Feeds:
Posts
Comments

Archive for the ‘Cancer Vaccines: Targeting Cancer Genes for Immunotherapy’ Category

The Payload Revolution: Redefining the Future of Antibody-Drug Conjugates (ADCs)

Curator: Dr. Sudipta Saha, Ph. D.

 

Antibody-Drug Conjugates (ADCs) are at the forefront of targeted cancer therapy. While much attention has focused on antibody engineering and linker technology, the real breakthrough may lie in the payload—the cytotoxic compound delivered to tumor cells.

Historically, ADC payloads have relied on microtubule inhibitors like MMAE and MMAF, and topoisomerase I inhibitors such as SN-38 and Exatecan. These payloads are potent but limited in diversity, making differentiation difficult in a crowded therapeutic landscape.

The next wave of innovation introduces unconventional payloads with novel mechanisms:

  • ISACs (Immune-Stimulating ADCs) activate the immune system locally.
  • Protein degraders eliminate cancer-critical proteins without inhibiting them directly.
  • Urease-based and membrane-disrupting agents affect the tumor microenvironment.
  • RNA polymerase inhibitors and peptide-based payloads offer precision with reduced systemic toxicity.

This shift also places new demands on linker design. Linkers must now accommodate payloads with diverse chemical properties and release them selectively at the tumor site. A payload–linker mismatch could compromise both safety and efficacy.

Ultimately, the focus is shifting toward payloads not just as cytotoxins, but as precision-guided interventions. This evolution could redefine how ADCs are developed and positioned in treatment regimens, enabling breakthroughs in resistant and heterogeneous cancers. The ADC revolution is payload-powered—and the future belongs to those who can innovate at the molecular level.

References:

https://www.linkedin.com/posts/asmitasinghsharma_%F0%9D%97%A7%F0%9D%97%B5%F0%9D%97%B2-%F0%9D%97%99%F0%9D%98%82%F0%9D%98%81%F0%9D%98%82%F0%9D%97%BF%F0%9D%97%B2-activity-7336738434645901312-wfz1

https://www.nature.com/articles/s41573-022-00590-3

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301933

https://www.cell.com/fulltext/S0092-8674(22)01299-7

https://ascopubs.org/doi/full/10.1200/JCO.22.02474

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257482

Read Full Post »

Immuno-Timebombs: The Hidden Drivers of Age-Related Illness

Curator: Dr. Sudipta Saha, Ph. D.

 

There are two converging biological processes that drive most age-related diseases: immunosenescence and inflammaging. Together, they explain how a deteriorating immune system and chronic low-grade inflammation contribute to neurodegenerative diseases, cancer, cardiovascular disorders, and frailty.

Immunosenescence refers to the waning competence of both innate and adaptive immune systems. With age, T and B cells become less effective, and macrophage function declines. This makes older individuals more susceptible to infections and less efficient at clearing dysfunctional cells.

Inflammaging, on the other hand, is the persistent presence of inflammation without infection. Factors like gut microbiome alterations, senescent cell accumulation, and epigenetic drift contribute to this condition. Over time, this “silent fire” damages tissues and lays the groundwork for disease.

These drivers don’t just correlate with disease—they often precede it. This positions inflammaging and immunosenescence as targets for prevention, not just treatment. Interventions like exercise, caloric modulation, and anti-inflammatory diets may attenuate their effects. Emerging therapies such as senolytics and immune rejuvenation approaches (e.g., thymic regeneration) are showing promise.

This article also calls for a paradigm shift in medical science—from reactive disease management to proactive longevity interventions. As we unravel the biological clocks of aging, strategies targeting immune recalibration may delay or prevent multiple diseases simultaneously.

The future of healthy aging may well depend on how early we can intervene in this immuno-inflammatory loop—before pathology sets in.

References:

https://erictopol.substack.com/p/the-drivers-of-age-related-diseases

https://www.nature.com/articles/s41591-019-0661-0

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761661

https://www.cell.com/fulltext/S0092-8674(19)30184-4

https://www.frontiersin.org/articles/10.3389/fimmu.2020.579220/full

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649506

Read Full Post »

Cancer Surgery Rethought: Immunotherapy Takes the Lead

Curator: Dr. Sudipta Saha, Ph.D.

In a recent phase 2 study published in The New England Journal of Medicine, the efficacy of nonoperative management was assessed in patients with mismatch repair–deficient (dMMR) solid tumors. Instead of undergoing curative-intent surgery, patients with stage I to III dMMR tumors were administered immune checkpoint inhibitors.

The study was conducted across two cohorts involving 117 patients. After two years of follow-up, a recurrence-free survival rate of 92% (95% CI, 86 to 99) was achieved. It was found that complete clinical responses could be maintained without surgical intervention, and substantial preservation of organ function was observed.

The avoidance of surgery was associated with fewer treatment-related complications and a significant improvement in patients’ quality of life. It has been emphasized that dMMR tumors, being highly immunogenic, respond exceptionally well to immune checkpoint blockade, thereby offering a viable alternative to conventional surgery-based treatment plans.

While the study’s findings have been considered ground breaking, long-term data have been recommended to fully validate this approach. Future studies are expected to refine patient selection criteria and monitoring strategies to ensure sustained outcomes.

Overall, a potential shift in the standard of care for patients with early-stage dMMR tumors has been proposed, highlighting how personalized immunotherapy can redefine oncological practice.

References

https://www.nejm.org/doi/full/10.1056/NEJMoa2404512

https://pubmed.ncbi.nlm.nih.gov/28734759

https://pubmed.ncbi.nlm.nih.gov/26028255

https://www.mdpi.com/2072-6694/12/9/2679

Read Full Post »

SNU-BioTalk 2025: Symphony of Cellular Signals in Metabolism and Immune Response – International Conference at Sister Nivedita University, Kolkata, India on 16 & 17 January 2025

SNU-BioTalk 2025: Symphony of Cellular Signals in Metabolism and Immune Response – International Conference at Sister Nivedita University, Kolkata, India on 16 & 17 January 2025

Joint Convenor: Dr. Sudipta Saha (Member of LPBI since 2012)

About the Conference:

The International Conference on ‘Symphony of Cellular Signals in Metabolism and Immune Response’ focuses on the complex signalling pathways governing cellular functions in health and disease. It will explore the cellular mechanisms that regulate metabolism, immune responses, and survival, highlighting advances in medical science and biotechnology. Bringing together leading experts and emerging researchers, the conference will feature keynote lectures, panel discussions, research presentations, and interactive sessions, all designed to foster collaboration and innovation. By promoting an exchange of ideas, the event aims to drive transformative insights and solutions that impact human health and sustainable healthcare practices.

The conference will also be livestreamed on YouTube and Facebook

This programme will also host I-STEM: Indian Science, Technology and Engineering facilities Map (I-STEM) is a dynamic and interactive national portal for research cooperation.

Thrust areas:

  • Intracellular signalling processes of cellular metabolism
  • Signalling pathways in physiological and pathological processes
  • Signalling in innate and adaptive immunity

Conference Webpage: https://www.snuniv.ac.in/snu-biotalk-2025/

NU-BioTalk 2025 Abstract Submission Form: https://forms.gle/ygdGqtuBGa7DEhDFA

SNU-BioTalk 2025 Registration Form: https://forms.gle/unasPpByLmYwrRBM6

Programme Schedule:

YouTube Links of Live Telecast:

Day 1:

Day 2:

Media:

Newspaper:

The Telegraph – Click to View

 

Abstract Book

Scan to Download:

Click: 

Abstract Book

Read Full Post »

Armored CD7-CAR T Cells: A Fratricide-Resistant Solution for T-ALL Therapy

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

This research reported in Nature Medicine addresses the challenge of treating T-cell acute lymphoblastic leukemia (T-ALL) with CAR T-cell therapy, particularly focusing on CD7, a surface marker highly expressed on T-ALL cells. The authors develop a novel CAR T-cell therapy that targets CD7, but with a crucial innovation which is fratricide resistance.

Fratricide, a phenomenon where CAR T cells kill each other (killing sister cells) due to shared CD7 expression, has been a significant problem in using CD7-directed therapies. To overcome this, the researchers made CD7-negative CAR T cells (CD7-CAR T cells) by knocking out CD7 from the CAR T cells themselves, preventing them from attacking one another.

Their preclinical results show that these CD7-CAR T cells exhibit strong anti-leukemic activity in T-ALL models, both in vitro and in vivo.

  • The fratricide-resistant T cells not only maintain their potency but also display enhanced proliferation and persistence, crucial for sustained therapeutic effects. Additionally,
  • the study highlights the feasibility and safety of this approach by demonstrating no adverse off-target effects or side effects, making it a potentially promising treatment for T-ALL patients who have limited options.

The research presents a significant advancement in CAR T-cell therapy by addressing the challenge of fratricide, offering a new, effective, and safe therapeutic option for T-ALL patients. The development of fratricide-resistant CD7-CAR T cells could lead to more successful outcomes in clinical applications, revolutionizing the treatment for T-ALL patients.

References:

https://www.nature.com/articles/s41591-024-03228-8

https://pubmed.ncbi.nlm.nih.gov/39227445

https://pubmed.ncbi.nlm.nih.gov/36086817

https://pubmed.ncbi.nlm.nih.gov/35435984

https://pubmed.ncbi.nlm.nih.gov/28539325

https://pubmed.ncbi.nlm.nih.gov/29296885

 

Other articles on Acute Lymphoblastic Leukemia (ALL) published in this Open Access Journal include the following:

Inotuzumab Ozogamicin: Success in relapsed/refractory Acute Lymphoblastic Leukemia (ALL)

FDA: CAR-T therapy outweigh its risks tisagenlecleucel, manufactured by Novartis of Basel – 52 out of 63 participants — 82.5% — experienced overall remissions – young patients with Leukaemia [ALL]

Sunitinib brings Adult Acute Lymphoblastic Leukemia (ALL) to Remission – RNA Sequencing – FLT3 Receptor Blockade

 

Other articles on CAR-T cell Therapies published in this Open Access Journal include the following:

Alliance for Cancer Gene Therapy to honor Dr. Crystal Mackall with Edward Netter Leadership Award

Lessons on the Frontier of Gene & Cell Therapy – The Disruptive Dozen 12 #GCT Breakthroughs that are revolutionizing Healthcare

19th Annual Koch Institute Summer Symposium on Cancer Immunotherapy, June 12, 2020 at MIT’s Kresge Auditorium

2022 FDA Drug Approval List, 2022 Biological Approvals and Approved Cellular and Gene Therapy Products

Tweets at #WMIF2022 by @pharma_BI & @AVIVA1950 and all Retweets of these Tweets – 2022 World Medical Innovation Forum, GENE & CELL THERAPY • MAY 2–4, 2022 • BOSTON

 

Read Full Post »

Inhibitory CD161 receptor recognized as a potential immunotherapy target in glioma-infiltrating T cells by single-cell analysis

Reporter: Dr. Premalata Pati, Ph.D., Postdoc

 

Brain tumors, especially the diffused Gliomas are of the most devastating forms of cancer and have so-far been resistant to immunotherapy. It is comprehended that T cells can penetrate the glioma cells, but it still remains unknown why infiltrating cells miscarry to mount a resistant reaction or stop the tumor development.

Gliomas are brain tumors that begin from neuroglial begetter cells. The conventional therapeutic methods including, surgery, chemotherapy, and radiotherapy, have accomplished restricted changes inside glioma patients. Immunotherapy, a compliance in cancer treatment, has introduced a promising strategy with the capacity to penetrate the blood-brain barrier. This has been recognized since the spearheading revelation of lymphatics within the central nervous system. Glioma is not generally carcinogenic. As observed in a number of cases, the tumor cells viably reproduce and assault the adjoining tissues, by and large, gliomas are malignant in nature and tend to metastasize. There are four grades in glioma, and each grade has distinctive cell features and different treatment strategies. Glioblastoma is a grade IV glioma, which is the crucial aggravated form. This infers that all glioblastomas are gliomas, however, not all gliomas are glioblastomas.

Decades of investigations on infiltrating gliomas still take off vital questions with respect to the etiology, cellular lineage, and function of various cell types inside glial malignancies. In spite of the available treatment options such as surgical resection, radiotherapy, and chemotherapy, the average survival rate for high-grade glioma patients remains 1–3 years (1).

A recent in vitro study performed by the researchers of Dana-Farber Cancer Institute, Massachusetts General Hospital, and the Broad Institute of MIT and Harvard, USA, has recognized that CD161 is identified as a potential new target for immunotherapy of malignant brain tumors. The scientific team depicted their work in the Cell Journal, in a paper entitled, “Inhibitory CD161 receptor recognized in glioma-infiltrating T cells by single-cell analysis.” on 15th February 2021.

To further expand their research and findings, Dr. Kai Wucherpfennig, MD, PhD, Chief of the Center for Cancer Immunotherapy, at Dana-Farber stated that their research is additionally important in a number of other major human cancer types such as 

  • melanoma,
  • lung,
  • colon, and
  • liver cancer.

Dr. Wucherpfennig has praised the other authors of the report Mario Suva, MD, PhD, of Massachusetts Common Clinic; Aviv Regev, PhD, of the Klarman Cell Observatory at Broad Institute of MIT and Harvard, and David Reardon, MD, clinical executive of the Center for Neuro-Oncology at Dana-Farber.

Hence, this new study elaborates the effectiveness of the potential effectors of anti-tumor immunity in subsets of T cells that co-express cytotoxic programs and several natural killer (NK) cell genes.

The Study-

IMAGE SOURCE: Experimental Strategy (Mathewson et al., 2021)

 

The group utilized single-cell RNA sequencing (RNA-seq) to mull over gene expression and the clonal picture of tumor-infiltrating T cells. It involved the participation of 31 patients suffering from diffused gliomas and glioblastoma. Their work illustrated that the ligand molecule CLEC2D activates CD161, which is an immune cell surface receptor that restrains the development of cancer combating activity of immune T cells and tumor cells in the brain. The study reveals that the activation of CD161 weakens the T cell response against tumor cells.

Based on the study, the facts suggest that the analysis of clonally expanded tumor-infiltrating T cells further identifies the NK gene KLRB1 that codes for CD161 as a candidate inhibitory receptor. This was followed by the use of 

  • CRISPR/Cas9 gene-editing technology to inactivate the KLRB1 gene in T cells and showed that CD161 inhibits the tumor cell-killing function of T cells. Accordingly,
  • genetic inactivation of KLRB1 or
  • antibody-mediated CD161 blockade

enhances T cell-mediated killing of glioma cells in vitro and their anti-tumor function in vivo. KLRB1 and its associated transcriptional program are also expressed by substantial T cell populations in other forms of human cancers. The work provides an atlas of T cells in gliomas and highlights CD161 and other NK cell receptors as immune checkpoint targets.

Further, it has been identified that many cancer patients are being treated with immunotherapy drugs that disable their “immune checkpoints” and their molecular brakes are exploited by the cancer cells to suppress the body’s defensive response induced by T cells against tumors. Disabling these checkpoints lead the immune system to attack the cancer cells. One of the most frequently targeted checkpoints is PD-1. However, recent trials of drugs that target PD-1 in glioblastomas have failed to benefit the patients.

In the current study, the researchers found that fewer T cells from gliomas contained PD-1 than CD161. As a result, they said, “CD161 may represent an attractive target, as it is a cell surface molecule expressed by both CD8 and CD4 T cell subsets [the two types of T cells engaged in response against tumor cells] and a larger fraction of T cells express CD161 than the PD-1 protein.”

However, potential side effects of antibody-mediated blockade of the CLEC2D-CD161 pathway remain unknown and will need to be examined in a non-human primate model. The group hopes to use this finding in their future work by

utilizing their outline by expression of KLRB1 gene in tumor-infiltrating T cells in diffuse gliomas to make a remarkable contribution in therapeutics related to immunosuppression in brain tumors along with four other common human cancers ( Viz. melanoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma, and colorectal cancer) and how this may be manipulated for prevalent survival of the patients.

References

(1) Anders I. Persson, QiWen Fan, Joanna J. Phillips, William A. Weiss, 39 – Glioma, Editor(s): Sid Gilman, Neurobiology of Disease, Academic Press, 2007, Pages 433-444, ISBN 9780120885923, https://doi.org/10.1016/B978-012088592-3/50041-4.

Main Source

Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, et al. 2021. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell.https://www.cell.com/cell/fulltext/S0092-8674(21)00065-9?elqTrackId=c3dd8ff1d51f4aea87edd0153b4f2dc7

Related Articles

VIDEOS on Cancer Biology, Cancer Genetics, Cancer Immunotherapy

19th Annual Koch Institute Summer Symposium on Cancer Immunotherapy, June 12, 2020 at MIT’s Kresge Auditorium

 

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Single Cell Sequencing:

Part 4.1 in Genomics Volume 2

Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS & BioInformatics, Simulations and the Genome Ontology 

On Amazon.com since 12/28/2019

https://www.amazon.com/dp/B08385KF87

 

4.1.3   Single-cell Genomics: Directions in Computational and Systems Biology – Contributions of Prof. Aviv Regev @Broad Institute of MIT and Harvard, Cochair, the Human Cell Atlas Organizing Committee with Sarah Teichmann of the Wellcome Trust Sanger Institute

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2018/09/03/single-cell-genomics-directions-in-computational-and-systems-biology-contributions-of-ms-aviv-regev-phd-broad-institute-of-mit-and-harvard-cochair-the-human-cell-atlas-organizing-committee-wit/

 

4.1.4   Cellular Genetics

https://www.sanger.ac.uk/science/programmes/cellular-genetics

 

4.1.5   Cellular Genomics

https://www.garvan.org.au/research/cellular-genomics

 

4.1.6   SINGLE CELL GENOMICS 2019 – sometimes the sum of the parts is greater than the whole, September 24-26, 2019, Djurönäset, Stockholm, Sweden http://www.weizmann.ac.il/conferences/SCG2019/single-cell-genomics-2019

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/05/29/single-cell-genomics-2019-september-24-26-2019-djuronaset-stockholm-sweden/

 

4.1.7   Norwich Single-Cell Symposium 2019, Earlham Institute, single-cell genomics technologies and their application in microbial, plant, animal and human health and disease, October 16-17, 2019, 10AM-5PM

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2019/06/04/norwich-single-cell-symposium-2019-earlham-institute-single-cell-genomics-technologies-and-their-application-in-microbial-plant-animal-and-human-health-and-disease-october-16-17-2019-10am-5pm/

 

4.1.8   Newly Found Functions of B Cell

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/05/23/newly-found-functions-of-b-cell/

 

4.1.9 RESEARCH HIGHLIGHTS: HUMAN CELL ATLAS

https://www.broadinstitute.org/research-highlights-human-cell-atlas

 

CRISPR – 200 articles in the Journal

 

Chapter 21 in Genomics Volume 1

Genomics Orientations for Personalized Medicine. On Amazon.com since 11/23/2015

http://www.amazon.com/dp/B018DHBUO6

 

Glioblastoma – 150 articles in the Journal

Most recent

 

Immunotherapy may help in glioblastoma survival

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

https://pharmaceuticalintelligence.com/2019/03/16/immunotherapy-may-help-in-glioblastoma-survival/

 

New Treatment in Development for Glioblastoma: Hopes for Sen. John McCain

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2017/07/25/new-treatment-in-development-for-glioblastoma-hopes-for-sen-john-mccain/

 

Funding Oncorus’s Immunotherapy Platform: Next-generation Oncolytic Herpes Simplex Virus (oHSV) for Brain Cancer, Glioblastoma Multiforme (GBM)

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/funding-oncoruss-immunotherapy-platform-next-generation-oncolytic-herpes-simplex-virus-ohsv-for-brain-cancer-glioblastoma-multiforme-gbm/

 

Glioma, Glioblastoma and Neurooncology

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/

 

Positron Emission Tomography (PET) and Near-Infrared Fluorescence Imaging:  Noninvasive Imaging of Cancer Stem Cells (CSCs)  monitoring of AC133+ glioblastoma in subcutaneous and intracerebral xenograft tumors

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2014/01/29/positron-emission-tomography-pet-and-near-infrared-fluorescence-imaging-noninvasive-imaging-of-cancer-stem-cells-cscs-monitoring-of-ac133-glioblastoma-in-subcutaneous-and-intracerebral-xenogra/

 

Gamma Linolenic Acid (GLA) as a Therapeutic tool in the Management of Glioblastoma

Eric Fine* (1), Mike Briggs* (1,2), Raphael Nir# (1,2,3)

https://pharmaceuticalintelligence.com/2013/07/15/gamma-linolenic-acid-gla-as-a-therapeutic-tool-in-the-management-of-glioblastoma/

 

 

Read Full Post »

CAR T-CELL THERAPY MARKET: 2020 – 2027

G L O B A L  M A R K E T  A N A L Y S I S  A N D

I N D U S T R Y  F O R E C A S T

 

DISCLAIMER

LPBI Group’s decision to publish the Table of Contents of this Report does not imply endorsement of the Report

Aviva Lev-Ari, PhD, RN, Founder 1.0 & 2.0 LPBI Group

Guest Reporter: MIKE WOOD

Marketing Executive
BIOTECH FORECASTS

 

ABOUT BIOTECH FORECASTS

BIOTECH FORECASTS is a full-service market research and business- consulting firm primarily focusing on healthcare, pharmaceutical, and biotechnology industries. BIOTECH FORECASTS provides global as well as medium and small Pharmaceutical and Biotechnology businesses with unmatched quality of “Market Research Reports” and “Business Intelligence Solutions”. BIOTECH FORECASTS has a targeted view to provide business insights and consulting to assist its clients to make strategic business decisions, and achieve sustainable growth in their respective market domain.

UPDATED on 10/13/2020

CAR T-CELL THERAPY MARKET

Mike Wood

Mike Wood

Marketing Executive at Biotech Forecasts

CAR T-cell therapy as a part of adoptive cell therapy (ACT), has become one of the most rapidly growing and promising fields in the Immuno-oncology. As compared to the conventional cancer therapies, CAR T-cell therapy is the single-dose solution for the treatment of various cancers, significantly for some lethal forms of hematological malignancies.

CAR T-cell therapy mainly involves the use of engineered T-cells, the process starts with the extraction of T-cells through leukapheresis, either from the patient (autologous) or a healthy donor (allogeneic). After the expression of a synthetic receptor (Chimeric Antigen Receptor) in the lab, the altered T-cells are expanded to the right dose and administered into the patient’s body. where they target and attach to a specific antigen on the tumor surface, to kill the cancerous cells by igniting the apoptosis.

The global CAR T-cell therapy market was valued at $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027.

Factors that drive the market growth involve, (1) Increased in funding for R&D activities pertaining to cell and gene therapy. By H1 2020 cell and gene therapy companies set new records in the fundraising despite the pandemic crisis. For Instance, by June 2020 totaled $1,452 Million raised in Five IPOs including, Legend Biotech ($487M), Passage Bio ($284M), Akouos ($244M), Generation Bio ($230M), and Beam Therapeutics ($207M), which is 2.5 times the total IPO of 2019.

Moreover, in 2019 cell therapy companies specifically have raised $560 million of venture capital, including Century Therapeutics ($250M), Achilles Therapeutics Ltd. ($121M in series B), NKarta Therapeutics Inc. ($114M), and Tmunity Therapeutics ($75M in Series B).

(2) Increased in No. of Approved Products, By July 2020, there are a total of 03 approved CAR T-cell therapy products, including KYMRIAH®, YESCARTA®, and the most recently approved TECARTUS™ (formerly KTE-X19). Furthermore, two CAR T-cell therapies BB2121, and JCAR017 are expected to get the market approval by the end of 2020 or in early 2021.

Other factors that boost the market growth involves; (3) increase in government support, (4) ethical acceptance of Cell and Gene therapy for cancer treatment, (5) rise in the prevalence of cancer, and (6) an increase in awareness regarding the CAR T-cell therapy.

However, high costs associated with the treatment (KYMRIAH® cost around $475,000, and YESCARTA® costs $373,000 per infusion), long production hours, obstacles in treating solid tumors, and unwanted immune responses & potential side effects might hamper the market growth.

The report also presents a detailed quantitative analysis of the current market trends and future estimations from 2020 to 2027.

The forecasts cover 2 Approach Types, 5 Antigen Types, 5 Application Types, Regions, and 14 Countries.

The report comes with an associated file covering quantitative data from all numeric forecasts presented in the report, as well as with a Clinical Trials Data File.

KEY FINDINGS

The report has the following key findings:

  • The global CAR T-cell therapy market accounted for $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027.
  • By approach type the autologous segment was valued at $655.26 million in 2019 and is estimated to reach $ 3,324.52 million by 2027, registering a CAGR of 22.51% from 2020 to 2027.
  • By approach type, the allogeneic segment exhibits the highest CAGR of 32.63%.
  • Based on the Antigen segment CD19 was the largest contributor among the other segments in 2019.
  • The Acute lymphocytic leukemia (ALL) segment generated the highest revenue and is expected to continue its dominance in the future, followed by the Diffuse large B-cell lymphoma (DLBCL) segment.
  • North America dominated the global CAR T-cell therapy market in 2019 and is projected to continue its dominance in the future.
  • China is expected to grow the highest in the Asia-Pacific region during the forecast period.

TOPICS COVERED

The report covers the following topics:

  • Market Drivers, Restraints, and Opportunities
  • Porters Five Forces Analysis
  • CAR T-Cell Structure, Generations, Manufacturing, and Pricing Models
  • Top Winning Strategies, Top Investment Pockets
  • Analysis of by Approach Type, Antigen Type, Application, and Region
  • 51 Company Profiles, Product Portfolio, and Key Strategies
  • Approved Products Profiles, and list of Expected Approvals
  • COVID-19 Impact on the Cell and Gene Therapy Industry
  • CAR T-cell therapy clinical trials analysis from 1997 to 2019
  • Market analysis and forecasts from 2020 to 2027

FORECAST SEGMENTATION

By Approach Type

  • Autologous
  • Allogeneic

By Antigen Type

  • CD19
  • CD20
  • BCMA
  • MSLN
  • Others

By Application

  • Acute lymphoblastic leukemia (ALL)
  • Diffuse large B-Cell lymphoma (DLBCL)
  • Multiple Myeloma (MM)
  • Acute Myeloid Leukemia (AML)
  • Other Cancer Indications

By Region

  • North America: USA, Canada, Mexico
  • Europe: UK, Germany, France, Spain, Italy, Rest of Europe
  • Asia-Pacific: China, Japan, India, South Korea, Rest of Asia-Pacific
  • LAMEA: Brazil, South Africa, Rest of LAMEA

Contact at info@biotechforecasts.com for any Queries or Free Report Sample

Report this

Published by

Mike Wood
Marketing Executive at Biotech Forecasts
1 article
The global CAR T-cell therapy market was valued at $734 million in 2019 and is estimated to reach $4,078 million by 2027, registering a CAGR of 23.91% from 2020 to 2027. hashtagcelltherapy hashtaggenetherapy hashtagimmunotherapy hashtagcancertreatment hashtagcartcell hashtagregenerativemedicine hashtagbiotech hashtagcancer

 

Table of Contents

 

CHAPTER 1: INTRODUCTION

1.1 REPORT DESCRIPTION 17
1.2 TOPICS COVERED 19
1.3 KEY MARKET SEGMENTS 20
1.4 KEY BENEFITS 21
1.5 RESEARCH METHODOLOGY 21
1.6 TARGET AUDIENCE 22
1.7 COMPANIES MENTIONED 23

CHAPTER 2: EXECUTIVE SUMMARY

2.1 EXECUTIVE SUMMARY 26
2.2 CXO PROSPECTIVE 29

CHAPTER 3: MARKET OVERVIEW

3.1 MARKET DEFINITION AND SCOPE 30
3.2 KEY FINDINGS 31
3.3 TOP INVESTMENT POCKETS 32
3.4 TOP WINNING STRATEGIES 33
3.4.1.Top winning strategies, by year, 2017-2019* 34
3.4.2.Top winning strategies, by development, 2017-2019*(%) 34
3.4.3.Top winning strategies, by company, 2017-2019* 35
3.5 TOP PLAYER POSITIONING, BY PIPELINE VOLUME, 2019 38
3.6 PORTERS FIVE FORCES ANALYSIS 39
3.7 COVID19 IMPACT ON CELL AND GENE THERAPY (CGT) INDUSTRY 41
3.8 MARKET DYNAMICS 46
3.8.1    Drivers 46
3.8.1.1   Increase in funding for R&D activities of CAR T-cell therapy 46
3.8.1.2   The rise in the prevalence of cancer 47
3.8.1.3   Increase in awareness regarding CAR T-cell therapy 47

 

3.8.2    Restrains 48
3.8.2.1   The high cost of CAR T-cell therapy treatment 48
3.8.2.2   Unwanted immune responses and side effects 48
3.8.2.3   Long production time 48
3.8.2.4   Obstacles in treating solid tumors 49
3.8.3    Opportunities 49
3.8.3.1   Untapped potential for emerging markets 49

CHAPTER 4: CAR T-CELL THERAPY, A BRIEF INTRODUCTION

4.1 OVERVIEW 50
4.2 SIXTY YEARS HISTORY OF CAR T-CELL THERAPY 51
4.3 CAR T-CELL STRUCTURE AND GENERATIONS 53
4.4 CAR T-CELL MANUFACTURING PROCESSES 56
4.5 PRICING AND PAYMENT MODELS FOR CAR T-CELL THERAPIES 59

CHAPTER 5: CAR T-CELL THERAPY MARKET, BY APPROACH TYPE

5.1 OVERVIEW 61
5.1.1    Market size and forecast 62
5.2 AUTOLOGOUS 63
5.2.1    Key market trends 63
5.2.2    Key growth factors and opportunities 64
5.2.3    Market size and forecast 64
5.2.4    Market size and forecast by country 65
5.3 ALLOGENEIC 66
5.3.1    Key market trends 67
5.3.2    Key growth factors and opportunities 68
5.3.3    Market size and forecast 68
5.3.4    Market size and forecast by country 69

CHAPTER 6: CAR T-CELL THERAPY MARKET, BY ANTIGEN TYPE

6.1 OVERVIEW 70
6.1.1         Market size and forecast 71
6.2 CD19 72
6.2.1         Market size and forecast 73
6.2.2         Market size and forecast by country 74

 

6.3 CD20 75
6.3.1 Market size and forecast 76
6.3.2 Market size and forecast by country 77
6.4 BCMA 78
6.4.1 Market size and forecast 79
6.4.2 Market size and forecast by country 80
6.5 MSLN 81
6.5.1 Market size and forecast 82
6.5.2 Market size and forecast by country 83
6.6 OTHERS 84
6.6.1 Market size and forecast 85
6.6.2 Market size and forecast by country 86

CHAPTER 7: CAR T-CELL THERAPY MARKET, BY APPLICATION

7.1 OVERVIEW 87
7.1.1       Market size and forecast 88
7.2 ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) 89
7.2.1       Market size and forecast 90
7.2.2       Market size and forecast by country 91
7.3 DIFFUSE LARGE B-CELL LYMPHOMA (DLBCL) 92
7.3.1       Market size and forecast 93
7.3.2       Market size and forecast by country 94
7.4 MULTIPLE MYELOMA (MM) 95
7.4.1       Market size and forecast 96
7.4.2       Market size and forecast by country 97
7.5 ACUTE MYELOID LEUKEMIA (AML) 98
7.5.1       Market size and forecast 99
7.5.2       Market size and forecast by country 100
7.6 OTHERS 101
7.6.1       Market size and forecast 102
7.6.2       Market size and forecast by country 103

CHAPTER 8: CAR T-CELL THERAPY MARKET, BY REGION

8.1 OVERVIEW 104
8.1.1       Market size and forecast 104
8.2 NORTH AMERICA 105
8.2.1       Key market trends 105
8.2.2       Key growth factors and opportunities 105

 

8.2.3       Market size and forecast, by country 106
8.2.4       Market size and forecast, by approach type 106
8.2.5       Market size and forecast, by antigen type 107
8.2.6 Market size and forecast, by application 107
8.2.6.1 U.S. market size and forecast, by approach type 108
8.2.6.2 U.S. market size and forecast, by antigen type 108
8.2.6.3 U.S. market size and forecast, by application 109
8.2.6.4 Canada market size and forecast, by approach type 110
8.2.6.5 Canada market size and forecast, by antigen type 110
8.2.6.6 Canada market size and forecast, by application 111
8.2.6.7 Mexico market size and forecast, by approach type 112
8.2.6.8 Mexico market size and forecast, by antigen type 112
8.2.6.9 Mexico market size and forecast, by application 113
8.3 EUROPE 114
8.4.1 Key market trends 114
8.4.2 Key growth factors and opportunities 114
8.4.3 Market size and forecast, by country 115
8.4.4 Market size and forecast, by approach type 115
8.4.5 Market size and forecast, by antigen type 116
8.4.6 Market size and forecast, by application 116
8.3.6.1 UK market size and forecast, by approach type 117
8.3.6.2 UK market size and forecast, by antigen type 117
8.3.6.3 UK market size and forecast, by application 118
8.3.6.4 Germany market size and forecast, by approach type 119
8.3.6.5 Germany market size and forecast, by antigen type 119
8.3.6.6 Germany market size and forecast, by application 120
8.3.6.7 France market size and forecast, by approach type 121
8.3.6.8 France market size and forecast, by antigen type 121
8.3.6.9 France market size and forecast, by application 122
8.3.6.10 Spain market size and forecast, by approach type 123
8.3.6.11 Spain market size and forecast, by antigen type 123
8.3.6.12 Spain market size and forecast, by application 124
8.3.6.13 Italy market size and forecast, by approach type 125
8.3.6.14 Italy market size and forecast, by antigen type 125
8.3.6.15 Italy market size and forecast, by application 126
8.3.6.16 Rest of Europe market size and forecast, by approach type 127
8.3.6.17 Rest of Europe market size and forecast, by antigen type 127
8.3.6.18 Rest of Europe market size and forecast, by application 128
8.4 ASIA-PACIFIC 129
8.4.1 Key market trends 129
8.4.2 Key growth factors and opportunities 129
8.4.3 Market size and forecast, by country 130
8.4.4 Market size and forecast, by approach type 130

 

8.4.5       Market size and forecast, by antigen type 131
8.4.6 Market size and forecast, by application 131
8.4.6.1 China market size and forecast, by approach type 132
8.4.6.2 China market size and forecast, by antigen type 132
8.4.6.3 China market size and forecast, by application 133
8.4.6.4 Japan market size and forecast, by approach type 134
8.4.6.5 Japan market size and forecast by antigen type 134
8.4.6.6 Japan market size and forecast, by application 135
8.4.6.7 India market size and forecast, by approach type 136
8.4.6.8 India market size and forecast, by antigen type 136
8.4.6.9 India market size and forecast, by application 137
8.4.6.10 South Korea market size and forecast, by approach type 138
8.4.6.11 South Korea market size and forecast, by antigen type 138
8.4.6.12 South Korea market size and forecast, by application 139
8.4.6.13 Rest of Asia-Pacific market size and forecast, by approach type 140
8.4.6.14 Rest of Asia-Pacific market size and forecast, by antigen type 140
8.4.6.15 Rest of Asia-Pacific market size and forecast, by application 141
8.5 LAMEA 142
8.5.1 Key market trends 142
8.5.2 Key growth factors and opportunities 142
8.5.3 Market size and forecast, by country 143
8.5.4 Market size and forecast, by approach type 143
8.5.5 Market size and forecast, by antigen type 144
8.5.6 Market size and forecast, by application 144
8.5.6.1 Brazil market size and forecast by approach type 145
8.5.6.2 Brazil market size and forecast, by antigen type 145
8.5.6.3 Brazil market size and forecast, by application 146
8.5.6.4 South Africa market size and forecast, by approach type 147
8.5.6.5 South Africa market size and forecast, by antigen type 147
8.5.6.6 South Africa market size and forecast, by application 148
8.5.6.7 Rest of LAMEA market size and forecast by approach type 149
8.5.6.8 Rest of LAMEA market size and forecast, by antigen type 149
8.5.6.9 Rest of LAMEA market size and forecast, by application 150

CHAPTER 9: CLINICAL TRIALS ANALYSIS & PRODUCT PROFILES

9.1 OVERVIEW 151
9.1.1      No. of Clinical Trials from 1997 to 2019 151
9.1.2      Clinical Trials from 1997 to 2019: Based on Approach Type 152
9.1.3      Clinical Trials from 1997 to 2019: Based on Antigen Type 153
9.1.4      Clinical Trials from 1997 to 2019: Based on Application 154
9.1.5      Clinical Trials from 1997 to 2019: Based on Region 155

 

9.2 EXPECTED APPROVALS 156
9.3 APPROVED PRODUCTS PROFILES 157
9.3.1      KYMRIAH® 157
9.3.2      YESCARTA® 159
9.3.3      TECARTUS™ 161

CHAPTER 10: COMPANY PROFILES

10.1       Abbvie Inc. 162
10.2       Adaptimmune Therapeutics Plc 164
10.3 Allogene Therapeutics, Inc. 166
10.4 Amgen, Inc 168
10.5 Anixa Biosciences, Inc. 170
10.6 Arcellx, Inc. 172
10.7 Atara Biotherapeutics, Inc. 173
10.8 Autolus Therapeutics Plc. 175
10.9 Beam Therapeutics, Inc. 177
10.10 Bellicum Pharmaceuticals, Inc. 179
10.11 BioNtech SE 181
10.12 Bluebird Bio, Inc. 183
10.13 Carsgen Therapeutics, Ltd 185
10.14 Cartesian Therapeutics, Inc. 187
10.15 Cartherics Pty Ltd. 188
10.16 Celgene Corporation 189
10.17 Cellectis SA 191
10.18 Cellular Biomedicine Group, Inc. 193
10.19 Celularity, Inc. 195
10.20 Celyad SA 196
10.21 CRISPR Therapeutics AG 198
10.22 Eureka Therapeutics, Inc. 200
10.23 Fate Therapeutics, Inc. 201
10.24 Fortress Biotech, Inc 203
10.25 Gilead Sciences, Inc. 205
10.26 Gracell Biotechnology Ltd 207
10.27 icell Gene Therapeutics 208
10.28 Johnson & Johnson 209
10.29 Juventas Cell Therapy Ltd. 211
10.30 Kuur Therapeutics 212
10.31 Legend Biotech Corp. 213
10.32 Leucid Bio Ltd. 214
10.33 Minerva Biotechnologies Corp. 215

 

10.34     Molecular Medicine SPA (Molmed) 216
10.35     Nanjing Bioheng Biotech Co., Ltd. 218
10.36     Noile-Immune Biotech Inc. 219
10.37     Novartis AG 220
10.38     Oxford Biomedica PLC 222
10.39     Persongen Biotherapeutics (Suzhou) Co., Ltd. 224
10.40     Poseida Therapeutics, Inc. 226
10.41     Precigen, Inc. 227
10.42     Precision Biosciences, Inc. 229
10.43     Sorrento Therapeutics, Inc. 231
10.44     Takara Bio Inc. 233
10.45     Takeda Pharmaceutical Company Ltd. 235
10.46     TC Biopharm Ltd. 237
10.47     Tessa Therapeutics Pte Ltd. 238
10.48     Tmunity Therapeutics, Inc. 239
10.49     Unum Therapeutics Inc. 240
10.50     Xyphos Inc. 242
10.51     Ziopharm Oncology, Inc. 243

CHAPTER 11: CONCLUSION & STRATEGIC RECOMMENTATIONS

11.1     STRATEGIC RECOMMENDATIONS 245
11.2     CONCLUSION 247

 

CONTACT

info@biotechforecasts.com

MIKE WOOD

Marketing Executive

BIOTECH FORECASTS

Read Full Post »

Live Notes, Real Time Conference Coverage 2020 AACR Virtual Meeting April 28, 2020 Symposium: New Drugs on the Horizon Part 3 12:30-1:25 PM

Reporter: Stephen J. Williams, PhD

New Drugs on the Horizon: Part 3
Introduction

Andrew J. Phillips, C4 Therapeutics

  • symposium brought by AACR CICR and had about 30 proposals for talks and chose three talks
  • unfortunately the networking event is not possible but hope to see you soon in good health

ABBV-184: A novel survivin specific T cell receptor/CD3 bispecific therapeutic that targets both solid tumor and hematological malignancies

Edward B Reilly
AbbVie Inc. @abbvie

  • T-cell receptors (TCR) can recognize the intracellular targets whereas antibodies only recognize the 25% of potential extracellular targets
  • survivin is expressed in multiple cancers and correlates with poor survival and prognosis
  • CD3 bispecific TCR to survivn (Ab to CD3 on T- cells and TCR to survivin on cancer cells presented in MHC Class A3)
  • ABBV184  effective in vivo in lung cancer models as single agent;
  • in humanized mouse tumor models CD3/survivin bispecific can recruit T cells into solid tumors; multiple immune cells CD4 and CD8 positive T cells were found to infiltrate into tumor
  • therapeutic window as measured by cytokine release assays in tumor vs. normal cells very wide (>25 fold)
  • ABBV184 does not bind platelets and has good in vivo safety profile
  • First- in human dose determination trial: used in vitro cancer cell assays to determine 1st human dose
  • looking at AML and lung cancer indications
  • phase 1 trial is underway for safety and efficacy and determine phase 2 dose
  • survivin has very few mutations so they are not worried about a changing epitope of their target TCR peptide of choice

The discovery of TNO155: A first in class SHP2 inhibitor

Matthew J. LaMarche
Novartis @Novartis

  • SHP2 is an intracellular phosphatase that is upstream of MEK ERK pathway; has an SH2 domain and PTP domain
  • knockdown of SHP2 inhibits tumor growth and colony formation in soft agar
  • 55 TKIs there are very little phosphatase inhibitors; difficult to target the active catalytic site; inhibitors can be oxidized at the active site; so they tried to target the two domains and developed an allosteric inhibitor at binding site where three domains come together and stabilize it
  • they produced a number of chemical scaffolds that would bind and stabilize this allosteric site
  • block the redox reaction by blocking the cysteine in the binding site
  • lead compound had phototoxicity; used SAR analysis to improve affinity and reduce phototox effects
  • was very difficult to balance efficacy, binding properties, and tox by adjusting stuctures
  • TNO155 is their lead into trials
  • SHP2 expressed in T cells and they find good combo with I/O with uptick of CD8 cells
  • TNO155 is very selective no SHP1 inhibition; SHP2 can autoinhibit itself when three domains come together and stabilize; no cross reactivity with other phosphatases
  • they screened 1.5 million compounds and got low hit rate so that is why they needed to chemically engineer and improve on the classes they found as near hits

Closing Remarks

 

Xiaojing Wang
Genentech, Inc. @genentech

Follow on Twitter at:

@pharma_BI

@AACR

@CureCancerNow

@pharmanews

@BiotechWorld

@HopkinsMedicine

#AACR20

Read Full Post »

Live Conference Coverage of AACR 2020 Annual Virtual Meeting; April 27-28, 2020

Reporter: Stephen J. Williams, Ph.D.

The American Association for Cancer Research (AACR) will hold its Annual Meeting as a Virtual Online Format.  Registration is free and open to all, including non members.  Please go to

https://www.aacr.org/meeting/aacr-annual-meeting-2020/aacr-virtual-annual-meeting-i/?utm_source=Salesforce%20Marketing%20Cloud&utm_medium=Email&utm_campaign=&sfmc_s=0031I00000WsBJxQAN

to register for this two day meeting.  Another two day session will be held in June 2020 and will focus more on basic cancer research.

Please follow @pharma_BI who will be live Tweeting Real Time Notes from this meeting using the hashtag

#AACR20

And @StephenJWillia2

The following is a brief summary of the schedule.  Please register and go to AACR for detailed information on individual sessions.

 

AACR VIRTUAL ANNUAL MEETING I: SCHEDULE AT A GLANCE

AACR Virtual Annual Meeting I is available free Register Now

VIRTUAL MEETING I: BROWSER REQUIREMENTS AND ACCESSVIRTUAL MEETING I: FAQVIRTUAL MEETING I: MEETING PLANNER (ABSTRACT TITLES)

Presentation titles are available through the online meeting planner. The program also includes six virtual poster sessions consisting of brief slide videos. Poster sessions will not be presented live but will be available for viewing on demand. Poster session topics are as follows:

  • Phase I Clinical Trials
  • Phase II Clinical Trials
  • Phase III Clinical Trials
  • Phase I Trials in Progress
  • Phase II Trials in Progress
  • Phase III Trials in Progress

Schedule updated April 24, 2020

MONDAY, APRIL 27

Channel 1 Channel 2 Channel 3
9:00 a.m.-9:30 a.m.
Opening Session
_______________________
9:30 a.m.-11:40 a.m.
Opening Clinical Plenary
_______________________
11:40 a.m.-2:00 p.m.
Clinical Plenary: Immunotherapy Clinical Trials 1
_______________________
___ 11:45 a.m.-1:30 p.m.
Minisymposium: Emerging Signaling Vulnerabilities in Cancer
_______________________
___ 11:45 a.m.-1:15 p.m.
Minisymposium: Advances in Cancer Drug Design and Discovery
__________________________
2:00 p.m.-4:50 p.m.
Clinical Plenary: Lung Cancer Targeted Therapy
_______________________
___ 1:55 p.m.-4:15 p.m.
Clinical Plenary: Breast Cancer Therapy
_______________________
___ 1:30 p.m.-3:30 p.m.
Minisymposium: Drugging Undrugged Cancer Targets
__________________________
4:50 p.m.-6:05 p.m.
Symposium: New Drugs on the Horizon 1_______________________
___ 4:50 p.m.-5:50 p.m.
Minisymposium: Therapeutic Modification of the Tumor Microenvironment or Microbiome
_______________________
___ 4:00 p.m.-6:00 p.m.
Minisymposium: Advancing Cancer Research Through An International Cancer Registry: AACR Project GENIE Use Cases__________________________

All session times are EDT.

TUESDAY, APRIL 28

Channel 1 Channel 2 Channel 3
9:00 a.m.-101:00 a.m.
Clinical Plenary: COVID-19 and Cancer
__________________________
11:00 a.m.-1:35 p.m.
Clinical Plenary: Adoptive Cell Transfer Therapy__________________________
___ 10:45 a.m.-12:30 p.m.
Symposium: New Drugs on the Horizon 2_________________________
___ 10:45 a.m.-12:30 p.m.
Minisymposium: Translational Prevention Studies
______________________
___ 12:30 p.m.-1:25 p.m.
Symposium: New Drugs on the Horizon 3
_________________________
___ 12:30 p.m.-2:15 p.m.
Minisymposium: Non-coding RNAs in Cancer
______________________
1:35 p.m.-3:35 p.m.
Clinical Plenary: Early Detection and ctDNA__________________________
___ 1:30 p.m.-3:50 p.m.
Clinical Plenary: Immunotherapy Clinical
Trials 2
_________________________
___ 2:15 p.m.-3:45 p.m.
Minisymposium: Novel Targets and Therapies______________________
3:35 p.m.-5:50 p.m.
Minisymposium: Predictive Biomarkers for Immunotherapeutics__________________________
___ 3:50 p.m.-5:35 p.m.
Minisymposium: Evaluating Cancer Genomics from Normal Tissues through Evolution to Metastatic Disease
_________________________
___ 4:00 p.m.-4:55 p.m.
Clinical Plenary: Targeted Therapy______________________
5:00 p.m.-5:45 p.m.
Symposium: NCI Activities– COVID-19 and Cancer Research
Dinah Singer, NCI
______________________
5:45 p.m.-6:00 p.m.
Closing Session
______________________

All session times are EDT.

 

 

 

Day

 

Session Type

Topic Tracks

For more on @pharma_BI and LPBI Group Conference Coverage in Real Time please go to

https://pharmaceuticalintelligence.com/press-coverage/

and

 

 

Read Full Post »

An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

3.2.9

3.2.9   An Intelligent DNA Nanorobot to Fight Cancer by Targeting HER2 Expression, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

HER2 is an important prognostic biomarker for 20–30% of breast cancers, which is the most common cancer in women. Overexpression of the HER2 receptor stimulates breast cells to proliferate and differentiate uncontrollably, thereby enhancing the malignancy of breast cancer and resulting in a poor prognosis for affected individuals. Current therapies to suppress the overexpression of HER2 in breast cancer mainly involve treatment with HER2-specific monoclonal antibodies. However, these monoclonal anti-HER2 antibodies have severe side effects in clinical trials, such as diarrhea, abnormal liver function, and drug resistance. Removing HER2 from the plasma membrane or inhibiting the gene expression of HER2 is a promising alternative that could limit the malignancy of HER2-positive cancer cells.

DNA origami is an emerging field of DNA-based nanotechnology and intelligent DNA nanorobots show great promise in working as a drug delivery system in healthcare. Different DNA-based nanorobots have been developed as affordable and facile therapeutic drugs. In particular, many studies reported that a tetrahedral framework nucleic acid (tFNA) could serve as a promising DNA nanocarrier for many antitumor drugs, owing to its high biocompatibility and biosecurity. For example, tFNA was reported to effectively deliver paclitaxel or doxorubicin to cancer cells for reversing drug resistance, small interfering RNAs (siRNAs) have been modified into tFNA for targeted drug delivery. Moreover, the production and storage of tFNA are not complicated, and they can be quickly degraded in lysosomes by cells. Since both free HApt and tFNA can be diverted into lysosomes, so,  combining the HApt and tFNA as a novel DNA nanorobot (namely, HApt-tFNA) can be an effective strategy to improve its delivery and therapeutic efficacy in treating HER2-positive breast cancer.

Researchers reported that a DNA framework-based intelligent DNA nanorobot for selective lysosomal degradation of tumor-specific proteins on cancer cells. An anti-HER2 aptamer (HApt) was site-specifically anchored on a tetrahedral framework nucleic acid (tFNA). This DNA nanorobot (HApt-tFNA) could target HER2-positive breast cancer cells and specifically induce the lysosomal degradation of the membrane protein HER2. An injection of the DNA nanorobot into a mouse model revealed that the presence of tFNA enhanced the stability and prolonged the blood circulation time of HApt, and HApt-tFNA could therefore drive HER2 into lysosomal degradation with a higher efficiency. The formation of the HER2-HApt-tFNA complexes resulted in the HER2-mediated endocytosis and digestion in lysosomes, which effectively reduced the amount of HER2 on the cell surfaces. An increased HER2 digestion through HApt-tFNA further induced cell apoptosis and arrested cell growth. Hence, this novel DNA nanorobot sheds new light on targeted protein degradation for precision breast cancer therapy.

It was previously reported that tFNA was degraded by lysosomes and could enhance cell autophagy. Results indicated that free Cy5-HApt and Cy5-HApt-tFNA could enter the lysosomes; thus, tFNA can be regarded as an efficient nanocarrier to transmit HApt into the target organelle. The DNA nanorobot composed of HApt and tFNA showed a higher stability and a more effective performance than free HApt against HER2-positive breast cancer cells. The PI3K/AKT pathway was inhibited when membrane-bound HER2 decreased in SK-BR-3 cells under the action of HApt-tFNA. The research findings suggest that tFNA can enhance the anticancer effects of HApt on SK-BR-3 cells; while HApt-tFNA can bind to HER2 specifically, the compounded HER2-HApt-tFNA complexes can then be transferred and degraded in lysosomes. After these processes, the accumulation of HER2 in the plasma membrane would decrease, which could also influence the downstream PI3K/AKT signaling pathway that is associated with cell growth and death.

However, some limitations need to be noted when interpreting the findings: (i) the cytotoxicity of the nanorobot on HER2-positive cancer cells was weak, and the anticancer effects between conventional monoclonal antibodies and HApt-tFNA was not compared; (ii) the differences in delivery efficiency between tFNA and other nanocarriers need to be confirmed; and (iii) the confirmation of anticancer effects of HApt-tFNA on tumors within animals remains challenging. Despite these limitations, the present study provided novel evidence of the biological effects of tFNA when combined with HApt. Although the stability and the anticancer effects of HApt-tFNA may require further improvement before clinical application, this study initiates a promising step toward the development of nanomedicines with novel and intelligent DNA nanorobots for tumor treatment.

References:

https://pubs.acs.org/doi/10.1021/acs.nanolett.9b01320

https://www.ncbi.nlm.nih.gov/pubmed/27939064

https://www.ncbi.nlm.nih.gov/pubmed/11694782

https://www.ncbi.nlm.nih.gov/pubmed/27082923

https://www.ncbi.nlm.nih.gov/pubmed/25365825

https://www.ncbi.nlm.nih.gov/pubmed/26840503

https://www.ncbi.nlm.nih.gov/pubmed/29802035

Read Full Post »

Older Posts »