Archive for the ‘Population Health Management, Genetics & Pharmaceutical’ Category

COVID-19-vaccine rollout risks and challenges

Reporter : Irina Robu, PhD

BioNTech and Pfizer and Moderna COVID-19 vaccines received Emergency Use Authorization in January 2021 in Canada, European Union, United Kingdom and United States. However, in certain places COVID-19 has hit a few hindrances such as stockpiles have accumulated, deployment to vulnerable countries and at-risk groups has been slower than expected.  Yet, experts can see the light at the end of the tunnel of the pandemic. In United States, hundred of organization take a vital role in vaccine deployment, adapting their operations to meet the demands for volume, speed and better technology. Tens of thousands of transporters, vaccine handlers, medical and pharmacy staff, and frontline workers have mandatory training on the specific characteristics of each manufacturer’s distinct vaccines.

The common operating model provides the details of end-to-end vaccine deployment. Possible areas of risk to the rapid delivery of COVID-19 vaccines in the United States include:

Raw-materials constraints in production scaling

Scaling access to material and boosting production levels can cause logistical, contractual and even diplomatic challenges, requiring new forms of collaboration. The top two US manufacturers, for example, can produce 280 million vials per year, capable of holding up to 2.8 billion doses.

Quality-assurance challenges in manufacturing

Generating yields to produce a new class of vaccines—such as those based on mRNA or viral vectors—at an unprecedented scale (1.8 billion to 2.3 billion doses by mid-2021), manufacturers have required massive volumes of inputs, a larger technical workforce.

Cold-chain logistics and storage-management challenges

Manufacturers and distributors are preparing to maintain cold-chain requirements for distribution and long-term storage of mRNA-based vaccines. Large amounts of dry ice may be needed at various locations before administration.

Increased labor requirements

Complex protocols for handling and preparing COVID-19 vaccines have the potential to strain labor capacities or divert workers from other critical roles.

Wastage at points of care

Errors in storing, preparing, or scheduling administration of doses at points of care will have significant consequences and proper on-site storage conditions are also of critical importance.

IT challenges

IT systems, including vaccine-tracking systems and immunization information systems will be vital for allocating, distributing, recording, and monitoring the deployment of vaccines.

There are several possible approaches to help mitigate each of the six risks discussed, each with practical steps for organization to take across the common operating model.

Building resilient raw-materials supplies

  • Resilience planning.Producers can partner with global suppliers of raw materials and ancillary-product manufacturers to create redundancies.
  • Collaboration between industry and government.Ongoing industry engagement with government is essential for ramping-up production and maintaining high levels of production.

 Scaling manufacturing within quality guidelines

  • Scale manufacturing in new and existing facilities.  Various digital and analytics tools can help expand capacity and scale more quickly.
  • Assure quality and yield in current facilities. By continuing to coordinate with regulators, manufacturers and authorities can certify that procedures and dosage quality meet both long-established and newly issued guidelines.
  • Establish predictable supplier plans. Each manufacturing stakeholder can follow a clearly defined plan and they can also conduct regular cross-functional risk reviews to ensure that quality.

Optimizing the cold chain

  • Build redundancy into distribution.Manufacturers, distributers should quickly identify points of failure and creating redundancies at each stage.
  • Leverage feedback loops.Reporting systems could be set up to capture supply-chain disruption events as soon as they happen, with data used to refine best practices and procedures and avoid further losses.
  • Use point-of-care stock management.Vaccine inventories can be redistributed to locations with greater demand. Strategies to avoid over stockpiling must confirm maintenance of the cold chain to prevent risks to the receiving administration site.

Addressing labor shortages

  • Use several types of point-of-care facilities.Rely on hospitals and primary-care locations for vaccine administration, in addition to retail pharmacies.
  • Streamline administration across sites.Deploying vaccines at larger, streamlined vaccination sites can be more efficient and improve patient safety, labor utilization, and speed of vaccination.

 Reducing spoilage at points of care

  • Track and monitor spoilage at points of care.Manufacturers and distributors can collaborate to establish the means to identify and trace instances of spoilage. They can learn from experience and refine guidance, training, certification, and allocation to optimize utilization of doses.
  • Pace first-dose allocation.Allocation of first doses to populations and locations where the need is greatest and the confidence in the availability of second doses is high (such as healthcare professionals and vulnerable populations in nursing homes).
  • Prioritize second doses.Authorities can help ensure that the recommended two-dose course schedule for such vaccines as the Pfizer-BioNTech, Moderna, and AstraZeneca vaccines are duly completed.
  • Establish recipient commitment.Vaccine recipients could be asked to commit to second-dose appointments at their point of care before first-dose administration.
  • Manage certification.National and local government institutions can collaborate to ensure that vaccination certifications are withheld until recipients receive their second dose.

Meeting IT challenges

  • Balance IT upgrades and resilience.Stakeholders should identify IT systems that can be relied upon in the deployment of COVID-19 vaccines and assess their ability to perform at scale.
  • Share cyberthreat intelligence.COVID-19-vaccine stakeholders should agree upon common requirements and processes for generating and sharing threat intelligence.
  • Establish means of demonstrating immunity.Manufacturers and distributers can commission systems to track and verify that vaccine recipients have demonstrated immunity. if it will release them from travel limits and other pandemic-related restrictions.

Although not one organization is involved for managing vaccine deployment, but the risks can be fully address if organizations align on lead organization to build scenarios to test responses to emerging crises. The groups could align on lead organizations to manage issues while building scenarios to test responses to emerging crises. The benefits in managing each of these risks could be demonstrated with compelling metrics and communications.  As COVID-19-vaccine rollouts commence, the steps mentioned above can be undertaken by manufactures, distributors and governments.



Read Full Post »

Glycosylation and its Role in SARS-CoV-2 Viral Pathogenesis

Author: Meg Baker, PhD


N-Glycosylation and COVID19


N-linked glycosylation (NLG) is a complex biosynthetic process that regulates proper folding of proteins through and intracellular transport of proteins to the secretory pathway. This co- and post-translational modification occurs by a series of enzymatic reactions, which results in the transfer of a core glycan from the lipid carrier to a protein substrate and the possibility for further remodeling of the glycan. The enzymes are located in the cytosolic and the luminal side of the ER membrane. The study of NLG and related effects of glycans is called glycobiology.

NLG takes place at sites specified in the protein sequence itself. N-linked oligosaccharides are attached via a GlcNAc linked to the side chain nitrogen of Asn found in the consensus sequence NXT/S (X ≠ P) known as the ‘glycosylation sequon’. Formation of a precursor branched carbohydrate chain, the lipid-linked oligosaccharide (LLO) structure, takes place in the endoplasmic reticulum. The LLO consists of a Glc3Man9GlcNAc2 molecule (three glucose, nine mannose, and two N-acetylglucosamine sugars) linked to a dolichol pyrophosphate. The enzyme oligosaccharyltransferase then moves it to an Asn in the polypeptide.

The removal of the three glucose sugars from the new N-linked glycan signals that the structure is ready for transport to the Golgi where mannose is removed yielding a carbohydrate chain containing five–nine mannose sugars. Further removal of mannose residues can lead to the core structure containing three mannose and two N-acetylglucosamine residues, which may then be elongated with a variety of different monosaccharides including galactose, N-acetylglucosamine (aka NAG or GlcNac), N-acetylgalactosamine, fucose, and sialic acid, many of which can also exist in sulfated form.

The enzymes involved in this essential process are evolutionarily conserved. However, the genes and their specific functions, have evolved uniquely for each selected organism. Therefore, each organism and each individual cell, depending on genetic background and influenced by nutritional and such things as disease status, will decorate secreted proteins in a unique manner.

The advent of biologic medicines (protein based therapeutics) presents the challenge of making sure that the primary protein sequence is specified but also that the manufacture of the protein – typically in a eukaryotic cell host capable of glycosylation – will take place with some degree of reproducibility. The large number of monoclonal antibody therapeutics absolutely require glycosylation for proper structural integrity but are generally made in rodent or other nonhuman cells. Thus, the term “biosimilar” rather than generic is the term being used to connote the variation which will necessarily result due to different manufacturing process even of the same genetic sequence.


Viral Glycoproteins

It should be obvious that the viral genome is not large enough to encompass the collection of enzymes required for glycosylation of any type and viral glycoproteins are formed by the host cell in which the virus is replicating. The study of the impact of glycan content and composition on viral infectivity and, more importantly, vaccine development is a subject which has been late to be addressed largely due to the technical difficulty and lack of methods for analyzing protein glycan composition. However, progress is being made. Raska et al. (J Biol Chem 2010 Jul 2; 285(27): 20860–20869. Glycosylation Patterns of HIV-1 gp120 Depend on the Type of Expressing Cells and Affect Antibody Recognition)  was able to perform such an analysis on the HIV-1 virus albeit almost 30 years after its emergence in human populations. The findings of this study may explain, in part, the difficulty in developing a vaccine against HIV.


SARS-CoV-2 spike protein (P0DTC2 uniprot.org) – as so popularly depicted – is a trimer poking out of the lipid coat that protects it’s genome. The spike protein, like gp120 in HIV, is the point of contact with the human cell ACE2 receptor it uses to gain entry. The spike protein contains two functional external subunits, designated S1 and S2. S1 separated by a furin cleavage site from S2, forms the apex of the trimeric spike structure, is responsible for attachment to the ACE2 receptor. S2 is responsible for fusion to the cell membrane. (PDB: 6VSB shows a 3D image of the protein structure, including glycan positions). There are 22 glycans per polypeptide or 66 per spike trimer protein (Watanabe et al. 2021 Site-specific glycan analysis of the SARS-CoV-2 spike. Science 17 Jul 2020:Vol. 369, Issue 6501, pp. 330-333 ).

Although shielding of receptor binding sites by glycans is a common feature of viral glycoproteins, Watanabe (ibid) note the low mutation rate of SARS-CoV-2 and that as yet, there have been no observed mutations to N-linked glycosylation sites.

The development of a vaccine or individual antibodies or antibody cocktails with neutralizing (viral entry blocking or virocidal activity) is also influenced by the presence or absence of glycans and how well they target the natural conformation of the spike protein. Papageorgiou et al. The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells 2020 Oct 22;9(11):2343. doi: 10.3390/cells9112343. SARS-CoV-2 Spike – Stanford Coronavirus Antiviral Research Database It should be noted that the mRNA vaccines (or other nucleic acid formats) may obviate these analysis because the immune response is to a spike protein made and glycosylated in the human host’s own body and therefore will be customized to each individual in some sense.

Glycans may themselves represent drug targets. Casolino et al. suggest an essential structural role of N-glycans at sites N165 and N234 in modulating the conformational dynamics of the spike’s receptor binding domain (RBD), which is responsible for ACE2 recognition (Casolino et al. 2020. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein ACS Cent Sci. 2020 Oct 28; 6(10): 1722–1734),


COVID19 Variants

SARS-CoV-2 lineage B.1.1.7 likely arose in the United Kingdom in September 2019 and is characterized by 17 mutations, including 8 in the spike protein (Rambaut et al., 2020). Other lineages, including B.1.351, initially detected in South Africa (Tegally et al., 2020), and most recently lineage P.1, first documented in the Amazonia region of Brazil (Faria et al., 2020), carry additional mutations. All three lineages are characterised by a N501Y (Asn to Tyr) mutation in the spike protein, while both B.1.351 and P.1 also carry the spike mutation E484K. In addition, both B.1.1.7 and B.1.351, but not P.1, have acquired short sequence deletions in the spike protein. N501Y is in the receptor-binding domain (RBD) but is not a glycosylation site.


See the CDC Emerging SARS-CoV-2 Variants | CDC


Read Full Post »

Need for Global Response to SARS-CoV-2 Viral Variants

Reporter: Aviva Lev-Ari, PhD, RN

NIH experts discuss SARS-CoV-2 viral variants

Editorial emphasizes need for global response.


The rise of several significant variants of SARS-CoV-2, the virus that causes COVID-19, has attracted the attention of health and science experts worldwide. In an editorial published today in JAMA: The Journal of the American Medical Association, experts from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, outline how these variants have arisen, concerns about whether vaccines currently authorized for use will continue to protect against new variants, and the need for a global approach to fighting SARS-CoV-2 as it spreads and acquires additional mutations.

The article was written by NIAID Director Anthony S. Fauci, M.D.; John R. Mascola, M.D., director of NIAID’s Vaccine Research Center (VRC); and Barney S. Graham, M.D., Ph.D., deputy director of NIAID’s VRC.

The authors note that the overlapping discovery of several SARS-CoV-2 variants has led to confusing terms used to name them. The appearance of SARS-CoV-2 variants is so recent that the World Health Organization and other groups are still developing appropriate nomenclature for the different variants.

Numerous SARS-CoV-2 variants have emerged over the last several months. The authors note that the variants known as B.1.1.7 (first identified in the United Kingdom) and B.1.351 (first identified in South Africa) concern scientists because of emerging data suggesting their increased transmissibility.

Variants can carry several different mutations, but changes in the spike protein of the virus, used to enter cells and infect them, are especially concerning. Changes to this protein may cause a vaccine to be less effective against a particular variant. The authors note that the B.1.351 variant may be partially or fully resistant to certain SARS-CoV-2 monoclonal antibodies currently authorized for use as therapeutics in the United States.

The recognition of all new variants, including a novel emergent strain (20C/S:452R) in California, requires systematic evaluation, according to the authors. The rise of these variants is a reminder that as long as SARS-CoV-2 continues to spread, it has the potential to evolve into new variants, the authors stress. Therefore, the fight against SARS-CoV-2 and COVID-19 will require robust surveillance, tracking, and vaccine deployment worldwide.

The authors also note the need for a pan-coronavirus vaccine. Once researchers know more about how the virus changes as it spreads, it may be possible to develop a vaccine that protects against most or all variants. While similar research programs are already in place for other diseases, such as influenza, the changing nature of SARS-CoV-2 indicates that they will be necessary for this virus.




February 11, 2021

SARS-CoV-2 Viral Variants—Tackling a Moving Target

JAMAPublished online February 11, 2021. doi:10.1001/jama.2021.2088

In this issue of JAMA, Zhang and colleagues1 report the emergence of a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant in Southern California that accounted for 44% (37 of 85) of samples collected and studied in January 2021. The terminology of viral variation can be confusing because the media and even scientific communications often use the terms variantstrain, and lineage interchangeably. The terminology reflects the basic replication biology of RNA viruses that results in the introduction of mutations throughout the viral genome. When specific mutations, or sets of mutations, are selected through numerous rounds of viral replication, a new variant can emerge. If the sequence variation produces a virus with distinctly different phenotypic characteristics, the variant is co-termed a strain. When through genetic sequencing and phylogenetic analysis a new variant is detected as a distinct branch on a phylogenetic tree, a new lineage is born.

New variants become predominant through a process of evolutionary selection that is not well understood. Once identified, several questions arise regarding the potential clinical consequences of a new variant: Is it more readily transmitted; is it more virulent or pathogenic; and can it evade immunity induced by vaccination or prior infection? For these reasons, new viral variants are studied, leading to the terms variant under investigation or variant of concern.

To communicate effectively about new SARS-CoV-2 variants, a common nomenclature is needed, which like the virus, is evolving. Fortunately, the World Health Organization (WHO) is working on a systematic nomenclature that does not require a geographic reference, since viral variants can spread rapidly and globally. Currently, the terminology is overlapping, as reflected in the report by Zhang et al.1 This new variant (CAL.20C) is termed lineage 20C/S:452R in Nextstrain nomenclature,2 referring to the parent clade 20C and spike alteration 452R. Similarly, using a distinct PANGO nomenclature,3 this variant derives from lineage B (B.1.429 and B.1.427). While alterations in any viral genes can have implications for pathogenesis, those arising in the spike protein that mediates viral entry into host cells and is a key target of vaccines and monoclonal antibodies are of particular interest. The new variant, identified in California and termed 20C/S:452R, has 3 amino acid changes in the spike protein, represented using the single-letter amino acid nomenclature: S13I, W152C, and L452R. To interpret this new set of alterations, it is useful to review what is known about recent variants that have become predominant in other regions of the world.

During the early phase of the SARS-CoV-2 pandemic, there were only modest levels of genetic evolution; however, more recent information indicates that even a single amino acid substitution can have biological implications. Starting in April 2020, the original SARS-CoV-2 strain was replaced in many regions of the world by a variant called D614G, which was subsequently shown to increase the efficiency of viral replication in humans and was more transmissible in animal models.46 The D614G strain appears to position its receptor binding domain to interact more efficiently with the ACE2 receptor, and it is associated with higher nasopharyngeal viral RNA loads, which may explain its rise to dominance.

In October 2020, sequencing analysis in the UK detected an emerging variant, later termed B.1.1.7 or 20I/501Y.V1, which is now present and rapidly spreading in many countries.7 B.1.1.7 contains 8 mutations in the spike protein and maintains the D614G mutation. One of these, N501Y, appears to further increase the spike protein interaction with the ACE2 receptor. Epidemiological studies indicate that the B.1.1.7/20I/501Y.V1 strain is 30% to 80% more effectively transmitted and results in higher nasopharyngeal viral loads than the wild-type strain of SARS-CoV. Also of concern are retrospective observational studies suggesting an approximately 30% increased risk of death associated with this variant.8

Another notable variant, 20H/501Y.V2 or B.1.351, was first identified is South Africa, where it has rapidly become the predominant strain.9 Cases attributed to this strain have been detected in multiple countries outside of South Africa, including recent cases in the US. B.1.351 shares the D614G and N501Y mutations with B.; thus, it is thought to also have a high potential for transmission. There are no data yet to suggest an increased risk of death due to this variant. Importantly, this constellation of mutations—9 total in the spike protein—add yet another dimension of concern. B.1.351 strains are less effectively neutralized by convalescent plasma from patients with coronavirus disease 2019 (COVID-19) and by sera from those vaccinated with several vaccines in development.1012 The decrement in neutralization can be more than 10-fold with convalescent plasma and averages 5- to 6-fold less with sera from vaccinated individuals. Fortunately, neutralization titers induced by vaccination are high, and even with a 6-fold decrease, serum can still effectively neutralize the virus.

Nonetheless, these data are concerning because they indicate that viral variation can result in antigenic changes that alter antibody-mediated immunity. This is highlighted by in vitro studies showing the B.1.351 strain to be partially or fully resistant to neutralization by certain monoclonal antibodies, including some authorized for therapeutic use in the US.12 The prevalent strains in the US appear to remain sensitive to therapeutic monoclonal antibodies; however, recent evolutionary history raises the concern that the virus could be only a few mutations away from more substantive resistance.

COVID-19 vaccine development has been an extraordinary success; however, it is unclear how effective these vaccines will be against the new variants. The interim data from 2 randomized placebo-controlled vaccine studies, the rAd26 from Janssen and a recombinant protein from Novavax, offer some insight. The Janssen study included sites in the US, Brazil, and South Africa with efficacy against COVID-19 at 72%, 66%, and 57%, respectively.13 Novavax reported efficacy from studies in the UK and South Africa with overall efficacy of 89% and 60%, respectively.14 Viral sequence data from infected patients showed that the B.1.351 strain was responsible for the majority of infections in South Africa. Lower vaccine efficacy in the South Africa cohort could be related to antigenic variation or to geographic or population differences. Despite the reduced efficacy, the rAd26 vaccine was 85% effective overall in preventing severe COVID-19, and protection was similar in all regions.

These data suggest that current vaccines could retain the ability to prevent hospitalizations and deaths, even in the face of decreased overall efficacy due to antigenic variation. It is unclear whether changes in vaccine composition will be needed to effectively control the COVID-19 pandemic; however, it is prudent to be prepared. Some companies have indicated plans to manufacture and test vaccines based on emerging variants, and such studies will provide important information on the potential to broaden the immune response.

The recognition of a novel emergent variant, 20C/S:452R, in the most populous US state necessitates further investigation for implications of enhanced transmission. In particular, the L452R mutation in the spike protein could affect the binding of certain therapeutic monoclonal antibodies. The emergence of this and other new variants is likely to be a common occurrence until the spread of this virus is reduced. This emphasizes the importance of a global approach to surveillance, tracking, and vaccine deployment. The approach should be systematic and include in vitro assessment of sensitivity to neutralization by monoclonal antibodies and vaccinee sera, vaccine protection of animals against challenge with new strains, and field data defining viral sequences from breakthrough infections in vaccinees. The infrastructure and process used for tracking and updating influenza vaccines could be used to inform that process. Finally, SARS-CoV-2 will be with the global population for some time and has clearly shown its tendency toward rapid antigenic variation, providing a “wake-up call” that a sustained effort to develop a pan-SARS-CoV-2 vaccine is warranted.



Other related articles published in this Open Access Online Scientific Journal include the following:

Rise of a trio of mutated viruses hints at an increase in transmissibility, speeding the virus’ leaps from one host to the next

Reporter: Aviva Lev-Ari, PhD, RN



Read Full Post »

Comparing COVID-19 Vaccine Schedule Combinations, or “Com-COV” – First-of-its-Kind Study will explore the Impact of using eight different Combinations of Doses and Dosing Intervals for Different COVID-19 Vaccines

Reporter: Aviva Lev-Ari, PhD, RN


The UK’s COVID-19 vaccine rollout commenced in December, and requires an individual to receive two doses of the same vaccine, either Pfizer/BioNTech’s BNT162b2 or AstraZeneca/Oxford’s ChAdOx1, with a maximum interval of 12 weeks between doses. As of February 3, 10 million first doses have been administered.

Com-COV has been classified as an “Urgent Public Health” study by the National Institutes for Health and Research (NIHR), and it’s hoped that the data produced may offer greater flexibility for vaccine delivery going forward.

“Given the inevitable challenges of immunizing large numbers of the population against COVID-19 and potential global supply constraints, there are definitely advantages to having data that could support a more flexible immunization program, if ever needed and approved by the medicines regulator,” Jonathan Van-Tam, deputy chief medical officer and senior responsible officer for the study, said in a press release.

The study will run for a 13-month period and will recruit over 800 patients across eight sites in the UK, including London – St George’s and UCL, Oxford, Southampton, Birmingham, Bristol, Nottingham and Liverpool.

Com-COV has eight different arms that will test eight different combinations of doses and dose intervals. This is tentative and subject to change should more COVID-19 vaccines be approved for use in the UK. The eight arms include the following dose combinations:

  • Pfizer/BioNTech and Pfizer/BioNTech – 28 days apart
  • Pfizer/BioNTech and Pfizer/BioNTech – 12 weeks apart – (control group)
  • Oxford/AstraZeneca and Oxford/AstraZeneca – 28 days apart
  • Oxford/AstraZeneca and Oxford/AstraZeneca – 12 weeks apart – (control group)
  • Oxford/AstraZeneca and Pfizer/BioNTech – 28 days apart
  • Oxford/AstraZeneca and Pfizer/BioNTech – 12 weeks apart
  • Pfizer/BioNTech and Oxford/AstraZeneca – 28 days apart
  • Pfizer/BioNTech and Oxford/AstraZeneca – 12 weeks apart

Aside from the logistical benefits of using alternative vaccines, there is scientific value to exploring how different vaccines and doses affect the human immune system.

Dr Peter English, consultant in communicable disease control, pointed out that the antigen used across the currently authorized COVID-19 vaccines is the same Spike protein. Therefore, the immune system can be expected to respond just as well if a different product is used for boosting. “It is also the case that many vaccines work better if a different vaccine is used for boosting – an approach described as heterologous boosting,” English said, referencing previously successful trials using Hepatitis B vaccines.

“It is also even possible that by combining vaccines, the immune response could be enhanced giving even higher antibody levels that last longer; unless this is evaluated in a clinical trial we just won’t know,” added Van-Tam.

If warranted by the study data, the Medicines and Healthcare products Regulatory Agency may consider reviewing and authorizing modifications to the UK’s vaccine regimen approach – but only time will tell.

“We need people from all backgrounds to take part in this trial, so that we can ensure we have vaccine options suitable for all. Signing up to volunteer for vaccine studies is quick and easy via the NHS Vaccine Research Registry,” Professor Andrew Ustianowski, national clinical lead for the NIHR COVID Vaccine Research Program, said


First-of-its-Kind Study Will Test Combination of Different COVID-19 Vaccines | Technology Networks



Different Types of COVID-19 Vaccines With Dr Seth Lederman Video | Technology Networks


Read Full Post »

Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2

Reporter: Irina Robu, PhD

Artificial intelligence makes it imaginable for machines to learn from experience, adjust to new inputs and perform human-like tasks. Using the technologies, computer can be trained to achieve specific tasks by processing large amount of data and recognizing patterns. Scientists from NEC OncoImmunity use artificial intelligence to forecast designs for designing universal vaccines for COVID 19, that contain a broad spectrum of T-cell epitopes capable of providing coverage and protection across the global population. To help test their hypothesis, they profiled the entire SARS COV2 proteome across the most frequent 100 HLA-A, HLA-B and HLA-DR alleles in the human population using host infected cell surface antigen and immunogenicity predictors from NEC Immune Profiler suite of tools, and generated comprehensive epitope maps. They use the epitope maps as a starting point for Monte Carlo simulation intended to identify the most significant epitope hotspot in the virus. Then they analyzed the antigen arrangement and immunogenic landscape to recognize a trend where SARS-COV-2 mutations are expected to have minimized potential to be accessible by host-infected cells, and subsequently noticed by the host immune system. A sequence conservation analysis then removed epitope hotspots that occurred in less-conserved regions of the viral proteome.

By merging the antigen arrangement to the infected-host cell surface and immunogenicity estimates of the NEC Immune Profiler with a Monte Carlo and digital twin simulation, the researchers have outlined the entire SARS-CoV-2 proteome and recognized a subset of epitope hotspots that could be used  in a vaccine formulation to provide a wide-ranging coverage across the global population.

By using the database of HLA haplotypes of approximately 22,000 individuals to design  a “digital twin” type simulation to model how efficient various  combinations of hotspots would work in a varied human population. 



Read Full Post »

Google Cloud launches Vaccine Management Tools using ML & AI for Vaccine Distribution Efforts

Reporter: Aviva Lev-Ari, PhD, RN


Google Cloud announced Monday new artificial intelligence and machine learning tools to help with vaccine rollout efforts from vaccine information and scheduling, to distribution and analytics, to forecasting and modeling COVID-19 cases.


Read Full Post »

Rise of a trio of mutated viruses hints at an increase in transmissibility, speeding the virus’ leaps from one host to the next

Reporter: Aviva Lev-Ari, PhD, RN

“We have uncontrolled viral spread in much of the world,” says Adam Lauring, an infectious disease physician and virologist at the University of Michigan. “So the virus has a lot of opportunity to evolve.”

“The variants may be more transmissible, but physics has not changed,” says Müge Çevik, an infectious disease physician at the University of St. Andrews in Scotland.

Many changes don’t affect the virus’ function, and some even harm SARS-CoV-2’s ability to multiply, but they keep happening. “Viruses mutate; that’s what they do,” says Akiko Iwasaki, an immunologist at Yale School of Medicine in Connecticut.

U.K., Brazil, and South Africa. In the United Kingdom, variant B.1.1.7 likely drove the region’s record-setting spike of COVID-19 cases in January. The variant is now circulating in more than 60 countries, including the United States—and projections suggest it will become the most common virus variety in the U.S. by mid-March.

An independently arising lineage called P.1 might also be driving a wave of cases in Manaus, Brazil, where it accounted for nearly half of new COVID-19 infections in December. On January 26, Minnesotan officials reported the first U.S. case of P.1 in a resident who previously traveled to Brazil. And a third lineage raising alarms, known as B.1.351, was first spotted amid a December wave of infections in South Africa. On January 28, the first known U.S. cases of the variant were reported in South Carolina.

One specific mutation, known as N501Y, popped up independently in all three variants, suggesting it could provide an advantage to the virus. “That’s a sign that there is natural selection going on,” Lauring says. The N501Y mutation affects the virus’ spike protein, which is the key it uses to unlock entry into its host’s cells.

Another possibility is that new variants cause people who are infected to harbor more copies of the virus. This results in greater viral “shedding” in airborne droplets spewed when people talk, sing, cough, and breath.

mutations in 501Y.V2 could diminish the effectiveness of antibodies in the blood of people previously infected with the virus. But understanding whether that could lead to more re-infections, or if it could affect vaccine efficacy.

Dramatically scale up production of high-filtration masks for the general public.

Based on:

Why some coronavirus variants are more contagious‹and how we can stop them


Read Full Post »

A Platform called VirtualFlow: Discovery of Pan-coronavirus Drugs help prepare the US for the Next Coronavirus Pandemic

Reporter: Aviva Lev-Ari, PhD, RN



A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening

Open AccessPublished:January 04, 2021DOI:https://doi.org/10.1016/j.isci.2020.102021


The work was made possible in large part by about $1 million in cloud computing hours awarded by Google through a COVID-19 research grant program.

The work reported, below was sponsored by

  • a Google Cloud COVID-19 research grant. Funding was also provided by the
  • Fondation Aclon,
  • National Institutes of Health (GM136859),
  • Claudia Adams Barr Program for Innovative Basic Cancer Research,
  • Math+ Berlin Mathematics Research Center,
  • Templeton Religion Trust (TRT 0159),
  • U.S. Army Research Office (W911NF1910302), and
  • Chleck Family Foundation


Harvard University, AbbVie form research alliance to address emergent viral diseases

This article is part of Harvard Medical School’s continuing coverage of medicine, biomedical research, medical education and policy related to the SARS-CoV-2 pandemic and the disease COVID-19.

Harvard University and AbbVie today announced a $30 million collaborative research alliance, launching a multi-pronged effort at Harvard Medical School to study and develop therapies against emergent viral infections, with a focus on those caused by coronaviruses and by viruses that lead to hemorrhagic fever.

The collaboration aims to rapidly integrate fundamental biology into the preclinical and clinical development of new therapies for viral diseases that address a variety of therapeutic modalities. HMS has led several large-scale, coordinated research efforts launched at the beginning of the COVID-19 pandemic.

“A key element of having a strong R&D organization is collaboration with top academic institutions, like Harvard Medical School, to develop therapies for patients who need them most,” said Michael Severino, vice chairman and president of AbbVie. “There is much to learn about viral diseases and the best way to treat them. By harnessing the power of collaboration, we can develop new therapeutics sooner to ensure the world is better prepared for future potential outbreaks.”

“The cataclysmic nature of the COVID-19 pandemic reminds us how vital it is to be prepared for the next public health crisis and how critical collaboration is on every level—across disciplines, across institutions and across national boundaries,” said George Q. Daley, dean of Harvard Medical School. “Harvard Medical School, as the nucleus of an ecosystem of fundamental discovery and therapeutic translation, is uniquely positioned to propel this transformative research alongside allies like AbbVie.”

AbbVie will provide $30 million over three years and additional in-kind support leveraging AbbVie’s scientists, expertise and facilities to advance collaborative research and early-stage development efforts across five program areas that address a variety of therapeutic modalities:

  • Immunity and immunopathology—Study of the fundamental processes that impact the body’s critical immune responses to viruses and identification of opportunities for therapeutic intervention.

Led by Ulirich Von Andrian, the Edward Mallinckrodt Jr. Professor of Immunopathology in the Blavatnik Institute at HMS and program leader of basic immunology at the Ragon Institute of MGH, MIT and Harvard, and Jochen Salfeld, vice president of immunology and virology discovery at AbbVie.

  • Host targeting for antiviral therapies—Development of approaches that modulate host proteins in an effort to disrupt the life cycle of emergent viral pathogens.

Led by Pamela Silver, the Elliot T. and Onie H. Adams Professor of Biochemistry and Systems Biology in the Blavatnik Institute at HMS, and Steve Elmore, vice president of drug discovery science and technology at AbbVie.

  • Antibody therapeutics—Rapid development of therapeutic antibodies or biologics against emergent pathogens, including SARS-CoV-2, to a preclinical or early clinical stage.

Led by Jonathan Abraham, assistant professor of microbiology in the Blavatnik Institute at HMS, and by Jochen Salfeld, vice president of immunology and virology discovery at AbbVie.

  • Small molecules—Discovery and early-stage development of small-molecule drugs that would act to prevent replication of known coronaviruses and emergent pathogens.

Led by Mark Namchuk, executive director of therapeutics translation at HMS and senior lecturer on biological chemistry and molecular pharmacology in the Blavatnik Institute at HMS, and Steve Elmore, vice president of drug discovery science and technology at AbbVie.

  • Translational development—Preclinical validation, pharmacological testing, and optimization of leading approaches, in collaboration with Harvard-affiliated hospitals, with program leads to be determined.





A Screen Door Opens

Virtual screen finds compounds that could combat SARS-CoV-2

This article is part of Harvard Medical School’s continuing coverage of medicine, biomedical research, medical education, and policy related to the SARS-CoV-2 pandemic and the disease COVID-19.

Less than a year ago, Harvard Medical School researchers and international colleagues unveiled a platform called VirtualFlow that could swiftly sift through more than 1 billion chemical compounds and identify those with the greatest promise to become disease-specific treatments, providing researchers with invaluable guidance before they embark on expensive and time-consuming lab experiments and clinical trials.

Propelled by the urgent needs of the pandemic, the team has now pushed VirtualFlow even further, conducting 45 screens of more than 1 billion compounds each and ranking the compounds with the greatest potential for fighting COVID-19—including some that are already approved by the FDA for other diseases.

“This was the largest virtual screening effort ever done,” said VirtualFlow co-developer Christoph Gorgulla, research fellow in biological chemistry and molecular pharmacology in the labs of Haribabu Arthanari and Gerhard Wagner in the Blavatnik Institute at HMS.

The results were published in January in the open-access journal iScience.

The team searched for compounds that bind to any of 15 proteins on SARS-CoV-2 or two human proteins, ACE2 and TMPRSS2, known to interact with the virus and enable infection.

Researchers can now explore on an interactive website the 1,000 most promising compounds from each screen and start testing in the lab any ones they choose.

The urgency of the pandemic and the sheer number of candidate compounds inspired the team to release the early results to the scientific community.

“No one group can validate all the compounds as quickly as the pandemic demands,” said Gorgulla, who is also an associate of the Department of Physics at Harvard University. “We hope that our colleagues can collectively use our results to identify potent inhibitors of SARS-CoV-2.

In most cases, it will take years to find out whether a compound is safe and effective in humans. For some of the compounds, however, researchers have a head start.

Hundreds of the most promising compounds that VirtualFlow flagged are already FDA approved or being studied in clinical or preclinical trials for other diseases. If researchers find that one of those compounds proves effective against SARS-CoV-2 in lab experiments, the data their colleagues have already collected could save time establishing safety in humans.

Other compounds among VirtualFlow’s top hits are currently being assessed in clinical trials for COVID-19, including several drugs in the steroid family. In those cases, researchers could build on the software findings to investigate how those drug candidates work at the molecular level—something that’s not always clear even when a drug works well.

It shows what we’re capable of computationally during a pandemic.

Hari Arthanari



Read Full Post »

Inflammation and potential links with the microbiome: Mechanisms of infection by SARS-CoV-2

Reporter: Aviva Lev-Ari, PhD, RN

Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome

Published Online:https://doi.org/10.2217/fvl-2020-0310

Human coronaviruses (HCoVs) were first isolated from patients with the common cold in the 1960s [1–3]. Seven HCoVs known to cause disease in humans have since been identified: HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, the SARS coronavirus (SARS-CoV), the Middle East respiratory syndrome coronavirus and the novel SARS-CoV-2 [4]. The latter was identified after a spike in cases of pneumonia of unknown etiology in Wuhan, Hubei Province, China during December 2019 and was initially named novel coronavirus (2019-nCoV) [5,6]. The virus was renamed SARS-CoV-2 according to the International Committee on Taxonomy of Viruses classification criteria due to its genomic closeness to SARS-CoV; the disease caused by this virus was named coronavirus disease (COVID-19) according to the WHO criteria for naming emerging diseases [7]. SARS-CoV-2 belongs to the genera Betacoronavirus and shares a different degree of genomic similarity with the other two epidemic coronaviruses: SARS-CoV (∼79%) and Middle East respiratory syndrome coronavirus (∼50%) [8].

COVID-19 has caused considerable morbidity and mortality worldwide and has become the central phenomenon that is shaping our current societies. Human-to-human transmission is the main route of spread of the virus, mainly through direct contact, respiratory droplets and aerosols [9–12]. Management of COVID-19 has been extremely challenging due to its high infectivity, lack of effective therapeutics and potentially small groups of individuals (i.e., asymptomatic or mild disease) rapidly spreading the disease [13–17]. Although research describing COVID-19 and the mechanisms of infection by SARS-CoV-2 and its pathogenesis has expanded rapidly, there is still much to be learnt. Important gaps in knowledge which remain to be elucidated are the dynamic and complex interactions between the virus and the host’s immune system, as well as the potential interspecies communications occurring between ecological niches encompassing distinct microorganisms in both healthy individuals and persons living with chronic diseases, and how these interactions could determine or modulate disease progression and outcomes.

In this review, we describe recent insights into these topics, as well as remaining questions whose answers will allow us to understand how interactions between the virus, the immune system and microbial components could possibly be related to disease states in patients with COVID-19, as well as existing studies of the microbiome in patients with COVID-19.


Read Full Post »

Early Details of Brain Damage in COVID-19 Patients

Reporter: Irina Robu, PhD


COVID-19 has currently claimed more American lives than World War I, Vietnam War and the Korean war combined. And while it is mainly a respiratory disease, COVID-19 infection affects other organs, including the brain. Researchers at Harvard-affiliated Massachusetts General Hospital found that COVID patients with neurological symptoms show more than some metabolic disturbances in the brain as patients who have suffered oxygen deprivation.

During the course of the pandemic, thousand patients with COVID-19 have been seen at MGH and the severity of the neurological symptoms varies from temporary loss of smell to more severe symptoms such as dizziness, confusion, seizures, and stroke. According to the principal investigator of the study, Eva Maria Ratai, Department of Radiology used 3 Tesla Magnetic Resonance Spectroscopy (MRS) to identify neurochemical abnormalities even the structural imagining findings are normal. COVID-19 patients’ brains showed N-acetyl-aspartate (NAA) reduction, choline elevation, and myo-inositol elevation, comparable to what is seen with these metabolites in other patients with leukoencephalopathy after hypoxia without COVID.

Their research indicated that one of patients with COVID-19 indicate the most severe white matter damage, whereas another had COVID-19 associated necrotizing leukoencephalopathy at the time of imaging. And the patient that experience cardiac arrest showed subtle white matter changes on structural MR. The control cases included one patient with damage due to hypoxia from other causes: one with sepsis-related white matter damage, and a normal, age-matched, healthy volunteer.

The main question still remains whether the decrease in the oxygen of the brain is causing the white matter to change or whether the virus itself is attacking white matter. The conclusion is that MRS can be used as a disease and therapy monitoring tool.


Small study reveals details of brain damage in COVID-19 patients

Read Full Post »

« Newer Posts - Older Posts »