inhibition of alveolar fluid clearance via downregulation of cAMP level and dysregulation of ENaC expression.

Effects of angiotensin II (Ang II) receptor antagonists and rolipram  on AFC

Effects of angiotensin II (Ang II) receptor antagonists and rolipram on AFC

Effects of angiotensin II (Ang II) receptor antagonists and rolipram on rat alveolar fluid clearance (AFC). Then AFC was measured 1 h after fluid instillation (4 mL/kg). Amiloride (100 [1]M), Ang II (10−7 M), ZD7155 (10−6 M), and rolipram (10−5 M) were added to the instillate as indicated (n = 10 per group). Mean values ± SEM. p < 0.01 vs control. p < 0.01 vs Ang II + ZD7155.
p < 0.05 vs amiloride. p < 0.05 vs Ang II.

Effects of angiotensin II (Ang II) on cyclic adenosine monophosphate (cAMP)

Effects of angiotensin II (Ang II) on cyclic adenosine monophosphate (cAMP)

Effects of angiotensin II (Ang II) on cyclic adenosine monophosphate (cAMP) concentration in lung. Rats were given saline or Ang II (1, 10 and 100 µg/kg per min) for 6 h, and cAMP in lung was determined by RIA (n = 30 per group). Mean values ± SEM. p < 0.01 vs control. p < 0.05 vs 10 µg/kg Ang II.

Histological examination of lung

Histological examination of lung

Histological examination of lung. Rats were given saline or Ang II (10 µg/kg per min) by osmotic minipump for 6 h. ZD7155 (10 mg/kg) was injected intraperitoneally 30 min before administration of Ang II. Shown are representative lung specimens obtained from the control (A), Ang II (B) and Ang II + ZD7155 (C) groups. All photographs are at 100× magnification. Interstitial edema and inflammatory cell infiltration were seen in Ang II group, but reduced in Ang II + ZD7155 group.
The present results demonstrate that Ang II infusion is associated with pulmonary edema and alveolar filling. Three important findings were observed:

(1) high doses of Ang II led to reduction of alveolar fluid clearance, and this effect was blunted by an AT1 receptor antagonist.
(2) Ang II infusion increased the abundance of α-ENaC, whereas decreased the abundance ofβ and ϒ-ENaC, and these effects were reversed in response to an AT1 receptor antagonist.
(3) Ang II infusion decreased cAMP concentration in lung tissue, and an inhibitor of cAMP degradation prevented inhibition of alveolar fluid clearance by Ang II, but had no effect on the dysregulation of ENaC.

Our data indicate that Ang II results in pulmonary edema by inhibition of alveolar fluid clearance via down-regulation of cellular cAMP level and dysregulation of the abundance of ENaC, whereas these effects are prevented by an AT1 receptor antagonist.

The renin-angiotensin system is a major regulator of body fluid and sodium balance, predominantly through the actions of its main effector Ang II. Several previous experimental studies demonstrated that plasma Ang II levels vary in both physiological and pathological conditions. In the kidney, Ang II added to the peritubular perfusion has a biphasic action with stimulation of sodium reabsorption at low doses (10−12–10−10M) and inhibition at high doses (10−7–10−6M) (Harris and Young, 1977). In vitro, Ang II also exerts a dose-dependent dual action on intestinal absorption (Levens, 1985). The evidence shows that the effect of Ang II on sodium and water absorption is dose-dependent. Our results showed that low intravenous doses of Ang II (<1 µg/kg per min) had no effect on alveolar fluid clearance which represents the sodium and water reabsorption in alveoli. However, with high intravenous doses, Ang II decreased alveolar fluid clearance. This finding suggests that the effect of Ang II on fluid absorption in lung is also dose-dependent.

 

Rat models of acute lung injury: Exhaled nitric oxide as a sensitive,noninvasive real-time biomarker of prognosis and efficacy of intervention

Fangfang Liu, Wenli Lib, Jürgen Pauluhn, Hubert Trübel, Chen Wang
Toxicology 310 (2013) 104– 114
http://dx.doi.org/10.1016/j.tox.2013.05.016

Exhaled nitric oxide (eNO) has received increased attention in clinical settings because this technique is easy to use with instant readout. However, despite the simplicity of eNO in humans, this endpoint has not frequently been used in experimental rat models of septic (endotoxemia) or irritant acute lung injury (ALI). The focus of this study is to adapt this method to rats for studying ALI-related lung disease and whether it can serve as instant, non-invasive biomarker of ALI to study lung toxicity and pharmacological efficacy. Measurements were made in a dynamic flow of sheath air containing the exhaled breath from spontaneously breathing, conscious rats placed into a head-out volume plethysmograph. The quantity of eNO in exhaled breath was adjusted (normalized) to the physiological variables (breathing frequency, concentration of exhaled carbon dioxide) mirroring pulmonary perfusion and ventilation. eNO was examined on the instillation/inhalation exposure day and first post-exposure day in Wistar rats intratracheally instilled with lipopolysaccharide (LPS) or single inhalation exposure to chlorine or phosgene gas. eNO was also examined in a Brown Norway rat asthma model using the asthmagen toluene diisocyanate (TDI). The diagnostic sensitivity of adjusted eNO was superior to the measurements not accounting forthe normalization of physiological variables. In all bioassays – whether septic, airway or alveolar irritant or allergic, the adjusted eNO was significantly increased when compared to the concurrent control. The maximum increase of the adjusted eNO occurred following exposure to the airway irritant chlorine. The specificity of adjustment was experimentally verified by decreased eNO following inhalation dosing ofthe non-selective nitric oxide synthase inhibitor amoni-guanidine. In summary, the diagnostic sensitivity of eNO can readily be applied to spontaneously breathing, conscious rats without any intervention or anesthesia. Measurements are definitely improved by accounting for the disease-related changes inexhaled CO2and breathing frequency. Accordingly, adjusted eNO appears to be a promising methodological improvement for utilizing eNO in inhalation toxicology and pharmacological disease models
with fewer animals.

 

Role of p38 MAP Kinase in the Development of Acute Lung Injury

J Arcaroli, Ho-Kee Yum, J Kupfner, JS Park, Kuang-Yao Yang, and E Abraham
Clinical Immunology 2001; 101(2):211–219
http://dx.doi.org:/10.1006/clim.2001.5108

Acute lung injury (ALI) is characterized by an intense pulmonary inflammatory response, in which neutrophils play a central role. The p38 mitogen-activated protein kinase pathway is involved in the regulation of stress-induced cellular functions and appears to be important in modulating neutrophil activation, particularly in response to endotoxin. Although p38 has potent effects on neutrophil functions under in vitro conditions, there is relatively little information concerning the role of p38 in affecting neutrophil driven inflammatory responses in vivo. To examine this issue, we treated mice with the p38 inhibitor SB203580 and then examined parameters of neutrophil activation and acute lung injury after hemorrhage or endotoxemia. Although p38 was activated in lung neutrophils after hemorrhage or endotoxemia, inhibition of p38 did not decrease neutrophil accumulation in the lungs or the development of lung edema under these conditions. Similarly, the increased production of proinflammatory cytokines and activation of NF-kB in lung neutrophils induced by hemorrhage or endotoxemia was not diminished by p38 inhibition. These results indicate that p38 does not have a central role
in the development of ALI after either hemorrhage or endotoxemia.

 

The coagulation system and pulmonary endothelial function in acute lung injury

James H. Finigan
Microvascular Research 77 (2009) 35–38
http://dx.doi.org:/10.1016/j.mvr.2008.09.002

Acute lung injury (ALI) is a disease marked by diffuse endothelial injury and increased capillary permeability. The coagulation system is a major participant in ALI and activation of coagulation is both a consequence and contributor to ongoing lung injury. Increased coagulation and depressed fibrinolysis result in diffuse alveolar fibrin deposition which serves to amplify pulmonary inflammation. In addition, existing evidence demonstrates a direct role for different components of coagulation on vascular endothelial barrier function. In particular, the pro-coagulant protein thrombin disrupts the endothelial actin cytoskeleton resulting in increased endothelial leak. In contrast, the anti-coagulant activated protein C (APC) confers a barrier protective actin configuration and enhances the vascular barrier in vitro and in vivo. However, recent studies suggest a complex landscape with receptor cross-talk, temporal heterogeneity and pro-coagulant/anticoagulant protein interactions. In this article, the major signaling pathways governing endothelial permeability in lung injury are reviewed with a particular focus on the role that endothelial proteins, such as thrombin and APC, which play on the vascular barrier function.

Acute lung injury (ALI) is a devastating illness with an annual incidence of approximately 200,000 and a mortality of 40%. Most commonly seen in the setting of sepsis, ALI is a complex inflammatory syndrome marked by increased vascular permeability resulting in tissue edema and organ dysfunction. The vascular endothelium is a key target and critical participant in the pathogenesis of sepsis-induced organ dysfunction and disruption of the endothelial barrier is central to the pathophysiology of both sepsis and ALI. Sepsis and acute lung injury (ALI) are syndromes marked by diffuse inflammation with a key feature being endothelial cell barrier disruption and increased vascular permeability resulting in widespread organ dysfunction. The endothelial cytoskeleton has been identified as a critical regulator of vascular barrier integrity with a current model of endothelial barrier regulation suggesting a balance between barrier-disrupting cellular contractile forces and barrier-protective cell–cell and cell–matrix forces. These competing forces exert their opposing effects via manipulation of the actin-based endothelial cytoskeleton and associated endothelial regulatory proteins. Endothelial cells generate tension via an actomyosin motor, and focally distributed changes in tension/relaxation can be accomplished by spatially-defined regulation of the phosphorylation of the regulatory 20 kDa myosin light chain (MLC) catalyzed by the Ca2+/calmodulin (CaM)-dependent enzyme myosin light chain kinase (MLCK).

Thrombin is the proto-typical coagulation protein with direct effects on the endothelial barrier via alterations in the cytoskeleton. In the coagulation cascade, thrombin converts fibrinogen to fibrin in the final step of thrombus formation and also activated platelets. In addition, this multifunctional protease is present at sites of vascular inflammation and induces barrier dysfunction. Through its receptor, protease-activated receptor-1 (PAR1), thrombin initiates a series of events which includes MLC phosphorylation, dramatic cytoskeletal reorganization and stress fiber formation, increased cellular contractility, paracellular gap formation, and enhanced fluid and protein transport. Similarly, thrombin exposure results in increased pulmonary edema in vivo, a finding which is also seen after treatment with a PAR1 activating peptide and attenuated in PAR1 knockout mice.

Disruptions in the coagulation system have long been recognized to be an integral part of inflammation, sepsis and ALI. In 1969, Saldeen demonstrated that thrombin infusion produced canine respiratory insufficiency which was linked pathologically to emboli in the pulmonary microcirculation, a condition he labeled the “Microembolism Syndrome” (Saldeen, 1979). Elemental to the pathophysiology of sepsis and ALI is a shift towards a pro-coagulant state. Bronchoalveolar (BAL) fluid from patients with ALI reflects this increase in procoagulant activity with elevated levels of fibrinopeptide A, factor VII and d-dimer. Concomitantly, there is a decrease in fibrinolytic activity, as shown by depressed BAL levels of urokinase and increased levels of the fibrinolysis inhibitors plasminogen activator inhibitor (PAI) and α2-antiplasmin.

Given that APC is a vascular endothelial protein which interacts with other coagulation proteins such as thrombin, it seems logical that it might have an effect on endothelial integrity. In cultured human pulmonary endothelial cells, while thrombin results in decreased electrical resistance, a reflection of increased permeability, pre- or post-exposure to physiologic concentrations of APC significantly attenuates this thrombin-induced drop in resistance. These APC-mediated alterations in barrier function are associated with MLC phosphorylation as well as activation of the endothelial protein Rac, and cytoskeletal re-arrangement in a barrier protective configuration all findings very reminiscent of the barrier protective signaling induced by the bioactive lipid, S1P. Interestingly, APC appears to activate sphingosine kinase and mediate its barrier protective effects through PI3 kinase and AKT-dependent ligation of the S1P receptor, S1P1. Moreover, the endothelial barrier-protective effects of APC have been observed in other tissues including brain and kidney. The barrier protection in these beds appears independent of any anti-coagulant effect of APC and is associated with decreased endothelial apoptosis.

Recently, the endothelial protein C receptor (EPCR) has been identified as a crucial participant in the protein C pathway. Structurally similar to the major histocompatibility class I/CD1 family of molecules, EPCR binds protein C, presenting it to the thrombin/TM complex, thereby increasing the activation of protein C by ∼20 fold. Importantly, APC can also bind EPCR, and while the bound form of APC loses its extra-cellular anti-coagulant activity, increasing evidence indicates that much, if not all, of APC intra-cellular signaling requires EPCR. APC-mediated increases in endothelial phosphor-MLC and activated Rac are all EPCR-dependent and APC-induced endothelial barrier protection requires ligation of EPCR.

Sepsis and ALI are significant causes of morbidity and mortality in the intensive care unit and are marked by zealous activation of the coagulation system. While this could conceivably confer certain benefits, such as enclosing and spatially controlling an infection, it is clear that this pro-coagulant environment participates in the pathophysiology of ALI, particularly via exacerbating endothelial damage and augmenting endothelial permeability. However, the biology of coagulation in ALI is incompletely understood and trials of new therapies specifically targeting coagulation in patients with ALI have been disappointing. Despite this, recent advances in the knowledge of the dynamic interplay between inflammation and coagulation in ALI as well as endothelial receptor-ligand binding and receptor cross talk have stimulated promising research and identified novel therapeutic targets for patients with ALI.

 

Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect?

  1. Saas, F. Angelot, L. Bardiaux, E. Seilles, F. Garnache-Ottou, S. Perruche
    Transfusion Clinique et Biologique 19 (2012) 90–97
    http://dx.doi.org/10.1016/j.tracli.2012.02.002

Labile blood products contain phosphatidylserine-expressing cell dusts, including apoptotic cells and microparticles. These cell by-products are produced during blood product process or storage and derived from the cells of interest that exert a therapeutic effect (red blood cells or platelets). Alternatively, phosphatidylserine-expressing cell dusts may also derived from contaminating cells, such as leukocytes, or may be already present in plasma, such as platelet-derived microparticles. These cell by-products present in labile blood products can be responsible for transfusion induced immunomodulation leading to either transfusion-related acute lung injury (TRALI) or increased occurrence of post-transfusion infections or cancer relapse. In this review, we report data from the literature and our laboratory dealing with interactions between antigen-presenting cells and phosphatidylserine-expressing cell dusts, including apoptotic leukocytes and blood cell-derived microparticles. Then, we discuss how these phosphatidylserine-expressing cell by-products may influence transfusion.

Potential consequences of phosphatidylserine-expressing cell by-products in transfusion

Potential consequences of phosphatidylserine-expressing cell by-products in transfusion

Potential consequences of phosphatidylserine-expressing cell by-products in transfusion. Interactions of phosphatidylserine-expressing cell dusts (apoptotic cells or microparticles) may lead to antigen-presenting cell activation or inhibition. Antigen-presenting cell activation may trigger inflammation and be involved in transfusion-related acute lung injury (TRALI), while antigen-presenting cell inhibition may exert transient immunosuppression or tolerance. Blood product process or storage may influence the generation of phosphatidylserine-expressing cell dusts. PtdSer: phosphatidylserine; APC: antigen-presenting cell.

Several publications report the presence of phosphatidylserine-expressing cell by-products in blood products. These cell by-products may be generated during the blood product process, such as filtration, or during storage (either cold storage for red blood cells or between 20–24 ◦C for platelets). Alternatively, they may be limited by filtration. Phosphatidylserine-expressing cell by-products can be apoptotic cells. Apoptotic cells have been found in different blood products: red blood cell units and platelet concentrates. These apoptotic cells correspond to dying cells of interest: red blood cells or platelets, both enucleated cells that can undergo apoptosis.

Immunomodulatory effects of apoptotic leukocytes

Immunomodulatory effects of apoptotic leukocytes

Immunomodulatory effects of apoptotic leukocytes. Early during the apoptotic program, phosphatidylserine-exposure occurs leading to apoptotic cell removal by macrophages or conventional dendritic cells. This uptake by antigen-presenting cells induces the production of anti-inflammatory factors and concomitantly inhibits the synthesis of inflammatory cytokines. These antigen-presenting cells are refractory to TLR activation. This leads to a transient immunosuppressive microenvironment. If antigen-presenting cells from this microenvironment migrate to secondary lymphoid organs, naive T cells are converted into inducible regulatory T cells. This leads to tolerance against apoptotic cell-derived antigens. M[1]: macrophage; cDC: conventional dendritic cells; PtdSer: phosphatidylserine; Treg: regulatory T cells; Th1: helper T cells; HGF: hepatocyte growth factor; IL-: interleukin; NO: nitrite oxide; PGE-2: prostaglandin-E2; TGF: transforming growth factor; TNF: tumor necrosis factor; TLR: Toll-like receptor.

Implication of phosphatidylserine in the inhibition of both inflammation and specific immune responses has been further demonstrated using  phosphatidylserine-expressing liposomes and is sustained by the following observations:

  • phosphatidylserine-dependent ingestion of apoptotic cells induces TGF-β secretion and resolution of lung inflammation;
  • inhibition of phosphatidylserine recognition through annexin-V enhances the immunogenicity of irradiated tumor cells in vivo;
  • masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice.

Based on data from our group and Peter Henson’s group, some authors have speculated that apoptotic leukocytes present in blood products may be responsible for transfusion-related immunosuppression.

The first consequences of phosphatidylserine-expressing apoptotic cells in blood products may be a transient immunosuppression−responsible for an increase in infection rate and of cancer relapse−or tolerance induction− as observed after donor-specific transfusion − when Treg have been generated. However, apoptotic leukocytes become secondarily necrotic in the absence of phagocytes. This may certainly occur in blood product bags. Necrotic cells, through the release of damage-associated molecular patterns, may become immunogenic. The same process may occur for platelets. Necrotic platelets may represent the procoagulant form of platelets. Thus, hemostatic activation of platelets or their by-products may link thrombosis and inflammation to amplify lung microvascular damage during nonimmune TRALI.

What are the next steps to answer the question on the role of phosphatidylserine-expressing cell dusts in the modulation of immune responses after transfusion?

The next steps are to characterize or identify factors involved in the triggering of inflammation or its inhibition and produced during blood product storage or process. Several factors influence the immune responses against dying cells. We can speculate on some factors, including:

  • the number of phosphatidylserine-expressing cell byproducts contained per blood product, as the immunogenicity of apoptotic cells may be proportional to their number;
  • the occurrence of secondary necrosis and so the passive release of intracellular damage-associated molecular patterns that overpasses the inhibitory signals delivered by phosphatidylserine. One of these damage associated molecular patterns can be the heme released from stored red blood cells which signals via TLR4;
  • the size of cell by-products and especially microparticles, since these latter exert different functions according to their size. Moreover, antigen-presenting cells, such as plasmacytoid dendritic cells, respond only to lower size synthetic particles. This may explain the different responses observed between “amateur” phagocytes (plasmacytoid dendritic cells) versus professional phagocytes (conventional dendritic cells/macrophages) after incubation with microparticles. The size of cell by-products diminishes during plasma filtration, as assessed by dynamic light scattering from 101 to 464 nm in unfiltered fresh-frozen plasma versus 21 to 182 nm after 0.2 µm filtration process;
  • expression of the recently described phosphatidylserine receptors on different antigen-presenting cell subsets may also explain the different responses between plasmacytoid dendritic cells versus conventional dendritic cells/macrophages and may impact on the overall immune response.

 

Peroxisome proliferator-activated receptors and inflammation

Leonardo A. Moraes, Laura Piqueras, David Bishop-Bailey
Pharmacology & Therapeutics 110 (2006) 371 – 385
http://dx.doi.org:/10.1016/j.pharmthera.2005.08.007

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptors family. PPARs are a family of 3 ligand-activated transcription factors: PPARa (NR1C1), PPARh/y (NUC1; NR1C2), and PPARg (NR1C3). PPARα, -h/y, and -ϒ are encoded by different genes but show substantial amino acid similarity, especially within the DNA and ligand binding domains. All PPARs act as heterodimers with the 9-cis-retinoic acid receptors (retinoid X receptor; RXRs) and play important roles in the regulation of metabolic pathways, including those of lipid of biosynthesis and glucose metabolism, as well as in a variety of cell differentiation, proliferation, and apoptosis pathways. Recently, there has been a great deal of interest in the involvement of PPARs in inflammatory processes. PPAR ligands, in particular those of PPARα and PPARϒ, inhibit the activation of inflammatory gene expression and can negatively interfere with proinflammatory transcription factor signaling pathways in vascular and inflammatory cells. Furthermore, PPAR levels are differentially regulated in a variety of inflammatory disorders in man, where ligands appear to be promising new therapies.

Fig. not shown.  Structure and transcriptional activation of PPARs. (A) Generic schematic of the structure of the PPAR family of nuclear receptors. Indicated are the N–C terminal regions subdivided in to 4 domains: the A/B, N terminal domain [also called the activation function (AF)-1 domain]; C, the DNA binding domain; D, the F hinge_region; and E, the ligand binding domain (AF-2). (B) Generic scheme for the activation of a PPAR receptor as a transcription factor. PPAR activation leads to heterodimerization with RXR and an accumulation in the nucleus. Ligand activation of PPAR results in a change from a repressed binding protein complex which may contain histone deacetylases (HDAC), the nuclear receptor corepressor (NCo-R), and the silencing mediator of retinoid and thyroid signaling (SMRT) to an activation complex that may contain the histone acetylases, steroid receptor co-activator-1 (SRC-1), the PPAR binding protein (PBP), cAMP response element binding protein (CBP/p300), TATA box binding proteins, and RNA polymerase (RNA pol) III. The activated PPAR–RXR heterodimer complex binds to DNA sequences called PPAR response elements (PPRE) in target genes initiation their transcription.

Although the nature of true endogenous PPAR ligands are still not known (Bishop-Bailey & Wray, 2003), PPARs can be activated by a wide variety of F endogenous or pharmacological ligands. PPARα activators include a variety of endogenously present fatty acids, LTB4 and hydroxyeicosatetraenoic acids (HETEs), and clinically used drugs, such as the fibrates, a class of first-line drugs in the treatment of dyslipidemia. Similarly, PPARg can be activated by a number of ligands, including docosahexaenoic acid, linoleic acid, the anti-diabetic glitazones, used as insulin sensitizers, and a number of lipids, including oxidized LDL, azoyle-PAF, and eicosanoids, such as 5,8,11,14-eicosatetraynoic acid and the prostanoids PGA1, PGA2, PGD2, and its dehydration products of the PGJ series of cyclopentanones (e.g., 15 deoxy-D12,14-PGJ2). Dyslipidemia and insulin-dependent diabetes are commonly found existing together as part of the metabolic X syndrome.

Because PPARa and PPARg ligands independently are useful clinical drugs in the treatment of these respective disorders, synthetic dual PPARα/ϒ ligands have recently been developed and show a combined clinical efficacy. PPAR h/y activators include fatty acids and prostacyclin and synthetic compounds L-165,041, GW501516, compound F and L-783,483. Unlike PPARα or-ϒ, there are no PPAR h/y drugs in the clinic, although ligands are in phase II clinical trials for dyslipidemia (http://www.science.gsk.com/pipeline). Indeed, part of the challenge in determining the function of PPARh/y has been the identification and availability of new ligands with more potency and selectivity for use as pharmacological tools.

Fig. not shown. Mechanisms of the anti-inflammatory effects of PPARα. PPARα ligands inhibit the activities of NF-nB, AP-1, and T-bet within cells. In sites of local inflammation, tissue and endothelial cell activity is inhibited, and expressions of adhesion molecules (ICAM-1 and VCAM-1), pro-inflammatory cytokines (IL-1, -6, -8, -12, and TNFα), vasoactive mediators (inducible cyclo-oxygenase, inducible nitric oxide synthase, and endothelin-1; COX-2, iNOS, and ET-1), and proteases (MMP-9) are decreased. The inflammatory responses in leukocytes are also diminished. Monocyte/macrophage activity is decreased, and lipid metabolizing pathways increased, T- and B-lymphocyte proliferation and differentiation are inhibited, and T-lymphocyte and eosinophil chemotaxis reduced. Bold italic text indicates positive regulation by the PPAR, all other text indicates a negative regulation.

Fig. not shown. Mechanisms of the anti-inflammatory effects of PPAR h/y. PPAR h/y ligands inhibit the activities of NF-nB and release the suppressor BCL-6 from PPAR h/y. In sites of local inflammation, endothelial cell adhesion molecule (VCAM-1) and chemokine (MCP-1) are reduced. PPAR h/y and its endogenous ligand(s) are induced during the inflammatory response in keratinocytes, which then promotes cell survival (integrin-linked kinase—Akt pathway) and wound healing. The inflammatory responses in monocyte/ macrophages are modulated. In the absence of ligand, PPAR h/y sequesters BCL-6 and induces MCP-1, MCP-3, and IL-1h. When PPAR h/y ligand is given, BCL-6 is released and MCP-1, -3, and IL-1h levels are reduced. Bold italic text indicates positive regulation by the PPAR, all other text indicates a negative regulation.

Fig. not shown. Mechanisms of the anti-inflammatory effects of PPARg. PPARg ligands can inhibit the activities of NF-nB, AP-1, STAT-1, N-FAT, Erg-1, Jun, and GATA-3 within cells. In sites of local inflammation, tissue and endothelial cell activity is inhibited, and expression of adhesion molecules (ICAM-1), proinflammatory cytokines (IL-8, -12, and TNFα), chemokines (MCP-1, MCP-3, IP-10, Mig, and I-TAC), vasoactive mediators (inducible nitric oxide synthase and endothelin-1; iNOS and ET-1), and proteases (MMP-9) are decreased. The inflammatory responses in leukocytes are also diminished. Monocyte/ macrophage activity is decreased, T- and B-lymphocyte proliferation and differentiation are inhibited, and T-lymphocyte and eosinophil chemotaxis reduced. Platelet activity is inhibited and dendritic cell production of IL-12, and expression of CCL3, CCL5, and CD80 is reduced, so pro-inflammatory TH1 lymphocytes maturation is inhibited. Bold italic text indicates positive regulation by the PPAR, all other text indicates a negative regulation.

The PPARs are one of the most intensely studied members of the nuclear receptor gene family, and since their initial discovery just over decade ago, the PPARs have attracted an increasing amount of experimental and clinical research by investigators from different scientific areas. PPARs through their central roles in regulating energy homeostasis regulate physiological function in many cell types, tissues, and organ systems. Many disease states from carcinogenesis to inflammation have been linked to abnormalities in the function of PPAR-regulated transcription factors. PPARs are expressed or regulate pathophysiology of diverse human disorders including atherosclerosis, inflammation, obesity, diabetes, and the immune response. PPARs have beneficial effects in many inflammatory conditions, where they regulate cytokine production, adhesion molecule expression, fibrinolysis cell proliferation, apoptosis, and differentiation. Further studies and development of novel PPAR ligands and their selective modulators may lead to novel therapeutic agents in the many conditions associated with inflammatory processes.

 

Regulators of endothelial and epithelial barrier integrity and function in acute lung injury

Rudolf Lucas, Alexander D. Verin, Stephen M. Black, John D. Catravas
Biochemical Pharmacology 77 (2009) 1763–1772
http://dx.doi.org:/10.1016/j.bcp.2009.01.014

Pulmonary permeability edema is a major complication of acute lung injury (ALI), severe pneumonia and ARDS. This pathology can be accompanied by

(1) a reduction of alveolar liquid clearance capacity, caused by an inhibition of the expression of crucial sodium transporters, such as the epithelial sodium channel (ENaC) and the Na+-K+-ATPase,
(2) an epithelial and endothelial hyperpermeability and
(3) a disruption of the epithelial and endothelial barriers, caused by increased apoptosis or necrosis.

Since, apart from ventilation strategies, no standard treatment exists for permeability edema, the following chapters will review a selection of novel approaches aiming to improve these parameters in the capillary endothelium and the alveolar epithelium.

Apoptosis is an essential physiological process for the selective elimination of cells. However, the dysregulation of apoptotic pathways is thought to play an important role in the pathogenesis of ALI. Both delayed neutrophil apoptosis and enhanced endothelial/epithelial cell apoptosis have been identified in ALI/ARDS. In the case of neutrophils, which contribute significantly to ALI/ ARDS, studies in both animals and ARDS patients suggest that apoptosis is inhibited during the early stages (<2 h) of inflammation.

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily, that includes receptors for steroid hormones, thyroid hormones, retinoic acid, and fat-soluble vitamins. Since their discovery in 1990, increasing data has been published on the role of PPARs in diverse processes, including lipid and glucose metabolism, diabetes and obesity, atherosclerosis, cellular proliferation and differentiation, neurological diseases, inflammation and immunity. PPARs have both gene-dependent and gene-independent effects. Gene-dependent functions involve the formation of heterodimers with the retinoid X-receptor. Activation by PPAR ligands results in the binding of the heterodimer to peroxisome proliferator response elements, located in the promoter regions of PPAR-regulated genes. Gene independent effects involve the direct binding of PPARs to transcription factors, such as NF-kB, which then alters their binding to DNA promoter elements. PPARs can also bind and sequester various cofactors for transcription factors, and thus further alter gene expression. Importantly, the precise effects of PPARs vary greatly between cell types. To date, three subtypes of PPAR have been identified: α, β, and ϒ. There is increasing data suggesting that PPAR signaling may play an important role in the pathobiology of systemic vascular disease. However, there is less data implicating PPAR signaling in diseases of the lung.

A role for PPARs in the control of inflammation was first evidenced for PPARα, where mice deficient in PPARα exhibited an increased duration of ear-swelling in response to the proinflammatory mediator, LTB4. More recently, a number of studies in mice and in humans have shown that PPAR agonists exhibit anti-inflammatory effects under a wide range of conditions. There are two main mechanisms by which PPARs exert their anti-inflammatory effect. The first involves complex formation, and the inhibition of transcription factors that positively regulate the transcription of pro-inflammatory genes. These include nuclear factor-kB (NF-kB), signal transducers and activators of transcription (STATs), nuclear factor of activated T cells (NF-AT), CAAT/enhancer binding protein (C/EBP) and activator protein 1 (AP-1). These transcription factors are the main mediators of the major proinflammatory cytokines, chemokines, and adhesion molecules involved in inflammation. The second PPAR-mediated anti-inflammatory pathway is mediated by the sequestration of rate limiting, but essential, co-activators or co-repressors.

Recent studies have shown that PPAR signaling can attenuate the airway inflammation induced by LPS in the mouse. It was shown that mice treated with the PPARα agonist, fenofibrate, had decreases in both inflammatory cell infiltration and inflammatory mediators. Conversely, PPARα -/- mice have been shown to have a greater number of neutrophils and macrophages, and increased levels of inflammatory mediators in bronchoalveolar lavage fluids (BALF). Other PPAR agonists, such as rosiglitazone or SB 21994 have also been shown to reduce LPS-mediated ALI in the mouse lung. PPARϒ signaling has also been shown to be protective in regulating pulmonary inflammation associated with fluorescein isothiocyanate (FITC)-induced lung injury, with the PPARϒ ligand pioglitazone decreasing neutrophil infiltration. Collectively, these data suggest that therapeutic agents that activate either or both PPARα and PPARϒ could be beneficial for the treatment of ALI.

Permeability edema is characterized by a reduced alveolar liquid clearance capacity, combined with an endothelial hyperpermeability. Various signaling pathways, such as those involving reactive oxygen species (ROS), Rho GTPases and tyrosine phosphorylation of junctional proteins, converge to regulate junctional permeability, either by affecting the stability of junctional proteins or by modulating their interactions. The regulation of junctional permeability is mainly mediated by dynamic interactions between the proteins of the adherens junctions and the actin cytoskeleton. Actin-mediated endothelial cell contraction is the result of myosin light chain (MLC) phosphorylation by MLC kinase (MLCK) in a Ca2+/calmodulin-dependent manner. RhoA additionally potentiates MLC phosphorylation, by inhibiting MLC phosphatase activity through its downstream effector Rho kinase (ROCK). As such, actin/myosin-driven contraction will generate a contractile force that pulls VE-cadherin inward. This contraction will force VE-cadherin to dissociate from its adjacent partner, as such producing interendothelial gaps.

Vascular endothelial cells can be regulated by nucleotides released from platelets. During vascular injury, broken cells are also the source of the extracellular nucleotides. Furthermore, endothelium may provide a local source of ATP within vascular beds. Primary cultures of human endothelial cells derived from multiple blood vessels release ATP constitutively and exclusively across the apical membrane under basal conditions. Hypotonic challenge or the calcium agonists (ionomycin and thapsigargin) stimulate ATP release in a reversible and regulated manner. Enhanced release of pharmacologically relevant amounts of ATP was observed in endothelial cells under such stimuli as shear stress, lipopolysaccharide (LPS), and ATP itself. Pearson and Gordon demonstrated that incubation of aortic endothelial and smooth muscle cells with thrombin resulted in the specific release of ATP, which was converted to ADP by vascular hydrolases. Yang et al. showed that endothelial cells isolated from guinea pig heart release nucleotides in response to bradykinin, acetylcholine, serotonin and ADP. Nucleotide action is mediated by cell surface purinoreceptors. Once released from endothelial cells, ATP may act in the blood vessel lumen at P2 receptors on nearby endothelium downstream from the site of release. ATP is also degraded rapidly and its metabolites have also been recognized as signaling molecules, which can initiate additional receptor-mediated functions. These include ADP and the final hydrolysis product adenosine.

Signal transduction pathways implicated in ATP-mediated endothelial barrier enhancement

Signal transduction pathways implicated in ATP-mediated endothelial barrier enhancement

Signal transduction pathways implicated in ATP-mediated endothelial barrier enhancement

During the course of ALI, the alveolar space, as well as the interstitium, are sites of intense inflammation, leading to the local production of pro-inflammatory cytokines, such as IL-1β, TGF-β and TNF. The latter pleiotropic cytokine is a 51 kDa homotrimeric protein, binding to two types of receptors, i.e. TNF-R1 and TNF-R2 and which is mainly produced by activated macrophages and T cells. Soluble TNF, as well as the soluble TNF receptors 1 and 2, are generated upon cleavage of membrane TNF or of the membrane associated receptors, respectively, by the enzyme TNF-α convertase (TACE). TNF-R1, but not TNF-R2, contains a death domain, which signals apoptosis upon the formation of the Death Inducing Signaling Complex (DISC). In spite of its lack of a death domain, TNF-R2 can nevertheless be implicated in apoptosis induction, since its activation causes degradation of TNF Receptor Associated Factor 2 (TRAF2), an inhibitor of the TNF-R1-induced DISC formation. Moreover, apoptosis induction of lung microvascular endothelial cells by TNF was shown to require activation of both TNF receptors. TNF-R2 was also shown to be important for ICAM-1 upregulation in endothelial cells in vitro and in vivo, an activity important in the sequestration of leukocytes in the microvessels. Moreover, lung microvascular endothelial cells isolated from ARDS patients express significantly higher levels of TNF-R2 and of ICAM-1 than cells isolated from patients who had undergone a lobectomy for lung carcinoma, used as controls. These findings therefore suggest that ICAM-1 and TNF-R2 may have a particular involvement in the pathogenesis of acute lung injury.

Dichotomous activity of TNF in alveolar liquid clearance and barrier protection

Dichotomous activity of TNF in alveolar liquid clearance and barrier protection

Dichotomous activity of TNF in alveolar liquid clearance and barrier protection during ALI. TNF, which is induced during ALI, causes a downregulation of ENaC expression in type II alveolar epithelial cells, upon activating TNF-R1. Moreover, TNF increases permeability, by means of interfering with tight junctions (TJ) in both alveolar epithelial (AEC) and capillary endothelial cells (MVEC). ROS, the generation of which is frequently increased during ALI, were also shown to downregulate ENaC and Na+-K+-ATPase expression and moreover also lead to decreased endothelial barrier integrity. The TIP peptide, mimicking the lectin-like domain of TNF, is able to increase sodium uptake in alveolar epithelial cells and to restore endothelial barrier integrity, as such providing a significant protection against the development of permeability edema (red lines: inhibition, green arrows: activation).

Proposed mechanism of action for the anti-inflammatory and barrier-protective actions of hsp90 inhibitors.

Proposed mechanism of action for the anti-inflammatory and barrier-protective actions of hsp90 inhibitors.

Proposed mechanism of action for the anti-inflammatory and barrier-protective actions of hsp90 inhibitors.

Permeability edema represents a life-threatening complication of acute lung injury, severe pneumonia and ARDS, characterized by a combined dysregulation of pulmonary epithelial and endothelial apoptosis, endothelial barrier integrity and alveolar liquid clearance capacity. As such, it is likely that several of these parameters have to be targeted in order to obtain a successful therapy. This review focuses on a selection of recently discovered substances and mechanisms that might improve ALI therapy. As such, we have discussed the inhibition of apoptosis and necrosis occurring during ALI, by means of the restoration of Zn2+ homeostasis. PPARα and ϒ agonists can represent therapeutically  promising molecules, since they inhibit transcription factors as well as essential co-activators involved in the activation of pro-inflammatory cytokines, chemokines and adhesion molecules, all of which are implicated in ALI. Apart from inducing a potent inhibition of inflammation upon interfering with NF-kB activation, hsp90 inhibitors were shown to prevent and restore endothelial barrier integrity. These agents are able to significantly improve survival and lung function during LPS-induced ALI. A restoration of endothelial barrier integrity during ALI can also be obtained upon increasing extracellular levels of ATP or adenosine, which activate the purinoreceptors P2Y and P1A2, respectively, leading to a decrease in myosin light chain phosphorylation and an increase in MLC phosphatase 1 activity. The pro-inflammatory cytokine TNF is involved in endothelial apoptosis and hyperpermeability, as well as in the reduction of alveolar liquid clearance, upon activating its receptors. However, apart from its receptor binding sites, TNF harbors a lectin-like domain, which can be mimicked by the TIP peptide. This peptide has been shown to increase alveolar liquid clearance and moreover induces endothelial barrier protection. As such, TNF can be considered as a moonlighting cytokine, combining both positive and negative activities for permeability edema generation within one molecule.

 

The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice

Tong Chen, Yi Moua, Jiani Tan, LinlinWei, Yixue Qiao, Tingting Wei, et al.
International Immunopharmacology 25 (2015) 55–64
http://dx.doi.org/10.1016/j.intimp.2015.01.011

ALI is a clinical syndrome characterized by a disruption of epithelial integrity, neutrophil accumulation, noncardiogenic pulmonary edema, severe hypoxemia and an intense pulmonary inflammatory response with a wide array of increasing severity of lung parenchymal injury. Previous studies have shown that lots of pathogenesis contribute to ALI, such as oxidant/antioxidant dysfunction, dysregulation of inflammatory/anti-inflammatory pathway, upregulation of chemokine production and adhesion molecules. However, to date there is no effective medicine to control ALI. Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram negative bacteria. It has been reported to activate toll like receptors 4 (TLR4) and to stimulate the release of inflammatory mediators inducing ALI-like symptoms. Intratracheal administration of LPS has been used to construct animal models of ALI.

The biological importance of naturally occurring triterpenoids has long been recognized. Oleanolic acid, exhibiting modest biological activities, has been marketed in China as an oral drug for the treatment of liver disorders in humans. Among its derivatives, bardoxolonemethyl (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methylester) CDDO-Me, had completed a successful phase I clinical trial for the treatment of cancer and started a phase II trial for the treatment of patients with pulmonary arterial hypertension. For its broad spectrum antiproliferative and anti-tumorigenic activities, CDDO-Me has also been reported to possess a number of pharmacological activities such as antioxidant, anti-tumor and anti-inflammatory effects. However, the mechanisms by which CDDO-Me exerted its anti-inflammatory effects on macrophage were insufficiently elucidated. More importantly, there is no available report to evaluate its therapeutic effect on acute lung injury.

CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5 mg/kg, 2 mg/kg) or dexamethasone (5 mg/kg) intraperitoneally 1 h before LPS stimulation and were sacrificed 6 h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI.

Effects of CDDO-Me on LPS-mediated lung changes

Effects of CDDO-Me on LPS-mediated lung histopathologic changes in lung tissues. (A) The lung section from the control mice; (B) the lung section from the mice administered with LPS (8 mg/kg); (C) the lung section from the mice administered with dexamethasone (5 mg/kg) and LPS (8 mg/kg); (D) the lung section from the mice administered with CDDO-Me (0.5mg/kg) and LPS (8mg/kg); (E) the lung section from the mice administered with CDDO-Me (2mg/kg) and LPS (8mg/kg); (hematoxylin and eosin staining, magnification 200×). Control group: the green arrow indicated alveolar wall, no hyperemia. All the other groups: The black arrow indicated the inflammatory cell infiltration; the green arrow indicated alveolar wall hyperemia.

 

The impact of cardiac dysfunction on acute respiratory distress syndrome and mortality in mechanically ventilated patients with severe sepsis and septic shock: An observational study

Brian M. Fuller, Nicholas M. Mohr, Thomas J. Graetz, et al.
Journal of Critical Care 30 (2015) 65–70
http://dx.doi.org/10.1016/j.jcrc.2014.07.027

Purpose: Acute respiratory distress syndrome (ARDS) is associated with significant mortality and morbidity in survivors. Treatment is only supportive, therefore elucidating modifiable factors that could prevent ARDS could have a profound impact on outcome. The impact that sepsis-associated cardiac dysfunction has on ARDS is not known. Materials and Methods: In this retrospective observational cohort study of mechanically ventilated patients with severe sepsis and septic shock, 122 patients were assessed for the impact of sepsis-associated cardiac dysfunction on incidence of ARDS (primary outcome) and mortality. Results: Sepsis-associated cardiac dysfunction occurred in 44 patients (36.1%). There was no association of sepsis-associated cardiac dysfunction with ARDS incidence (p= 0.59) or mortality, and no association with outcomes in patients that did progress to ARDS after admission. Multivariable logistic regression demonstrated that higher BMI was associated with progression to ARDS (adjusted OR 11.84, 95% CI 1.24 to 113.0, p= 0.02). Conclusions: Cardiac dysfunction in mechanically ventilated patients with sepsis did not impact ARDS incidence, clinical outcome in ARDS patients, or mortality. This contrasts against previous investigations demonstrating an influence of nonpulmonary organ dysfunction on outcome in ARDS. Given the frequency of ARDS as a sequela of sepsis, the impact of cardiac dysfunction on outcome should be further studied.

 

Suppression of NF-κβ pathway by crocetin contributes to attenuation of lipopolysaccharide-induced acute lung injury in mice

Ruhui Yang, Lina Yang, Xiangchun Shen, Wenyuan Cheng, et al.
European Journal of Pharmacology 674 (2012) 391–396
http://dx.doi.org:/10.1016/j.ejphar.2011.08.029

Crocetin, a carotenoid compound, has been shown to reduce expression of inflammation and inhibit the production of reactive oxygen species. In the present study, the effect of crocetin on acute lung injury induced by lipopolysaccharide (LPS) was investigated in vivo. In the mouse model, pretreatment with crocetin at dosages of 50 and 100 mg/kg reduced the LPS-induced lung edema and histological changes, increased LPS-impaired superoxide dismutase (SOD) activity, and decreased lung myeloperoxidase (MPO) activity. Furthermore, treatment with crocetin significantly attenuated LPS-induced mRNA and the protein expressions of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and tumour necrosis factor-α (TNF-α) in lung tissue. In addition, crocetin at different dosages reduced phospho-IκB expression and NF-κB activity in LPS-induced lung tissue alteration. These results indicate that crocetin can provide protection against LPS-induced acute lung injury in mice.

 

Sauchinone, a lignan from Saururus chinensis, attenuates neutrophil pro-inflammatory activity and acute lung injury

Hui-Jing Han, Mei Li, Jong-Keun Son, Chang-Seob Seo, et al.
International Immunopharmacology 17 (2013) 471–477
http://dx.doi.org/10.1016/j.intimp.2013.07.011

Previous studies have shown that sauchinone modulates the expression of inflammatory mediators through mitogen-activated protein kinase (MAPK) pathways in various cell types. However, little information exists about the effect of sauchinone on neutrophils, which play a crucial role in inflammatory process such as acute lung injury (ALI). We found that sauchinone decreased the phosphorylation of p38 MAPK in lipopolysaccharide (LPS)-stimulated murine bone marrow neutrophils, but not ERK1/2 and JNK. Exposure of LPS-stimulated neutrophils to sauchinone or SB203580, a p38 inhibitor, diminished production of tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2 compared to neutrophils cultured with LPS. Treatment with sauchinone decreased the level of phosphorylated ribosomal protein S6 (rpS6) in LPS-stimulated neutrophils. Systemic administration of sauchinone to mice led to reduced levels of phosphorylation of p38 and rpS6 in mice lungs given LPS, decreased TNF-α and MIP-2 production in bronchoalveolar lavage fluid, and also diminished the severity of LPS-induced lung injury, as determined by reduced neutrophil accumulation in the lungs, wet/dry weight ratio, and histological analysis. These results suggest that sauchinone diminishes LPS-induced neutrophil activation and ALI.

In the present study, the systemic administration of sauchinone decreased the phosphorylation of p38 MAPK and rpS6 in mice lungs subjected to LPS and diminished the severity of LPS-induced ALI. Neutrophils play an important role in acute inflammatory processes, such as ALI, which was demonstrated by various experimental models. Previous reports suggested that p38 MAPK inhibition of murine neutrophils could lead to the loss of chemotaxis toward MIP-2, as well as the loss of TNF-αandMIP-2 production in response to LPS, and also attenuated neutrophil accumulation in LPS-induced ALI models. Therefore, the beneficial effects of sauchinone on LPS-induced ALI are likely associated with decreases in the production of pro-inflammatory mediators by neutrophils, consistent with our in vitro experiments. However, we cannot exclude that the effects of sauchinone on reducing the release of TNF-α and MIP-2 in mice lungs subjected to LPS, with the resultant prevention of ALI, could be affected by various pulmonary cell populations, such as alveolar macrophages. Also, the inhibitory effects of sauchinone on NF-κB activation through various pulmonary cell populations (Supplemental Fig. S2), in addition to p38MAPK activity in mouse lungs given LPS, might enhance the anti-inflammatory action of sauchinone in mouse lungs subjected to LPS. In conclusion, we found that sauchinone significantly diminished the release of inflammatory mediators in isolated neutrophils and lungs subjected to LPS. The anti-inflammatory action of sauchinone was associated with the prevention of p38 MAPK and rpS6 activation. These findings suggest that sauchinone may be an appropriate pharmacological candidate for the treatment of ALI as well as other neutrophil driven acute inflammatory diseases.
Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.intimp.2013.07.011

 

Protective effect of dexmedetomidine in a rat model of α-naphthylthiourea- induced acute lung injury

Volkan Hancı, Gamze Yurdakan, Serhan Yurtlu, et al.
J Surg Res 178 (2012):424-430
http://dx.doi.org:/10.1016/j.jss.2012.02.027

Background: We assessed the effects of dexmedetomidine in a rat model of a-naphthylthiourea (ANTU)einduced acute lung injury.  Methods: Forty Wistar Albino male rats weighing 200e240 g were divided into 5 groups (n = 8 each), including a control group. Thus, there were one ANTU group and three dexmedetomidine groups (10-, 50-, and 100-mg/kg treatment groups), plus a control group. The control group provided the normal base values. The rats in the ANTU group were given 10 mg/kg of ANTU intraperitoneally and the three treatment groups received 10, 50, or 100 mg/kg of dexmedetomidine intraperitoneally 30 min before ANTU application. The rat body weight (BW), pleural effusion (PE), and lung weight (LW) of each group were measured 4 h after ANTU administration. The histopathologic changes were evaluated using hematoxylin-eosin staining. Results: The mean PE, LW, LW/BW, and PE/BW measurements in the ANTU group were significantly greater than in the control groups and all dexmedeto-midine treatment groups (P < 0.05). There were also significant decreases in the mean PE, LW, LW/BW and PE/BW values in the dexmedetomidine 50-mg/kg group compared with those in the ANTU group (P < 0.01). The inflammation, hemorrhage, and edema scores in the ANTU group were significantly greater than those in the control or dexmedetomidine 50-mg/kg group (P < 0.01). Conclusion: Dexmedetomidine treatment has demonstrated  a potential benefit by preventing ANTU-induced acute lung injury in an experimental rat model. Dexmedetomidine could have a potential protective effect on acute lung injury in intensive care patients.

 

Protective effects of Isofraxidin against lipopolysaccharide-induced acute lung injury in mice

Xiaofeng Niu, YuWang, Weifeng Li, Qingli Mu, et al.
International Immunopharmacology 24 (2015) 432–439
http://dx.doi.org/10.1016/j.intimp.2014.12.041

Acute lung injury (ALI) is a life-threatening disease characterized by serious lung inflammation and increased capillary permeability, which presents a high mortality worldwide. Isofraxidin (IF), a Coumarin compound isolated from the natural medicinal plants such as Sarcandra glabra and Acanthopanax senticosus, has been reported to have definite anti-bacterial, anti-oxidant, and anti-inflammatory activities. However, the effects of IF against lipopoly-saccharide-induced ALI have not been clarified. The aim of the present study is to explore the protective effects and potential mechanism of IF against LPS-induced ALI in mice. In this study, We found that pretreatment with IF significantly lowered LPS-induced mortality and lung wet-to-dry weight (W/D) ratio and reduced the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) in serum and bronchoalveolar lavage fluid (BALF). We also found that total cells, neutrophils and macrophages in BALF,MPO activity in lung tissues were markedly decreased. Besides, IF obviously inhibited lung histopathological changes and cyclooxygenase-2 (COX-2) protein expression. These results suggest that IF has a protective effect against LPS induced ALI, and the protective effect of IF seems to result from the inhibition of COX-2 protein expression in the lung, which regulates the production of PGE2.

Ingestion of LPS stimulates vascular permeability, promotes inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from blood into lung tissues and activates numerous inflammatory cells such as neutrophils and macrophages. In macrophages, LPS challenge induces the transcription of gene encoding pro-inflammatory protein, which leads to cytokine release and synthesis of enzymes, such as cyclo-oxygenase-2 (COX-2). COX-2 usually can’t be found in normal tissues, but widely induced by pro-inflammatory stimuli, such as cytokines, endotoxins, and growth factors. COX-2 plays a vital role in the regulation of inflammatory process by modulating the production of prostaglandin E2 (PGE2). PGE2, induced by cytokines and other initiator, is an inflammatory mediator which is produced in the regulation of COX-2. Previous researches demonstrated that inhibition of COX-2 produced a dramatically anti-inflammatory effect with little gastrointestinal toxicity. Therefore, inhibition of COX-2 protein expression has far-reaching significance in the treatment of ALI.

effects of IF on LPS-induced mortality in ALI mice

effects of IF on LPS-induced mortality in ALI mice

The effects of IF on LPS-induced mortality in ALI mice (n = 12/group). IF (5, 10, 15 mg/kg, i.p.) or DEX (5 mg/kg, i.p.) were given to mice 1 h prior to LPS challenge. The mortalities were observed at 0, 12, 24, 36, 48, 60, and 72 h. ###P = 0.001 when compared with the control group; *P = 0.05, **P = 0.01, and ***P = 0.001 when compared with the LPS group.

 

Protective effects of intranasal curcumin on paraquot induced acute lung injury (ALI) in mice

Namitosh Tyagi, Asha Kumaria, D. Dash, Rashmi Singh
Environment  Toxicol  & Pharmacol  38 (2014) 913–921
http://dx.doi.org/10.1016/j.etap.2014.10.003

Paraquot (PQ) is widely and commonly used as herbicide and has been reported to be hazardous as it causes lung injury. However, molecular mechanism underlying lung toxicity caused by PQ has not been elucidated. Curcumin, a known anti-inflammatory molecule derived from rhizomes of Curcuma longa has variety of pharmacological activities including free-radical scavenging properties but the protective effects of curcumin on PQ-induced acute lung injury (ALI) have not been studied. In this study, we aimed to study the effects of curcumin on ALI caused by PQ in male parke’s strain mice which were challenged acutely byPQ (50 mg/kg, i.p.) with or without curcumin an hour before (5 mg/kg, i.n.) PQ intoxication. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for pathological and biochemical analysis after 48 h of PQ exposure. Curcumin administration has significantly enhanced superoxide dismutase (SOD) and catalase activities. Lung wet/dry weight ratio, malondialdehyde (MDA) and lactate dehydrogenase (LDH) content, total cell number and myeloperoxidase (MPO) levels in BALF as well as neutrophil infiltration were attenuated by curcumin. Pathological studies also revealed that intranasal curcumin alleviate PQ-induced pulmonary damage and pro-inflammatory cytokine levels like tumor necrosis factor-α (TNF-α) and nitric oxide (NO). These results suggest that intranasal curcumin may directly target lungs and curcumin inhalers may prove to be effective in PQ-induced ALI treatment in near future.

 

Phillyrin attenuates LPS-induced pulmonary inflammation via suppression of MAPK and NF-κB activation in acute lung injury mice

Wei-ting Zhong, Yi-chun Wu, Xian-xing Xie, Xuan Zhou, et al.
Fitoterapia 90 (2013) 132–139
http://dx.doi.org/10.1016/j.fitote.2013.06.003

Phillyrin (Phil) is one of the main chemical constituents of Forsythia suspensa (Thunb.), which has shown to be an important traditional Chinese medicine. We tested the hypothesis that Phil modulates pulmonary inflammation in an ALI model induced by LPS. Male BALB/c mice were pretreated with or without Phil before respiratory administration with LPS, and pretreated with dexamethasone as a control. Cytokine release (TNF-α, IL-1β, and IL-6) and amounts of inflammatory cell in bronchoalveolar lavage fluid (BALF) were detected by ELISA and cell counting separately. Pathologic changes, including neutrophil infiltration, interstitial edema, hemorrhage, hyaline membrane formation, necrosis, and congestion during acute lung injury in mice were evaluated via pathological section with HE staining. To further investigate the mechanism of Phil anti-inflammatory effects, activation of MAPK and NF-κB pathways was tested by western blot assay. Phil pretreatment significantly attenuated LPS-induced pulmonary histopathologic changes, alveolar hemorrhage, and neutrophil infiltration. The lung wet-to-dry weight ratios, as the index of pulmonary edema, were markedly decreased by Phil retreatment. In addition, Phil decreased the production of the proinflammatory cytokines including (TNF-α, IL-1β, and IL-6) and the concentration of myeloperoxidase (MPO) in lung tissues. Phil pretreatment also significantly suppressed LPS-induced activation of MAPK and NF-κB pathways in lung tissues. Taken together, the results suggest that Phil may have a protective effect on LPS-induced ALI, and it potentially contributes to the suppression of the activation of MAPK and NF-κB pathways. Phil may be a new preventive agent of ALI in the clinical setting.

A mass of studies have been reported basically on alleviating LPS-induced acute lung injury in models. Phillyrin (Fig. 1), a lignin, is one of the main chemical constituents of Forsythia suspensa (Thunb.), which is an important traditional Chinese medicine (“Lianqiao” in Chinese), and has long been used for gonorrhea, erysipelas, inflammation, pyrexia and ulcer. Previous studies indicated that Phil significantly inhibited NO production in LPS-activated macrophage cells. But there is not much evidence showing the anti-inflammatory properties of phillyrin. In the present study, we sought to investigate the effects of phillyrin on LPS-induced pulmonary inflammation in mice.

Fig. not shown. A: Effects of Phil on histopathological changes in lung tissues in LPS-induced ALI mice. Mice were given an intragastric administration of Phil (10 and 20 mg/kg) or Dex (5 mg/kg) 1 h prior to an intranasal administration of LPS. Then mice were anesthetized and lung tissue samples were collected at 6 h after LPS challenge for histological evaluation. These representative histological changes of the lung were obtained from mice of different groups (hematoxylin and eosin staining, original magnification 200×, Scale bar: 50 μm). B: Effects of Phil on LPS-induced lung morphology. The slides were histopathologically evaluated using a semi-quantitative scoring method. Lung injury was graded from 0 (normal) to 4 (severe) in four categories: congestion, edema, interstitial inflammation and inflammatory cell infiltration. The total lung injury score was calculated by adding up the individual scores of each category. The values presented are the means ± S.E.M. (n = 4–6 in each group). ##P b 0.01 vs. the control group, **P b 0.01 vs. the LPS group. Cont: control group; LPS: LPS group; Phil + LPS: Phil + LPS group; Dex + LPS: Dex + LPS group.

In summary, the present study indicated that Phil has a protective effect on LPS-induced acute lung injury. Phil significantly attenuated histopathological changes initiated by LPS via reducing over inflammatory responses. We also demonstrated that MAPK and NF-κB signaling pathways are the important targets of Phil to perform its actions. Phil acts by preventing NF-κB translocation to the nucleus or inhibiting the activation of MAPKs directly or indirectly, which is to be investigated in further studies. All these results suggest that Phil may be a new therapeutic agent for the prevention of inflammation during acute lung injury.

 

 

 

 

Read Full Post »

Neonatal Pathophysiology

Neonatal Pathophysiology

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

This curation deals with a large and specialized branch of medicine that grew since the mid 20th century in concert with the developments in genetics and as a result of a growing population, with large urban populations, increasing problems of premature deliveries.  The problems of prematurity grew very preterm to very low birth weight babies with special problems.  While there were nurseries, the need for intensive care nurseries became evident in the 1960s, and the need for perinatal care of pregnant mothers also grew as a result of metabolic problems of the mother, intrauterine positioning of the fetus, and increasing numbers of teen age pregnancies as well as nutritional problems of the mother.  There was also a period when the manufacturers of nutritional products displaced the customary use of breast feeding, which was consequential.  This discussion is quite comprehensive, as it involves a consideration of the heart, the lungs, the brain, and the liver, to a large extent, and also the kidneys and skeletal development.

It is possible to outline, with a proportionate emphasis based on frequency and severity, this as follows:

  1. Genetic and metabolic diseases
  2. Nervous system
  3. Cardiovascular
  4. Pulmonary
  5. Skeletal – bone and muscle
  6. Hematological
  7. Liver
  8. Esophagus, stomach, and intestines
  9. Kidneys
  10. Immune system

Fetal Development

Gestation is the period of time between conception and birth when a baby grows and develops inside the mother’s womb. Because it’s impossible to know exactly when conception occurs, gestational age is measured from the first day of the mother’s last menstrual cycle to the current date. It is measured in weeks. A normal gestation lasts anywhere from 37 to 41 weeks.

Week 5 is the start of the “embryonic period.” This is when all the baby’s major systems and structures develop. The embryo’s cells multiply and start to take on specific functions. This is called differentiation. Blood cells, kidney cells, and nerve cells all develop. The embryo grows rapidly, and the baby’s external features begin to form.

Week 6-9:   Brain forms into five different areas. Some cranial nerves are visible. Eyes and ears begin to form. Tissue grows that will the baby’s spine and other bones. Baby’s heart continues to grow and now beats at a regular rhythm. Blood pumps through the main vessels. Your baby’s brain continues to grow. The lungs start to form. Limbs look like paddles. Essential organs begin to grow.

Weeks 11-18: Limbs extended. Baby makes sucking motion. Movement of limbs. Liver and pancreas produce secretions. Muscle and bones developing.

Week 19-21: Baby can hear. Mom feels baby – and quickening.

http://www.nlm.nih.gov/medlineplus/ency/article/002398.htm

fetal-development

fetal-development

https://polination.files.wordpress.com/2014/02/abortion-new-research-into-fetal-development.jpg

Inherited Metabolic Disorders

The original cause of most genetic metabolic disorders is a gene mutation that occurred many, many generations ago. The gene mutation is passed along through the generations, ensuring its preservation.

Each inherited metabolic disorder is quite rare in the general population. Considered all together, inherited metabolic disorders may affect about 1 in 1,000 to 2,500 newborns. In certain ethnic populations, such as Ashkenazi Jews (Jews of central and eastern European ancestry), the rate of inherited metabolic disorders is higher.

Hundreds of inherited metabolic disorders have been identified, and new ones continue to be discovered. Some of the more common and important genetic metabolic disorders include:

Lysosomal storage disorders : Lysosomes are spaces inside cells that break down waste products of metabolism. Various enzyme deficiencies inside lysosomes can result in buildup of toxic substances, causing metabolic disorders including:

  • Hurler syndrome (abnormal bone structure and developmental delay)
  • Niemann-Pick disease (babies develop liver enlargement, difficulty feeding, and nerve damage)
  • Tay-Sachs disease (progressive weakness in a months-old child, progressing to severe nerve damage; the child usually lives only until age 4 or 5)
  • Gauchers disease and others

Galactosemia: Impaired breakdown of the sugar galactose leads to jaundice, vomiting, and liver enlargement after breast or formula feeding by a newborn.

Maple syrup urine disease: Deficiency of an enzyme called BCKD causes buildup of amino acids in the body. Nerve damage results, and the urine smells like syrup.

Phenylketonuria (PKU): Deficiency of the enzyme PAH results in high levels of phenylalanine in the blood. Mental retardation results if the condition is not recognized.

Glycogen storage diseases: Problems with sugar storage lead to low blood sugar levels, muscle pain, and weakness.

Metal metabolism disorders: Levels of trace metals in the blood are controlled by special proteins. Inherited metabolic disorders can result in protein malfunction and toxic accumulation of metal in the body:

Wilson disease (toxic copper levels accumulate in the liver, brain, and other organs)

Hemochromatosis (the intestines absorb excessive iron, which builds up in the liver, pancreas, joints, and heart, causing damage)

Organic acidemias: methylmalonic acidemia and propionic acidemia.

Urea cycle disorders: ornithine transcarbamylase deficiency and citrullinemia

Hemoglobinopathies – thalassemias, sickle cell disease

Red cell enzyme disorders – glucose-6-phosphate dehydrogenase, pyruvate kinase

This list is by no means complete.

http://www.webmd.com/a-to-z-guides/inherited-metabolic-disorder-types-and-treatments

New variations in the galactose-1-phosphate uridyltransferase (GALT) gene

Clinical and molecular spectra in galactosemic patients from neonatal screening in northeastern Italy: Structural and functional characterization of new variations in the galactose-1-phosphate uridyltransferase (GALT) gene

E Viggiano, A Marabotti, AP Burlina, C Cazzorla, MR D’Apice, et al.
Gene 559 (2015) 112–118
http://dx.doi.org/10.1016/j.gene.2015.01.013
Galactosemia (OMIM 230400) is a rare autosomal recessive inherited disorder caused by deficiency of galactose-1-phosphate uridyltransferase (GALT; OMIM 606999) activity. The incidence of galactosemia is 1 in 30,000–60,000, with a prevalence of 1 in 47,000 in the white population. Neonates with galactosemia can present acute symptoms, such as severe hepatic and renal failure, cataract and sepsis after milk introduction. Dietary restriction of galactose determines the clinical improvement in these patients. However, despite early diagnosis by neonatal screening and dietary treatment, a high percentage of patients develop long-term complications such as cognitive disability, speech problems, neurological and/or movement disorders and, in females, ovarian dysfunction.

With the benefit of early diagnosis by neonatal screening and early therapy, the acute presentation of classical galactosemia can be prevented. The objectives of the current study were to report our experience with a group of galactosemic patients identified through the neonatal screening programs in northeastern Italy during the last 30 years.

No neonatal deaths due to galactosemia complications occurred after the introduction of the neonatal screening program. However, despite the early diagnosis and dietary treatment, the patients with classical galactosemia showed one or more long-term complications.

A total of 18 different variations in the GALT gene were found in the patient cohort: 12 missense, 2 frameshift, 1 nonsense, 1 deletion, 1 silent variation, and 1 intronic. Six (p.R33P, p.G83V, p.P244S, p.L267R, p.L267V, p.E271D) were new variations. The most common variation was p.Q188R (12 alleles, 31.5%), followed by p.K285N (6 alleles, 15.7%) and p.N314D (6 alleles, 15.7%). The other variations comprised 1 or 2 alleles. In the patients carrying a new mutation, the biochemical analysis of GALT activity in erythrocytes showed an activity of < 1%. In silico analysis (SIFT, PolyPhen-2 and the computational analysis on the static protein structure) showed potentially damaging effects of the six new variations on the GALT protein, thus expanding the genetic spectrum of GALT variations in Italy. The study emphasizes the difficulty in establishing a genotype–phenotype correlation in classical galactosemia and underlines the importance of molecular diagnostic testing prior to making any treatment.

Diagnosis and Management of Hereditary Hemochromatosis

Reena J. Salgia, Kimberly Brown
Clin Liver Dis 19 (2015) 187–198
http://dx.doi.org/10.1016/j.cld.2014.09.011

Hereditary hemochromatosis (HH) is a diagnosis most commonly made in patients with elevated iron indices (transferrin saturation and ferritin), and HFE genetic mutation testing showing C282Y homozygosity.

The HFE mutation is believed to result in clinical iron overload through altering hepcidin levels resulting in increased iron absorption.

The most common clinical complications of HH include cirrhosis, diabetes, nonischemic cardiomyopathy, and hepatocellular carcinoma.

Liver biopsy should be performed in patients with HH if the liver enzymes are elevated or serum ferritin is greater than 1000 mg/L. This is useful to determine the degree of iron overload and stage the fibrosis.

Treatment of HH with clinical iron overload involves a combination of phlebotomy and/or chelation therapy. Liver transplantation should be considered for patients with HH-related decompensated cirrhosis.

Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann–Pick Type C disease among intellectually disabled using discrete event simulation

CDM van Karnebeek, Tima Mohammadi, Nicole Tsaod, Graham Sinclair, et al.
Molecular Genetics and Metabolism 114 (2015) 226–232
http://dx.doi.org/10.1016/j.ymgme.2014.07.004

Background: Recently a less invasive method of screening and diagnosing Niemann–Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods.
Methods: A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted.
Results: The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients’ quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs.
Conclusion: Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients’ quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence.

Neurological and Behavioral Disorders

Estrogen receptor signaling during vertebrate development

Maria Bondesson, Ruixin Hao, Chin-Yo Lin, Cecilia Williams, Jan-Åke Gustafsson
Biochimica et Biophysica Acta 1849 (2015) 142–151
http://dx.doi.org/10.1016/j.bbagrm.2014.06.005

Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affectingboth the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

 

Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults

Synne Aanes, Knut Jørgen Bjuland, Jon Skranes, Gro C.C. Løhaugen
NeuroImage 105 (2015) 76–83
http://dx.doi.org/10.1016/j.neuroimage.2014.10.023

The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure–function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19–20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural–functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth.

The relation of infant attachment to attachment and cognitive and behavioural outcomes in early childhood

Yan-hua Ding, Xiu Xua, Zheng-yan Wang, Hui-rong Li, Wei-ping Wang
Early Human Development 90 (2014) 459–464
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.004

Background: In China, research on the relation of mother–infant attachment to children’s development is scarce.
Aims: This study sought to investigate the relation of mother–infant attachment to attachment, cognitive and behavioral development in young children.                                                                                                                            Study design: This study used a longitudinal study design.
Subjects: The subjects included healthy infants (n=160) aged 12 to 18 months.
Outcome measures: Ainsworth’s “Strange Situation Procedure” was used to evaluate mother–infant attachment types. The attachment Q-set (AQS) was used to evaluate the attachment between young children and their mothers. The Bayley scale of infant development-second edition (BSID-II) was used to evaluate cognitive developmental level in early childhood. Achenbach’s child behavior checklist (CBCL) for 2- to 3-year-oldswas used to investigate behavioral problems.
Results: In total, 118 young children (73.8%) completed the follow-up; 89.7% of infants with secure attachment and 85.0% of infants with insecure attachment still demonstrated this type of attachment in early childhood (κ = 0.738, p b 0.05). Infants with insecure attachment collectively exhibited a significantly lower mental development index (MDI) in early childhood than did infants with secure attachment, especially the resistant type. In addition, resistant infants were reported to have greater social withdrawal, sleep problems and aggressive behavior in early childhood.
Conclusion: There is a high consistency in attachment development from infancy to early childhood. Secure mother–infant attachment predicts a better cognitive and behavioral outcome; whereas insecure attachment, especially the resistant attachment, may lead to a lower cognitive level and greater behavioral problems in early childhood.

representations of the HPA axis

representations of the HPA axis

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

Fetal programming of schizophrenia: Select mechanisms

Monojit Debnatha, Ganesan Venkatasubramanian, Michael Berk
Neuroscience and Biobehavioral Reviews 49 (2015) 90–104
http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.

NMDA receptor dysfunction in autism spectrum disorders

Eun-Jae Lee, Su Yeon Choi and Eunjoon Kim
Current Opinion in Pharmacology 2015, 20:8–13
http://dx.doi.org/10.1016/j.coph.2014.10.007

Autism spectrum disorders (ASDs) represent neurodevelopmental disorders characterized by two core symptoms;

(1)  impaired social interaction and communication, and
(2)  restricted and repetitive behaviors, interests, and activities.

ASDs affect ~ 1% of the population, and are considered to be highly genetic in nature. A large number (~600) of ASD-related genetic variations have been identified (sfari.org), and target gene functions are apparently quite diverse. However, some fall onto common pathways, including synaptic function and chromosome remodeling, suggesting that core mechanisms may exist.

Abnormalities and imbalances in neuronal excitatory and inhibitory synapses have been implicated in diverse neuropsychiatric disorders including autism spectrum disorders (ASDs). Increasing evidence indicates that dysfunction of NMDA receptors (NMDARs) at excitatory synapses is associated with ASDs. In support of this, human ASD-associated genetic variations are found in genes encoding NMDAR subunits. Pharmacological enhancement or suppression of NMDAR function ameliorates ASD symptoms in humans. Animal models of ASD display bidirectional NMDAR dysfunction, and correcting this deficit rescues ASD-like behaviors. These findings suggest that deviation of NMDAR function in either direction contributes to the development of ASDs, and that correcting NMDAR dysfunction has therapeutic potential for ASDs.

Among known synaptic proteins implicated in ASD are metabotropic glutamate receptors (mGluRs). Functional enhancement and suppression of mGluR5 are associated with fragile X syndrome and tuberous sclerosis, respectively, which share autism as a common phenotype. More recently, ionotropic glutamate receptors, namely NMDA receptors (NMDARs) and AMPA receptors (AMPARs), have also been implicated in ASDs. In this review, we will focus on NMDA receptors and summarize evidence supporting the hypothesis that NMDAR dysfunction contributes to ASDs, and, by extension, that correcting NMDAR dysfunction has therapeutic potential for ASDs. ASD-related human NMDAR genetic variants.

Chemokines roles within the hippocampus

Chemokines roles within the hippocampus

IL-1 mediates stress-induced activation of the HPA axis

IL-1 mediates stress-induced activation of the HPA axis

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

Three Classes of Glutamate Receptors

Three Classes of Glutamate Receptors

Clinical studies on ASDs have identified genetic variants of NMDAR subunit genes. Specifically, de novo mutations have been identified in the GRIN2B gene, encoding the GluN2B subunit. In addition, SNP analyses have linked both GRIN2A (GluN2A subunit) and GRIN2B with ASDs. Because assembled NMDARs contain four subunits, each with distinct properties, ASD-related GRIN2A/ GRIN2B variants likely alter the functional properties of NMDARs and/or NMDAR-dependent plasticity.

Pharmacological modulation of NMDAR function can improve ASD symptoms. D-cycloserine (DCS), an NMDAR agonist, significantly ameliorates social withdrawal and repetitive behavior in individuals with ASD. These results suggest that reduced NMDAR function may contribute to the development of ASDs in humans.

We can divide animal studies into two groups. The first group consists of animals in which NMDAR modulators were shown to normalize both NMDAR dysfunction and ASD-like behaviors, establishing strong association between NMDARs and ASD phenotypes (Fig.). In the second group, NMDAR modulators were shown to rescue ASD-like behaviors, but NMDAR dysfunction and its correction have not been demonstrated.

ASD models with data showing rescue of both NMDAR dysfunction and ASD like behaviors Mice lacking neuroligin-1, an excitatory postsynaptic adhesion molecule, show reduced NMDAR function in the hippocampus and striatum, as evidenced by a decrease in NMDA/AMPA ratio and long-term potentiation (LTP). Neuroligin-1 is thought to enhance synaptic NMDAR function, by directly interacting with and promoting synaptic localization of NMDARs.

Fig not shown.

Bidirectional NMDAR dysfunction in animal models of ASD. Animal models of ASD with bidirectional NMDAR dysfunction can be positioned on either side of an NMDAR function curve. Model animals were divided into two groups.

Group 1: NMDAR modulators normalize both NMDAR dysfunction and ASD-like behaviors (green).

Group 2: NMDAR modulators rescue ASD-like behaviors, but NMDAR dysfunction and its rescue have not been demonstrated (orange). Note that Group 2 animals are tentatively placed on the left-hand side of the slope based on the observed DCS rescue of their ASD-like phenotypes, but the directions of their NMDAR dysfunctions remain to be experimentally determined.

ASD models with data showing rescue of ASD-like behaviors but no demonstrated NMDAR dysfunction

Tbr1 is a transcriptional regulator, one of whose targets is the gene encoding the GluN2B subunit of NMDARs. Mice haploinsufficient for Tbr1 (Tbr1+/-) show structural abnormalities in the amygdala and limited GluN2B induction upon behavioral stimulation. Both systemic injection and local amygdalar infusion of DCS rescue social deficits and impaired associative memory in Tbr1+/- mice. However, reduced NMDAR function and its DCS-dependent correction have not been demonstrated.

Spatial working memory and attention skills are predicted by maternal stress during pregnancy

André Plamondon, Emis Akbari, Leslie Atkinson, Meir Steiner
Early Human Development 91 (2015) 23–29
http://dx.doi.org/10.1016/j.earlhumdev.2014.11.004

Introduction: Experimental evidence in rodents shows that maternal stress during pregnancy (MSDP) negatively impacts spatial learning and memory in the offspring. We aim to investigate the association between MSDP (i.e., life events) and spatial working memory, as well as attention skills (attention shifting and attention focusing), in humans. The moderating roles of child sex, maternal anxiety during pregnancy and postnatal care are also investigated.  Methods: Participants were 236mother–child dyads that were followed from the second trimester of pregnancy until 4 years postpartum. Measurements included questionnaires and independent observations.
Results: MSDP was negatively associated with attention shifting at 18monthswhen concurrent maternal anxiety was low. MSDP was associated with poorer spatial working memory at 4 years of age, but only for boys who experienced poorer postnatal care.
Conclusion: Consistent with results observed in rodents, MSDP was found to be associated with spatial working memory and attention skills. These results point to postnatal care and maternal anxiety during pregnancy as potential targets for interventions that aim to buffer children from the detrimental effects of MSDP.

Acute and massive bleeding from placenta previa and infants’ brain damage

Ken Furuta, Shuichi Tokunaga, Seishi Furukawa, Hiroshi Sameshima
Early Human Development 90 (2014) 455–458
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.002

Background: Among the causes of third trimester bleeding, the impact of placenta previa on cerebral palsy is not well known.
Aims: To clarify the effect ofmaternal bleeding fromplacenta previa on cerebral palsy, and in particular when and how it occurs.
Study design: A descriptive study.
Subjects: Sixty infants born to mothers with placenta previa in our regional population-based study of 160,000 deliveries from 1998 to 2012. Premature deliveries occurring atb26 weeks of gestation and placenta accrete were excluded.
Outcome measures: Prevalence of cystic periventricular leukomalacia (PVL) and cerebral palsy (CP).
Results: Five infants had PVL and 4 of these infants developed CP (1/40,000 deliveries). Acute and massive bleeding (>500 g) within 8 h) occurred at around 30–31 weeks of gestation, and was severe enough to deliver the fetus. None of the 5 infants with PVL underwent antenatal corticosteroid treatment, and 1 infant had mild neonatal hypocapnia with a PaCO2 < 25 mm Hg. However, none of the 5 PVL infants showed umbilical arterial academia with pH < 7.2, an abnormal fetal heart rate monitoring pattern, or neonatal hypotension.
Conclusions: Our descriptive study showed that acute and massive bleeding from placenta previa at around 30 weeks of gestation may be a risk factor for CP, and requires careful neonatal follow-up. The underlying process connecting massive placental bleeding and PVL requires further investigation.

Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes

Courtney J. Wusthoff, Irene M. Loe
Seminars in Fetal & Neonatal Medicine 20 (2015) 52e57
http://dx.doi.org/10.1016/j.siny.2014.12.003

Extreme neonatal hyperbilirubinemia has long been known to cause the clinical syndrome of kernicterus, or chronic bilirubin encephalopathy (CBE). Kernicterus most usually is characterized by choreoathetoid cerebral palsy (CP), impaired upward gaze, and sensorineural hearing loss, whereas cognition is relatively spared. The chronic condition of kernicterus may be, but is not always, preceded in the acute stage by acute bilirubin encephalopathy (ABE). This acute neonatal condition is also due to hyperbilirubinemia, and is characterized by lethargy and abnormal behavior, evolving to frank neonatal encephalopathy, opisthotonus, and seizures. Less completely defined is the syndrome of bilirubin-induced neurologic dysfunction (BIND).

Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism.

As noted in a technical report by the American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “it is apparent that the use of a single total serum bilirubin level to predict long-term outcomes is inadequate and will lead to conflicting results”. As described above, this has certainly been the case in research to date. To clarify how hyperbilirubinemia influences neurodevelopmental outcome, more sophisticated consideration is needed both of how to assess bilirubin exposure leading to neurotoxicity, and of those comorbid conditions which may lower the threshold for brain injury.

For example, premature infants are known to be especially susceptible to bilirubin neurotoxicity, with kernicterus reported following TB levels far lower than the threshold expected in term neonates. Similarly, among extremely preterm neonates, BBC is proportional to gestational age, meaning that the most premature infants have the highest UB, even for similar TB levels. Thus, future studies must be adequately powered to examine preterm infants separately from term infants, and should consider not just peak TB, but also BBC, as independent variables in neonates with hyperbilirubinemia. Similarly, an analysis by the NICHD NRN found that, among ELBW infants, higher UB levels were associated with a higher risk of death or NDI. However, increased TB levels were only associated with death or NDI in unstable infants. Again, UB or BBC appeared to be more useful than TB.

Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections?

Jon F. Watchko, Michael J. Painter, Ashok Panigrahy
Seminars in Fetal & Neonatal Medicine 20 (2015) 47e51
http://dx.doi.org/10.1016/j.siny.2014.12.004

Investigators have hypothesized a range of subcortical neuropathology in the genesis of bilirubin induced neurologic dysfunction (BIND). The current review builds on this speculation with a specific focus on the cerebellum and its connections in the development of the subtle neuromotor disabilities of BIND. The focus on the cerebellum derives from the following observations:
(i) the cerebellum is vulnerable to bilirubin-induced injury; perhaps the most vulnerable region within the central nervous system;
(ii) infants with cerebellar injury exhibit a neuromotor phenotype similar to BIND; and                                                       (iii) the cerebellum has extensive bidirectional circuitry projections to motor and non-motor regions of the brain-stem and cerebral cortex that impact a variety of neurobehaviors.
Future study using advanced magnetic resonance neuroimaging techniques have the potential to shed new insights into bilirubin’s effect on neural network topology via both structural and functional brain connectivity measurements.

Bilirubin-induced neurologic damage is most often thought of in terms of severe adverse neuromotor (dystonia with or without athetosis) and auditory (hearing impairment or deafness) sequelae. Observed together, they comprise the classic neurodevelopmental phenotype of chronic bilirubin encephalopathy or kernicterus, and may also be seen individually as motor or auditory predominant subtypes. These injuries reflect both a predilection of bilirubin toxicity for neurons (relative to glial cells) and the regional topography of bilirubin-induced neuronal damage characterized by prominent involvement of the globus pallidus, subthalamic nucleus, VIII cranial nerve, and cochlear nucleus.

It is also asserted that bilirubin neurotoxicity may be associated with other less severe neurodevelopmental disabilities, a condition termed “subtle kernicterus” or “bilirubin-induced neurologic dysfunction” (BIND). BIND is defined by a constellation of “subtle neurodevelopmental disabilities without the classical findings of kernicterus that, after careful evaluation and exclusion of other possible etiologies, appear to be due to bilirubin neurotoxicity”. These purportedly include:

(i) mild-to-moderate disorders of movement (e.g., incoordination, clumsiness, gait abnormalities, disturbances in static and dynamic balance, impaired fine motor skills, and ataxia);                                                                                             (ii) disturbances in muscle tone; and
(iii) altered sensorimotor integration. Isolated disturbances of central auditory processing are also included in the spectrum of BIND.

  • Cerebellar vulnerability to bilirubin-induced injury
  • Cerebellar injury phenotypes and BIND
  • Cerebellar projections
Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brain-stem from a 34 gestational-week premature kernicteric infant formalin-fixed for two weeks. Yellow staining is evident in the cerebellar dentate nuclei (upper arrow) and vestibular nuclei at the pontomedullary junction (lower arrowhead). Photo is courtesy of Mahmdouha Ahdab-Barmada and reprinted with permission from Taylor-Francis Group (Ahdab Barmada M. The neuropathology of kernicterus: definitions and debate. In: Maisel MJ, Watchko JF editors. Neonatal jaundice. Amsterdam: Harwood Academic Publishers; 2000. p. 75e88

Whether cerebellar injury is primal or an integral part of disturbed neural circuitry in bilirubin-induced CNS damage is unclear. Movement disorders, however, are increasingly recognized to arise from abnormalities of neuronal circuitry rather than localized, circumscribed lesions. The cerebellum has extensive bidirectional circuitry projections to an array of brainstem nuclei and the cerebral cortex that modulate and refine motor activities. In this regard, the cerebellum is characteristically subdivided into three lobes based on neuroanatomic and phylogenetic criteria as well as by their primary afferent and efferent connections. They include:
(i) flocculonodular lobe (archicerebellum);
(ii) anterior lobe (paleocerebellum); and
(iii) posterior lobe (neocerebellum).

The archicerebellum, the oldest division phylogenically, receives extensive input from the vestibular system and is therefore also known as the vestibulocerebellum and is important for equilibrium control. The paleocerebellum, also a primitive region, receives extensive somatosensory input from the spinal cord, including the anterior and posterior spinocerebellar pathways that convey unconscious proprioception, and is therefore also known as the spinocerebellum. The neocerebellum is the most recently evolved region, receives most of the input from the cerebral cortex, and is thus termed the cerebrocerebellum. This area has greatly expanded in association with the extensive development of the cerebral cortex in mammals and especially primates. To cause serious longstanding dysfunction, cerebellar injury must typically involve the deep cerebellar nuclei and their projections.

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other brain regions including the cerebral cortex. Most cerebro-cerebellar afferent projections pass through the basal (anterior or ventral) pontine nuclei and intermediate cerebellar peduncle, whereas most cerebello-cerebral efferent projections pass through the dentate and ventrolateral thalamic nuclei. DCN, deep cerebellar nuclei; RN, red nucleus; ATN, anterior thalamic nucleus; PFC, prefrontal cortex; MC, motor cortex; PC, parietal cortex; TC, temporal cortex; STN, subthalamic nucleus; APN, anterior pontine nuclei. Reprinted under the terms of the Creative Commons Attribution License from D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit to cognition. Front Neural Circuits 2013; 6:116.

Given the vulnerability of the cerebellum to bilirubin-induced injury, cerebellar involvement should also be evident in classic kernicterus, contributing to neuromotor deficits observed therein. It is of interest, therefore, that cerebellar damage may play a role in the genesis of bilirubin-induced dystonia, a prominent neuromotor feature of chronic bilirubin encephalopathy in preterm and term neonates alike. This complex movement disorder is characterized by involuntary sustained muscle contractions that result in abnormal position and posture. Moreover, dystonia that is brief in duration results in chorea, and, if brief and repetitive, leads to athetosis ‒ conditions also classically observed in kernicterus. Recent evidence suggests that dystonic movements may depend on disruption of both basal ganglia and cerebellar neuronal networks, rather than isolated dysfunction of only one motor system.

Dystonia is also a prominent feature in Gunn rat pups and neonatal Ugt1‒/‒-deficient mice both robust models of kernicterus. The former is used as an experimental model of dystonia. Although these models show basal ganglia injury, the sine qua non of bilirubin-induced murine neuropathology is cerebellar damage and resultant cerebellar hypoplasia.

Studies are needed to define more precisely the motor network abnormalities in kernicterus and BIND. Magnetic resonance imaging (MRI) has been widely used in evaluating infants at risk for bilirubin-induced brain injury using conventional structural T1-and T2-weighted imaging. Infants with chronic bilirubin encephalopathy often demonstrate abnormal bilateral, symmetric, high-signal intensity on T2-weighted MRI of the globus pallidus and subthalamic nucleus, consistent with the neuropathology of kernicterus. Early postnatal MRI of at-risk infants, although frequently showing increased T1-signal in these regions, may give false-positive findings due to the presence of myelin in these structures.

Diffusion tensor imaging and tractography could be used to delineate long-term changes involving specific white matter pathways, further elucidating the neural basis of long-term disability in infants and children with chronic bilirubin encephalopathy and BIND. It will be equally valuable to use blood oxygen level-dependent (BOLD) “resting state” functional MRI to study intrinsic connectivity in order to identify vulnerable brain networks in neonates with kernicterus and BIND. Structural networks of the CNS (connectome) and functional network topology can be characterized in infants with kernicterus and BIND to determine disease-related pattern(s) with respect to both long- and short-range connectivity. These findings have the potential to shed novel insights into the pathogenesis of these disorders and their impact on complex anatomical connections and resultant functional deficits.

Audiologic impairment associated with bilirubin-induced neurologic damage

Cristen Olds, John S. Oghalai
Seminars in Fetal & Neonatal Medicine 20 (2015) 42e46
http://dx.doi.org/10.1016/j.siny.2014.12.006

Hyperbilirubinemia affects up to 84% of term and late preterm infants in the first week of life. The elevation of total serum/plasma bilirubin (TB) levels is generally mild, transitory, and, for most children, inconsequential. However, a subset of infants experiences lifelong neurological sequelae. Although the prevalence of classic kernicterus has fallen steadily in the USA in recent years, the incidence of jaundice in term and premature infants has increased, and kernicterus remains a significant problem in the global arena. Bilirubin-induced neurologic dysfunction (BIND) is a spectrum of neurological injury due to acute or sustained exposure of the central nervous system(CNS) to bilirubin. The BIND spectrum includes kernicterus, acute bilirubin encephalopathy, and isolated neural pathway dysfunction.

Animal studies have shown that unconjugated bilirubin passively diffuses across cell membranes and the blood‒brain barrier (BBB), and bilirubin not removed by organic anion efflux pumps accumulates within the cytoplasm and becomes toxic. Exposure of neurons to bilirubin results in increased oxidative stress and decreased neuronal proliferation and presynaptic neuro-degeneration at central glutaminergic synapses. Furthermore, bilirubin administration results in smaller spiral ganglion cell bodies, with decreased cellular density and selective loss of large cranial nerve VIII myelinated fibers. When exposed to bilirubin, neuronal supporting cells have been found to secrete inflammatory markers, which contribute to increased BBB permeability and bilirubin loading.

The jaundiced Gunn rat is the classic animal model of bilirubin toxicity. It is homozygous for a premature stop codon within the gene for UDP-glucuronosyltransferase family 1 (UGT1). The resultant gene product has reduced bilirubin-conjugating activity, leading to a state of hyperbilirubinemia. Studies with this rat model have led to the concept that impaired calcium homeostasis is an important mechanism of neuronal toxicity, with reduced expression of calcium-binding proteins in affected cells being a sensitive index of bilirubin-induced neurotoxicity. Similarly, application of bilirubin to cultured auditory neurons from brainstem cochlear nuclei results in hyperexcitability and excitotoxicity.

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brain-stem response (ABR). The ipsilateral (green) and contralateral (blue) auditory pathways are shown, with structures that are known to be affected by hyperbilirubinemia highlighted in red. Roman numerals in parentheses indicate corresponding waves in the normal human ABR (inset). Illustration adapted from the “Ear Anatomy” series by Robert Jackler and Christine Gralapp, with permission.

Bilirubin-induced neurologic dysfunction (BIND)

Vinod K. Bhutani, Ronald Wong
Seminars in Fetal & Neonatal Medicine 20 (2015) 1
http://dx.doi.org/10.1016/j.siny.2014.12.010

Beyond the traditional recognized areas of fulminant injury to the globus pallidus as seen in infants with kernicterus, other vulnerable areas include the cerebellum, hippocampus, and subthalamic nuclear bodies as well as certain cranial nerves. The hippocampus is a brain region that is particularly affected by age related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive deficits. Lower grey matter volumes within the limbic-striato-thalamic circuitry are common to other etiological mechanisms of subtle neurologic injury. Lower grey matter volumes in the amygdala, caudate, frontal and medial gyrus are found in schizophrenia and in the putamen in autism. Thus, in terms of brain volumetrics, schizophrenia and autism spectrum disorders have a clear degree of overlap that may reflect shared etiological mechanisms. Overlap with injuries observed in infants with BIND raises the question about how these lesions are arrived at in the context of the impact of common etiologies.

Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health

Olena Babenko, Igor Kovalchuk, Gerlinde A.S. Metz
Neuroscience and Biobehavioral Reviews 48 (2015) 70–91
http://dx.doi.org/10.1016/j.neubiorev.2014.11.013

Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.

Sensitive time-windows for susceptibility in neurodevelopmental disorders

Rhiannon M. Meredith, Julia Dawitz and Ioannis Kramvis
Trends in Neurosciences, June 2012; 35(6): 335-344
http://dx.doi.org:/10.1016/j.tins.2012.03.005

Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.

Fig (not shown)

Misregulated mechanisms underlying spine morphology in NDDs. Several proteins implicated in monogenic NDDs (highlighted in red) are linked to the regulation of the synaptic cytoskeleton via F-actin through different Rho-mediated signaling pathways (highlighted in green). Mutations in OPHN1, TSC1/2, FMRP, p21-activated kinase (PAK) are directly linked to human NDDs of intellectual disability. For instance, point mutations in OPHN1 and a PAK isoform are linked to non-syndromic mental retardation, whereas mutations or altered expression of TSC1/2 and FMRP are linked to TSC and FXS, respectively. Cytoplasmic interacting protein (CYFIP) and LIM-domain kinase 1 (LIMK1) are known to interact with FMRP and PAK, respectively [105]. LIMK1 is one of many dysregulated proteins contributing to the NDD Williams syndrome. Mouse models are available for all highlighted (red) proteins and reveal specific synaptic and behavioral deficits. Local protein synthesis in synapses, dendrites and glia is also regulated by proteins such as TSC1/2 and the FMRP/CYFIP complex. Abbreviations: 4EBP, 4E binding protein; eIF4E, eukaryotic translation initiation factor 4E.

Fig (not shown)

Sensitive time-windows, synaptic phenotypes and NDD gene targets. Sensitive time-windows exist in neural circuits, during which gene targets implicated in NDDs are normally expressed. Misregulation of these genes can affect multiple synaptic phenotypes during a restricted developmental period. The effect upon synaptic phenotypes is dependent upon the temporal expression of these NDD genes and their targets. (a) Expression outside a critical period of development will have no effect upon synaptic phenotypes. (b,c) A temporal expression pattern that overlaps with the onset (b) or closure (c) of a known critical period can alter the synaptic phenotype during that developmental time-window.

Outstanding questions

(1) Can treatment at early presymptomatic stages in animal models for NDDs prevent or ease the later synaptic, neuronal, and behavioral impairments?

(2) Are all sensory critical periods equally misregulated in mouse models for a specific NDD? Are there different susceptibilities for auditory, visual and somatosensory neurocircuits that reflect the degree of impairments observed in patients?

(3) If one critical period is missed or delayed during formation of a layer-specific connection in a network, does the network overcome this misregulated connectivity or plasticity window?

(4) In monogenic NDDs, does the severity of misregulating one particular time-window for synaptic establishment during development correlate with the importance of that gene for that synaptic circuit?

(5) Why do critical periods close in brain development?

(6) What underlies the regression of some altered synaptic phenotypes in Fmr1-KO mice?

(7) Can the concept of susceptible time-windows be applied to other NDDs, including schizophrenia and Tourette’s syndrome?

Cardiovascular

Cardiac output monitoring in newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 143–148
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.032

There is an increased interest in methods of objective cardiac output measurement in critically ill patients. Several techniques are available for measurement of cardiac output in children, although this remains very complex in newborns. Cardiac output monitoring could provide essential information to guide hemodynamic management. An overview is given of various methods of cardiac output monitoring with advantages and major limitations of each technology together with a short explanation of the basic principles.

Fick principle

According to the Fick principle the volume of blood flow in a given period equals the amount of substance entering the blood stream in the same period divided by the difference in concentrations of the substrate upstream respectively downstream to the point of entry in the circulation. This substance can be oxygen (O2-Fick) or carbon dioxide (CO2-FICK), so cardiac output can be calculated by dividing measured pulmonary oxygen uptake by the arteriovenous oxygen concentration difference. The direct O2-Fick method is regarded as gold standard in cardiac output monitoring in a research setting, despite its limitations. When the Fick principle is applied for carbon dioxide (CO2 Fick), the pulmonary carbon dioxide exchange is divided by the venoarterial CO2 concentration difference to calculate cardiac output.

In the modified CO2 Fick method pulmonary CO2 exchange is measured at the endotracheal tube. Measurement of total CO2 concentration in blood is more complex and simultaneous sampling of arterial and central venous blood is required. However, frequent blood sampling will result in an unacceptable blood loss in the neonatal population.

Blood flow can be calculated if the change in concentration of a known quantity of injected indicator is measured in time distal to the point of injection, so an indicator dilution curve can be obtained. Cardiac output can then be calculated with the use of the Stewart–Hamilton equation. Several indicators are used, such as indocyanine green, Evans blue and brilliant red in dye dilution, cold solutions in thermodilution, lithium in lithium dilution, and isotonic saline in ultrasound dilution.

Cardiovascular adaptation to extra uterine life

Alice Lawford, Robert MR Tulloh
Paediatrics And Child Health 2014; 25(1): 1-6.

The adaptation to extra uterine life is of interest because of its complexity and the ability to cause significant health concerns. In this article we describe the normal changes that occur and the commoner abnormalities that are due to failure of normal development and the effect of congenital cardiac disease. Abnormal development may occur as a result of problems with the mother, or with the fetus before birth. After birth it is essential to determine whether there is an underlying abnormality of the fetal pulmonary or cardiac development and to determine the best course of management of pulmonary hypertension or congenital cardiac disease. Causes of underdevelopment, maldevelopment and maladaptation are described as are the causes of critical congenital heart disease. The methods of diagnosis and management are described to allow the neonatologist to successfully manage such newborns.

Fetal vascular structures that exist to direct blood flow

Fetal structure Function
Arterial duct Connects pulmonary artery to the aorta and shunts blood right to left; diverting flow away from fetal lungs
Foramen ovale Opening between the two atria thatdirects blood flow returning to right

atrium through the septal wall into the left atrium bypassing lungs

Ductus venosus Receives oxygenated blood fromumbilical vein and directs it to the

inferior vena cava and right atrium

Umbilical arteries Carrying deoxygenated blood fromthe fetus to the placenta
Umbilical vein Carrying oxygenated blood from theplacenta to the fetus

Maternal causes of congenital heart disease

Maternal disorders rubella, SLE, diabetes mellitus
Maternal drug use Warfarin, alcohol
Chromosomal abnormality Down, Edward, Patau, Turner, William, Noonan

 

Fetal and Neonatal Circulation  The fetal circulation is specifically adapted to efficiently exchange gases, nutrients, and wastes through placental circulation. Upon birth, the shunts (foramen ovale, ductus arteriosus, and ductus venosus) close and the placental circulation is disrupted, producing the series circulation of blood through the lungs, left atrium, left ventricle, systemic circulation, right heart, and back to the lungs.

Clinical monitoring of systemic hemodynamics in critically ill newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 137–141
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.031

Circulatory failure is a major cause of mortality and morbidity in critically ill newborn infants. Since objective measurement of systemic blood flow remains very challenging, neonatal hemodynamics is usually assessed by the interpretation of various clinical and biochemical parameters. An overview is given about the predictive value of the most used indicators of circulatory failure, which are blood pressure, heart rate, urine output, capillary refill time, serum lactate concentration, central–peripheral temperature difference, pH, standard base excess, central venous oxygen saturation and color.

Key guidelines

➢ The clinical assessment of cardiac output by the interpretation of indirect parameters of systemic blood flow is inaccurate, irrespective of the level of experience of the clinician

➢ Using blood pressure to diagnose low systemic blood flow will consequently mean that too many patients will potentially be undertreated or overtreated, both with substantial risk of adverse effects and iatrogenic damage.

➢ Combining different clinical hemodynamic parameters enhances the predictive value in the detection of circulatory failure, although accuracy is still limited.

➢ Variation in time (trend monitoring) might possibly be more informative than individual, static values of clinical and biochemical parameters to evaluate the adequacy of neonatal circulation.

Monitoring oxygen saturation and heart rate in the early neonatal period

J.A. Dawson, C.J. Morley
Seminars in Fetal & Neonatal Medicine 15 (2010) 203e207
http://dx.doi.org:/10.1016/j.siny.2010.03.004

Pulse oximetry is commonly used to assist clinicians in assessment and management of newly born infants in the delivery room (DR). In many DRs, pulse oximetry is now the standard of care for managing high risk infants, enabling immediate and dynamic assessment of oxygenation and heart rate. However, there is little evidence that using pulse oximetry in the DR improves short and long term outcomes. We review the current literature on using pulse oximetry to measure oxygen saturation and heart rate and how to apply current evidence to management in the DR.

Practice points

  • Understand how SpO2 changes in the first minutes after birth.
  • Apply a sensor to an infant’s right wrist as soon as possible after birth.
  • Attach sensor to infant then to oximeter cable.
  • Use two second averaging and maximum sensitivity.

Using pulse oximetry assists clinicians:

  1. Assess changes in HR in real time during transition.
  2. Assess oxygenation and titrate the administration of oxygen to maintain oxygenation within the appropriate range for SpO2 during the first minutes after birth.

Research directions

  • What are the appropriate centiles to target during the minutes after birth to prevent hypoxia and hyperoxia: 25th to 75th, or 10th to 90th, or just the 50th (median)?
  • Can the inspired oxygen be titrated against the SpO2 to keep the SpO2 in the ‘normal range’?
  • Does the use of centile charts in the DR for HR and oxygen saturation reduce the rate of hyperoxia when infants are treated with oxygen.
  • Does the use of pulse oximetry immediately after birth improve short term outcomes, e.g. efficacy of immediate respiratory support, intubation rates in the DR, percentage of inspired oxygen, rate of use of adrenalin or chest compressions, duration of hypoxia/hyperoxia and bradycardia.
  • Does the use of pulse oximetry in the DR improve short term respiratory and long term neurodevelopmental outcomes for preterm infants, e.g. rate of intubation, use of surfactant, and duration of ventilation, continuous positive airway pressure, or supplemental oxygen?
  • Can all modern pulse oximeters be used effectively in the DR or do some have a longer delay before giving an accurate signal and more movement artefact?
  • Would a longer averaging time result in more stable data?

Peripheral haemodynamics in newborns: Best practice guidelines

Michael Weindling, Fauzia Paize
Early Human Development 86 (2010) 159–165
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.033

Peripheral hemodynamics refers to blood flow, which determines oxygen and nutrient delivery to the tissues. Peripheral blood flow is affected by vascular resistance and blood pressure, which in turn varies with cardiac function. Arterial oxygen content depends on the blood hemoglobin concentration (Hb) and arterial pO2; tissue oxygen delivery depends on the position of the oxygen-dissociation curve, which is determined by temperature and the amount of adult or fetal hemoglobin. Methods available to study tissue perfusion include near-infrared spectroscopy, Doppler flowmetry, orthogonal polarization spectral imaging and the peripheral perfusion index. Cardiac function, blood gases, Hb, and peripheral temperature all affect blood flow and oxygen extraction. Blood pressure appears to be less important. Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing the intrathoracic pressure.

graphic

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation. Taken from Yoxall and Weindling

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

graphic

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue.  (a) oxygen delivery (DO2). (b) As DO2 decreases, VO2 is dependent on DO2. The slope of the line indicates the FOE, which in this case is about 0.50. (c) The slope of the line indicates the FOE in the normal situation where oxygenation is DO2 independent, usually < 0.35

The oxygen-dissociation curve

The oxygen-dissociation curve

graphic

The oxygen-dissociation curve

Considerable information about the response of the peripheral circulation has been obtained using NIRS with venous occlusion. Although these measurements were validated against blood co-oximetry in human adults and infants, they can only be made intermittently by a trained operator and are thus not appropriate for general clinical use. Further research is needed to find other better measures of peripheral perfusion and oxygenation which may be easily and continuously monitored, and which could be useful in a clinical setting.

Peripheral oxygenation and management in the perinatal period

Michael Weindling
Seminars in Fetal & Neonatal Medicine 15 (2010) 208e215
http://dx.doi.org:/10.1016/j.siny.2010.03.005

The mechanisms for the adequate provision of oxygen to the peripheral tissues are complex. They involve control of the microcirculation and peripheral blood flow, the position of the oxygen dissociation curve including the proportion of fetal and adult hemoglobin, blood gases and viscosity. Systemic blood pressure appears to have little effect, at least in the non-shocked state. The adequate delivery of oxygen (DO2) depends on consumption (VO2), which is variable. The balance between VO2 and DO2 is given by fractional oxygen extraction (FOE ¼ VO2/DO2). FOE varies from organ to organ and with levels of activity. Measurements of FOE for the whole body produce a range of about 0.15-0.33, i.e. the body consumes 15-33% of oxygen transported.

Fig (not shown)

Biphasic relationship between oxygen delivery (DO2) and oxygen consumption (VO2) in tissue. Dotted lines show fractional oxygen extraction (FOE). ‘A’ indicates the normal situation when VO2 is independent ofDO2 and FOE is about 0.30. AsDO2 decreases in the direction of the arrow, VO2 remains independent of DO2 until the critical point is reached at ‘B’; in this illustration, FOE is about 0.50. The slope of the dotted line indicates the FOE (¼ VO2/DO2), which increases progressively as DO2 decreases.

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Graphic
(A)Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction in anaemic and control infants. (From Wardle et al.)  (B) HbF synthesis and concentration. (From Bard and Widness.) (C) Oxygen dissociation curve.

Peripheral fractional oxygen extraction in babies

Peripheral fractional oxygen extraction in babies

graphic

Peripheral fractional oxygen extraction in babies with asymptomatic or symptomatic anemia compared to controls. Bars represent the median for each group. (From Wardle et al.)

Practice points

  • Peripheral tissue DO2 is complex: cardiac function, blood gases, Hb concentration and the proportion of HbF, and peripheral temperature all play a part in determining blood flow and oxygen extraction in the sick, preterm infant. Blood pressure appears to be less important.
  • Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing intrathoracic pressure.
  • Central blood pressure is a poor surrogate measurement for the adequacy of DO2 to the periphery. Direct measurement, using NIRS, laser Doppler flowmetry or other means, may give more useful information.
  • Reasons for total hemoglobin concentration (Hb) being a relatively poor indicator of the adequacy of the provision of oxygen to the tissues:
  1. Hb is only indirectly related to red blood cell volume, which may be a better indicator of the body’s oxygen delivering capacity.
  2. Hb-dependent oxygen availability depends on the position of the oxygen-hemoglobin dissociation curve.
  3. An individual’s oxygen requirements vary with time and from organ to organ. This means that DO2 also needs to vary.
  4. It is possible to compensate for a low Hb by increasing cardiac output and ventilation, and so the ability to compensate for anemia depends on an individual’s cardio-respiratory reserve as well as Hb.
  5. The normal decrease of Hb during the first few weeks of life in both full-term and preterm babies usually occurs without symptoms or signs of anemia or clinical consequences.

The relationship between VO2 and DO2 is complex and various factors need to be taken into account, including the position of the oxygen dissociation curve, determined by the proportion of HbA and HbF, temperature and pH. Furthermore, diffusion of oxygen from capillaries to the cell depends on the oxygen tension gradient between erythrocytes and the mitochondria, which depends on microcirculatory conditions, e.g. capillary PO2, distance of the cell from the capillary (characterized by intercapillary distances) and the surface area of open capillaries. The latter can change rapidly, for example, in septic shock where arteriovenous shunting occurs associated with tissue hypoxia in spite of high DO2 and a low FOE.

Changes in local temperature deserve particular consideration. When the blood pressure is low, there may be peripheral vasoconstriction with decreased local perfusion and DO2. However, the fall in local tissue temperature would also be expected to be associated with a decreased metabolic rate and a consequent decrease in VO2. Thus a decreased DO2 may still be appropriate for tissue needs.

Pulmonary

Accurate Measurements of Oxygen Saturation in Neonates: Paired Arterial and Venous Blood Analyses

Shyang-Yun Pamela K. Shiao
Newborn and Infant Nurs Rev,  2005; 5(4): 170–178
http://dx.doi.org:/10.1053/j.nainr.2005.09.001

Oxygen saturation (So2) measurements (functional measurement, So2; and fractional measurement, oxyhemoglobin [Hbo2]) and monitoring are commonly investigated as a method of assessing oxygenation in neonates. Differences exist between the So2 and Hbo2 when blood tests are performed, and clinical monitors indicate So2 values. Oxyhemoglobin will decrease with the increased levels of carbon monoxide hemoglobin (Hbco) and methemo-globin (MetHb), and it is the most accurate measurements of oxygen (O2) association of hemoglobin (Hb). Pulse oximeter (for pulse oximetry saturation [Spo2] measurement) is commonly used in neonates. However, it will not detect the changes of Hb variations in the blood for accurate So2 measurements. Thus, the measurements from clinical oximeters should be used with caution. In neonates, fetal hemoglobin (HbF) accounts for most of the circulating Hb in their blood. Fetal hemoglobin has a high O2 affinity, thus releases less O2 to the body tissues, presenting a left-shifted Hbo2 dissociation curve.5,6 To date, however, limited data are available with HbF correction, for accurate arterial and venous (AV) So2 measurements (arterial oxygen saturation [Sao2] and venous oxygen saturation [Svo2]) in neonates, using paired AV blood samples.

In a study of critically ill adult patients, increased pulmonary CO production and elevation in arterial Hbco but not venous Hbco were documented by inflammatory stimuli inducing pulmonary heme oxygenase–1. In normal adults, venous Hbco level might be slightly higher than or equal to arterial Hbco because of production of CO by enzyme heme oxygenase–2, which is predominantly produced in the liver and spleen. However, hypoxia or pulmonary inflammation could induce heme oxygenase–1 to increase endogenous CO, thus elevating pulmonary arterial and systemic arterial Hbco levels in adults. Both endogenous and exogenous CO can suppress proliferation of pulmonary smooth muscles, a significant consideration for the prevention of chronic lung diseases in newborns. Despite these considerations, a later study in healthy adults indicated that the AV differences in Hbco were from technical artifacts and perhaps from inadequate control of different instruments. Thus, further studies are needed to provide more definitive answers for the AV differences of Hbco for adults and neonates with acute and chronic lung diseases.

Methemoglobin is an indicator of Hb oxidation and is essential for accurate measurement of Hbo2, So2, and oxygenation status. No evidence exists to show the AV MetHb difference, although this difference was elucidated with the potential changes of MetHb with different O2 levels.  Methemoglobin can be increased with nitric oxide (NO) therapy, used in respiratory distress syndrome (RDS) to reduce pulmonary hypertension and during heart surgery. Nitric oxide, in vitro, is an oxidant of Hb, with increased O2 during ischemia reperfusion. In hypoxemic conditions in vivo, nitrohemoglobin is a product generated by vessel responsiveness to nitrovasodilators. Nitro-hemoglobin can be spontaneously reversible in vivo, requiring no chemical agents or reductase. However, when O2 levels were increased experimentally in vitro following acidic conditions (pH 6.5) to simulate reperfusion conditions, MetHb levels were increased for the hemolysates (broken red cells). Nitrite-induced oxidation of Hb was associated with an increase in red blood cell membrane rigidity, thus contributing to Hb breakdown. A newer in vitro study of whole blood cells, however, concluded that MetHb formation is not dependent on increased O2 levels. Additional studies are needed to examine in vivo reperfusion of O2 and MetHb effects.

Purpose: The aim of this study was to examine the accuracy of arterial oxygen saturation (Sao2) and venous oxygen saturation (Svo2) with paired arterial and venous (AV) blood in relation to pulse oximetry saturation (Spo2) and oxyhemoglobin (Hbo2) with fetal hemoglobin determination, and their Hbo2 dissociation curves. Method: Twelve preterm neonates with gestational ages ranging from 27 to 34 weeks at birth, who had umbilical AV lines inserted, were investigated. Analyses were performed with 37 pairs of AV blood samples by using a blood volume safety protocol. Results: The mean differences between Sao2 and Svo2, and AV Hbo2 were both 6 percent (F6.9 and F6.7 percent, respectively), with higher Svo2 than those reported for adults. Biases were 2.1 – 0.49 for Sao2, 2.0 – 0.44 for Svo2, and 3.1 – 0.45 for Spo2, compared against Hbo2. With left-shifted Hbo2 dissociation curves in neonates, for the critical values of oxygen tension values between 50 and 75 millimeters of mercury, Hbo2 ranged from 92 to 93.4 percent; Sao2 ranged from 94.5 to 95.7 percent; and Spo2 ranged from 93.7 to 96.3 percent (compared to 85–94 percent in healthy adults). Conclusions: In neonates, both left-shifted Hbo2 dissociation curve and lower AV differences of oxygen saturation measurements indicated low flow of oxygen to the body tissues. These findings demonstrate the importance of accurate assessment of oxygenation statues in neonates.

In these neonates, the mean AV blood differences for both So2 and Hbo2 were about 6 percent, which was much lower than those reported for healthy adults (23 percent) for O2 supply and demand. In addition, with very high levels of HbF releasing less O2 to the body tissue, the results of blood analyses are worrisome for these critically ill neonates for low systemic oxygen states.  O’Connor and Hall determined AV So2 in neonates without HbF determination. Much of the AV So2 difference is dependent on Svo2 measurement. The ranges of Svo2 spanned for 35 percent, and the ranges of Sao2 spanned 6 percent in these neonates. The greater intervals for Svo2 measurements contribute to greater sensitivity for the measurements (than Sao2 measurements) in responding to nursing care and changes of O2 demand. Thus, Svo2 measurement is essential for better assessment of oxygenation status in neonates.

The findings of this study on AV differences of So2 were limited with very small number of paired AV blood samples. However, critically ill neonates need accurate assessment of oxygenation status because of HbF, which releases less O2 to the tissues. Decreased differences of AV So2 measurements added further possibilities of lower flow of O2 to the body tissues and demonstrated the greater need to accurately assess the proper oxygenation in the neonates. The findings of this study continued to clarify the accuracy of So2 measurements for neonates. Additional studies are needed to examine So2 levels in neonates to further validate these findings by using larger sample sizes.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal  ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

Scott A. Sands, BA Edwards, VJ Kelly, MR Davidson, MH Wilkinson, PJ Berger
PLoS Comput Biol 5(12): e1000588
http://dx.doi.org:/10.1371/journal.pcbi.1000588

Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea (_SSaO2 ) is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates _SSaO2 throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar PO2 causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates _SSaO2 during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines _SSaO2 during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia.

A novel approach to study oxidative stress in neonatal respiratory distress syndrome

Reena Negi, D Pande, K Karki, A Kumar, RS Khanna, HD Khanna
BBA Clinical 3 (2015) 65–69
http://dx.doi.org/10.1016/j.bbacli.2014.12.001

Oxidative stress is an imbalance between the systemic manifestation of reactive oxygen species and a biological system’s ability to readily detoxify the reactive intermediates or to repair the resulting damage. It is a physiological event in the fetal-to-neonatal transition, which is actually a great stress to the fetus. These physiological changes and processes greatly increase the production of free radicals, which must be controlled by the antioxidant defense system, the maturation of which follows the course of the gestation. This could lead to several functional alterations with important repercussions for the infants. Adequately mature and healthy infants are able to tolerate this drastic change in the oxygen concentration. A problem occurs when the intrauterine development is incomplete or abnormal. Preterm or intrauterine growth retarded (IUGR) and low birth weight neonates are typically of this kind. An oxidant/antioxidant imbalance in infants is implicated in the pathogenesis of the major complications of prematurity including respiratory distress syndrome (RDS), necrotizing enterocolitis (NEC), chronic lung disease, retinopathy of prematurity and intraventricular hemorrhage (IVH).

Background: Respiratory distress syndrome of the neonate (neonatal RDS) is still an important problem in treatment of preterm infants. It is accompanied by inflammatory processes with free radical generation and oxidative stress. The aim of study was to determine the role of oxidative stress in the development of neonatal RDS. Methods: Markers of oxidative stress and antioxidant activity in umbilical cord blood were studied in infants with neonatal respiratory distress syndrome with reference to healthy newborns. Results: Status of markers of oxidative stress (malondialdehyde, protein carbonyl and 8-hydroxy-2-deoxy guanosine) showed a significant increase with depleted levels of total antioxidant capacity in neonatal RDS when compared to healthy newborns. Conclusion: The study provides convincing evidence of oxidative damage and diminished antioxidant defenses in newborns with RDS. Neonatal RDS is characterized by damage of lipid, protein and DNA, which indicates the augmentation of oxidative stress. General significance: The identification of the potential biomarker of oxidative stress consists of a promising strategy to study the pathophysiology of neonatal RDS.

Neonatal respiratory distress syndrome represents the major lung complications of newborn babies. Preterm neonates suffer from respiratory distress syndrome (RDS) due to immature lungs and require assisted ventilation with high concentrations of oxygen. The pathogenesis of this disorder is based on the rapid formation of the oxygen reactive species, which surpasses the detoxification capacity of antioxidative defense system. The high chemical reactivity of free radical leads to damage to a variety of cellular macro molecules including proteins, lipids and nucleic acid. This results in cell injury and may induce respiratory cell death.

Malondialdehyde (MDA) is one of the final products of polyunsaturated fatty acids peroxidation. The present study showed increased concentration of MDA in neonates with respiratory disorders than that of control in consonance with the reported study.

Anemia, Apnea of Prematurity, and Blood Transfusions

Kelley Zagol, Douglas E. Lake, Brooke Vergales, Marion E. Moorman, et al
J Pediatr 2012;161:417-21
http://dx.doi.org:/10.1016/j.jpeds.2012.02.044

The etiology of apnea of prematurity is multifactorial; however, decreased oxygen carrying capacity may play a role. The respiratory neuronal network in neonates is immature, particularly in those born preterm, as demonstrated by their paradoxical response to hypoxemia. Although adults increase the minute ventilation in response to hypoxemia, newborns have a brief increase in ventilation followed by periodic breathing, respiratory depression, and occasionally cessation of respiratory effort. This phenomenon may be exacerbated by anemia in preterm newborns, where a decreased oxygen carrying capacity may result in decreased oxygen delivery to the central nervous system, a decreased efferent output of the respiratory neuronal network, and an increase in apnea.

Objective Compare the frequency and severity of apneic events in very low birth weight (VLBW) infants before and after blood transfusions using continuous electronic waveform analysis. Study design We continuously collected waveform, heart rate, and oxygen saturation data from patients in all 45 neonatal intensive care unit beds at the University of Virginia for 120 weeks. Central apneas were detected using continuous computer processing of chest impedance, electrocardiographic, and oximetry signals. Apnea was defined as respiratory pauses of >10, >20, and >30 seconds when accompanied by bradycardia (<100 beats per minute) and hypoxemia (<80% oxyhemoglobin saturation as detected by pulse oximetry). Times of packed red blood cell transfusions were determined from bedside charts. Two cohorts were analyzed. In the transfusion cohort, waveforms were analyzed for 3 days before and after the transfusion for all VLBW infants who received a blood transfusion while also breathing spontaneously. Mean apnea rates for the previous 12 hours were quantified and differences for 12 hours before and after transfusion were compared. In the hematocrit cohort, 1453 hematocrit values from all VLBW infants admitted and breathing spontaneously during the time period were retrieved, and the association of hematocrit and apnea in the next 12 hours was tested using logistic regression. Results Sixty-seven infants had 110 blood transfusions during times when complete monitoring data were available. Transfusion was associated with fewer computer-detected apneic events (P < .01). Probability of future apnea occurring within 12 hours increased with decreasing hematocrit values (P < .001). Conclusions Blood transfusions are associated with decreased apnea in VLBW infants, and apneas are less frequent at higher hematocrits.

Bronchopulmonary dysplasia: The earliest and perhaps the longest lasting obstructive lung disease in humans

Silvia Carraro, M Filippone, L Da Dalt, V Ferraro, M Maretti, S Bressan, et al.
Early Human Development 89 (2013) S3–S5
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.015

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy, an umbrella term for a number of different diseases that evolve as a consequence of a neonatal respiratory disorder. BPD is defined as the need for supplemental oxygen for at least 28 days after birth, and its severity is graded according to the respiratory support required at 36 post-menstrual weeks.

BPD was initially described as a chronic respiratory disease occurring in premature infants exposed to mechanical ventilation and oxygen supplementation. This respiratory disease (later named “old BPD”) occurred in relatively large premature newborn and, from a pathological standpoint, it was characterized by intense airway inflammation, disruption of normal pulmonary structures and lung fibrosis.

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy. From a clinical standpoint BPD subjects are characterized by recurrent respiratory symptoms, which are very frequent during the first years of life and, although becoming less severe as children grow up, they remain more common than in term-born controls throughout childhood, adolescence and into adulthood. From a functional point of view BPD subjects show a significant airflow limitation that persists during adolescence and adulthood and they may experience an earlier and steeper decline in lung function during adulthood. Interestingly, patients born prematurely but not developing BPD usually fare better, but they too have airflow limitations during childhood and later on, suggesting that also prematurity per se has life-long detrimental effects on pulmonary function. For the time being, little is known about the presence and nature of pathological mechanisms underlying the clinical and functional picture presented by BPD survivors. Nonetheless, recent data suggest the presence of persistent neutrophilic airway inflammation and oxidative stress and it has been suggested that BPD may be sustained in the long term by inflammatory pathogenic mechanisms similar to those underlying COPD. This hypothesis is intriguing but more pathological data are needed.  A better understanding of these pathogenetic mechanisms, in fact, may be able to orient the development of novel targeted therapies or prevention strategies to improve the overall respiratory health of BPD patients.

We have a limited understanding of the presence and nature of pathological mechanisms in the lung of BPD survivors. The possible role of asthma-like inflammation has been investigated because BPD subjects often present with recurrent wheezing and other symptoms resembling asthma during their childhood and adolescence. But BPD subjects have normal or lower than normal exhaled nitric oxide levels and exhaled air temperatures, whereas they are higher than normal in asthmatic patients.

Of all obstructive lung diseases in humans, BPD has the earliest onset and is possibly the longest lasting. Given its frequent association with other conditions related to preterm birth (e.g. growth retardation, pulmonary hypertension, neurodevelopmental delay, hearing defects, and retinopathy of prematurity), it often warrants a multidisciplinary management.

Effects of Sustained Lung Inflation, a lung recruitment maneuver in primary acute respiratory distress syndrome, in respiratory and cerebral outcomes in preterm infants

Chiara Grasso, Pietro Sciacca, Valentina Giacchi, Caterina Carpinato, et al.
Early Human Development 91 (2015) 71–75
http://dx.doi.org/10.1016/j.earlhumdev.2014.12.002

Background: Sustained Lung Inflation (SLI) is a maneuver of lung recruitment in preterm newborns at birth that can facilitate the achieving of larger inflation volumes, leading to the clearance of lung fluid and formation of functional residual capacity (FRC). Aim: To investigate if Sustained Lung Inflation (SLI) reduces the need of invasive procedures and iatrogenic risks. Study design: 78 newborns (gestational age ≤ 34 weeks, weighing ≤ 2000 g) who didn’t breathe adequately at birth and needed to receive SLI in addition to other resuscitation maneuvers (2010 guidelines). Subjects: 78 preterm infants born one after the other in our department of Neonatology of Catania University from 2010 to 2012. Outcome measures: The need of intubation and surfactant, the ventilation required, radiological signs, the incidence of intraventricular hemorrhage (IVH), periventricular leukomalacia, retinopathy in prematurity from III to IV plus grades, bronchopulmonary dysplasia, patent ductus arteriosus, pneumothorax and necrotizing enterocolitis. Results: In the SLI group infants needed less intubation in the delivery room (6% vs 21%; p b 0.01), less invasive mechanical ventilation (14% vs 55%; p ≤ 0.001) and shorter duration of ventilation (9.1 days vs 13.8 days; p ≤ 0.001). There wasn’t any difference for nasal continuous positive airway pressure (82% vs 77%; p = 0.43); but there was less surfactant administration (54% vs 85%; p ≤ 0.001) and more infants received INSURE (40% vs 29%; p=0.17). We didn’t found any differences in the outcomes, except for more mild intraventricular hemorrhage in the SLI group (23% vs 14%; p = 0.15; OR= 1.83). Conclusion: SLI is easier to perform even with a single operator, it reduces the necessity of more complicated maneuvers and surfactant without statistically evident adverse effects.

Long-term respiratory consequences of premature birth at less than 32 weeks of gestation

Anne Greenough
Early Human Development 89 (2013) S25–S27
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.004

Chronic respiratory morbidity is a common adverse outcome of very premature birth, particularly in infants who had developed bronchopulmonary dysplasia (BPD). Prematurely born infants who had BPD may require supplementary oxygen at home for many months and affected infants have increased healthcare utilization until school age. Chest radiograph abnormalities are common; computed tomography of the chest gives predictive information in children with ongoing respiratory problems. Readmission to hospital is common, particularly for those who have BPD and suffer respiratory syncytial virus lower respiratory infections (RSV LRTIs). Recurrent respiratory symptoms requiring treatment are common and are associated with evidence of airways obstruction and gas trapping. Pulmonary function improves with increasing age, but children with BPD may have ongoing airflow limitation. Lung function abnormalities may be more severe in those who had RSV LRTIs, although this may partly be explained by worse premorbid lung function. Worryingly, lung function may deteriorate during the first year. Longitudinal studies are required to determine if there is catch up growth.

Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia

Anita Bhandari and Sharon McGrath-Morrow
Seminars in Perinatology 37 (2013)132–137
http://dx.doi.org/10.1053/j.semperi.2013.01.010

Bronchopulmonary dysplasia (BPD) is the commonest cause of chronic lung disease in infancy. The incidence of BPD has remained unchanged despite many advances in neonatal care. BPD starts in the neonatal period but its effects can persist long term. Premature infants with BPD have a greater incidence of hospitalization, and continue to have a greater respiratory morbidity and need for respiratory medications, compared to those without BPD. Lung function abnormalities, especially small airway abnormalities, often persist. Even in the absence of clinical symptoms, BPD survivors have persistent radiological abnormalities and presence of emphysema has been reported on chest computed tomography scans. Concern regarding their exercise tolerance remains. Long-term effects of BPD are still unknown, but given reports of a more rapid decline in lung function and their susceptibility to develop chronic obstructive pulmonary disease phenotype with aging, it is imperative that lung function of survivors of BPD be closely monitored.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

Prediction of neonatal respiratory distress syndrome in term pregnancies by assessment of fetal lung volume and pulmonary artery resistance index

Mohamed Laban, GM Mansour, MSE Elsafty, AS Hassanin, SS EzzElarab
International Journal of Gynecology and Obstetrics 128 (2015) 246–250
http://dx.doi.org/10.1016/j.ijgo.2014.09.018

Objective: To develop reference cutoff values for mean fetal lung volume (FLV) and pulmonary artery resistance index (PA-RI) for prediction of neonatal respiratory distress syndrome (RDS) in low-risk term pregnancies. Methods: As part of a cross-sectional study, women aged 20–35 years were enrolled and admitted to a tertiary hospital in Cairo, Egypt, for elective repeat cesarean at 37–40 weeks of pregnancy between January 1, 2012, and July 31, 2013. FLV was calculated by virtual organ computer-aided analysis, and PA-RI was measured by Doppler ultrasonography before delivery. Results: A total of 80 women were enrolled. Neonatal RDS developed in 11 (13.8%) of the 80 newborns. Compared with neonates with RDS, healthy neonates had significantly higher FLVs (P b 0.001) and lower PA-RIs (P b 0.001). Neonatal RDS is less likely with FLV of at least 32 cm3 or PA-RI less than or equal to 0.74. Combining these two measures improved the accuracy of prediction. Conclusion: The use of either FLV or PA-RI predicted neonatal RDS. The predictive value increased when these two measures were combined

Pulmonary surfactant - a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary surfactant – a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary hypertension in bronchopulmonary dysplasia

Sara K.Berkelhamer, Karen K.Mestan, and Robin H. Steinhorn
Seminars In  Perinatology 37 (2013)124–131
http://dx.doi.org/10.1053/j.semperi.2013.01.009

Pulmonary hypertension (PH) is a common complication of neonatal respiratory diseases, including bronchopulmonary dysplasia (BPD), and recent studies have increased aware- ness that PH worsens the clinical course, morbidity and mortality of BPD. Recent evidence indicates that up to 18% of all extremely low-birth-weight infants will develop some degree of PH during their hospitalization, and the incidence rises to 25–40% of the infants with established BPD. Risk factors are not yet well understood, but new evidence shows that fetal growth restriction is a significant predictor of PH. Echocardiography remains the primary method for evaluation of BPD-associated PH, and the development of standardized screening timelines and techniques for identification of infants with BPD-associated PH remains an important ongoing topic of investigation. The use of pulmonary vasodilator medications, such as nitric oxide, sildenafil, and others, in the BPD population is steadily growing, but additional studies are needed regarding their long-term safety and efficacy.
An update on pharmacologic approaches to bronchopulmonary dysplasia

Sailaja Ghanta, Kristen Tropea Leeman, and Helen Christou
Seminars In Perinatology 37 (2013)115–123
http://dx.doi.org/10.1053/j.semperi.2013.01.008

Bronchopulmonary dysplasia (BPD) is the most prevalent long-term morbidity in surviving extremely preterm infants and is linked to increased risk of reactive airways disease, pulmonary hypertension, post-neonatal mortality, and adverse neurodevelopmental outcomes. BPD affects approximately 20% of premature newborns, and up to 60% of premature infants born before completing 26 weeks of gestation. It is characterized by the need for assisted ventilation and/or supplemental oxygen at 36 weeks postmenstrual age. Approaches to prevention and treatment of BPD have evolved with improved understanding of its pathogenesis. This review will focus on recent advancements and detail current research in pharmacotherapy for BPD. The evidence for both current and potential future experimental therapies will be reviewed in detail. As our understanding of the complex and multifactorial pathophysiology of BPD changes, research into these current and future approaches must continue to evolve.

Methylxanthines
Diuretics and bronchodilators
Corticosteroids
Macrolide antibiotics
Recombinant human Clara cell 10-kilodalton protein(rhCC10)
Vitamin A
Surfactant
Leukotriene receptor antagonist
Pulmonary vasodilators

Skeletal and Muscle

Skeletal Stem Cells in Space and Time

Moustapha Kassem and Paolo Bianco
Cell  Jan 15, 2015; 160: 17-19
http://dx.doi.org/10.1016/j.cell.2014.12.034

The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.

The groundbreaking concept that bone, cartilage, marrow adipocytes, and hematopoiesis-supporting stroma could originate from a common progenitor and putative stem cell was surprising at the time when it was formulated (Owen and Friedenstein, 1988). The putative stem cell, nonhematopoietic in nature, would be found in the postnatal bone marrow stroma, generate tissues previously thought of as foreign to each other, and support the turnover of tissues and organs that self-renew at a much slower rate compared to other tissues associated with stem cells (blood, epithelia). This concept also connected bone and bone marrow as parts of a single-organ system, implying their functional interplay. For many years, the evidence underpinning the concept has been incomplete.

While multipotency of stromal progenitors has been demonstrated by in vivo transplantation experiments, self-renewal, the defining property of a stem cell, has not been easily demonstrated until recently in humans (Sacchetti et al., 2007) and mice (Mendez-Ferrer et al., 2010). Meanwhile, a confusing and plethoric terminology has been introduced into the literature, which diverted and confounded the search for a skeletal stem cell and its physiological significance (Bianco et al., 2013).

Two studies in this issue of Cell (Chan et al., 2015; Worthley et al., 2015), using a combination of rigorous single-cell analyses and lineage tracing technologies, mark significant steps toward rectifying the course of skeletal stem cell discovery by making several important points, within and beyond skeletal physiology.

First, a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors can in fact be identified and linked to defined phenotype(s) in the mouse. The system is framed conceptually, and approached experimentally, similar to the hematopoietic system.

Second, based on its assayable functions and potential, the stem cell at the top of the hierarchy is defined as a skeletal stem cell (SSC). As noted earlier (Sacchetti et al., 2007) (Bianco et al., 2013), this term clarifies, well beyond semantics, that the range of tissues that the self-renewing stromal progenitor (originally referred to as an ‘‘osteogenic’’ or ‘‘stromal’’ stem cell) (Owen and Friedenstein, 1988) can actually generate in vivo, overlaps with the range of tissues that make up the skeleton.

Third, these cells are spatially restricted, local residents of the bone/bone marrow organ. The systemic circulation is not a sizable contributor to their recruitment to locally deployed functions.

Fourth, a native skeletogenic potential is inherent to the system of progenitor/ stem cells found in the skeleton, and internally regulated by bone morphogenetic protein (BMP) signaling. This is reflected in the expression of regulators and antagonists of BMP signaling within the system, highlighting potential feedback mechanisms modulating expansion or quiescence of specific cell compartments.

Fifth, in cells isolated from other tissues, an assayable skeletogenic potential is not inherent: it can only be induced de novo by BMP reprogramming. These two studies (Chan et al., 2015, Worthley et al., 2015) corroborate the classical concept of ‘‘determined’’ and ‘‘inducible’’ skeletal progenitors (Owen and Friedenstein, 1988): the former residing in the skeleton, the latter found in nonskeletal tissues; the former capable of generating skeletal tissues, in vivo and spontaneously, the latter requiring reprogramming signals in order to acquire a skeletogenic capacity; the former operating in physiological bone formation, the latter in unwanted, ectopic bone formation in diseases such as fibrodysplasia ossificans progressiva.

To optimize our ability to obtain specific skeletal tissues for medical application, the study by Chan et al. offers a glimpse of another facet of the biology of SSC lineages and progenitors. Chan et al. show that a homogeneous cell population inherently committed to chondrogenesis can alter its output to generate bone if cotransplanted with multipotent progenitors. Conversely, osteogenic cells can be shifted to a chondrogenic fate by blockade of vascular endothelial growth factor receptor, consistent with the avascular and hypoxic milieu of cartilage. This has two important implications:

  • commitment is flexible in the system;
  • the choir is as important as the soloist and can modulate the solo tune.

Reversibility and population behavior thus emerge as two features that may be characteristic, albeit not unique, of the stromal system, resonating with conceptually comparable evidence in the human system.

The two studies by Chan et al. and Worthely et al. emphasize the relevance not only of their new data, but also of a proper concept of a skeletal stem cell per se, for proper clinical use. Confusion arising from improper conceptualization of skeletal stem cells has markedly limited clinical development of skeletal stem cell biology.

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel L. Worthley, Michael Churchill, Jocelyn T. Compton, Yagnesh Tailor, et al.
Cell, Jan 15, 2015; 160: 269–284
http://dx.doi.org/10.1016/j.cell.2014.11.042

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).

Identification and Specification of the Mouse Skeletal Stem Cell

Charles K.F. Chan, Eun Young Seo, James Y. Chen, David Lo, A McArdle, et al.
Cell, Jan 15, 2015; 160: 285–298
http://dx.doi.org/10.1016/j.cell.2014.12.002

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.

Bone mesenchymal development

Bone mesenchymal development

Bone mesenchymal development

The bone-remodeling cycle

The bone-remodeling cycle

Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions

Qin Feng, Bert W. O’Malley
Steroids 90 (2014) 39–43
http://dx.doi.org/10.1016/j.steroids.2014.06.008

Selective estrogen receptor modulators (SERMs) are a class of small-molecule chemical compounds that bind to estrogen receptor (ER) ligand binding domain (LBD) with high affinity and selectively modulate ER transcriptional activity in a cell- and tissue-dependent manner. The prototype of SERMs is tamoxifen, which has agonist activity in bone, but has antagonist activity in breast. Tamoxifen can reduce the risk of breast cancer and, at same time, prevent osteoporosis in postmenopausal women. Tamoxifen is widely prescribed for treatment and prevention of breast cancer. Mechanistically the activity of SERMs is determined by the selective recruitment of coactivators and corepressors in different cell types and tissues. Therefore, understanding the coregulator function is the key to understanding the tissue selective activity of SERMs.

Hematopoietic

Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche

Owen J. Tamplin, Ellen M. Durand, Logan A. Carr, Sarah J. Childs, et al.
Cell, Jan 15, 2015; 160: 241–252
http://dx.doi.org/10.1016/j.cell.2014.12.032

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization.

Neonatal anemia

Sanjay Aher, Kedar Malwatkar, Sandeep Kadam
Seminars in Fetal & Neonatal Medicine (2008) 13, 239e247
http://dx.doi.org:/10.1016/j.siny.2008.02.009

Neonatal anemia and the need for red blood cell (RBC) transfusions are very common in neonatal intensive care units. Neonatal anemia can be due to blood loss, decreased RBC production, or increased destruction of erythrocytes. Physiologic anemia of the newborn and anemia of prematurity are the two most common causes of anemia in neonates. Phlebotomy losses result in much of the anemia seen in extremely low birthweight infants (ELBW). Accepting a lower threshold level for transfusion in ELBW infants can prevent these infants being exposed to multiple donors.

Management of anemia in the newborn

Naomi L.C. Luban
Early Human Development (2008) 84, 493–498
http://dx.doi.org:/10.1016/j.earlhumdev.2008.06.007

Red blood cell (RBC) transfusions are administered to neonates and premature infants using poorly defined indications that may result in unintentional adverse consequences. Blood products are often manipulated to limit potential adverse events, and meet the unique needs of neonates with specific diagnoses. Selection of RBCs for small volume (5–20 mL/kg) transfusions and for massive transfusion, defined as extracorporeal bypass and exchange transfusions, are of particular concern to neonatologists. Mechanisms and therapeutic treatments to avoid transfusion are another area of significant investigation. RBCs collected in anticoagulant additive solutions and administered in small aliquots to neonates over the shelf life of the product can decrease donor exposure and has supplanted the use of fresh RBCs where each transfusion resulted in a donor exposure. The safety of this practice has been documented and procedures established to aid transfusion services in ensuring that these products are available. Less well established are the indications for transfusion in this population; hemoglobin or hematocrit alone are insufficient indications unless clinical criteria (e.g. oxygen desaturation, apnea and bradycardia, poor weight gain) also augment the justification to transfuse. Comorbidities increase oxygen consumption demands in these infants and include bronchopulmonary dysplasia, rapid growth and cardiac dysfunction. Noninvasive methods or assays have been developed to measure tissue oxygenation; however, a true measure of peripheral oxygen offloading is needed to improve transfusion practice and determine the value of recombinant products that stimulate erythropoiesis. The development of such noninvasive methods is especially important since randomized, controlled clinical trials to support specific practices are often lacking, due at least in part, to the difficulty of performing such studies in tiny infants.
The Effect of Blood Transfusion on the Hemoglobin Oxygen Dissociation Curve of Very Early Preterm Infants During the First Week of Life

Virginie De HaUeux, Anita Truttmann, Carmen Gagnon, and Harry Bard
Seminars in Perinatology, 2002; 26(6): 411-415
http://dx.doi.org:/10.1053/sper.2002.37313

This study was conducted during the first week of life to determine the changes in Ps0 (PO2 required to achieve a saturation of 50% at pH 7.4 and 37~ and the proportions of fetal hemoglobin (I-IbF) and adult hemoglobin (HbA) prior to and after transfusion in very early preterm infants. Eleven infants with a gestational age <–27 weeks have been included in study. The hemoglobin dissociation curve and the Ps0 was determined by Hemox-analyser. Liquid chromatography was also performed to determine the proportions of HbF and HbA. The mean gestational age of the 11 infants was 25.1 weeks (-+1 weeks) and their mean birth weight was 736 g (-+125 g). They received 26.9 mL/kg of packed red cells. The mean Ps0 prior and after transfusion was 18.5 +- 0.8 and 21.0 + 1 mm Hg (P = .0003) while the mean percentage of HbF was 92.9 -+ 1.1 and 42.6 -+ 5.7%, respectively. The data of this study show a decrease of hemoglobin oxygen affinity as a result of blood transfusion in very early preterm infants prone to O 2 toxicity. The shift in HbO 2 curve after transfusion should be taken into consideration when oxygen therapy is being regulated for these infants.

Effect of neonatal hemoglobin concentration on long-term outcome of infants affected by fetomaternal hemorrhage

Mizuho Kadooka, H Katob, A Kato, S Ibara, H Minakami, Yuko Maruyama
Early Human Development 90 (2014) 431–434
http://dx.doi.org/10.1016/j.earlhumdev.2014.05.010

Background: Fetomaternal hemorrhage (FMH) can cause severe morbidity. However, perinatal risk factors for long-term poor outcome due to FMH have not been extensively studied.                                                                                 Aims: To determine which FMH infants are likely to have neurological sequelae.
Study design: A single-center retrospective observational study. Perinatal factors, including demographic characteristics, Kleihauer–Betke test, blood gas analysis, and neonatal blood hemoglobin concentration ([Hb]), were analyzed in association with long-term outcomes.
Subjects: All 18 neonates referred to a Neonatal Intensive Care Unit of Kagoshima City Hospital and diagnosed with FMH during a 15-year study period. All had a neonatal [Hb] b7.5 g/dL and 15 of 17 neonates tested had Kleihauer–Betke test result N4.0%.
Outcome measures: Poor long-term outcome was defined as any of the following determined at 12 month old or more: cerebral palsy, mental retardation, attention deficit/hyperactivity disorder, and epilepsy.
Results: Nine of the 18 neonates exhibited poor outcomes. Among demographic characteristics and blood variables compared between two groups with poor and favorable outcomes, significant differences were observed in [Hb] (3.6 ± 1.4 vs. 5.4 ± 1.1 g/dL, P = 0.01), pH (7.09 ± 0.11 vs. 7.25 ± 0.13, P = 0.02) and base deficits (17.5 ± 5.4 vs. 10.4 ± 6.0 mmol/L, P = 0.02) in neonatal blood, and a number of infants with [Hb] ≤ 4.5 g/dL (78%[7/9] vs. 22%[2/9], P= 0.03), respectively. The base deficit in neonatal arterial blood increased significantly with decreasing neonatal [Hb].
Conclusions: Severe anemia causing severe base deficit is associated with neurological sequelae in FMH infants

Clinical and hematological presentation among Indian patients with common hemoglobin variants

Khushnooma Italia, Dipti Upadhye, Pooja Dabke, Harshada Kangane, et al.
Clinica Chimica Acta 431 (2014) 46–51
http://dx.doi.org/10.1016/j.cca.2014.01.028

Background: Co-inheritance of structural hemoglobin variants like HbS, HbD Punjab and HbE can lead to a variable clinical presentation and only few cases have been described so far in the Indian population.
Methods: We present the varied clinical and hematological presentation of 22 cases (HbSD Punjab disease-15, HbSE disease-4, HbD Punjab E disease-3) referred to us for diagnosis.
Results: Two of the 15 HbSDPunjab disease patients had moderate crisis, one presented with mild hemolytic anemia; however, the other 12 patients had a severe clinical presentation with frequent blood transfusion requirements, vaso occlusive crisis, avascular necrosis of the femur and febrile illness. The 4 HbSE disease patients had a mild to moderate presentation. Two of the 3 HbD Punjab E patients were asymptomatic with one patient’s sibling having a mild presentation. The hemoglobin levels of the HbSD Punjab disease patients ranged from 2.3 to 8.5 g/dl and MCV from 76.3 to 111.6 fl. The hemoglobin levels of the HbD Punjab E and HbSE patients ranged from 10.8 to 11.9 and 9.8 to 10.0 g/dl whereas MCV ranged from 67.1 to 78.2 and 74.5 to 76.0 fl respectively.
Conclusions: HbSD Punjab disease patients should be identified during newborn screening programs and managed in a way similar to sickle cell disease. Couple at risk of having HbSD Punjab disease children may be given the option of prenatal diagnosis in subsequent pregnancies.

Sickle cell anemia is the most common hemoglobinopathy seen across the world. It is caused by a point mutation in the 6th codon of the beta (β) globin gene leading to the substitution of the amino acid glutamic acid to valine. The sickle gene is frequently seen in Africa, some Mediterranean countries, India, Middle East—Saudi Arabia and North America. In India the prevalence of hemoglobin S (HbS) carriers varies from 2 to 40% among different population groups and HbS is mainly seen among the scheduled tribe, scheduled caste and other backward class populations in the western, central and parts of eastern and southern India. Sickle cell anemia has a variable clinical presentation in India with the most severe clinical presentation seen in central India whereas patients in the western region show a mild to moderate clinical presentation.

Hemoglobin D Punjab (HbD Punjab) (also known as HbD Los-Angeles, HbD Portugal, HbD North Carolina, D Oak Ridge and D Chicago) is another hemoglobin variant due to a point mutation in codon 121 of the β globin gene resulting in the substitution of the amino acid glutamic acid to glycine. It is a widely distributed hemoglobin with a relatively low prevalence of 0.86% in the Indo-Pak subcontinent, 1–3% in north-western India, 1–3% in the Black population in the Caribbean and North America and has also been reported among the English. It accounts for 55.6% of all the Hb variants seen in the Xenjiang province of China.

Hemoglobin E (HbE) is the most common abnormal hemoglobin in Southeast Asia. In India, the frequency ranges from 4% to 51% in the north eastern region and 3% to 4% in West Bengal in the east. The HbE mutation (β26 GAG→AAG) creates an alternative splice site and the βE chain is insufficiently synthesized, hence the phenotype of this disorder is that of a mild form of β thalassemia.

Though these 3 structural variants are prevalent in different regions of India, their interaction is increasingly seen in all states of the country due to migration of people to different regions for a better livelihood. There are very few reports on interaction of these commonly seen Hb variants and the phenotypic–genotypic presentation of these cases is important for genetic counseling and management.

HbF of patients with HbSD Punjab disease with variable clinical severity. The HbF values of 4 patients are not included as they were post blood transfusion

The genotypes of the patients were confirmed by restriction enzyme digestion and ARMS (Fig). Patients 1 to 15 were characterized as compound heterozygous for HbS and HbD Punjab whereas patients 16 to 19 were characterized as compound heterozygous for HbS and HbE. Patient nos. 20 to 22 were characterized as compound heterozygous for HbE and HbD Punjab.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

The 3 common β globin gene variants of hemoglobin, HbS, HbE and HbD Punjab are commonly seen in India, with HbS having a high prevalence in the central belt and some parts of western, eastern and southern India, HbE in the eastern and north eastern region whereas HbD is mostly seen in the north western part of India. These hemoglobin variants have been reported in different population groups. However, with migration and intermixing of the different populations from different geographic regions, occasional cases of HbSD Punjab and HbSE are being reported. There are several HbD variants like HbD Punjab, HbD Iran, HbD Ibadan. However, of these only HbD Punjab interacts with HbS to form a clinically significant condition as the glutamine residue facilitates polymerization of HbS. HbD Iran and HbD Ibadan are non-interacting and produce benign conditions like the sickle cell trait. The first case of HbSD Punjab disease was a brother and sister considered to have atypical sickle cell disease in 1934. This family was further reinvestigated and reported as the first case of HbD Los Angeles which has the same mutation as the HbD Punjab. Serjeant et al. reported HbD Punjab in an English parent in 6 out of 11 HbSD-Punjab disease cases. This has been suggested to be due to the stationing of nearly 50,000 British troops on the Indian continent for a period of 200 y and the introduction into Britain of their Anglo-Indian children.

HbSD Punjab disease shows a similar pattern to HbS homozygous on alkaline hemoglobin electrophoresis but can be differentiated on acid agar gel electrophoresis and on HPLC. In HbSD Punjab disease cases, the peripheral blood films show anisocytosis, poikilocytosis, target cells and irreversibly sickled cells. Values of HbF and HbA2 are similar to those in sickle homozygous cases. HbSD Punjab disease is characterized by a moderately severe hemolytic anemia.

Twenty-one cases of HbSDPunjab were reported by Serjeant of which 16 were reported by different workers among patients originating from Caucasian, Spanish, Australian, Irish, English, Portuguese, Black, American, Venezuelan, Caribbean, Mexican, Turkish and Jamaican backgrounds. Yavarian et al. 2009 reported a multi centric origin of HbD Punjab which in combination with HbS results in sickle cell disease. Patel et al. 2010 have also reported 12 cases of HbSD Punjab from the Orissa state of eastern India. Majority of these cases were symptomatic, presenting with chronic hemolytic anemia and frequent painful crises.

HbF levels >20% were seen in 4 out of our 11 clinically severe patients of HbSD-Punjab disease with the mean HbF levels of 16.8% in 8 clinically severe patients, while 3 clinically severe patients were post transfused. However, the 3 patients with a mild to moderate clinical presentation showed a mean HbF level of 8.6%. This is in contrast to the relatively milder clinical presentation associated with high HbF seen in patients with sickle cell anemia. This was also reported by Adekile et al. 2010 in 5 cases of HbS-DLos Angeles where high HbF did not ameliorate the severe clinical presentation seen in these patients.

These 15 cases of HbSDPunjab disease give us an overall idea of the severe clinical presentation of the disease in different regions of India. However the HbDPunjabE cases were milder or asymptomatic and the HbSE cases were moderately symptomatic. Since most of the cases of HbSDPunjab disease were clinically severe, it is important to pick up these cases during newborn screening and enroll them into a comprehensive care program with the other sickle cell disease patients with introduction of therapeutic interventions such as penicillin prophylaxis if required and pneumococcal immunization. In fact, 2 of our cases (No. 6 and 7) were identified during newborn screening for sickle cell disorders. The parents can be given information on home care and educated to detect symptoms that may lead to serious medical emergencies. The parents of these patients as well as the couples who are at risk of having a child with HbSDPunjab disease could also be counseled about the option of prenatal diagnosis in subsequent pregnancies. It is thus important to document the clinical and hematological presentation of compound heterozygotes with these common β globin chain variants.

Common Hematologic Problems in the Newborn Nursery

Jon F. Watchko
Pediatr Clin N Am – (2015) xxx-xxx
http://dx.doi.org/10.1016/j.pcl.2014.11.011

Common RBC disorders include hemolytic disease of the newborn, anemia, and polycythemia. Another clinically relevant hematologic issue in neonates to be covered herein is thrombocytopenia. Disorders of white blood cells will not be reviewed.

KEY POINTS

(1)               Early clinical jaundice or rapidly developing hyperbilirubinemia are often signs of hemolysis, the differential diagnosis of which commonly includes immune-mediated disorders, red-cell enzyme deficiencies, and red-cell membrane defects.

(2)             Knowledge of the maternal blood type and antibody screen is critical in identifying non-ABO alloantibodies in the maternal serum that may pose a risk for severe hemolytic disease in the newborn.

(3)             Moderate to severe thrombocytopenia in an otherwise well-appearing newborn strongly suggests immune-mediated (alloimmune or autoimmune) thrombocytopenia.

Hemolytic conditions in the neonate

1. Immune-mediated (positive direct Coombs test)  a. Rhesus blood group: Anti-D, -c, -C, -e, -E, CW, and several others

  b. Non-Rhesus blood groups: Kell, Duffy, Kidd, Xg, Lewis, MNS, and others

  c. ABO blood group: Anti-A, -B

2. Red blood cell (RBC) enzyme defects

  a. Glucose-6-phosphate dehydrogenase (G6PD) deficiency

  b. Pyruvate kinase deficiency

  c. Others

3. RBC membrane defects

  a. Hereditary spherocytosis

  b. Elliptocytosis

  c. Stomatocytosis

  d. Pyknocytosis

  e. Others

4. Hemoglobinopathies

  a. alpha-thalassemia

  b. gamma-thalassemia

Standard maternal antibody screeningAlloantibody                                 Blood Group

D, C, c, E, e, f, CW, V                     Rhesus

K, k, Kpa, Jsa                                  Kell

Fya, Fyb                                          Duffy

Jka, Jkb                                           Kidd

Xga                                                  Xg

Lea, Leb                                          Lewis

S, s, M, N                                        MNS

P1                                                    P

Lub                                                  Lutheran

Non-ABO alloantibodies reported to cause moderate to severe hemolytic disease of the newbornWithin Rh system: Anti-D, -c, -C, -Cw, -Cx, -e, -E, -Ew, -ce, -Ces, -Rh29, -Rh32, -Rh42, -f, -G, -Goa, -Bea, -Evans, -Rh17, -Hro, -Hr, -Tar, -Sec, -JAL, -STEM

Outside Rh system:  Anti-LW, -K, -k, -Kpa, -Kpb, -Jka, -Jsa, -Jsb, -Ku, -K11, -K22, -Fya, -M, -N, -S, -s, -U, -PP1 pk, -Dib, -Far, -MUT, -En3, -Hut, -Hil, -Vel, -MAM, -JONES, -HJK, -REIT

 

Red Blood Cell Enzymopathies

G6PD9 and pyruvate kinase (PK) deficiency are the 2 most common red-cell enzyme disorders associated with marked neonatal hyperbilirubinemia. Of these, G6PD deficiency is the more frequently encountered and it remains an important cause of kernicterus worldwide, including the United States, Canada, and the United Kingdom, the prevalence in Western countries a reflection in part of immigration patterns and intermarriage. The risk of kernicterus in G6PD deficiency also relates to the potential for unexpected rapidly developing extreme hyperbilirubinemia in this disorder associated with acute severe hemolysis.

Red Blood Cell Membrane Defects

Establishing a diagnosis of RBC membrane defects is classically based on the development of Coombs-negative hyperbilirubinemia, a positive family history, and abnormal RBC smear, albeit it is often difficult because newborns normally exhibit a marked variation in red-cell membrane size and shape. Spherocytes, however, are not often seen on RBC smears of hematologically normal newborns and this morphologic abnormality, when prominent, may yield a diagnosis of hereditary spherocytosis (HS) in the immediate neonatal period. Given that approximately 75% of families affected with hereditary spherocytosis manifest an autosomal dominant phenotype, a positive family history can often be elicited and provide further support for this diagnosis. More recently, Christensen and Henry highlighted the use of an elevated mean corpuscular hemoglobin concentration (MCHC) (>36.0 g/dL) and/or elevated ratio of MCHC to mean corpuscular volume, the latter they term the “neonatal HS index” (>0.36, likely >0.40) as screening tools for HS. An index of greater than 0.36 had 97% sensitivity, greater than 99% specificity, and greater than 99% negative predictive value for identifying HS in neonates. Christensen and colleagues also provided a concise update of morphologic RBC features that may be helpful in diagnosing this and other underlying hemolytic conditions in newborns.

The diagnosis of HS can be confirmed using the incubated osmotic fragility test when coupled with fetal red-cell controls or eosin-5-maleimide flow cytometry. One must rule out symptomatic ABO hemolytic disease by performing a direct Coombs test, as infants so affected also may manifest prominent micro-spherocytosis. Moreover, HS and symptomatic ABO hemolytic disease can occur in the same infant and result in severe hyperbilirubinemia and anemia.  Of other red-cell membrane defects, only hereditary elliptocytosis,  stomato-cytosis, and infantile pyknocytosis have been reported to exhibit significant hemolysis in the newborn period. Hereditary elliptocytosis and stomatocytosis are both rare. Infantile pyknocytosis, a transient red-cell membrane abnormality manifesting itself during the first few months of life, is more common.

Risk factors for bilirubin neurotoxicityIsoimmune hemolytic disease

G6PD deficiency

Asphyxia

Sepsis

Acidosis

Albumin less than 3.0 g/dL
Data from Maisels MJ, Bhutani VK, Bogen D, et al. Hyperbilirubinemia in the newborn infant > or 535 weeks’ gestation: an update with clarifications. Pediatrics 2009; 124:1193–8.

Polycythemia

Polycythemia (venous hematocrit 65%) in seen in infants across a range of conditions associated with active erythropoiesis or passive transfusion.76,77 They include, among others, placental insufficiency, the infant of a diabetic mother, recipient in twin-twin transfusion syndrome, and several aneuploidies, including trisomy. The clinical concern related to polycythemia is the risk for microcirculatory complications of hyperviscosity. However, determining which polycythemic infants are hyperviscous and when to intervene is a challenge.

 

 

Liver

Metabolic disorders presenting as liver disease

Germaine Pierre, Efstathia Chronopoulou
Paediatrics and Child Health 2013; 23(12): 509-514
The liver is a highly metabolically active organ and many inherited metabolic disorders have hepatic manifestations. The clinical presentation in these patients cannot usually be distinguished from liver disease due to acquired causes like infection, drugs or hematological disorders. Manifestations include acute and chronic liver failure, cholestasis and hepatomegaly. Metabolic causes of acute liver failure in childhood can be as high as 35%. Certain disorders like citrin deficiency and Niemann-Pick C disease may present in infancy with self-limiting cholestasis before presenting in later childhood or adulthood with irreversible disease. This article reviews important details from the history and clinical examination when evaluating the pediatric patient with suspected metabolic disease, the specialist and genetic tests when investigating, and also discusses specific disorders, their clinical course and treatment. The role of liver transplantation is also briefly discussed. Increased awareness of this group of disorders is important as in many cases, early diagnosis leads to early intervention with improved outcome. Diagnosis also allows genetic counselling and future family planning.

Adult liver disorders caused by inborn errors of metabolism: Review and update

Sirisak Chanprasert, Fernando Scaglia
Molecular Genetics and Metabolism 114 (2015) 1–10
http://dx.doi.org/10.1016/j.ymgme.2014.10.011

Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.

Inborn errors of metabolism (IEMs) are a group of genetic diseases characterized by abnormal processing of biochemical reactions, resulting in accumulation of toxic substances that could interfere with normal organ functions, and failure to synthesize essential compounds. IEMs are individually rare, but collectively numerous. The clinical presentations cover a broad spectrum and can involve almost any organ system. The age of onset is highly variable but IEMs afflict mostly the pediatric population.

Wilson disease is an autosomal recessive genetic disorder of copper metabolism. It is characterized by an abnormal accumulation of inorganic copper in various tissues, most notably in the liver and the brain, especially in the basal ganglia. The disease was first described in 1912 by Kinnier Wilson, and affects between 1 in 30,000 and 1 in 100,000 individuals. Clinical features are variable and depend on the extent  and the severity of copper deposition. Typically, patients tend to develop hepatic disease at a younger age than the neuropsychiatric manifestations. Individuals withWilson disease eventually succumb to complications of end stage liver disease or become debilitated from neurological problems, if they are left untreated.

The clinical presentations of Wilson disease are varied affecting many organ systems. However, the overwhelming majority of cases display hepatic and neurologic symptoms. In general, patients with hepatic disease present between the first and second decades of life although patients as young as 3 years old or over 50 years old have also been reported. The most common modes of presentations are acute self-limited hepatitis and chronic active hepatitis that are indistinguishable from other hepatic disorders although liver aminotransferases are generally much lower than in autoimmune or viral hepatitis. Acute fulminant hepatic failure is less common but is observed in approximately 3% of all cases of acute liver failure. Symptoms of acute liver failure include jaundice, coagulopathy, and hepatic encephalopathy. Cirrhosis can develop over time and may be clinically silent. Hepatocellular carcinoma (HCC) is rarely associated with Wilson disease, but may occur in the setting of cirrhosis and chronic inflammation.

Copper is an essential element, and is required for the proper functioning of various proteins and enzymes. The total body content of copper in a healthy adult individual is approximately 70–100 mg, while the daily requirements are estimated to be between 1 and 5 mg. Absorption occurs in the small intestine. Copper is taken up to the hepatocytes via the copper transporter hTR1. Once inside the cell, copper is bound to various proteins including metallothionein and glutathione, however, it is the metal chaperone, ATOX1 that helps direct copper to the ATP7B protein for intracellular transport and excretion. At the steady state, copper will be bound to ATP7B and is then incorporated to ceruloplasmin and secreted into the systemic circulation. When the cellular copper concentration arises, ATP7B protein will be redistributed from the trans-Golgi network to the prelysosomal vesicles facilitating copper excretion into the bile. The molecular defects in ATP7B lead to a reduction of copper excretion. Excess copper is accumulated in the liver causing tissue injury. The rate of accumulation of copper varies among individuals, and it may depend on other factors such as alcohol consumption, or viral hepatitis infections. If the liver damage is not severe, patients will accumulate copper in various tissues including the brain, the kidney, the eyes, and the musculoskeletal system leading to clinical disease. A failure of copper to incorporate into ceruloplasmin leads to secretion of the unsteady protein that has a shorter half-life, resulting in the reduced concentrations of ceruloplasmin seen in most patients with Wilson disease.

Wilson disease used to be a progressive fatal condition during the first half of the 20th century because there was no effective treatment available at that time. Penicillamine was the first pharmacologic agent introduced in 1956 for treating this condition. Penicillamine is a sulfhydryl-bearing amino acid cysteine doubly substituted with methyl groups. This drug acts as a chelating agent that promotes the urinary excretion of copper. It is rapidly absorbed in the gastrointestinal track, and over 80% of circulating penicillamine is excreted via the kidneys. Although it is very effective, approximately 10%–50% of Wilson disease patients with neuropsychiatric presentations may experience worsening of their symptoms, and often times the worsening symptoms may not be reversible.

Alpha1-antitrypsin deficiency

Alpha1-antitrypsin deficiency (AATD) is one of the most common genetic liver diseases in children and adults, affecting 1 in 2000 to 1 in 3000 live births worldwide. It is transmitted in an autosomal co-dominant fashion with variable expressivity. Alpha1 antitrypsin (A1AT) is a member of the serine protease inhibitor (SERPIN) family. Its function is to counteract the proteolytic effect of neutrophil elastase and other neutrophil proteases. Mutations in the SERPINA1, the gene encoding A1AT, result in changes in the protein structure with the PiZZ phenotype being the most common cause of liver and lung disease-associated AATDs. Although, it classically causes early onset chronic obstructive pulmonary disease (COPD) in adults, liver disease characterized by chronic inflammation, hepatic fibrosis, and cirrhosis is not uncommon in the adult population. Decreased plasma concentration of A1AT predisposes lung tissue to be more susceptible to injury from protease enzymes. However, the underlying mechanism of liver injury is different, and is believed to be caused by accumulation of polymerized mutant A1AT in the hepatocyte endoplasmic reticulum (ER). Currently, there is no specific treatment for liver disease-associated AATD, but A1AT augmentation therapy is available for patients affected with pulmonary involvement.

A1AT is a single-chain, 52-kDa polypeptide of approximately 394 amino acids [56]. It is synthesized in the liver, circulates in the plasma, and functions as an inhibitor of neutrophil elastase and other proteases such as cathepsin G, and proteinase 3. A1AT has a globular shape composed of two central β sheets surrounded by a small β sheet and nine α helices. The pathophysiology underlying liver disease is thought to be a toxic gain-of-function mutation associated with the PiZZ phenotypes. This hypothesis has been supported by the fact that null alleles which produce no detectable plasma A1AT, are not associated with liver disease. In addition, the transgenic mouse model of AATD PiZZ developed periodic acid-Schiff-positive diastase-resistant intrahepatic globule early in life similar to AATD patients. The PiZZ phenotype results in the blockade of the final processing of A1AT in the liver, as only 15% of the A1AT reaches the circulation whereas 85% of non-secreted protein is accumulated in the hepatocytes.

Citrin deficiency

Citrin deficiency is a relatively newly-defined autosomal recessive disease. It encompasses two different sub-groups of patients, neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), and adult onset citrullinemia type 2 (CTLN 2).

AGC2 exports aspartate out of the mitochondrial matrix in exchange for glutamate and a proton. Thus, this protein has an important role in ureagenesis and gluconeogenesis. In CTLN2, a defect in this protein is believed to limit the supply of aspartate for the formation of argininosuccinate in the cytosol resulting in impairment of ureagenesis. Interestingly, the mouse model of citrin deficiency (Ctrn−/−) fails to develop symptoms of CTLN2 suggesting that the mitochondrial aspartate is not the only source of ureagenesis. However, it should be noted that the rodent liver expresses higher glycerol-phosphate shuttle activity than the human counterpart. With the intact glycerol-phosphate dehydrogenase, it can compensate for the deficiency of AGC2, as demonstrated by the AGC2 and glycerol-phosphate dehydrogenase double knock-out mice that exhibit similar features to those observed in human CTLN2.

HFE-associated hemochromatosis

HFE-associated hemochromatosis is an inborn error of iron metabolism characterized by excessive iron storage resulting in tissue and organ damage. It is the most common autosomal recessive disorder in the Caucasian population, affecting 0.3%–0.5% of individuals of Northern European descent. The term “hemochromatosis” was coined in 1889 by the German pathologist Friedrich Daniel Von Recklinghausen, who described it as bronze stain of organs caused by a blood borne pigment.

The classic clinical triad of cirrhosis, diabetes, and bronze skin pigmentation is rarely observed nowadays given the early recognition, diagnosis, and treatment of this condition. The most common presenting symptoms are nonspecific including weakness, lethargy, and arthralgia.

The liver is a major site of iron storage in healthy individuals and as such it is the organ that is universally affected in HFE-associated hemochromatosis. Elevation of liver aminotransferases indicative of hepatocyte injury is the most common mode of presentation and it can be indistinguishable from other causes of hepatitis. Approximately 15%–40% of patients with HFE-associated hemochromatosis have other liver conditions, including chronic viral hepatitis B or C infection, nonalcoholic fatty liver disease, and alcoholic liver disease.

 

The liver in haemochromatosis

Rune J. Ulvik
Journal of Trace Elements in Medicine and Biology xxx (2014) xxx–xxx
http://dx.doi.org/10.1016/j.jtemb.2014.08.005

The review deals with genetic, regulatory and clinical aspects of iron homeostasis and hereditary hemochromatosis. Hemochromatosis was first described in the second half of the 19th century as a clinical entity characterized by excessive iron overload in the liver. Later, increased absorption of iron from the diet was identified as the pathophysiological hallmark. In the 1970s genetic evidence emerged supporting the apparent inheritable feature of the disease. And finally in 1996 a new “hemochromato-sis gene” called HFE was described which was mutated in about 85% of the patients. From the year2000 onward remarkable progress was made in revealing the complex molecular regulation of iron trafficking in the human body and its disturbance in hemochromatosis. The discovery of hepcidin and ferroportin and their interaction in regulating the release of iron from enterocytes and macrophages to plasma were important milestones. The discovery of new, rare variants of non-HFE-hemochromatosis was explained by mutations in the multicomponent signal transduction pathway controlling hepcidin transcription. Inhibited transcription induced by the altered function of mutated gene products, results in low plasma levels of hepcidin which facilitate entry of iron from enterocytes into plasma. In time this leads to progressive accumulation of iron and subsequently development of disease in the liver and other parenchymatous organs. Being the major site of excess iron storage and hepcidin synthesis the liver is a cornerstone in maintaining normal systemic iron homeostasis. Its central pathophysiological role in HFE-hemochromatosis with downgraded hepcidin synthesis, was recently shown by the finding that liver transplantation normalized the hepcidin levels in plasma and there was no sign of iron accumulation in the new liver.

Gastrointestinal

Decoding the enigma of necrotizing enterocolitis in premature infants

Roberto Murgas TorrazzaNan Li, Josef Neu
Pathophysiology 21 (2014) 21–27
http://dx.doi.org/10.1016/j.pathophys.2013.11.011

Necrotizing enterocolitis (NEC) is an enigmatic disease that affects primarily premature infants. It often occurs suddenly and when it occurs, treatment attempts at treatment often fail and results in death. If the infant survives, there is a significant risk of long term sequelae including neurodevelopmental delays. The pathophysiology of NEC is poorly understood and thus prevention has been difficult. In this review, we will provide an overview of why progress may be slow in our understanding of this disease, provide a brief review diagnosis, treatment and some of the current concepts about the pathophysiology of this disease.

Necrotizing enterocolitis (NEC) has been reported since special care units began to house preterm infants .With the advent of modern neonatal intensive care approximately 40 years ago, the occurrence and recognition of the disease markedly increased. It is currently the most common and deadly gastro-intestinal illness seen in preterm infants. Despite major efforts to better understand, treat and prevent this devastating disease, little if any progress has been made during these 4 decades. Underlying this lack of progress is the fact that what is termed “NEC” is likely more than one disease, or mimicked by other diseases, each with a different etiopathogenesis.

Human gut microbiome

Human gut microbiome

Term or near term infants with “NEC” when compared to matched controls usually have occurrence of their disease in the first week after birth, have a significantly higher frequency of prolonged rupture of membranes, chorio-amnionitis, Apgar score <7 at 1 and 5 min, respiratory problems, congenital heart disease, hypoglycemia, and exchange transfusions. When a “NEC” like illness presents in term or near term infants, it should be noted that these are likely to be distinct in pathogenesis than the most common form of NEC and should be differentiated as such.

The infants who suffer primary ischemic necrosis are term or near term infants (although this can occur in preterms) who have concomitant congenital heart disease, often related to poor left ventricular output or obstruction. Other factors that have been associated with primary ischemia are maternal cocaine use, hyperviscosity caused by polycythemia or a severe antecedent hypoxic–ischemic event. Whether the dis-ease entity that results from this should be termed NEC can be debated on historical grounds, but the etiology is clearly different from the NEC seen in most preterm infants.

The pathogenesis of NEC is uncertain, and the etiology seems to be multifactorial. The “classic” form of NEC is highly associated with prematurity; intestinal barrier immaturity, immature immune response, and an immature regulation of intestinal blood flow (Fig.). Although genetics appears to play a role, the environment, especially a dysbiotic intestinal microbiota acting in concert with host immaturities predisposes the preterm infant to disruption of the intestinal epithelia, increased permeability of tight junctions, and release of inflammatory mediators that leads to intestinal mucosa injury and therefore development of necrotizing enterocolitis.

NEC is a multifactorial disease

NEC is a multifactorial disease

What causes NEC? NEC is a multifactorial disease with an interaction of several etiophathologies

It is clear from this review that there are several entities that have been described as NEC. What is also clear is that despite having some overlap in the final parts of the pathophysiologic cascade that lead to necrosis, the disease that is most commonly seen in the preterm infant is likely to have an origin that differs markedly from that seen in term infants with congenital heart disease or severe hypoxic–ischemic injury. Thus, epidemiologic studies will need to differentiate these entities, if the aim is to dissect common features that are most highly associated with development of the disease. At this juncture, we areleft with more of a population based preventative approach, where the use of human milk, evidence based feeding guide-lines, considerations for microbial therapy once these are proved safe and effective and approved as such by regulatory authorities, and perhaps even measures that prevent prematurity will have a major impact on this devastating disease.

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines, including thymic stromal lymphoprotein (TSLP), transforming growthfactor (TGF), and interleukin-10 (IL-10), that can influence pro-inflammatory cytokine production by dendritic cells (DC) and macrophages present in the laminapropria (GALT) and Peyer’s patches. Signals from commensal organisms may influence tissue-specific functions, resulting in T-cell expansion and regulation of the numbers of Th-1,
Th-2, and Th-3 cells. Also modulated by the microbiota, other IEC derived factors, including APRIL (a proliferation-inducing ligand),B-cell activating factor (BAFF), secretory leukocyte peptidase inhibitor (SLPI), prostaglandin E2(PGE2), and other metabolites, directly regulate functions ofboth antigen presenting cells and lymphocytes in the intestinal ecosystem. NK: natural killer cell; LN: lymph node; DC: dendritic cells.Modified from R. Sharma, C. Young, M. Mshvildadze, J. Neu, Intestinal microbiota does it play a role in diseases of the neonate? NeoReviews 10 (4) (2009)e166, with permission

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Current Issues in the Management of Necrotizing Enterocolitis

Marion C. W. Henry and R. Lawrence Moss
Seminars in Perinatology, 2004; 28(3): 221-233
http://dx.doi.org:/10.1053/j.semperi.2004.03.010

Necrotizing enterocolitis is almost exclusively a disease of prematurity, with 90% of all cases occurring in premature infants and 90% of those infants weighing less than 2000 g. Prematurity is the only risk factor for necrotizing enterocolitis consistently identified in case control studies and the disease is rare in countries where prematurity is uncommon such as Japan and Sweden. When necrotizing enterocolitis does occur in full-term infants, it appears to by a somewhat different disease, typically associated with some predisposing condition.

NEC occurs in one to three in 1,000 live births and most commonly affects babies born between 30-32 weeks. It is most often diagnosed during the second week of life and occurs more often in previously fed infants. The mortality from NEC has been cited as 10% to 50% of all NEC cases. Surgical mortality has decreased over the last several decades from 70% to between 20 and 50%. The incremental cost per case of acute hospital care is estimated at $74 to 186 thousand compared to age matched controls, not including additional costs of long term care for the infants’ with lifelong morbidity. Survivors may develop short bowel syndrome, recurrent bouts of catheter-related sepsis, malabsorption, malnutrition, and TPN induced liver failure.

Although extensive research concerning the pathophysiology of necrotizing enterocolitis has occurred, a complete understanding has not been fully elucidated. The classic histologic finding is coagulation necrosis; present in over 90% of specimens. This finding suggests the importance of ischemia in the pathogenesis of NEC. Inflammation and bacterial overgrowth also are present. These findings support the assumptions by Kosloske that NEC occurs by the interaction of 3 events:

  • intestinal ischemia,
  • colonization by pathogenic bacteria and
  • excess protein substrate in the intestinal lumen.

Additionally, the immunologic immaturity of the neonatal gut has been implicated in the development of NEC. Reparative tissue changes including epithelial regeneration, formation of granulation tissue and fibrosis, and mixed areas of acute and chronic inflammatory changes suggest that the pathogenesis of NEC may involve a chronic process of injury and repair.

Premature newborns born prior to the 32nd week of gestational age may have compromised intestinal peristalsis and decreased motility. These motility problems may lead to poor clearance of bacteria, and subsequent bacterial overgrowth. Premature infants also have an immature intestinal tract in terms of immunologic immunity.

There are fewer functional B lymphocytes present and the ability to produce sufficient secretory IgA is reduced. Pepsin, gastric acid and mucus are also not produced as well in prematurity. All of these factors may contribute to the limited proliferation of intestinal flora and the decreased binding of these flora to mucosal cells (Fig).

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC.

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis.

As understanding of the pathophysiology of necrotizing enterocolitis continues to evolve, a unifying concept is emerging. Initially, there is likely a subclinical insult leading to NEC. This may arise from a brief episode of hypoxia or infection. With colonization of the intestines, bacteria bind to the injured mucosa eliciting an inflammatory response which leads to further inflammation.

Intestinal Microbiota Development in Preterm Neonates and Effect of Perinatal Antibiotics

Silvia Arboleya, Borja Sanchez,, Christian Milani, Sabrina Duranti, et al.
Pediatr 2014;-:—).  http://dx.doi.org/10.1016/j.jpeds.2014.09.041

Objectives Assess the establishment of the intestinal microbiota in very low birth-weight preterm infants and to evaluate the impact of perinatal factors, such as delivery mode and perinatal antibiotics.
Study design We used 16S ribosomal RNA gene sequence-based microbiota analysis and quantitative polymerase chain reaction to evaluate the establishment of the intestinal microbiota. We also evaluated factors affecting the microbiota, during the first 3 months of life in preterm infants (n = 27) compared with full-term babies (n = 13).
Results Immaturity affects the microbiota as indicated by a reduced percentage of the family Bacteroidaceae during the first months of life and by a higher initial percentage of Lactobacillaceae in preterm infants compared with full term infants. Perinatal antibiotics, including intrapartum antimicrobial prophylaxis, affects the gut microbiota, as indicated by increased Enterobacteriaceae family organisms in the infants.

Human gut microbiome

Human gut microbiome

Conclusions Prematurity and perinatal antibiotic administration strongly affect the initial establishment of microbiota with potential consequences for later health.

Ischemia and necrotizing enterocolitis: where, when, and how

Philip T. Nowicki
Seminars in Pediatric Surgery (2005) 14, 152-158
http://dx.doi.org:/10.1053/j.sempedsurg.2005.05.003

While it is accepted that ischemia contributes to the pathogenesis of necrotizing enterocolitis (NEC), three important questions regarding this role subsist. First, where within the intestinal circulation does the vascular pathophysiology occur? It is most likely that this event begins within the intramural microcirculation, particularly the small arteries that pierce the gut wall and the submucosal arteriolar plexus insofar as these represent the principal sites of resistance regulation in the gut. Mucosal damage might also disrupt the integrity or function of downstream villous arterioles leading to damage thereto; thereafter, noxious stimuli might ascend into the submucosal vessels via downstream venules and lymphatics. Second, when during the course of pathogenesis does ischemia occur? Ischemia is unlikely to the sole initiating factor of NEC; instead, it is more likely that ischemia is triggered by other events, such as inflammation at the mucosal surface. In this context, it is likely that ischemia plays a secondary, albeit critical role in disease extension. Third, how does the ischemia occur? Regulation of vascular resistance within newborn intestine is principally determined by a balance between the endothelial production of the vasoconstrictor peptide endothelin-1 (ET-1) and endothelial production of the vasodilator free radical nitric oxide (NO). Under normal conditions, the balance heavily favors NO-induced vasodilation, leading to a low resting resistance and high rate of flow. However, factors that disrupt endothelial cell function, eg, ischemia-reperfusion, sustained low-flow perfusion, or proinflammatory mediators, alter the ET-1:NO balance in favor of constriction. The unique ET-1–NO interaction thereafter might facilitate rapid extension of this constriction, generating a viscous cascade wherein ischemia rapidly extends into larger portions of the intestine.

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation. Small mesenteric arteries pierce the muscularis layers and terminate in the submucosa where they give rise to 1A (1st order) arterioles. 2A (2nd order) arterioles arise from the 1A. Although not shown here, these 2A arterioles connect merge with several 1A arterioles, thus generating an arteriolar plexus, or manifold that serves to pressurize the terminal downstream microvasculature. 3A (3rd order) arterioles arise from the 2A and proceed to the mucosa, giving off a 4A branch just before descent into the mucosa. This 4A vessel travels to the muscularis layers. Each 3A vessel becomes the single arteriole perfusing each villus.

Collectively, these studies indicate that disruption of endothelial cell function has the potential to disrupt the normal balance between NO and ET-1 within the newborn intestinal circulation, and that such an event can generate significant ischemia. In this context, it is important to note that NO and ET-1 each regulate the expression and activity of the other. An increased [NO] within the microvascular environment reduces ET-1 expression and compromises ligand binding to the ETA receptor (thus decreasing its contractile efficacy), while ET-1 compromises eNOS expression. Thus, factors that upset the balance between NO and ET-1 will have an immediate and direct effect on vascular tone, but also exert an additional indirect effect by extenuating the disruption of balance between these two factors.

It is not difficult to construct a hypothesis that links the perturbations of I/R and sustained low-flow perfusion with an initial inflammatory insult. Initiation of an inflammatory process at the mucosal–luminal interface could have a direct impact on villus and mucosal 3A arterioles, damaging arteriolar integrity and disrupting villus hemodynamics. Ascent of proinflammatory mediators to the submucosal 1A–2A arteriolar plexus could occur via draining venules and lymphatics, generating damage to vascular effector systems therein; these mediators might include cytokines and platelet activating factor, as these elements have been recovered from human infants with NEC. This event, coupled with a generalized loss of 3A flow throughout a large portion of the mucosal surface, could compromise flow rate within the submucosal arteriolar plexus.

Necrotizing enterocolitis: An update

Loren Berman, R. Lawrence Moss
Seminars in Fetal & Neonatal Medicine 16 (2011) 145e150
http://dx.doi.org:/10.1016/j.siny.2011.02.002

Necrotizing enterocolitis (NEC) is a leading cause of death among patients in the neonatal intensive care unit, carrying a mortality rate of 15e30%. Its pathogenesis is multifactorial and involves an over reactive response of the immune system to an insult. This leads to increased intestinal permeability, bacterial translocation, and sepsis. There are many inflammatory mediators involved in this process, but thus far none has been shown to be a suitable target for preventive or therapeutic measures. NEC usually occurs in the second week of life after the initiation of enteral feeds, and the diagnosis is made based on physical examination findings, laboratory studies, and abdominal radiographs. Neonates with NEC are followed with serial abdominal examinations and radiographs, and may require surgery or primary peritoneal drainage for perforation or necrosis. Many survivors are plagued with long term complications including short bowel syndrome, abnormal growth, and neurodevelopmental delay. Several evidence-based strategies exist that may decrease the incidence of NEC including promotion of human breast milk feeding, careful feeding advancement, and prophylactic probiotic administration in at-risk patients. Prevention is likely to have the greatest impact on decreasing mortality and morbidity related to NEC, as little progress has been made with regard to improving outcomes for neonates once the disease process is underway.

Immune Deficiencies

Primary immunodeficiencies: A rapidly evolving story

Nima Parvaneh, Jean-Laurent Casanova,  LD Notarangelo, ME Conley
J Allergy Clin Immunol 2013;131:314-23.
http://dx.doi.org/10.1016/j.jaci.2012.11.051

The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.

Combined Immunodeficiencies

  • T-cell receptor a gene mutation: T-cell receptor ab1 T-cell depletion

T cells comprise 2 distinct lineages that express either ab or gd T-cell receptor (TCR) complexes that perform different tasks in immune responses. During T-cell maturation, the precise order and efficacy of TCR gene rearrangements determine the fate of the cells. Productive β-chain gene rearrangement produces a pre-TCR on the cell surface in association with pre-Tα invariant peptide (β-selection). Pre-TCR signals promote α-chain recombination and transition to a double-positive stage (CD41CD81). This is the prerequisite for central tolerance achieved through positive and negative selection of thymocytes.

  • Ras homolog gene family member H deficiency: Loss of naive T cells and persistent human papilloma virus infections
  • MST1 deficiency: Loss of naive T cells

New insight into the role of MST1 as a critical regulator of T-cell homing and function was provided by the characterization of 8 patients from 4 unrelated families who had homozygous nonsense mutations in STK4, the gene encoding MST1. MST1 was originally identified as an ubiquitously expressed kinase with structural homology to yeast Ste. MST1 is the mammalian homolog of the Drosophila Hippo protein, controlling cell growth, apoptosis, and tumorigenesis. It has both proapoptotic and antiapoptotic functions.

  • Lymphocyte-specific protein tyrosine kinase deficiency: T-cell deficiency with CD41 lymphopenia

Defects in pre-TCR– and TCR-mediated signaling lead to aberrant T-cell development and function (Fig). One of the earliest biochemical events occurring after engagement of the (pre)-TCR is the activation of lymphocyte-specific protein tyrosine kinase (LCK), a member of the SRC family of protein tyrosine kinases. This kinase then phosphorylates immunoreceptor tyrosine-based activation motifs of intracellular domains of CD3 subunits. Phosphorylated immunoreceptor tyrosine-based activation motifs recruit z-chain associated protein kinase of 70 kDa, which, after being phosphorylated by LCK, is responsible for activation of critical downstream events. Major consequences include activation of the membrane-associated enzyme phospholipase Cg1, activation of the mitogen-activated protein kinase, nuclear translocation of nuclear factor kB (NFkB), and Ca21/Mg21 mobilization. Through these pathways, LCK controls T-cell development and activation. In mice lacking LCK, T-cell development in the thymus is profoundly blocked at an early double-negative stage.

TCR signaling

TCR signaling

TCR signaling. Multiple signal transduction pathways are stimulated through the TCR. These pathways collectively activate transcription factors that organize T-cell survival, proliferation, differentiation, homeostasis, and migration. Mutant molecules in patients with TCR-related defects are indicated in red.

  • Uncoordinated 119 deficiency: Idiopathic CD41 lymphopenia

Idiopathic CD41 lymphopenia (ICL) is a very heterogeneous clinical entity that is defined, by default, by persistent CD41 T-cell lymphopenia (<300 cells/mL or <20% of total T cells) in the absence of HIV infection or any other known cause of immunodeficiency.

Well-Defined Syndromes with Immunodeficiency

  • Wiskott-Aldrich syndrome protein–interacting protein deficiency: Wiskott-Aldrich syndrome-like phenotype

In hematopoietic cells Wiskott-Aldrich syndrome protein (WASP) is stabilized through forming a complex with WASP interacting protein (WIP).

  • Phospholipase Cg2 gain-of-function mutations: Cold urticaria, immunodeficiency, and autoimmunity/autoinflammatory

This is a unique phenotype, sharing features of antibody deficiency, autoinflammatory diseases, and immune dysregulatory disorders, making its classification difficult. Two recent studies validated the pleiotropy of genetic alterations in the same gene.

Predominantly Antibody Defects

  • Defect in the p85a subunit of phosphoinositide 3-kinase: Agammaglobulinemia and absent B cells
  • CD21 deficiency: Hypogammaglobulinemia
  • LPS-responsive beige-like anchor deficiency:
  • Hypogammaglobulinemia with autoimmunity and

early colitis

Defects Of Immune Dysregulation

  • Pallidin deficiency: Hermansky-Pudlak syndrome type 9
  • CD27 deficiency: Immune dysregulation and
  • persistent EBV infection

Congenital Defects Of Phagocyte Number, Function, Or Both

  • Interferon-stimulated gene 15 deficiency: Mendelian susceptibility to mycobacterial diseases

Defects In Innate Immunity

  • NKX2-5 deficiency: Isolated congenital asplenia
  • Toll/IL-1 receptor domain–containing adaptor inducing IFN-b and TANK-binding kinase 1 deficiencies: Herpes simplex encephalitis
  • Minichromosome maintenance complex component 4 deficiency: NK cell deficiency associated with growth retardation and adrenal insufficiency

Autoinflammatory Disorders

  • A disintegrin and metalloproteinase 17 deficiency: Inflammatory skin and bowel disease

 

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte/macrophage cells and T/NK lymphocytes. Genes in the IL-12/IFN-g pathway are particularly important for protection against mycobacterial disease. IRF8 is an IFN-g–inducible transcription factor required for the induction of various target genes, including IL-12. The NF-kB essential modulator (NEMO) mutations in the LZ domain impair CD40-NEMO–dependent pathways. Some gp91phox mutations specifically abolish the respiratory burst in monocyte-derived macrophages. ISG15 is secreted by neutrophils and potentiates IFN-g production by NK/T cells. Genetic defects that preclude monocyte development (eg, GATA2) can also predispose to mycobacterial infections (not shown). Mutant molecules in patients with unusual susceptibility to infection are indicated in red.

The field of PIDs is advancing at full speed in 2 directions. New genetic causes of known PIDs are being discovered (eg, CD21 and TRIF). Moreover, new phenotypes qualify as PIDs with the identification of a first genetic cause (eg, generalized pustular psoriasis). Recent findings contribute fundamental knowledge about immune system biology and its perturbation in disease. They are also of considerable clinical benefit for the patients and their families. A priority is to further translate these new discoveries into improved diagnostic methods and more effective therapeutic strategies, promoting the well-being of patients with PIDs.

Primary immunodeficiencies

Luigi D. Notarangelo
J Allergy Clin Immunol 2010; 125(2): S182-194
http://dx.doi.org:/10.1016/j.jaci.2009.07.053

In the last years, advances in molecular genetics and immunology have resulted in the identification of a growing number of genes causing primary immunodeficiencies (PIDs) in human subjects and a better understanding of the pathophysiology of these disorders. Characterization of the molecular mechanisms of PIDs has also facilitated the development of novel diagnostic assays based on analysis of the expression of the protein encoded by the PID-specific gene. Pilot newborn screening programs for the identification of infants with severe combined immunodeficiency have been initiated. Finally, significant advances have been made in the treatment of PIDs based on the use of subcutaneous immunoglobulins, hematopoietic cell transplantation from unrelated donors and cord blood, and gene therapy. In this review we will discuss the pathogenesis, diagnosis, and treatment of PIDs, with special attention to recent advances in the field.

 

 

Read Full Post »

« Newer Posts - Older Posts »