Feeds:
Posts
Comments

Archive for the ‘Anemia in CVD Patients’ Category


A Concise Review of Cardiovascular Biomarkers of Hypertension

Curator: Larry H. Bernstein, MD, FCAP

LPBI

Revised 5/25/2016

 

Introduction

While a large body of work had been done on cholesterol synthesis, HDL and LDL cholesterol, triglycerides, and lipoproteins for a quarter century, and the concept of metabolic syndrome was emerging, there was neither a unifying concept nor a sufficient multivariable approach to apply the use of laboratory markers to clinical practice.  The mathematical foundation for such an evaluation of the biological markers and the computational tools were maturing at the turn of the 20th century, and the interest in outcomes research for improved healthcare practice was maturing. In addition, there was now heavy investment in health information systems that would support emerging health networks of a rapidly consolidating patient base.  This has become important for the pharmaceutical industry and for allied health sciences to enable a suitable method of measuring the effectiveness of drug and of lifestyle changes to improve the population health.

The importance of finding biomarkers for hypertension is significant as stated above. I refer to observations in a lecture by Teresa Seeman, Ph.D., Professor, UCLA Geffen School of Medicine (1).
The missed cased of hypertension in the U.S. alone has been examined by the NHANES studies. Table  I
shows the poor identification of this serious chronic condition. The next table (Table II)*, also from NHANES  (Seeman study) looks at Allostatic Load for biomarkers using component biomarker measurement criterion cutpoints.  Table III* gives the odds ratios for mortality by Allostatic Load Score.

An explanatory problem for our difficulty with diagnosis of a number of hypertension disease “subsets” is that there is peripheral hypertension that might be idiopathic, or it might be related to coexisting diseases with both inflammatory and vascular structural dynamics nature.  In addition, this may be concurrent with pulmonary hypertension, systemic hypertension, and progressive renal disease.  This discussion is reserved for later.  As stated, the late or missed diagnosis of systemic or essential idiopathic hypertension is illustrated in the three Seeman tables (1).

 

Table 1

Table 2

Table 3

 

 

 

 

Table 1*. Missed cases by “self report”

Self-reports

vs undiagnosed

study NHANES 88-94 NHANES 99-2004 NHANES 2005-08
Hypertension %unaware  BP > 140/90 42.7 43.5 39.06
SR-controlled
SR-high

Unaware

  7.45

10

13.88

8.35

10.85

16.12

6.5

10.18

19.98

High cholesterol Chol > 220 g/dl 55.93 49.3 47.05
SR-controlled
SR- high
Unaware
  11.02
8.68
12.12
8.47
8.72
18.5
7.22
8.12
23.46
Diabetes HgA1C > 6.4%      
SR-controlled

SR- high

Unaware

  2.41

3.43

1.64

1.76

5.01

3.09

2.11
5.51
3.09

*modified from Seeman

 

 

 

 

 

 

 

 

 

Table II* USHANES: Allostatic Load – component cutpoints

Biomarker Total N High Risk Percent (%) Cutpoint
DBP (mm Hg) 15,489 1,180   7.62    90
SBP (mm Hg) 15,491 3,461 22.34  140
Pulse Rate 15,117 1,009   6.67    90
HgA1C (%) 15,441 1,482   9.60    6.4
WHR 14,824 6,778 45.72    0.94
HDL Cholesterol (mg/dl) 15,187 3,440 22.65     40
Total Cholesterol

(mg/dl)

15,293 3,196  20.90    240

*From  T. Seaman, UCLA Geffen SOM

 

Table III*. Odds of mortality by Allostatic Load Score.

ALS Odds Ratio
7-8 5
6 2.6
5 2.3
4 2.1
3 1.8
2 1.5
1 1.4

 

*From  T. Seaman, UCLA Geffen SOM

 

I refer to cardiovascular diseases in reference to an aggregate of diseases affecting the heart, the circulatory system from large artery to the capillary, the lungs and kidneys, excluding the lymphatics.
These major disease entities are both separate and interrelated, not necessarily found in the same combinations. However, they account for a growing proportion of illness, apart from cancers, that affect the aging population of western societies. In the discussion that follows, I shall construct a picture of the pathophysiology of cardiovascular diseases, describe the major biomarkers for the assessment of these, point out the relationship of these to hypertension, and try to develop a more targeted approach to the assessment of hypertension and related disorders.

Chronic kidney disease (CKD) is defined as persistent kidney damage accompanied by a reduction in the glomerular filtration rate (GFR) and the presence of albuminuria. The rise in incidence of CKD is attributed to an aging populace and increases in hypertension (HTN), diabetes, and obesity within the U.S. population. CKD is associated with a host of complications including electrolyte imbalances, mineral and bone disorders, anemia, dyslipidemia, and HTN. It is well known that CKD is a risk factor for cardiovascular disease (CVD), and that a reduced GFR and albuminuria are independently associated with an increase in cardiovascular and all-cause mortality.

The relationship between CKD and HTN is cyclic, as CKD can contribute to or cause HTN (3). Elevated BP leads to damage of blood vessels within the kidney, as well as throughout the body. This damage impairs the kidney’s ability to filter fluid and waste from the blood, leading to an increase of fluid volume in the blood—thus causing an increase in BP.

 

A cursory description of the blood circulation

The full circulation involves the heart as a pump, and the arteries and veins, comprising small and large vessels, and capillaries at the point of delivery of oxygen and capture of carbon dioxide, and of transfer of substrates to tissues.  The brain, liver, pancreas and spleen, and endocrines are not further considered here, except for a consideration on neuro-humoral peptides that have emerged in the regulation of blood pressure and are essential to the stress response. The lung and the liver are both important with respect to the exchange of air and metabolites, and both have secondary circulations, the pulmonary and the portal vascular circulations.  In the case of the lungs, the vena cava flows into the right atrium, which delivers unoxygenated blood to the lungs via the right ventricle and right pulmonary artery, which returns to the left atrium by way of the right pulmonary vein.  The blood from the left atrium that flows into the left ventricle is ejected into the aorta.  The coronary arteries that nourish the heart are at the base of the aorta.  The heart muscle is a syncytium, unlike striated muscle, and it is densely packed with mitochondria, suitable for continuous contraction under vasovagal control. This is the anatomical construct, but the physiology is still being clarified because normal function and disease are both a matter of regulatory control.

In order to understand hypertension, we have to view the heart functioning over a long period of time.
In a still frame picture, we envision the left ventricle contracts emptying the oxygenated blood into the circulation. The ejection of blood into the aorta is called systole, by which the blood is delivered by the force of contraction into the circulation.  The filling pressure is called diastole.  So we have a filling and an emptying, and heard by the stethoscope is a lub-dub, synchronously repeated.   A normal systolic blood pressure is below 120. A systolic blood pressure of 120 to 139 means you have prehypertension, or borderline high blood pressure. Even people with prehypertension are at a higher risk of developing heart disease. A systolic blood pressure number of 140 or higher is considered to be hypertension, or high blood pressure. The diastolic blood pressure number or the bottom number indicates the pressure in the arteries when the heart rests between beats. A normal diastolic blood pressure number is less than 80. A diastolic blood pressure between 80 and 89 indicates prehypertension. A diastolic blood pressure number of 90 or higher is considered to be hypertension or high blood pressure. So now we have identified a systolic and a diastolic high blood pressure. Systolic pressure increases with vigorous activity, and becomes normal when the activity resides.  The systolic blood pressure increases with age. Over time, consistently high blood pressure weakens and damages the blood vessels so affected. Moreover, changes in the body’s normal functions may cause high blood pressure, including changes to kidney fluid and salt balances, the renin-angiotensin-aldosterone system, sympathetic nervous system activity, and blood vessel structure and function.

 

Starling’s Law of the Heart

Two principal intrinsic mechanisms, namely the Frank-Starling mechanism and rate induced regulation, enable the myocardium to adapt to changes in hemodynamic conditions. The Frank-Starling mechanism (also referred to as Starling’s law of the heart), is invoked in response to changes in the resting length of the myocardial fibers. Rate-induced regulation is invoked in response to changes in the frequency of the heartbeat.  (3-9).

Frank and Starling (3, 4) showed that an increase in diastolic volume caused an increase in systolic performance. The stretch effect persists across a range of myocardial contractile states, but during exercise it plays only a lesser role augmenting ventricular function maximal exercise. This is because in healthy human subjects adrenergic reflex mechanisms modulate myocardial performance, heart rate, vascular impedance and coronary flow during exercise and changes in these variables can overshadow the effect of fiber stretch or even prevent an increase in end-diastolic volume during stress (5). (See you- tube (6).

According to Lakatta muscle length modulates the extent of myofilament calcium ion (Ca2+) activation (7-9).   Similarly, the fiber length during a contraction, which is determined in part by the load encountered during shortening, also determines the extent of myofilament Ca2+ activation. Therefore, the terms preload, afterload and myocardial contractile state lose part of their significance in light of current knowledge.

 

Biology and High Blood Pressure

Researchers continue to study how various changes in normal body functions cause high blood pressure. The key functions affected in high blood pressure include (10):

Kidney Fluid and Salt Balances

The kidneys normally regulate the body’s salt balance by retaining sodium and water and excreting potassium. Imbalances in this kidney function can expand blood volumes, which can cause high blood pressure.

Renin-Angiotensin-Aldosterone System

The renin-angiotensin-aldosterone system makes angiotensin and aldosterone hormones. Angiotensin narrows or constricts blood vessels, which can lead to an increase in blood pressure. Aldosterone controls how the kidneys balance fluid and salt levels. Increased aldosterone levels or activity may change this kidney function, leading to increased blood volumes and high blood pressure.

Sympathetic Nervous System Activity

The sympathetic nervous system has important functions in blood pressure regulation, including heart rate, blood pressure, and breathing rate. Researchers are investigating whether imbalances in this system cause high blood pressure.

Blood Vessel Structure and Function

Changes in the structure and function of small and large arteries may contribute to high blood pressure. The angiotensin pathway and the immune system may stiffen small and large arteries, which can affect blood pressure.

Two or more types of hypertension

Systemic hypertension

Idiopathic hypertension

Hypertension from chronic renal disease

Pulmonary artery hypertension

Hypertension associated with systemic chronic inflammatory disease (rheumatoid arthritis and other collagen vascular diseases)

Genetic Causes of High Blood Pressure

Much of the understanding of the body systems involved in high blood pressure has come from genetic studies. High blood pressure often runs in families. Years of research have identified many genes and other mutations associated with high blood pressure, some in the renal salt regulatory and renin-angiotensin-aldosterone pathways. However, these known genetic factors only account for 2 to 3 percent of all cases. Emerging research suggests that certain DNA changes during fetal development also may cause the development of high blood pressure later in life.

Environmental Causes of High Blood Pressure

Environmental causes of high blood pressure include unhealthy lifestyle habits, being overweight or obese, and medicines.

Other medical causes of high blood pressure include other medical conditions such as chronic kidney disease, sleep apnea, thyroid problems, or certain tumors.

The common complications of hypertension and their signs and symptoms include:

http://www.nhlbi.nih.gov/health/health-topics/topics/hbp/causes10

 

Pulse Pressure and Stroke Volume

The  pulse pressure is the difference between systolic (the upper number) and diastolic (the lower number) (11).

Systemic pulse pressure = Psystolic – Pdiastolic

The pulse pressure is 40 mmHg for a typical blood pressure reading of 120/80 mmHg.

Pulse pressure (PP) is proportional to stroke volume (SV), the amount of blood pumped from the heart in one beat, and inversely proportional to the compliance or flexibility of the blood vessels, mainly the aorta.

A low (also called narrow) pulse pressure means that not much blood is being expelled from the heart, and can be caused by a number of factors, including severe blood loss due to trauma, congestive heart failure, shock, a narrowing of the valve leading from the heart to the aorta (stenosis), and fluid accumulating around the heart (tamponade).

High (or wide) pulse pressures occur during exercise, as stroke volume increases and the overall resistance to blood flow decreases. It can also occur for many reasons, such as hardening of the arteries (which can have numerous causes), various deficiencies in the aorta (mainly) or other arteries, including leaksfistulas, and a usually-congenital condition known as AVM, pain/anxiety, fever, anemia, pregnancy, and more. Certain medications for high blood pressure can widen pulse pressure, while others narrow it. A chronic increase in pulse pressure is a risk factor for heart disease, and can lead to the type of arrhythmia called atrial fibrillation or A-Fib.

 

Hypertension Background and Definition

The prevalence of CKD has steadily increased over the past two decades, and was reported to affect over 13% of the U.S. population in 2004.  In 2009, more than 570,000 people in the United States were classified as having end-stage renal disease (ESRD), including nearly 400,000 dialysis patients and over 17,000 transplant recipients.  A patient is determined to have ESRD when he or she requires replacement therapy, including dialysis or kidney transplantation. A National Health Examination Survey (NHANES) spanning 2005-2006 showed that 29% of US adults 18 years of age and older were hypertensive, and of those with high blood pressure (BP), 78% were aware they were hypertensive, 68% were being treated with antihypertensive agents, and only 64% of treated individuals had controlled hypertension (12, 13). In addition, data from NHANES 1999-2006 estimated that 30% of adults 20 years of age and older have prehypertension, defined as an untreated SBP of 120-139 mm Hg or untreated DBP of 80-89 mmHg (12, 13).

Hypertension is the most important modifiable risk factor for coronary heart disease (the leading cause of death in North America), stroke (the third leading cause), congestive heart failure, end-stage renal disease, and peripheral vascular disease. The 2010 Institute for Clinical Systems Improvement (ICSI) guideline (14) on the diagnosis and treatment of hypertension indicates that systolic blood pressure (SBP) should be the major factor to detect, evaluate, and treat hypertension In adults aged 50 years and older. The 2013 joint European Society of Hypertension (ESH) (15) and the European Society of Cardiology (ESC) (16) guidelines recommend that ambulatory blood-pressure monitoring (ABPM) be incorporated into the assessment of cardiovascular risk factors and hypertension.

The JNC 7 (17) identifies the following as major cardiovascular risk factors:

  • Hypertension: component of metabolic syndrome
  • Tobacco use, particularly cigarettes, including chewing tobacco
  • Elevated LDL cholesterol (or total cholesterol ≥240 mg/dL) or low HDL cholesterol: component of metabolic syndrome
  • Diabetes mellitus: component of metabolic syndrome
  • Obesity (BMI ≥30 kg/m 2): component of metabolic syndrome
  • Age greater than 55 years for men or greater than 65 years for women: increased risk begins at the respective ages; the Adult Treatment Panel III used earlier age cut points to suggest the need for earlier action
  • Estimated glomerular filtration rate less than 60 mL/min
  • Microalbuminuria
  • Family history of premature cardiovascular disease (men < 55 years; women < 65 years)
  • Lack of exercise

The Eighth Report of the JNC (JNC 8), released in December 2013 no longer recommends just thiazide-type diuretics as initial therapy in most patients. In essence, the JNC 8 recommends treating to 150/90 mm Hg in patients over age 60 years; for everybody else, the goal BP is 140/90 (18).

Biomarkers Associated with Hypertension

The biomarkers associated with hypertension are for the most part derived from features that characterize the disordered physiology. We might first consider the measurement of blood pressure. Then it becomes necessary to analyze the physiological elements that largely contribute to blood pressure. Finally, there are several biomarkers that have loomed large as measures are myocardial function or myocardial cell death, and are also not independent of renal function, that are indicators of short term and long term cardiovascular status. Having already indicated the importance of measurement of pulse, diastolic and systolic blood pressure in the routine examination of physical status, which is related to cardiac output we shall pay attention to the pulse pressure and pulse wave velocity.    These were defined in the preceding discussion.  They are critically related to the development of hypertension and in the long term, they emerge significantly earlier than either congestive heart failure, chronic kidney disease, acute coronary syndrome, stroke, or cardio-renal syndrome.

Even though cardiovascular disease (CVD), the leading cause of death in developed countries, is not predicted by classic risk factors, there are elements of the risk factor association that need further exploration and will be dissected, such as activity level, obesity, lipids, diabetes mellitus, family history and stress.  Further analysis will point to endocrine and/or metabolic factors that drive cardiovascular risk.

In taking into account the blood pressure measurements, we consider the pulse pressure (PP) and the pulse wave velocity (PWV).  If we refer back to the stroke volume and the Law of the Heart, the systolic blood pressure (SBP) is increased with increased left ventricular output that raises the left ventricular (LV) afterload. This coincides with a decrease in diastolic pressure (DBP) that accompanies a change in coronary artery perfusion (CAP).  Thus, many studies point to increased SBP as a strong risk factor for stroke and CVD.  However, there are sufficient studies that indicate the brachial artery pulse pressure (PP) is a strong determinant of CVD and stroke, and these two elements, SBP and brachial artery PP, may be an indicator of increased arterial stiffness in hypertensive patients and the general population. Brachial PP is also a determinant of recurrent events after acute coronary syndrome (ACS) or with left ventricular hypertrophy (LVH), or the risk of CHF in the aging population, and of all-cause-mortality in the general population.  In addition, the aortic PWV calculated from the Framingham equations was a suitable predictor of CVD risk. In a classic study of arterial stiffness and of CVD and all-cause mortality in an essential hypertension cohort at the Broussais Hospital between 1980 and 1996 (19), the carotid-femoral PWV was measured as an indicator of aortic stiffness, and it was found to be significantly associated with all-cause and CVD mortality independent of previous CVD, age, and diabetes. They tested the hypothesis that aortic stiffness is a predictor of cardiovascular and all-cause mortality in hypertensive patients based on the consideration that the elastic properties of the aorta and central arteries are the major determinants of systemic arterial impedance, and the PWV measured along the aortic and aorto-iliac pathway is the most clinically relevant. They assessed arterial stiffness by measuring the PWV using  the Moens-Korteweg equation based on the increase of the square root of the elasticity modulus in stiffer arteries (20).

PWV as a Diagnostic Test

To assess the performance of PWV considered as a diagnostic test, with the use of receiver operating characteristic (ROC) curves, they calculated sensitivities, specificities, positive predictive values, and negative predictive values of PWV at different cutoff values, first to detect the presence of AA in the overall population and second to detect patients with high 10-year cardiovascular mortality risk in the subgroup of 462 patients without AA with age range from 30 to 74 years. Optimal cutoff values of PWV were defined as the maximization of the sum of sensitivity and specificity.

The main finding of the study was that PWV was a strong predictor of cardiovascular risks as determined by the Framingham equations in a population of treated or untreated subjects with essential hypertension (21). They measured the PWV from foot-to-foot transit time in the aorta for a noninvasive evaluation of regional aortic stiffness, which allows an estimate of the distance traveled by the pulse. The presence of a PWV > 13 m/s, taken alone, appeared as a strong predictor of cardiovascular mortality with high performance values (21). Their work and other studies (22, 23) established increased pulse pressure, the major hemodynamic consequence of increased aortic PWV, as a strong independent predictor of cardiac mortality, mainly MI, in populations of normotensive and hypertensive subjects.

In addition to the findings above, the PWV was found to be an independent predictor of future increase in SBP and of incident hypertension in the Baltimore study (21). The authors reported that in a subset of 306 subjects who were normotensive at baseline, hypertension developed in 105 (34%) during a median follow-up of 4.3 years (range 2 to 12 years). PWV was also an independent predictor of incident hypertension (hazard ratio 1.10 per 1 m/s increase in PWV, 95% confidence interval 1.00 to 1.30, p = 0.03) in individuals with a follow-up duration greater than the median. The authors (21) concluded that carotid-femoral PWV measured using nondirectional transcutaneous Doppler probes (model 810A, 9 to 10-Mhz probes, Parks Medical Electronics, Inc., Aloha, Oregon) could be done to identify normotensive individuals who should be targeted for the implementation of interventions aimed at preventing or delaying the progression of subclinical arterial stiffening and the onset of hypertension.  They reported that age, BMI, and MAP were independently associated with higher SBP on the last visit (Table IV); in addition, PWV was also independently associated with higher SBP on the last visit, and explained 4% of its variance. As shown in Table V, age, BMI, and MAP (p = 0.09, p = 0.009, p < 0.0001 respectively for the interaction terms with time) were predictors of the longitudinal changes in SBP. In addition, PWV was also an independent predictor of the longitudinal increase in SBP (p = 0.003 for the interaction term with time).

In addition, they report that in the group with follow-up duration greater than the median (in which all subjects remained normotensive for the first 4.3 years), beyond age (hazard ratio [HR] 1.02 per 1 year, 95% confidence interval [CI] 0.99 to 1.04, p = 0.2) and SBP (HR 1.05 per 1 mm Hg, 95% CI 1.01 to 1.09, p = 0.006), both HDL (HR 0.96 per 1 mg/dl, 95% CI 0.93 to 0.99, p = 0.02) and PWV (HR 1.10 per 1 m/s, 95% CI 1.00 to 1.30, p = 0.03) (Fig. 1) were independent predictors of incident HTN.

Their findings in a longitudinal projection indicate that PWV, a marker of central arterial stiffening, is an independent determinant of longitudinal SBP increase in healthy BLSA volunteers, and an independent risk factor for incident hypertension among normotensive subjects followed up for longer than 4 years. The study was accompanied by a commentary in the same journal that states: “Pulse wave velocity (PWV) is a simple measure of the time taken by the pressure wave to travel over a specific distance. By virtue of its intrinsic relation to the mechanical properties of the artery by the Moens–Kortweg formula (PWV=√(Eh/2)Rρ; where E is the Young’s Modulus of the arterial wall, h the wall thickness, R the end- diastolic radius and ρ is the density of blood)(20), and buoyed a number of longitudinal studies that reported on the independent predictive value of PWV measurement for cardiovascular events and mortality in various populations, PWV is now widely accepted as the ‘gold standard’ measure of arterial stiffness.

 

 

 

Table IV Multiple Regression Analysis Evaluating the Predictors of Last Visit SBP 21

Variable Parameter
Estimate
Standard
Error
p Value
Age (yrs) 0.32 0.06 <0.0001
Gender (men) 0.65 1.78 0.71
Race (white) −1.22 2.00 0.54
Smoking (ever) 2.48 1.61 0.12
BMI (kg/m2)* 0.61 0.22 0.006
MAP (mm Hg)* 0.60 0.08 <0.0001
PWV (m/s)* 1.56 0.38 <0.0001
Heart rate (beats/min) 0.08 0.06 0.20
Total cholesterol (mg/dl) −0.005 0.02 0.83
Triglycerides (mg/dl) −0.009 0.01 0.50
HDL cholesterol (mg/dl) −0.001 0.07 0.98
Glucose (mg/dl) −0.02 0.06 0.75

 

 

 

 

 

 

 

 

Table V Predictors of Longitudinal SBP Derived From a Linear Mixed-Effects Regression Model 21

Variable Coefficient Standardized

Coefficient

95% Confidence

Interval

p Value
Time (yrs) 3.14 0.14 0.61 to 5.66 0.02
Age (yrs) −0.37 0.25 −0.68 to −0.06 0.02
Age2 (yrs2)* 0.006 0.08 0.002 to 0.008 <0.0001
Gender (men) 0.61 0.03 −1.26 to 2.47 0.52
BMI (kg/m2)* 0.25 0.11 −0.01 to 0.50 0.06
MAP (mmHg)* 1.03 0.47 0.93 to 1.12 <0.0001
PWV (m/s) 0.29 0.12 −0.16 to 0.74 0.21
Time × age* 0.02 0.04 −0.002 to 0.038 0.09
Time × BMI* 0.10 0.06 0.02 to 0.183 0.009
Time × MAP* −0.08 −0.12 −0.11 to −0.05 <0.0001
Time × PWV* 0.22 0.08 0.07 to 0.36 0.003

 

 

Figure 1 21

http://content.onlinejacc.org/data/Journals/JAC/23115/10065_gr1.jpeg

Figure 2.21

http://content.onlinejacc.org/data/Journals/JAC/23115/10065_gr2.jpeg

The interest in this physiological measure is illustrated by the increasing number and diversity of research publications in this arena related to human hypertension, relating PWV to pathophysiological processes (for example, homocysteine, inflammation and extracellular matrix turnover and disorders related to hypertension, such as sleep apnea). The epidemiology, genetic associations and prognostic implications of PWV (and arterial stiffness) have also been reported as has the relationship to hemodynamics, cardiac structure and function.” (24) Furthermore, arterial stiffening may be “characterized by an increase in (central) PP and changes in the morphology of the arterial waveform, both of which can now be measured non-invasively using tonometers from commercially available devices. Wave reflection is typically characterized by aortic pressure augmentation (ΔP) and the augmentation index (ΔP/PP) (Figure 3)(24). Higher augmented pressure, as an index of wave reflection, has been linked to adverse clinical outcomes in different populations.

Figure 3.24

Analysis of the pressure waveform. The initial systolic pressure is labelled as P1 and augmented pressure ( P) is typically measured as the difference between peak pressure (P2) and P1. Augmentation index is  P/PP. PP, pulse pressure.    http://www.nature.com/jhh/journal/v22/n10/images/jhh200847f1.gif 24

A review by Payne et al. (25) states that aortic stiffness and arterial pulse wave reflections determine elevated central systolic pressure and are associated with risk of adverse cardiovascular outcomes. This is because an impaired compensatory mechanism through matrix metalloproteinases of remodeling to compensate for changes in wall stress, possibly related to angiotensin II and inhibition of the vascular adhesion protein semicarbazide-sensitive amine oxidase, related to reduced elastin fiber cross-linking. This has implications for pharmacological agents that target age-related advanced glycation end-product cross-links. This also brings into consideration NO playing a considerable role. But they caution that the endogenous NO synthase inhibitors asymmetric dimethylarginine and L-NG-monomethyl arginine associated with clinical atherosclerosis don’t appear to be associated with arterial stiffening. The matter leaves much to be explained.  The mechanisms underlying arterial stiffness could well require insights into inflammation, calcification, vascular growth and remodeling, and endothelial dysfunction. Nevertheless, arterial stiffness is independently associated with cardiovascular outcome in most of the situations where it has been examined.  Given this train of thinking, O’Rourke (26) considers a progressive arterial dilatation with repeated cycles of stress that leads to degeneration of the arterial wall and increases the pressure wave impulse and wave velocity, augmenting the pressure in late systole. Drugs may reduce wave reflection, but have no direct effect on arterial stiffness.  However, reduction in wave reflection decreases aortic systolic pressure augmentation.  DK Arnett (26) depicts the effect of persistently elevated blood pressure in the following diagram (Figure 4).

 

Figure 4.26  Both transient and sustained stiffening of the artery are likely to be present in hypertension.

An initial elevation in blood pressure may establish a positive feedback in which hypertension biomechanically increases arterial stiffness without any structural change. This elevated blood pressure   might later lead to additional vascular hypertrophy and hyperplasia, collagen deposition, and atherosclerosis, and fixed elevations in arterial stiffness.  As to a genetic factor, she refers to a gene contributing to pulse pressure on chromosome 8 located at 32 cM, which also contains the lipoprotein lipase (LPL) gene which has been associated with hypertension. LPL may be an important candidate gene for pulse pressure.  She specifically identifies a relationship between genetic regions contributing to aortic compliance in African American sibships ascertained for hypertension in Figure 5 (27).  These results suggest there may be influential genetic regions contributing to aortic compliance in African American sibships ascertained for hypertension (27). Collectively, these two studies, the first to our knowledge, indicate the presence of genetic factors influencing hypertension.

Other authors state that PWV has a direct relationship to intrinsic elasticity of the arterial wall, and it is an independent predictor of CVD related morbidity and mortality, but it is not associated with classical risk factors for atherosclerosis (28).  They point out that PWV doesn’t increase during early stages of atherosclerosis, as measured by intima-media thickness and non-calcified atheroma, but it does increase in the presence of aortic calcification that occurs with advanced atherosclerotic plaque. Age-related
PWV measurement. Carotid-to-femoral PWV is calculated by dividing the distance (d) between the two arterial sites by the difference in time of pressure wave arrival between the carotid (t1) and femoral artery (t2) referenced to the R wave of the electrocardiogram.

Figure 5. Linkage of arterial compliance on chromosome 2: HyperGEN27

Widening of the pulse pressure is the major cause of age-related increase in prevalence of hypertension and is related to arterial stiffening. (28)  Commonly used points for measuring the PWV are the carotid and femoral artery because they are superficial and easy to access. Arterial distensibility is measured by the Bramwell and Hill equation (29): PWV = √(V × ΔP/ρ × ΔV), where ρ is blood density. This is shown in Figure 6.

 

Figure 6 28

 

View larger version:

 

Furthermore, these authors (28) report arterial stiffness increases with age by approximately 0.1 m/s/y in East Asian populations with low prevalences of atherosclerosis, but some authors have found accelerated stiffening between 50 and 60 years of age. In contrast, stiffness of peripheral arteries increases less or not at all with increasing age. Again, ageing of the arterial media is associated with increased expression of matrix metalloproteinases (MMP), which are members of the zinc-dependent endopeptidase family and are involved in degradation of vascular elastin and collagen fibers. Several different types of MMP exist in the vascular wall, but in relation to arterial stiffness, much interest has focused on MMP-2 and MMP-9.  This concludes the discussion of PP and PWV in the evolution of hypertension.

 

Diagnostic Biomarkers of essential hypertension.

Ioannidis and Tzoulaki (30) reviewed the literature on 10 popular ‘‘new’’ biomarkers and found that each one had accrued more than 6000 publications.1 The predictive effects of these popular blood biomarkers for coronary heart disease in the general population are listed in Table VI (31).

 

Table VI.* Predictive Value of New Biomarkers 30,31

Biomarker Adjusted Relative Risk (95% C.I.)
Triglycerides 0.99 (0.94–1.05)
C-reactive protein 1.39 (1.32–1.47)
Fibrinogen 1.45 (1.34–1.57)
Interleukin 6 1.27 (1.19–1.35)
BNP or NT-proBNP 1.42 (1.24–1.63)
Serum albumin 1.2 (1.1–1.3)
ICAM-1 (0.75–1.64)
Homocysteine 1.05 (1.03–1.07)
Uric acid 1.09 (1.03–1.16)

*Ionnidis and Tzoulaki from Giles
The majority of these biomarkers show small effects, if any, even in combination.  Giles (31) points out that an elevated homocysteine level might be of great importance to a young person with a myocardial infarction and a positive family history of similar occurrences. Emerging biomarkers, eg, asymmetric and symmetric dimethylarginine and galectin-3, are promising more specific biomarkers based on pathophysiologies for cardiovascular disease. Even then, blood pressure remains the biomarker par excellence for hypertension and for many other cardiovascular entities.

The importance of blood pressure was highlighted by the report of the cardiovascular lifetime risk pooling project.(10) Starting at 55 years of age, 61,585 men and women were followed over an average of 14 years, ie, 700,000 person-years. Individuals who maintained or decreased their blood pressure to normal levels had the lowest remaining lifetime risk for cardiovascular disease (22–41%) compared with individuals who had or developed hypertension by 55 years of age (42–69%). The study indicated that efforts should continue to emphasize the importance of lowering blood pressure and avoiding or delaying the incidence of hypertension to reduce the lifetime risk for cardiovascular disease

A small study involving 120 hypertensive patients with or without heart failure tried to establish a multi-biomarker approach to heart failure (HF) in hypertensive patients using N-terminal pro BNP (32). The following biomarkers were included in the study: Collagen III N-terminal propeptide (PIIINP), cystatin C (CysC), lipocalin-2/NGAL, syndecan-4, tumor necrosis factor-α (TNF-α), interleukin 1 receptor type I (IL1R1), galectin-3, cardiotrophin-1 (CT-1), transforming growth factor β (TGF-β) and N-terminal pro-brain natriuretic peptide (NT-proBNP). The highest discriminative value for HF was observed for NT-proBNP (area under the receiver operating characteristic curve (AUC) = 0.873) and TGF-β (AUC = 0.878). On the basis of ROC curve analysis they found that CT-1 > 152 pg/mL, TGF-β < 7.7 ng/mL, syndecan > 2.3 ng/mL, NT-proBNP > 332.5 pg/mL, CysC > 1 mg/L and NGAL > 39.9 ng/mL were significant predictors of overt HF. There was only a small improvement in predictive ability of the multi-biomarker panel including the four biomarkers with the best performance in the detection of HF (NT-proBNP, TGF-β, CT-1, CysC) compared to the panel with NT-proBNP, TGF-β and CT-1 (absent  CysC). The biomarkers with different pathophysiological backgrounds (NT-proBNP, TGF-β, CT-1) give additive prognostic value for incident compared to NT-proBNP alone.

Inflammation has been associated with pathophysiology of hypertension and vascular damage. Resistant hypertensive patients (RHTN) have unfavorable prognosis due to poor blood pressure control and higher prevalence of target organ damage. Endothelial dysfunction and arterial stiffness are involved in such condition. Previous studies showed that RHTN patients have higher arterial stiffness and endothelial dysfunction than controlled hypertensive and normotensive subjects. The relationship between high blood pressure levels and arterial stiffness may be explained in part, by inflammatory pathways. Previous studies also found that hypertensive subjects have higher levels of inflammatory cytokines including TNF-α, IL-10, IL-1β and CRP. Moreover, IL-1β correlates with arterial stiffness and levels of blood pressure, which are particularly high in patients with resistant hypertension. Increased inflammatory cytokines levels might be related to the development of vascular damage and to the higher cardiovascular risk of resistant hypertensive patients. Elevated BP may cause cardiovascular structural and functional alterations leading to organ damage such as left ventricular hypertrophy, arterial and renal dysfunction. TNF-α inhibition reduced systolic BP and endothelial inflammation in SHR [33]. They also found that IL-1β correlates with arterial stiffness and levels of blood pressure, even after adjust for age and glucose [33]. These investigators then demonstrated that isoprostane levels, an oxidative stress marker, were associated with endothelial dysfunction in these patients [33].

Chao et al. carried out studies of kallistatin (34-36). Kallistatin is an endogenous protein in human plasma as a tissue Kallikrein-Binding Protein (KBP). Tissue kallikrein is a serine protease that releases vasodilating kinin peptides from kininogen substrate. The tissue kallikrein-kinin system is involved in mediating beneficial effects in hypertension as well as cardiac, cerebral and renal injury. KBP was later identified as a serine protease inhibitor (serpin) because of its ability to inhibit tissue kallikrein activity, and was subsequently named “kallistatin”. Kallistatin is mainly expressed in the liver, but is also present in the heart, kidney and blood vessel. Kallistatin protein contains two structural elements: an active site and a heparin-binding domain. The active site of kallistatin is crucial for complex formation with tissue kallikrein, and thus tissue kallikrein inhibition.

Kallistatin is expressed in tissues relevant to cardiovascular function, and has consequently been shown to have vasodilating properties.  Kallistatin has pleiotropic effects in vasodilation and inhibition of inflammation, angiogenesis, oxidative stress, fibrosis, and cancer progression. Injection of a neutralizing Kallistatin antibody into hypertensive rats aggravates cardiovascular and renal injury in association with increased inflammation, oxidative stress and tissue remodeling.  Neither the blood pressure-lowering effect nor the vasorelaxation ability of kallistatin is abolished by icatibant (Hoe140, a kinin B2 receptor antagonist), indicating that kallistatin-mediated vasodilation is unrelated to the tissue kallikrein-kinin system.

The findings reported indicate that kallistatin exerts beneficial effects against hypertension and organ damage. Kallistatin levels in circulation, body fluids or tissues were lower in patients with liver disease, septic syndrome, diabetic retinopathy, severe pneumonia, inflammatory bowel disease, and cancer of the colon and prostate. In addition, reduced plasma kallistatin levels are associated with adiposity and metabolic risk in apparently healthy African American youths. Considered a negative acute-phase protein, circulating kallistatin levels as well as hepatic expression are rapidly reduced within 24 hours after Lipopolysaccharide (LPS) induced endotoxemia in mice. Similarly, circulating kallistatin levels are markedly decreased in patients with septic syndrome and liver disease. Taking together, the studies indicate that kallistatin exhibits potent anti-inflammatory activity.

The pathogenesis of hypertension and cardiovascular and renal diseases is tightly linked to increased oxidative stress and reduced NO bioavailability (37-39). Time-dependent elevation of circulating oxygen species are associated with reduced kallistatin levels in animal models of hypertension and cardiovascular and renal injury. Stimulation of NO formation by kallistatin may lead to inhibition of oxidative stress and thus multi-organ damage. On the other hand, endogenous kallistatin depletion by neutralizing antibody increased oxidative stress and aggravated cardiovascular and renal damage.

A human kallistatin gene polymorphism has been shown to correlate with a decreased risk of developing acute kidney injury during septic shock. Kallistatin levels are markedly reduced in both humans and mice with sepsis syndrome. However, kallistatin administration protects against lethality and organ injury in animal models of toxic septic shock. Moreover, kallistatin levels are decreased in patients with liver disease, septic shock, inflammatory bowel disease, severe pneumonia and acute respiratory distress syndrome. Taken together, the results indicate that kallistatin has the potential to be a molecular biomarker for patients with sepsis, cardiovascular and metabolic disorders.

Pulmonary hypertension (PH) is defined as a mean pulmonary artery pressure of .25 mmHg at rest or .30 mmHg with exercise. Right heart catheterization is required for the definitive diagnosis. Subsequent investigations are instituted to further characterize the disease. The 6-min walk test (6MWT), a measure of exercise capacity, and the New York Heart Association (NYHA)/World Health Organization (WHO) functional classification, a measure of severity, are used to follow the clinical course while receiving treatment, and these both correlate with disease severity and prognosis (43).

Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature that leads to exercise limitation, right heart failure, and death. There is a need for biomarkers that can aid in early detection, disease surveillance, and treatment monitoring in PAH. Several potential molecules have been investigated; however, only brain natriuretic peptide is currently recommended at diagnosis and for follow-up of PAH patients.

ANP is released from storage granules in atrial tissue, while BNP is secreted from ventricular tissue in a constitutive fashion. ANP secretion is stimulated by atrial stretch caused by atrial volume overload; BNP is released in response to ventricular stretch. Natriuretic peptides act on the kidney, causing natriuresis and diuresis, and relax vascular smooth muscle, causing arterial and venous dilatation, leading to reduced blood pressure and ventricular preload. ANP and BNP are released as prohormones and then cleaved into the active peptide and an inactive N-terminal fragment (43).

Natriuretic peptide precursors are released in response to atrial and ventricular stretch, cleaved into active molecules and inactive precursors and convert guanosine 59-triphosphate (GTP) to cyclic guanosine monophosphate (cGMP), leading to their various physiological actions.

There are a number of confounding factors in the interpretation of natriuretic peptide levels, including left heart disease, sex, age and renal dysfunction. Since most studies exclude patients with left heart disease and renal dysfunction, it becomes problematic extrapolating these results to an unselected population (43).

Endothelin-1 (ET-1) is a peptide found in abundance in the human lung and, through action of endothelin receptors (ETA and ETB) on vascular smooth muscle cells, is implicated in the pathogenesis of PAH. Endothelin receptor antagonists are approved for the treatment of PAH. Levels of circulating ET-1 and related molecules are logical biomarkers of interest in PAH. ET-1 is elevated in PAH compared to controls, and correlates with pulmonary hemodynamic parameters. In addition, higher ET-1 levels are associated with increased mortality in patients treated for PAH. ET-1’s precursor, big-ET-1, has a longer half-life and hence is more stable than ET-1.

Endothelin-1 ET-1 is a potent endogenous vasoconstrictor and proliferative cytokine. The ET-1 gene is translated to prepro-ET-1 which is then cleaved, by the action of an intracellular endopeptidase, to form the biologically inactive big ET-1. ET-converting enzymes further cleave this to form functional ET-1 . There are two ET receptor isoforms, termed type A (ETA), located predominantly on vascular smooth muscle cells, and type B (ETB), predominantly expressed on vascular endothelial cells but also on arterial smooth muscle. Activation of both receptor subtypes, when located on vascular smooth muscle, results in vasoconstriction and cell proliferation. In addition, the endothelial ETB receptor mediates vasodilatation and clearance of ET-1 (43).

Prepro-ET-1 is cleaved to inactive big ET-1 and then further cleaved to form active ET-1. This acts on vascular smooth muscle via the ETA and ETB receptors, causing vasoconstriction and cell proliferation, and on endothelial cells via ETB receptors, releasing nitric oxide (NO) and prostacyclin (PGI2), causing vasorelaxation.

As a biomarker, ADMA has been evaluated in several different classes of PH (43, 44). In IPAH, plasma levels are significantly higher than in healthy, matched controls. In such patients, plasma ADMA correlates positively with right atrial pressure, and negatively with mixed venous oxygen saturation, stroke volume, cardiac index and survival. On stepwise multiple regression analysis, ADMA is an independent predictor of mortality and, using Kaplan–Meier survival curves, patients with supramedian ADMA levels have significantly worse survival than those with inframedian levels.

Patients with idiopathic PAH, plasma levels of Ang-1 and Ang-2 were higher in PAH patients as compared to healthy controls.  Moreover, higher plasma levels of Ang-2 were associated with lower CI and mixed venous oxygen saturation (SvO2) and higher PVR, and, with therapy initiation, changes in Ang-2 correlated with changes in hemodynamics (45, 46).

Endostatin is an antiangiogenic peptide. It is synthesized by myocardium, is detectable in the peripheral circulation of patients with decompensated heart failure, and predicts mortality.48 In PAH, reduced RV myocardial oxygen delivery is felt to contribute to a transition from RV adaptation to failure (46).

Cyclic guanosine monophosphate (cGMP) is an intracellular second messenger of nitric oxide and an indirect marker of natriuretic peptide production (46).

Human pentraxin 3 (PTX3) is a protein synthesized by vascular cells that regulates angiogenesis, inflammation, and cell proliferation (46).

N-terminal propeptide of procollagen III (PIIINP), carboxy-terminal telopeptide of collagen I (CITP), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase I (TIMP-1)(46).

Osteopontin (OPN) is a matricellular protein that mediates cell migration, adhesion, remodeling, and survival of the vascular and inflammatory cells (46).

F2-isoprostane is a marker of lipid peroxidation of arachidonic acid, which stimulates endothelial cell proliferation and ET-1 synthesis and may play a role in the pathogenesis of PAH (46).

Circulating fibrocytes are bone marrow-derived cells (CD45 /collagen I ) that contribute to organ fibrosis and extracellular matrix deposition (46).

Circulating miRs (46)

Despite many other substances being investigated as potential biomarkers in PAH, more research is needed to validate the results of small studies and assess their clinical utility. Widespread clinical use of current investigational biomarkers will require validated clinical laboratory techniques and increased knowledge of levels in the healthy population as well as other disease states.

Here are important tests in clinical practice (47):

 

6-min walk distance

Cardiac index

WHO FC

PIIINP

Higher tertiles associated with worse disease

worse renal function

higher right atrial pressure (RAP)

CITP – vascular remodeling

 

Recent guidelines (17, 18) encourage the use of screening examinations, such as an echocardiogram (UCG), in high-risk populations for the early detection of PAH . To detect PAH in patients with connective tissue disease (CTD), the obvious screening tests are an UCG and spirometry, including assessment of the diffusing capacity of the lung for carbon monoxide (DLCO). Previous studies have suggested that B-type natriuretic peptide (BNP) and its N-terminal prohormone (NT-proBNP) are potential biomarkers for PAH. However, neither BNP nor NT-pro BNP are specific biomarkers of the degeneration of the pulmonary artery; rather, they are biomarkers of cardiac burden resulting from right heart failure.

Human pentraxin 3 (PTX3) is a specific biomarker for PAH, reflecting pulmonary vascular proteins. They are divided into short and long pentraxins on the basis of their primary structure.
C-Reactive protein (CRP) and serum amyloid P are the classic short pentraxins that are produced in the liver in response to systemic inflammatory cytokines (48). In contrast, PTX3 is one of the long pentraxins. It is synthesized by local vascular cells, such as smooth muscle cells, endothelial cells and fibroblasts, as well as innate immunity cells at sites of inflammation. PTX3 plays a key role in the regulation of cell proliferation and angiogenesis (49).

Increased plasma PTX3 levels have been reported in patients with acute myocardial injury in the
24 h after admission to hospital, with levels returning to normal after 3 days. Similarly, PTX3 levels are higher in patients with unstable angina pectoris, with the changes in PTX3 levels found to be independent of other coronary risk factors, such as obesity and diabetes mellitus. Finally, high serum PTX3 levels have been reported in patents with vasculitis, such as small-vessel vasculitis  and Takayasu aortitis.

Mean plasma PTX3 concentrations in the CTD-PAH and CTD patients were 5.02+0.69 ng/mL (range 1.82–12.94 ng/mL) and 2.40+0.14 ng/mL (range 0.70–4.29 ng/mL), respectively (Table 2). Log transformation of the data revealed significantly higher PTX3 levels in CTD-PAH than in CTD patients (1.49+0.12 vs. 0.82+0.06 log ng/mL, respectively; P = 0.001).(not shown)(50)

Figure 1. Serum pentraxin 3 (PTX3) concentrations in 50 patients with pulmonary arterial hypertension (PAH) and 100 healthy controls, and their correlation with serum concentrations of other biomarkers. A: Comparison of PTX3 concentrations in PAH patients and healthy controls. Mean plasma PTX3 concentrations were 4.4060.37 and 1.94+0.09 ng/mL in the controls and PAH patients, respectively. B: Distribution of log-transformed PTX3 concentrations in PAH patients and healthy controls. C: Log-transformed PTX3 concentrations were significantly higher in patients with PAH than in healthy controls (1.34+0.07 vs. 0.55+0.05 log ng/mL, respectively; P,0.001). D, E: There was no correlation between plasma concentrations of PTX3 and either B-type natriuretic peptide (BNP; r=0.33, P=0.02) or C-reactive protein (CRP; r=0.21, P=0.14) in PAH patients. (not shown) (50)

 

Table 2. Clinical characteristics and biomarkers in patients with connective tissue disease, with or without pulmonary arterial hypertension.

CTD-PAH ( n =17)                CTD alone ( n =34)       P -value

Age (years)                                 56.3+4.6                                 56.3+2.7               0.990

No. women (%)                         15 (88)                                      31(91)                  0.745

No. with SSc (%)                       10 (59)                                      20 (59)                    1

No. with heart failure (%)          1 (6)                                         0                            –

No. being treated for PAH (%)   17 (100)                                  0                           –

Serum PTX3 (mg/dL)                   5.02+0.69                          2.40+0.14             0.001

Serum CRP (mg/dL)                   0.24+0.09                            0.22+0.04             0.936

Serum BNP (pg/mL)                 189.3+74.                            4 49.3+12.1            0.014

…..  CTD, connective tissue disease; PAH, pulmonary arterial hypertension; SSc, scleroderma;

Figure 3. Receiver operating characteristic (ROC) curves for pentraxin 3 (PTX3) and other biomarkers in patients with connective tissue disease (CTD). The areas under the ROC curve (AUCROC) for PTX3 was 0.866 (95% confidence interval (CI) 0.757–0.974). The star indicates the threshold concentration of 2.85 ng/mL PTX3 that maximized true-positive and false-negative results (sensitivity 94.1%, specificity 73.5%). The AUCROC for C-reactive protein (CRP) was 0.518 (95% CI 0.333–0.704), whereas that for B-type natriuretic peptide (BNP) was 0.670 (95% CI 0.497–0.842). (50)  http://dx.doi.org:/10.1371/journal.pone.0045834.g003

This study was to determine whether PTX3, the regulation of which is independent of that of the systemic inflammatory marker CRP, is a useful biomarker for diagnosing PAH. The investigators found that PTX3 may be a more sensitive biomarker for PAH than BNP, which is, to date, the most established biomarker for PAH, especially in patients with CTD-PAH. Their findings suggest that PTX3 does not reflect the cardiac burden due to the pulmonary hypertension, but rather the activity of pulmonary vascular degeneration because PTX3 levels were significantly decreased after active treatment specifically for PAH (50). PLoS ONE 7(9): e45834. http://dx.doi.org:/10.1371/journal.pone.0045834.

Pharmacologic treatment for pulmonary arterial hypertension (PAH) remains suboptimal and mortality rates are still high, even with pulmonary vasodilator therapy. In addition, we have only an incomplete understanding of the pathobiology of PAH, which is characterized at the tissue level by fibrosis, hypertrophy and plexiform remodeling of the distal pulmonary arterioles. Novel therapeutic approaches that might target pulmonary vascular remodeling, rather than pulmonary vaso-reactivity, require precise patient phenotyping both in terms of clinical status and disease subtype. However, current risk stratification models are cumbersome and not precise enough for choosing or assessing the results of therapeutic intervention. Biomarkers used in patients with left heart failure, such as troponin-T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) are elevated in PAH patients but tend to simply reflect increased circulating plasma volumes and elevated right heart pressure, rather than conveying information about disease mechanism.

In this issue of Heart, Calvier and colleagues (see page 390) (51)propose galectin-3 as a useful biomarker in PAH. The rationale for this hypothesis is that elevated aldosterone levels induce an increase in serum levels of galectin-3, a β-galactoside-binding lectin expressed by circulating myocytes, endothelial cells and other cardiovascular cell types. Among other effects, activation of the aldosterone/galactin-3 pathway promotes fibrosis (51), suggesting that elevated levels will correlate with the severity of PAH due to increased pulmonary arteriolar remodeling. To test this hypothesis, serum levels were measured in a total of 57 patients – 41 with idiopathic PAH (iPAH) and 16 with PAH associated with a connective tissue disorder (CTD). The magnitude of elevation in serum levels of aldosterone, galectin-3 and NT-proBNP each correlated with the severity of PAH. However, as shown in figure 1, although serum levels of galectin-3 were elevated in both iPAH and PAH-CTD patients, aldosterone was elevated only in those with iPAH.

In addition, elevated vascular cell adhesion molecule 1 (VCAM-1) and proinflammatory, anti-angiogenic interleukin 12 (IL-12) in were elevated only in PAH-CTD patients, not in those in iPAH. These data suggest that aldosterone and galectin-3 can be used as biomarkers “in tandem” that reflect both the severity and cause of PAH (52).

In the accompanying editorial, Maron (see page 335) summarizes the knowledge gaps in PAH and concludes: “Taken together, Calvier and colleagues provide a key contribution to an underdeveloped area of pulmonary vascular medicine and in doing so identify galectin-3/aldosterone as promising biomarker(s) for informing both disease pathobiology and clinical status in PAH. The rationale of this pursuit in PAH was based, in part, on lessons earned from left heart failure in which the importance of systemically circulating vasoactive factors to clinical trajectory is well established. In this regard, the current work not only develops a novel scientific avenue worthy of further investigation, but also adds to the evolving body of evidence implicating a role for neurohumoral activation in the pathophysiology of PAH”.

Rheumatoid arthritis (RA) affects about 1% of the population and is known to be a significant risk factor for cardiovascular disease, with a 3-fold increased risk of myocardial infarction, a 2-fold increased risk of sudden death and a 50% increase in cardiovascular mortality rates. However, outcomes after PCI in RA patients have not been well characterized and there is little data on the possible effects of disease modifying therapy for RA on risk of restenosis after percutaneous coronary intervention (PCI). In a single center retrospective cohort study, Sintek and colleagues (53)(see page 363) compared the primary endpoint of repeat target vessel revascularization (TVR) in 143 RA patients matched to 541 other.

Pathophysiological targets of differing imaging modalities, demonstrate targets for tracers/contrast agents/pharmacotherapy used in SPECT, PET, MRI and echocardiography to assess myocardial viability.  (Not shown. Adapted from Schuster et al., J Am Coll Cardiol 2012; 59:359–70.)

Ischemic cardiomyopathy implies significant left ventricular systolic dysfunction with an underlying pathophysiology that includes myocardial scarring, hibernation and stunning, or a combination of these disease states. The role of imaging in assessment of myocardial viability is emphasized (not shown) (54) with brief summaries of the role of echocardiography, single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). The effects of revascularization in patients with ischemic cardiomyopathy remain controversial. Instead, the key elements of evidence based therapy for ischemic cardiomyopathy are standard medical therapy for heart failure combined with implantable cardiac defibrillation (ICD) and/or biventricular pacing device therapy in appropriate patients.

The relationship between the heart and the kidney in hypertension and heart failure

Hypertension is undoubtedly a factor in the treatment of chronic kidney disease because of the relationship between kidney function and BP components that have been studied in people with CKD, diabetes, and hypertension.  Cystatin C was used to evaluate the association between kidney function and both SBP and DBP and 24-h creatinine clearance (CrCl) among 906 participants in the Heart and Soul Study.  (56).  The study investigators hypothesized that although both creatinine and cystatin C are freely filtered at the glomerulus, a major difference between them is that creatinine is secreted by renal tubules, whereas cystatin C is metabolized by the proximal tubule and only a small fraction appears in the urine. In addition, Cystatin C has also been shown to be a stronger predictor of adverse outcomes than serum creatinine. Based on the more linear relationship of cystatin C with GFR, they hypothesized that cystatin C would have a stronger association with SBP than conventional measures of kidney function. Their results found that SBP was linearly associated with cystatin C concentrations (1.19 ± 0.55 mm Hg increase per 0.4 mg/L cystatin C, P = .03) across the range of kidney functions, but only in subjects with CrCl <60 mL/min (6.4 ± 2.13 mm Hg increase per 28 mL/min, P = .003), not >60 mL/min. Further, the DBP was not associated with cystatin C or CrCl. However, PP was linearly associated with both cystatin C (1.28 ± 0.55 mm Hg per 0.4 mg/L cystatin, P = .02) and CrCl <60 mL/min (7.27 ± 2.16 mm Hg per 28 mL/min, P = .001). The relationship between SBP and cystatin C by decile is shown in Figure 7 and Table 3.

Figure 7.

Mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) by decile of kidney function measured as cystatin C. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771570/bin/nihms-153474-f0001.jpg

 

 

Table 3

Linear regression of systolic blood pressure by kidney function (N = 906)

Age-adjusted Multivariable adjusted*
Measure N β coefficient P β coefficient P
Cystatin-C (per 0.4 mg/L [SD] increase) 1.75 ± 0.72 .01 1.19 ± 0.55 .03
    Overall
    >1.0 551 2.23 ± 0.07 .03 1.23 ± 0.03 .04
    <1.0 355 1.59 ± 0.04 .71 0.54 ± 0.01 .87
Spline P value for difference in slopes .85
24-h CrCl (per 28 mL/min [SD] decrease)
    Overall 1.96 ± 0.76 .01 0.91 ± 0.61 .14
    <60 222 11.20 ± 2.74 <.001 6.40 ± 2.13 .003
    >60 684 0.31 ± 0.99 .42 0.36 ± 0.77 .64
    Spline P-value for difference in slopes .01

The results for both Cystatin C and for eGFR are in agreement with incidence rates for heart failure (57)categorized by ejection fraction (EF) and kidney function over 1992−2000 in the Cardiovascular Health Study. Estimated glomerular filtration rate (mL/min per 1.73 m2) is labeled as “eGFR”. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258307/bin/nihms-39968-f0002.jpg).

The association of cystatin C with risk for SHF appeared linear across quartiles of cystatin C (57) and slightly stronger at the highest categories of cystatin C, whereas the lower three quartiles of cystatin C had similar risks for DHF. Participants with an estimated GFR ≥ 60 mL/min per 1.73 m2 had an equal likelihood of developing DHF or SHF, whereas participants with an estimated GFR < 60 mL/min per 1.73 m2 had a greater likelihood of developing SHF.

When an interaction term for HF type (SHF or DHF) was inserted into a fully adjusted standard Cox proportional hazards model with HF with either type of EF as the outcome, the association of continuous cystatin C with SHF was significantly greater than the association of cystatin C with DHF ( P value for interaction < 0.001). The association of estimated GFR and SHF compared with DHF was weaker (P value for interaction = 0.06 for the fully adjusted model).

Ascending quartiles of cystatin C were associated with increasing adjusted risk for the development of “unclassified” HF, defined by the absence of a point-of-care EF measurement. The magnitude of the fully adjusted hazard ratios for the association between cystatin C and risk of unclassified HF were intermediate between those described for DHF and SHF [hazard ratios (95% confidence intervals) for each higher quartile of cystatin C 1.00 (reference), 1.12 (0.80−1.57), 1.84 (1.34−2.51), 2.18 (1.58−3.00)]. The authors state that increased left atrial filling pressures trigger the release of atrial natriuretic peptide and inhibition of vasopressin, which leads to decreased renal sympathetic tone and diuresis early in the pathogenesis of HF (57).  They suggest that even relatively small decrements in k58idney function contribute to the risk of SHF.

Aldosterone plays a key role in homeostatic control and maintenance of blood pressure (BP) by regulation of extracellular volume, vascular tone, and cardiac output. Taking this assumption further, a study unrelated to that above explored the magnitude of the effect of relative aldosterone excess in predicting peripheral as well as aortic blood pressure in a cohort of patients undergoing coronary angiography.  (58) They found that mean peripheral systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the entire cohort were 141 ± 24 mm Hg and 81 ± 11 mm Hg, respectively. Median SBP and aortic SBP increased steadily and significantly from aldosterone/renin ratio (ARR), respectively; p < 0.0001 for both) after multivariate adjustment for parameters potentially influencing BP. ARR emerged as the second most significant independent predictor (after age) of mean SBP and as the most important predictor of mean DBP in this patient cohort.  The authors stress the importance of the ARR in modulating BP over a much wider range than is currently appreciated, as it was already known that the ARR was positively associated with pulse wave velocity in young normotensive healthy adults, indicating that relative aldosterone excess might affect arterial remodeling and precede BP rise as a result of increased vascular stiffness. In this study the ARR was calculated as the PAC/PRC ratio (pg/ml/pg/ml). An ARR >50 pg/ml had a sensitivity and specificity of ARR of 89% and 96%, respectively, for primary aldosteronism. The ARR was modeled as a continuous ratio (with log-transformed values).  The study carried out a multivariate stepwise regression analysis for predictors of BP (not shown). They illustrate (not shown) that marked increases in PRC are a major characteristic of lower ARR categories, and that  across a broad range of ARR values, inappropriately elevated aldosterone levels exert a strong effect on BP values and constitute the most important and second-most important predictor of DBP and SBP, respectively.

Cystatin C may be ordered when a health practitioner is not satisfied with the results of other tests, such as a creatinine or creatinine clearance, or wants to check for early kidney dysfunction, particularly in the elderly, and/or wants to monitor known impairment over time. In diverse populations it has been found to improve the estimate of GFR when combined in an equation with blood creatinine. A high level in the blood corresponds to a decreased glomerular filtration rate (GFR) and hence to kidney dysfunction. Since cystatin C is produced throughout the body at a constant rate and removed and broken down by the kidneys, it should remain at a steady level in the blood if the kidneys are working efficiently and the GFR is normal.

Chronic kidney disease (CKD) is defined as the presence of: persistent and usually progressive reduction in GFR (GFR <60 mL/min/1.73 m2) and/or albuminuria (>30 mg of urinary albumin per gram of urinary creatinine), regardless of GFR. Cystatin C is an index of GFR, especially in patients where serum creatinine may be misleading (eg, very obese, elderly, or malnourished patients); for such patients, use of CKD-EPI cystatin C equation is recommended to estimate GFR. Cystatin C eGFR may have advantages over creatinine eGFR in certain patient groups in whom muscle mass is abnormally high or low (for example quadriplegics, very elderly, or malnourished individuals). Blood levels of cystatin C also equilibrate more quickly than creatinine, and therefore, serum cystatin C may be more accurate than serum creatinine when kidney function is rapidly changing (59) (for example amongst hospitalized individuals).

It is a low molecular weight (13,250 kD) cysteine proteinase inhibitor that is produced by all nucleated cells and found in body fluids, including serum. Since it is formed at a constant rate and freely filtered by the kidneys, its serum concentration is inversely correlated with the glomerular filtration rate (GFR); that is, high values indicate low GFRs while lower values indicate higher GFRs, similar to creatinine. While both cystatin C and creatinine are freely filtered by glomeruli, cystatin C is reabsorbed and metabolized by proximal renal tubules. Thus, under normal conditions, cystatin C does not enter the final excreted urine to any significant degree, and the serum concentration is unaffected by infections, inflammatory or neoplastic states, or by body mass, diet, or drugs.  GFR can be estimated (eGFR) from serum cystatin C utilizing an equation which includes the age and gender of the patient (CKD-EPI cystatin C equation, developed by Inker et al. (59) It demonstrated good correlation with measured iothalamate clearance in patients with all common causes of kidney disease, including kidney transplant recipients.

According to the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) classification, among patients with CKD, irrespective of diagnosis, the stage of disease should be assigned based on the level of kidney function:

Table 4

Stage Description GFR mL/min/BSA
1 Kidney damage with normal or  increased GFR 90
2 Kidney damage with mild decrease in  GFR 60-89
3 Moderate decrease in GFR 30-59
4 Severe decrease in GFR 15-29
5 Kidney failure <15 (or dialysis)

(http://www2.kidney.org/professionals/kdoqi/guidelines_ckd/p4_class_g1.htm)

In a study to evaluate cystatin C as a measure of renal function in comparison to serum creatinine, 500 patients had cystatin C measured by nephelometry and glomerular filtration rate (GFR) measured by nonradiolabeled iothalamate clearance (59). In addition, serum creatinine was measured and the patients’ medical records reviewed. The correlation of 1/cystatin C with GFR (r=0.90) was significantly superior than 1/creatinine (r=0.82, p<0.05) with GFR. The superior correlation of 1/cystatin C with GFR was observed in the various clinical subgroups of patients studied (ie, subjects with no suspected renal disease, renal transplant patients, recipients of some other transplant, patients with glomerular disease, and patients with non-glomerular renal disease). The findings indicated that cystatin C may be superior to serum creatinine for the assessment of GFR in a wide spectrum of patients (59). Others have similarly found that cystatin C correlates better than serum creatinine for assessment of GFR. (60)

Patients were screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438)(61).   GFR was measured by using urinary clearance of iodine125-iothalamate in the US studies and chromium51-EDTA in the Paris study. GFR was calculated using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study.

Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m2 (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine (62, 63). Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. It is concluded that Serum cystatin C level alone provides GFR estimates not linked to muscle mass, and that an equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
The authors report that absence of urinary excretion has made it difficult to rigorously evaluate cystatin C as a filtration marker and to examine its non-GFR determinants. They also point out that a high level of variation in the cystatin C assay (64, 65), and standardization and calibration of clinical laboratories will be important to obtain accurate GFR estimation using cystatin C, as has been shown for creatinine.

The study reported above was followed by a major study by Inker LA, et al. (59). Their findings are summarized as follows. Mean measured GFRs were 68 and 70 ml per minute per 1.73 m2 of body-surface area in the development and validation data sets, respectively. In the validation data set, the creatinine–cystatin C equation performed better than equations that used creatinine or cystatin C alone. Bias was similar among the three equations, with a median difference between measured and estimated GFR of 3.9 ml per minute per 1.73 m2 with the combined equation, as compared with 3.7 and 3.4 ml per minute per 1.73 m2 with the creatinine equation and the cystatin C equation (P=0.07 and P=0.05), respectively. Precision was improved with the combined equation (interquartile range of the difference, 13.4 vs. 15.4 and 16.4 ml per minute per 1.73 m2, respectively [P=0.001 and P<0.001]), and the results were more accurate (percentage of estimates that were >30% of measured GFR, 8.5 vs. 12.8 and 14.1, respectively [P<0.001 for both comparisons]). In participants whose estimated GFR based on creatinine was 45 to 74 ml per minute per 1.73 m2, the combined equation improved the classification of measured GFR as either less than 60 ml per minute per 1.73 m2 or greater than or equal to 60 ml per minute per 1.73 m2 (net reclassification index, 19.4% [P<0.001]) and correctly reclassified 16.9% of those with an estimated GFR of 45 to 59 ml per minute per 1.73 m2 as having a GFR of 60 ml or higher per minute per 1.73 m2.

Other studies have established the importance of cystatin C levels(66, 67) and the factors influencing cystatin C levels on renal function measurement (68), including an implication that cystatin C, an alternative measure of kidney function, was a stronger predictor of the risk of cardiovascular events and death than either creatinine or the estimated GFR (69). This includes the Dallas Heart Study (30) finding that cystatin C was independently associated with a specific cardiac phenotype of concentric hypertrophy, including increased LV mass, concentricity, and wall thickness, but it was not associated with LV systolic function or volume. This association was particularly robust in hypertensives and blacks. The Cystatin C concentrations within stages of CKD are shown in Table 5 (70).

Table 5

      Cystatin C level
Stage a Description GFR range a (ml/min/1.73 m2) Native kidney disease b Transplant recipient c
1 Normal or increased GFR 90 0.80 0.87
2 Mildly decreased GFR 60 to 89 0.80 to 1.09 0.87 to 1.23
3 Moderately decreased GFR 30 to 59 1.10 to 1.86 1.24 to 2.24
4 Severely decreased GFR 15 to 29 1.87 to 3.17 2.25 to 4.10
5 Kidney Failure <15 >3.17 >4.10

a GFR estimates and CKD stage will be inaccurate if there is a calibration difference with the Dade-Behring BN II Nephelometer assay used in this study.

b Using the prediction equation: GFR=66.8 (cystatin C)-1.30.

c Using the prediction equation: GFR=76.6 (cystatin C)-1.16.

 

Copeptin, a novel marker

Urinary albumin excretion is a powerful predictor of progressive cardiovascular and renal disease. Copeptin is the inactive C-terminal fragment of the vasopressin precursor. It is a reliable marker of vasopressin secretion serves as a useful substitute for circulating vasopressin concentration. This allows  for the indirect measurement of vasopressin in epidemiological studies. Moreover, it has been shown that copeptin is a candidate biomarker for pneumonia 32), a predictor of outcome in heart failure, and is a powerful predictor of renal disease associated with albumin excretion (71).  Figure 8 shows the association between copeptin and 24-hour urinary volume, 24-h urinary osmolality and osmolality (71).

 

Figure 8

 

Association between quintiles of copeptin and median 24-h UAE (upper panel) and prevalence of microalbuminuria (lower panel) for males and females. Differences between the quintiles were tested by Kruskal–Wallis test. UAE, urinary albumin excretion.

 

 

Table 6 shows the association between copeptin concentration and urinary albumin excretion (UAE) in a log-log plot (71).

 

Model Corrected for β 95% CI for β P
Males        
 1 − (Crude) 0.25 0.20–0.30 <0.001
 2 As 1+age 0.21 0.16–0.26 <0.001
 3 As 2+MAP, BMI, smoking, glucose, cholesterol, CRP, and eGFR 0.10 0.05–0.16 <0.001
 4 As 3+diuretics and ACEi/ARB. 0.09 0.04–0.15 0.001
         
Females
 1 − (Crude) 0.19 0.15–0.23 <0.001
 2 As 1+age 0.17 0.14–0.22 <0.001
 3 As 2+MAP, BMI, smoking, glucose, cholesterol, CRP, and eGFR 0.16 0.11–0.21 <0.001
 4 As 3+diuretics and ACEi/ARB. 0.17 0.12–0.21 <0.001

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin-II-receptor blocker; BMI, body mass index; CHD, coronary heart disease; CI, confidence interval; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; MAP, mean arterial pressure.

Log copeptin concentration was entered in the regression analyses as independent and log UAE as the dependent variable. Copeptin was associated with UAE in all age groups, but this association is the strongest when subjects are older. Twenty-four-hour urinary volume and 24-h urinary osmolarity were significantly different, with 24-h urinary volume being higher and 24-h urinary osmolarity being lower in the oldest age group when compared with the youngest age group. In both males and females, high copeptin concentration (a surrogate for vasopressin) is associated with low 24-h urinary volume and high 24-h urinary osmolarity. However, urinary osmolarity was independently associated with UAE, but it was weaker than that between copeptin and UAE.  This might indicate that induction of specific glomerular hyperfiltration or decreased tubular albumin reabsorption are associated with this relationship. In addition, subjects with higher levels of copeptin had lower renal function.  These investigators concluded that copeptin (a reliable substitute for vasopressin) is associated with UAE and microalbuminuria, consistent with the hypothesis that vasopressin induces UAE (72).  Other studies indicated that copeptin levels are increased in patients with pulmonary artery hypertension (73), and
higher serum copeptin levels, a surrogate for arginine vasopressin (AVP) release, are associated not only with systolic and diastolic blood pressure but also with several components of metabolic syndrome (74) including obesity, elevated concentration of triglycerides, albuminuria, and serum uric acid level.

 

 

Natriuretic peptides in the evaluation of heart failure

The brain type natriuretic peptide (BNP) and the N-terminal pro B-type natriuretic peptide (NT proBNP), but not yet the atrial natriuretic peptide have gained prominence in the evaluation of patients with CHF, which may be with or without preserved ejection fraction . Richards et al. (75)  make the following points.

 

  • Threshold values of B-type natriuretic peptide (BNP) and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) validated for diagnosis of undifferentiated acutely decompensated heart failure (ADHF) remain useful in patients with heart failure with preserved ejection fraction (HFPEF), with minor loss of diagnostic performance.

 

  • BNP and NT-proBNP measured on admission with ADHF are powerfully predictive of in-hospital mortality in both HFPEF and heart failure with reduced EF (HFREF), with similar or greater risk in HFPEF as in HFREF associated with any given level of either peptide.

 

  • In stable treated heart failure, plasma natriuretic peptide concentrations often fall below cut-point values used for the diagnosis of ADHF in the emergency department; in HFPEF, levels average approximately half those in HFREF.

 

  • BNP and NT-proBNP are powerful independent prognostic markers in both chronic HFREF and chronic HFPEF, and the risk of important clinical adverse outcomes for a given peptide level is similar regardless of left ventricular ejection fraction.

 

  • Serial measurement of BNP or NT-proBNP to monitor status and guide treatment in chronic heart failure may be more applicable in HFREF than in HFPEF.

 

In addition, they point out the following:

 

BNP and NT-proBNP fall below ADHF thresholds in stable HFREF in approximately 50% and 20% of cases, respectively. Levels in stable HFPEF are even lower, approximately half those in HFREF.

 

Whereas BNPs have 90% sensitivity for asymptomatic LVEF of less than 40% in the community (a precursor state for HFREF), they offer no clear guide to the presence of early community based HFPEF.

 

Guidelines recommend BNP and NT-proBNP as adjuncts to the diagnosis of acute and chronic HF and for risk stratification. Refinements for application to HFPEF are needed.

 

The prognostic power of NPs is similar in HFREF and HFPEF. Defined levels of BNP and NT-proBNP correlate with similar short-term and long-term risks of important clinical adverse outcomes in both HFREF and HFPEF.

 

They provide a diagnostic algorithm for suspected heart failure (75)(Figure 9).

 

Figure 9

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely

 

 

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely. a In the acute setting, mid-regional pro–atrial natriuretic peptide may also be used (cutoff point 120 pmol/L; ie, <120 pmol/L 5 heart failure unlikely). b Other causes of elevated natriuretic peptide levels in the acute setting are an acute coronary syndrome, atrial or ventricular arrhythmias, pulmonary embolism, and severe chronic obstructive pulmonary disease with elevated right heart pressures, renal failure, and sepsis. Other causes of an elevated natriuretic level in the nonacute setting are old age (>75 years), atrial arrhythmias, left ventricular hypertrophy, chronic obstructive pulmonary disease, and chronic kidney disease. c Exclusion cutoff points for natriuretic peptides are chosen to minimize the false-negative rate while reducing unnecessary referrals for echocardiography. Treatment may reduce natriuretic peptide concentration, and natriuretic peptide concentrations may not be markedly elevated in patients with heart failure with preserved ejection fraction.

 

Patients with acute pulmonary symptoms and with acute myocardial infarct present with dyspnea to the Emergency Department.  The evaluation is made particularly difficult in a patient for whom there is no prior history. Maisel et al. (76) presented the utility of the midregion proadrenomedullin (MR-proADM) in all patients presenting with acute shortness of breath.  They found that MR-proADM was superior to BNP or troponin for predicting 90-day all-cause mortality in patients presenting with acute dyspnea (c index = 0.755, p < 0.0001). Furthermore, MR-proADM added significantly to all clinical variables (all adjusted hazard ratios: HR=3.28), and it was also superior to all other biomarkers.

 

There is a large body of recent work that has enlarged our view of hypertension, kidney disease, cardiovascular disease, including heart failure with (HFpEF) or without preserved ejection fraction. I shall here refer to my review in Leaders in Pharmaceutical Innovation  (78).  The piece contains a study that I published  (79) with collaborators in Brooklyn, Bridgeport and Philadelphia that is no longer available from the publisher.

 

The natriuretic peptides, B-type natriuretic peptide (BNP) and NT-proBNP that have emerged as tools for diagnosing congestive heart failure (CHF) are affected by age and renal insufficiency (RI).  NTproBNP is used in rejecting CHF and as a marker of risk for patients with acute coronary syndromes. This observational study was undertaken to evaluate the reference value for interpreting NT-proBNP concentrations. The hypothesis is that increasing concentrations of NT-proBNP are associated with the effects of multiple co-morbidities, not merely CHF,

resulting in altered volume status or myocardial filling pressures.

 

NT-proBNP was measured in a population with normal trans-thoracic echocardiograms
(TTE) and free of anemia or renal impairment. Exclusion conditions were the following
co-morbidities:

 

 

  • anemia as defined by WHO,
  • atrial fibrillation (AF),
  • elevated troponin T exceeding 0.070 mg/dl,
  • systolic or diastolic blood pressure exceeding 140 and 90 respectively,
  • ejection fraction less than 45%,
  • left ventricular hypertrophy (LVH),
  • left ventricular wall relaxation impairment, and
  • renal insufficiency (RI) defined by creatinine clearance < 60ml/min using
    the MDRD formula .

Study participants were seen in acute care for symptoms of shortness of breath suspicious for CHF requiring evaluation with cardiac NTproBNP assay. The median NT-proBNP for patients under 50 years is 60.5 pg/ml with an upper limit of 462 pg/ml, and for patients over 50 years the median was 272.8 pg/ml with an upper limit of 998.2 pg/ml.

We suggested that NT-proBNP levels can be more accurately interpreted only after removal of the major co-morbidities that affect an increase in this  peptide in serum. The PRIDE study guidelines (http://www.pridestudy.org/)  should be applied until presence or absence of comorbidities is diagnosed. With no comorbidities, the reference range for normal over 50 years of age remains steady at ~1000 pg/ml. The effect shown in previous papers likely is due to increasing concurrent comorbidity with age.

We observed the following changes with respect to NTproBNP and age:

(i) Sharp increase in NT-proBNP at over age 50

(ii) Increase in NT-proBNP at 7% per decade over 50

(iii) Decrease in eGFR at 4% per decade over 50

(iv) Slope of NT-proBNP increase with age is related to proportion of patients with eGFR less than 90

(v) NT-proBNP increase can be delayed or accelerated based on disease comorbidities

The mean and 95% CI of NTproBNP (CHF removed) by the National Kidney Foundation staging for eGFR interval (eGFR scale: 0, > 120; 1, 90 to 119;2, 60 to 89; 3, 40 to 59; 4, 15 to 39; 5, under 15 ml/min). We created a new variable to minimize the effects of age and eGFR variability by correcting these large effects in the whole sample population.

Adjustment of the NT-proBNP for  both eGFR and for age over 50 differences. We have carried out a normalization to adjust for both eGFR and for age over 50:

(i) Take Log of NT-proBNP and multiply by 1000
(ii) Divide the result by eGFR (using MDRD9 or Cockroft Gault10)
(iii) Compare results for age under 50, 50-70, and over 70 years
(iv) Adjust to age under 50 years by multiplying by 0.66 and 0.56.

Figure 10

 

 

NKF staging by GFRe interval and NT-proBNP (CHF removed).

 

 

The equation does not require weight because the results are reported normalized

to 1.73 m2 body surface area, which is an accepted average adult surface area.

 

This is illustrated in Figure 11.

Figure 11

 

Plot of 1000*log (NT-proBNP)/GFR vs age at  eGFR over 90  and 60 ml/min

Figure 12 compares the reference ranges for NTproBNP before and after adjustment.

  • before adjustment; b) after adjustment. c) the scatterplot for 1000xlog(NT proBNP) versus 1000xlog(NT-proBNP/eGFR). Superimposed scatterplot and regression line with centroid and

confidence interval for 1000*log(NT-proBNP)/eGFR vs age (anemia removed)

at eGFR over 40 and 90 ml/min. (Black: eGFR > 90, Blue:  eGFR > 40)

 

More recent work is enlightening.  Hijazi et al. (80) studied the incremental value of measuring N-terminal pro–B-type natriuretic peptide (NT-proBNP) levels in addition to established risk factors (including the CHA2DS2VASc [heart failure, hypertension, age 75 years and older, diabetes, and previous stroke or transient ischemic attack, vascular disease, age 65 to 74 years, and sex category) for the prediction of cardiovascular and bleeding events. They concluded that NT-proBNP levels are often elevated in atrial fibrillation (AF) and it is independently associated with an increased risk for stroke and mortality. NT-proBNP improves risk stratification beyond the CHA2DS2VASc score and might be a novel tool for improved stroke prediction in AF. The

efficacy of apixaban compared with warfarin was independent of the NT-proBNP level. Moreover, natriuretic peptides are regulatory hormones associated with cardiac remodeling, namely, left ventricular hypertrophy and systolic/diastolic dysfunction. Another study reported that the risk of death of patients with plasma NT-proBNP 133 pg/mL (third tertile of the distribution) was 3.3 times that of patients with values 50.8 pg/mL (first tertile; hazard ratio: 3.30 [95% CI: 0.90 to 12.29]). This predictive value was independent of, and superior to, that of 2 ECG indexes of left ventricular hypertrophy, the Sokolov-Lyon index and the amplitude of the R wave in lead aVL and it persisted in patients without ECG left ventricular hypertrophy (81).
Many patients presenting with acute dyspnea (including those with ADHF) have multiple coexisting medical disorders that may complicate their diagnosis and management. These patients presenting with acute dyspnea may have longer hospital length of stay and are at high risk for repeat hospitalization or death. In this presentation testing for brain natriuretic peptide (BNP) or NT-proBNP has been shown to be valuable for an accurate and efficient diagnosis and prognostication of HF (82).

 

The biological activity of BNP, the product of an intracellular peptide (proBNP108) that is converted to NT-proBNP, includes stimulation of natriuresis and vasorelaxation; inhibition of renin, aldosterone, and sympathetic nervous activity; inhibition of fibrosis; and improvement in myocardial relaxation.

 

Figure 13

 

Biology of the natriuretic peptide system. BNP indicates brain natriuretic peptide; NT-proBNP, amino-terminal pro-B-type natriuretic peptide; and DPP-IV, dipeptidyl peptidase-4.

The authors remind us that approximately 20% of patients with acute dyspnea have BNP or NT-proBNP levels that are above the cutoff point to exclude HF but too low to definitively identify it (82). Knowledge of the differential diagnosis of non-HF elevation of NP, as well as interpretation of the BNP or NT-proBNP value in the context of a clinical assessment is essential.  Across all stages of HF, elevated BNP or NT-proBNP concentrations are at least comparable prognostic predictors of mortality and cardiovascular events relative to traditional predictors of outcome in this setting, with increasing NP concentrations predicting worse prognosis in a linear fashion. This prognostic value may be used to stratify patients at the highest risk of adverse outcomes (see Figure 2 In this page). Age-adjusted Kaplan-Meier survival curve of mortality at 1 year associated with an elevated amino-terminal pro-B-type natriuretic peptide    (NT-proBNP) concentration at emergency department presentation with dyspnea in those with acutely decompensated heart failure. Reproduced from Januzzi et al22. (82)

The importance of determining diastolic and systolic function and for measurement of pulmonary artery pressure by echocardiography is clear, as NT-proBNP levels may be increased with increase in pulmonary pressure as well as conditions that increase cardiac output. Although Hijazi et al. used the Cockcroft-Gault (CG) equation to determine the glomerular filtration rate (GFR) the CG equation may find higher eGFR in older individuals (80). In addition, elevated NT-proBNP independently predicts all-cause mortality and morbidity of patients with AF. A prominent disease with elevated NT-proBNP is a respiratory system disease, such as chronic obstructive pulmonary disease, pulmonary embolism, and interstitial lung disease, in which B-type natriuretic peptide levels are elevated in response to the pressure of the right side of the heart. The authors conclude that one should keep in mind that NT-proBNP alone may be inadequate.

NT-proBNP level is used for the detection of acute CHF and as a predictor of survival. However, a number of factors, including renal function, may affect the NT-proBNP levels. This study aims to provide a more precise way of interpreting NT-proBNP levels based on GFR, independent of age. This study includes 247 pts in whom CHF and known confounders of elevated NT-proBNP were excluded, to show the relationship of GFR in association with age. The effect of eGFR on NT-proBNP level was adjusted by dividing 1000 x log(NT-proBNP) by eGFR then further adjusting for age in order to determine a normalized NT-proBNP value. The normalized NT-proBNP levels were affected by eGFR independent of the age of the patient. A normalizing function based on eGFR eliminates the need for an age-based reference ranges for NT-proBNP (79).

The routine use of natiuretic peptides in severely dyspneic patients has recently been called into question. We hypothesized that the diagnostic utility of Amino Terminal pro Brain Natiuretic Peptide (NT-proBNP) is diminished in a complex elderly population (83)

We studied 502 consecutive patients in whom NT-proBNP values were obtained to evaluate severe dyspnea in the emergency department (84). The diagnostic utility of NT-proBNP for the diagnosis of congestive heart failure (CHF) was assessed utilizing several published guidelines, as well as the manufacturer’s suggested age dependent cut-off points. The area under the receiver operator curve (AUC) for NT-proBNP was 0.70. Using age-related cut points, the diagnostic accuracy of NT-proBNP for the diagnosis of CHF was below prior reports (70% vs. 83%). Age and estimated creatinine clearance correlated directly with NT-proBNP levels, while hematocrit correlated inversely. Both age > 50 years and to a lesser extent hematocrit < 30% affected the diagnostic accuracy of NT-proBNP, while renal function had no effect. In multivariate analysis, a prior history of CHF was the best predictor of current CHF, odds ratio (OR) = 45; CI: 23-88.

The diagnostic accuracy of NT-proBNP for the evaluation of CHF appears less robust in an elderly population with a high prevalence of prior CHF. Age and hematocrit levels, may adversely affect the diagnostic accuracy off NT-proBNP (85).

Obesity and hypertension.

Obesity is associated with an increased risk of hypertension. In the past 5 years there have been dramatic advances into the genetic and neurobiological mechanisms of obesity with the discovery of leptin and novel neuropeptide pathways regulating appetite and metabolism. In this brief review, we argue that these mounting advances into the neurobiology of obesity have and will continue to provide new insights into the regulation of arterial pressure in obesity. We focus our comments on the sympathetic, vascular, and renal mechanisms of leptin and melanocortin receptor agonists and on the regulation of arterial pressure in rodent models of genetic obesity. Three concepts are proposed (86).

First, the effect of obesity on blood pressure may depend critically on the genetic-neurobiological mechanisms underlying the obesity. Second, obesity is not consistently associated with increased blood pressure, at least in rodent models. Third, the blood pressure response to obesity may be critically influenced by modifying alleles in the genetic background.

Leptin plays an important role in regulation of body weight through regulation of food intake and sympathetically mediated thermogenesis. The hypothalamic melanocortin system, via activation of the melanocortin-4 receptor (MC4-R), decreases appetite and weight, but its effects on sympathetic nerve activity (SNA) are unknown. In addition, it is not known whether sympathoactivation to leptin is mediated by the melanocortin system.

The following study (87) tested the interactions between these systems in regulation of brown adipose tissue (BAT) and renal and lumbar SNA in anesthetized Sprague-Dawley rats. Intracerebroventricular administration of the MC4-R agonist MT-II (200 to 600 pmol) produced a dose-dependent sympathoexcitation affecting BAT and renal and lumbar beds. This response was completely blocked by the MC4-R antagonist SHU9119 (30 pmol ICV). Administration of leptin (1000 m g/kg IV) slowly increased BAT SNA (baseline, 4166 spikes/s; 6 hours, 196628 spikes/s; P50.001) and renal SNA (baseline, 116616 spikes/s; 6 hours, 169626 spikes/s; P50.014).

Intracerebroventricular administration of SHU9119 did not inhibit leptin-induced BAT sympathoexcitation (baseline, 3567 spikes/s; 6 hours, 158634 spikes/s; P50.71 versus leptin alone). However, renal sympathoexcitation to leptin was completely blocked by SHU9119 (baseline, 142617 spikes/s; 6 hours, 146625 spikes/s; P50.007 versus leptin alone). The study (87) demonstrates that the hypothalamic melanocortin system can act to increase sympathetic nerve traffic to thermogenic BAT and other tissues. Our data also suggest that leptin increases renal SNA through activation of hypothalamic melanocortin receptors. In contrast, sympathoactivation to thermogenic BAT by leptin appears to be independent of the melanocortin system.

Troponins

The introduction of the first generation troponins T and I was an important event leading to the declining use of creatine kinase isoenzyme MB because of the short half-life in the circulation of CKMB and the possibility of missing a late presenting ACS. The situation then would call for the measurement of lactate dehydrogenase isoenzyme 1 (H-type), which had a decline in use.  The troponins T and I are proteins associated with the muscle contractile element with high specificity for the cardiomyocyte apparatus, which increased rapidly after ACS and which had estimated diagnostic cutoffs of 0.08 mg/dl and 1 mg/dl respectively.  The choice of marker was largely dependent of the instrument platform.  These biomarkers went through several generations of improvement to improve the diagnostic sensitivity to a cutoff at 2 SD of the lower limit of detection, magnifying confusion in interpretation that had always existed. These cardiospecific markers are elevated in patients with hypertension and specifically, long term CKD. This was clarified by introducing the terms Type 1 and Type 2 myocardial infarct, designating the classic ACS due to plaque rupture as Type 1.  However, the type 2 class might well be non-homogeneous. In any case, these are the best we have in detecting myocardial ischemic damage with biomarker release.

 

Discussion

This discussion has covered a large body of research involving hypertension, the kidney, and cardiovascular humoral mechanisms of control with a broad brush.  The work that has been done is far more than is cited.  There are several biomarkers that we have considered. They are not only laboratory based measurements.  They are: PWV, cystatin C, eGFR, copeptin, BNP or NT-BNP, Midregional prohormone adrenomedullin (MR-ADM), urinary albumin excretion, and the aldosterone/renin ratio.

The preceding discussion reminds us of the story of the blind men palpating an elephant, set in a poem by John Godfrey Saxe. These blind men were asked to tell of their experiences palpating different parts of an elephant, without seeing the entire animal Figure 1. Each of the blind men was able to palpate one part of the elephant, and thus was able to describe it in terms that were “partly in the right.” However, because none of them was able to encompass the entire elephant in their hands, they were also “in the wrong,” in that they failed to identify the whole elephant (88).
The blind men and the elephant. Poem by John Godfrey Saxe (Cartoon originally copyrighted by the authors (88); G. Renee Guzlas, artist). http://www.nature.com/ki/journal/v62/n5/thumbs/4493262f1bth.gif

These authors advanced the “elephant” as the increased oxidative burden in the uremic milieu of patients with chronic kidney disease. I introduce the concept in the diagnostic dilemma about what biomarkers are diagnostically informative in hypertension and ischemic CVD poses a conundrum. In reviewing the full gamut of biomarkers, we have a replay of the Lone Ranger and the silver bullet.  The problem is that there is no “silver” bullet.  We are accustomed to rely on clinical observations that are themselves weak covariates in actual experience.  The studies that have been done to validate the effectiveness of key biomarkers are well designed and show relevance in the populations studied.  However, they are insufficient by themselves in the emergent care population.
 

Impediments to a solution to the problem

Tests are ordered by physicians based on the findings in a clinical history and physical examination. Test that are ordered are reimbursed by insurance carriers, Medicare and Medicaid based on a provisional diagnosis.  The provisional diagnosis generates an ICD10 code, which has been most recently revised with a weighted input from the insurers that is not in favor of considered clinical evidence.  Moreover, the provider of care is graded based on the number of patients seen and the tests performed on a daily basis over any period.  Given this situation, and in addition, the requirement to interact with an outmoded information system that is more helpful to the insurer and less helpful to the provider, it is not surprising that there is a large burnout of the nursing and physician practitioner workforce.  If the diagnosis is inconclusive at the time of patient examination, then the work is not reimbursable based on ICD10 coding requirements that are disease specific.   This problem breaks down into a workload and a reimbursement inconsistency, neither of which makes sense in terms of the original studies on Diagnosis Related Groups (89) at Yale by Robert Fetter’s group.  The problem is made worse by the design and selection of healthcare information systems.

Many have pointed out the flaws in current EHR design that impede the optimum use of data and hinder workflow. Researchers have suggested that EHRs can be part of a learning health system to better capture and use data to improve clinical practice, create new evidence, educate, and support research efforts. The health care system suffers from both inefficient and ineffective use of data. Data are suboptimally displayed to users, undernetworked, underutilized, and wasted. Errors, inefficiencies, and increased costs occur on the basis of unavailable data in a system that does not coordinate the exchange of information, or adequately support its use (90). Clinicians’ schedules are stretched to the limit and yet the system in which they work exerts little effort to streamline and support carefully engineered care processes. Information for decision-making is difficult to access in the context of hurried real-time workflows(91)

 

 

The solution to the problem

The current design of the Electronic Medical Record (EMR) is a linear presentation of portions of the record by services, by diagnostic method, and by date, to cite examples.  This allows perusal through a graphical user interface (GUI) that partitions the information or necessary reports in a workstation entered by keying to icons.  This requires that the medical practitioner finds the history, medications, laboratory reports, cardiac imaging and EKGs, and radiology in different workspaces.  The introduction of a DASHBOARD has allowed a presentation of drug reactions, allergies, primary and secondary diagnoses, and critical information about any patient the care giver needing access to the record.  The advantage of this innovation is obvious.  The startup problem is what information is presented and how it is displayed, which is a source of variability and a key to its success.

Gil David and Larry Bernstein have developed, in consultation with Prof. Ronald Coifman, in the Yale University Applied Mathematics Program, a software system that is the equivalent of an intelligent Electronic Health Records Dashboard (92)( that provides empirical medical reference and suggests quantitative diagnostics options.

The most commonly ordered test used for managing patients worldwide is the hemogram that often incorporates the review of a peripheral smear.  While the hemogram has undergone progressive modification of the measured features over time the subsequent expansion of the panel of tests has provided a window into the cellular changes in the production, release or suppression of the formed elements from the blood-forming organ to the circulation.  In the hemogram one can view data reflecting the characteristics of a broad spectrum of medical conditions.

How we frame our expectations is so important that it determines the data we collect to examine the process.   In the absence of data to support an assumed benefit, there is no proof of validity at whatever cost.   This has meaning for hospital operations, for nonhospital laboratory operations, for companies in the diagnostic business, and for planning of health systems.

In 1983, a vision for creating the EMR was introduced by Lawrence Weed, expressed by McGowan and Winstead-Fry (93)

The data presented has to be comprehended in context with vital signs, key symptoms, and an accurate medical history.  Consequently, the limits of memory and cognition are tested in medical practice on a daily basis.  We deal with problems in the interpretation of data presented to the physician, and how through better design of the software that presents this data the situation could be improved.  The computer architecture that the physician uses to view the results is more often than not presented as the designer would prefer, and not as the end-user would like.

Eugene Rypka contributed greatly to clarifying the extraction of features (94) in a series of articles, which set the groundwork for the methods used today in clinical microbiology.  The method he describes is termed S-clustering, and will have a significant bearing on how we can view hematology data.  He describes S-clustering as extracting features from endogenous data that amplify or maximize structural information to create distinctive classes.  The method classifies by taking the number of features with sufficient variety to map into a theoretic standard. The mapping is done by a truth table, and each variable is scaled to assign values for each: message choice.  The number of messages and the number of choices forms an N-by N table.  He points out that the message choice in an antibody titer would be converted from 0 + ++ +++ to 0 1 2 3.

Bernstein and colleagues had a series of studies using Kullback-Liebler Distance  (effective information) for clustering to examine the latent structure of the elements commonly used for diagnosis of myocardial infarction (95-97)(CK-MB, LD and the isoenzyme-1 of LD),  protein-energy malnutrition (serum albumin, serum transthyretin, condition associated with protein malnutrition (see Jeejeebhoy and subjective global assessment), prolonged period with no oral intake), prediction of respiratory distress syndrome of the newborn (RDS), and prediction of lymph nodal involvement of prostate cancer, among other studies.   The exploration of syndromic classification has made a substantial contribution to the diagnostic literature, but has only been made useful through publication on the web of calculators and nomograms (such as Epocrates and Medcalc) accessible to physicians through an iPhone.  These are not an integral part of the EMR, and the applications require an anticipation of the need for such processing.

Gil David et al. (90, 92) introduced an AUTOMATED processing of the data available to the ordering physician and can anticipate an enormous impact in diagnosis and treatment of perhaps half of the top 20 most common causes of hospital admission that carry a high cost and morbidity.  For example: anemias (iron deficiency, vitamin B12 and folate deficiency, and hemolytic anemia or myelodysplastic syndrome); pneumonia; systemic inflammatory response syndrome (SIRS) with or without bacteremia; multiple organ failure and hemodynamic shock; electrolyte/acid base balance disorders; acute and chronic liver disease; acute and chronic renal disease; diabetes mellitus; protein-energy malnutrition; acute respiratory distress of the newborn; acute coronary syndrome; congestive heart failure; disordered bone mineral metabolism; hemostatic disorders; leukemia and lymphoma; malabsorption syndromes; and cancer(s)[breast, prostate, colorectal, pancreas, stomach, liver, esophagus, thyroid, and parathyroid]. The same approach has also been applied to the problem of hospital malnutrition, but it has not been sufficiently applied to hypertension, cardiovascular diseases, acute coronary syndrome, chronic renal failure.

We have developed (David G, Bernstein L, and Coifman) (92) a software system that is the equivalent of an intelligent Electronic Health Records Dashboard that provides empirical medical reference and suggests quantitative diagnostics options. The primary purpose is to gather medical information, generate metrics, analyze them in realtime and provide a differential diagnosis, meeting the highest standard of accuracy. The system builds its unique characterization and provides a list of other patients that share this unique profile, therefore utilizing the vast aggregated knowledge (diagnosis, analysis, treatment, etc.) of the medical community. The main mathematical breakthroughs are provided by accurate patient profiling and inference methodologies in which anomalous subprofiles are extracted and compared to potentially relevant cases. As the model grows and its knowledge database is extended, the diagnostic and the prognostic become more accurate and precise. We anticipate that the effect of implementing this diagnostic amplifier would result in higher physician productivity at a time of great human resource limitations, safer prescribing practices, rapid identification of unusual patients, better assignment of patients to observation, inpatient beds, intensive care, or referral to clinic, shortened length of patients ICU and bed days.

The main benefit is a real time assessment as well as diagnostic options based on comparable cases, flags for risk and potential problems as illustrated in the following case acquired on 04/21/10. The patient was diagnosed by our system with severe SIRS at a grade of 0.61 .

Method for data organization and classification via characterization metrics.

The database is organized to enable linking a given profile to known profiles. This is achieved by associating a patient to a peer group of patients having an overall similar profile, where the similar profile is obtained through a randomized search for an appropriate weighting of variables. Given the selection of a patients’ peer group, we build a metric that measures the dissimilarity of the patient from its group. This is achieved through a local iterated statistical analysis in the peer group.

This characteristic metric is used to locate other patients with similar unique profiles, for each of whom we repeat the procedure described above. This leads to a network of patients with similar risk condition. Then, the classification of the patient is inferred from the medical known condition of some of the patients in the linked network.

How do we organize the data and linkages provided in the first place?

Predictors: PWV, cystatin C, creatinine, urea, eGFR, copeptin, BNP or NT-BNP, TnI or TnT, Midregional prohormone adrenomedullin (MR-ADM), urinary albumin excretion, and the aldosterone/renin ratio, homocysteine, transthyretin, glucose, albumin, chol/LDL, LD, Na+, K+,  Cl, HCO3, pH.

Conditions: AMI, CRF, ARF, hypertension, HFpEF, HFcEF, ADHF, obesity, PHT, RVHF, pulmonary edema, PEM

Other variables: sex (M,F), age, BMI. …

Conditioning data: take log transform for large ascending values, OR take deciles of variables, if necessary.  This could apply to NT-proBNP, BNP, TnI, TnT, CK and LD.

Arrange predictor variables in columns and patient-sequence in rows.  This is a bidimentional table.  The problem is to assign diagnoses to each patient-in sequence. There can be more than one diagnosis.

In reality the patient-sequence or identifier is not relevant. Only the condition assignment is.  The condition assignments are made in a column adjacent to the patient, and they fall into rows.
The construct appears to be a 2×2, but it is actually an n-dimensional  matrix.  Each patient position has one or more diagnoses.

Multivariate statistical analysis is used to extend this analysis to two or more predictors.   In this case a multiple linear regression or a linear discriminant function would be used to predict a dependent variable from two or more independent variables.   If there is linear association dependency of the variables is assumed and the test of hypotheses requires that the variances of the predictors are normally distributed.  A method using a log-linear model circumvents the problem of the distributional dependency in a method called ordinal regression.    There is also a relationship of analysis of variance, a method of examining differences between the means of  two or more groups.  Then there is linear discriminant analysis, a method by which we examine the linear separation between groups rather than the linear association between groups.  Finally, the neural network is a nonlinear, nonparametric model for classifying data with several variables into distinct classes. In this case we might imagine a curved line drawn around the groups to divide the classes. The focus of this discussion will be the use of linear regression  and explore other methods for classification purposes (98).

The real issue is how a combination of variables falls into a table with meaningful information.  We are concerned with accurate assignment into uniquely variable groups by information in test relationships. One determines the effectiveness of each variable by its contribution to information gain in the system.  The reference or null set is the class having no information.  Uncertainty in assigning to a classification is only relieved by providing sufficient information.  One determines the effectiveness of each variable by its contribution to information gain in the system.  The possibility for realizing a good model for approximating the effects of factors supported by data used for inference owes much to the discovery of Kullback-Liebler distance or “information” (99), and Akaike (100) found a simple relationship between K-L information and Fisher’s maximized log-likelihood function. A solid foundation in this work was elaborated by Eugene Rypka (101).  Of course, this was made far less complicated by the genetic complement that defines its function, which made more accessible the study of biochemical pathways.  In addition, the genetic relationships in plant genetics were accessible to Ronald Fisher for the application of the linear discriminant function.    In the last 60 years the application of entropy comparable to the entropy of physics, information, noise, and signal processing, has been fully developed by Shannon, Kullback, and others,  and has been integrated with modern statistics, as a result of the seminal work of Akaike, Leo Goodman, Magidson and Vermunt, and unrelated work by Coifman. Dr. Magidson writes about Latent Class Model evolution:

The recent increase in interest in latent class models is due to the development of extended algorithms which allow today’s computers to perform LC analyses on data containing more than just a few variables, and the recent realization that the use of such models can yield powerful improvements over traditional approaches to segmentation, as well as to cluster, factor, regression and other kinds of analysis.

Perhaps the application to medical diagnostics had been slowed by limitations of data capture and computer architecture as well as lack of clarity in definition of what are the most distinguishing features needed for diagnostic clarification.  Bernstein and colleagues (102-104) had a series of studies using Kullback-Liebler Distance  (effective information) for clustering to examine the latent structure of the elements commonly used for diagnosis of myocardial infarction (CK-MB, LD and the isoenzyme-1 of LD),  protein-energy malnutrition (serum albumin, serum transthyretin, condition associated with protein malnutrition (see Jeejeebhoy and subjective global assessment), prolonged period with no oral intake), prediction of respiratory distress syndrome of the newborn (RDS), and prediction of lymph nodal involvement of prostate cancer, among other studies.   The exploration of syndromic classification has made a substantial contribution to the diagnostic literature, but has only been made useful through publication on the web of calculators and nomograms (such as Epocrates and Medcalc) accessible to physicians through an iPhone.  These are not an integral part of the EMR, and the applications require an anticipation of the need for such processing.

Gil David et al. introduced an AUTOMATED processing of the data (104) available to the ordering physician and can anticipate an enormous impact in diagnosis and treatment of perhaps half of the top 20 most common causes of hospital admission that carry a high cost and morbidity.  For example: anemias (iron deficiency, vitamin B12 and folate deficiency, and hemolytic anemia or myelodysplastic syndrome); pneumonia; systemic inflammatory response syndrome (SIRS) with or without bacteremia; multiple organ failure and hemodynamic shock; electrolyte/acid base balance disorders; acute and chronic liver disease; acute and chronic renal disease; diabetes mellitus; protein-energy malnutrition; acute respiratory distress of the newborn; acute coronary syndrome; congestive heart failure; disordered bone mineral metabolism; hemostatic disorders; leukemia and lymphoma; malabsorption syndromes; and cancer(s)[breast, prostate, colorectal, pancreas, stomach, liver, esophagus, thyroid, and parathyroid].

Our database organized to enable linking a given profile to known profiles(102-104). This is achieved by associating a patient to a peer group of patients having an overall similar profile, where the similar profile is obtained through a randomized search for an appropriate weighting of variables. Given the selection of a patients’ peer group, we build a metric that measures the dissimilarity of the patient from its group. This is achieved through a local iterated statistical analysis in the peer group.

We then use this characteristic metric to locate other patients with similar unique profiles, for each of whom we repeat the procedure described above. This leads to a network of patients with similar risk condition. Then, the classification of the patient is inferred from the medical known condition of some of the patients in the linked network. Given a set of points (the database) and a newly arrived sample (point), we characterize the behavior of the newly arrived sample, according to the database. Then, we detect other points in the database that match this unique characterization. This collection of detected points defines the characteristic neighborhood of the newly arrived sample. We use the characteristic neighborhood in order to classify the newly arrived sample. This process of differential diagnosis is repeated for every newly arrived point.   The medical colossus we have today has become a system out of control and beset by the elephant in the room – an uncharted complexity.

 

References

  1. http://www.geronet.ucla.edu/research/researchers/385

 

  1. Chronic Kidney Disease and Hypertension: A Destructive Combination. Buffet L, Ricchetti C.  http://www.medscape.com/viewarticle/766696

 

  1. Frank O. Zur Dynamik des Herzmuskels. J Biol. 1895;32:370-447. Translation from German: Chapman CP, Wasserman EB. On the dynamics of cardiac muscle. Am Heart J. 1959; 58:282-317.

 

  1. Starling EH. Linacre Lecture on the Law of the Heart. London, England: Longmans; 1918.

 

  1. ftp://www.softchalk.com/Step1softchalksyllabus/starlings%20Law%20.pdf

 

  1. https://youtu.be/5SO58NndlPI

 

  1. Lakatta EG. Starling’s Law of the Heart Is Explained by an Intimate Interaction of Muscle Length and Myofilament Calcium Activation. J Am Coll Cardiol 1987; 10:1157-64.

 

  1. Lakatta EG, DiFrancesco D. J Mol Cell Cardiol. 2009 Aug; 47(2):157-70.
    http://dx.doi.org:/10.1016/j.yjmcc.2009.03.022. What keeps us ticking: a funny current, a calcium clock, or both?

 

  1. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the time keeping mechanism of the heart’s pacemaker. Circ Res.2010 Mar 5; 106(4):659-73. http://dx.doi.org:/10.1161/CIRCRESAHA.109.206078.

 

  1. NHLBI, NIH, Health. http://www.nhlbi.nih.gov/health/health-topics/topics/hbp/causes
  1. Clark CE and Powell RJ. The differential blood pressure sign in general practice: prevalence and prognostic value. Family Practice 2002; 19:439–441.
  2. Madhur  MS. Medscape. http://emedicine.medscape.com/article/241381-treatment
  3. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012 Jan 3. 125(1):e2-e220. [Medline].
  4. Institute for Clinical Systems Improvement (ICSI). Hypertension diagnosis and treatment. Bloomington, Minn: Institute for Clinical Systems Improvement (ICSI); 2010.
  5. Whelton PK, Appel LJ, Sacco RL, Anderson CA, Antman EM, Campbell N, et al. Sodium, Blood Pressure, and Cardiovascular Disease: Further Evidence Supporting the American Heart Association Sodium Reduction Recommendations. Circulation. 2012 Nov 2. [Medline].
  6. O’Riordan M. New European Hypertension Guidelines Released: Goal Is Less Than 140 mm Hg for All. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/806367. Accessed: June 24, 2013.
  7. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003 Dec. 42(6):1206-52. [Medline].
  8. [Guideline] James PA, Oparil S, Carter BL, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2013 Dec 18. [Medline][Full Text].
  9. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001 May; 37(5):1236-41.
    http://hyper.ahajournals.org/content/37/5/1236.long  http://dx.doi.org:/10.1161/01.HYP.37.5.1236

 

  1. Shahmirzadi D, Li RX, Konofagou EE. Pulse-Wave Propagation in Straight-Geometry Vessels

for Stiffness Estimation: Theory, Simulations, Phantoms and In Vitro Findings. J Biomechanical Engineering Oct 26, 2012; 134(114502): 1-7. http://dx.doi.org:/10.1115/1.4007747

 

  1. Najjar SS, Scuteri A, Shetty V, …, Lakatta EG. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol.2008 Apr 8; 51(14):1377-83. http://dx.doi.org:/10.1016/j.jacc.2007.10.065

 

  1. Lim HS and Lip GYH. Arterial stiffness: beyond pulse wave velocity and its measurement. Journal of Human Hypertension (2008) 22, 656–658; http://dx.doi.org:/10.1038/jhh.2008.4
  2. Payne RA, Wilkinson IB, Webb DJ. Arterial Stiffness and Hypertension – Emerging Concepts. Hypertension.2010; 55: 9-14.   http://dx.doi.org:/10.1161/HYPERTENSIONAHA.107.090464
  3. http://www.nature.com/jhh/journal/v22/n10/images/jhh200847f1.gif
  4. O’Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension. 1990 Apr; 15(4):339-47. http://www.fac.org.ar/scvc/llave/hbp/arnett/arnetti.htm
  5. Arnett DK1, Tyroler HA, …., Howard G, Heiss G. Hypertension and subclinical carotid artery atherosclerosis in blacks and whites. The Atherosclerosis Risk in Communities Study. ARIC Investigators. Arch Intern Med. 1996 Sep 23; 156(17):1983-9. http://archinte.jamanetwork.com/article.aspx?articleid=622453
  6. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovascular Disease July 2012; 1(4):11 http://cvd.sagepub.com/content/1/4/11.full
  7. Peralta CA, Whooley MA, Ix JH, and Shlipak MG .  Kidney Function and Systolic Blood Pressure New Insights from Cystatin C: Data from the Heart and Soul Study. Am J Hypertens. 2006 Sep; 19(9):939–946.   http://dx.doi.org:/10.1016/j.amjhyper.2006.02.007
  8. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM , Target R, Levy BI.
    Assessment of Arterial Distensibility by Automatic Pulse Wave Velocity Measurement: Validation and Clinical Application Studies. Hypertension. 1995; 26: 485-490. http://dx.doi.org:/10.1161/01.HYP.26.3.485
  9. Ioannidis JPA, Tzoulaki I. Minimal and null predictive effects for the most popular blood biomarkers of cardiovascular disease. Circ Res. 2012; 110:658–662.
  1. Giles T. Biomarkers, Cardiovascular Disease, and Hypertension. J Clin Hypertension 2013; 15(1)   http://dx.doi.org:/10.1111/jch.12014

 

  1. Bielecka-Dabrowa A, Gluba-Brzózka A, Michalska-Kasiczak M, Misztal M, Rysz J and Banach M.   The Multi-Biomarker Approach for Heart Failure in Patients with Hypertension. Int. J. Mol. Sci. 2015; 16: 10715-10733;  http://dx.doi.org:/10.3390/ijms160510715

 

  1. Barbaro N, Moreno H. Inflammatory biomarkers associated with arterial stiffness in resistant hypertension.  Inflamm Cell Signal 2014; 1: e330. http://dx.doi.org:/10.14800/ics.330.

 

  1. Chao J, Schmaier A, Chen LM, Yang Z, Chao L. Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med. 1996 Jun; 127(6):612-20. http://www.ncbi.nlm.nih.gov/pubmed/8648266

 

  1. Chao J, Chao L. Functional Analysis of Human Tissue Kallikrein in Transgenic Mouse Models. Hypertension. 1996; 27: 491-494. http://dx.doi.org://10.1161/01.HYP.27.3.491

 

  1. Chao J, Bledsoe G and Chao L. Kallistatin: A Novel Biomarker for Hypertension, Organ Injury and Cancer. Austin Biomark Diagn. 2015; 2(2): 1019).

 

  1. Touyz RM , Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem, Cell Biol Oct 2004; 122(4):339-352.  http://link.springer.com/article/10.1007/s00418-004-0696-7

 

  1. Nozik-Grayck E1, Stenmark KR. Role of reactive oxygen species in chronic hypoxia-induced pulmonary hypertension and vascular remodeling. Adv Exp Med Biol. 2007; 618:101-12.
    http://www.ncbi.nlm.nih.gov/pubmed/18269191

 

  1. Paravicin TM and Touyz RM. NADPH Oxidases, Reactive Oxygen Species, and Hypertension. Diabetes Care 2008 Feb; 31(Supplement 2): S170-S180. http://dx.doi.org/10.2337/dc08-s247

 

  1. Schiffrin EL. Endothelin: role in hypertension. Biol Res. 1998; 31(3):199-208. Review.

 

  1. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens. 2001 Jun;14(6 Pt 2):83S-89S. Review.

 

  1. Schiffrin EL. Endothelin and endothelin antagonists in hypertension. J Hypertens. 1998 Dec; 16(12 Pt 2):1891-5. Review.

 

  1. Warwick G, Thomas PS and Yates DH. Biomarkers in pulmonary hypertension.
    Eur Respir J 2008; 32: 503–512 http://dx.doi.org:/10.1183/09031936.00160307

 

  1. Zhang S, Yang T, Xu X, Wang M, Zhong L, et al. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: a case control study. BMC Pulm Med. 2015; 15: 50.    http://dx.doi.org:/1186/s12890-015-0045-8

 

  1. Kierszniewska-Stępień D, Pietras T, Ciebiada M, Górski P, and Stępień H. Concentration of angiopoietins 1 and 2 and their receptor Tie-2 in peripheral blood in patients with chronic obstructive pulmonary disease. Postepy Dermatol Alergol. 2015 Dec; 32(6): 443–448. http://dx.doi.org:/5114/pdia.2014.44008

 

  1. Circulating Biomarkers in Pulmonary Arterial Hypertension. Al-Zamani M, Trammell AW,  Safdar Z.  Adv Pulm Hypertension 2015; 14(1):21-27.

 

  1. Safdar et al. Hea rt  Fai lure  JACC 2014; 2(4): 412– 21.

 

 

  1. Camozzi M, Zacchigna S, Rusnati M, Coltrini D, et al. Pentraxin 3 Inhibits Fibroblast Growth Factor 2–Dependent Activation of Smooth Muscle Cells In Vitro and Neointima Formation In Vivo. Arterioscler Thromb Vasc Biol. 2005; 25:1837-1842. http://atvb.ahajournals.org/content/25/9/1837.full.pdf

 

  1. Presta M, Camozzi M, Salvatori G, and Rusnatia M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med. 2007 Jul; 11(4): 723–738.
    http://dx.doi.org:/1111/j.1582-4934.2007.00061.x

 

  1. Tamura Y, Ono T, Kuwana M, Inoue K, Takei M, Yamamoto T, Kawakami T, et al. Human pentraxin 3 (PTX3) as a novel biomarker for the diagnosis of pulmonary arterial hypertension.
    PLoS One. 2012;7(9):e45834. http://dx.doi.org:/10.1371/journal.pone.0045834.

 

  1. Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD, Schroeder C, et al. Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart. 2016 Mar 1; 102(5):390-6. http://dx.doi.org:/10.1136/heartjnl-2015-308365

 

  1. Otto CM. Heart 2016; 102:333–334. Heartbeat: Biomarkers and pulmonary artery hypertension. http://dx.doi.org:/10.1136/heartjnl-2015-309220

 

  1. Sintek MA, Sparrow CT, Mikuls TR, Lindley KJ, Bach RG, et al. Repeat revascularisation outcomes after percutaneous coronary intervention in patients with rheumatoid arthritis. Heart. 2016 Mar 1; 102(5):363-9. http://dx.doi.org:/10.1136/heartjnl-2015-308634.

 

  1. Camici PG, Wijns W, Borgers M, De Silva R, et al. Pathophysiological Mechanisms of Chronic Reversible Left Ventricular Dysfunction due to Coronary Artery Disease (Hibernating Myocardium). Circulation. 1997; 96: 3205-3214. http://dx.doi.org:/10.1161/01.CIR.96.9.3205

 

  1. Rahimtoola SH, Dilsizian V, Kramer CM, Marwick TH, and Jean-Louis J. Vanoverschelde.
    Chronic Ischemic Left Ventricular Dysfunction: From Pathophysiology to Imaging and its Integration into Clinical Practice. JACC Cardiovasc Imaging. 2008 Jul 7; 1(4): 536–555.

http://dx.doi.org:/10.1016/j.jcmg.2008.05.009

 

  1. Peralta CA, Whooley MA, Ix JH, Shlipak MG. Kidney function and systolic blood pressure new insights from cystatin C: data from the Heart and Soul Study. Am J Hypertens. 2006 Sep; 19(9):939-46. http://dx.doi.org:/10.1016/j.amjhyper.2006.02.007

 

  1. Moran A, Katz R, Nicolas L. Smith NL, Fried LF, Sarnak MJ, …, Shlipak, MG. Cystatin C Concentration as a Predictor of Systolic and Diastolic Heart Failure. J Card Fail. 2008 Feb; 14(1): 19–26. http://dx.doi.org:/10.1016/j.cardfail.2007.09.002

 

  1. Tomaschitz A, Maerz W, Pilz S, at al. Aldosterone/Renin Ratio Determines Peripheral and Blood Pressure Values Over a Broad Range. J Am Coll Cardiol 2010-5-11; 55(19):2171-2180.
  2. Inker LA, Schmid CH, Tighiouart H, et al: Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012 Jul; 367(1):20-29.   http://dx.doi.org:/10.1056/NEJMoa1114248
  3. Buehrig CK, Larson TS, Bergert JH, et al: Cystatin C is superior to serum creatinine for the assessment of renal function. J Am Soc Nephrol 2001; 12:194A
  4. Grubb AO: Cystatin C – properties and use as a diagnostic marker. Adv Clin Chem 2000; 35:63-99
  5. Stevens LA, Coresh J, Schmid CH, Feldman H, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.
    Am J Kidney Dis. 2008 Mar; 51(3):395-406. http://dx.doi.org:/10.1053/j.ajkd.2007.11.018
  6. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–254.
  7. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med. 2006; 354:2473–2483.
  8. Grubb A, Nyman U, Bjork J, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the Modification of Diet in Renal Disease Prediction Equation for adults and the Schwartz and the Counahan-Barratt Prediction Equations for children. Clin Chem. 2005; 51:1420–1431.
  9. Weir MR.  Improving the Estimating Equation for GFR — A Clinical Perspective. N Engl J Med 2012; 367:75-76.    http://dx.doi.org:/10.1056/NEJMe1204489
  10. Shlipak MG, Sarnak MJ, Katz R, Fried LF, et al. Cystatin C and the Risk of Death and Cardiovascular Events among Elderly Persons. http://journal.9med.net/qikan/article.php?id=216331
  11. Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurementKidney International 2004; 65:1416–1421;  http://dx.doi.org:/10.1111/j.1523-1755.2004.00517.x
  12. Parag C. Patel, Colby R. Ayers, Sabina A. Murphy, et al. Association of Cystatin C with Left Ventricular Structure and Function (The Dallas Heart Study). Circulation: Heart Failure. 2009; 2: 98-104.  http://dx.doi.org:/10.1161/CIRCHEARTFAILURE.108.807271.
  13. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtraton rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006; 69:399–405. http://dx.doi.org:/10.1038/sj.ki.5000073
  14. Muller B, Morgenthaler N, Stolz D, et al. Circulating levels of copeptin, a novel biomarker, in lower respiratory tract infections. Eur J Clin Invest 2007;37, 145–152.
  15. Stoiser B, Mortl D, Hulsmann M, et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure.  Eur J Clin Invest Nov 2006; 36(11):771–778.
    http://dx.doi.org:/10.1111/j.1365-2362.2006.01724.x
  16. Meijer E, Bakker SJL, Helbesma N, et al. Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort.  Kidney Intl 2010; 77:29–36.
    http://dx.doi.org:/10.1038/ki.2009.397
  17. Nickel NP, Lichtinghagen R, Golpon H, et al. Circulating levels of copeptin predict outcome in patients with pulmonary arterial hypertension. Respir Res. Nov 19, 2013; 14:130. http://dx.doi.org:/10.1186/1465-9921-14-130
  18. Tenderenda-Banasiuk E,  Wasilewska A, Filonowicz R, et al. Serum copeptin levels in adolescents with primary hypertension. Pediatr Nephrol. 2014; 29(3): 423–429.    doi:  10.1007/s00467-013-2683-5
  19. Richards M, Januzzi JL, and Troughton RW. Natriuretic Peptides in Heart Failure with Preserved Ejection Fraction.  Heart Failure Clin 2014; 10:453–470. http://dx.doi.org/10.1016/j.hfc.2014.04.006
  20. Maisel A, Mueller C, Nowak M and Peacock WF, et al. Midregion Prohormone Adrenomedullin and Prognosis in Patients Presenting with Acute Dyspnea Results from the BACH (Biomarkers in Acute Heart Failure) Trial. J Am Coll Cardiol 2011; 58(10):1057–67.  http://dx.doi.org:/10.1016/j.jacc.2011.06.006.
  21. Bernstein LH. Heart-Lung-Kidney: Essential Ties. Leaders in Pharmaceutical Innovation. http://pharmaceuticalinnovations.com
  22. Bernstein LH, Zions MY, Alam ME, et al.  What is the best approximation of reference normal for NT-proBNP? Clinical levels for enhanced assessment of NT-proBNP (CLEAN). J Med Lab and Diag 04/2011; 2:16-21. http://www.academicjournals.org/jmld
  23. Hijazi  Z., Wallentin  L., Siegbahn  A., et al; N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE trial (Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation. J Am Coll Cardiol. 2013; 61:2274-2284
  24. Paget V, Legedz L, Gaudebout N, et al. N-Terminal Pro-Brain Natriuretic Peptide A Powerful Predictor of Mortality in Hypertension. Hypertension. 2011; 57:702-709   http://hyper.ahajournals.org/content/57/4/702.full.pdf]
  25. Kim Han-Naand  Januzzi JL.  Natriuretic Peptide Testing in Heart Failure. Circulation 2011;  123: 2015-2019. http://dx.doi.org:/10.1161/CIRCULATIONAHA.110.979500
  26. Balta S, Demirkol S, Aydogan M, and Celik T. Higher N-Terminal Pro–B-Type Natriuretic Peptide May Be Related to Very Different Conditions.  J Am Coll Cardiol. 2013; 62(17):1634-1635.   http://dx.doi.org:/10.1016/j.jacc.2013.04.093
  27. Bernstein LH1, Zions MY, Haq SA, et al. Effect of renal function loss on NT-proBNP level variations. Clin Biochem. 2009 Jul; 42(10-11): 1091-8. http://dx.doi.org:/10.1016/j.clinbiochem.2009.02.027
  28. Afaq MA, Shoraki A, Oleg I, Bernstein L, and Stuart W. Zarich.  Validity of Amino Terminal pro-Brain Natiuretic Peptide in a Medically Complex Elderly Population. J Clin Med Res. 2011 Aug; 3(4): 156–163.   doi:  10.4021/jocmr606w
  29. Mark AL, Correia M, MorganDA, et al. New Concepts From the Emerging Biology of Obesity. Hypertension. 1999; 33[part II]:537-541.
  30. Himmelfarb J, Stenvinkel P, Ikizler TA and Hakim RM. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney International (2002) 62, 1524–1538; http://dx.doi.org:/10.1046/j.1523-1755.2002.00600.x  http://www.nature.com/ki/journal/v62/n5/full/4493262a.html
  31. The blind men and the elephant. Poem by John Godfrey Saxe (Cartoon originally copyrighted by the authors; G. Renee Guzlas, artist). http://www.nature.com/ki/journal/v62/n5/thumbs/4493262f1bth.gif
  32. Fetter RB. Diagnosis Related Groups: Understanding Hospital Performance. Interfaces Jan. – Feb., 1991; 21(1), Franz Edelman Award Papers: 6-26
  33. Bernstein LH. Inadequacy of EHRs. Pharmaceutical Intelligence. https://pharmaceuticalintelligence.com/2015/11/05/inadequacy-of-ehrs/
  34. Celi LA,  Marshall JD, Lai Y, Stone DJ. Disrupting Electronic Health Records Systems: The Next Generation.  JMIR  Med Inform 2015 (23.10.15);  3(4) :e34
    http://dx.doi.org:/10.2196/medinform.4192
  35. Realtime Clinical Expert Support. Pharmaceutical Intelligence.  https://pharmaceuticalintelligence.com/2015/05/10/realtime-clinical-expert-support/
  36. McGowan JJ and Winstead-Fry P. Problem Knowledge Couplers: reengineering evidence-based medicine through interdisciplinary development, decision support, and research. Bull Med Libr Assoc. 1999 October;  87(4):462–470.)
  37. Rypka EW and Babb R. Automatic construction and use of an identification scheme. In MEDICAL RESEARCH ENGINEERING Apr 19709; (2):9-19. https://www.researchgate.net/publication/17720773_Automatic_construction_and_use_of_an_identification_scheme
  38. Rudolph, R. A., Bernstein, L. H. and Babb, J. Information induction for predicting acute myocardial infarction. Clinical Chemistry 1988; 34: 2031-2038.
  39. Bernstein LH, Qamar A, McPherson C, Zarich S. Evaluating a new graphical ordinal logit method (GOLDminer) in the diagnosis of myocardial infarction utilizing clinical features and laboratory data. Yale J Biol Med 1999; 72:259-268.
  40. Bernstein LH, Good IJ, Holtzman, Deaton ML, Babb J. Diagnosis of acute myocardial infarction from two measurements of creatine kinase isoenzyme MB with use of nonparametric probability estimation. Clin Chem 1989; 35(3):444-447.
  41. Bernstein LH. Regression: A richly textured method for comparison and classification of predictor variables. https://pharmaceuticalintelligence.com/2012/08/14/regression-a-richly-textured-method-for-comparison-and-classification-of-predictor-variables/
  42. Posada D and Buckley TR. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Syst. Biol. 200; 53(5):793–808. http://dx.doi.org:/10.1080/10635150490522304
  1. Kullback S. and Leibler R. On Information and Sufficiency. Ann Math Statistics. Mar 1951; 22(1):79-86. http://www.csee.wvu.edu/~xinl/library/papers/math/statistics/Kullback_Leibler_1951.pdf
  2. Bernstein LH, David G, Rucinski J, Coifman RR. Converting Hematology Based Data Into an Inferential Interpretation. In INTECH Open Access Publisher, 2012. https://books.google.com/books/about/Converting_Hematology_Based_Data_Into_an.html
  3. Bernstein LH, David G, Coifman RR. Generating Evidence Based Interpretation of Hematology Screens via Anomaly Characterization. Open Clin Chem J 2011; 4:10-16
  4. Bernstein LH. Automated Inferential Diagnosis of SIRS, sepsis, septic shock. Medical Informatics View. https://pharmaceuticalintelligence.com/2012/08/01/automated-inferential-diagnosis-of-sirs-sepsis-septic-shock/
  5. Bernstein LH, David G, Coifman RR. The Automated Nutritional Assessment. Nutrition  2013; 29: 113-121

 

Other related articles published in this Open Access Online Scientific Journal include the following: 

Biomarkers and risk factors for cardiovascular events, endothelial dysfunction, and thromboembolic complications

Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease: Views by Larry H Bernstein, MD, FCAP

Summary – Volume 4, Part 2: Translational Medicine in Cardiovascular Diseases

Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)

Assessing Cardiovascular Disease with Biomarkers

Endothelial Function and Cardiovascular Disease

Adenosine Receptor Agonist Increases Plasma Homocysteine

Inadequacy of EHRs

Innervation of Heart and Heart Rate

Biomarker Guided Therapy

Pharmacogenomics

The Union of Biomarkers and Drug Development

Natriuretic Peptides in Evaluating Dyspnea and Congestive Heart Failure

Epilogue: Volume 4 – Translational, Post-Translational and Regenerative Medicine in Cardiology

Atherosclerosis Independence: Genetic Polymorphisms of Ion Channels Role in the Pathogenesis of Coronary Microvascular Dysfunction and Myocardial Ischemia (Coronary Artery Disease (CAD))

Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker

Biomarkers: Diagnosis and Management, Present and Future

Genetic Analysis of Atrial Fibrillation

Landscape of Cardiac Biomarkers for Improved Clinical Utilization

Fractional Flow Reserve (FFR) & Instantaneous wave-free ratio (iFR): An Evaluation of Catheterization Lab Tools for Ischemic Assessment

Dealing with the Use of the High Sensitivity Troponin (hs cTn) Assays

Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

Amyloidosis with Cardiomyopathy

Accurate Identification and Treatment of Emergent Cardiac Events

The potential contribution of informatics to healthcare is more than currently estimated

Realtime Clinical Expert Support

Metabolomics is about Metabolic Systems Integration

Automated Inferential Diagnosis of SIRS, sepsis, septic shock

Read Full Post »


Heart-Lung-Kidney: Essential Ties

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

The basic functioning of the heart, and the kidney have been covered in depth elsewhere, and pulmonary function less, except in this series.  The relationship between them on the basis of endocrine, signaling, and metabolic balance is the focus in this piece.

Other elated articles can be found in http://pharmaceuticalintelligence.com:

The Amazing Structure and Adaptive Functioning of the Kidneys: Nitric Oxide – Part I
https://pharmaceuticalintelligence.com/2012/11/26/the-amazing-structure-and-adaptive-functioning-of-the-kidneys/

Nitric Oxide and iNOS have Key Roles in Kidney Diseases – Part II
https://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-and-inos-have-key-roles-in-kidney-diseases/

Stroke and Bleeding in Atrial Fibrillation with Chronic Kidney Disease
https://pharmaceuticalintelligence.com/2012/08/16/stroke-and-bleeding-in-atrial-fibrillation-with-chronic-kidney-disease/

Risks of Hypoglycemia in Diabetics with Chronic Kidney Disease (CKD)
https://pharmaceuticalintelligence.com/2012/08/01/risks-of-hypoglycemia-in-diabetics-with-ckd/

Acute Lung Injury
https://pharmaceuticalintelligence.com/2015/02/26/acute-lung-injury/

Neonatal Pathophysiology
https://pharmaceuticalintelligence.com/2015/02/22/neonatal-pathophysiology/

Altitude Adaptation
https://pharmaceuticalintelligence.com/2015/02/24/altitude-adaptation/

Action of Hormones on the Circulation
https://pharmaceuticalintelligence.com/2015/02/17/action-of-hormones-on-the-circulation/

Innervation of Heart and Heart Rate
https://pharmaceuticalintelligence.com/2015/02/15/innervation-of-heart-and-heart-rate/

Neural Activity Regulating Endocrine Response
https://pharmaceuticalintelligence.com/2015/02/13/neural-activity-regulating-endocrine-response/

Adrenal Cortex
https://pharmaceuticalintelligence.com/2015/02/07/adrenal-cortex/

Thyroid Function and Disorders
https://pharmaceuticalintelligence.com/2015/02/05/thyroid-function-and-disorders/

Highlights in the History of Physiology
https://pharmaceuticalintelligence.com/2014/12/28/highlights-in-the-history-of-physiology/

The Evolution of Clinical Chemistry in the 20th Century
https://pharmaceuticalintelligence.com/2014/12/13/the-evolution-of-clinical-chemistry-in-the-20th-century/

Complex Models of Signaling: Therapeutic Implications
https://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

Cholesterol and Regulation of Liver Synthetic Pathways
https://pharmaceuticalintelligence.com/2014/10/25/cholesterol-and-regulation-of-liver-synthetic-pathways/

A Brief Curation of Proteomics, Metabolomics, and Metabolism
https://pharmaceuticalintelligence.com/2014/10/03/a-brief-curation-of-proteomics-metabolomics-and-metabolism/

Natriuretic Peptides in Evaluating Dyspnea and Congestive Heart Failure
https://pharmaceuticalintelligence.com/2014/09/08/natriuretic-peptides-in-evaluating-dyspnea-and-congestive-heart-failure/

Omega-3 fatty acids, depleting the source, and protein insufficiency in renal disease
https://pharmaceuticalintelligence.com/2014/07/06/omega-3-fatty-acids-depleting-the-source-and-protein-insufficiency-in-renal-disease/

Summary – Volume 4, Part 2: Translational Medicine in Cardiovascular Diseases
https://pharmaceuticalintelligence.com/2014/05/10/summary-part-2-volume-4-translational-medicine-in-cardiovascular-diseases/

More on the Performance of High Sensitivity Troponin T and with Amino Terminal Pro BNP in Diabetes
https://pharmaceuticalintelligence.com/2014/01/20/more-on-the-performance-of-high-sensitivity-troponin-t-and-with-amino-terminal-pro-bnp-in-diabetes/

Diagnostic Value of Cardiac Biomarkers
https://pharmaceuticalintelligence.com/2014/01/04/diagnostic-value-of-cardiac-biomarkers/

Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker
https://pharmaceuticalintelligence.com/2013/12/10/epo-as-therapeutics-for-anemia-in-chf/

The Young Surgeon and The Retired Pathologist: On Science, Medicine and HealthCare Policy – Best writers Among the WRITERS
https://pharmaceuticalintelligence.com/2013/12/10/the-young-surgeon-and-the-retired-pathologist-on-science-medicine-and-healthcare-policy-best-writers-among-the-writers/

Renal Function Biomarker, β-trace protein (BTP) as a Novel Biomarker for Cardiac Risk Diagnosis in Patients with Atrial Fibrillation
https://pharmaceuticalintelligence.com/2013/11/13/renal-function-biomarker-%CE%B2-trace-protein-btp-as-a-novel-biomarker-for-cardiac-risk-diagnosis-in-patients-with-atrial-fibrilation/

Leptin signaling in mediating the cardiac hypertrophy associated with obesity
https://pharmaceuticalintelligence.com/2013/11/03/leptin-signaling-in-mediating-the-cardiac-hypertrophy-associated-with-obesity/

The Role of Tight Junction Proteins in Water and Electrolyte Transport
https://pharmaceuticalintelligence.com/2013/10/07/the-role-of-tight-junction-proteins-in-water-and-electrolyte-transport/

Selective Ion Conduction
https://pharmaceuticalintelligence.com/2013/10/07/selective-ion-conduction/

Translational Research on the Mechanism of Water and Electrolyte Movements into the Cell
https://pharmaceuticalintelligence.com/2013/10/07/translational-research-on-the-mechanism-of-water-and-electrolyte-movements-into-the-cell/

Landscape of Cardiac Biomarkers for Improved Clinical Utilization
https://pharmaceuticalintelligence.com/2013/09/22/landscape-of-cardiac-biomarkers-for-improved-clinical-utilization/

Calcium-Channel Blocker, Calcium as Neurotransmitter Sensor and Calcium Release-related Contractile Dysfunction (Ryanopathy)
https://pharmaceuticalintelligence.com/2013/09/16/calcium-channel-blocker-calcium-as-neurotransmitter-sensor-and-calcium-release-related-contractile-dysfunction-ryanopathy/

Disruption of Calcium Homeostasis: Cardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism
https://pharmaceuticalintelligence.com/2013/09/12/disruption-of-calcium-homeostasis-cardiomyocytes-and-vascular-smooth-muscle-cells-the-cardiac-and-cardiovascular-calcium-signaling-mechanism/

Renal Distal Tubular Ca2+ Exchange Mechanism in Health and Disease
https://pharmaceuticalintelligence.com/2013/09/02/renal-distal-tubular-ca2-exchange-mechanism-in-health-and-disease/

Cardiac Contractility & Myocardium Performance: Therapeutic Implications for Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses
https://pharmaceuticalintelligence.com/2013/08/28/cardiac-contractility-myocardium-performance-ventricular-arrhythmias-and-non-ischemic-heart-failure-therapeutic-implications-for-cardiomyocyte-ryanopathy-calcium-release-related-contractile/

Advanced Topics in Sepsis and the Cardiovascular System at its End Stage
https://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-sepsis-and-the-cardiovascular-system-at-its-end-stage/

The Cardio-Renal Syndrome (CRS) in Heart Failure (HF)
https://pharmaceuticalintelligence.com/2013/06/30/the-cardiorenal-syndrome-in-heart-failure/

More…

Sodium homeostasis

Icariin attenuates angiotensin IIinduced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen speciesdependent JNK and p38 pathways

H Zhou, Y Yuan, Y Liu, Wei Deng, Jing Zong, Zhou‑Yan Bian, Jia Dai and Qi‑Zhu Tang
Exper and Therapeutic Med 7: 1116-1122, 2014
http://dx.doi.org:/10.3892/etm.2014.1598

Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)‑induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart‑derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II‑induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B‑type natriuretic peptide, in a concentration‑dependent manner. The cell surface area of Ang II‑treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II‑induced cell apoptosis and protein expression levels of Bax and cleaved‑caspase 3, while the expression of Bcl‑2 was increased by icariin. In addition, 2′,7’‑dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c‑Jun N‑terminal kinase (JNK) and p38 in Ang II‑treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II‑induced hypertrophy and apoptosis by inhibiting the ROS‑dependent JNK and p38 pathways.

Short-term add-on therapy with angiotensin receptor blocker for end-stage inotrope-dependent heart failure patients: B-type natriuretic peptide reduction in a randomized clinical trial

Marcelo E. Ochiai, ECO Brancalhao, RSN Puig, KRN Vieira, et al.
Clinics. 2014; 69(5):308-313
http://dx.doi.org:/10.6061/clinics/2014(05)02

OBJECTIVE: We aimed to evaluate angiotensin receptor blocker add-on therapy in patients with low cardiac output during decompensated heart failure. METHODS: We selected patients with decompensated heart failure, low cardiac output, dobutamine dependence, and an ejection fraction ,0.45 who were receiving an angiotensin-converting enzyme inhibitor. The patients were randomized to losartan or placebo and underwent invasive hemodynamic and B-type natriuretic peptide measurements at baseline and on the seventh day after intervention. ClinicalTrials.gov: NCT01857999. RESULTS: We studied 10 patients in the losartan group and 11 patients in the placebo group. The patient characteristics were as follows: age 52.7 years, ejection fraction 21.3%, dobutamine infusion 8.5 mcg/kg.min, indexed systemic vascular resistance 1918.0 dynes.sec/cm5.m2, cardiac index 2.8 L/min.m2, and B-type natriuretic peptide 1,403 pg/mL. After 7 days of intervention, there was a 37.4% reduction in the B-type natriuretic peptide levels in the losartan group compared with an 11.9% increase in the placebo group (mean difference, – 49.1%; 95% confidence interval: -88.1 to -9.8%, p = 0.018). No significant difference was observed in the hemodynamic measurements. CONCLUSION: Short-term add-on therapy with losartan reduced B-type natriuretic peptide levels in patients hospitalized for decompensated severe heart failure and low cardiac output with inotrope dependence.

Development of a Novel Heart Failure Risk Tool: The Barcelona Bio-Heart Failure Risk Calculator (BCN Bio-HF Calculator)

Josep Lupon, Marta de Antonio, Joan Vila, Judith Penafiel, et al.
PLoS ONE 9(1): e85466. http://dx.doi.org:/10.1371/journal.pone.0085466

Background: A combination of clinical and routine laboratory data with biomarkers reflecting different pathophysiological pathways may help to refine risk stratification in heart failure (HF). A novel calculator (BCN Bio-HF calculator) incorporating N-terminal pro B-type natriuretic peptide (NT-proBNP, a marker of myocardial stretch), high-sensitivity cardiac troponin T (hs-cTnT, a marker of myocyte injury), and high-sensitivity soluble ST2 (ST2), (reflective of myocardial fibrosis and remodeling) was developed. Methods: Model performance was evaluated using discrimination, calibration, and reclassi-fication tools for 1-, 2-, and 3-year mortality. Ten-fold cross-validation with 1000 bootstrapping was used. Results: The BCN Bio-HF calculator was derived from 864 consecutive outpatients (72% men) with mean age 68.2612 years (73%/27% New York Heart Association (NYHA) class I-II/III-IV, LVEF 36%, ischemic etiology 52.2%) and followed for a median of 3.4 years (305 deaths). After an initial evaluation of 23 variables, eight independent models were developed. The variables included in these models were age, sex, NYHA functional class, left ventricular ejection fraction, serum sodium, estimated glomerular filtration rate, hemoglobin, loop diuretic dose, β-blocker, Angiotensin converting enzyme inhibitor/Angiotensin-2 receptor blocker and statin treatments, and hs-cTnT, ST2, and NT-proBNP levels. The calculator may run with the availability of none, one, two, or the three biomarkers. The calculated risk of death was significantly changed by additive biomarker data. The average C-statistic in cross-validation analysis was 0.79. Conclusions: A new HF risk-calculator that incorporates available biomarkers reflecting different pathophysiological pathways better allowed individual prediction of death at 1, 2, and 3 years.

TNF and angiotensin type 1 receptors interact in the brain control of blood pressure in heart failure

Tymoteusz Zera, Marcin Ufnal, Ewa Szczepanska-Sadowska
Cytokine 71 (2015) 272–277
http://dx.doi.org/10.1016/j.cyto.2014.10.019

Accumulating evidence suggests that the brain renin-angiotensin system and proinflammatory cytokines, such as TNF-α, play a key role in the neuro-hormonal activation in chronic heart failure (HF). In this study we tested the involvement of TNF-α and angiotensin type 1 receptors (AT1Rs) in the central control of the cardiovascular system in HF rats. Methods: we carried out the study on male Sprague–Dawley rats subjected to the left coronary artery ligation (HF rats) or to sham surgery (sham-operated rats). The rats were pretreated for four weeks with intracerebroventricular (ICV) infusion of either saline (0.25 µl/h) or TNF-α inhibitor etanercept (0.25 µg/0.25 µl/h). At the end of the pretreatment period, we measured mean arterial blood pressure (MABP) and heart rate (HR) at baseline and during 60 min of ICV administration of either saline (5 µl/h) or AT1Rs antagonist losartan (10 µg/5 µl/h). After the experiments, we measured the left ventricle end-diastolic pressure (LVEDP) and the size of myocardial scar. Results: MABP and HR of sham-operated and HF rats were not affected by pretreatments with etanercept or saline alone. In sham-operated rats the ICV infusion of losartan did not affect MABP either in saline or in etanercept pretreated rats. In contrast, in HF rats the ICV infusion of losartan significantly decreased MABP in rats pretreated with saline, but not in those pretreated with etanercept. LVEDP was significantly elevated in HF rats but not in sham-operated ones. Surface of the infarct scar exceeded 30% of the left ventricle in HF groups, whereas sham-operated rats did not manifest evidence of cardiac scarring. Conclusions: our study provides evidence that in rats with post-infarction heart failure the regulation of blood pressure by AT1Rs depends on centrally acting endogenous TNF-α.

Statins in heart failure—With preserved and reduced ejection fraction. An update

Dimitris Tousoulis , E Oikonomou, G Siasos, C Stefanadis
Pharmacology & Therapeutics 141 (2014) 79–91
http://dx.doi.org/10.1016/j.pharmthera.2013.09.001

HMG-CoA reductase inhibitors or statins beyond their lipid lowering properties and mevalonate inhibition exert also their actions through a multiplicity of mechanisms. In heart failure (HF) the inhibition of isoprenoid intermediates and small GTPases, which control cellular function such as cell shape, secretion and proliferation, is of clinical significance. Statins share also the peroxisome proliferator-activated receptor pathway and inactivate extracellular-signal-regulated kinase phosphorylation suppressing inflammatory cascade. By down-regulating Rho/Rho kinase signaling pathways, statins increase the stability of eNOS mRNA and induce activation of eNOS through phosphatidylinositol 3-kinase/Akt/eNOS pathway restoring endothelial function. Statins change also myocardial action potential plateau by modulation of Kv1.5 and Kv4.3 channel activity and inhibit sympathetic nerve activity suppressing arrhythmogenesis. Less documented evidence proposes also that statins have antihypertrophic effects – through p21ras/mitogen activated protein kinase pathway – which modulate synthesis of matrix metalloproteinases and procollagen 1 expression affecting interstitial fibrosis and diastolic dysfunction. Clinical studies have partly confirmed the experimental findings and despite current guidelines new evidence supports the notion that statins can be beneficial in some cases of HF. In subjects with diastolic HF, moderately impaired systolic function, low B-type natriuretic peptide levels, exacerbated inflammatory response and mild interstitial fibrosis evidence supports that statins can favorably affect the outcome. Under the lights of this evidence in this review article we discuss the current knowledge on the mechanisms of statins’ actions and we link current experimental and clinical data to further understand the possible impact of statins’ treatment on HF syndrome.

Since 1980 when the first 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor or statin was introduced in clinical practice, statins have been extensively used in the treatment of patients with dyslipidemia as well as of those with coronary artery disease (CAD). Importantly, large scale trials and metanalysis have documented their significant benefits in terms of primary and secondary CAD prevention which out-weigh any potential side effects. Statins’ benefits extend, according to recent studies, even in patients with normal or low cholesterol levels and beyond their lipid lowering effects, indicating their multiple protective mechanisms.

Heart failure (HF) is a complex syndrome with different definitions and its diagnosis is based on a combination of symptoms, clinical signs and imaging or laboratory data. different categorization schemes have been used dividing HF in acute or chronic, in systolic or diastolic, and in ischemic or dilated simply reflecting the complexity of the syndrome and the multiplicity of the pathophysiologic mechanisms implicated in the disease development and progression. In addition to the diverse pathophysiology of HF the syndrome is also characterized by high morbidity and mortality. Recent treatment advantages such as angiotensin converting enzyme inhibitors and beta blockers have not yet proven their clinical benefit in subjects with diastolic HF.

As the most common cause of HF is CAD and statins have proven their benefits in a wide spectrum of diseases directly or indirectly associated with atherosclerotic cardiovascular disease, HMG-CoA reductase inhibitors have been tested in subjects with HF. Interestingly, non-randomized, observational and retrospective early studies in subjects with HF of ischemic and non-ischemic etiology have suggested that statins are associated with improved outcomes. Thereafter, two large scale randomized control trials failed to demonstrate any benefits in mortality of HF patients treated with rosuvastatin and subsequently current HF guidelines do not include recommendations for statin use except from when they are indicated for comorbidities, such as established CAD.

Statins inhibit HMG-CoA reductase. This enzyme catalyzes the conversion of 3-hydroxy-3-methylglutaryl-coenzyme A to L-mevalonic acid, which is the rate-limiting step in the cholesterol synthesis pathway. Inhibition of the mevalonate pathway and of cholesterol synthesis triggers an increase in LDL receptor activity by stimulating production of mRNA for LDL receptor in liver. The induction of LDL receptors is responsible for the observed increase in plasma clearance of LDL cholesterol. CAD is the cause of approximately two-thirds of cases of systolic HF. The beneficial effects of statins-induced LDL reduction are well established in patients with atherosclerosis and CAD. Nevertheless, the results from statin treatment, even in ischemic HF cases, are not straightforward and several mechanisms have been proposed for this paradox.

multiplicity of HMG CoA reductase inhibitors mechanisms and their effects

multiplicity of HMG CoA reductase inhibitors mechanisms and their effects

The figure demonstrates the multiplicity of HMG CoA reductase inhibitors mechanisms and their effects. ↓: decrease; ↑ increase; FPP: farnesyl pyrophosphate: GGPP: geranylgeranyl pyrophosphate; Ras, Rac, Rho; small GTPases; eNOS: endothelial nitric oxide synthase; ATP: adenosine triphosphate; PI-3 kinase: phosphatidylinositol 3-kinase; AMPK: AMP activated protein kinase; GTP: Guanosine triphosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; ERK: extracellular-signal-regulated kinase; Shadow box represents adverse mechanism and actions of HGM CoA reductase inhibitors.

The anti-inflammatory effects of HMG CoA reductase inhibitors in atherosclerosis have been early recognized. Statins also have a potent anti-inflammatory effect in HF models. Importantly, there is a link between inflammation and HF pathogenesis and is now widely accepted that pro-inflammatory cytokines cause systolic dysfunction, myocardial hypertrophy, activate a fetal gene program in cardiac myocytes, disturb extracellular matrix structure, cause cardiac cachexia etc. In addition, data from the Vesnarinone trial (VEST) in 384 patients with HF demonstrate a decline in survival with increasing TNFα levels confirming the notion that circulating cytokines are associated with adverse prognosis of HF patients.

The proposed, by the aforementioned mechanisms, anti-inflammatory effects of statins have been confirmed experimentally. Indeed, in a rat HF model with preserved ejection fraction (EF), treatment with rosuvastatin resulted in a significant additional improvement in HF and cardiac remodeling, partly due to decreased myocardial inflammation. In rats after acute myocardial infarction simvastatin treatment for 4 weeks beneficially modified the levels of TNFα, interleukin (IL)-1, 6 and 10 in the infarct regions. Importantly, in 446 patients with systolic HF, followed up for a period of 24 months, statins’ treatment was associated with a decrease in serum levels of C-reactive protein (CRP), IL-6 and tumor necrosis factor-alpha receptor II. Recently, in a randomized study of 22 subjects with ischemic HF short term atorvastatin treatment achieved a significant decrease in serum levels of intracellular adhesion molecule-1.

Taken together we can conclude that HMG CoA reductase inhibitors can modify inflammatory status by modulation of PRAP and ERK pathways by down regulating Toll like receptor 4 mRNA expressions and LDL oxidation and by reducing soluble lipoprotein-associated phospholipase A2 mass and activity. Importantly, the theoretical anti-inflammatory properties were confirmed in experimental and clinical HF models.

Endothelial dysfunction contributes to the pathogenesis of HF and can enhance adverse left ventricle (LV) remodeling and increase afterload in subjects with HF. Interestingly, statins have been constantly associated with improved endothelial function in subjects with a variety of cardiovascular diseases. Endothelium derived nitric oxide (NO) is an important determinant of endothelial function and HMG-CoA reductase inhibitors can up regulate endothelial NO synthase (eNOS) by different mechanisms.

Statins induce down regulation of Rho/Rho kinase signaling pathways, increasing the stability of eNOS mRNA and its expression . In addition, in human endothelial cells the Rho-kinase inhibitor, hydroxyfasudil leads to the activation of the phosphatidylinositol 3-kinase/Akt/eNOS pathway. Statins also induce activation of eNOS through the rapid activation of the serine–threonine protein kinase Akt. The beneficial effects of Akt activation are not limited to eNOS phoshorylation but extend to the promotion of new blood vessels growth. HMG CoA reductase inhibitors can further affect endothelial function through their effect on caveolin-1. Caveolin-1 binds to eNOS inhibiting NO production. Incubation of endothelial cells with atorvastatin promotes NO production by decreasing caveolin-1 expression, regardless of the level of extracellular LDL-cholesterol. These effects were reversed with mevalonate highlighting the therapeutic potential of inhibiting cholesterol synthesis in peripheral cells to correct NO-dependent endothelial dysfunction associated with hypercholesterolemia and possibly other diseases.

Although the experimentally confirmed benefits of HMG CoA reductase inhibitors in diastolic dysfunction and left ventricle stiffness, few data exist concerning the underlying mechanisms. As diastolic dysfunction precedes myocardial hypertrophy the anti-hypertrophic pathways mentioned in the previous section (inhibition of RhoA/Ras/ERK, PRAPγ pathways, inhibition of a large G(h) protein-coupled pathway etc.), may also contribute to the restoration of diastolic function. Moreover, in angiotensin II induced diastolic dysfunction in hypertensive mice, pravastatin not only improved diastolic function but also down-regulated collagen I, transforming growth factor-beta, matrix metalloproteinases (MMPs)-2 and -3, atrial natriuretic factor, IL-6 TNFα, Rho kinase 1 gene expression, and upregulated eNOS gene expression. These findings suggest the potential involvement of Rho kinase 1 in the beneficial effects of pravastatin in diastolic HF. Taken together data suggest that HMG CoA reductase inhibitors might be beneficial in patients with diastolic HF, a hypothesis that remains to be confirmed by clinical studies. Nevertheless, mechanistic studies have not fully explored the pathways affecting diastolic function and most data until now are indirect. Therefore efforts should be focus on the underline mechanisms affecting collagen synthesis, MMPs activity extracellular matrix synthesis and overall diastolic function in HF subjects under statin treatment.

Statins through inhibition of small GTPases can modulate MMPs activity in several cell types such as endothelial cells and human macrophages. In rat and human cardiac fibroblasts, stimulated with either transforming growth factor β1 or angiotensin II, atorvastatin reduced collagen synthesis and α1-procollagen mRNA as well as gene expression of the profibrotic peptide connective tissue growth factor 4. This antifibrotic action may contribute to the anti-remodelling effect of statins. In mouse cardiac fibroblasts treated with angiotensin II, the combination of pravastatin and pioglitazone blocked angiotensin II p38 MAPK and p44/42 MAPK activation and procollagen expression-1.

Several studies have documented the impact of statin treatment on arrhythmia potential. The arrhythmic protective effects of statins can be attributed not only to anti-inflammatory properties but also to changes in myocardial action potential plateau by modulation of Kv1.5 and Kv4.3 channel activity. Atorvastatin and simvastatin block Kv1.5 and Kv4.3 channels shifting the inactivation curve to more negative potentials following a complex mechanism that does not imply the binding of the drug to the channel pore. Moreover, in hypertrophied neonatal rat ventricular myocytes simvastatin alleviated the reduction of Kv4.3 expression, I(to) currents in subepicardial myocardium from the hypertrophied left ventricle. Furthermore, pravastatin in an animal model attenuated reperfusion induced lethal ventricular arrhythmias by inhibition of calcium overload.

Taking together experimental and cellular evidence supporting an effect of statin treatment in myocardial contractility is spare and for the time being we cannot definitively conclude on the clinical impact of HMG CoA reductase inhibitors in myocardial systolic performance.

Half of the cases of HF are attributed to diastolic dysfunction and the prognosis of HF with preserved EF is as ominous as the prognosis of HF with systolic dysfunction. Unfortunately, no treatment has yet been shown, convincingly, to reduce morbidity and mortality in patients with HF and preserved EF, while this group of patients is usually excluded from large prospective randomized trials and accordingly few data exist for the role of statins in this heterogeneous population.

As there is substantially lack of evidence concerning the effects of HMG CoA reductase inhibitors in subjects with HF and preserved EF the first indirect hypothesis was extrapolated from observational prospective studies in subjects with ischemic heart disease and no evidence of congestive HF. Indeed, in a cohort of 430 consecutive patients with ischemic heart disease and a mean EF of 57% Okura et al. observed that subjects under HMG CoA reductase inhibitors treatment had decreased E/E′ ratio—corresponding to a better diastolic function—and a significantly higher survival rate (Okura et al., 2007). According to the authors those beneficially effects can be attributed to improved endothelial function and vasodilatory response to reactive hyperemia, attenuation of myocardial hypertrophy, and interstitial fibrosis.

Despite the positive results from mechanistic and experimental studies clinical studies have failed to confirm a definitive role of HMG CoA reductase inhibitors in HF. Nevertheless, by extrapolating experimental and mechanistic data in clinical settings we further understand how HMG-CoA reductase inhibitors can beneficially affect subgroups of HF subjects such as those with preserved EF, low B-type natriuretic peptide levels, exacerbated inflammatory response and limited interstitial fibrosis. Nevertheless, as a definitive mechanism is lacking, there is uncertainty about the decisive mode of action and further mechanistic studies are needed to reveal how HMG-CoA reductase inhibitors act in HF substrate.

Pro- A-Type Natriuretic Peptide, Proadrenomedullin, and N-Terminal Pro-B-Type Natriuretic Peptide Used in a Multimarker Strategy in Primary Health Care in Risk Assessment of Patients with Symptoms of Heart Failure

Urban Alehagen, Ulf Dahlstr€Om,  Jens F. Rehfeld, And Jens P. Goetze
J Cardiac Fail 2013; 19(1):31-39. http://dx.doi.org/10.1016/j.cardfail.2012.11.002

Use of new biomarkers in the handling of heart failure patients has been advocated in the literature, but most often in hospital-based populations. Therefore, we wanted to evaluate whether plasma measurement of N-terminal pro-B-type natriuretic peptide (NT-proBNP), midregional pro-A-type  atriuretic peptide (MR-proANP), and midregional proadrenomedullin (MR-proADM), individually or combined, gives prognostic information regarding cardiovascular and all-cause mortality that could motivate use in elderly patients presenting with symptoms suggestive of heart failure in primary health care. Methods and Results: The study included 470 elderly patients (mean age 73 years) with symptoms of heart failure in primary health care. All participants underwent clinical examination, 2-dimenstional echocardiography, and plasma measurement of the 3 propeptides and were followed for 13 years. All mortality was registered during the follow-up period. The 4th quartiles of the biomarkers were applied as cutoff values. NT-proBNP exhibited the strongest prognostic information with 4-fold increased risk for cardiovascular mortality within 5 years. For all-cause mortality MR-proADM exhibited almost 2-fold and NTproBNP 3-fold increased risk within 5 years. In the 5e13-year perspective, NT-proBNP and MR-proANP showed significant and independent cardiovascular prognostic information. NT-proBNP and MR-proADM showed significant prognostic information regarding all-cause mortality during the same time. In those with ejection fraction (EF) !40%, MR-proADM exhibited almost 5-fold increased risk of cardiovascular mortality with 5 years, whereas in those with EF O50% NT-proBNP exhibited 3-fold increased risk if analyzed as the only biomarker in the model. If instead the biomarkers were all below the cutoff value, the patients had a highly reduced mortality risk, which also could influence the handling of patients. Conclusions: The 3 biomarkers could be integrated in a multimarker strategy for use in primary health care.

Novel Biomarkers in Heart Failure with Preserved Ejection Fraction

Kevin S. Shah, Alan S. Maisel
Heart Failure Clin 10 (2014) 471–479
http://dx.doi.org/10.1016/j.hfc.2014.04.005

KEY POINTS

  • Heart failure with preserved ejection fraction (HFPEF) is a common subtype of congestive heart failure for which therapies to improve morbidity and mortality have been limited thus far.
  • Numerous biomarkers have emerged over the past decade demonstrating prognostic significance in HFPEF, including natriuretic peptides, galectin-3, soluble ST2, and high-sensitivity troponins.
  • These markers reflect the multiple mechanisms implicated in the pathogenesis of HFPEF, and future research will likely use these markers to not only help determine heart failure phenotypes but also target specific therapies.

Heart failure (HF) is a global epidemic, defined as an abnormality of cardiac function leading to the inability to deliver oxygen at a rate adequate to meet the requirements of tissues. It is truly a clinical syndrome of symptoms and signs resulting from this cardiac abnormality. Over the past decade, further characterization into 2 entities has occurred: HF with preserved ejection fraction (HFPEF) and HF with reduced ejection fraction (HFREF). HFPEF, previously termed diastolic HF, encompasses the syndrome of HF with a preserved ejection fraction. Cutoffs for this ejection fraction typically are from 45% to 50%. The prevalence of HF is upward of 1% to 2% of the adult population, with an increased prevalence found in elderly and female patients. Multiple studies have shown that the prevalence of HFPEF is actually comparable with the number of patients with HFREF. As expected, most deaths from HFPEF are cardiovascular, comprising 51% to 70% of mortality.

The pathophysiology of HFPEF is controversial and remains poorly understood. Originally, HFPEF was thought to be a primary manifestation of diastolic dysfunction of the left ventricle. However, patients with HFREF are known to also commonly have impaired ventricular relaxation. The primary mechanism of left ventricular (LV) dysfunction is based on structural remodeling and endothelial dysfunction, lending itself to LV stiffness, and increased left atrial pressure. This pressure change is what drives pulmonary venous congestion and subsequent symptomatology. The ventricular stiffness commonly seen in HFPEF is attributed to multiple mechanisms, including fibrosis, excessive collagen deposition, cardiomyocyte stiffness, and slow LV relaxation.

The natriuretic peptides (NPs) are the cornerstone biomarker in congestive HF (CHF). Many of the details of the role of NPs are covered in an article – Florea VG, Anand IS. Biomarkers. Heart Fail Clin 2012;8(2):207–24. The Breathing Not Properly trial originally helped establish the role of B-type natriuretic peptide (BNP) in the diagnosis of CHF. BNP and the N-terminal prohormone BNP (NT-proBNP) have been shown in numerous trials to be an excellent tool for ruling out CHF as a cause of acute dyspnea. Aside from a strong negative predictive value, NPs correlate with HF severity, prognostication, outpatient CHF management, and screening. When attempting to use NPs specifically to distinguish between HFPEF and HFREF, results have shown that NPs do not have a particular cutoff, but are typically elevated in HFPEF in comparison with patients without HF. These levels of NPs in HFPEF are typically lower than levels in patients with HFREF.

Although the role of novel renal biomarkers has not been fully explored specifically in HFPEF, they likely have an impactful role in the assessment and management of acute kidney injury (AKI) and the cardiorenal syndrome. Two biomarkers are briefly discussed here: neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C. NGAL is a 25-kDa protein in the lipocalin family of proteins with a role in inflammation and immune modulation.

The future of biomarkers and their utility in HF is very promising, starting with the potential for using biomarkers as end points in trials. Biomarkers serve as surrogates for various pathophysiologic mechanisms, and there are potential benefits in using them as trial end points. Advantages include the ability to obtain quick and early data, as well as possibly better understand the nature of the disease. However, the counterargument against using biomarkers as trial end points includes whether treatment effects on a biomarker reliably predict effects on a clinically meaningful end point.
Reduced cGMP signaling activates NF-κB in hypertrophied hearts of mice lacking natriuretic peptide receptor-A

Elangovan Vellaichamy, Naveen K. Sommana, Kailash N. Pandey
Biochemical and Biophysical Research Communications 327 (2005) 106–111
http://dx.doi.org:/10.1016/j.bbrc.2004.11.153

Mice lacking natriuretic peptide receptor-A (NPRA) develop progressive cardiac hypertrophy and congestive heart failure. However, the mechanisms responsible for cardiac hypertrophic growth in the absence of NPRA signaling are not yet known. We sought to determine the activation of nuclear factor-κB (NF-κB) in Npr1 (coding for NPRA) gene-knockout (Npr1-/-) mice exhibiting cardiac hypertrophy and fibrosis. NF-κB binding activity was 4-fold greater in the nuclear extract of Npr1-/-mutant mice hearts as compared with wild-type (Npr1+/+) mice hearts. In parallel, inhibitory κB kinase-b activity and IκB-α protein phosphorylation were also increased 3- and 4-fold, respectively, in hypertrophied hearts of mutant mice. cGMP levels were significantly reduced 5-fold in plasma and 10-fold in ventricular tissues of mutant mice hearts  relative to wild-type controls. The present findings provide direct evidence that ablation of NPRA/cGMP signaling activates NF-κB binding activity associated with hypertrophic growth of mutant mice hearts.

Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression

Renu Garg, Kailash N. Pandey
Peptides 26 (2005) 1009–1023
http://dx.doi.org:/10.1016/j.peptides.2004.09.022

Natriuretic peptide receptor-A (NPRA) is the biological receptor of the peptide hormones atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The level and activity of this receptor determines the biological effects of ANP and BNP in different tissues mainly directed towards the maintenance of salt and water homeostasis. The core transcriptional machinery of the TATA-less Npr1 gene, which encodes NPRA, consists of three SP1 binding sites and the inverted CCAAT box. This promoter region of Npr1 gene has been shown to contain several putative binding sites for the known transcription factors, but the functional significance of most of these regulatory sequences is yet to be elucidated. The present review discusses the current knowledge of the functional significance of the promoter region of Npr1 gene and its transcriptional regulation by a number of factors including different hormones, growth factors, changes in extracellular osmolarity, and certain physiological and patho-physiological conditions.

Atrial natriuretic peptide (ANP), a member of natriuretic peptide family is a polypeptide consisting of 28 amino acids and was discovered as a potent vasodilator and diuretic hormone produced in granules of the atrium. The natriuretic peptide family consists of the peptide hormones ANP, brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), each of which is derived from a separate gene. ANP and BNP are cardiac derived peptides, which are secreted and up-regulated in myocardium in response to different patho-physiological stimuli, while CNP is an endothelium-derived mediator that plays an important paracrine role in the vasculature. All of these natriuretic peptides elicit a number of vascular, renal, and endocrine effects mainly directed towards the maintenance of blood pressure and extracellular fluid volume by binding to their specific cell surface receptors. ANP exerts its effects at a number of sites including the kidney, where it produces natriuretic and diuretic responses; the adrenal gland, where it inhibits aldosterone synthesis and secretion; vascular smooth muscle cells, where it produces vasorelaxation; the endothelial cells, where it may regulate vascular permeability; gonadal cells, where it affects synthesis of androgen and estradiol. Each of these target sites of ANP activity has been shown to possess specific high affinity receptors for ANP. To date, three different subtypes of natriuretic peptide receptors have been characterized, purified, and cloned, i.e. natriuretic peptide receptors A, B, and C also designated as NPRA, NPRB, and NPRC, respectively. ANP and BNP specifically bind to NPRA, which contains guanylyl cyclase catalytic activity and produces intracellular secondary messenger cGMP in response to hormone binding.

NPRA is considered the biological receptor of ANP and BNP because most of the physiological effects of these hormones are triggered by generation of cGMP or its cell permeable analogs. Recent studies with mice lacking the Npr1 gene, demonstrated that genetic disruption of NPRA increases the blood pressure and causes hypertension in these animals. On the other hand, the effect of ANP was found to be increased linearly in Npr1 gene-duplicated mice
in a manner consistent with gene copy number. All this clearly indicates that the level of NPRA expression determines the extent of the biological effects of ANP and BNP. But the intervention strategies aimed at controlling NPRA expression are limited by the paucity of studies in this area. The cDNA and gene encoding NPRA designated as Npr1 has been cloned and characterized in mouse, rat, bull frog, euryhaline eel, and medaka fish. The primary structure of this gene is essentially same in all the different species and contains 22 exons interrupted by 21 introns.  The Npr1 gene sequence has been found to be interspersed with a number of repetitive elements including (SINES), (MER2), and tandem repeat elements in all the different species.

Although the Npr1 gene transcriptional regulation is only poorly understood, the activity and expression of NPRA assessed primarily through ANP stimulated cGMP accumulation are found to be regulated by a number of factors including auto-regulation by natriuretic peptides themselves, other hormones such as endothelin, glucocorticoids, and angiotensin II (ANG II), growth factors, changes in extracellular ion composition, and certain physiological and patho-physiological conditions.

The core molecular machinery of the TATA-less Npr1 gene consisting of SP1 binding sites and the inverted CCAAT box has been authenticated to be indeed functional in rat promoter element. It has been shown that the molecular machinery that regulates the basal expression of Npr1 gene consists of three SP1 binding sites in conjunction with an inverted CCAAT box present in the proximal promoter region. Mutation in any of these SP1 binding sites which
are located within 350 bp upstream of transcription start site in rat Npr1 promoter inhibited SP1 and SP3 binding and decreased the promoter activity by 50–75%, while simultaneous mutation of all the three led to a >90% reduction in promoter activity. The proximal SP1 binding site was much more effective than the distal sites in inducing the expression implying that the proximity to the core transcriptional machinery contributes to the magnitude of the observed effect. The over-expression of either SP1 or SP3 resulted in the induction of the wild type Npr1 promoter, confirming that these transcription factors serve as positive regulators of the Npr1 gene expression.

A number of natriuretic peptides such as ANP, BNP, CNP, and urodilatin (i.e. ANP95–126) can down-regulate ligand dependent NPRA activity after as little as 2 h prior exposure to the ligand, which remains suppressed until 48 h of exposure in cultured cells. The early reduction of NPRA activity is independent of changes in Npr1 gene expression as the pretreatment of cultured cells with actinomycin D (an inhibitor of transcription) for 1 h failed to block the response to ANP implying that ligand acts, at least early on, through a post transcriptional mechanism in reducing NPRA activity. The sustained reduction of NPRA activity, on the other hand, has been shown in fact due to reduction in NPRA mRNA levels (∼50%) by treatment with 100nM ANP for 48 h. This reduction could also be affected by treatment of cultured cells with 8-Br-cGMP with similar kinetic response and was amplified by phosphodiesterase inhibitors, but was not shared by NPRC-selective ligand cANF, suggesting that the down regulation of Npr1 gene expression is mediated by elevations of intracellular cGMP involving either NPRA or NPRB. .. The cGMP regulatory region was pinpointed to position−1372 to−1354 bp from the transcription start site of Npr1 by gel shift assays and footprinting analysis, which indicated its interaction with transcriptional factor(s). Further cross-competition experiments with mutated oligonucleotides led to the definition of a consensus sequence (−1372 bp AaAtRKaNTTCaAcAKTY −1354 bp) for the novel cGMP-RE, which is conserved in the human (75% identity) and mouse (95% identity) Npr1 promoters. The combination of these transcriptional and post-transcriptional ligand-dependent regulatory mechanisms provides the cells with greater flexibility in both initiating and maintaining the suppression of NPRA activity.

The peptide hormone Ang II is an important component of renin-angiotensin system (RAS) and exerts its biological effects such as blood pressure regulation, vasoconstriction, and cell proliferation in many tissues including the kidney, adrenal glands, brain, and vasculature. The two vasoactive peptide hormones, Ang II (vasoconstrictive) and ANP (vasodilatory), interact and mutually antagonize the biological effects of each other at various levels. ANP has been shown to inhibit Ang II-induced contraction of isolated glomeruli and cultured mesangial cells, as well as Ang II-stimulated activation of protein kinase C and mitogen activated protein kinase in vascular smooth muscle cells in a cGMP-dependent manner. Inversely, Ang II has been shown to down-regulate guanylyl cyclase activity of the biological receptor of ANP, NPRA, by activating protein kinase C and/or by stimulating protein tyrosine phosphatase activity, thereby inhibiting the ANP stimulated cGMP accumulation. Ang II also reduces the ANP dependent cGMP levels by stimulating cGMP hydrolysis, apparently
via a calcium dependent cGMP phosphodiesterase.

Endothelin is a vasoconstrictor peptide that was originally isolated from porcine endothelial cells. It is produced as three isoforms (ET1-3) that bind to two receptor subtypes (ETA and ETB). ET is produced in the kidney and subject to regulation by a number of local and systemic factors including immune cytokines and extracellular tonicity. Since, endothelin is avidly expressed in the nephron segment, where NPRA is up-regulated by osmotic stimulus, it was investigated whether endothelin plays a role in the control of basal or osmotically regulated Npr1 gene expression in these cells. The endogenous endothelin and not the exogeneously administered endothelin inhibit the basal but not osmotically stimulated expression of Npr1. The type A (BQ610) and type B (IRL 1038) endothelin receptor antagonists increased the level of NPRA mRNA by two to three-fold, whereas co-administration of exogenous endothelin resulted in partial reversal of this stimulatory effect of receptor antagonists. The increase in extracellular tonicity reduces the endothelin mRNA accumulation (∼15% of control levels) in inner medullary collecting duct cells but this reduction is not found to be linked to the stimulation of NPRA activity/expression in response to osmotic stress.

Glucocorticoids influence the cardiovascular system and induce a rapid increase in blood pressure. Glucocorticoids are known to regulate
transcription in many systems, possibly by interacting with glucocorticoid responsive elements and associated chromatin proteins. These have been shown to affect the atrial endocrine system by regulating both the synthesis and secretion of ANP in vitro and in vivo. Thus, it seems plausible that glucocorticoid may also interact with the atrial endocrine system by modulating ANP receptor levels. The stimulation of vascular smooth muscle cells from rat mesenteric artery with dexa-methasone (a highly specific synthetic glucocorticoid agonist) caused an increase in NPRA mRNA levels in a time dependent manner which reached a plateau after 48 h of glucocorticoid administration. This mRNA increase was mimicked by cortisol and inhibited by glucocorticoid receptor antagonists RU38486. Also cGMP generated by NPRA in dexamethasone treated cells was higher than in control cells and this production was mimicked by cortisol and blocked by RU 38486. These results suggest that glucocorticoids exert a positive effect on NPRA transcription in rat mesenteric arteries.

Previous studies have shown that guanylyl cyclase activity of NPRA is either activated, or inhibited by an increase in extracellular tonicity. Though none of these studies were definitive in terms of elucidating the mechanisms involved, they suggested that the activation predominates with longer exposure (∼24 h), while the inhibition with short-term exposure (minutes) to the osmotic stimulus. More recently, the mechanism(s) underlying the activation of NPRA expression by osmotic stimulus has been investigated. The NaCl (75 mM) or sucrose (150 mM), but not osmotically inert solute, urea (150 mM) increased NPRA activity, gene expression, and promoter activity after as early as 4 h reaching a maximum at 24 h in inner medullary collecting duct cells. The osmotic stimulus also activated extracellular signal regulated kinase (ERK), c-Jun-NH2-terminal kinase (JNK), and p38 mitogen activated protein kinase- (p38 MAPK-β). The inhibition of p38 MAPK-βwith SB20580 completely  blocked the osmotic stimulation of receptor activity and expression, and caused a dose-dependent reduction in promoter activity, whereas inhibition of ERK with PD98059 had no effect.

The expression of NPRB, the biological receptor of CNP, has been shown to be regulated by a number of factors including natriuretic peptide ligands, intracellular cAMP levels, water deprivation, TGF-1, dexamethasone treatment, as well as renal sodium status, as its mRNA levels were upregulated in the renal cortex of sodium depleted animals. NPRB expression has also been found to be regulated by alternative splicing. Three isoforms of NPRB have been identified of which NPRB1 is the full length form and responds maximally to CNP, NPRB2 isoform contains a 25 amino acid deletion in protein kinase homology domain and NPRB3 contains a partial extracellular ligand binding domain and fails to bind the ligand. The relative expression levels of the three isoforms vary across different tissues. Since, the smaller splice variants of NPRB act as dominant negative isoforms by blocking formation of active NPRB1 homodimers, these isoforms might play important role in the tissue specific regulation of receptor, NPRB.

The NPRC expression has also been found to be down-regulated by its ligands and their secondary messenger, cGMP, hormones, growth factors, dietary salt supplementation, β-adrenergic blocker, and physiological as well as patho-physiological conditions. On the other hand, NPRC expression gets augmented by TGF-β1, 1,25-dihydroxy VitaminD3 and during conditions like chronic heart failure.

Hypertension is the leading cause of human deaths in today’s world. The natriuretic peptide system plays a well defined role in the regulation of blood pressure and fluid volume. The cellular and physiological effects of natriuretic peptides (ANP, BNP, and CNP) are mediated by their specific receptors NPRA, NPRB, and NPRC. The transcriptional regulation of these receptors has been studied since their identification, but still remains poorly understood. Better understanding and the elucidation of different molecular mechanisms responsible for the regulation of NPRA expression would provide us the framework to develop the therapeutic strategies to manipulate the expression levels of this receptor and to control the biological actions of ANP and BNP during different patho-physiological conditions.

Inhibition of Heat Shock Protein 90 (Hsp90) in Proliferating Endothelial Cells Uncouples Endothelial Nitric Oxide Synthase Activity

Jingsong Ou, Zhijun Ou, AW Ackerman, KT Oldham, & KA Pritchard, Jr.
Free Radical Biol Med 2003; 34(2):269–276
PII S0891-5849(02)01299-6

Dual increases in nitric oxide (•NO) and superoxide anion (O2•-) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of •NO generation to offset the increase in O2•- that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase •NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of •NO and O2•-. Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 µM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated •NO production and increased Lω-nitroargininemethylester (L-NAME)-inhibitable O2•-generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O2•- generation, confirming that during proliferation eNOS generates •NO. Our findings demonstrate that hsp90 plays an important role in maintaining •NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit •NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future.

Natriuretic Peptides, Ejection Fraction, and Prognosis – Parsing the Phenotypes of Heart Failure

James L. Januzzi, JR
J Amer Coll Cardiol 2013; 61(14): 1507-9
http://dx.doi.org/10.1016/j.jacc.2013.01.039

Since the first pivotal studies introduced the natriuretic peptides as biomarkers for the diagnosis of heart failure (HF), use of both B-type natriuretic peptide (BNP) and its N-terminal equivalent (NT-proBNP) has grown not only for this indication, but also for establishing HF prognosis as well. Indeed, a vast array of studies has established the natriuretic peptides as the biomarker gold standard to prognosticate risk for a wide array of relevant complications in HF (ranging from ventricular arrhythmias to pump failure). In these studies, the prognostic information provided by BNP and NT-proBNP in HF was independent of a number of relevant covariates, including left ventricular ejection fraction (LVEF).

It has been known for quite a while that patients with heart failure and preserved ejection fraction (HFpEF) typically have lower natriuretic peptide values than do those with heart failure and reduced ejection fraction (HFrEF). A conundrum is thus present: whereas both BNP and NTproBNP tend to be lower in HFpEF, when these peptides are elevated in this setting, they remain prognostic; this intriguing circumstance has been relatively poorly studied. It is in this setting that van Veldhuisen et al. examined the impact of LVEF on the prognostic merits of BNP in the COACH (Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure) study in the present issue of the Journal. The investigators found—as expected—that BNP levels were lower in HFpEF, but for a given BNP concentration, prognosis of those with HFpEF in COACH was just as poor as those with HFrEF at matched BNP values. Stated differently, a high BNP in a patient with HFpEF imparted similar prognostic information as it would in someone with HFrEF. Actually, whereas LVEF was not obviously prognostically impactful, when considered across the range of ventricular function, an elevated BNP concentration in the most normal range of LVEF seemed to be associated with a higher risk than at the lower ranges of pump function. Although it is previously established that BNP or NT-proBNP are prognostic independently of LVEF, the well-executed analysis by van Veldhuisen et al. (van Veldhuisen DJ, Linssen GCM, Jaarsma T, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol 2013;61:1498–506.) allows for a more in-depth examination of this phenomenon and raises some important questions.

Phenotypic Definition of the Patient With Heart Failure

Phenotypic Definition of the Patient With Heart Failure

Phenotypic Definition of the Patient With Heart Failure

Natriuretic Peptides in Heart Failure with Preserved Ejection Fraction

Mark Richards, James L. Januzzi Jr, Richard W. Troughton
Heart Failure Clin 10 (2014) 453–470
http://dx.doi.org/10.1016/j.hfc.2014.04.006

KEY POINTS

  • Threshold values of B-type natriuretic peptide (BNP) and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) validated for diagnosis of undifferentiated acutely decompensated heart failure (ADHF) remain useful in patients with heart failure with preserved ejection fraction (HFPEF), with minor loss of diagnostic performance.
  • BNP and NT-proBNP measured on admission with ADHF are powerfully predictive of in-hospital mortality in both HFPEF and heart failure with reduced EF (HFREF), with similar or greater risk in HFPEF as in HFREF associated with any given level of either peptide.
  • In stable treated heart failure, plasma natriuretic peptide concentrations often fall below cut-point values used for the diagnosis of ADHF in the emergency department; in HFPEF, levels average approximately half those in HFREF.
  • BNP and NT-proBNP are powerful independent prognostic markers in both chronic HFREF and chronic HFPEF, and the risk of important clinical adverse outcomes for a given peptide level is similar regardless of left ventricular ejection fraction.
  • Serial measurement of BNP or NT-proBNP to monitor status and guide treatment in chronic heart failure may be more applicable in HFREF than in HFPEF.

 

The bioactivity of atrial NP (ANP) and B-type NP (BNP) encompasses short-term and longterm hemodynamic, renal, neurohormonal, and trophic effects. The relationship between cardiac hemodynamic load, plasma concentrations of ANP and BNP, and the cardioprotective profile of NP bioactivity have led to investigation of both biomarker and therapeutic potential of

NPs in HF.

PlasmaBNPandNT-proBNP thresholds (100pg/mL and 300 pg/mL, respectively) used in the diagnosis of undifferentiated ADHF retain good diagnosticperformance for acute HFPEF

 

Plasma NPs are related to multiple echo indicators of cardiac structure and function in both HFREF and HFPEF.
Box 1Causes of increased plasma cardiac natriuretic peptides

Cardiac

Heart failure, acute and chronic

Acute coronary syndromes

Atrial fibrillation

Valvular heart disease

Cardiomyopathies

Myocarditis

Cardioversion

Left ventricular hypertrophy

Noncardiac

Age

Female sex

Renal impairment

Pulmonary embolism

Pneumonia (severe)

Obstructive sleep apnea

Critical illness

Bacterial sepsis

Severe burns

Cancer chemotherapy

Toxic and metabolic insults

 

BNP and NT-proBNP fall below ADHF thresholds in stable HFREF in approximately 50% and 20% of cases, respectively. Levels in stable HFPEF are even lower, approximately half those in HFREF.
Whereas BNPs have 90% sensitivity for asymptomatic LVEF of less than 40% in the community (a precursor state for HFREF), they offer no clear guide to the presence of early community based HFPEF.
Guidelines recommend BNP and NT-proBNP as adjuncts to the diagnosis of acute and chronic HF and for risk stratification. Refinements for application to HFPEF are needed.
The prognostic power of NPs is similar in HFREF and HFPEF. Defined levels of BNP and NT-proBNP correlate with similar short-term and long-term risks of important clinical adverse outcomes in both HFREF and HFPEF.
Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely. a In the acute setting, mid-regional pro–atrial natriuretic peptide may also be used (cutoff point 120 pmol/L; ie, <120 pmol/L 5 heart failure unlikely). b Other causes of elevated natriuretic peptide levels in the acute setting are an acute coronary syndrome, atrial or ventricular arrhythmias, pulmonary embolism, and severe chronic obstructive pulmonary disease with elevated right heart pressures, renal failure, and sepsis. Other causes of an elevated natriuretic level in the nonacute setting are old age (>75 years), atrial arrhythmias, left ventricular hypertrophy, chronic obstructive pulmonary disease, and chronic kidney disease. c Exclusion cutoff points for natriuretic peptides are chosen to minimize the false-negative rate while reducing unnecessary referrals for echocardiography. d Treatment may reduce natriuretic peptide concentration, and natriuretic peptide concentrations may not be markedly elevated in patients with heart failure with preserved ejection fraction. BNP, B-type natriuretic peptide; ECG, electrocardiogram; NT-proBNP, N-terminal prohormone of B-type natriuretic peptide. (From McMurray JJ, Adamopoulos S, Anker SD, et al. The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur Heart J 2012;33:1787–847; with permission.)

Natriuretic Peptide Receptor-A Negatively Regulates Mitogen-Activated Protein Kinase and Proliferation of Mesangial Cells: Role of cGMP-Dependent Protein Kinase

Kailash N. Pandey, Houng T. Nguyen, Ming Li, and John W. Boyle
Biochem Biophys Res Commun 271, 374–379 (2000)
http://dx.doi.org:/10.1006/bbrc.2000.2627

peptide (ANP) and its guanylyl cyclase/natriuretic peptide receptor-A (NPRA) on mitogen-activated protein kinase/extracellular signal-regulated kinase 2 (MAPK/ERK2) activity in rat mesangial cells overexpressing NPRA. Agonist hormones such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), angiotensin II (ANG II), and endothelin-1 (ET-1) stimulated 2.5- to 3.5-fold immunoreactive MAPK/ERK2 activity in these cells. ANP inhibited agonist-stimulated activity of MAPK/ERK2 by 65–75% in cells overexpressing NPRA, whereas in vector transfected cells, its inhibitory effect was only 18–20%. NPRA antagonist A71915 and KT5823, a specific inhibitor of cGMP-dependent protein kinase (PKG) completely reversed the inhibitory effect of ANP on MAPK/ERK2 activity. ANP also inhibited the PDGF stimulated [3H]thymidine uptake by almost 70% in cells overexpressing NPRA, as compared with only 20–25% inhibition in vector-transfected cells. These
results demonstrate that ANP/NPRA system negatively regulates MAPK/ERK2 activity and proliferation of mesangial cells in a PKG-dependent manner.

 

Regulation of lipoprotein lipase by Angptl4

Wieneke Dijk and Sander Kersten
Trends in Endocrin and Metab, Mar2014; 25(3):146-155
http://dx.doi.org/10.1016/j.tem.2013.12.005

Triglyceride (TG)-rich chylomicrons and very low density lipoproteins (VLDL) distribute fatty acids (FA) to various tissues by interacting with the enzyme lipoprotein lipase (LPL). The protein angiopoietin-like 4 (Angptl4) is under sensitive transcriptional control by FA and the FA-activated peroxisome proliferator activated receptors (PPARs), and its tissue expression largely overlaps with that of LPL. Growing evidence indicates that Angptl4 mediates the physiological fluctuations in LPL activity, including the decrease in
adipose tissue LPL activity during fasting. This review focuses on the major ambiguities concerning the mechanism of LPL inhibition by Angptl4, as well as on the physiological role of Angptl4 in lipid metabolism, highlighting its function in a variety of tissues, and uses this information to make suggestions for further research.

Box 1. LPL and TG metabolism

LPL belongs to a family of lipases that also includes hepatic lipase, pancreatic lipase, and endothelial lipase. Because LPL is essential in the lipolytic processing of chylomicrons and VLDL, LPL is primarily expressed in tissues that either require large amounts of FA as fuel or are responsible for TG storage, which include heart, skeletal muscle, and adipose tissue. Upon production by the underlying parenchymal cells, LPL is released into the subendothelial space and is transported to the luminal side of the capillary endothelium by the GPI-anchored protein GPIHBP1, which after transport continues to anchor LPL to the capillary endothelium. The essential role for LPL in the clearance of plasma TG is well-demonstrated by the severe hypertriglyceridemia of patients carrying homozygous mutations in the LPL gene. Generalized deletion of LPL in mice results in severe hypertriglycer-idemia, resulting in the premature death of pups within 24 h after birth. Analogous to the deletion of LPL, the mislocalization of LPL to the subendothelial spaces due the absence or misfolding of GPIHBP1 also results in severe chylomicronemia and hypertriglyceridemia. The LPL enzyme is catalytically active as a non-covalent head-to-tail dimer with a catalytic N-terminal domain and a non-catalytic C terminal domain. Folding of LPL into its dimer conformation occurs in the endoplasmic reticulum, chaperoned by lipase maturation factor 1, calreticulin, and calnexin. In its active 3D conformation, the catalytic site of LPL is postulated to be covered by a lid, which can be opened by the binding of chylomicrons and VLDL to the C terminus. The active LPL dimers rapidly exchange subunits, indicating that a dynamic equilibrium exists between LPL dimers and dimerization-competent monomers. Dimerization-competent monomers have, however, not yet been isolated, and it is unclear whether this monomer is catalytically active. The enzymatic activity of LPL is lost when the LPL dimer is converted into inactive, folded monomers. This conversion to inactive monomers is mainly regulated via post-translational mechanisms and is dependent on nutritional state. Enzymatic activity of inactive monomers can be regained in vitro by the addition of calcium, indicating that inactivation of LPL is a reversible process.

One of the key questions is whether (patho)physiological variations in LPL activity are mediated via regulation of Angptl4 cleavage and/or oligomerization, and which factors are involved in modulating Angptl4 in vivo. Recent biochemical evidence suggests that FA may be able to promote dissociation of oligomers, which, by destabilizing the protein, would impair its ability to inhibit LPL. Destabilization of Angptl4 by FA is, however, seemingly at odds with the marked stimulatory effect of FA on Angptl4 production observed in vitro and in vivo.

The currently accepted molecular model for the inhibition of LPL by Angptl4 is that Angptl4 stimulates the conversion of catalytically active LPL dimers into inactive monomers – following in vitro studies showing that coincubation of LPL and Angptl4 increases the abundance of LPL monomers. Subsequent studies revealed that the proportion of LPL dimers is reduced in post-heparin plasma of mice that overexpress Angptl4 in favor of LPL monomers, providing in vivo support for the dimer-to monomer conversion. The elucidation of the purported biochemical mechanism has strengthened the status of Angptl4 as a LPL inhibitor, but several questions related to the in vivo mechanism remain unanswered. Whereas the original in vitro experiments favored the hypothesis that Angptl4 enzymatically and irreversibly catalyzes the LPL dimer-to-monomer conversion, an in vivo study of Angptl4 transgenic mice suggested that Angptl4 is physically bound to LPL monomers, thereby driving the LPL dimer–monomer equilibrium towards inactive monomers. The latter study also revealed that the relative decrease in post-heparin plasma LPL activity upon Angptl4 overexpression is much more pronounced than the relative decrease in heparin-releasable LPL dimers, pointing to an additional or alternative mechanism. In support, a recently published study suggests that Angptl4, instead of acting as a catalyst, functions as a conventional, non-competitive inhibitor that binds to LPL to prevent the hydrolysis of substrate LPL and Angptl4 are regulated by changes in nutritional state in a tissue-specific manner, reflecting the different functions of these tissues and the corresponding variations in physiological requirements for lipids. Below, we discuss current knowledge on the regulation of Angptl4 and LPL in response to various physiological stimuli and address the importance of Angptl4 in lipid uptake. An overview of the role of Angptl4 in physiological regulation of lipid metabolism is presented in Figure 2.

model for mechanisms of lipoprotein lipase (LPL) inhibition by Angptl4.

model for mechanisms of lipoprotein lipase (LPL) inhibition by Angptl4.

Figure 1. Hypothetical model for mechanisms of lipoprotein lipase (LPL) inhibition by Angptl4. Angiopoietin-like 4 (Angptl4) and LPL are expressed in the parenchymal cells of muscle, heart, and adipose tissue. Following secretion of LPL and Angptl4 into the subendothelial space, transport of LPL to the capillary lumen is mediated by two mechanisms. The principal transport mechanism (1) relies on GPIHBP1 [glycosylphosphatidylinositol (GPI)-anchored high density lipoprotein-binding protein] picking up LPL from the subendothelial space and transporting it to the capillary lumen. This action by GPIHBP1 is opposed by Angptl4, which is bound to extracellular matrix (ECM) proteins and which retains and inhibits LPL. In the presence of GPIHBP1, high expression levels of Angptl4 are needed to overcome the competition with GPIHBP1. Angptl4 secreted into the capillary lumen, primarily as N-terminal truncation fragment generated by cleavage by proprotein convertases (PCs), inhibits LPL activity on the endothelium by promoting the irreversible conversion of LPL dimers into inactive monomers and/or via a reversible mechanism that requires binding of Angptl4 to LPL. The second transport mechanism involves a so far unidentified carrier and can be disrupted by Angptl4. In the absence of GPIHBP1, Angptl4 fully retains LPL in the subendothelial space (a). The additional loss of Angptl4 liberates LPL and allows it to be transported to the endothelial surface via the unidentified carrier (b). This model suggests that Angptl4 and LPL start interacting before arrival in the capillary lumen, either in the parenchymal cells or in the subendothelial space. Abbreviation: HSPG, heparan sulfate proteoglycan.

Regulation and role of angiopoietin-like 4 (Angptl4)

Regulation and role of angiopoietin-like 4 (Angptl4)

Figure 2. Regulation and role of angiopoietin-like 4 (Angptl4) in lipid metabolism. Angptl4 is expressed in parenchymal cells of white adipose tissue (WAT), liver, intestine, heart and muscle, as well as in macrophages, where it is subject to cell- and tissue-specific regulation. Angptl4 is a sensitive target of peroxisome proliferator-activated receptor (PPAR) transcription factors in several tissues. In WAT the expression of Angptl4 is induced during fasting and by the transcription factors PPARg, glucocorticoid receptor (GR), and hypoxia inducible factor 1a (HIF1a). In WAT Angptl4 stimulates lipolysis of stored triglycerides (TG) and inhibits lipoprotein lipase (LPL) activity. Expression of Angptl4 in liver is stimulated by PPARa, PPARd, and GR. Because the liver does not express LPL, Angptl4 is mainly released into the blood, affecting LPL activity in peripheral tissues. Angptl4 may also impact upon hepatic lipase activity in liver. Expression of Angptl4 in heart and skeletal muscle is potently induced by fatty acids (FA) via PPARd activation. Angptl4 inhibits LPL activities in cardiac and likely skeletal muscle. FA also stimulate Angptl4 expression in macrophages via PPARd, leading to local inhibition of LPL activity. We hypothesize that macrophage LPL enables uptake of remnant particles containing lipid antigens, which are subsequently presented to natural killer T cells. In the intestine, FA stimulate Angptl4 expression via one of the PPARs. Angptl4 produced by enterocytes may be released towards the lumen and inhibit pancreatic lipase activity. Angptl4 produced by enteroendocrine cells is released towards the blood and may inhibit LPL in distant tissues.

Box 2. Outstanding questions

  1. What is the importance of Angptl4 cleavage and oligomerization to Angptl4 function in vivo?
  2. What is the precise biochemical mechanism behind the inhibition of LPL activity by Angptl4?
  3. At which cellular location(s) does the inhibition of LPL by Angptl4 occur and, if at multiple locations, what is the relative contribution of both tissue-produced Angptl4 compared to circulating Angptl4 with respect to inhibition of tissue LPL activity.
  4. What is the interplay between GPIHBP1 and Angptl4 in the regulation of LPL activity?
  5. What is the protein structure of Angptl4 and LPL?
  6. Does Angptl4 also regulate LPL activity in brown adipose tissue and skeletal muscle and, if so, how is the expression of Angptl4 regulated in these tissues?
  7. What is the potential of Angptl4 as a biomarker in the context of disorders of lipid metabolism?

In the past decade, angiopoietin-like proteins have been demonstrated to regulate plasma TG levels powerfully in mice and humans. The elucidation of these proteins as inhibitors of LPL activity has led to a paradigm shift in how clearance of circulating TG and thereby tissue uptake of FA are regulated. Most of our understanding of angiopoietin-like proteins has resulted from detailed study of Angptl4.

A major portion of the physiological variation in LPL activity in various tissues can be attributed to regulation of Angptl4 production. We predict that Angptl4 will turn out to be equally important for governing LPL activity in muscle during exercise, in brown adipose tissue during cold, and in several tissues during fasting.

Besides the increasing recognition of the pivotal role of Angptl4 in lipid metabolism as an inhibitor of LPL, major insight has been gained into the molecular mechanism of action of Angptl4. Key questions remain, however, especially related to the interaction between LPL, GPIHBP1, and Angptl4 on the endothelium and in the subendothelial space. Several points of interest have been highlighted throughout the text; these include the elucidation of the molecular structure for LPL and Angptl4 by X-ray crystallography and the clarification of in vivo Angptl4 cleavage and oligomerization.

Native Low-Density Lipoprotein Induces Endothelial Nitric Oxide Synthase Dysfunction: Role of Heat Shock Protein 90 And Caveolin-1

Kirkwood A. Pritchard, Jr., Allan W. Ackerman, Jingsong Ou, et al.
Free Radical Biol & Med 2002; 33(1):52–62 PII S0891-5849(02)00851-1

Although native LDL (n-LDL) is well recognized for inducing endothelial cell (EC) dysfunction, the mechanisms remain unclear. One hypothesis is n-LDL increases caveolin-1 (Cav-1), which decreases nitric oxide (•NO) production by binding endothelial nitric oxide synthase (eNOS) in an inactive state. Another is n-LDL increases superoxide anion (O2•-), which inactivates •NO. To test these hypotheses, EC were incubated with n-LDL and then analyzed for •NO, O2•-, phospho-eNOS (S1179), eNOS, Cav-1, calmodulin (CaM), and heat shock protein 90 (hsp90). n-LDL increased NOx by more than 4-fold while having little effect on A23187-stimulated nitrite production. In contrast, n-LDL decreased cGMP under basal and A23187-stimulated conditions and increased O2•-by a mechanism that could be inhibited by L-nitroargininemethylester (L-NAME) and BAPTA/AM. n-LDL increased phospho-eNOS by 149%, eNOS by [1]34%, and Cav-1 by 28%, and decreased the association of hsp90 with eNOS by 49%. n-LDL did not appear to alter eNOS distribution between membrane fractions (-85%) and cytosol (-15%). Only 3–6% of eNOS in membrane fractions was associated with Cav-1. These data support the hypothesis that n-LDL increases O2•-, which scavenges •NO, and suggest that n-LDL uncouples eNOS activity by decreasing the association of hsp90 as an initial step in signaling eNOS to generate O2•-.

In conclusion, n-LDL decreases the association of hsp90 with eNOS, increases phospho-eNOS levels, and increases eNOS-dependent O2•-generation. These findings suggest that activation of eNOS without adequate levels of hsp90 may signal eNOS to switch from •NO to O2•-generation. Such changes in eNOS radical product generation may play an important role in impairing endothelial and vascular function.

New insights into IGF-1 signaling in the heart

Rodrigo Troncoso, C Ibarra, JM Vicencio, E Jaimovich, and S Lavandero
Trends in Endocrin and Metab, Mar 2014; 25(3):128-131
http://dx.doi.org/10.1016/j.tem.2013.12.002

Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca2+ transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies.

The hormone insulin-like growth factor 1 (IGF-1) is a small peptide of 7.6 kDa, which is composed of 70 amino acids and shares 50% homology with insulin. IGF-1 plays key roles in regulating proliferation, differentiation, metabolism, and cell survival. It is mainly synthesized and secreted by the liver in response to hypothalamic growth hormone (GH); its plasma concentration is finely regulated (Box 1). However, other tissues also produce IGF-1, which acts locally as an autocrine and paracrine hormone. IGF-1 exhibits pleiotropic effects in many organs and is also involved in the development of several pathologies.

Box 1. IGF-1 synthesis and biodisponibilityInsulin-like growth factor 1 (IGF-1) is a 70 amino acid peptide

hormone with endocrine, paracrine, and autocrine effects. It shares

>60% structure homology with IGF-2 and 50% with pro-insulin. IGF-

1 is mainly synthesized in the liver in response to hypothalamic

growth hormone (GH). In the peripheral circulation it exerts negative

feedback on the somatotrophic axis suppressing pituitary GH

release. IGF-1 can also be generated in almost all tissues, but liver

synthesis accounts for nearly 75% of circulating IGF-1 levels. As a

hormone with a wide range of physiological roles, IGF-1 circulating

levels must be strictly controlled. Around 98% of circulating IGF-1 is

bound to insulin-like growth factor binding protein (IGFBP). Six

forms of high affinity IGFBP have been described, with IGFBP3

binding approximately 90% of circulating IGF-1. Also, IGFBP1–6 and

their fragments have significant intrinsic biological activity independent

of IGF-1 interaction.

Canonical and noncanonical IGF-1 signaling pathways Activation of IGF-1R requires the sequential phosphorylation of three conserved tyrosine residues within the activation loop of the catalytic domain. From these phosphorylated motifs, tyrosine 950 contained in an NPXY motif provides a docking site for the recruitment of adaptor proteins, such as insulin receptor substrate-1 (IRS-1) and Shc, as an obligatory step to initiate signaling cascades. Two canonical pathways are activated by IGF-1R in cardiomyocytes – the phosphatidylinositol-3 kinase (PI3K)/Akt pathway and the extracellular signal-regulated kinase (ERK) pathway. Both pathways have been extensively studied, and their involvement in the pro-hypertrophic and pro-survival actions in cardiomyocytes is well established. Interestingly, a noncanonical signaling mechanism for IGF-1R in cardiomyocytes has been described in several recent studies. These studies show that some of the effects of IGF-1 are inhibited by the heterotrimeric Gi protein blocker Pertussis toxin (PTX) in several cell lines, suggesting that IGF-1R is a dual-activity receptor that triggers tyrosine-kinase-dependent responses as well as Gi-protein-dependent pathways. This duality has been reported in cultured neonatal cardiomyocytes; IGF-1R can activate ERK and Akt but also phospholipase C (PLC), which increases inositol 1,4,5 triphosphate (InsP3; IP3) leading to nuclear Ca2+ signals.

The cardiac effects of IGF-1 are mediated by activation of the plasma membrane IGF-1R, which belongs to the receptor tyrosine kinase (RTK) family. IGF-1R comprises a α2β2 heterotetrameric complex of approximately 400 kDa. Structurally, IGF-1R has two extracellular a-subunits that contain the ligand-binding sites. Each α-subunit couples to one of two membrane-spanning β-subunits, which contain an intracellular domain with intrinsic tyrosine kinase activity. Both subunits of IGF-1R are the product of one single gene, which is synthesized as a 180 kDa precursor. The immature IGF-1R full peptide is further glycosylated, dimerized, and proteolytically processed for assembly of the mature receptor isoforms a and b. In neonatal and adult rat cardiomyocytes, the IGF-1R precursor peptide and the processed α and β receptor subunits have been detected. Binding of IGF-1 to its receptor initiates a complex signaling cascade in cardiomyocytes.

Figure 1. not shown. Canonical and noncanonical signaling pathways activated by insulin-like growth factor 1 (IGF-1) in cardiomyocytes. Binding of IGF-1 to plasma membrane IGF-1 receptor (IGF-1R) leads to receptor autophosphorylation in the intracellular β-subunits. Docking of Grβ2 to the phosphorylated IGF-1Rβ subunits leads to extracellular signal-regulated kinase (ERK) phosphorylation through the Ras/Raf/Mitogen-activated protein kinase (MEK) axis. Phosphorylated ERK can translocate to the nucleus to control gene expression. Phosphorylated β-subunits also provide docking sites for insulin receptor substrate-1 (IRS-1), which mediates phosphatidylinositol-3 kinase (PI3K) activation and Akt phosphorylation. Downstream targets of activated Akt are mechanistic target of rapamycin (mTOR), which suppresses autophagy and promotes protein synthesis by activating S6K and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). Akt also phosphorylates and inactivates Bad, thus inhibiting apoptosis. IGF-1R activation also promotes its interaction with a Pertussis-toxin-sensitive heterotrimeric Gi protein, which mediates the activation of phospholipase C (PLC) and hydrolysis of plasma membrane phosphatidylinositol 4,5 biphosphate (PIP2) to form inositol 1,4,5 triphosphate (InsP3; IP3) which activates InsP3 receptors located at the endoplasmin reticulum (ER)/nuclear envelope Ca2+ store, producing nucleoplasmic and cytoplasmic Ca2+ increases. The former is involved in the regulation of specific target genes and the latter promotes mitochondrial Ca2+ uptake, which increases mitochondrial respiration and metabolism, further preventing apoptosis and regulating autophagy. Canonical signaling pathways include the ERK and Akt axes, and are shown in red, whereas the noncanonical G protein pathway is shown in blue. Both pathways interact as Ca2+ contributes to ERK activation and additionally both Akt and ERK can compensate each other’s activation. Abbreviations: MEK, Mitogen-activated protein kinase; mTOR, mechanistic target of rapamycin; 4EBP1, eukaryotic translation initiation factor 4E binding protein 1; PIP2, phosphatidylinositol 4,5 biphosphate.

Figure 2. not shown. Classical versus proposed models of nuclear Ca2+ signaling in cardiomyocytes. The insulin-like growth factor 1 receptor (IGF-1R) can specifically regulate nuclear Ca2+ signaling independently of the role of Ca2+ on excitation–contraction coupling. On the classic model, inositol 1,4,5 triphosphate (InsP3; IP3) produced after IGF-1R activation travels from the peripheral plasma membrane to the nucleus, where it activates InsP3 receptors. In this model InsP3 bypasses its receptors present on the sarcoplasmic reticulum, which would lead to cytosolic Ca2+ signals. The novel model that we propose is based on recent findings, where the IGF-1R signaling complex is present in T-tubule invaginations toward the nucleus. In these compartments, IGF-1R activation leads to locally restricted InsP3 production that allows nuclear Ca2+ signals to regulate gene expression of genes associated with the development of cardiomyocyte hypertrophy. Abbreviations: RyR, ryanodine receptor; ECC, excitation–contraction coupling; PLC, phospholipase C; DHPR, dihydropyridine receptor.

The beneficial roles of IGF-1 in the cardiovascular system largely explain the interest in the development of new IGF-1-based treatments for cardiovascular disease. So far the FDA has approved two drugs for the treatment of IGF-1 deficiency: mecasermin (Increlex1), a human recombinant IGF-1 analog; and mecasermin rinfabate (IPLEX1), a binary protein complex of human recombinant IGF-1 and human recombinant IGBP-3. The safety of a chronic systemic IGF-1 therapy is open to question because it could promote severe adverse effects, such as an increased risk of cancer. To avoid these problems, several researchers have selectively overexpressed IGF-1 and IGF-1R in the heart.

Box 2. Outstanding questionsInsulin-like growth factor 1 (IGF-1) is an old friend of the heart. Despite the well-known protective effects of IGF-1 on cardiac function and the antiapoptotic effects of this peptide, novel evidence opens new questions to this longstanding relationship.

·       How do the multiple signaling pathways triggered by IGF-1 receptor (IGF-1R) interact with each other?

·       What lies further than extracellular signal-regulated kinase (ERK)/Akt/Ca2+ activation toward heart function?

·       Do these signaling pathways regulate cardiac fibroblast or endothelial cell function?

·       Which are the specific downstream signaling pathways of the different pools of IGF-1R and their role in regulating cardiomyocyte survival, hypertrophy, metabolism, proliferation?

·       What drives IGF-1R to such specific subcellular compartments?

·       What is the relevance of the hybrid IGF-1R/insulin receptors on cardiovascular disease?

·       Does a crosstalk exist between insulin receptor and IGF-1R in the heart under physiological and pathological conditions?

·       Is one pathway more beneficial than the other?

·       Will stem cell therapy of cardiac progenitors be able to provide concrete treatment opportunities?

·       Is IGF-1 a key regulator of this outcome?

Abundant evidence supports the key physiological roles of IGF-1 in the heart. In cardiomyocytes, IGF-1 activates multiple downstream signaling pathways for controlling cell death, metabolism, autophagy, differentiation, transcription, and protein synthesis (Figure 1). Of great interest are the findings that the entire IGF-1R complex is strategically located in perinuclear sarcolemmal invaginations that locally control nuclear Ca2+ signaling and transcriptional upregulation (Figure 2). This novel evidence changesmthe classical paradigm of IGF-1 signaling and adds a new level of complexity that may be relevant for other signaling receptors in the heart: interorganelle communication between plasma membrane invaginations and the nucleus.
The strategic localization of IGF-1R in these structures and the association with heterotrimeric G proteins may explain the differences in the phenotypic response induced by IGF-1 and others agonists, like endothelin-1 and angiotensin II, that also signal through intracellular Ca2+. By activating a noncanonical, selective mechanism of nuclear Ca2+ release, IGF-1 can regulate the expression of a specific set of cardiac genes via the generation of a particular signal-encoding pattern, leading to adaptive cardiac hypertrophy, antiapoptotic effects, and metabolic adaptation.

Pulmonary Hypertension in Heart Failure with Preserved Ejection Fraction – any Pathophysiological Role of Mitral Regurgitation

Marco Guazzi
http://dx.doi.org:/10.1016/j.jacc.2009.04.088

read with interest the study by Lam et al. (1) as an important contribution to the pathophysiological and clinical impact of pulmonary hypertension (PH) in hypertensive patients with heart failure and preserved left ventricular ejection fraction (HFpEF). Recent guidelines on arterial PH recognize HFpEF as a growing cause of left-sided PH, but a definitive appreciation of its true prevalence and prognostic relevance is lacking. The present study provides some new important information on this subject.

It is noteworthy that HFpEF was associated, in a high rate of cases (83%), with a typical hemodynamic pattern of precapillary PH, and a strong correlation was found between pulmonary artery systolic pressure and pulmonary capillary wedge pressure. Most important, pulmonary artery systolic pressure, rather than other echocardiography-derived measures of diastolic dysfunction, was the only significant multivariate predictor of mortality, a finding that was confirmed even when combined comorbid diseases potentially contributing to PH development, such as chronic obstructive pulmonary disease, were taken into account.

In patients with systolic heart failure, a major determinant of PH development is mitral regurgitation. Whether mitral regurgitation could be a putative factor in the pathogenesis of PH in HFpEF patients remains an open and intriguing question.

Accordingly, it would be of interest if the authors could provide some details on how many HFpEF patients exhibited mitral regurgitation, especially in comparison with control hypertensive patients without HFpEF.

Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol 2009; 53:1119–23.

Midregion Prohormone Adrenomedullin and Prognosis in Patients Presenting with Acute Dyspnea Results from the BACH (Biomarkers in Acute Heart Failure) Trial

Alan Maisel, MD, Christian Mueller, Richard M. Nowak,W. Frank Peacock, et al.
J Am Coll Cardiol 2011; 58(10):1057–67
http://dx.doi.org:/10.1016/j.jacc.2011.06.006

Objectives The aim of this study was to determine the prognostic utility of midregion proadrenomedullin (MR-proADM) in all patients, cardiac and noncardiac, presenting with acute shortness of breath.
Background
The recently published BACH (Biomarkers in Acute Heart Failure) study demonstrated that MR-proADM had superior accuracy for predicting 90-day mortality compared with B-type natriuretic peptide (area under the curve: 0.674 vs. 0.606, respectively, p < 0.001) in acute heart failure.
Methods The BACH trial was a prospective, 15-center, international study of 1,641 patients presenting to the emergency department with dyspnea. Using this dataset, the prognostic accuracy of MR-proADM was evaluated in all patients enrolled for predicting 90-day mortality with respect to other biomarkers, the added value in addition to clinical variables, as well as the added value of additional measurements during hospital admission.
Results Compared with B-type natriuretic peptide or troponin, MR-proADM was superior for predicting 90-day all-cause mortality in patients presenting with acute dyspnea (c index = 0.755, p < 0.0001). Furthermore, MR-proADM added significantly to all clinical variables (all adjusted hazard ratios: HR=3.28), and it was also superior to all other biomarkers. MRproADM added significantly to the best clinical model (bootstrap-corrected c index increase: 0.775 to 0.807; adjusted standardized hazard ratio: 2.59; 95% confidence interval: 1.91 to 3.50; p < 0.0001). Within the model, MR-proADM was the biggest contributor to the predictive performance, with a net reclassification improvement of 8.9%. Serial evaluation of MR-proADM performed in patients admitted provided a significant added value compared with a model with admission values only (p< 0.0005). More than one-third of patients originally at high risk could be identified by the biomarker evaluation at discharge as low-risk patients. Conclusions MR-proADM identifies patients with high 90-day mortality and adds prognostic value to natriuretic peptides in patients presenting with acute shortness of breath. Serial measurement of this biomarker may also prove useful for monitoring, although further studies will be required. (Biomarkers in Acute Heart Failure [BACH]; NCT00537628)

Invasive Hemodynamic Characterization of Heart Failure with Preserved Ejection Fraction

Mads J. Andersen, Barry A. Borlaug
Heart Failure Clin 10 (2014) 435–444
http://dx.doi.org/10.1016/j.hfc.2014.03.001

KEY POINTS

  • Invasive hemodynamic assessment in heart failure with preserved ejection fraction (HFpEF) was originally a primary research tool to advance the understanding of the pathophysiology of HFpEF.
  • The role of invasive hemodynamic assessment in HFpEF is expanding to the diagnostic arena where invasive assessment offers a robust, sensitive, and specific way to diagnose or exclude HFpEF in patients with unexplained dyspnea and normal ejection fraction.
  • In future years, invasive hemodynamic profiling may more rigorously phenotype patients to individualized therapy and, potentially, deliver novel device-based structural interventions.

The circulatory system serves to deliver substrates to the body via the bloodstream while removing the byproducts of cellular metabolism. Hemodynamics broadly refers to the study of the forces involved in the circulation of blood, which are governed by to the physical properties of the heart and vasculature and their dynamic regulation by the autonomic nervous system.

Afterload represents the forces opposing ventricular ejection and can be quantified by systolic left ventricular (LV) wall stress and aortic input impedance or its individual components (resistance, compliance, characteristic impedance). Wall stress is inconvenient because it depends on heart size and geometry, whereas impedance is cumbersome because it is a frequency-domain parameter that cannot be easily coupled with time-domain measures of ventricular function. Effective arterial elastance (Ea), defined by the ratio of LV end-systolic pressure (ESP) to stroke volume, provides a robust measure of total arterial load. Ea is not a directly measured parameter but, instead, a net or lumped stiffness of the vasculature that incorporates both mean and oscillatory components of afterload (Fig. 1). Preload reflects the degree of myofiber stretch before the onset of contraction, which, in turn, dictates the force and velocity of contraction according to the Frank-Starling principle. In everyday practice, preload is often conceptualized as equivalent to LV filling pressures. However, in fact, preload is most accurately reflected by the LV volume at end-diastole volume (EDV). Filling pressures are related to EDV by the LV diastolic chamber stiffness, which differs in healthy volunteers and subjects with HFpEF.

Fig. 1. Not shown. Ventricular-arterial coupling in the pressure-volume plane. Pressure volume loop at steady state is shown in dark black. The area subtended by the loop (shaded) represents the stroke work. Stroke volume is the difference between end-diastolic volume (EDV) and end-systolic volume (ESV). Ea is defined by the negative slope connecting the ESP and ESV coordinates with EDV and pressure = 0. With acute preload reduction (dotted line loops) there is progressive reduction in EDV, ESV, and ESP. The linear slope of the endsystolic pressure volume relationship (ESPVR) is LV end-systolic elastance (Ees). The curvilinear slope of the end diastolic pressure–volume relationship (EDVPR) is derived by fitting pressure volume coordinates measured during diastasis to the equation shown. The exponential power or stiffness constant (b) obtained is a measure of LV diastolic stiffness. (Adapted from Borlaug BA, Kass DA. Invasive hemodynamic assessment in heart failure. Heart Fail Clin 2009;5(2):217–28; with permission.)

Fig. 3. Not shown. Left ventricular diastolic reserve in HFpEF. In the normal healthy adult, the rate of LV pressure decay during isovolumic contraction (t) is rapid and increases markedly during exercise in association with a reduction in LVmin, allowing for suction of blood into the LV, with no increase in left atrial pressure or LV end-diastolic pressure (LVEDP) despite an increase in LV end-diastolic volume and marked shortening of the cycle length. In HFpEF, relaxation is prolonged at baseline (increased t) with inadequate hastening (shortening of t) during exercise, contributing to an inability to reduce LVmin and, consequently, a complete lack of suction effects. LV filling then completely depends on left atrial hypertension, which develops in tandem with marked elevation in LVEDP. (Data from Borlaug BA, Jaber WA, Ommen SR, et al. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart 2011;97(12):964–9.)

Fig. 4. Preload and filling pressures in HFpEF. (A) Cumulative distribution plot shows that acute changes in stroke volume with nitroprusside infusion are lower in HFpEF (black) compared with HFrEF (red). Because afterload (Ea) is lowered, any acute reduction in SV must be related to reduction in preload volume (EDV) and nearly 40% of HFpEF patients experienced stroke volume reduction with nitroprusside, despite high filling pressures (PCWP 20–25 mm Hg), indicating increased reliance on high pressures to achieve adequate EDV. *p<0.0001 compared with HFrEF. (B) LVEDP in a healthy adult (blue) and in a HFpEF patient with increased LV diastolic stiffness (green). At the same preload (EDV), pressure is more than twofold higher in HFpEF. In contrast, at the same LV diastolic pressure (15 mm Hg), LV volume is much lower in HFpEF, indicating decreased LV diastolic capacitance. V15, volume at end-diastolic pressure = 15 mm Hg; LVEDP. (Adapted from Schwartzenberg S, Redfield MM, From AM, et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 2012;59(5):442–51; with permission.)

Updated Clinical Classification of Pulmonary Hypertension

Gérald Simonneau, Ivan M. Robbins, Maurice Beghetti, et al.
J Am Coll of Cardiol   2009; 54(1), Suppl S
http://dx.doi.org:/10.1016/j.jacc.2009.04.012

The aim of a clinical classification of pulmonary hypertension (PH) is to group together different manifestations of disease sharing similarities in pathophysiologic mechanisms, clinical presentation, and therapeutic approaches. In 2003, during the 3rd World Symposium on Pulmonary Hypertension, the clinical classification of PH initially adopted in 1998 during the 2nd World Symposium was slightly modified. During the 4th World Symposium held in 2008, it was decided to maintain the general architecture and philosophy of the previous clinical classifications. The modifications adopted during this meeting principally concern Group 1, pulmonary arterial hypertension (PAH). This subgroup includes patients with PAH with a family history or patients with idiopathic PAH with germline mutations (e.g., bone morphogenetic protein receptor-2, activin receptor-like kinase type 1, and endoglin). In the new classification, schistosomiasis and chronic hemolytic anemia appear as separate entities in the subgroup of PAH associated with identified diseases. Finally, it was decided to place pulmonary venoocclusive disease and pulmonary capillary hemangiomatosis in a separate group, distinct from but very close to Group 1 (now called Group 1=). Thus, Group 1 of PAH is now more homogeneous. (J Am Coll Cardiol 2009; 54: S43–54)
Updated Evidence-Based Treatment Algorithm in Pulmonary Arterial Hypertension

Robyn J. Barst,  J. Simon R. Gibbs, Hossein A. Ghofrani, et al.
J Am Coll Cardiol 2009; 54(1), Suppl S,

Uncontrolled and controlled clinical trials with different compounds and procedures are reviewed to define the risk benefit profiles for therapeutic options in pulmonary arterial hypertension (PAH). A grading system for the level of evidence of treatments based on the controlled clinical trials performed with each compound is used to propose an evidence-based treatment algorithm. The algorithm includes drugs approved by regulatory agencies for the treatment of PAH and/or drugs available for other indications. The different treatments have been evaluated mainly in idiopathic PAH, heritable PAH, and in PAH associated with the scleroderma spectrum of diseases or with anorexigen use. Extrapolation of these recommendations to other PAH subgroups should be done with caution. Oral anticoagulation is proposed for most patients; diuretic treatment and supplemental oxygen are indicated in cases of fluid retention and hypoxemia, respectively. High doses of calcium-channel blockers are indicated only in the minority of patients who respond to acute vasoreactivity testing. Nonresponders to acute vasoreactivity testing or responders who remain in World Health Organization (WHO) functional class III, should be considered candidates for treatment with either an oral phosphodiesterase-5 inhibitor or an oral endothelin-receptor antagonist. Continuous intravenous administration of epoprostenol remains the treatment of choice in WHO functional class IV patients. Combination therapy is recommended for patients treated with PAH monotherapy who remain in WHO functional class III. Atrial septostomy and lung transplantation are indicated for refractory patients or where medical treatment is unavailable. (J Am Coll Cardiol 2009;54:S78–84)

Inhibition and down-regulation of gene transcription and guanylyl cyclase activity of NPRA by angiotensin II involving protein kinase C

Kiran K. Arise, Kailash N. Pandey
Biochem and Biophys Res Commun 349 (2006) 131–135
http://dx.doi.org:/10.1016/j.bbrc.2006.08.003

The objective of this study was to investigate the role of protein kinase C (PKC) in the angiotensin II (Ang II)-dependent repression of Npr1 (coding for natriuretic peptide receptor-A, NPRA) gene transcription. Mouse mesangial cells (MMCs) were transfected with Npr1 gene promoter-luciferase construct and treated with Ang II and PKC agonist or antagonist. The results showed that the treatment of MMCs with 10 nM Ang II produced a 60% reduction in the promoter activity of Npr1 gene. MMCs treated with 10 nM Ang II exhibited 55% reduction in NPRA mRNA levels, and subsequent stimulation with 100 nM ANP resulted in 50% reduction in guanylyl cyclase (GC) activity. Furthermore, the treatment of MMCs with Ang II in the presence of PKC agonist phorbol ester (100 nM) produced an almost 75% reduction in NPRA mRNA and 70% reduction in the intracellular accumulation of cGMP levels. PKC antagonist staurosporine completely reversed the effect of Ang II and phorbol ester. This is the first report to demonstrate that ANG II-dependent transcriptional repression of Npr1 gene promoter activity and down-regulation of GC activity of translated protein, NPRA is regulated by PKC pathways.

Transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-A gene

Prerna Kumar, Kiran K. Arise, Kailash N. Pandey
peptides 27 (2006) 1762–1769
http://dx.doi.org:/10.1016/j.peptides.2006.01.004

Activation of natriuretic peptide receptor-A (NPRA) produces the second messenger cGMP, which plays a pivotal role in maintaining blood pressure and cardiovascular homeostasis. In the present study, we have examined the role of trans-acting factor Ets-1 in transcriptional regulation of Npr1 gene (coding for NPRA).Using deletional analysis of the Npr1 promoter, we have defined a 400 base pair (bp) region as the core promoter, which contains consensus binding sites for transcription factors including: Ets-1, Lyf-1, and GATA-1/2. Over-expression of Ets-1 in mouse mesangial cells (MMCs) enhanced Npr1 gene transcription by 12-fold. However, overexpression of GATA-1 or Lyf-1 repressed Npr1 basal promoter activity by 50% and 80%, respectively. The constructs having a mutant Ets-1 binding site or lacking this site failed to respond to Ets-1 activation of Npr1 gene transcription. Collectively, the present results demonstrate that Ets-1 greatly stimulates Npr1 gene promoter activity, implicating its critical role in the regulation and function of NPRA at the molecular level.

Several agents that are known to upregulate Ets-1 transcription, include RA, TNF-alpha, VEGF, and TPA. Ets-1 is upregulated at exposure to agonists such as serum in vitro and is expressed in injured vasculature. MAPK-mediated phosphorylation positively regulates the transcriptional activation functions of Ets-1 by recruiting CBP/p300. Not much is known about Ets-1 expression or regulation in mesangial cells. A temporal increase of mesangial cell Ets-1 expression has been reported which correlates with mesangial cell activation
in mesangioproliferative glomerulonephritis suggesting involvement of PDGF-B. There might be a possibility that during glomerulonephritis increased Ets-1 expression upregulates Npr1 gene as a protective mechanism. Npr1 gene has been shown to negatively regulate mitogen-activated protein kinase and proliferation of mesangial cells.

In conclusion, our results demonstrate that the precise control of Npr1 gene transcriptional activity is achieved through a synergy of activators and repressors in which Ets-1 plays an integral role as a transcriptional activator. Comparatively, Lyf-1 and GATA-1 act as repressors, inhibiting and regulating the transcriptional activity of Npr1 gene promoter. The present findings suggest that Ets-1 plays a critical role in enhancing Npr1 gene transcription and may have an important influence in hypertension and cardiovascular homeostasis at the molecular level.

Krüppel-like transcription factor 11 (KLF11) overexpression inhibits cardiac hypertrophy and fibrosis in mice

Yue Zheng, Ye Kong, Feng Li
Biochem and Biophys Res Commun 443 (2014) 683–688
http://dx.doi.org/10.1016/j.bbrc.2013.12.024

The Krüppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins. The KLF family member KLF11 is originally identified as a transforming growth factor b (TGF-b)-inducible gene and is one of the most studied in this family. KLF11 is expressed ubiquitously and participates  in diabetes and regulates hepatic lipid metabolism. However, the role of KLF11 in cardiovascular system is largely unknown. Here in this study, we reported that KLF11 expression is down-regulated in failing human hearts and hypertrophic murine hearts. To evaluate the roles of KLF11 in cardiac hypertrophy, we generated cardiac-specific KLF11 transgenic mice. KLF11 transgenic mice do not show any difference from their littermates at baseline. However, cardiac-specific KLF11 overexpression protects mice from TAC-induced cardiac hypertrophy, with reduced radios of heart weight (HW)/body weight (BW), lung weight/BW and HW/tibia length, decreased left ventricular wall thickness and increased fractional shortening. We also observe lower expression of hypertrophic fetal genes in TAC-challenged KLF11 transgenic mice compared with WT mice. In addition, KLF11 reduces cardiac fibrosis in mice underwent hypertrophy. The expression of fibrosis markers are also down-regulated when KLF11 is overexpressed in TAC-challenged mice. Taken together, our findings identify a novel anti-hypertrophic and anti-fibrotic role of KLF11, and KLF11 activator may serve as candidate drug for heart failure patients.

Read Full Post »


Larry H Bernstein, MD, FCAP, Curator

Leaders in Pharmaceutical Intelligence

 

 

Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: current strengths and limitations
V Papaioannou, I Pneumatikos and N Maglaveras
Front Phys 2013.
http://dx.doi.org:/10.3389/fphys.2013.00174

A few clinical studies have assessed the possible inter-relation between neuro-autonomic output, estimated with heart rate variability analysis, which is the variability of R-R in the electrocardiogram, and different inflammatory biomarkers, in patients suffering from stable or unstable coronary artery disease (CAD) and heart failure. Moreover, different indices derived from heart rate signals’ processing, have been proven to correlate strongly with severity of heart disease and predict final outcome. In this review article we will summarize major findings from different investigators, evaluating neuro-immunological interactions through heart rate variability analysis, in different groups of cardiovascular patients. We suggest that markers originating from variability analysis of heart rate signals seem to be related to inflammatory biomarkers.
Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation  

DM. Hodgson-Zingman, ML. Karst, LV. Zingman, DM. Heublein, et al.
N Engl J Med. 2008 July 10; 359(2): 158–165  http://www.nejm.org/doi/full/10.1056/NEJMoa0706300

We mapped an atrial fibrillation locus to chromosome 1p36-p35 and identified a heterozygous frameshift mutation in the gene encoding atrial natriuretic peptide. Circulating chimeric atrial natriuretic peptide (ANP) was detected in high concentration in subjects with the mutation, and shortened atrial action potentials were seen in an isolated heart model, creating a possible substrate for atrial fibrillation. This report implicates perturbation of the atrial natriuretic peptide–cyclic guanosine monophosphate (cGMP) pathway in cardiac electrical instability.
Impact of anemia on clinical outcome in patients with atrial fibrillation undergoing percutaneous coronary intervention: insights from the AFCAS registry.
M Puurunen, T Kiviniemi, W Nammas, A Schlitt, A Rubboli, K Nyman, et al.
BMJ Open 2014; 4:e004700.
http://dx.doi.org:/10.1136/bmjopen-2013-004700

The study adds to our knowledge on the prevalence and impact of anemia in patients with AF undergoing PCI and thus requiring combination antithrombotic medication. It shows that anemia is a frequent finding and that even mild anemia has an adverse impact on outcome.
Atrial Natriuretic Peptide Single Nucleotide Polymorphisms in Patients with Nonfamilial Structural Atrial Fibrillation.
P Francia, A Ricotta, A Frattari, R Stanzione, A Modestino, et al.
Clinical Medicine Insights: Cardiology 2013:7 153–159
http://dx.doi.org:/10.4137/CMC.S12239

We report lack of association between the rs5065 and −G664C ANP gene SNPs and AF in a Caucasian population of patients with structural AF. Further studies will clarify whether these or other ANP gene variants affect the risk of different subpheno-types of AF driven by distinct pathophysiological mechanisms.
Gene Expression and Genetic Variation in Human Atria.

H Lin, EV. Dolmatova, MP. Morley, KL. Lunetta, et al.
Heart Rhythm HRTHM5533.
http://dx.doi.org/10.1016/j.hrthm.2013.10.051

We studied the gene expression profiles and genetic variations in 53 left atrial and 52 right atrial tissue samples collected from the Myocardial Applied Genomics Network (MAGNet) repository. The tissues were collected from heart failure patients undergoing transplantation and from unused organ donor hearts with normal ventricular function.
A total of 187 and 259 significant cis-associations between transcript levels and genetic variants were identified in left and right atrial tissues, respectively. We also found that a SNP at a known AF locus, rs3740293, was associated with the expression of MYOZ1 in both left and right atrial tissues. Our results implicate MYOZ1 as the causative gene at the chromosome 10q22 locus for AF. 

Global Left Atrial Strain Correlates with CHADS2 Risk Score in Patients with Atrial Fibrillation
SK. Saha, PL. Anderson, G Caracciolo, A Kiotsekoglou, S Wilansky, et al.

J Am Soc Echocardiogr 2011;24:506-12.
http://dx.doi.org:/10.1016/j.echo.2011.02.012

Global longitudinal LA strain was reduced in patients with AF compared with controls (P < .001) and was a predictor of high risk for thromboembolism (CHADS2 score > 2; odds ratio, 0.86; P = .02). LA strain indexes showed good interobserver and intraobserver variability. In sequential Cox models, the prediction of hospitalization and/or death was improved by addition of global LA strain and indexed LA volume to CHADS2 score (P = .003).

Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus.
PTA Seyd, VIT Ahamed, J Jacob, P Joseph K.
Int  Biol and Life Sci  2008; 4(1).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.307.6260

In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Power Spectral Density of the RR interval of a 55 year old healthy volunteer

Power Spectral Density of the RR interval of a 55 year old healthy volunteer

 

 

Power Spectral Density of the RR interval of a 55 year old healthy volunteer

 

Power Spectral Density of the RR interval of a 62 year old woman suffering from diabetes for the last 15 years.

Power Spectral Density of the RR interval of a 62 year old woman suffering from diabetes for the last 15 years.

 

 

Power Spectral Density of the RR interval of a 62 year old woman suffering from diabetes for the last 15 years.

Time domain and frequency domain analysis of the RR interval variability of diabetic and normal subjects shows that there is significant difference in these measures for DM patients with respect to normal subjects. Variation of the HRV parameters indicates changes in ANS activity of DM patients. This can provide valid information regarding autonomic neuropathy in people with diabetes. It may be noted that these methods can detect changes before clinical signs appear.

Quantification of Heart Rate Variability: A Measure based on Unique Heart Rates
VIT Ahamed, P Dhanasekaran, A Naseem, NG Karthick, TKA Jaleel, Paul K

It is established that the instantaneous heart rate (HR) of healthy humans keeps on changing. Analysis of heart rate variability (HRV) has become a popular non invasive tool for assessing the activities of autonomic nervous system. Depressed HRV has been found in several disorders, like diabetes mellitus (DM) and coronary artery disease, characterised by autonomic nervous dysfunction. A new technique, which searches for pattern repeatability in a time series, is proposed specifically for the analysis of heart rate data. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are compared with approximate entropy and sample entropy.

Cardiovascular autonomic neuropathy in patients with diabetes mellitus
International Journal of Pharma and Bio Sciences
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.178.2974

The cardioautonomic reflexes of 82 diabetic subjects and 40 age and sex matched healthy controls were studied using blood pressure and heart rate variation in response to standing, deep breathing, isometric exercise, cold pressor test and determination of QTc interval. Among the 82 patients, 68 patients were found to have cardiac autonomic neuropathy (CAN). Results showed that diabetics had significantly impaired cardioautonomic reflexes compared to non-diabetics, which increases with the duration of diabetes. Out of 68 patients with CAN, QTc prolongation was observed in 64 patients. In conclusion the autonomic nervous system integrity is appeared to be greatly affected by diabetes mellitus and the degree of impairment was dependent on duration of the disease.

Prognostic Value of Heart Rate Variability Analysis in Patients with Depressed Left Ventricular Function Irrespective of Cardiac Rhythm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.377.9244
 M Sosnowski, Pw Macfarlane, R Parma, J Skrzypek-wanha, M Tendera

A new index of heart rate variability – HRF Fraction – was developed and its value for risk stratification was evaluated in 480 patients with coronary heart disease. The main purpose to introduce the HRVF was to overcome one of the most important constraints – cardiac arrhythmia, especially atrial fibrillation – that limits use of HRV measurement as a routine clinical tool. In 384 patients with sinus rhythm (SR) and 96 with AF HRV measurements from 24h ambulatory ECG were performed. Patients were followed for a median period of 28 months. The HRV indices in those who died were compared to those who survived. Authors found that HRV Fraction and- among standard time-domain indices- only SDANN, possessed properties that allow HRV measurement to be applied for risk stratification studies in unselected population of patients with cardiac arrhythmia.

Short- and long-term reproducibility of heart rate variability in patients with long-standing type I diabetes mellitus.
Burger AJ1, Charlamb M, Weinrauch LA, D’Elia JA
Am J Cardiol. 1997 Nov 1;80(9):1198-202.
http://www.ncbi.nlm.nih.gov/pubmed/9359550

Using Pearson correlation, the time domain indicators of parasympathetic activity demonstrated very strong correlations at 3 and 6 months compared with baseline, with good correlations at 1 year. The average SD of all 5-minute RR intervals maintained a very strong correlation for the entire year (r >0.94). In the frequency domain, the measures of parasympathetic and sympathetic activity maintained a solid correlation for the entire study period. Reproducibility of HRV was also examined using repeated-measures analysis of variance. The time and frequency domain parameters demonstrated very little variation over the study period of 12 months. Thus, our investigation demonstrated that HRV in long-term diabetics using 24-hour ambulatory recordings is abnormal and reproducible over a 12-month interval; very little variation in all HRV parameters, especially in parameters of parasympathetic activity, occurred during the study period.

 

 

 

 

 

Read Full Post »


A Future for Plasma Metabolomics in Cardiovascular Disease Assessment

Curator: Larry H Bernstein, MD, FCAP

 

 

Plasma metabolomics reveals a potential panel of biomarkers for early diagnosis
in acute coronary syndrome  

CM. Laborde, L Mourino-Alvarez, M Posada-Ayala,
G Alvarez-Llamas, MG Serranillos-Reus, et al.
Metabolomics – manuscript draft

In this study, analyses of peripheral plasma from Non-ST Segment Elevation
Acute Coronary Syndrome patients and healthy controls by gas chromatography-
mass spectrometry permitted the identification of 15 metabolites with statistical
differences (p<0.05) between experimental groups.
In our study, 6 amino acids were found decreased in NSTEACS patients when
compared with healthy control group suggesting either a decrease in anabolic
activity of these metabolites or an increase in the catabolic pathways. Of both
possibilities, the increased catabolism of the amino acids can be explained
considering simultaneously the capacity of glycogenic and ketogenic amino
acids along with the gradual hypoxic condition to which cardiac muscle cells
have been exposed.

Additionally, validation by gas chromatography-mass spectrometry and liquid
chromatography-mass spectrometry permitted us to identify a potential panel
of biomarkers formed by 5-OH tryptophan, 2-OH-butyric acid and 3-OH-butyric
acid. Oxidative stress conditions dramatically increase the rate of hepatic
synthesis of glutathione. It is synthesized from the amino acids cysteine, glutamic
acid and glycine. Under these conditions of metabolic stress, the supply of cysteine
for glutathione synthesis become limiting and homocysteine is used to form
cystathionine, which is cleaved to cysteine and 2-OH-butyric acid. Thus elevated
plasma levels of 2-OH-butyric acid can be a good biomarker of cellular oxidative
stress for the early diagnosis of ACS.  Another altered metabolite of similar
structure was 3-OH-butyric acid, a ketone body together with the acetoacetate,
and acetone. Elevated levels of ketone bodies in blood and urine mainly occur
in diabetic ketoacidosis. Type 1 diabetes mellitus (DMI) patients have decreased
levels of insulin in the blood that prevent glucose enter cells so these cells use
the catabolism of fats as energy source that produce ketones as final products.
This panel of biomarkers reflects the oxidative stress and the hypoxic state that
disrupts the myocardial cells and consequently constitutes a metabolomic
signature that could be used for early diagnosis of acute coronary syndrome.
We hypothesize that the hypoxia situation comes to “mimic” the physiological
situation that occurs in DMI. In this case, the low energy yield of glucose
metabolism “forces” these cells to use fat as energy source (through catabolism
independent of aerobic/anaerobic conditions) occurring ketones as final
products. In our experiment, the 3-OH-butyric acid was strongly elevated in
NSTEACS patients.

 

Current Methods Used in the Protein Carbonyl Assay
Nicoleta Carmen Purdel, Denisa Margina and Mihaela Ilie.
Ann Res & Rev in Biol 2014; 4(12): 2015-2026.
http://www.sciencedomain.org/download.php?f=Purdel4122013ARRB8763-1

The attack of reactive oxygen species on proteins and theformation of
protein carbonyls were investigated only in the recent years. Taking into
account that protein carbonyls may play an important role in the early
diagnosis of pathologies associated with reactive oxygen species
overproduction, a robust and reliable method to quantify the protein
carbonyls in complex biological samples is also required. Oxidative
stress represents the aggression produced at the molecular level by
the imbalance between pro-oxidant and antioxidant agents, in favor of
pro-oxidants, with severe functional consequences in all organs and
tissues. An overproduction of ROS results in oxidative damages
especially to proteins (the main target of ROS), as well as in lipids,or
DNA. Glycation and oxidative stress are closely linked, and both
phenomena are referred to as ‘‘glycoxidation’’. All steps of glycoxidation
generate oxygen-free radical production, some of them being common
with lipidic peroxidation pathways.
The initial glycation reaction is followed by a cascade of chemical
reactions resulting in the formation of intermediate products (Schiff base,
Amadori and Maillard products) and finally to a variety of derivatives
named advanced glycation end products (AGEs). In hyperglycemic
environments and in natural aging, AGEs are generated in increased
concentrations; their levels can be evaluated in plasma due to the fact
that they are fluorescent compounds. Specific biomarkers of oxidative
stress are currently investigated in order to evaluate the oxidative status
of a biological system and/or its regenerative power. Generaly, malondi-
aldehyde, 4-hydroxy-nonenal (known together as thiobarbituric acid
reactive substances – TBARS), 2-propenal and F2-isoprostanes are
investigated as markers of lipid peroxidation, while the measurement
of protein thiols, as well as S-glutathionylated protein are assessed
as markers of oxidative damage of proteins. In most cases, the
oxidative damage of the DNA has 8-hydroxy-2l-deoxyguanosine
(8-OHdG) as a marker.  The oxidative degradation of proteins plays an
important role in the early diagnosis of pathologies associated with
ROS overproduction. Oxidative modification of the protein structure
may take a variety of forms, including the nitration of tyrosine residues,
carbonylation, oxidation of methionine, or thiol groups, etc.

The carbonylation of protein represents the introduction of carbonyl
groups (aldehyde or ketone) in the protein structure, through several
mechanisms: by direct oxidation of the residues of lysine, arginine,
proline and threonine residues from the protein chain, by interaction
with lipid peroxidation products with aldehyde groups (such as 4-
hydroxy-2-nonenal, malondialdehyde, 2-propenal), or by the
interaction with the compounds with the carbonyl groups resulting
from the degradation of the lipid or glycoxidation. All of these
molecular changes occur under oxidative stress conditions.
There is a pattern of carbonylation, meaning that only certain
proteins can undergo this process and protein structure determines
the preferential sites of carbonylation. The most investigated
carbonyl derivates are represented by gamma-glutamic
semialdehyde (GGS) generated from the degradation of arginine
residue and α-aminoadipic semialdehyde (AAS) derived from lysine.

A number of studies have shown that the generation of protein
carbonyl groups is associated with normal cellular phenomena like
apoptosis, and cell differentiation and is dependent on age, species
and habits (eg. smoking) or severe conditions’ exposure (as
starvation or stress). The formation and accumulation of protein
carbonyls is increased in various human diseases, including –
diabetes and cardiovascular disease.

Recently, Nystrom [7] suggested that the carbonylation process
is associated with the physiological and not to the chronological
age of the organism and the carbonylation may be one of the causes
of aging and cell senescence; therefore it can be used as the marker
of these processes. Jha and Rizvi, [15] proposed the quantification of
protein carbonyls in the erythrocyte membrane as a biomarker of aging

PanelomiX: A threshold-based algorithm to create panels of
biomarkers

X Robin, N Turck, A Hainard, N Tiberti, F Lisacek. 
T r a n s l a t i o n a l  P r o t e o m i c s   2 0 1 3; 1: 57–64.
http://dx.doi.org/10.1016/j.trprot.2013.04.003

The computational toolbox we present here – PanelomiX – uses
the iterative combination of biomarkers and thresholds (ICBT) method.
This method combines biomarkers andclinical scores by selecting
thresholds that provide optimal classification performance. Tospeed
up the calculation for a large number of biomarkers, PanelomiX selects
a subset ofthresholds and parameters based on the random forest method.
The panels’ robustness and performance are analysed by cross-validation
(CV) and receiver operating characteristic(ROC) analysis.

Using 8 biomarkers, we compared this method against classic
combination procedures inthe determination of outcome for 113 patients
with an aneurysmal subarachnoid hemorrhage. The panel classified the
patients better than the best single biomarker (< 0.005) and compared
favourably with other off-the-shelf classification methods.

In conclusion, the PanelomiX toolbox combines biomarkers and evaluates
the performance of panels to classify patients better than single markers
or other classifiers. The ICBT algorithm proved to be an efficient classifier,
the results of which can easily be interpreted. 

Multiparametric diagnostics of cardiomyopathies by microRNA
signatures.
CS. Siegismund, M Rohde, U Kühl,  D  Lassner.
Microchim Acta 2014 Mar.
http://dx.doi.org:/10.1007/s00604-014-1249-y

MicroRNAs (miRNAs) represent a new group of stable biomarkers
that are detectable both in tissue and body fluids. Such miRNAs
may serve as cardiological biomarkers to characterize inflammatory
processes and to differentiate various forms of infection. The predictive
power of single miRNAs for diagnosis of complex diseases may be further
increased if several distinctly deregulated candidates are combined to
form a specific miRNA signature. Diagnostic systems that generate
disease related miRNA profiles are based on microarrays, bead-based
oligo sorbent assays, or on assays based on real-time polymerase
chain reactions and placed on microfluidic cards or nanowell plates.
Multiparametric diagnostic systems that can measure differentially
expressed miRNAs may become the diagnostic tool of the future due
to their predictive value with respect to clinical course, therapeutic
decisions, and therapy monitoring.

Nutritional lipidomics: Molecular metabolism, analytics, and
diagnostics
JT. Smilowitz, AM. Zivkovic, Yu-Jui Y Wan, SM. Watkins, et al.
Mol. Nutr. Food Res2013, 00, 1–17.
http://dx.doi.org:/10.1002/mnfr.201200808

The term lipidomics is quite new, first appearing in 2001. Its definition
is still being debated, from “the comprehensive analysis of all lipid
components in a biological sample” to “the full characterization of
lipid molecular species and their biological roles with respect to the
genes that encode proteins that regulate lipid metabolism”. In principle,
lipidomics is a field taking advantage of the innovations in the separation
sciences and MS together with bioinformatics to characterize the lipid
compositions of biological samples (biofluids, cells, tissues, organisms)
compositionally and quantitatively.

Biochemical pathways of lipid metabolism remain incomplete and the
tools to map lipid compositional data to pathways are still being assembled.
Biology itself is dauntingly complex and simply separating biological
structures remains a key challenge to lipidomics. Nonetheless, the
strategy of combining tandem analytical methods to perform the sensitive,
high-throughput, quantitative, and comprehensive analysis of lipid
metabolites of very large numbers of molecules is poised to drive
the field forward rapidly. Among the next steps for nutrition to understand
the changes in structures, compositions, and function of lipid biomolecules
in response to diet is to describe their distribution within discrete functional
compartments lipoproteins. Additionally, lipidomics must tackle the task
of assigning the functions of lipids as signaling molecules, nutrient sensors,
and intermediates of metabolic pathways.

Read Full Post »

Cardiovascular Diseases and Pharmacological Therapy: Curations by Aviva Lev-Ari, PhD, RN


Cardiovascular Diseases and Pharmacological Therapy: Curations by Aviva Lev-Ari, PhD, RN, 2006 – 4/2018

 

+120 articles listed below cover the following topics:

  • National Trends: Cardiovascular-related Hospital stay, Cost of Treatment & Societal Burden
  • Introduction to Drug Types: De Novo Brand, Generic, Biologics, Biosimsilars
  • Anti-Inflammatory & Systemic Inflammatory
  • Anti-thrombotic Drug Class & Novel Oral Anticoagulants (NOACs)
  • Pharmaco-Genetics response to Congenital and Spontaneous Mutations: new drugs and new biomarkers for Atherosclerosis, Genetic-related Novel Anti-Cholesterol, Lipids, LDL, HDL, Hypertriglyceridemia Hyperlipidemia
  • Epigenetics, Gender differences and Life Style: DM, Obesity, Hormonal Markers, Diets, Chrono-therapeutics
  • BP Management: Genetics & Human Adaptive Immunity
  • Anti-arrhythmic Drugs – Atrial Fibrillation (AF) & Silent Cerebral Infarctions
  • MI, Acute Coronary Syndrome (ACS) and Heart Failure (HF)
  • Calcium &Cardiovascular Diseases: Contractile Dysfunction, Calcium as Neurotransmitter Sensor
  • Regeneration: Cardiac System (cardiomyogenesis) and Vasculature (angiogenesis)
  • Vascular Biology, Atherosclerosis and Molecular Cardiology

 

A new mechanism of action to attack in the treatment of coronary artery disease (CAD), Novartis developed Ilaris (canakinumab), a human monoclonal antibody targeting the interleukin-1beta innate immunity pathway

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/04/06/a-new-mechanism-of-action-to-attack-in-the-treatment-of-coronary-artery-disease-cad-novartis-developed-ilaris-canakinumab-a-human-monoclonal-antibody-targeting-the-interleukin-1beta-innate-i/

 

Advantages and Disadvantages of Novel Oral Anticoagulants (NOACs)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/03/20/advantages-and-disadvantages-of-novel-oral-anticoagulants-noacs/

 

Acute Coronary Syndrome (ACS): Strategies in Anticoagulant Selection: Diagnostics Approaches – Genetic Testing Aids vs. Biomarkers (Troponin types and BNP)

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/03/13/acute-coronary-syndrome-acs-strategies-in-anticoagulant-selection-diagnostics-approaches-genetic-testing-aids-vs-biomarkers-troponin-types-and-bnp/

 

Cholesterol Lowering Novel PCSK9 drugs: Praluent [Sanofi and Regeneron] vs Repatha [Amgen] – which drug cuts CV risks enough to make it cost-effective?

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/03/12/cholesterol-lowering-novel-pcsk9-drugs-praluent-sanofi-and-regeneron-vs-repatha-amgen-which-drug-cuts-cv-risks-enough-to-make-it-cost-effective/

 

Higher BMI (Obesity Marker): Earlier onset of incident CVD followed by Shorter overall Survival – Men and women of all ages

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/03/05/higher-bmi-obesity-marker-earlier-onset-of-incident-cvd-followed-by-shorter-overall-survival-men-and-women-of-all-ages/

 

ODYSSEY Outcomes trial evaluating the effects of a PCSK9 inhibitor, alirocumab, on major cardiovascular events in patients with an acute coronary syndrome to be presented at the American College of Cardiology meeting on March 10.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/02/28/odyssey-outcomes-trial-evaluating-the-effects-of-a-pcsk9-inhibitor-alirocumab-on-major-cardiovascular-events-in-patients-with-an-acute-coronary-syndrome-to-be-presented-at-the-america/

 

Sex and Gender Connections: Heart and Brain Disease in Women

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/02/28/sex-and-gender-connections-heart-and-brain-disease-in-women/

 

In 2018 Cardiovascular PharmacoTherapy Market: Anti-thrombotic Drug Class Segment will continue to bring in the biggest profit and dominate production

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/02/27/in-2018-cardiovascular-pharmacotherapy-market-anti-thrombotic-drug-class-segment-will-continue-to-bring-in-the-biggest-profit-and-dominate-production/

 

Cost per Inpatient Hospital Stay: Five cardiovascular issues ranked in the top 10 – #1 Heart valve disorders, #2 Acute myocardial infarction (heart attack), #4 Coronary atherosclerosis, #7 Septicemia, #10 Acute cerebrovascular disease

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/02/27/cost-per-inpatient-hospital-stay-five-cardiovascular-issues-ranked-in-the-top-10-1-heart-valve-disorders-2-acute-myocardial-infarction-heart-attack-4-coronary-atherosclerosis/

 

There may be a genetic basis to CAD and that CXCL5 may be of therapeutic interest

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/02/09/there-may-be-a-genetic-basis-to-cad-and-that-cxcl5-may-be-of-therapeutic-interest/

 

FDA Approval marks first presentation of bivalirudin in frozen, premixed, ready-to-use formulation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/01/24/fda-approval-marks-first-presentation-of-bivalirudin-in-frozen-premixed-ready-to-use-formulation/

 

What Level of Blood Pressure (BP) should be Treated? Comments on the New Guidelines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/01/24/what-level-of-blood-pressure-bp-should-be-treated-comments-on-the-new-guidelines/

 

FDA approval on 12/1/2017 of Amgen’s evolocumb (Repatha) a PCSK9 inhibitor for the prevention of heart attacks, strokes, and coronary revascularizations in patients with established cardiovascular disease

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/12/01/fda-approval-on-12-1-2017-of-amgens-evolocumb-repatha-a-pcsk9-inhibitor-for-the-prevention-of-heart-attacks-strokes-and-coronary-revascularizations-in-patients-with-established-cardiovascular-di/

 

Long-term Canakinumab Treatment Lowering Inflammation Independent of Lipid Levels for Residual Inflammatory Risk Benefit – Personalized Medicine for Recurrent MI, Strokes and Cardiovascular Death

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/11/21/long-term-canakinumab-treatment-lowering-inflammation-independent-of-lipid-levels-for-residual-inflammatory-risk-benefit-personalized-medicine-for-recurrent-mi-strokes-and-cardiovascular-death/

 

Daily Highlights at 2017 American Heart Association Annual Meeting Scientific Sessions

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/11/14/daily-highlights-at-2017-american-heart-association-annual-meeting-scientific-sessions/

 

2017 Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults – A REPORT OF THE American College of Cardiology/ American Heart Association Task Force on Clinical Practice Guidelines

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/11/14/2017-guideline-for-the-prevention-detection-evaluation-and-management-of-high-blood-pressure-in-adults-a-report-of-the-american-college-of-cardiology-american-heart-association-task-force-on-clin/

 

2017 American Heart Association Annual Meeting: Sunday’s Science at #AHA17 – Presidential Address

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/11/13/2017-american-heart-association-annual-meeting-sundays-science-at-aha17-presidential-address/

 

Systemic Inflammatory Diseases as Crohn’s disease, Rheumatoid Arthritis and Longer Psoriasis Duration May Mean Higher CVD Risk

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/10/09/systemic-inflammatory-diseases-as-crohns-disease-rheumatoid-arthritis-and-longer-psoriasis-duration-may-mean-higher-cvd-risk/

 

Shaun Coughlin from UCSF Cardiovascular Research Center to cardio group for the Novartis Institute for Biomedical Research in Cambridge, MA

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/08/17/shaun-coughlin-from-ucsf-cardiovascular-research-center-to-cardio-group-for-the-novartis-institute-for-biomedical-research-in-cambridge-ma/

 

In Europe, BigData@Heart aim to improve patient outcomes and reduce societal burden of atrial fibrillation (AF), heart failure (HF) and acute coronary syndrome (ACS).

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/10/in-europe-bigdataheart-aim-to-improve-patient-outcomes-and-reduce-societal-burden-of-atrial-fibrillation-af-heart-failure-hf-and-acute-coronary-syndrome-acs/

 

SNP-based Study on high BMI exposure confirms CVD and DM Risks – no associations with Stroke

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/10/snp-based-study-on-high-bmi-exposure-confirms-cvd-and-dm-risks-no-associations-with-stroke/

 

Tweets by @pharma_BI and @AVIVA1950 at World Medical Innovation Forum – CARDIOVASCULAR • MAY 1-3, 2017, BOSTON, MA

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/05/05/tweets-by-pharma_bi-and-aviva1950-at-world-medical-innovation-forum-cardiovascular-%E2%80%A2-may-1-3-2017-boston-ma/

 

e-Proceedings for Day 1,2,3: World Medical Innovation Forum – CARDIOVASCULAR • MAY 1-3, 2017, BOSTON, MA

Curator and Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/05/05/e-proceedings-for-day-123-world-medical-innovation-forum-cardiovascular-%E2%80%A2-may-1-3-2017-boston-ma/

REAL TIME Highlights and Tweets: Day 1,2,3: World Medical Innovation Forum – CARDIOVASCULAR • MAY 1-3, 2017, BOSTON, MA

Author and Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/05/03/deliverables-day-123-world-medical-innovation-forum-cardiovascular-%E2%80%A2-may-1-3-2017-boston-ma-httpsworldmedicalinnovation-orgagenda-highlights-of-live-day-1-world-medical/

 

Expedite Use of Agents in Clinical Trials: New Drug Formulary Created – The NCI Formulary is a public-private partnership between NCI, part of the National Institutes of Health, and pharmaceutical and biotechnology companies

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/01/12/expedite-use-of-agents-in-clinical-trials-new-drug-formulary-created-the-nci-formulary-is-a-public-private-partnership-between-nci-part-of-the-national-institutes-of-health-and-pharmaceutical-and/

 

Reversing Heart Disease: Combination of PCSK9 Inhibitors and Statins – Opinion by Steven Nissen, MD, Chairman of Cardiovascular Medicine at Cleveland Clinic

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/29/reversing-heart-disease-combination-of-pcsk9-inhibitors-and-statins-opinion-by-steven-nissen-md-chairman-of-cardiovascular-medicine-at-cleveland-clinicopinion-on-reversing-heart-disease-combinat/

 

Coronary Heart Disease Research: Sugar Industry influenced national conversation on heart disease – Adoption of Low Fat Diet vs Low Carbohydrates Diet

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/09/17/coronary-heart-disease-research-sugar-industry-influenced-national-conversation-on-heart-disease-adoption-of-low-fat-diet-vs-low-carbohydrates-diet/

 

Pathophysiology in Hypertension: Opposing Roles of Human Adaptive Immunity

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/08/19/pathophysiology-in-hypertension-opposing-roles-of-human-adaptive-immunity/

 

PCSK9 inhibitors: Reducing annual drug prices from more than $14 000 to $4536 would be necessary to meet a $100 000 per QALY threshold per JAMA

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/08/17/pcsk9-inhibitors-reducing-annual-drug-prices-from-more-than-14%E2%80%AF000-to-4536-would-be-necessary-to-meet-a-100%E2%80%AF000-per-qaly-threshold-per-jama/

 

The presence of any Valvular Heart Disease (VHD) did not influence the comparison of Dabigatran [Pradaxa, Boehringer Ingelheim] with Warfarin

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/08/16/the-presence-of-any-valvular-heart-disease-vhd-did-not-influence-the-comparison-of-dabigatran-pradaxa-boehringer-ingelheim-with-warfarin/

 

Resveratrol, an antioxidant found in red wine presented since 2003 presented for its potential to lower risk for cardiovascular disease and neurodegeneration by increasing cell survival and slowing aging: 2014 Study – Diet rich in resveratrol offers no health boost

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/25/resveratrol-an-antioxidant-found-in-red-wine-2014-study-resveratrol-offers-no-health-boost/

 

Amgen’s Corlanor® can help Reduce the Risk of Hospitalization for Patients with worsening Heart Failure

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/04/amgens-corlanor-can-help-reduce-the-risk-of-hospitalization-for-patients-with-worsening-heart-failure/

 

Effectiveness of Anti-arrhythmic Drugs: Amiodarone and Lidocaine, for treating sudden cardiac arrest, increasing likelihood of Patients Surviving Emergency Transport to Hospital

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/04/04/effectiveness-of-anti-arrhythmic-drugs-amiodarone-and-lidocaine-for-treating-sudden-cardiac-arrest-increasing-likelihood-of-patients-surviving-emergency-transport-to-hospital/

 

Efficacy and Tolerability of PCSK9 Inhibitors by Patients with Muscle-related Statin Intolerance – New Cleveland Clinic study published in JAMA 4/2016

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/04/03/efficacy-and-tolerability-of-pcsk9-inhibitors-by-patients-with-muscle-related-statin-intolerance-new-cleveland-clinic-study-published-in-jama-42016/

 

Triglycerides: Is it a Risk Factor or a Risk Marker for Atherosclerosis and Cardiovascular Disease ? The Impact of Genetic Mutations on (ANGPTL4) Gene, encoder of (angiopoietin-like 4) Protein, inhibitor of Lipoprotein Lipase

Reporters, Curators and Authors: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/03/13/triglycerides-is-it-a-risk-factor-or-a-risk-marker-for-atherosclerosis-and-cardiovascular-disease-the-impact-of-genetic-mutations-on-angptl4-gene-encoder-of-angiopoietin-like-4-protein-that-in/

 

In One-Hour: A Diagnosis of Heart Attack made possible by one Blood Test

Reporter: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2016/01/14/in-one-hour-a-diagnosis-of-heart-attack-made-possible-by-one-blood-test/

 

Heart-Failure–Related Mortality Rate: CDC Reports comparison of 2000, 2012, 2014  – the decease is steadily reversed

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/01/05/heart-failure-related-mortality-rate-cdc-reports-comparison-of-2000-2012-2014-the-decease-is-steadily-reversed/

 

PCSK9: A Recent Discovery in Understanding Cholesterol Regulation @ AMGEN Cardiovascular

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/08/04/pcsk9-a-recent-discovery-in-understanding-cholesterol-regulation-amgen-cardiovascular/

 

Praluent – FDA approved as Cholesterol-lowering Medicine for Patient non responsive to Statin due to Genetic origin of Hypercholesterolemia

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/07/27/praluent-fda-approved-as-cholesterol-lowering-medicine-for-patient-non-responsive-to-statin-due-to-genetic-origin-of-hypercholesterolemia/

 

Atherosclerosis: What is New in Biomarker Discovery

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/07/01/atherosclerosis-what-is-new-in-biomarker-discovery/

 

Cangrelor wins Clopidogrel (Plavix): reduction of Risk of a composite of all-cause mortality, myocardial infarction, ischemia driven revascularization, and stent thrombosis

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/04/16/cangrelor-wins-clopidogrel-plavix-reduction-of-risk-of-a-composite-of-all-cause-mortality-myocardial-infarction-ischemia-driven-revascularization-and-stent-thrombosis/

 

Sets of co-expressed Genes influence Blood Pressure Regulation: Genome-wide Association and mRNA expression @US National Heart, Lung, and Blood Institute

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/04/16/sets-of-co-expressed-genes-influence-blood-pressure-regulation-genome-wide-association-and-mrna-expression-us-national-heart-lung-and-blood-institute/

 

HDL-C: Target of Therapy – Steven E. Nissen, MD, MACC, Cleveland Clinic vs Peter Libby, MD, BWH

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/11/07/hdl-c-target-of-therapy-steven-e-nissen-md-macc-cleveland-clinic-vs-peter-libby-md-bwh/

 

Atrial Fibrillation and Silent Cerebral Infarctions: A Meta Analysis Study and Literature Review

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/11/04/atrial-fibrillation-and-silent-cerebral-infarctions-a-meta-analysis-study-and-literature-review/

 

Intracranial Vascular Stenosis: Comparison of Clinical Trials: Percutaneous Transluminal Angioplasty and Stenting (PTAS) vs. Clot-inhibiting Drugs: Aspirin and Clopidogrel (dual antiplatelet therapy) – more Strokes if Stenting

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/10/15/intracranial-vascular-stenosis-comparison-of-clinical-trials-percutaneous-transluminal-angioplasty-and-stenting-ptas-vs-clot-inhibiting-drugs-aspirin-and-clopidogrel-dual-antiplatelet-therapy/

 

Hypertension: It is Autoimmunity that Underlies its Development in Humans

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/10/08/hypertension-it-is-autoimmunity-that-underlies-its-development-in-humans/

 

OPINION LEADERSHIP on Cardiovascular Diseases

Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation

  • Cardiovascular Diseases, Volume Two: Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation. On Amazon.com since 11/30/2015

http://www.amazon.com/dp/B018Q5MCN8

 Epilogue to Volume Two

Author and Curator: Aviva Lev-Ari, PhD, RN, Editor-in-Chief, BioMed e-Series of e-Books

https://pharmaceuticalintelligence.com/2014/07/31/opinion-leadership-on-cardiovascular-diseases/

 

Risk of Major Cardiovascular Events by LDL-Cholesterol Level (mg/dL): Among those treated with high-dose statin therapy, more than 40% of patients failed to achieve an LDL-cholesterol target of less than 70 mg/dL.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/07/29/risk-of-major-cardiovascular-events-by-ldl-cholesterol-level-mgdl-among-those-treated-with-high-dose-statin-therapy-more-than-40-of-patients-failed-to-achieve-an-ldl-cholesterol-target-of-less-th/

 

Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease: Views by Larry H Bernstein, MD, FCAP

Commissioned article, Author: Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2014/07/16/commentary-on-biomarkers-for-genetics-and-genomics-of-cardiovascular-disease-views-by-larry-h-bernstein-md-fcap/

 

Coagulation Therapy: Leading New Drugs – Efficacy Comparison

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/05/10/coagulation-therapy-leading-new-drugs-efficacy-comparison/

 

Apixaban (Eliquis): Mechanism of Action, Drug Comparison and Additional Indications

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/05/10/apixaban-eliquis-mechanism-of-action-drug-comparison-and-additional-indications/

 

Boston Heart Diagnostics (BHD) offers Statin Induced Myopathy (SLCO1B1) Genotype test and genetic tests targeting ApoE, Factor V Leiden, prothrombin (Factor II), and CYP2C19

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/04/17/boston-heart-diagnostics-bhd-offers-statin-induced-myopathy-slco1b1-genotype-test-and-genetic-tests-targeting-apoe-factor-v-leiden-prothrombin-factor-ii-and-cyp2c19/

 

@@@ Cardiovascular Diseases and Pharmacological Therapy: Curations by Aviva Lev-Ari, PhD, RN

Curator: Aviva Leve-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/04/17/cardiovascular-diseases-and-pharmacological-therapy-curations-by-aviva-lev-ari-phd-rn/

 

Richard Lifton, MD, PhD of Yale University & Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/03/03/richard-lifton-md-phd-of-yale-university-and-howard-hughes-medical-institute-recipient-of-2014-breakthrough-prizes-awarded-in-life-sciences-for-the-discovery-of-genes-and-biochemical-mechanisms-tha/

 

Differences in Health Services Utilization and Costs between Antihypertensive Medication Users Versus Nonusers in Adults with Diabetes and Concomitant Hypertension from Medical Expenditure Panel Su…

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/28/differences-in-health-services-utilization-and-costs-between-antihypertensive-medication-users-versus-nonusers-in-adults-with-diabetes-and-concomitant-hypertension-from-medical-expenditure-panel-su-2/

 

2014 Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism Conference: San Francisco, Ca. Conference Dates: San Francisco, CA 3/18-21, 2014

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/26/2014-epidemiology-and-prevention-nutrition-physical-activity-and-metabolism-conference-san-francisco-ca-conference-dates-san-francisco-ca-318-21-2014/

 

2014 High Blood Pressure Research Conference, 9/9 – 9/12, 2014 — Hilton SF Union Square, San Francisco, CA

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/24/2014-high-blood-pressure-research-conference-99-912-2014-hilton-sf-union-square-san-francisco-ca/

 

Females and Non-Atherosclerotic Plaque: Spontaneous Coronary Artery Dissection – New Insights from Research and DNA Ongoing Study

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/12/female-and-non-atherosclerotic-plaque-spontaneous-coronary-artery-dissection-new-insights-from-research-and-dna-ongoing-study/

 

Hypertension – JNC 8 Guideline: Henry R. Black, MD, Michael A. Weber, MD and Raymond R. Townsend, MD

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/12/hypertension-jnc-8-guideline-henry-r-black-md-michael-a-weber-md-and-raymond-r-townsend-md/

 

Why Don’t You Trust Generic Drugs as Much as Brand Name …

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/10/why-dont-you-trust-generic-drugs-as-much-as-brand-name/

 

National Trends, 2005 – 2011: Adverse-event Rates Declined among Patients Hospitalized for Acute Myocardial Infarction or Congestive Heart Failure

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/04/national-trends-2005-2011-adverse-event-rates-declined-among-patients-hospitalized-for-acute-myocardial-infarction-or-congestive-heart-failure/

 

Is Pharmacogenetic-based Dosing of Warfarin Superior for Anticoagulation Control?

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/04/is-pharmacogenetic-based-dosing-of-warfarin-superior-for-anticoagulation-control/

 

Prolonged Wakefulness: Lack of Sufficient Duration of Sleep as a Risk Factor for Cardiovascular Diseases – Indications for Cardiovascular Chrono-therapeutics

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/02/02/prolonged-wakefulness-lack-of-sufficient-duration-of-sleep-as-a-risk-factor-for-cardiovascular-diseases-indications-for-cardiovascular-chrono-therapeutics/

 

Testosterone Therapy for Idiopathic Hypogonadotrophic Hypogonadism has Beneficial and Deleterious Effects on Cardiovascular Risk Factors

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/30/testosterone-therapy-for-idiopathic-hypogonadotrophic-hypogonadism-has-beneficial-and-deleterious-effects-on-cardiovascular-risk-factors/

 

Calcium and Cardiovascular Diseases: A Series of Twelve Articles in Advanced Cardiology

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/28/calcium-and-cardiovascular-diseases-a-series-of-twelve-articles-in-advanced-cardiology/

 

Acute Myocardial Infarction: Curations of Cardiovascular Original Research – A Bibliography

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/22/acute-myocardial-infarction-curations-of-cardiovascular-original-research-a-bibliography/

 

On-Hours vs Off-Hours: Presentation to ER with Acute Myocardial Infarction – Lower Survival Rate if Off-Hours

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/22/on-hours-vs-off-hours-presentation-to-er-with-acute-myocardial-infarction-lower-survival-rate-if-off-hours/

 

2014 Winter in New England: The Effect of Record Cold Temperatures on Cardiovascular Diseases

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/21/2014-winter-in-new-england-the-effect-of-record-cold-temperatures-on-cardiovascular-diseases/

 

Voices from the Cleveland Clinic: On the New Lipid Guidelines and On the ACC/AHA Risk Calculator

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/21/voices-from-the-cleveland-clinic-on-the-new-lipid-guidelines-and-on-the-accaha-risk-calculator/

 

Is it Hypertension or Physical Inactivity: Cardiovascular Risk and Mortality – New results in 3/2013

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/19/is-it-hypertension-or-physical-inactivity-cardiovascular-risk-and-mortality-new-results-in-32013/

 

Regeneration: Cardiac System (cardiomyogenesis) and Vasculature (angiogenesis)

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/15/regeneration-cardiac-system-and-vasculature

 

Conceived: NEW Definition for Co-Curation in Medical Research

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/04/conceived-new-definition-for-co-curation-in-medical-research/

 

The Young Surgeon and The Retired Pathologist: On Science, Medicine and HealthCare Policy – The Best Writers Among the WRITERS

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/12/10/the-young-surgeon-and-the-retired-pathologist-on-science-medicine-and-healthcare-policy-best-writers-among-the-writers/

 

Diabetes-risk Forecasts: Serum Calcium in Upper-Normal Range (>2.5 mmol/L) as a New Biomarker

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/09/25/diabetes-risk-forecasts-serum-calcium-in-upper-normal-range-2-5-mmoll-as-a-new-biomarker/

 

Do Novel Anticoagulants Affect the PT/INR? The Cases of XARELTO (rivaroxaban) or PRADAXA (dabigatran)

Curators: Lal, V., Justin D. Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/23/do-novel-anticoagulants-affect-the-ptinr-the-cases-of-xarelto-rivaroxaban-and-pradaxa-dabigatran/

 

Calcium-Channel Blocker, Calcium Release-related Contractile Dysfunction (Ryanopathy) and Calcium as Neurotransmitter Sensor

Curators: Justin D. Pearlman, MD, PhD, FACC, Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/16/calcium-channel-blocker-calcium-as-neurotransmitter-sensor-and-calcium-release-related-contractile-dysfunction-ryanopathy/

 

Disruption of Calcium HomeostasisCardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism

Curators: Larry H. Bernstein, MD FCAP, Justin D. Pearlman, MD, PhD, FACC, and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/12/disruption-of-calcium-homeostasis-cardiomyocytes-and-vascular-smooth-muscle-cells-the-cardiac-and-cardiovascular-calcium-signaling-mechanism/

 

Synaptotagmin functions as a Calcium Sensor: How Calcium Ions Regulate the fusion of vesicles with cell membranes during Neurotransmission

Curators:  Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/09/10/synaptotagmin-functions-as-a-calcium-sensor-how-calcium-ions-regulate-the-fusion-of-vesicles-with-cell-membranes-during-neurotransmission/

 

Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmias and Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses

Curators: Justin D. Pearlman, MD, PhD, FACC, Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/08/28/cardiac-contractility-myocardium-performance-ventricular-arrhythmias-and-non-ischemic-heart-failure-therapeutic-implications-for-cardiomyocyte-ryanopathy-calcium-release-related-contractile/

 

Cardiovascular Original Research: Cases in Methodology Design for Content Curation and Co-Curation

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/07/29/cardiovascular-original-research-cases-in-methodology-design-for-content-curation-and-co-curation/

 

Heart Transplant (HT) Indication for Heart Failure (HF): Procedure Outcomes and Research on HF, HT @ Two Nation’s Leading HF & HT Centers

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/07/09/research-programs-george-m-linda-h-kaufman-center-for-heart-failure-cleveland-clinic/

 

Congenital Heart Disease (CHD) at Birth and into Adulthood: The Role of Spontaneous Mutations

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/06/09/congenital-heart-disease-at-birth-and-into-adulthood-the-role-of-spontaneous-mutations-the-genes-and-the-pathways/

 

Clinical Indications for Use of Inhaled Nitric Oxide (iNO) in the Adult Patient Market: Clinical Outcomes after Use, Therapy Demand and Cost of Care

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/06/03/clinical-indications-for-use-of-inhaled-nitric-oxide-ino-in-the-adult-patient-market-clinical-outcomes-after-use-therapy-demand-and-cost-of-care/

 

Inhaled Nitric Oxide in Adults: Clinical Trials and Meta Analysis Studies – Recent Findings

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/06/02/inhaled-nitric-oxide-in-adults-with-acute-respiratory-distress-syndrome/

 

Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

Curators: Justin D. Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/05/24/imaging-biomarker-for-arterial-stiffness-pathways-in-pharmacotherapy-for-hypertension-and-hypercholesterolemia-management/

 

Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/05/17/synthetic-biology-on-advanced-genome-interpretation-for-gene-variants-and-pathways-what-is-the-genetic-base-of-atherosclerosis-and-loss-of-arterial-elasticity-with-aging/

 

Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems

Curators: Justin D. Pearlman, MD, PhD, FACC, Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/05/15/diagnosis-of-cardiovascular-disease-treatment-and-prevention-current-predicted-cost-of-care-and-the-promise-of-individualized-medicine-using-clinical-decision-support-systems-2/

 

Gene, Meis1, Regulates the Heart’s Ability to Regenerate after Injuries.

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/05/03/gene-meis1-regulates-the-hearts-ability-to-regenerate-after-injuries/

 

Prostacyclin and Nitric Oxide: Adventures in Vascular Biology – A Tale of Two Mediators

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/30/prostacyclin-and-nitric-oxide-adventures-in-vascular-biology-a-tale-of-two-mediators/

 

Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/28/genetics-of-conduction-disease-atrioventricular-av-conduction-disease-block-gene-mutations-transcription-excitability-and-energy-homeostasis/

 

Economic Toll of Heart Failure in the US: Forecasting the Impact of Heart Failure in the United States – A Policy Statement From the American Heart Association

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/25/economic-toll-of-heart-failure-in-the-us-forecasting-the-impact-of-heart-failure-in-the-united-states-a-policy-statement-from-the-american-heart-association/

 

Harnessing New Players in Atherosclerosis to Treat Heart Disease

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/25/harnessing-new-players-in-atherosclerosis-to-treat-heart-disease/

 

Cholesteryl Ester Transfer Protein (CETP) Inhibitor: Potential of Anacetrapib to treat Atherosclerosis and CAD

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/07/cholesteryl-ester-transfer-protein-cetp-inhibitor-potential-of-anacetrapib-to-treat-atherosclerosis-and-cad/

 

Hypertriglyceridemia concurrent Hyperlipidemia: Vertical Density Gradient Ultracentrifugation a Better Test to Prevent Undertreatment of High-Risk Cardiac Patients

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/04/hypertriglyceridemia-concurrent-hyperlipidemia-vertical-density-gradient-ultracentrifugation-a-better-test-to-prevent-undertreatment-of-high-risk-cardiac-patients/

 

Fight against Atherosclerotic Cardiovascular Disease: A Biologics not a Small Molecule – Recombinant Human lecithin-cholesterol acyltransferase (rhLCAT) attracted AstraZeneca to acquire AlphaCore

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/04/03/fight-against-atherosclerotic-cardiovascular-disease-a-biologics-not-a-small-molecule-recombinant-human-lecithin-cholesterol-acyltransferase-rhlcat-attracted-astrazeneca-to-acquire-alphacore/

 

High-Density Lipoprotein (HDL): An Independent Predictor of Endothelial Function & Atherosclerosis, A Modulator, An Agonist, A Biomarker for Cardiovascular Risk

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/03/31/high-density-lipoprotein-hdl-an-independent-predictor-of-endothelial-function-artherosclerosis-a-modulator-an-agonist-a-biomarker-for-cardiovascular-risk/ 

 

Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

Curators: Aviva Lev-Ari, PhD, RN and Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2013/03/07/genomics-genetics-of-cardiovascular-disease-diagnoses-a-literature-survey-of-ahas-circulation-cardiovascular-genetics-32010-32013/

 

The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/02/28/the-heart-vasculature-protection-a-concept-based-pharmacological-therapy-including-thymosin/

 

Thymosin References

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/02/27/thymosin-references/

 

Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2013/02/27/arteriogenesis-and-cardiac-repair-two-biomaterials-injectable-thymosin-beta4-and-myocardial-matrix-hydrogel/

 

PCI Outcomes, Increased Ischemic Risk associated with Elevated Plasma Fibrinogen not Platelet Reactivity

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/01/10/pci-outcomes-increased-ischemic-risk-associated-with-elevated-plasma-fibrinogen-not-platelet-reactivity/

 

Heart Renewal by pre-existing Cardiomyocytes: Source of New Heart Cell Growth Discovered

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/12/23/heart-renewal-by-pre-existing-cardiomyocytes-source-of-new-heart-cell-growth-discovered/

 

Special Considerations in Blood Lipoproteins, Viscosity, Assessment and Treatment

Curators: Larry H. Bernstein and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/11/28/special-considerations-in-blood-lipoproteins-viscosity-assessment-and-treatment/

 

Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/11/13/peroxisome-proliferator-activated-receptor-ppar-gamma-receptors-activation-pparγ-transrepression-for-angiogenesis-in-cardiovascular-disease-and-pparγ-transactivation-for-treatment-of-dia/

 

Cardiovascular Risk Inflammatory Marker: Risk Assessment for Coronary Heart Disease and Ischemic Stroke – Atherosclerosis.

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/10/30/cardiovascular-risk-inflammatory-marker-risk-assessment-for-coronary-heart-disease-and-ischemic-stroke-atherosclerosis/

 

Clinical Trials Results for Endothelin System: Pathophysiological role in Chronic Heart Failure, Acute Coronary Syndromes and MI – Marker of Disease Severity or Genetic Determination?

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/10/19/clinical-trials-results-for-endothelin-system-pathophysiological-role-in-chronic-heart-failure-acute-coronary-syndromes-and-mi-marker-of-disease-severity-or-genetic-determination/

 

Sustained Cardiac Atrial Fibrillation: Management Strategies by Director of the Arrhythmia Service and Electrophysiology Lab at The Johns Hopkins Hospital

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/10/16/sustained-cardiac-atrial-fibrillation-management-strategies-by-director-of-the-arrhythmia-service-and-electrophysiology-lab-at-the-johns-hopkins-hospital/

 

Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/10/04/endothelin-receptors-in-cardiovascular-diseases-the-role-of-enos-stimulation/

 

Inhibition of ET-1, ETA and ETA-ETB, Induction of NO production, stimulation of eNOS and Treatment Regime with PPAR-gamma agonists (TZD): cEPCs Endogenous Augmentation for Cardiovascular Risk Reduction – A Bibliography

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/10/04/inhibition-of-et-1-eta-and-eta-etb-induction-of-no-production-and-stimulation-of-enos-and-treatment-regime-with-ppar-gamma-agonists-tzd-cepcs-endogenous-augmentation-for-cardiovascular-risk-reduc/

Positioning a Therapeutic Concept for Endogenous Augmentation of cEPCs — Therapeutic Indications for Macrovascular Disease: Coronary, Cerebrovascular and Peripheral

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/29/positioning-a-therapeutic-concept-for-endogenous-augmentation-of-cepcs-therapeutic-indications-for-macrovascular-disease-coronary-cerebrovascular-and-peripheral/ 

 

Cardiovascular Outcomes: Function of circulating Endothelial Progenitor Cells (cEPCs): Exploring Pharmaco-therapy targeted at Endogenous Augmentation of cEPCs

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/08/28/cardiovascular-outcomes-function-of-circulating-endothelial-progenitor-cells-cepcs-exploring-pharmaco-therapy-targeted-at-endogenous-augmentation-of-cepcs/

 

Endothelial Dysfunction, Diminished Availability of cEPCs, Increasing CVD Risk for Macrovascular Disease – Therapeutic Potential of cEPCs

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/08/27/endothelial-dysfunction-diminished-availability-of-cepcs-increasing-cvd-risk-for-macrovascular-disease-therapeutic-potential-of-cepcs/

 

Vascular Medicine and Biology: Classification of Fast Acting Therapy for Patients at High Risk for Macrovascular Events – Macrovascular Disease – Therapeutic Potential of cEPCs

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/24/vascular-medicine-and-biology-classification-of-fast-acting-therapy-for-patients-at-high-risk-for-macrovascular-events-macrovascular-disease-therapeutic-potential-of-cepcs/

 

 

Ethical Considerations in Studying Drug Safety — The Institute of Medicine Report

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/23/ethical-considerations-in-studying-drug-safety-the-institute-of-medicine-report/

 

Cardiac Arrhythmias: A Risk for Extreme Performance Athletes

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/08/cardiac-arrhythmias-a-risk-for-extreme-performance-athletes/

 

Biosimilars: Intellectual Property Creation and Protection by Pioneer and by Biosimilar Manufacturers

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/30/biosimilars-intellectual-property-creation-and-protection-by-pioneer-and-by-biosimilar-manufacturers/

 

Biosimilars: Financials 2012 vs. 2008

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/30/biosimilars-financials-2012-vs-2008/

 

Biosimilars: CMC Issues and Regulatory Requirements

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/29/biosimilars-cmc-issues-and-regulatory-requirements/

 

Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/

 

Resident-cell-based Therapy in Human Ischaemic Heart Disease: Evolution in the PROMISE of Thymosin beta4 for Cardiac Repair

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/04/30/93/

 

Triple Antihypertensive Combination Therapy Significantly Lowers Blood Pressure in Hard-to-Treat Patients with Hypertension and Diabetes

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/05/29/445/

 

Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/02/macrovascular-disease-therapeutic-potential-of-cepcs-reduction-methods-for-cv-risk/

 

Mitochondria Dysfunction and Cardiovascular Disease – Mitochondria: More than just the “powerhouse of the cell”

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-cell/

 

Bystolic’s generic Nebivolol – positive effect on circulating Endothelial Progenitor Cells endogenous augmentation

Curator: Aviva Lev-Ari, PhD, RN 

https://pharmaceuticalintelligence.com/2012/07/16/bystolics-generic-nebivolol-positive-effect-on-circulating-endothilial-progrnetor-cells-endogenous-augmentation/

Lev-Ari, A. Heart Vasculature (2007) Regeneration and Protection of Coronary Artery Endothelium and Smooth Muscle: A Concept-based Pharmacological Therapy of a Combined Three Drug Regimen.

Bouve College of Health Sciences, Northeastern University, Boston, MA 02115

 

Lev-Ari, A. & Abourjaily, P. (2006a) “An Investigation of the Potential of circulating Endothelial Progenitor Cells (cEPC) as a Therapeutic Target for Pharmacologic Therapy Design for Cardiovascular Risk Reduction.”

  • Part IMacrovascular Disease – Therapeutic Potential of cEPCs – Reduction methods for CV risk.
  • Part II:(2006b) Therapeutic Strategy for cEPCs Endogenous Augmentation: A Concept-based Treatment Protocol for a Combined Three Drug Regimen.
  • Part III: (2006c)Biomarker for Therapeutic Targets of Cardiovascular Risk Reduction by cEPCs Endogenous Augmentation using New Combination Drug Therapy of Three Drug Classes and Several Drug Indications.

Northeastern University, Boston, MA 02115

 

Curator: Medical Research – 557 articles in Books

Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/10/16/editorial-publication-of-articles-in-e-books-by-leaders-in-pharmaceutical-business-intelligence-contributions-of-aviva-lev-ari-phd-rn/

 

 

Read Full Post »


Transfusions and Erythropoiesis-stimulating Agents be Restricted to Cardiac Patients with More-severe Anemia

Reporter: Aviva Lev-Ari, PhD, RN

Treating Anemia in Patients with Heart Disease

Jamaluddin Moloo, MD, MPH reviewing Qaseem A et al. Ann Intern Med 2013 Dec 3. Kansagara D et al. Ann Intern Med 2013 Dec 3.

The American College of Physicians recommends that transfusions and erythropoiesis-stimulating agents be restricted to patients with more-severe anemia.

Sponsoring organization: American College of Physicians (ACP)

Target Population: Primary care physicians, cardiologists

BACKGROUND AND OBJECTIVE

Treatments for anemia in patients with heart disease include erythropoiesis-stimulating agents (ESAs), red blood cell (RBC) transfusions, and iron replacement, but whether these treatments improve outcomes is unclear. The ACP’s new guideline is based on a systematic review of evidence on benefits and harms of these treatments in patients with congestive heart failure (CHF) or coronary heart disease (CHD).

KEY POINTS

— Treatment with RBC transfusions (low-quality evidence)

  • No short-term mortality benefit was found for liberal RBC transfusion versus more restrictive transfusion (hemoglobin trigger level, >10 g/dL vs. 8–9 g/dL) in medical and surgical patients with anemia and heart disease.

  • Aggressive treatment of anemia with RBC transfusions doesn’t benefit and might harm patients with acute coronary syndrome or myocardial infarction or those who are undergoing percutaneous coronary interventions.

— Treatment with ESAs (moderate- to high-quality evidence)

  • Among anemic patients with stable CHF, ESA use does not lower all-cause mortality or risk for adverse cardiovascular events but might be associated with harms, such as venous thromboembolism.

RECOMMENDATIONS

  • Use a restrictive RBC transfusion strategy (trigger hemoglobin threshold, 7–8 g/dL) in hospitalized patients with anemia and CHD (grade: weak recommendation; low-quality evidence).

  • Do not use ESAs in patients with mild-to-moderate anemia and CHF or CHD (grade: strong recommendation; moderate-quality evidence).

COMMENT

Patients with heart disease often have anemia, and treating them aggressively intuitively seems like the best choice. However, this clinical practice guideline emphasizes that more (e.g., red blood cells) is not always better and clarifies how and when we should intervene.

CITATION(S):

  1. Qaseem A et al. Treatment of anemia in patients with heart disease: A clinical practice guideline from the American College of Physicians. Ann Intern Med 2013 Dec 3; 159:770. (http://annals.org/article.aspx?articleid=1784292)

  2. Kansagara D et al. Treatment of anemia in patients with heart disease: A systematic review. Ann Intern Med 2013 Dec 3; 159:746. (http://annals.org/article.aspx?articleid=1784290)

SOURCE

http://www.jwatch.org/na33023/2014/01/21/treating-anemia-patients-with-heart-disease?query=jwcardhub#sthash.Vv504WiJ.dpuf

Other related article published on this Open Access Online Scientific Journal, includes the following:

Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker

Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2013/12/10/epo-as-therapeutics-for-anemia-in-chf/

Read Full Post »