Feeds:
Posts
Comments

Archive for the ‘Computational Histopathology’ Category

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Eight Subcellular Pathologies driving Chronic Metabolic Diseases – Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics: Impact on Pharmaceuticals in Use

Curators:

 

THE VOICE of Aviva Lev-Ari, PhD, RN

In this curation we wish to present two breaking through goals:

Goal 1:

Exposition of a new direction of research leading to a more comprehensive understanding of Metabolic Dysfunctional Diseases that are implicated in effecting the emergence of the two leading causes of human mortality in the World in 2023: (a) Cardiovascular Diseases, and (b) Cancer

Goal 2:

Development of Methods for Mapping Bioelectronic Adjustable Measurements as potential new Therapeutics for these eight subcellular causes of chronic metabolic diseases. It is anticipated that it will have a potential impact on the future of Pharmaceuticals to be used, a change from the present time current treatment protocols for Metabolic Dysfunctional Diseases.

According to Dr. Robert Lustig, M.D, an American pediatric endocrinologist. He is Professor emeritus of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, where he specialized in neuroendocrinology and childhood obesity, there are eight subcellular pathologies that drive chronic metabolic diseases.

These eight subcellular pathologies can’t be measured at present time.

In this curation we will attempt to explore methods of measurement for each of these eight pathologies by harnessing the promise of the emerging field known as Bioelectronics.

Unmeasurable eight subcellular pathologies that drive chronic metabolic diseases

  1. Glycation
  2. Oxidative Stress
  3. Mitochondrial dysfunction [beta-oxidation Ac CoA malonyl fatty acid]
  4. Insulin resistance/sensitive [more important than BMI], known as a driver to cancer development
  5. Membrane instability
  6. Inflammation in the gut [mucin layer and tight junctions]
  7. Epigenetics/Methylation
  8. Autophagy [AMPKbeta1 improvement in health span]

Diseases that are not Diseases: no drugs for them, only diet modification will help

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

Exercise will not undo Unhealthy Diet

Image source

Robert Lustig, M.D. on the Subcellular Processes That Belie Chronic Disease

https://www.youtube.com/watch?v=Ee_uoxuQo0I

 

These eight Subcellular Pathologies driving Chronic Metabolic Diseases are becoming our focus for exploration of the promise of Bioelectronics for two pursuits:

  1. Will Bioelectronics be deemed helpful in measurement of each of the eight pathological processes that underlie and that drive the chronic metabolic syndrome(s) and disease(s)?
  2. IF we will be able to suggest new measurements to currently unmeasurable health harming processes THEN we will attempt to conceptualize new therapeutic targets and new modalities for therapeutics delivery – WE ARE HOPEFUL

In the Bioelecronics domain we are inspired by the work of the following three research sources:

  1. Biological and Biomedical Electrical Engineering (B2E2) at Cornell University, School of Engineering https://www.engineering.cornell.edu/bio-electrical-engineering-0
  2. Bioelectronics Group at MIT https://bioelectronics.mit.edu/
  3. The work of Michael Levin @Tufts, The Levin Lab
Michael Levin is an American developmental and synthetic biologist at Tufts University, where he is the Vannevar Bush Distinguished Professor. Levin is a director of the Allen Discovery Center at Tufts University and Tufts Center for Regenerative and Developmental Biology. Wikipedia
Born: 1969 (age 54 years), Moscow, Russia
Education: Harvard University (1992–1996), Tufts University (1988–1992)
Affiliation: University of Cape Town
Research interests: Allergy, Immunology, Cross Cultural Communication
Awards: Cozzarelli prize (2020)
Doctoral advisor: Clifford Tabin
Most recent 20 Publications by Michael Levin, PhD
SOURCE
SCHOLARLY ARTICLE
The nonlinearity of regulation in biological networks
1 Dec 2023npj Systems Biology and Applications9(1)
Co-authorsManicka S, Johnson K, Levin M
SCHOLARLY ARTICLE
Toward an ethics of autopoietic technology: Stress, care, and intelligence
1 Sep 2023BioSystems231
Co-authorsWitkowski O, Doctor T, Solomonova E
SCHOLARLY ARTICLE
Closing the Loop on Morphogenesis: A Mathematical Model of Morphogenesis by Closed-Loop Reaction-Diffusion
14 Aug 2023Frontiers in Cell and Developmental Biology11:1087650
Co-authorsGrodstein J, McMillen P, Levin M
SCHOLARLY ARTICLE
30 Jul 2023Biochim Biophys Acta Gen Subj1867(10):130440
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
Regulative development as a model for origin of life and artificial life studies
1 Jul 2023BioSystems229
Co-authorsFields C, Levin M
SCHOLARLY ARTICLE
The Yin and Yang of Breast Cancer: Ion Channels as Determinants of Left–Right Functional Differences
1 Jul 2023International Journal of Molecular Sciences24(13)
Co-authorsMasuelli S, Real S, McMillen P
SCHOLARLY ARTICLE
Bioelectricidad en agregados multicelulares de células no excitables- modelos biofísicos
Jun 2023Revista Española de Física32(2)
Co-authorsCervera J, Levin M, Mafé S
SCHOLARLY ARTICLE
Bioelectricity: A Multifaceted Discipline, and a Multifaceted Issue!
1 Jun 2023Bioelectricity5(2):75
Co-authorsDjamgoz MBA, Levin M
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part I: Classical and Quantum Formulations of Active Inference
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):235-245
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Control Flow in Active Inference Systems – Part II: Tensor Networks as General Models of Control Flow
1 Jun 2023IEEE Transactions on Molecular, Biological, and Multi-Scale Communications9(2):246-256
Co-authorsFields C, Fabrocini F, Friston K
SCHOLARLY ARTICLE
Darwin’s agential materials: evolutionary implications of multiscale competency in developmental biology
1 Jun 2023Cellular and Molecular Life Sciences80(6)
Co-authorsLevin M
SCHOLARLY ARTICLE
Morphoceuticals: Perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging
1 Jun 2023Drug Discovery Today28(6)
Co-authorsPio-Lopez L, Levin M
SCHOLARLY ARTICLE
Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine
12 May 2023Patterns4(5)
Co-authorsMathews J, Chang A, Devlin L
SCHOLARLY ARTICLE
Making and breaking symmetries in mind and life
14 Apr 2023Interface Focus13(3)
Co-authorsSafron A, Sakthivadivel DAR, Sheikhbahaee Z
SCHOLARLY ARTICLE
The scaling of goals from cellular to anatomical homeostasis: an evolutionary simulation, experiment and analysis
14 Apr 2023Interface Focus13(3)
Co-authorsPio-Lopez L, Bischof J, LaPalme JV
SCHOLARLY ARTICLE
The collective intelligence of evolution and development
Apr 2023Collective Intelligence2(2):263391372311683SAGE Publications
Co-authorsWatson R, Levin M
SCHOLARLY ARTICLE
Bioelectricity of non-excitable cells and multicellular pattern memories: Biophysical modeling
13 Mar 2023Physics Reports1004:1-31
Co-authorsCervera J, Levin M, Mafe S
SCHOLARLY ARTICLE
There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines
1 Mar 2023Biomimetics8(1)
Co-authorsBongard J, Levin M
SCHOLARLY ARTICLE
Transplantation of fragments from different planaria: A bioelectrical model for head regeneration
7 Feb 2023Journal of Theoretical Biology558
Co-authorsCervera J, Manzanares JA, Levin M
SCHOLARLY ARTICLE
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind
1 Jan 2023Animal Cognition
Co-authorsLevin M
SCHOLARLY ARTICLE
Biological Robots: Perspectives on an Emerging Interdisciplinary Field
1 Jan 2023Soft Robotics
Co-authorsBlackiston D, Kriegman S, Bongard J
SCHOLARLY ARTICLE
Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model
1 Jan 2023Entropy25(1)
Co-authorsShreesha L, Levin M
5

5 total citations on Dimensions.

Article has an altmetric score of 16
SCHOLARLY ARTICLE
1 Jan 2023BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY138(1):141
Co-authorsClawson WP, Levin M
SCHOLARLY ARTICLE
Future medicine: from molecular pathways to the collective intelligence of the body
1 Jan 2023Trends in Molecular Medicine
Co-authorsLagasse E, Levin M

THE VOICE of Dr. Justin D. Pearlman, MD, PhD, FACC

PENDING

THE VOICE of  Stephen J. Williams, PhD

Ten TakeAway Points of Dr. Lustig’s talk on role of diet on the incidence of Type II Diabetes

 

  1. 25% of US children have fatty liver
  2. Type II diabetes can be manifested from fatty live with 151 million  people worldwide affected moving up to 568 million in 7 years
  3. A common myth is diabetes due to overweight condition driving the metabolic disease
  4. There is a trend of ‘lean’ diabetes or diabetes in lean people, therefore body mass index not a reliable biomarker for risk for diabetes
  5. Thirty percent of ‘obese’ people just have high subcutaneous fat.  the visceral fat is more problematic
  6. there are people who are ‘fat’ but insulin sensitive while have growth hormone receptor defects.  Points to other issues related to metabolic state other than insulin and potentially the insulin like growth factors
  7. At any BMI some patients are insulin sensitive while some resistant
  8. Visceral fat accumulation may be more due to chronic stress condition
  9. Fructose can decrease liver mitochondrial function
  10. A methionine and choline deficient diet can lead to rapid NASH development

 

Read Full Post »

Genomic data can predict miscarriage and IVF failure

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

Infertility is a major reproductive health issue that affects about 12% of women of reproductive age in the United States. Aneuploidy in eggs accounts for a significant proportion of early miscarriage and in vitro fertilization failure. Recent studies have shown that genetic variants in several genes affect chromosome segregation fidelity and predispose women to a higher incidence of egg aneuploidy. However, the exact genetic causes of aneuploid egg production remain unclear, making it difficult to diagnose infertility based on individual genetic variants in mother’s genome. Although, age is a predictive factor for aneuploidy, it is not a highly accurate gauge because aneuploidy rates within individuals of the same age can vary dramatically.

Researchers described a technique combining genomic sequencing with machine-learning methods to predict the possibility a woman will undergo a miscarriage because of egg aneuploidy—a term describing a human egg with an abnormal number of chromosomes. The scientists were able to examine genetic samples of patients using a technique called “whole exome sequencing,” which allowed researchers to home in on the protein coding sections of the vast human genome. Then they created software using machine learning, an aspect of artificial intelligence in which programs can learn and make predictions without following specific instructions. To do so, the researchers developed algorithms and statistical models that analyzed and drew inferences from patterns in the genetic data.

As a result, the scientists were able to create a specific risk score based on a woman’s genome. The scientists also identified three genes—MCM5, FGGY and DDX60L—that when mutated and are highly associated with a risk of producing eggs with aneuploidy. So, the report demonstrated that sequencing data can be mined to predict patients’ aneuploidy risk thus improving clinical diagnosis. The candidate genes and pathways that were identified in the present study are promising targets for future aneuploidy studies. Identifying genetic variations with more predictive power will serve women and their treating clinicians with better information.

References:

https://medicalxpress-com.cdn.ampproject.org/c/s/medicalxpress.com/news/2022-06-miscarriage-failure-vitro-fertilization-genomic.amp

https://pubmed.ncbi.nlm.nih.gov/35347416/

https://pubmed.ncbi.nlm.nih.gov/31552087/

https://pubmed.ncbi.nlm.nih.gov/33193747/

https://pubmed.ncbi.nlm.nih.gov/33197264/

Read Full Post »

Deep Learning extracts Histopathological Patterns and accurately discriminates 28 Cancer and 14 Normal Tissue Types: Pan-cancer Computational Histopathology Analysis

Reporter: Aviva Lev-Ari, PhD, RN

3.5.1.1

3.5.1.1   Deep Learning extracts Histopathological Patterns and accurately discriminates 28 Cancer and 14 Normal Tissue Types: Pan-cancer Computational Histopathology Analysis, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 3: AI in Medicine

Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

Yu Fu1, Alexander W Jung1, Ramon Viñas Torne1, Santiago Gonzalez1,2, Harald Vöhringer1, Mercedes Jimenez-Linan3, Luiza Moore3,4, and Moritz Gerstung#1,5 # to whom correspondence should be addressed 1) European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. 2) Current affiliation: Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain. 3) Department of Pathology, Addenbrooke’s Hospital, Cambridge, UK. 4) Wellcome Sanger Institute, Hinxton, UK 5) European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.

Correspondence:

Dr Moritz Gerstung European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Hinxton, CB10 1SA UK. Tel: +44 (0) 1223 494636 E-mail: moritz.gerstung@ebi.ac.uk

Abstract

Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis

Here we use deep transfer learning to quantify histopathological patterns across 17,396 H&E stained histopathology image slides from 28 cancer types and correlate these with underlying genomic and transcriptomic data. Pan-cancer computational histopathology (PC-CHiP) classifies the tissue origin across organ sites and provides highly accurate, spatially resolved tumor and normal distinction within a given slide. The learned computational histopathological features correlate with a large range of recurrent genetic aberrations, including whole genome duplications (WGDs), arm-level copy number gains and losses, focal amplifications and deletions as well as driver gene mutations within a range of cancer types. WGDs can be predicted in 25/27 cancer types (mean AUC=0.79) including those that were not part of model training. Similarly, we observe associations with 25% of mRNA transcript levels, which enables to learn and localise histopathological patterns of molecularly defined cell types on each slide. Lastly, we find that computational histopathology provides prognostic information augmenting histopathological subtyping and grading in the majority of cancers assessed, which pinpoints prognostically relevant areas such as necrosis or infiltrating lymphocytes on each tumour section. Taken together, these findings highlight the large potential of PC-CHiP to discover new molecular and prognostic associations, which can augment diagnostic workflows and lay out a rationale for integrating molecular and histopathological data.

SOURCE

https://www.biorxiv.org/content/10.1101/813543v1

Key points

● Pan-cancer computational histopathology analysis with deep learning extracts histopathological patterns and accurately discriminates 28 cancer and 14 normal tissue types

● Computational histopathology predicts whole genome duplications, focal amplifications and deletions, as well as driver gene mutations

● Wide-spread correlations with gene expression indicative of immune infiltration and proliferation

● Prognostic information augments conventional grading and histopathology subtyping in the majority of cancers

Discussion

Here we presented PC-CHiP, a pan-cancer transfer learning approach to extract computational histopathological features across 42 cancer and normal tissue types and their genomic, molecular and prognostic associations. Histopathological features, originally derived to classify different tissues, contained rich histologic and morphological signals predictive of a range of genomic and transcriptomic changes as well as survival. This shows that computer vision not only has the capacity to highly accurately reproduce predefined tissue labels, but also that this quantifies diverse histological patterns, which are predictive of a broad range of genomic and molecular traits, which were not part of the original training task. As the predictions are exclusively based on standard H&E-stained tissue sections, our analysis highlights the high potential of computational histopathology to digitally augment existing histopathological workflows. The strongest genomic associations were found for whole genome duplications, which can in part be explained by nuclear enlargement and increased nuclear intensities, but seemingly also stems from tumour grade and other histomorphological patterns contained in the high-dimensional computational histopathological features. Further, we observed associations with a range of chromosomal gains and losses, focal deletions and amplifications as well as driver gene mutations across a number of cancer types. These data demonstrate that genomic alterations change the morphology of cancer cells, as in the case of WGD, but possibly also that certain aberrations preferentially occur in distinct cell types, reflected by the tumor histology. Whatever is the cause or consequence in this equation, these associations lay out a route towards genomically defined histopathology subtypes, which will enhance and refine conventional assessment. Further, a broad range of transcriptomic correlations was observed reflecting both immune cell infiltration and cell proliferation that leads to higher tumor densities. These examples illustrated the remarkable property that machine learning does not only establish novel molecular associations from pre-computed histopathological feature sets but also allows the localisation of these traits within a larger image. While this exemplifies the power of a large scale data analysis to detect and localise recurrent patterns, it is probably not superior to spatially annotated training data. Yet such data can, by definition, only be generated for associations which are known beforehand. This appears straightforward, albeit laborious, for existing histopathology classifications, but more challenging for molecular readouts. Yet novel spatial transcriptomic44,45 and sequencing technologies46 bring within reach spatially matched molecular and histopathological data, which would serve as a gold standard in combining imaging and molecular patterns. Across cancer types, computational histopathological features showed a good level of prognostic relevance, substantially improving prognostic accuracy over conventional grading and histopathological subtyping in the majority of cancers. It is this very remarkable that such predictive It is made available under a CC-BY-NC 4.0 International license. (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. bioRxiv preprint first posted online Oct. 25, 2019; doi: http://dx.doi.org/10.1101/813543. The copyright holder for this preprint signals can be learned in a fully automated fashion. Still, at least at the current resolution, the improvement over a full molecular and clinical workup was relatively small. This might be a consequence of the far-ranging relations between histopathology and molecular phenotypes described here, implying that histopathology is a reflection of the underlying molecular alterations rather than an independent trait. Yet it probably also highlights the challenges of unambiguously quantifying histopathological signals in – and combining signals from – individual areas, which requires very large training datasets for each tumour entity. From a methodological point of view, the prediction of molecular traits can clearly be improved. In this analysis, we adopted – for the reason of simplicity and to avoid overfitting – a transfer learning approach in which an existing deep convolutional neural network, developed for classification of everyday objects, was fine tuned to predict cancer and normal tissue types. The implicit imaging feature representation was then used to predict molecular traits and outcomes. Instead of employing this two-step procedure, which risks missing patterns irrelevant for the initial classification task, one might directly employ either training on the molecular trait of interest, or ideally multi-objective learning. Further improvement may also be related to the choice of the CNN architecture. Everyday images have no defined scale due to a variable z-dimension; therefore, the algorithms need to be able to detect the same object at different sizes. This clearly is not the case for histopathology slides, in which one pixel corresponds to a defined physical size at a given magnification. Therefore, possibly less complex CNN architectures may be sufficient for quantitative histopathology analyses, and also show better generalisation. Here, in our proof-of-concept analysis, we observed a considerable dependence of the feature representation on known and possibly unknown properties of our training data, including the image compression algorithm and its parameters. Some of these issues could be overcome by amending and retraining the network to isolate the effect of confounding factors and additional data augmentation. Still, given the flexibility of deep learning algorithms and the associated risk of overfitting, one should generally be cautious about the generalisation properties and critically assess whether a new image is appropriately represented. Looking forward, our analyses revealed the enormous potential of using computer vision alongside molecular profiling. While the eye of a trained human may still constitute the gold standard for recognising clinically relevant histopathological patterns, computers have the capacity to augment this process by sifting through millions of images to retrieve similar patterns and establish associations with known and novel traits. As our analysis showed this helps to detect histopathology patterns associated with a range of genomic alterations, transcriptional signatures and prognosis – and highlight areas indicative of these traits on each given slide. It is therefore not too difficult to foresee how this may be utilised in a computationally augmented histopathology workflow enabling more precise and faster diagnosis and prognosis. Further, the ability to quantify a rich set of histopathology patterns lays out a path to define integrated histopathology and molecular cancer subtypes, as recently demonstrated for colorectal cancers47 .

Lastly, our analyses provide It is made available under a CC-BY-NC 4.0 International license. (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

bioRxiv preprint first posted online Oct. 25, 2019; doi: http://dx.doi.org/10.1101/813543.

The copyright holder for this preprint proof-of-concept for these principles and we expect them to be greatly refined in the future based on larger training corpora and further algorithmic refinements.

SOURCE

https://www.biorxiv.org/content/biorxiv/early/2019/10/25/813543.full.pdf

Other related articles published in this Open Access Online Scientific Journal include the following: 

CancerBase.org – The Global HUB for Diagnoses, Genomes, Pathology Images: A Real-time Diagnosis and Therapy Mapping Service for Cancer Patients – Anonymized Medical Records accessible to anyone on Earth

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/28/cancerbase-org-the-global-hub-for-diagnoses-genomes-pathology-images-a-real-time-diagnosis-and-therapy-mapping-service-for-cancer-patients-anonymized-medical-records-accessible-to/

631 articles had in their Title the keyword “Pathology”

https://pharmaceuticalintelligence.com/?s=Pathology

Read Full Post »