Feeds:
Posts
Comments

Archive for the ‘Population Health Management, Genetics & Pharmaceutical’ Category

Real Time Conference Coverage: Advancing Precision Medicine Conference, Early Morning Session Track 1 October 4 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

 

8:55 – 10:35

SESSION 1

Precision For All:

Global Access, Real Cases, and Implementation Science

 

8:55-9:15

Results and Future Direction from WIN’s Data Science Paper

Razelle Kurzrock, MD

9:15-9:55

When Precision Gets Personal: WIN Consortium International Molecular Tumor Board Live

Andrea Ferreira-Gonzalez
Razelle Kurzrock, MD

Razelle Kurzrock, MD, FACP, Chief Medical Officer, WIN Consortium; Professor of Medicine, Associate Director, Clinical Research, Linda T. and John A. Mellowes Endowed Chair of Precision Oncology, MCW Cancer Center and Linda T. & John A. Mellowes Center for Genomic Sciences and Precision Medicine

Notes from Live Tumor Board from Live Tweets

Tumor board Live… Molecular profiling great for identifying synthetic lethal combinations work very well… Many oncologist not accepting recommendations of molec tumor board

Tumor board Live . Oncologists don’t always accept tumor board recommendations based on molecular profiling… Dr Baptiste at first felt constrained to use single agent but WINTER combo trial with molec profiling better

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Pemetrexemed not always working but MTAP inhibitions may work

Tumor board Live… Discussion of ovarian cancer case women first presented with CRC BRCA mut but failed PARP inhibitor board is looking at immunotherapy NGS IHC performed

#WINconsortium

Fusions being detected by RNAseq at rate of 100 per month

Tumor board Live…. Theranostics are becoming part of molec tumor board … Radio labeled dual diagnostic therapeutic antibodies

Tumor board Live… Molecular profiling great for identifying synthetic lethal combinations work very well… Many oncologist not accepting recommendations of molec tumor board

SESSION 2

Expanding the Precision Frontier

9:55-10:25

Precision Oncology in the Immunotherapy Era: Biomarkers and Clinical Trial Innovation

Razelle Kurzrock, MD

Lillian Siu, MD, President, AACR 2025-2026; Director, Phase I Clinical Trials Program; Co-Director, Robert and Maggie Bras and Family Drug Development Program Clinical Lead, Tumor Immunotherapy Program; BMO Chair, Precision Cancer Genomics, Princess Margaret Cancer Centre Professor of Medicine, University of Toronto

  • Princess Margaret CC went to Merck got pembrolizumab from them but built a team platform of clinicians and scientists to work on INSPIRE trial
  • $11 million of grants, 13 major papers, great team science
  • did ctDNA from liquid biopsy and also looked at methylation patterns in cfDNA
  • looked at IFN stimulation and outcome to pembrolizumab
  • retro transposable elements found in INSPIRE program, maybe a predictor of immune sensitivity
  • they were able to correlate some of their findings with spatial omics
  • using spatial data they could look at hot versus cold head and neck cancer
  •  factors for response to immunotherapy: TMB, t cell infiltrate,  PDL1 etc
  • using AI with IHC slides as well as NGS data sets
  • as clinical trials become multiomics and AI with multiomics platforms data sharing will be critical for success

10:25 – 10:35

The Microbiome and Its Role in Cancer Development and Treatment Response

Razelle Kurzrock, MD

Sabine Hazan, MD, CEO, Ventura Clinical Trials; CEO, Progenabiome

  • microbiome research at the infancy so we don’t know much when comes to oncology
  • we need to compare microbiome between persons using NGS and other omics
  • we all have different microbiome even though microbiome ‘healthy’
  • lots of factors affect microbiome including surgery
  • families are similar in their microbiome but when looking at Alzheimers there are differences
  • first lab to find whole COVID in the stools
  • virus was different in different people, difference spike proteins. Virus mutates from lung to stool (gut)
  • in intrafamily patients had different microbiome upon COVID infection
  • bifodobacteria was found as a major part of microbiome altered in COVID but also lots of other diseases
  • lots of examples of host microbial symbiosis
  • they had an instance with throat tumor treated with microbiome and tumor receded without chemo
  • in a glioblastoma microbiome adjustment helped but changed positive response to immunotherapy

Read Full Post »

Real Time Conference Coverage: Advancing Precision Medicine Conference, Afternoon Omics Session Track 2 October 3 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

4:20-4:40

Andrea Ferreira-Gonzalez

 

  • APOE was marker for defining a long term survivor and short term survivor for ovarian cancer patients; the markers were in the stroma
  • there is spatial communication between tumor and underlying stroma
  • it is imperative to understand how your multiomics equipment images a tumor area before it laser captures and send to the MS system; can lose a lot of tissue and information based on differences in resolution
  • many of these multiomics systems are validated for the clinic in EU not US
  • multiomics spatial analysis allows you to image protein, metabolite, mRNA expression in the 3 dimensional environment of the tumor (tumor cells and stroma)
  • they are making a human tumor atlas
  • they say a patient who had tumor went home during COVID and took vaccine but got ill with vaccine; but came back to check tumor and tumor had greatly regressed because prevaccine the tumor was immunologically cold and post COVID vaccine any left over tumor showed great infiltration of immune cells

4:40-4:55

Andrea Ferreira-Gonzalez

Aruna Ayer, PhDVP, Multiomics, Innovation and Scientific AffairsBD Biosciences

  • BD Bioscience multiomics platform is modular and can add more omics levels in the platorm
  • for example someone wanted to look at T cells
  • people have added CRISPR screens on the omics platform
  • most people are using single cell spatial omics
  • they have a FACS on their platform too so you can look at single cell spatial omics and sort different cellular populations
  • very comparative to 10X Genomics platform
  • their proteomics is another layer you can add on their platform however with proteomics you can high background notice with spatial proteomics or a limited panel of biomarkers
  • Their OMICS Protein One panels are optimized for biology and tumor type.
  • get high quality multiomics data and proteomics data but in a 3D spatial format
  • developed Cellismo Data Visualization software tool

4:55-5:10

Andrea Ferreira-Gonzalez

Harsha Gowda, PhDSenior Principal Scientist, Director, Research & Lab Operations, Signios Bio

Signios Biosciences (Signios Bio) is the US-based arm of MedGenome, a global leader in genetic testing services, genomics research, and drug discovery solutions.

Signios Bio is a multiomics and bioinformatics company dedicated to revealing the intricate signals within biological data. We leverage the power of multiomics—integrating data from genomics, transcriptomics, proteomics, epigenomics, metabolomics, and microbiomics—to gain a comprehensive understanding of disease biology. Our AI-powered bioinformatics platform allows us to efficiently analyze these complex datasets, uncovering hidden patterns and accelerating the development of new therapies and diagnostics.

Through the integration of cutting-edge multiomics technologies, advanced bioinformatics, and the expertise of world-class scientists, we enable researchers and clinicians with comprehensive, end-to-end solutions to improve drug discovery and development and advance precision medicine.

As part of MedGenome, we have access to real-world evidence (RWE) from global research networks across the US, Europe, Asia, Africa, Middle East, and Latin America. This access enables us to work with our partners to uncover insights that can lead to new biomarkers and drug targets, ensuring that precision medicine is inclusive and effective for all.

https://www.signiosbiolcom 

  • their platform can do high throughput analysis of patient tumors (like gallbladder cancer) analyzing mutational spectrum with high dimensionality
  • they can integrate genomic and transcriptomics data to reveal multiple pathways affected in patient data
  • have used their platform to investigate spatial omics in lung cancer

Read Full Post »

The Payload Revolution: Redefining the Future of Antibody-Drug Conjugates (ADCs)

Curator: Dr. Sudipta Saha, Ph. D.

 

Antibody-Drug Conjugates (ADCs) are at the forefront of targeted cancer therapy. While much attention has focused on antibody engineering and linker technology, the real breakthrough may lie in the payload—the cytotoxic compound delivered to tumor cells.

Historically, ADC payloads have relied on microtubule inhibitors like MMAE and MMAF, and topoisomerase I inhibitors such as SN-38 and Exatecan. These payloads are potent but limited in diversity, making differentiation difficult in a crowded therapeutic landscape.

The next wave of innovation introduces unconventional payloads with novel mechanisms:

  • ISACs (Immune-Stimulating ADCs) activate the immune system locally.
  • Protein degraders eliminate cancer-critical proteins without inhibiting them directly.
  • Urease-based and membrane-disrupting agents affect the tumor microenvironment.
  • RNA polymerase inhibitors and peptide-based payloads offer precision with reduced systemic toxicity.

This shift also places new demands on linker design. Linkers must now accommodate payloads with diverse chemical properties and release them selectively at the tumor site. A payload–linker mismatch could compromise both safety and efficacy.

Ultimately, the focus is shifting toward payloads not just as cytotoxins, but as precision-guided interventions. This evolution could redefine how ADCs are developed and positioned in treatment regimens, enabling breakthroughs in resistant and heterogeneous cancers. The ADC revolution is payload-powered—and the future belongs to those who can innovate at the molecular level.

References:

https://www.linkedin.com/posts/asmitasinghsharma_%F0%9D%97%A7%F0%9D%97%B5%F0%9D%97%B2-%F0%9D%97%99%F0%9D%98%82%F0%9D%98%81%F0%9D%98%82%F0%9D%97%BF%F0%9D%97%B2-activity-7336738434645901312-wfz1

https://www.nature.com/articles/s41573-022-00590-3

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301933

https://www.cell.com/fulltext/S0092-8674(22)01299-7

https://ascopubs.org/doi/full/10.1200/JCO.22.02474

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257482

Read Full Post »

Protein Switches: The Programmable Future of Bio-therapeutics

Curator: Dr. Sudipta Saha, Ph. D.

 

A PNAS paper entitled “A protein therapeutic modality founded on molecular regulation” presents a pioneering approach to creating protein switches—engineered enzymes that activate only in specific molecular environments. This design introduces a new class of context-dependent therapeutics for precision medicine.

Using domain-insertion techniques, researchers inserted ligand-binding domains into scaffold proteins like β-lactamase. These proteins remain inactive until encountering a specific small molecule, which triggers a conformational change and restores enzymatic activity. This offers precise spatiotemporal control—ideal for minimizing off-target effects.

One key innovation is the systematic insertional mutagenesis that identifies functional switch sites across the protein scaffold. This enables the construction of vast protein libraries, increasing the likelihood of finding optimal switch configurations. Furthermore, the approach is modular—different binding domains and enzymes can be combined to create switches tailored to specific clinical contexts.

These smart proteins can be programmed to respond to cancer biomarkers, metabolite levels, or disease-specific molecular cues. By activating only under disease conditions, they provide a blueprint for next-generation bio-therapeutics—potent, selective, and safer.

The method also opens avenues for drug delivery systems, diagnostics, and biosensors, where conditional activation is critical. Overall, this work represents a conceptual leap in synthetic biology and bioengineering, with implications spanning oncology, infectious disease, and regenerative medicine.

References:

https://www.pnas.org/doi/10.1073/pnas.1102803108

https://pubmed.ncbi.nlm.nih.gov/21646539

https://www.nature.com/articles/nchembio.581

https://pubs.acs.org/doi/10.1021/acs.biochem.8b00392

https://www.nature.com/articles/s41587-020-0585-5

https://www.frontiersin.org/articles/10.3389/fbioe.2022.870310/full

Read Full Post »

Immuno-Timebombs: The Hidden Drivers of Age-Related Illness

Curator: Dr. Sudipta Saha, Ph. D.

 

There are two converging biological processes that drive most age-related diseases: immunosenescence and inflammaging. Together, they explain how a deteriorating immune system and chronic low-grade inflammation contribute to neurodegenerative diseases, cancer, cardiovascular disorders, and frailty.

Immunosenescence refers to the waning competence of both innate and adaptive immune systems. With age, T and B cells become less effective, and macrophage function declines. This makes older individuals more susceptible to infections and less efficient at clearing dysfunctional cells.

Inflammaging, on the other hand, is the persistent presence of inflammation without infection. Factors like gut microbiome alterations, senescent cell accumulation, and epigenetic drift contribute to this condition. Over time, this “silent fire” damages tissues and lays the groundwork for disease.

These drivers don’t just correlate with disease—they often precede it. This positions inflammaging and immunosenescence as targets for prevention, not just treatment. Interventions like exercise, caloric modulation, and anti-inflammatory diets may attenuate their effects. Emerging therapies such as senolytics and immune rejuvenation approaches (e.g., thymic regeneration) are showing promise.

This article also calls for a paradigm shift in medical science—from reactive disease management to proactive longevity interventions. As we unravel the biological clocks of aging, strategies targeting immune recalibration may delay or prevent multiple diseases simultaneously.

The future of healthy aging may well depend on how early we can intervene in this immuno-inflammatory loop—before pathology sets in.

References:

https://erictopol.substack.com/p/the-drivers-of-age-related-diseases

https://www.nature.com/articles/s41591-019-0661-0

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761661

https://www.cell.com/fulltext/S0092-8674(19)30184-4

https://www.frontiersin.org/articles/10.3389/fimmu.2020.579220/full

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649506

Read Full Post »

Tailored Hope: Personalized Gene Therapy Makes History

Curator: Dr. Sudipta Saha, Ph. D.

 

A groundbreaking milestone in precision medicine has been achieved by researchers supported by the National Institutes of Health (NIH), USA where a personalized gene therapy was successfully administered to an infant diagnosed with a rare and fatal genetic disorder. This therapy was developed and delivered under the NIH’s Bespoke Gene Therapy Consortium (BGTC), which focuses on accelerating gene therapy solutions for ultra-rare conditions.

The child, who had been diagnosed with a previously untreatable condition caused by mutations in the TBCK gene, was treated with a customized adeno-associated viral (AAV) vector designed specifically to address the individual’s unique mutation. This approach was enabled by rapid sequencing, vector engineering, preclinical safety testing, and regulatory approvals—all expedited within a year of diagnosis.

The therapeutic gene was administered through a single intravenous infusion. Post-treatment observations indicated stabilization in disease progression and improvement in neurological function, though ongoing monitoring is being conducted to assess long-term outcomes.

This personalized treatment was made possible by the integration of genomic diagnostics, advanced vector design, and regulatory science, marking a transformative moment in paediatric precision medicine. Ethical considerations and close family collaboration were emphasized throughout the process.

The case has highlighted the promise of tailored gene therapies for diseases too rare to be addressed by conventional clinical trials. By establishing a streamlined pathway, the NIH aims to extend this model to more patients globally.

References:

https://www.nih.gov/news-events/news-releases/infant-rare-incurable-disease-first-successfully-receive-personalized-gene-therapy-treatment

https://www.nih.gov/news-events/news-releases

https://reporter.nih.gov/search/cktD28EbTUSuC2vt-5KdxQ/project-details/10888228

https://www.nih.gov/news-events/nih-research-matters/infant-rare-disease-receives-customized-gene-therapy

https://www.sciencedaily.com/releases/2025/05/250515131435.htm

Read Full Post »

Advances in Liver Transplantation: New Frontiers in Organ Regeneration and Immunomodulation

Curator: Dr. Sudipta Saha, Ph. D.

 

Recent research in the field of liver transplantation has been marked by significant advancements in organ preservation, immune tolerance, and regenerative medicine. Efforts have been made to address the critical shortage of donor organs and reduce long-term complications associated with immunosuppressive therapy.

Normothermic machine perfusion (NMP) techniques have been employed to preserve and assess donor livers outside the body. This method has allowed marginal or extended criteria livers to be reconditioned, increasing the usable donor pool. The viability of these organs has been improved through real-time functional monitoring during perfusion.

Immunological tolerance has been targeted through cell-based therapies and gene editing strategies. Regulatory T-cell therapies and tolerogenic dendritic cells have been investigated to reduce the reliance on lifelong immunosuppression. CRISPR-based gene editing is also being explored to modify donor tissues before transplantation to evade host immune responses.

In parallel, liver organoids and bioengineered tissue scaffolds have been studied for their potential in partial transplantation or functional support in acute liver failure. Although clinical application remains at an early stage, these developments have suggested future directions for transplant alternatives or bridge-to-transplant therapies.

Artificial intelligence has been integrated into transplant decision-making, predicting post-transplant outcomes and optimizing donor-recipient matching. These models are being trained on large datasets to improve prognostic accuracy.

Ethical concerns surrounding organ allocation equity and experimental treatments continue to be actively discussed. However, these advancements have collectively pushed the boundaries of transplant medicine toward safer, more personalized, and more sustainable outcomes.

References:

https://pubmed.ncbi.nlm.nih.gov/29670285

https://pubmed.ncbi.nlm.nih.gov/32976865

https://pubmed.ncbi.nlm.nih.gov/32546694

https://pubmed.ncbi.nlm.nih.gov/31954498

Read Full Post »

Weighty Decisions: Drugs or Surgery for Diabetes?

Curator: Dr. Sudipta Saha, Ph. D.

 

A multicenter retrospective cohort study published in The Lancet has evaluated the effectiveness of GLP-1 receptor agonists (GLP-1 RAs), including semaglutide and tirzepatide, versus bariatric surgery in managing type 2 diabetes and obesity. The study was conducted using data from real-world clinical settings involving adults with type 2 diabetes and a body mass index (BMI) over 30.

Patients treated with GLP-1 RAs were found to have significant improvements in glycemic control and weight loss; however, bariatric surgery led to more pronounced and sustained reductions in HbA1c and body weight over a 2-year follow-up. Cardio-metabolic benefits, including blood pressure and lipid profile improvements, were also more prominent in the surgery group.

Despite this, GLP-1 RAs were associated with a lower incidence of early complications and shorter recovery times. Adverse gastrointestinal events were commonly reported in both groups, though surgical complications were more severe but less frequent.

This study suggested that while bariatric surgery remains the most effective intervention for sustained weight and glycemic outcomes, GLP-1 RAs offer a safer, non-invasive alternative with substantial benefit, particularly for patients ineligible or unwilling to undergo surgery. The potential for GLP-1 RA therapy to delay or reduce the need for surgical intervention was also discussed.

These findings have emphasized the importance of personalized treatment strategies based on patient comorbidities, preferences, and risk profiles.

References:

https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(25)00145-2/fulltext

https://pubmed.ncbi.nlm.nih.gov/27222544

https://diabetes.org/newsroom/press-releases/american-diabetes-association-releases-standards-care-diabetes-2024

https://pubmed.ncbi.nlm.nih.gov/17715408

https://www.nejm.org/doi/full/10.1056/NEJMoa2206038

https://pubmed.ncbi.nlm.nih.gov/32870301

Read Full Post »

Tirzepatide Outperforms Semaglutide in Diabetes Control

Curator: Dr. Sudipta Saha, Ph. D.

In a recent clinical study published in The New England Journal of Medicine, the effectiveness of tirzepatide was compared with that of semaglutide in patients with type 2 diabetes. The trial was conducted to evaluate which of the two medications offers better glycemic control and weight loss benefits when combined with standard care.

It was found that participants treated with tirzepatide achieved significantly greater reductions in both HbA1c levels and body weight than those who received semaglutide. A once-weekly administration of tirzepatide was shown to be more effective across multiple dosages. These findings were consistent even in patients with longstanding diabetes and those previously treated with insulin or oral agents.

Gastrointestinal side effects were commonly observed in both groups, including nausea and diarrhoea, but were generally mild to moderate in severity. No new safety concerns were identified during the study period.

The enhanced dual agonist mechanism of tirzepatide, which targets both GIP and GLP-1 receptors, is believed to have contributed to its superior efficacy. While semaglutide acts only on the GLP-1 pathway, tirzepatide’s dual action is thought to improve insulin sensitivity, promote satiety, and reduce appetite more robustly.

This trial represents a significant advancement in diabetes care and suggests that tirzepatide may become a preferred treatment option in clinical practice. It has been proposed that future studies investigate its long-term cardiovascular effects, impact on diabetic complications, and cost-effectiveness in diverse populations.

References:

https://www.nejm.org/doi/full/10.1056/NEJMoa2416394

https://www.sciencedirect.com/science/article/pii/S154235652400226X

https://pubmed.ncbi.nlm.nih.gov/29364588

https://pubmed.ncbi.nlm.nih.gov/29364588

https://www.who.int/publications/i/item/9789241565257

Read Full Post »

Sleeping Threats: Immune System’s Watch on Dormant Cancer

Curator: Dr. Sudipta Saha, Ph. D.

 

The immune system’s role in regulating dormant cancer cells has been increasingly elucidated, revealing a complex interplay that influences metastasis and cancer recurrence. Dormant cells, which enter a non-proliferative state, can evade immune detection and remain quiescent for prolonged periods.


Mechanisms of immune evasion include down-regulation of antigen presentation and residence within immune-privileged niches such as bone marrow. Both innate and adaptive immunity, particularly CD8+ T cells and natural killer cells, are involved in maintaining dormancy and preventing metastatic outgrowth.


Micro-environmental factors that modulate immune surveillance and dormancy status have been identified. Changes in cytokine profiles and inflammation can disrupt dormancy, leading to cancer cell reactivation and metastasis.


Therapeutic approaches to sustain dormancy or eliminate dormant cells are under development. These include immune checkpoint inhibitors, cancer vaccines, and cytokine modulators aimed at enhancing immune recognition and clearance.


By targeting dormant cancer cells through immune modulation, it is anticipated that metastasis can be delayed or prevented, significantly improving long-term patient outcomes and reducing cancer mortality.

References:

https://www.cancer.gov/news-events/cancer-currents-blog/2025/metastasis-dormant-cancer-cells-immune-system

https://www.nature.com/articles/nrc2256

https://pubmed.ncbi.nlm.nih.gov/33681821/

https://pubmed.ncbi.nlm.nih.gov/33811127/

https://www.nature.com/articles/nrc3910

https://pubmed.ncbi.nlm.nih.gov/27015306

 

Read Full Post »

Older Posts »