Feeds:
Posts
Comments

Archive for the ‘Liver & Digestive Diseases Research’ Category

Warburg Effect and Mitochondrial Regulation -2.1.3

Writer and Curator: Larry H Bernstein, MD, FCAP 

2.1.3 Warburg Effect and Mitochondrial Regulation

Warburg Effect and Mitochondrial Regulation- 2.1.3

Word Cloud by Daniel Menzin

2.1.3.1 Regulation of Substrate Utilization by the Mitochondrial Pyruvate Carrier

NM Vacanti, AS Divakaruni, CR Green, SJ Parker, RR Henry, TP Ciaraldi, et a..
Molec Cell 6 Nov 2014; 56(3):425–435
http://dx.doi.org/10.1016/j.molcel.2014.09.024

Highlights

  • Oxidation of fatty acids and amino acids is increased upon MPC inhibition
    •Respiration, proliferation, and biosynthesis are maintained when MPC is inhibited
    •Glutaminolytic flux supports lipogenesis in the absence of MPC
    •MPC inhibition is distinct from hypoxia or complex I inhibition

Summary

Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied 13C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.

oxidation-of-fatty-acids-and-amino-acid

oxidation-of-fatty-acids-and-amino-acids

Graphical Abstract – Oxidation of fatty acids and amino acids is increased upon MPC inhibition

Figure 2. MPC Regulates Mitochondrial Substrate Utilization (A) Citrate mass isotopomer distribution (MID) resulting from culture with [U-13C6]glucose (UGlc). (B) Percentage of 13C-labeled metabolites from UGlc. (C) Percentage of fully labeled lactate, pyruvate, and alanine from UGlc. (D) Serine MID resulting from culture with UGlc. (E) Percentage of fully labeled metabolites derived from [U-13C5]glutamine (UGln). (F) Schematic of UGln labeling of carbon atoms in TCA cycle intermediates arising via glutaminoloysis and reductive carboxylation. Mitochondrion schematic inspired by Lewis et al. (2014). (G and H) Citrate (G) and alanine (H) MIDs resulting from culture with UGln. (I) Maximal oxygen consumption rates with or without 3 mM BPTES in medium supplemented with 1 mM pyruvate. (J) Percentage of newly synthesized palmitate as determined by ISA. (K) Contribution of UGln and UGlc to lipogenic AcCoA as determined by ISA. (L) Contribution of glutamine to lipogenic AcCoA via glutaminolysis (ISA using a [3-13C] glutamine [3Gln]) and reductive carboxylation (ISA using a [5-13C]glutamine [5Gln]) under normoxia and hypoxia. (M) Citrate MID resulting from culture with 3Gln. (N) Contribution of UGln and exogenous [3-13C] pyruvate (3Pyr) to lipogenic AcCoA. 2KD+Pyr refers to Mpc2KD cells cultured with 10 mM extracellular pyruvate. Error bars represent SD (A–E, G, H, and M), SEM(I), or 95% confidence intervals(J–L, and N).*p<0.05,**p<0.01,and ***p<0.001 by ANOVA with Dunnett’s post hoc test (A–E and G–I) or * indicates significance by non-overlapping 95% confidence intervals (J–L and N).

Figure 3. Mpc Knockdown Increases Fatty Acid Oxidation. (A) Schematic of changes in flux through metabolic pathways in Mpc2KD relative to control cells. (B) Citrate MID resulting from culture with [U-13C16] palmitate conjugated to BSA (UPalm). (C) Percentage of 13C enrichment resulting from culture with UPalm. (D) ATP-linked and maximal oxygen consumption rate, with or without 20m Metomoxir, with or without 3 mM BPTES. Culture medium supplemented with 0.5 mM carnitine. Error bars represent SD (B and C) or SEM (D). *p < 0.05, **p < 0.01, and ***p < 0.001 by two-tailed, equal variance, Student’s t test(B–D), or by ANOVA with Dunnett’s post hoc test (D).

Figure 4. Metabolic Reprogramming Resulting from Pharmacological Mpc Inhibition Is Distinct from Hypoxia or Complex I Inhibition

2.1.3.2 Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

AR Mullen, Z Hu, X Shi, L Jiang, …, WM Linehan, NS Chandel, RJ DeBerardinis
Cell Reports 12 Jun 2014; 7(5):1679–1690
http://dx.doi.org/10.1016/j.celrep.2014.04.037

Highlights

  • Cells with mitochondrial defects use bidirectional metabolism of the TCA cycle
    •Glutamine supplies the succinate pool through oxidative and reductive metabolism
    •Oxidative TCA cycle metabolism is required for reductive citrate formation
    •Oxidative metabolism produces reducing equivalents for reductive carboxylation

Summary

Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA) cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG) via NADPH-dependent isocitrate dehydrogenase (IDH). It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse.

Proliferating cells support their growth by converting abundant extracellular nutrients like glucose and glutamine into precursors for macromolecular biosynthesis. A continuous supply of metabolic intermediates from the tricarboxylic acid (TCA) cycle is essential for cell growth, because many of these intermediates feed biosynthetic pathways to produce lipids, proteins and nucleic acids (Deberardinis et al., 2008). This underscores the dual roles of the TCA cycle for cell growth: it generates reducing equivalents for oxidative phosphorylation by the electron transport chain (ETC), while also serving as a hub for precursor production. During rapid growth, the TCA cycle is characterized by large influxes of carbon at positions other than acetyl-CoA, enabling the cycle to remain full even as intermediates are withdrawn for biosynthesis. Cultured cancer cells usually display persistence of TCA cycle activity despite robust aerobic glycolysis, and often require mitochondrial catabolism of glutamine to the TCA cycle intermediate AKG to maintain rapid rates of proliferation (Icard et al., 2012Hiller and Metallo, 2013).

Some cancer cells contain severe, fixed defects in oxidative metabolism caused by mutations in the TCA cycle or the ETC. These include mutations in fumarate hydratase (FH) in renal cell carcinoma and components of the succinate dehydrogenase (SDH) complex in pheochromocytoma, paraganglioma, and gastrointestinal stromal tumors (Tomlinson et al., 2002Astuti et al., 2001Baysal et al., 2000Killian et al., 2013Niemann and Muller, 2000). All of these mutations alter oxidative metabolism of glutamine in the TCA cycle. Recently, analysis of cells containing mutations in FH, ETC Complexes I or III, or exposed to the ETC inhibitors metformin and rotenone or the ATP synthase inhibitor oligomycin revealed that turnover of TCA cycle intermediates was maintained in all cases (Mullen et al., 2012). However, the cycle operated in an unusual fashion characterized by conversion of glutamine-derived AKG to isocitrate through a reductive carboxylation reaction catalyzed by NADP+/NADPH-dependent isoforms of isocitrate dehydrogenase (IDH). As a result, a large fraction of the citrate pool carried five glutamine-derived carbons. Citrate could be cleaved to produce acetyl-CoA to supply fatty acid biosynthesis, and oxaloacetate (OAA) to supply pools of other TCA cycle intermediates. Thus, reductive carboxylation enables biosynthesis by enabling cells with impaired mitochondrial metabolism to maintain pools of biosynthetic precursors that would normally be supplied by oxidative metabolism. Reductive carboxylation is also induced by hypoxia and by pseudo-hypoxic states caused by mutations in the von Hippel-Lindau (VHL) tumor suppressor gene (Metallo et al., 2012Wise et al., 2011).

Interest in reductive carboxylation stems in part from the possibility that inhibiting the pathway might induce selective growth suppression in tumor cells subjected to hypoxia or containing mutations that prevent them from engaging in maximal oxidative metabolism. Hence, several recent studies have sought to understand the mechanisms by which this pathway operates. In vitro studies of IDH1 indicate that a high ratio of NADPH/NADP+ and low citrate concentration activate the reductive carboxylation reaction (Leonardi et al., 2012). This is supported by data demonstrating that reductive carboxylation in VHL-deficient renal carcinoma cells is associated with a low concentration of citrate and a reduced ratio of citrate:AKG, suggesting that mass action can be a driving force to determine IDH directionality (Gameiro et al., 2013b). Moreover, interrupting the supply of mitochondrial NADPH by silencing the nicotinamide nucleotide transhydrogenase (NNT) suppresses reductive carboxylation (Gameiro et al., 2013a). This mitochondrial transmembrane protein catalyzes the transfer of a hydride ion from NADH to NADP+ to generate NAD+ and NADPH. Together, these observations suggest that reductive carboxylation is modulated in part through the mitochondrial redox state and the balance of substrate/products.

Here we used metabolomics and stable isotope tracing to better understand overall metabolic states associated with reductive carboxylation in cells with defective mitochondrial metabolism, and to identify sources of mitochondrial reducing equivalents necessary to induce the reaction. We identified high levels of succinate in some cells using reductive carboxylation, and determined that most of this succinate was formed through persistent oxidative metabolism of AKG. Silencing this oxidative flux by depleting the mitochondrial enzyme AKG dehydrogenase substantially altered the cellular redox state and suppressed reductive carboxylation. The data demonstrate that bidirectional/branched AKG metabolism occurs during reductive carboxylation in cells with mitochondrial defects, with oxidative metabolism producing reducing equivalents to supply reductive metabolism.

Shared metabolomic features among cell lines with cytb or FH mutations

To identify conserved metabolic features associated with reductive carboxylation in cells harboring defective mitochondrial metabolism, we analyzed metabolite abundance in isogenic pairs of cell lines in which one member displayed substantial reductive carboxylation and the other did not. We used a pair of previously described cybrids derived from 143B osteosarcoma cells, in which one cell line contained wild-type mitochondrial DNA (143Bwt) and the other contained a mutation in the cytb gene (143Bcytb), severely reducing complex III function (Rana et al., 2000Weinberg et al., 2010). The 143Bwt cells primarily use oxidative metabolism to supply the citrate pool while the 143Bcytb cells use reductive carboxylation (Mullen et al., 2012). The other pair, derived from FH-deficient UOK262 renal carcinoma cells, contained either an empty vector control (UOK262EV) or a stably re-expressed wild-type FH allele (UOK262FH). Metabolites were extracted from all four cell lines and analyzed by triple-quadrupole mass spectrometry. We first performed a quantitative analysis to determine the abundance of AKG and citrate in the four cell lines. Both 143Bcytb and UOK262EV cells had less citrate, more AKG, and lower citrate:AKG ratios than their oxidative partners (Fig. S1A-C), consistent with findings from VHL-deficient renal carcinoma cells (Gameiro et al., 2013b).

Next, to identify other perturbations, we profiled the relative abundance of more than 90 metabolites from glycolysis, the pentose phosphate pathway, one-carbon/nucleotide metabolism, the TCA cycle, amino acid degradation, and other pathways (Tables S1 and S2). Each metabolite was normalized to protein content, and relative abundance was determined between cell lines from each pair. Hierarchical clustering (Fig 1A) and principal component analysis (Fig 1B) revealed far greater metabolomic similarities between the members of each pair than between the two cell lines using reductive carboxylation. Only three metabolites displayed highly significant (p<0.005) differences in abundance between the two members of both pairs, and in all three cases the direction of the difference (i.e. higher or lower) was shared in the two cell lines using reductive carboxylation. Proline, a nonessential amino acid derived from glutamine in an NADPH-dependent biosynthetic pathway, was depleted in 143Bcytb and UOK262EV cells (Fig. 1C). 2-hydroxyglutarate (2HG), the reduced form of AKG, was elevated in 143Bcytb and UOK262EV cells (Fig. 1D), and further analysis revealed that while both the L- and D-enantiomers of this metabolite were increased, L-2HG was quantitatively the predominant enantiomer (Fig. S1D). It is likely that 2HG accumulation was related to the reduced redox ratio associated with cytb and FH mutations. Although the sources of 2HG are still under investigation, promiscuous activity of the TCA cycle enzyme malate dehydrogenase produces L-2HG in an NADH-dependent manner (Rzem et al., 2007). Both enantiomers are oxidized to AKG by dehydrogenases (L-2HG dehydrogenase and D-2HG dehydrogenase). It is therefore likely that elevated 2-HG is a consequence of a reduced NAD+/NADH ratio. Consistent with this model, inborn errors of the ETC result in 2-HG accumulation (Reinecke et al., 2011). Exposure to hypoxia (<1% O2) has also been demonstrated to reduce the cellular NAD+/NADH ratio (Santidrian et al., 2013) and to favor modest 2HG accumulation in cultured cells (Wise et al., 2011), although these levels were below those noted in gliomas expressing 2HG-producing mutant alleles of isocitrate dehydrogenase-1 or -2 (Dang et al., 2009).

Figure 1 Metabolomic features of cells using reductive carboxylation

 

Finally, the TCA cycle intermediate succinate was markedly elevated in both cell lines (Fig. 1E). We tested additional factors previously reported to stimulate reductive AKG metabolism, including a genetic defect in ETC Complex I, exposure to hypoxia, and chemical inhibitors of the ETC (Mullen et al., 2012Wise et al., 2011Metallo et al., 2012). These factors had a variable effect on succinate, with impairments of Complex III or IV strongly inducing succinate accumulation, while impairments of Complex I either had little effect or suppressed succinate (Fig. 1F).

Oxidative glutamine metabolism is the primary route of succinate formation

UOK262EV cells lack FH activity and accumulate large amounts of fumarate (Frezza et al., 2011); elevated succinate was therefore not surprising in these cells, because succinate precedes fumarate by one reaction in the TCA cycle. On the other hand, TCA cycle perturbation in 143Bcytb cells results from primary ETC dysfunction, and reductive carboxylation is postulated to be a consequence of accumulated AKG (Anastasiou and Cantley, 2012Fendt et al., 2013). Accumulation of AKG is not predicted to result in elevated succinate. We previously reported that 143Bcytb cells produce succinate through simultaneous oxidative and reductive glutamine metabolism (Mullen et al., 2012). To determine the relative contributions of these two pathways, we cultured 143Bwt and 143Bcytb with [U-13C]glutamine and monitored time-dependent 13C incorporation in succinate and other TCA cycle intermediates. Oxidative metabolism of glutamine generates succinate, fumarate and malate containing four glutamine-derived 13C nuclei on the first turn of the cycle (m+4), while reductive metabolism results in the incorporation of three 13C nuclei in these intermediates (Fig. S2). As expected, oxidative glutamine metabolism was the predominant source of succinate, fumarate and malate in 143Bwt cells (Fig. 2A-C). In 143Bcytb, fumarate and malate were produced primarily through reductive metabolism (Fig. 2E-F). Conversely, succinate was formed primarily through oxidative glutamine metabolism, with a minor contribution from the reductive carboxylation pathway (Fig. 2D). Notably, this oxidatively-derived succinate was detected prior to that formed through reductive carboxylation. This indicated that 143Bcytb cells retain the ability to oxidize AKG despite the observation that most of the citrate pool bears the labeling pattern of reductive carboxylation. Together, the labeling data in 143Bcytb cells revealed bidirectional metabolism of carbon from glutamine to produce various TCA cycle intermediates.

Figure 2  Oxidative glutamine metabolism is the primary route of succinate formation in cells using reductive carboxylation to generate citrate

Pyruvate carboxylation contributes to the TCA cycle in cells using reductive carboxylation

Because of the persistence of oxidative metabolism, we determined the extent to which other routes of metabolism besides reductive carboxylation contributed to the TCA cycle. We previously reported that silencing the glutamine-catabolizing enzyme glutaminase (GLS) depletes pools of fumarate, malate and OAA, eliciting a compensatory increase in pyruvate carboxylase (PC) to supply the TCA cycle (Cheng et al., 2011). In cells with defective oxidative phophorylation, production of OAA by PC may be preferable to glutamine oxidation because it diminishes the need to recycle reduced electron carriers generated by the TCA cycle. Citrate synthase (CS) can then condense PC-derived OAA with acetyl-CoA to form citrate. To examine the contribution of PC to the TCA cycle, cells were cultured with [3,4-13C]glucose. In this labeling scheme, glucose-derived pyruvate is labeled in carbon 1 (Fig. S3). This label is retained in OAA if pyruvate is carboxylated, but removed as CO2 during conversion of pyruvate to acetyl-CoA by pyruvate dehydrogenase (PDH).

Figure 3 Pyruvate carboxylase contributes to citrate formation in cells using reductive carboxylation

Oxidative metabolism of AKG is required for reductive carboxylation

Oxidative synthesis of succinate from AKG requires two reactions: the oxidative decarboxylation of AKG to succinyl-CoA by AKG dehydrogenase, and the conversion of succinyl-CoA to succinate by succinyl-CoA synthetase. In tumors with mutations in the succinate dehydrogenase (SDH) complex, large accumulations of succinate are associated with epigenetic modifications of DNA and histones to promote malignancy (Kaelin and McKnight, 2013Killian et al., 2013). We therefore tested whether succinate accumulation per se was required to induce reductive carboxylation in 143Bcytb cells. We used RNA interference directed against the gene encoding the alpha subunit (SUCLG1) of succinyl-CoA synthetase, the last step in the pathway of oxidative succinate formation from glutamine (Fig. 4A). Silencing this enzyme greatly reduced succinate levels (Fig. 4B), but had no effect on the labeling pattern of citrate from [U-13C]glutamine (Fig. 4C). Thus, succinate accumulation is not required for reductive carboxylation.

Figure 5 AKG dehydrogenase is required for reductive carboxylation

Figure 6 AKG dehydrogenase and NNT contribute to NAD+/NADH ratio

Finally, we tested whether these enzymes also controlled the NADP+/NADPH ratio in 143Bcytb cells. Silencing either OGDH or NNT increased the NADP+/NADPH ratio (Fig. 6F,G), whereas silencing IDH2reduced it (Fig. 6H). Together, these data are consistent with a model in which persistent metabolism of AKG by AKG dehydrogenase produces NADH that supports reductive carboxylation by serving as substrate for NNT-dependent NADPH formation, and that IDH2 is a major consumer of NADPH during reductive carboxylation (Fig. 6I).

Reductive carboxylation of AKG initiates a non-conventional form of metabolism that produces TCA cycle intermediates when oxidative metabolism is impaired by mutations, drugs or hypoxia. Because NADPH-dependent isoforms of IDH are reversible, supplying supra-physiological pools of substrates on either side of the reaction drives function of the enzyme as a reductive carboxylase or an oxidative decarboxylase. Thus, in some circumstances reductive carboxylation may operate in response to a mass effect imposed by drastic changes in the abundance of AKG and isocitrate/citrate. However, reductive carboxylation cannot occur without a source of reducing equivalents to produce NADPH. The current work demonstrates that AKG dehydrogenase, an NADH-generating enzyme complex, is required to maintain a low NAD+/NADH ratio for reductive carboxylation of AKG. Thus, reductive carboxylation not only coexists with oxidative metabolism of AKG, but depends on it. Furthermore, silencing NNT, a consumer of NADH, also perturbs the redox ratio and suppresses reductive formation of citrate. These observations suggest that the segment of the oxidative TCA cycle culminating in succinate is necessary to transmit reducing equivalents to NNT for the reductive pathway (Fig 6I).

Succinate accumulation was observed in cells with cytb or FH mutations. However, this accumulation was dispensable for reductive carboxylation, because silencing SUCLG1 expression had no bearing on the pathway as long as AKG dehydrogenase was active. Furthermore, succinate accumulation was not a universal finding of cells using reductive carboxylation. Rather, high succinate levels were observed in cells with distal defects in the ETC (complex III: antimycin, cytb mutation; complex IV: hypoxia) but not defects in complex I (rotenone, metformin, NDUFA1 mutation). These differences reflect the known suppression of SDH activity when downstream components of the ETC are impaired, and the various mechanisms by which succinate may be formed through either oxidative or reductive metabolism. Succinate has long been known as an evolutionarily conserved anaerobic end product of amino acid metabolism during prolonged hypoxia, including in diving mammals (Hochachka and Storey, 1975, Hochachka et al., 1975). The terminal step in this pathway is the conversion of fumarate to succinate using the NADH-dependent “fumarate reductase” system, essentially a reversal of succinate dehydrogenase/ETC complex II (Weinberg et al., 2000, Tomitsuka et al., 2010). However, this process requires reducing equivalents to be passed from NADH to complex I, then to Coenzyme Q, and eventually to complex II to drive the reduction of fumarate to succinate. Hence, producing succinate through reductive glutamine metabolism would require functional complex I. Interestingly, the fumarate reductase system has generally been considered as a mechanism to maintain a proton gradient under conditions of defective ETC activity. Our data suggest that the system is part of a more extensive reorganization of the TCA cycle that also enables reductive citrate formation.

In summary, we demonstrated that branched AKG metabolism is required to sustain levels of reductive carboxylation observed in cells with mitochondrial defects. The organization of this branched pathway suggests that it serves as a relay system to maintain the redox requirements for reductive carboxylation, with the oxidative arm producing reducing equivalents at the level of AKG dehydrogenase and NNT linking this activity to the production of NADPH to be used in the reductive carboxylation reaction. Hence, impairment of the oxidative arm prevents maximal engagement of reductive carboxylation. As both NNT and AKG dehydrogenase are mitochondrial enzymes, the work emphasizes the flexibility of metabolic systems in the mitochondria to fulfill requirements for redox balance and precursor production even when the canonical oxidative function of the mitochondria is impaired.

2.1.3.3 Rewiring Mitochondrial Pyruvate Metabolism. Switching Off the Light in Cancer Cells

Peter W. Szlosarek, Suk Jun Lee, Patrick J. Pollard
Molec Cell 6 Nov 2014; 56(3): 343–344
http://dx.doi.org/10.1016/j.molcel.2014.10.018

Figure 1. MPC Expression and Metabolic Targeting of Mitochondrial Pyruvate High MPC expression (green) is associated with more favorable tumor prognosis, increased pyruvate oxidation, and reduced lactate and ROS, whereas low expression or mutated MPC is linked to poor tumor prognosis and increased anaplerotic generation of OAA. Dual targeting of MPC and GDH with small molecule inhibitors may ameliorate tumorigenesis in certain cancer types.

The study by Yang et al., (2014) provides evidence for the metabolic flexibility to maintain TCA cycle function. Using isotopic labeling, the authors demonstrated that inhibition of MPCs by a specific compound (UK5099) induced glutamine-dependent acetyl-CoA formation via glutamate dehydrogenase (GDH). Consequently, and in contrast to single agent treatment, simultaneous administration of MPC and GDH inhibitors drastically abrogated the growth of cancer cells (Figure 1). These studies have also enabled a fresh perspective on metabolism in the clinic and emphasized a need for high-quality translational studies to assess the role of mitochondrial pyruvate transport in vivo. Thus, integrating the biomarker of low MPC expression with dual inhibition of

MPC and GDH as a synthetic lethal strategy (Yang et al., 2014) is testable and may offer a novel therapeutic window for patients (DeBerardinis and Thompson, 2012). Indeed, combinatorial targeting of cancer metabolism may prevent early drug resistance and lead to enhanced tumor control, as shown recently for antifolate agents combined with arginine deprivation with modulation of intracellular glutamine (Szlosarek, 2014). Moreover, it will be important to assess both intertumoral and intratumoral metabolic heterogeneity going forward, as tumor cells are highly adaptable with respect to the precursors used to fuel the TCA cycle in the presence of reduced pyruvate transport. The observation by Vacanti et al. (2014) that the flux of BCAAs increased following inhibition of MPC activity may also underlie the increase in BCAAs detected in the plasma of patients several years before a clinical diagnosis of pancreatic cancer (Mayers et al., 2014). Since measuring pyruvate transport via the MPC is technically challenging, the use of 18-FDG positron emission tomography and more recently magnetic spectroscopy with hyperpolarized 13C-labeled pyruvate will need to be incorporated into these future studies (Brindle et al., 2011).

References

Bricker, D.K., Taylor, E.B., Schell, J.C., Orsak, T., Boutron, A., Chen, Y.C., Cox, J.E., Cardon, C.M., Van Vranken, J.G., Dephoure, N., et al. (2012). Science 337, 96–100.

Brindle, K.M., Bohndiek, S.E., Gallagher, F.A., and Kettunen, M.I. (2011). Magn. Reson. Med. 66, 505–519.

DeBerardinis, R.J., and Thompson, C.B. (2012). Cell 148, 1132–1144.

Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.L., Zamboni, N., Westermann, B., Kunji, E.R., and Martinou, J.C. (2012). Science 337, 93–96.

Mayers, J.R., Wu, C., Clish, C.B., Kraft, P., Torrence, M.E., Fiske, B.P., Yuan, C., Bao, Y., Townsend, M.K., Tworoger, S.S., et al. (2014). Nat. Med. 20, 1193–1198.

Metallo, C.M., and Vander Heiden, M.G. (2013). Mol. Cell 49, 388–398.

Schell, J.C., Olson, K.A., Jiang, L., Hawkins, A.J., Van Vranken, J.G., et al. (2014). Mol. Cell 56, this issue, 400–413.

Szlosarek, P.W. (2014). Proc. Natl. Acad. Sci. USA 111, 14015–14016.

Vacanti, N.M., Divakaruni, A.S., Green, C.R., Parker, S.J., Henry, R.R., et al. (2014). Mol. Cell 56, this issue, 425–435.

Yang, C., Ko, B., Hensley, C.T., Jiang, L., Wasti, A.T., et al. (2014). Mol. Cell 56, this issue, 414–424.

2.1.3.4 Betaine is a positive regulator of mitochondrial respiration

Lee I
Biochem Biophys Res Commun. 2015 Jan 9; 456(2):621-5.
http://dx.doi.org:/10.1016/j.bbrc.2014.12.005

Highlights

  • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration.
    • Betaine increases mitochondrial membrane potential and cellular energy levels.
    • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect.

Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

2.1.3.5 Mitochondrial dysfunction in human non-small-cell lung cancer cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-XL/p53-mediated amplification mechanisms

Y-L Shi, S Feng, W Chen, Z-C Hua, J-J Bian and W Yin
Cell Death and Disease (2014) 5, e1579
http://dx.doi.org:/10.1038/cddis.2014.547

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy; however, non-small-cell lung carcinoma (NSCLC) cells are relatively TRAIL resistant. Identification of small molecules that can restore NSCLC susceptibility to TRAIL-induced apoptosis is meaningful. We found here that rotenone, as a mitochondrial respiration inhibitor, preferentially increased NSCLC cells sensitivity to TRAIL-mediated apoptosis at subtoxic concentrations, the mechanisms by which were accounted by the upregulation of death receptors and the downregulation of c-FLIP (cellular FLICE-like inhibitory protein). Further analysis revealed that death receptors expression by rotenone was regulated by p53, whereas c-FLIP downregulation was blocked by Bcl-XL overexpression. Rotenone triggered the mitochondria-derived reactive oxygen species (ROS) generation, which subsequently led to Bcl-XL downregulation and PUMA upregulation. As PUMA expression was regulated by p53, the PUMA, Bcl-XL and p53 in rotenone-treated cells form a positive feedback amplification loop to increase the apoptosis sensitivity. Mitochondria-derived ROS, however, promote the formation of this amplification loop. Collectively, we concluded that ROS generation, Bcl-XL and p53-mediated amplification mechanisms had an important role in the sensitization of NSCLC cells to TRAIL-mediated apoptosis by rotenone. The combined TRAIL and rotenone treatment may be appreciated as a useful approach for the therapy of NSCLC that warrants further investigation.

Abbreviations: c-FLIP, cellular FLICE-like inhibitory protein; DHE, dihydroethidium; DISC, death-inducing signaling complex; DPI, diphenylene iodonium; DR4/DR5, death receptor 4/5; EB, ethidium bromide; FADD, Fas-associated protein with death domain; MnSOD, manganese superoxide; NAC, N-acetylcysteine; NSCLC, non-small-cell lung carcinoma; PBMC, peripheral blood mononuclear cells; ROS, reactive oxygen species; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; UPR, unfolded protein response.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising cancer therapeutic because it can selectively induce apoptosis in tumor cells in vitro, and most importantly, in vivo with little adverse effect on normal cells.1 However, a number of cancer cells are resistant to TRAIL, especially highly malignant tumors such as lung cancer.23 Lung cancer, especially the non-small-cell lung carcinoma (NSCLC) constitutes a heavy threat to human life. Presently, the morbidity and mortality of NSCLC has markedly increased in the past decade,4 which highlights the need for more effective treatment strategies.

TRAIL has been shown to interact with five receptors, including the death receptors 4 and 5 (DR4 and DR5), the decoy receptors DcR1 and DcR2, and osteoprotegerin.5 Ligation of TRAIL to DR4 or DR5 allows for the recruitment of Fas-associated protein with death domain (FADD), which leads to the formation of death-inducing signaling complex (DISC) and the subsequent activation of caspase-8/10.6 The effector caspase-3 is activated by caspase-8, which cleaves numerous regulatory and structural proteins resulting in cell apoptosis. Caspase-8 can also cleave the Bcl-2 inhibitory BH3-domain protein (Bid), which engages the intrinsic apoptotic pathway by binding to Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist killer (BAK). The oligomerization between Bcl-2 and Bax promotes the release of cytochrome c from mitochondria to cytosol, and facilitates the formation of apoptosome and caspase-9 activation.7 Like caspase-8, caspase-9 can also activate caspase-3 and initiate cell apoptosis. Besides apoptosis-inducing molecules, several apoptosis-inhibitory proteins also exist and have function even when apoptosis program is initiated. For example, cellular FLICE-like inhibitory protein (c-FLIP) is able to suppress DISC formation and apoptosis induction by sequestering FADD.891011

Until now, the recognized causes of TRAIL resistance include differential expression of death receptors, constitutively active AKT and NF-κB,1213overexpression of c-FLIP and IAPs, mutations in Bax and BAK gene.2 Hence, resistance can be overcome by the use of sensitizing agents that modify the deregulated death receptor expression and/or apoptosis signaling pathways in cancer cells.5 Many sensitizing agents have been developed in a variety of tumor cell models.2 Although the clinical effectiveness of these agents needs further investigation, treatment of TRAIL-resistant tumor cells with sensitizing agents, especially the compounds with low molecular weight, as well as prolonged plasma half-life represents a promising trend for cancer therapy.

Mitochondria emerge as intriguing targets for cancer therapy. Metabolic changes affecting mitochondria function inside cancer cells endow these cells with distinctive properties and survival advantage worthy of drug targeting, mitochondria-targeting drugs offer substantial promise as clinical treatment with minimal side effects.141516 Rotenone is a potent inhibitor of NADH oxidoreductase in complex I, which demonstrates anti-neoplastic activity on a variety of cancer cells.1718192021 However, the neurotoxicity of rotenone limits its potential application in cancer therapy. To avoid it, rotenone was effectively used in combination with other chemotherapeutic drugs to kill cancerous cells.22

In our previous investigation, we found that rotenone was able to suppress membrane Na+,K+-ATPase activity and enhance ouabain-induced cancer cell death.23 Given these facts, we wonder whether rotenone may also be used as a sensitizing agent that can restore the susceptibility of NSCLC cells toward TRAIL-induced apoptosis, and increase the antitumor efficacy of TRAIL on NSCLC. To test this hypothesis, we initiated this study.

Rotenone sensitizes NSCLC cell lines to TRAIL-induced apoptosis

Four NSCLC cell lines including A549, H522, H157 and Calu-1 were used in this study. As shown in Figure 1a, the apoptosis induced by TRAIL alone at 50 or 100 ng/ml on A549, H522, H157 and Calu-1 cells was non-prevalent, indicating that these NSCLC cell lines are relatively TRAIL resistant. Interestingly, when these cells were treated with TRAIL combined with rotenone, significant increase in cell apoptosis was observed. To examine whether rotenone was also able to sensitize normal cells to TRAIL-mediated apoptosis, peripheral blood mononuclear cell (PBMC) isolated from human blood were used. As a result, rotenone failed to sensitize human PBMC to TRAIL-induced apoptosis, indicating that the sensitizing effect of rotenone is tumor cell specific. Of note, the apoptosis-enhancing effect of rotenone occurred independent of its cytotoxicity, because the minimal dosage required for rotenone to cause toxic effect on NSCLC cell lines was 10 μM, however, rotenone augmented TRAIL-mediated apoptosis when it was used as little as 10 nM.

Figure 1.

Full figure and legend (310K)

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f1.html#figure-title
To further confirm the effect of rotenone, cells were stained with Hoechst and observed under fluorescent microscope (Figure 1b). Consistently, the combined treatment of rotenone with TRAIL caused significant nuclear fragmentation in A549, H522, H157 and Calu-1 cells. Rotenone or TRAIL treatment alone, however, had no significant effect.

Caspases activation is a hallmark of cell apoptosis. In this study, the enzymatic activities of caspases including caspase-3, -8 and -9 were measured by flow cytometry by using FITC-conjugated caspases substrate (Figure 1c). As a result, rotenone used at 1 μM or TRAIL used at 100 ng/ml alone did not cause caspase-3, -8 and -9 activation. The combined treatment, however, significantly increased the enzymatic activities of them. Moreover, A549 or H522 cell apoptosis by TRAIL combined with rotenone was almost completely suppressed in the presence of z-VAD.fmk, a pan-caspase inhibitor (Figure 1d). All of these data indicate that both intrinsic and extrinsic pathways are involved in the sensitizing effect of rotenone on TRAIL-mediated apoptosis in NSCLC.

Upregulation of death receptors expression is required for rotenone-mediated sensitization to TRAIL-induced apoptosis

Sensitization to TRAIL-induced apoptosis has been explained in some studies by upregulation of death receptors,24 whereas other results show that sensitization can occur without increased TRAIL receptor expression.25 As such, we examined TRAIL receptors expression on NSCLC cells after treatment with rotenone. Rotenone increased DR4 and DR5 mRNA levels in A549 cells in a time or concentration-dependent manner (Figures 2a and b), also increased DR4 and DR5 protein expression levels (Supplementary Figure S1). Notably, rotenone failed to increase DR5 mRNA levels in H157 and Calu-1 cells (Supplementary Figure S2). To observe whether the increased DR4 and DR5 mRNA levels finally correlated with the functional molecules, we examined the surface expression levels of DR4 and DR5 by flow cytometry. The results, as shown in Figure 2c demonstrated that the cell surface expression levels of DR4 and DR5 were greatly upregulated by rotenone in either A549 cells or H522 cells.

Figure 2.

Full figure and legend (173K)

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f2.html#figure-title

To analyze whether the upregulation of DR4 and DR5 is a ‘side-effect’, or contrarily, necessary for rotenone-mediated sensitization to TRAIL-induced apoptosis, we blocked upregulation of the death receptors by small interfering RNAs (siRNAs) against DR4 and DR5 (Supplementary Figure S3). The results showed that blocking DR4 and DR5 expression alone significantly reduced the rate of cell apoptosis in A549 cells (Figure 2d). However, the highest inhibition of apoptosis was observed when upregulation of both receptors was blocked in parallel, thus showing an additive effect of blocking DR4 and DR5 at the same time. Similar results were also obtained in H522 cells

To analyze whether the upregulation of DR4 and DR5 is a ‘side-effect’, or contrarily, necessary for rotenone-mediated sensitization to TRAIL-induced apoptosis, we blocked upregulation of the death receptors by small interfering RNAs (siRNAs) against DR4 and DR5 (Supplementary Figure S3). The results showed that blocking DR4 and DR5 expression alone significantly reduced the rate of cell apoptosis in A549 cells (Figure 2d). However, the highest inhibition of apoptosis was observed when upregulation of both receptors was blocked in parallel, thus showing an additive effect of blocking DR4 and DR5 at the same time. Similar results were also obtained in H522 cells.

Rotenone-induced p53 activation regulates death receptors upregulation

TRAIL receptors DR4 and DR5 are regulated at multiple levels. At transcriptional level, studies suggest that several transcriptional factors including NF-κB, p53 and AP-1 are involved in DR4 or DR5 gene transcription.2 The NF-κB or AP-1 transcriptional activity was further modulated by ERK1/2, JNK and p38 MAP kinase activity. Unexpectedly, we found here that none of these MAP kinases inhibitors were able to suppress the apoptosis mediated by TRAIL plus rotenone (Figure 3a). To find out other possible mechanisms, we observed that rotenone was able to stimulate p53 phosphorylation as well as p53 protein expression in A549 and H522 cells (Figure 3b). As a p53-inducible gene, p21 mRNA expression was also upregulated by rotenone treatment in a time-dependent manner (Figure 3c). To characterize the effect of p53, A549 cells were transfected with p53 siRNA. The results, as shown in Figure 3d-1 demonstrated that rotenone-mediated surface expression levels of DR4 and DR5 in A549 cells were largely attenuated by siRNA-mediated p53 expression silencing. Control siRNA, however, failed to reveal such effect. Similar results were also obtained in H522 cells (Figure 3d-2). Silencing of p53 expression in A549 cells also partially suppressed the apoptosis induced by TRAIL plus rotenone (Figure 3e).

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f3.html#figure-title

Rotenone suppresses c-FLIP expression and increases the sensitivity of A549 cells to TRAIL-induced apoptosis

The c-FLIP protein has been commonly appreciated as an anti-apoptotic molecule in death receptor-mediated cell apoptosis. In this study, rotenone treatment led to dose-dependent downregulation of c-FLIP expression, including c-FLIPL and c-FLIPs in A549 cells (Figure 4a-1), H522 cells (Figure 4a-2), H441 and Calu-1 cells (Supplementary Figure S4). To test whether c-FLIP is essential for the apoptosis enhancement, A549 cells were transfected with c-FLIPL-overexpressing plasmids. As shown in Figure 4b-1, the apoptosis of A549 cells after the combined treatment was significantly reduced when c-FLIPL was overexpressed. Similar results were also obtained in H522 cells (Figure 4b-2).

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f4.html#figure-title

Bcl-XL is involved in the apoptosis enhancement by rotenone

Notably, c-FLIP downregulation by rotenone in NSCLC cells was irrelevant to p53 signaling (data not shown). To identify other mechanism involved, we found that anti-apoptotic molecule Bcl-XL was also found to be downregulated by rotenone in a dose-dependent manner (Figure 5a). Notably, both Bcl-XL and c-FLIPL mRNA levels remained unchanged in cells after rotenone treatment (Supplementary Figure S5). Bcl-2 is homolog to Bcl-XL. But surprisingly, Bcl-2 expression was almost undetectable in A549 cells. To examine whether Bcl-XL is involved, A549 cells were transfected with Bcl-XL-overexpressing plasmid. As compared with mock transfectant, cell apoptosis induced by TRAIL plus rotenone was markedly suppressed under the condition of Bcl-XL overexpression (Figure 5b). To characterize the mechanisms, surface expression levels of DR4 and DR5 were examined. As shown in Figure 5c, the increased surface expression of DR4 and DR5 in A549 cells, or in H522 cells were greatly reduced after Bcl-XLoverexpression (Figure 5c). In addition, Bcl-XL overexpression also significantly prevented the downregulation of c-FLIPL and c-FLIPs expression in A549 cells by rotenone treatment (Figure 5d).

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f5.html#figure-title

Rotenone suppresses the interaction between BCL-XL/p53 and increases PUMA transcription

Lines of evidence suggest that Bcl-XL has a strong binding affinity with p53, and can suppress p53-mediated tumor cell apoptosis.26 In this study, FLAG-tagged Bcl-XL and HA-tagged p53 were co-transfected into cells; immunoprecipitation experiment was performed by using FLAG antibody to immunoprecipitate HA-tagged p53. As a result, we found that at the same amount of p53 protein input, rotenone treatment caused a concentration-dependent suppression of the protein interaction between Bcl-XL and p53 (Figure 6a). Rotenone also significantly suppressed the interaction between endogenous Bcl-XL and p53 when polyclonal antibody against p53 was used to immunoprecipitate cellular Bcl-XL (Figure 6b). Recent study highlighted the importance of PUMA in BCL-XL/p53 interaction and cell apoptosis.27 We found here that rotenone significantly increased PUMA gene transcription (Figure 6c) and protein expression (Figure 6d) in NSCLC cells, but not in transformed 293T cell. Meanwhile, this effect was attenuated by silencing of p53 expression (Figure 6e).

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f6.html#figure-title

Mitochondria-derived ROS are responsible for the apoptosis-enhancing effect of rotenone

As an inhibitor of mitochondrial respiration, rotenone was found to induce reactive oxygen species (ROS) generation in a variety of transformed or non-transformed cells.2022 Consistently, by using 2′,7′-dichlorofluorescin diacetate (DCFH) for the measurement of intracellular H2O2 and dihydroethidium (DHE) for O2.−, we found that rotenone significantly triggered the .generation of H2O2(Figure 7a) and O2.− (Figure 7b) in A549 and H522 cells. To identify the origin of ROS production, we first incubated cells with diphenylene iodonium (DPI), a potent inhibitor of plasma membrane NADP/NADPH oxidase. The results showed that DPI failed to suppress rotenone-induced ROS generation (Figure 7c). Then, we generated A549 cells deficient in mitochondria DNA by culturing cells in medium supplemented with ethidium bromide (EB). These mtDNA-deficient cells were subject to rotenone treatment, and the result showed that rotenone-induced ROS production were largely attenuated in A549 ρ° cells, but not wild-type A549 cells, suggesting ROS are mainly produced from mitochondria (Figure 7d). Notably, the sensitizing effect of rotenone on TRAIL-induced apoptosis in A549 cells was largely dependent on ROS, because the antioxidant N-acetylcysteine (NAC) treatment greatly suppressed the cell apoptosis, as shown in annexin V/PI double staining experiment (Figure 7e), cell cycle analysis (Figure 7f) and caspase-3 cleavage activity assay (Figure 7g). Finally, in A549 cells stably transfected with manganese superoxide (MnSOD) and catalase, apoptosis induced by TRAIL and rotenone was partially reversed (Figure 7h). All of these data suggest that mitochondria-derived ROS, including H2O2 and O2.−, are responsible for the apoptosis-enhancing effect of rotenone.

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f7.html#figure-title

Rotenone promotes BCl-XL degradation and PUMA transcription in ROS-dependent manner

To understand why ROS are responsible for the apoptosis-enhancing effect of rotenone, we found that rotenone-induced suppression of BCL-XL expression can be largely reversed by NAC treatment (Figure 8a). To examine whether this effect of rotenone occurs at posttranslational level, we used cycloheximide (CHX) to halt protein synthesis, and found that the rapid degradation of Bcl-XL by rotenone was largely attenuated in A549 ρ0 cells (Figure 8b). Similarly, rotenone-induced PUMA upregulation was also significantly abrogated in A549 ρ0 cells (Figure 8c). Finally, A549 cells were inoculated into nude mice to produce xenografts tumor model. In this model, the therapeutic effect of TRAIL combined with rotenone was evaluated. Notably, in order to circumvent the potential neurotoxic adverse effect of rotenone, mice were challenged with rotenone at a low concentration of 0.5 mg/kg. The results, as shown in Figure 8d revealed that while TRAIL or rotenone alone remained unaffected on A549 tumor growth, the combined therapy significantly slowed down the tumor growth. Interestingly, the tumor-suppressive effect of TRAIL plus rotenone was significantly attenuated by NAC (P<0.01). After experiment, tumors were removed and the caspase-3 activity in tumor cells was analyzed by flow cytometry. Consistently, the caspase-3 cleavage activities were significantly activated in A549 cells from animals challenged with TRAIL plus rotenone, meanwhile, this effect was attenuated by NAC (Figure 8e). The similar effect of rotenone also occurred in NCI-H441 xenografts tumor model (Supplementary Figure S6).

http://www.nature.com/cddis/journal/v5/n12/fig_tab/cddis2014547f8.html#figure-title

Restoration of cancer cells susceptibility to TRAIL-induced apoptosis is becoming a very useful strategy for cancer therapy. In this study, we provided evidence that rotenone increased the apoptosis sensitivity of NSCLC cells toward TRAIL by mechanisms involving ROS generation, p53 upregulation, Bcl-XL and c-FLIP downregulation, and death receptors upregulation. Among them, mitochondria-derived ROS had a predominant role. Although rotenone is toxic to neuron, increasing evidence also demonstrated that it was beneficial for improving inflammation, reducing reperfusion injury, decreasing virus infection or triggering cancer cell death. We identified here another important characteristic of rotenone as a tumor sensitizer in TRAIL-based cancer therapy, which widens the application potential of rotenone in disease therapy.

As Warburg proposed the cancer ‘respiration injury’ theory, increasing evidence suggest that cancer cells may have mitochondrial dysfunction, which causes cancer cells, compared with the normal cells, are under increased generation of ROS.33 The increased ROS in cancer cells have a variety of biological effects. We found here that rotenone preferentially increased the apoptosis sensitivity of cancer cells toward TRAIL, further confirming the concept that although tumor cells have a high level of intracellular ROS, they are more sensitive than normal cells to agents that can cause further accumulation of ROS.

Cancer cells stay in a stressful tumor microenvironment including hypoxia, low nutrient availability and immune infiltrates. These conditions, however, activate a range of stress response pathways to promote tumor survival and aggressiveness. In order to circumvent TRAIL-mediated apoptotic clearance, the expression levels of DR4 and DR5 in many types of cancer cells are nullified, but interestingly, they can be reactivated when cancer cells are challenged with small chemical molecules. Furthermore, those small molecules often take advantage of the stress signaling required for cancer cells survival to increase cancer cells sensitivity toward TRAIL. For example, the unfolded protein response (UPR) has an important role in cancer cells survival, SHetA2, as a small molecule, can induce UPR in NSCLC cell lines and augment TRAIL-induced apoptosis by upregulating DR5 expression in CHOP-dependent manner. Here, we found rotenone manipulated the oxidative stress signaling of NSCLC cells to increase their susceptibility to TRAIL. These facts suggest that cellular stress signaling not only offers opportunity for cancer cells to survive, but also renders cancer cells eligible for attack by small molecules. A possible explanation is that depending on the intensity of stress, cellular stress signaling can switch its role from prosurvival to death enhancement. As described in this study, although ROS generation in cancer cells is beneficial for survival, rotenone treatment further increased ROS production to a high level that surpasses the cell ability to eliminate them; as a result, ROS convert its role from survival to death.

2.1.3.6 PPARs and ERRs. molecular mediators of mitochondrial metabolism

Weiwei Fan, Ronald Evans
Current Opinion in Cell Biology Apr 2015; 33:49–54
http://dx.doi.org/10.1016/j.ceb.2014.11.002

Since the revitalization of ‘the Warburg effect’, there has been great interest in mitochondrial oxidative metabolism, not only from the cancer perspective but also from the general biomedical science field. As the center of oxidative metabolism, mitochondria and their metabolic activity are tightly controlled to meet cellular energy requirements under different physiological conditions. One such mechanism is through the inducible transcriptional co-regulators PGC1α and NCOR1, which respond to various internal or external stimuli to modulate mitochondrial function. However, the activity of such co-regulators depends on their interaction with transcriptional factors that directly bind to and control downstream target genes. The nuclear receptors PPARs and ERRs have been shown to be key transcriptional factors in regulating mitochondrial oxidative metabolism and executing the inducible effects of PGC1α and NCOR1. In this review, we summarize recent gain-of-function and loss-of-function studies of PPARs and ERRs in metabolic tissues and discuss their unique roles in regulating different aspects of mitochondrial oxidative metabolism.

Energy is vital to all living organisms. In humans and other mammals, the vast majority of energy is produced by oxidative metabolism in mitochondria [1]. As a cellular organelle, mitochondria are under tight control of the nucleus. Although the majority of mitochondrial proteins are encoded by nuclear DNA (nDNA) and their expression regulated by the nucleus, mitochondria retain their own genome, mitochondrial DNA (mtDNA), encoding 13 polypeptides of the electron transport chain (ETC) in mammals. However, all proteins required for mtDNA replication, transcription, and translation, as well as factors regulating such activities, are encoded by the nucleus [2].

The cellular demand for energy varies in different cells under different physiological conditions. Accordingly, the quantity and activity of mitochondria are differentially controlled by a transcriptional regulatory network in both the basal and induced states. A number of components of this network have been identified, including members of the nuclear receptor superfamily, the peroxisome proliferator-activated receptors (PPARs) and the estrogen-related receptors (ERRs) [34 and 5].

The Yin-Yang co-regulators

A well-known inducer of mitochondrial oxidative metabolism is the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) [6], a nuclear cofactor which is abundantly expressed in high energy demand tissues such as heart, skeletal muscle, and brown adipose tissue (BAT) [7]. Induction by cold-exposure, fasting, and exercise allows PGC1α to regulate mitochondrial oxidative metabolism by activating genes involved in the tricarboxylic acid cycle (TCA cycle), beta-oxidation, oxidative phosphorylation (OXPHOS), as well as mitochondrial biogenesis [6 and 8] (Figure 1).

http://ars.els-cdn.com/content/image/1-s2.0-S0955067414001410-gr1.jpg

Figure 1.  PPARs and ERRs are major executors of PGC1α-induced regulation of oxidative metabolism. Physiological stress such as exercise induces both the expression and activity of PGC1α, which stimulates energy production by activating downstream genes involved in fatty acid and glucose metabolism, TCA cycle, β-oxidation, OXPHOS, and mitochondrial biogenesis. The transcriptional activity of PGC1α relies on its interactions with transcriptional factors such as PPARs (for controlling fatty acid metabolism) and ERRs (for regulating mitochondrial OXPHOS).

The effect of PGC1α on mitochondrial regulation is antagonized by transcriptional corepressors such as the nuclear receptor corepressor 1 (NCOR1) [9 and 10]. In contrast to PGC1α, the expression of NCOR1 is suppressed in conditions where PGC1α is induced such as during fasting, high-fat-diet challenge, and exercise [9 and 11]. Moreover, the knockout of NCOR1 phenotypically mimics PGC1α overexpression in regulating mitochondrial oxidative metabolism [9]. Therefore, coactivators and corepressors collectively regulate mitochondrial metabolism in a Yin-Yang fashion.

However, both PGC1α and NCOR1 lack DNA binding activity and rather act via their interaction with transcription factors that direct the regulatory program. Therefore the transcriptional factors that partner with PGC1α and NCOR1 mediate the molecular signaling cascades and execute their inducible effects on mitochondrial regulation.

PPARs: master executors controlling fatty acid oxidation

Both PGC1α and NCOR1 are co-factors for the peroxisome proliferator-activated receptors (PPARα, γ, and δ) [71112 and 13]. It is now clear that all three PPARs play essential roles in lipid and fatty acid metabolism by directly binding to and modulating genes involved in fat metabolism [1314151617,18 and 19]. While PPARγ is known as a master regulator for adipocyte differentiation and does not seem to be involved with oxidative metabolism [14 and 20], both PPARα and PPARδ are essential regulators of fatty acid oxidation (FAO) [3131519 and 21] (Figure 1).

PPARα was first cloned as the molecular target of fibrates, a class of cholesterol-lowering compounds that increase hepatic FAO [22]. The importance of PPARα in regulating FAO is indicated in its expression pattern which is restricted to tissues with high capacity of FAO such as heart, liver, BAT, and oxidative muscle [23]. On the other hand, PPARδ is ubiquitously expressed with higher levels in the digestive tract, heart, and BAT [24]. In the past 15 years, extensive studies using gain-of-function and loss-of-function models have clearly demonstrated PPARα and PPARδ as the major drivers of FAO in a wide variety of tissues.

ERRS: master executors controlling mitochondrial OXPHOS

ERRs are essential regulators of mitochondrial energy metabolism [4]. ERRα is ubiquitously expressed but particularly abundant in tissues with high energy demands such as brain, heart, muscle, and BAT. ERRβ and ERRγ have similar expression patterns, both are selectively expressed in highly oxidative tissues including brain, heart, and oxidative muscle [45]. Instead of endogenous ligands, the transcriptional activity of ERRs is primarily regulated by co-factors such as PGC1α and NCOR1 [4 and 46] (Figure 1).

Of the three ERRs, ERRβ is the least studied and its role in regulating mitochondrial function is unclear [4 and 47]. In contrast, when PGC1α is induced, ERRα is the master regulator of the mitochondrial biogenic gene network. As ERRα binds to its own promoter, PGC1α can also induce an autoregulatory loop to enhance overall ERRα activity [48]. Without ERRα, the ability of PGC1α to induce the expression of mitochondrial genes is severely impaired. However, the basal-state levels of mitochondrial target genes are not affected by ERRα deletion, suggesting induced mitochondrial biogenesis is a transient process and that other transcriptional factors such as ERRγ may be important maintaining baseline mitochondrial OXPHOS [41•42 and 43]. Consistent with this idea, ERRγ (which is active even when PGC1α is not induced) shares many target genes with ERRα [49 and 50].

Conclusion and perspectives

Taken together, recent studies have clearly demonstrated the essential roles of PPARs and ERRs in regulating mitochondrial oxidative metabolism and executing the inducible effects of PGC1α (Figure 1). Both PPARα and PPARδ are key regulators for FA oxidation. While the function of PPARα seems more restricted in FA uptake, beta-oxidation, and ketogenesis, PPARδ plays a broader role in controlling oxidative metabolism and fuel preference, with its target genes involved in FA oxidation, mitochondrial OXPHOS, and glucose utilization. However, it is still not clear how much redundancy exists between PPARα and PPARδ, a question which may require the generation of a double knockout model. In addition, more effort is needed to fully understand how PPARα and PPARδ control their target genes in response to environmental changes.

Likewise, ERRα and ERRγ have been shown to be key regulators of mitochondrial OXPHOS. Knockout studies of ERRα suggest it to be the principal executor of PGC1α induced up-regulation of mitochondrial genes, though its role in exercise-dependent changes in skeletal muscle needs further investigation. Transgenic models have demonstrated ERRγ’s powerful induction of mitochondrial biogenesis and its ability to act in a PGC1α-independent manner. However, it remains to be elucidated whether ERRγ is sufficient for basal-state mitochondrial function in general, and whether ERRα can compensate for its function.

2.1.3.7 Metabolic control via the mitochondrial protein import machinery

Opalińska M, Meisinger C.
Curr Opin Cell Biol. 2015 Apr; 33:42-48
http://dx.doi.org:/10.1016/j.ceb.2014.11.001

Mitochondria have to import most of their proteins in order to fulfill a multitude of metabolic functions. Sophisticated import machineries mediate targeting and translocation of preproteins from the cytosol and subsequent sorting into their suborganellar destination. The mode of action of these machineries has been considered for long time as a static and constitutively active process. However, recent studies revealed that the mitochondrial protein import machinery is subject to intense regulatory mechanisms that include direct control of protein flux by metabolites and metabolic signaling cascades.
2.1.3.8 The Protein Import Machinery of Mitochondria—A Regulatory Hub

AB Harbauer, RP Zahedi, A Sickmann, N Pfanner, C Meisinger
Cell Metab 4 Mar 2014; 19(3):357–372

Mitochondria are essential cell. They are best known for their role as cellular powerhouses, which convert the energy derived from food into an electrochemical proton gradient across the inner membrane. The proton gradient drives the mitochondrial ATP synthase, thus providing large amounts of ATP for the cell. In addition, mitochondria fulfill central functions in the metabolism of amino acids and lipids and the biosynthesis of iron-sulfur clusters and heme. Mitochondria form a dynamic network that is continuously remodeled by fusion and fission. They are involved in the maintenance of cellular ion homeostasis, play a crucial role in apoptosis, and have been implicated in the pathogenesis of numerous diseases, in particular neurodegenerative disorders.

Mitochondria consist of two membranes, outer membrane and inner membrane, and two aqueous compartments, intermembrane space and matrix (Figure 1). Proteomic studies revealed that mitochondria contain more than 1,000 different proteins (Prokisch et al., 2004Reinders et al., 2006Pagliarini et al., 2008 and Schmidt et al., 2010). Based on the endosymbiotic origin from a prokaryotic ancestor, mitochondria contain a complete genetic system and protein synthesis apparatus in the matrix; however, only ∼1% of mitochondrial proteins are encoded by the mitochondrial genome (13 proteins in humans and 8 proteins in yeast). Nuclear genes code for ∼99% of mitochondrial proteins. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated into mitochondria by a multicomponent import machinery. The protein import machinery is essential for the viability of eukaryotic cells. Numerous studies on the targeting signals and import components have been reported (reviewed in Dolezal et al., 2006,Neupert and Herrmann, 2007Endo and Yamano, 2010 and Schmidt et al., 2010), yet for many years little has been known on the regulation of the import machinery. This led to the general assumption that the protein import machinery is constitutively active and not subject to detailed regulation.

Figure 1. Protein Import Pathways of Mitochondria.  Most mitochondrial proteins are synthesized as precursors in the cytosol and are imported by the translocase of the outer mitochondrial membrane (TOM complex). (A) Presequence-carrying (cleavable) preproteins are transferred from TOM to the presequence translocase of the inner membrane (TIM23 complex), which is driven by the membrane potential (Δψ). The proteins either are inserted into the inner membrane (IM) or are translocated into the matrix with the help of the presequence translocase-associated motor (PAM). The presequences are typically cleaved off by the mitochondrial processing peptidase (MPP). (B) The noncleavable precursors of hydrophobic metabolite carriers are bound to molecular chaperones in the cytosol and transferred to the receptor Tom70. After translocation through the TOM channel, the precursors bind to small TIM chaperones in the intermembrane space and are membrane inserted by the Δψ-dependent carrier translocase of the inner membrane (TIM22 complex).
(C) Cysteine-rich proteins destined for the intermembrane space (IMS) are translocated through the TOM channel in a reduced conformation and imported by the mitochondrial IMS import and assembly (MIA) machinery. Mia40 functions as precursor receptor and oxidoreductase in the IMS, promoting the insertion of disulfide bonds into the imported proteins. The sulfhydryl oxidase Erv1 reoxidizes Mia40 for further rounds of oxidative protein import and folding. (D) The precursors of outer membrane β-barrel proteins are imported by the TOM complex and small TIM chaperones and are inserted into the outer membrane by the sorting and assembly machinery (SAM complex). (E) Outer membrane (OM) proteins with α-helical transmembrane segments are inserted into the membrane by import pathways that have only been partially characterized. Shown is an import pathway via the mitochondrial import (MIM) complex

Studies in recent years, however, indicated that different steps of mitochondrial protein import are regulated, suggesting a remarkable diversity of potential mechanisms. After an overview on the mitochondrial protein import machinery, we will discuss the regulatory processes at different stages of protein translocation into mitochondria. We propose that the mitochondrial protein import machinery plays a crucial role as regulatory hub under physiological and pathophysiological conditions. Whereas the basic mechanisms of mitochondrial protein import have been conserved from lower to higher eukaryotes (yeast to humans), regulatory processes may differ between different organisms and cell types. So far, many studies on the regulation of mitochondrial protein import have only been performed in a limited set of organisms. Here we discuss regulatory principles, yet it is important to emphasize that future studies will have to address which regulatory processes have been conserved in evolution and which processes are organism specific.

Protein Import Pathways into Mitochondria

The classical route of protein import into mitochondria is the presequence pathway (Neupert and Herrmann, 2007 and Chacinska et al., 2009). This pathway is used by more than half of all mitochondrial proteins (Vögtle et al., 2009). The proteins are synthesized as precursors with cleavable amino-terminal extensions, termed presequences. The presequences form positively charged amphipathic α helices and are recognized by receptors of the translocase of the outer mitochondrial membrane (TOM complex) (Figure 1A) (Mayer et al., 1995Brix et al., 1997van Wilpe et al., 1999Abe et al., 2000Meisinger et al., 2001 and Saitoh et al., 2007). Upon translocation through the TOM channel, the cleavable preproteins are transferred to the presequence translocase of the inner membrane (TIM23 complex). The membrane potential across the inner membrane (Δψ, negative on the matrix side) exerts an electrophoretic effect on the positively charged presequences (Martin et al., 1991). The presequence translocase-associated motor (PAM) with the ATP-dependent heat-shock protein 70 (mtHsp70) drives preprotein translocation into the matrix (Chacinska et al., 2005 and Mapa et al., 2010). Here the presequences are typically cleaved off by the mitochondrial processing peptidase (MPP). Some cleavable preproteins contain a hydrophobic segment behind the presequence, leading to arrest of translocation in the TIM23 complex and lateral release of the protein into the inner membrane (Glick et al., 1992Chacinska et al., 2005 and Meier et al., 2005). In an alternative sorting route, some cleavable preproteins destined for the inner membrane are fully or partially translocated into the matrix, followed by insertion into the inner membrane by the OXA export machinery, which has been conserved from bacteria to mitochondria (“conservative sorting”) (He and Fox, 1997Hell et al., 1998Meier et al., 2005 and Bohnert et al., 2010).  …

Regulatory Processes Acting at Cytosolic Precursors of Mitochondrial Proteins

Two properties of cytosolic precursor proteins are crucial for import into mitochondria. (1) The targeting signals of the precursors have to be accessible to organellar receptors. Modification of a targeting signal by posttranslational modification or masking of a signal by binding partners can promote or inhibit import into an organelle. (2) The protein import channels of mitochondria are so narrow that folded preproteins cannot be imported. Thus preproteins should be in a loosely folded state or have to be unfolded during the import process. Stable folding of preprotein domains in the cytosol impairs protein import.  …

Import Regulation by Binding of Metabolites or Partner Proteins to Preproteins

Binding of a metabolite to a precursor protein can represent a direct means of import regulation (Figure 2A, condition 1). A characteristic example is the import of 5-aminolevulinate synthase, a mitochondrial matrix protein that catalyzes the first step of heme biosynthesis (Hamza and Dailey, 2012). The precursor contains heme binding motifs in its amino-terminal region, including the presequence (Dailey et al., 2005). Binding of heme to the precursor inhibits its import into mitochondria, likely by impairing recognition of the precursor protein by TOM receptors (Lathrop and Timko, 1993González-Domínguez et al., 2001,Munakata et al., 2004 and Dailey et al., 2005). Thus the biosynthetic pathway is regulated by a feedback inhibition of mitochondrial import of a crucial enzyme, providing an efficient and precursor-specific means of import regulation dependent on the metabolic situation.

Figure 2. Regulation of Cytosolic Precursors of Mitochondrial Proteins

(A) The import of a subset of mitochondrial precursor proteins can be positively or negatively regulated by precursor-specific reactions in the cytosol. (1) Binding of ligands/metabolites can inhibit mitochondrial import. (2) Binding of precursors to partner proteins can stimulate or inhibit import into mitochondria. (3) Phosphorylation of precursors in the vicinity of targeting signals can modulate dual targeting to the endoplasmic reticulum (ER) and mitochondria. (4) Precursor folding can mask the targeting signal. (B) Cytosolic and mitochondrial fumarases are derived from the same presequence-carrying preprotein. The precursor is partially imported by the TOM and TIM23 complexes of the mitochondrial membranes and the presequence is removed by the mitochondrial processing peptidase (MPP). Folding of the preprotein promotes retrograde translocation of more than half of the molecules into the cytosol, whereas the other molecules are completely imported into mitochondria.

Regulation of Mitochondrial Protein Entry Gate by Cytosolic Kinases

Figure 3. Regulation of TOM Complex by Cytosolic Kinases

(A) All subunits of the translocase of the outer mitochondrial membrane (TOM complex) are phosphorylated by cytosolic kinases (phosphorylated amino acid residues are indicated by stars with P). Casein kinase 1 (CK1) stimulates the assembly of Tom22 into the TOM complex. Casein kinase 2 (CK2) stimulates the biogenesis of Tom22 as well as the mitochondrial import protein 1 (Mim1). Protein kinase A (PKA) inhibits the biogenesis of Tom22 and Tom40, and inhibits the activity of Tom70 (see B). Cyclin-dependent kinases (CDK) are possibly involved in regulation of TOM. (B) Metabolic shift-induced regulation of the receptor Tom70 by PKA. Carrier precursors bind to cytosolic chaperones (Hsp70 and/or Hsp90). Tom70 has two binding pockets, one for the precursor and one for the accompanying chaperone (shown on the left). When glucose is added to yeast cells (fermentable conditions), the levels of intracellular cAMP are increased and PKA is activated (shown on the right). PKA phosphorylates a serine of Tom70 in vicinity of the chaperone binding pocket, thus impairing chaperone binding to Tom70 and carrier import into mitochondria.

Casein Kinase 2 Stimulates TOM Biogenesis and Protein Import

Metabolic Switch from Respiratory to Fermentable Conditions Involves Protein Kinase A-Mediated Inhibition of TOM

Network of Stimulatory and Inhibitory Kinases Acts on TOM Receptors, Channel, and Assembly Factors

Protein Import Activity as Sensor of Mitochondrial Stress and Dysfunction

Figure 4. Mitochondrial Quality Control and Stress Response

(A) Import and quality control of cleavable preproteins. The TIM23 complex cooperates with several machineries: the TOM complex, a supercomplex consisting of the respiratory chain complexes III and IV, and the presequence translocase-associated motor (PAM) with the central chaperone mtHsp70. Several proteases/peptidases involved in processing, quality control, and/or degradation of imported proteins are shown, including mitochondrial processing peptidase (MPP), intermediate cleaving peptidase (XPNPEP3/Icp55), mitochondrial intermediate peptidase (MIP/Oct1), mitochondrial rhomboid protease (PARL/Pcp1), and LON/Pim1 protease. (B) The transcription factor ATFS-1 contains dual targeting information, a mitochondrial targeting signal at the amino terminus, and a nuclear localization signal (NLS). In normal cells, ATFS-1 is efficiently imported into mitochondria and degraded by the Lon protease in the matrix. When under stress conditions the protein import activity of mitochondria is reduced (due to lower Δψ, impaired mtHsp70 activity, or peptides exported by the peptide transporter HAF-1), some ATFS-1 molecules accumulate in the cytosol and can be imported into the nucleus, leading to induction of an unfolded protein response (UPRmt).

Regulation of PINK1/Parkin-Induced Mitophagy by the Activity of the Mitochondrial Protein Import Machinery

Figure 5.  Mitochondrial Dynamics and Disease

(A) In healthy cells, the kinase PINK1 is partially imported into mitochondria in a membrane potential (Δψ)-dependent manner and processed by the inner membrane rhomboid protease PARL, which cleaves within the transmembrane segment and generates a destabilizing N terminus, followed by retro-translocation of cleaved PINK1 into the cytosol and degradation by the ubiquitin-proteasome system (different views have been reported if PINK1 is first processed by MPP or not; Greene et al., 2012, Kato et al., 2013 and Yamano and Youle, 2013). Dissipation of Δψ in damaged mitochondria leads to an accumulation of unprocessed PINK1 at the TOM complex and the recruitment of the ubiquitin ligase Parkin to mitochondria. Mitofusin 2 is phosphorylated by PINK1 and likely functions as receptor for Parkin. Parkin mediates ubiquitination of mitochondrial outer membrane proteins (including mitofusins), leading to a degradation of damaged mitochondria by mitophagy. Mutations of PINK1 or Parkin have been observed in monogenic cases of Parkinson’s disease. (B) The inner membrane fusion protein OPA1/Mgm1 is present in long and short isoforms. A balanced formation of the isoforms is a prerequisite for the proper function of OPA1/Mgm1. The precursor of OPA1/Mgm1 is imported by the TOM and TIM23 complexes. A hydrophobic segment of the precursor arrests translocation in the inner membrane, and the amino-terminal targeting signal is cleaved by MPP, generating the long isoforms. In yeast mitochondria, the import motor PAM drives the Mgm1 precursor further toward the matrix such that a second hydrophobic segment is cleaved by the inner membrane rhomboid protease Pcp1, generating the short isoform (s-Mgm1). In mammals, the m-AAA protease is likely responsible for the balanced formation of long (L) and short (S) isoforms of OPA1. A further protease, OMA1, can convert long isoforms into short isoforms in particular under stress conditions, leading to an impairment of mitochondrial fusion and thus to fragmentation of mitochondria.

….

Mitochondrial research is of increasing importance for the molecular understanding of numerous diseases, in particular of neurodegenerative disorders. The well-established connection between the pathogenesis of Parkinson’s disease and mitochondrial protein import has been discussed above. Several observations point to a possible connection of mitochondrial protein import with the pathogenesis of Alzheimer’s disease, though a direct role of mitochondria has not been demonstrated so far. The amyloid-β peptide (Aβ), which is generated from the amyloid precursor protein (APP), was found to be imported into mitochondria by the TOM complex, to impair respiratory activity, and to enhance ROS generation and fragmentation of mitochondria (Hansson Petersen et al., 2008, Ittner and Götz, 2011 and Itoh et al., 2013). An accumulation of APP in the TOM and TIM23 import channels has also been reported (Devi et al., 2006). The molecular mechanisms of how mitochondrial activity and dynamics may be altered by Aβ (and possibly APP) and how mitochondrial alterations may impact on the pathogenesis of Alzheimer’s disease await further analysis.

It is tempting to speculate that regulatory changes in mitochondrial protein import may be involved in tumor development. Cancer cells can shift their metabolism from respiration toward glycolysis (Warburg effect) (Warburg, 1956, Frezza and Gottlieb, 2009, Diaz-Ruiz et al., 2011 and Nunnari and Suomalainen, 2012). A glucose-induced downregulation of import of metabolite carriers into mitochondria may represent one of the possible mechanisms during metabolic shift to glycolysis. Such a mechanism has been shown for the carrier receptor Tom70 in yeast mitochondria (Schmidt et al., 2011). A detailed analysis of regulation of mitochondrial preprotein translocases in healthy mammalian cells as well as in cancer cells will represent an important task for the future.

Conclusion

In summary, the concept of the “mitochondrial protein import machinery as regulatory hub” will promote a rapidly developing field of interdisciplinary research, ranging from studies on molecular mechanisms to the analysis of mitochondrial diseases. In addition to identifying distinct regulatory mechanisms, a major challenge will be to define the interactions between different machineries and regulatory processes, including signaling networks, preprotein translocases, bioenergetic complexes, and machineries regulating mitochondrial membrane dynamics and contact sites, in order to understand the integrative system controlling mitochondrial biogenesis and fitness.

2.1.3.9 Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways

MC Boelens, Tony J. Wu, Barzin Y. Nabet, et al.
Cell 23 Oct 2014; 159(3): 499–513
http://www.sciencedirect.com/science/article/pii/S0092867414012392

Highlights

  • Exosome transfer from stromal to breast cancer cells instigates antiviral signaling
    • RNA in exosomes activates antiviral STAT1 pathway through RIG-I
    • STAT1 cooperates with NOTCH3 to expand therapy-resistant cells
    • Antiviral/NOTCH3 pathways predict NOTCH activity and resistance in primary tumors

Summary

Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely noncoding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent antiviral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine antiviral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy-resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of antiviral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate crosstalk with BrCa cells by utilizing exosomes to instigate antiviral signaling. This expands BrCa subpopulations adept at resisting therapy and reinitiating tumor growth.

stromal-communication-with-cancer-cells

stromal-communication-with-cancer-cells

Graphical Abstract

2.1.3.10 Emerging concepts in bioenergetics and cancer research

Obre E, Rossignol R
Int J Biochem Cell Biol. 2015 Feb; 59:167-81
http://dx.doi.org:/10.1016/j.biocel.2014.12.008

The field of energy metabolism dramatically progressed in the last decade, owing to a large number of cancer studies, as well as fundamental investigations on related transcriptional networks and cellular interactions with the microenvironment. The concept of metabolic flexibility was clarified in studies showing the ability of cancer cells to remodel the biochemical pathways of energy transduction and linked anabolism in response to glucose, glutamine or oxygen deprivation. A clearer understanding of the large-scale bioenergetic impact of C-MYC, MYCN, KRAS and P53 was obtained, along with its modification during the course of tumor development. The metabolic dialog between different types of cancer cells, but also with the stroma, also complexified the understanding of bioenergetics and raised the concepts of metabolic symbiosis and reverse Warburg effect. Signaling studies revealed the role of respiratory chain-derived reactive oxygen species for metabolic remodeling and metastasis development. The discovery of oxidative tumors in human and mice models related to chemoresistance also changed the prevalent view of dysfunctional mitochondria in cancer cells. Likewise, the influence of energy metabolism-derived oncometabolites emerged as a new means of tumor genetic regulation. The knowledge obtained on the multi-site regulation of energy metabolism in tumors was translated to cancer preclinical studies, supported by genetic proof of concept studies targeting LDHA, HK2, PGAM1, or ACLY. Here, we review those different facets of metabolic remodeling in cancer, from its diversity in physiology and pathology, to the search of the genetic determinants, the microenvironmental regulators and pharmacological modulators.

2.1.3.11 Protecting the mitochondrial powerhouse

M Scheibye-Knudsen, EF Fang, DL Croteau, DM Wilson III, VA Bohr
Trends in Cell Biol, Mar 2015; 25(3):158–170

Highlights

  • Mitochondrial maintenance is essential for cellular and organismal function.
    • Maintenance includes reactive oxygen species (ROS) regulation, DNA repair, fusion–fission, and mitophagy.
    • Loss of function of these pathways leads to disease.

Mitochondria are the oxygen-consuming power plants of cells. They provide a critical milieu for the synthesis of many essential molecules and allow for highly efficient energy production through oxidative phosphorylation. The use of oxygen is, however, a double-edged sword that on the one hand supplies ATP for cellular survival, and on the other leads to the formation of damaging reactive oxygen species (ROS). Different quality control pathways maintain mitochondria function including mitochondrial DNA (mtDNA) replication and repair, fusion–fission dynamics, free radical scavenging, and mitophagy. Further, failure of these pathways may lead to human disease. We review these pathways and propose a strategy towards a treatment for these often untreatable disorders.

Discussion

Radoslav Bozov –

Larry, pyruvate is a direct substrate for synthesizing pyrimidine rings, as well as C-13 NMR study proven source of methyl groups on SAM! Think about what cancer cells care for – dis-regulated growth through ‘escaped’ mutability of proteins, ‘twisting’ pathways of ordered metabolism space-time wise! mtDNA is a back up, evolutionary primitive, however, primary system for pulling strings onto cell cycle events. Oxygen (never observed single molecule) pulls up electron negative light from emerging super rich energy carbon systems. Therefore, ATP is more acting like a neutralizer – resonator of space-energy systems interoperability! You cannot look at a compartment / space independently , as dimension always add 1 towards 3+1.

Read Full Post »

Warburg Effect Revisited – 2

Writer and Curator: Larry H. Bernstein, MD, FCAP

Finding Dysregulation in the Cancer Cell

2.1.         Warburg Effect Revisited

One of the great observations of the 20th century was the behavior of cancer cells to proliferate and rely on anaerobic glycolysis for the source of energy.  This was a restatement of the Pasteur effect, described 60 years earlier by the great French scientist in yeast experiments.  The experiments with yeast were again reperformed by Jose EDS Roselino, a Brazilian biochemist, who established an explanation for it 50 years after Warburg.  It is quite amazing the mitochondria were not yet discovered at the time that Warburg carried out the single-cell thickness measurements in his respiratory apparatus. He concluded from the observation that the cancer cells grew in a media that became acidic from producing lactic acid, that the cells were dysfunctional in the utilization of oxygen, as nonmalignant cells efficiently utilized oxygen. He also related the metabolic events to observations made by Meyerhof.  The mitochondria and the citric acid cycle at this time had not yet been discovered, and the latter was, worked out by Hans Krebs and Albert Szent-Gyorgi, both of whom worked with him on mitochondrial metabolism.  The normal cell utilizes glucose efficiently and lipids as well, generating energy through oxidative phosphorylation, with the production of ATP in a manner previously described in these posts.  Greater clarity was achieved with the discovery of Coenzyme A, and finally the electron transport chain (ETC).  This requires that the pyruvate be directed into the tricarboxylic acid cycle and to go through a series of reactions producing succinate and finally malate.

The following great achievements were made with regard to elucidating these processes:

1922 Archibald Vivian Hill United Kingdom “for his discovery relating to the production of heat in the muscle[26]
Otto Fritz Meyerhof Germany “for his discovery of the fixed relationship between the consumption of oxygen and the metabolism of lactic acid in the muscle”[26]
1931 Otto Heinrich Warburg Germany “for his discovery of the nature and mode of action of the respiratory enzyme[34]
1937 Albert Szent-Györgyi von Nagyrapolt Hungary “for his discoveries in connection with the biological combustion processes, with special reference to vitamin C and the catalysis of fumaric acid[40]
1953 Sir Hans Adolf Krebs United Kingdom “for his discovery of the citric acid cycle[53]
Fritz Albert Lipmann United States “for his discovery of co-enzyme A and its importance for intermediary metabolism”[53]
1955 Axel Hugo Theodor Theorell Sweden “for his discoveries concerning the nature and mode of action of oxidation enzymes”[55]
1978 Peter D. Mitchell United Kingdom “for his contribution to the understanding of biological energy transfer through the formulation of the chemiosmotic theory[77]
1997 Paul D. Boyer United States “for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)”[96]
John E. Walker United Kingdom

 

 1967  Manfred Eigen   and the other half jointly to:

Ronald George Wreyford Norrish and Lord George Porter for their studies of extremely fast chemical reactions, effected by disturbing the equlibrium by means of very short pulses of energy.

1965   FRANÇOIS JACOB , ANDRÉ LWOFF And JACQUES MONOD for their discoveries concerning genetic control of enzyme and virus synthesis.

1964 KONRAD BLOCH And FEODOR LYNEN for their discoveries concerning the mechanism and regulation of the cholesterol and fatty acid metabolism.

If there is a more immediate need for energy (as in stressed muscular activity) with net oxygen insufficiency, the pyruvate is converted to lactic acid, with acidemia, and with much less ATP production, but the lactic academia and the energy deficit is subsequently compensated for.    The observation made by Jose EDS Rosalino was that yeast grown in a soil deficient in oxygen don’t put down roots.

^I. Topisirovic and N. Sonenberg

Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXVI

http://dx.doi.org:/10.1101/sqb.2011.76.010785 ”A prominent feature of cancer cells is the use of aerobic glycolysis under conditions in which oxygen levels are sufficient to support energy production in the mitochondria (Jones and Thompson 2009; Cairns et al. 2010). This phenomenon, named the “Warburg effect,” after its discoverer Otto Warburg, is thought to fuel the biosynthetic requirements of the neoplastic growth (Warburg 1956; Koppenol et al. 2011) and has recently been acknowledged as one of the hallmarks of cancer (Hanahan and Weinberg 2011). mRNA translation is the most energy-demanding process in the cell (Buttgereit and Brand 1995).

Again, the use of aerobic glycolysis expression has been twisted.”

To understand my critical observation consider this: Aerobic glycolysis is the carbon flow that goes from Glucose to CO2 and water (includes Krens cycle and respiratory chain for the restoration of NAD, FAD etc.

Anerobic glyclysis is the carbon flow that goes from glucose to lactate. It uses conversion of pyruvate to lactate to regenerate NAD.

“Pasteur effect” is an expression coined by Warburg, which refers to the reduction in the carbon flow from glucose when oxygen is offered to yeasts. The major reason for that is in general terms, derived from the fact that carbon flow is regulated by several cell requirements but mainly by the ATP needs of the cell. Therefore, as ATP is generated 10 more efficiently in aerobiosis than under anaerobiosis, less carbon flow is required under aerobiosis than under anaerobiosis to maintain ATP levels. Warburg, after searching for the same regulatory mechanism in normal and cancer cells for comparison found that transformed cell continued their large flow of glucose carbons to lactate despite the presence of oxygen.

So, it is wrong to describe that aerobic glycolysis continues in the presence of oxygen. It is what it is expected to occur. The wrong thing is that anaerobic glycolysis continues under aerobiosis.
^Aurelian Udristioiu (comment)
In cells, the immediate energy sources involve glucose oxidation. In anaerobic metabolism, the donor of the phosphate group is adenosine triphosphate (ATP), and the reaction is catalyzed via the hexokinase or glucokinase: Glucose +ATP-Mg²+ = Glucose-6-phosphate (ΔGo = – 3.4 kcal/mol with hexokinase as the co-enzyme for the reaction.).

In the following step, the conversion of G-6-phosphate into F-1-6-bisphosphate is mediated by the enzyme phosphofructokinase with the co-factor ATP-Mg²+. This reaction has a large negative free energy difference and is irreversible under normal cellular conditions. In the second step of glycolysis, phosphoenolpyruvic acid in the presence of Mg²+ and K+ is transformed into pyruvic acid. In cancer cells or in the absence of oxygen, the transformation of pyruvic acid into lactic acid alters the process of glycolysis.

The energetic sum of anaerobic glycolysis is ΔGo = -34.64 kcal/mol. However a glucose molecule contains 686kcal/mol and, the energy difference (654.51 kcal) allows the potential for un-controlled reactions during carcinogenesis. The transfer of electrons from NADPH in each place of the conserved unit of energy transmits conformational exchanges in the mitochondrial ATPase. The reaction ADP³+ P²¯ + H²à ATP + H2O is reversible. The terminal oxygen from ADP binds the P2¯ by forming an intermediate pentacovalent complex, resulting in the formation of ATP and H2O. This reaction requires Mg²+ and an ATP-synthetase, which is known as the H+-ATPase or the Fo-F1-ATPase complex. Intracellular calcium induces mitochondrial swelling and aging. [12].

The known marker of monitoring of treatment in cancer diseases, lactate dehydrogenase (LDH) is an enzyme that is localized to the cytosol of human cells and catalyzes the reversible reduction of pyruvate to lactate via using hydrogenated nicotinamide deaminase (NADH) as co-enzyme.

The causes of high LDH and high Mg levels in the serum include neoplastic states that promote the high production of intracellular LDH and the increased use of Mg²+ during molecular synthesis in processes pf carcinogenesis (Pyruvate acid>> LDH/NADH >>Lactate acid + NAD), [13].

The material we shall discuss explores in more detail the dysmetabolism that occurs in cancer cells.

Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?
http://pharmaceuticalintelligence.com/2014/06/21/is-the-warburg-effect-the-cause-or-the-effect-of-cancer-a-21st-century-view-2/

Warburg Effect Revisited
http://pharmaceuticalintelligence.com/2013/11/28/warburg-effect-revisited/

AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo
http://pharmaceuticalintelligence.com/2013/03/12/ampk-is-a-negative-regulator-of-the-warburg-effect-and-suppresses-tumor-growth-in-vivo/

AKT Signaling Variable Effects
http://pharmaceuticalintelligence.com/2013/03/04/akt-signaling-variable-effects/

Otto Warburg, A Giant of Modern Cellular Biology
http://pharmaceuticalintelligence.com/2012/11/02/otto-warburg-a-giant-of-modern-cellular-biology/

The Metabolic View of Epigenetic Expression
http://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/

Metabolomics Summary and Perspective
http://pharmaceuticalintelligence.com/2014/10/16/metabolomics-summary-and-perspective/

2.1.1       Cancer Metabolism

2.1.1.1  Oncometabolites: linking altered  metabolism with cancer

Ming Yang, Tomoyoshi Soga, and Patrick J. Pollard
J Clin Invest Sep 2013; 123(9):3652–3658
http://dx.doi.org:/10.1172/JCI67228

The discovery of cancer-associated mutations in genes encoding key metabolic enzymes has provided a direct link between altered metabolism and cancer. Advances in mass spectrometry and nuclear magnetic resonance technologies have facilitated high-resolution metabolite profiling of cells and tumors and identified the accumulation of metabolites associated with specific gene defects. Here we review the potential roles of such “oncometabolites” in tumor evolution and as clinical biomarkers for the detection of cancers characterized by metabolic dysregulation.

The emerging interest in metabolites whose abnormal accumulation causes both metabolic and nonmetabolic dysregulation and potential transformation to malignancy (herein termed “oncometabolites”) has been fueled by the identification of cancerassociated mutations in genes encoding enzymes with significant roles in cellular metabolism (1–5). Loss-of-function mutations in genes encoding the Krebs cycle enzymes fumarate hydratase (FH) and succinate dehydrogenase (SDH) cause the accumulation of fumarate and succinate, respectively (6), whereas gain-offunction isocitrate dehydrogenase (IDH) mutations increase levels of D–2-hydroxyglutarate (D-2HG) (7, 8). These metabolites have been implicated in the dysregulation of cellular processes including the competitive inhibition of α-ketoglutarate–dependent (α-KG–dependent) dioxygenase enzymes (also known as 2-oxoglutarate–dependent dioxgenases) and posttranslational modification of proteins (1, 4, 9–11). To date, several lines of biochemical and genetic evidence support roles for fumarate, succinate, and D-2HG in cellular transformation and oncogenesis (3, 12).

The Journal of Clinical Investigation   http://www.jci.org   Volume 123   Number 9   September 2013

ventional gene sequencing methods may lead to false positives due to genetic polymorphism and sequencing artifacts (98). In comparison, screening for elevated 2HG levels is a sensitive and specific approach to detect IDH mutations in tumors. Whereas patient sera/plasma can be assessed in the case of AML (7, 8, 21, 99), exciting advances with proton magnetic resonance spectroscopy (MRS) have been made in the noninvasive detection of 2HG in patients with gliomas (100–103). Using MRS sequence optimization and spectral fitting techniques, Maher and colleagues examined 30 patients with glioma and showed that the detection of 2HG correlated 100% with the presence of IDH1 or IDH2 mutations (102). Andronesi et al. further demonstrated that two-dimensional correlation spectroscopy could effectively distinguish 2HG from chemically similar metabolites present in the brain (103). Negative IHC staining for SDHB correlates with the presence of SDH mutations, whether in SDHB, SDHC, or SDHD (104). This finding is most likely explained by the fact that mutations in any of the four subunits of SDH can destabilize the entire enzyme complex. PGLs/PCCs associated with an SDHA mutation show negative staining for SDHA as well as SDHB (105). Therefore, IHC staining for SDHB is a useful diagnostic tool to triage patients for genetic testing of any SDH mutation, and subsequent staining for the other subunits may further narrow the selection of genes to be tested. In contrast, detection of FH protein is often evident in HLRCC tumors due to retention of the nonfunctional mutant allele (106). However, staining of cysts and tumors for 2SC immunoreactivity reveals a striking correlation between FH inactivation and the presence of 2SC-modified protein (2SCP), which is absent in non-HLRCC tumors and normal tissue controls (106). IHC staining for 2SCP thus provides a robust diagnostic biomarker for FH deficiency (107).

Therapeutic targeting Because D-2HG is a product of neomorphic enzyme activities, curtailing the D-2HG supply by specifically inhibiting the mutant IDH enzymes provides an elegant approach to target IDH-mutant cancers. Indeed, recent reports of small-molecule inhibitors against mutant forms of IDH1 and IDH2 demonstrated the feasibility of this method. An inhibitor against IDH2 R140Q was shown to reduce both intracellular and extracellular levels of D-2HG, suppress cell growth, and increase differentiation of primary human AML cells (108). Similarly, small-molecule inhibition of IDH1 R132H suppressed colony formation and increased tumor cell differentiation in a xenograft model for IDH1 R132H glioma (58). The inhibitors exhibited a cytostatic rather than cytotoxic effect, and therefore their therapeutic efficacy over longer time periods may need further assessment (109). Letouzé et al. showed that the DNA methytransferase inhibitor decitabine could repress the migration capacities of SDHB-mutant cells (40). However, for SDH- and FH-associated cancers, a synthetic lethality approach is worth exploring because of the pleiotrophic effects associated with succinate and fumarate accumulation.

Outlook The application of next-generation sequencing technologies in the field of cancer genomics has substantially increased our understanding of cancer biology. Detection of germline and somatic mutations in specific tumor types not only expands the current repertoire of driver mutations and downstream effectors in tumorigenesis, but also sheds light on how oncometabolites may exert their oncogenic roles. For example, the identification of mutually exclusive mutations in IDH1 and TET2 in AML led to the characterization of TET2 as a major pathological target of D-2HG (34, 110). Additionally, the discovery of somatic CUL3, SIRT1, and NRF2 mutations in sporadic PRCC2 converges with FH mutation in HLRCC, in which NRF2 activation is a consequence of fumarate-mediated succination of KEAP1, indicating the functional prominence of the NRF2 pathway in PRCC2 (73). In light of this, the identification of somatic mutations in genes encoding the chromatin-modifying enzymes histone H3K36 methyltransferase (SETD2), histone H3K4 demethylase JARID1C (KDM5C), histone H3K27 demethylase UTX (KDM6A), and the SWI/SNF chromatin remodelling complex gene PBRM1 in clear cell renal cell carcinoma (111–113) highlights the importance of epigenetic modulation in human cancer and raises the potential for systematic testing in other types of tumors such as those associated with FH mutations. Technological advances such as those in gas and liquidchromatography mass spectrometry (114, 115) and nuclear magnetic resonance imaging (102) have greatly improved the ability to measure low-molecular-weight metabolites in tumor samples with high resolution (116). Combined with metabolic flux analyses employing isotope tracers and mathematical modeling, modern-era metabolomic approaches can provide direct pathophysiological insights into tumor metabolism and serve as an excellent tool for biomarker discovery. Using a data-driven approach, Jain and colleagues constructed the metabolic profiles of 60 cancer cell lines and discovered glycine consumption as a key metabolic event in rapidly proliferating cancer cells (117), thus demonstrating the power of metabolomic analyses and the relevance to future cancer research and therapeutics.

Acknowledgments The Cancer Biology and Metabolism Group is funded by Cancer Research UK and the European Research Council under the European Community’s Seventh Framework Programme (FP7/20072013)/ERC grant agreement no. 310837 to Dr. Pollard. Professor Soga receives funding from a Grant-in-Aid for scientific research on Innovative Areas, Japan (no. 22134007), and the Yamagata Prefectural Government and City of Tsuruoka.

Address correspondence to: Patrick J. Pollard, Cancer Biology and Metabolism Group, Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom. Phone: 44.0.1865287780; Fax: 44.0.1865287787; E-mail:  patrick.pollard@well.ox.ac.uk.

  1. Yang M, Soga T, Pollard PJ, Adam J. The emerging role of fumarate as an oncometabolite. Front Oncol. 2012;2:85. 2. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308. 3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324(5930):1029–1033. 4. Thompson CB. Metabolic enzymes as oncogenes or tumor suppressors. N Engl J Med. 2009; 360(8):813–815. 5. Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491(7424):364–373.
  1. Pollard PJ, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005; 14(15):2231–2239. 7. Ward PS, et al. The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010; 17(3):225–234.

Because D-2HG is a product of neomorphic enzyme activities, curtailing the D-2HG supply by specifically inhibiting the mutant IDH enzymes provides an elegant approach to target IDH-mutant cancers. Indeed, recent reports of small-molecule inhibitors against mutant forms of IDH1 and IDH2 demonstrated the feasibility of this method. An inhibitor against IDH2 R140Q was shown to reduce both intracellular and extracellular levels of D-2HG, suppress cell growth, and increase differentiation of primary human AML cells (108). Similarly, small-molecule inhibition of IDH1 R132H suppressed colony formation and increased tumor cell differentiation in a xenograft model for IDH1 R132H glioma (58). The inhibitors exhibited a cytostatic rather than cytotoxic effect, and therefore their therapeutic efficacy over longer time periods may need further assessment (109). Letouzé et al. showed that the DNA methytransferase inhibitor decitabine could repress the migration capacities of SDHB-mutant cells (40). However, for SDH- and FH-associated cancers, a synthetic lethality approach is worth exploring because of the pleiotrophic effects associated with succinate and fumarate accumulation.

Technological advances such as those in gas and liquid chromatography mass spectrometry (114, 115) and nuclear magnetic resonance imaging (102) have greatly improved the ability to measure low-molecular-weight metabolites in tumor samples with high resolution (116). Combined with metabolic flux analyses employing isotope tracers and mathematical modeling, modern-era metabolomic approaches can provide direct pathophysiological insights into tumor metabolism and serve as an excellent tool for biomarker discovery. Using a data-driven approach, Jain and colleagues constructed the metabolic profiles of 60 cancer cell lines and discovered glycine consumption as a key metabolic event in rapidly proliferating cancer cells (117), thus demonstrating the power of metabolomic analyses and the relevance to future cancer research and therapeutics.

Figure 1 D-2HG produced by mutant IDH1/2 affects metabolism and epigenetics by modulating activities of α-KG–dependent oxygenases. Wild-type IDH1 and IDH2 catalyze the NADP+-dependent reversible conversion of isocitrate to α-KG, whereas cancer-associated gain-of-function mutations enable mutant IDH1/2 (mIDH1/2) to catalyze the oxidation of α-KG to D-2HG, using NADPH as a cofactor. Because D-2HG is structurally similar to α-KG, its accumulation can modulate the activities of α-KG–utilizing dioxygenases. Inhibition of 5mC hydroxylase TET2 and the KDMs results in increased CpG island methylation and increased histone methylation marks, respectively, thus blocking lineage-specific cell differentiation. Inhibition of collagen prolyl and lysyl hydroxylases (C-P4Hs and PLODs, respectively) leads to impaired collagen maturation and disrupted basement membrane formation. D-2HG can also stimulate the activities of HIF PHDs, leading to enhanced HIF degradation and a diminished HIF response, which are associated with increased soft agar growth of human astrocytes and growth factor independence of leukemic cells. Together these processes exert pleiotrophic effects on cell signaling and gene expression that probably contribute to the malignancy of IDH1/2-mutant cells.
Figure 2 Candidate oncogenic mechanisms of succinate and fumarate accumulation. SDH and FH are Krebs cycle enzymes and tumor suppressors. Loss-of-function mutations in SDH and FH result in abnormal accumulation of Krebs cycle metabolites succinate (Succ) and fumarate (Fum), respectively, both of which can inhibit the activities of α-KG–dependent oxygenases. Inhibition of HIF PHDs leads to activation of HIF-mediated pseudohypoxic response, whereas inhibition of KDMs and TET family of 5mC hydroxylases causes epigenetic alterations. Fumarate is electrophilic and can also irreversibly modify cysteine residues in proteins by succination. Succination of KEAP1 in FH deficiency results in the constitutive activation of the antioxidant defense pathway mediated by NRF2, conferring a reductive milieu that promotes cell proliferation. Succination of the Krebs cycle enzyme Aco2 impairs aconitase activity in Fh1-deficient MEFs. Fumarate accumulation may also affect cytosolic pathways by inhibiting the reactions involved in the biosynthesis of arginine and purine. AcCoA, acetyl CoA; Mal, malate; OAA, oxaloacetate; Succ-CA, succinyl CoA.

2.1.1.2. Emerging concepts: linking hypoxic signaling and cancer metabolism.

Lyssiotis CA, Vander-Heiden MG, Muñoz-Pinedo C, Emerling BM.
Cell Death Dis. 2012 May 3; 3:e303
http://dx.doi.org:/10.1038/cddis.2012.41

The Joint Keystone Symposia on Cancer and Metabolism and Advances in Hypoxic Signaling: From Bench to Bedside were held in Banff, Alberta, Canada from 12 to 17 February 2012. Drs. Reuben Shaw and David Sabatini organized the Cancer and Metabolism section, and Drs. Volker Haase, Cormac Taylor, Johanna Myllyharju and Paul Schumacker organized the Advances in Hypoxic Signaling section. Accumulating data illustrate that both hypoxia and rewired metabolism influence cancer biology. Indeed, these phenomena are tightly coupled, and a joint meeting was held to foster interdisciplinary interactions and enhance our understanding of these two processes in neoplastic disease. In this report, we highlight the major themes of the conference paying particular attention to areas of intersection between hypoxia and metabolism in cancer.

One opening keynote address was delivered by Craig Thompson (Memorial Sloan-Kettering, USA), in which he provided a comprehensive perspective on the current thinking around how altered metabolism supports cancer cell growth and survival, and discussed areas likely to be important for future discovery. In particular, Thompson highlighted the essential roles of glucose and glutamine in cell growth, how glucose- and glutamine-consuming processes are rewired in cancer and how this rewiring facilitates anabolic metabolism. These topics were at the core of many of the metabolism presentations that described in detail how some metabolic alterations contribute to the properties of transformed cells.

The other keynote address was delivered by Peter Ratcliffe (University of Oxford, UK), in which he provided a historical perspective on the progress of how signaling events sense oxygen. Mammals have evolved multiple acute and long-term adaptive responses to low oxygen levels (hypoxia). This response prevents a disparity in ATP utilization and production that would otherwise result in a bioenergetic collapse when oxygen level is low. Multiple effectors have been proposed to mediate the response to hypoxia including prolyl hydroxylases, AMPK, NADPH oxidases and the mitochondrial complex III. Currently, however, the precise mechanism by which oxygen is sensed in various physiological contexts remains unknown. Indeed, this was an active point of debate, with Peter Ratcliffe favoring the prolyl hydroxylase PHD2 as the primary cellular oxygen sensor.

Anabolic glucose metabolism and the Warburg effect

Nearly a century ago, Warburg noted that cancer tissues take up glucose in excess than most normal tissues and secrete much of the carbon as lactate. Recently, headway has been made toward determining how the enhanced glucose conversion to lactate occurs and contributes to cell proliferation and survival. Heather Christofk (University of California, Los Angeles, USA) and John Cleveland (the Scripps Research Institute, USA) described a role for the lactate/pyruvate transporter MCT-1 in carbon secretion, and suggested that blocking lactate or pyruvate transport may be a strategy to target glucose metabolism in cancer cells. Kun-Liang Guan (University of California, San Diego, USA) described a novel feedback loop to control glucose metabolism in highly glycolytic cells. Specifically, he discussed how glucose-derived acetyl-CoA can be used as a substrate to modify two enzymes involved in glucose metabolism, pyruvate kinase M2 (PKM2) and phosphoenolpyruvate carboxylase (PEPCK). In both cases, acetylation leads to protein degradation and decreased glycolysis and gluconeogenesis, respectively. Data presented from Matthew Vander Heiden’s laboratory (Koch Institute/MIT, USA) illustrated that loss of pyruvate kinase activity can accelerate tumor growth, suggesting that the regulation of glycolysis may be more complex than previously appreciated. Almut Schulze (London Research Institute, UK) discussed a novel regulatory role for phosphofructokinase in controlling glucose metabolism and Jeffrey Rathmell (Duke University, USA) discussed parallels between glucose metabolism in cancer cells and lymphocytes that suggest many of these phenotypes could be a feature of rapidly dividing cells.

Glutamine addiction

Cancer cells also consume glutamine to support proliferation and survival. Alfredo Csibi (Harvard Medical School, USA) described how mTORC1 promotes glutamine utilization by indirectly regulating the activity of glutamate dehydrogenase. This work united two major themes at the meeting, mTOR signaling and glutamine metabolism, highlighting the interconnectedness of signal transduction and metabolic regulation. Richard Cerione (Cornell University, USA) described a small molecule inhibitor of glutaminase that can be used to target glutamine-addicted cancer cells. Christian Metallo (University of California, San Diego, USA), Andrew Mullen (University of Texas Southwestern Medical School, USA) and Patrick Ward (Memorial Sloan-Kettering, USA) presented data demonstrating that the carbon skeleton of glutamine can be incorporated into newly synthesized lipids. This contribution of glutamine to lipid synthesis was most pronounced in hypoxia or when the mitochondrial electron transport chain was compromised.

Signal transduction and metabolism

The protein kinases AMPK and mTOR can function as sensors of metabolic impairment, whose activation by energy stress controls multiple cellular functions. Grahame Hardie (University of Dundee, UK) and Reuben Shaw (Salk Institute, USA) highlighted novel roles for AMPK, including inhibition of viral replication, and the control of histone acetylation via phosphorylation of class IIa HDACs, respectively. Brandon Faubert (McGill University, USA) reported on an AMPK-dependent effect on glucose metabolism in unstressed cells. Brendan Manning (Harvard Medical School, USA) found that chronic activation of mTOR in the mouse liver, due to genetic ablation of this complex, promotes the development of liver cancer. Kevin Williams (University of California, Los Angeles, USA) discussed how growth signaling can control both lipid and glucose metabolism by impinging on SREBP-1, a transcription factor downstream of mTOR. AMPK-independent control of mTOR was addressed by John Blenis (Harvard Medical School, USA), who discussed the possible role of mTOR stabilizing proteins as mediators of mTOR inactivation upon energetic stress. David Sabatini (Whitehead Institute/MIT, USA) discussed several aspects of amino-acid sensing by Rag GTPases and showed that constitutive activation of the Rag GTPases leads to metabolic defects in mice.

One of the outcomes of AMPK activation and mTOR inhibition is autophagy, which can provide amino acids and fatty acids to nutrient-deprived cells. Ana Maria Cuervo (Albert Einstein College of Medicine, USA) and Eileen White (Rutgers University, USA) illuminated the role of chaperone-mediated autophagy (CMA) and macroautophagy, respectively, in tumor survival. White described a role for macroautophagy in the regulation of mitochondrial fitness, maintenance of TCA cycle and tumorigenesis induced by oncogenic Ras. Cuervo described how CMA is consistently elevated in tumor cells, and how its inactivation leads to metabolic impairment via p53-mediated downregulation of glycolytic enzymes.

Oncogene-specific changes to metabolism

Lewis Cantley (Harvard Medical School, USA) described a metabolic role for oncogenic Kras in the rewiring of glucose metabolism in pancreatic cancer. Specifically, Myc-mediated transcription (downstream of MEK-ERK signaling) both enhances glucose uptake and diverts glucose carbon into the nonoxidative pentose phosphate pathway to facilitate nucleotide biosynthesis. Alejandro Sweet-Cordero (Stanford University, USA) described how oncogenic Kras increases glycolysis and represses mitochondrial respiration (via decreased pyruvate dehydrogenase phosphatase 1 (PDP1) expression) in colon cancer. While these studies indicate that hyperstimulation of the Erk pathway suppresses PDH flux through suppression of PDP1, Joan Brugge (Harvard Medical School, USA) described studies showing that reduction of Erk signaling in normal epithelial cells also causes suppression of PDH flux, in this case through loss of repression of PDK4. The seemingly contradictory nature of these results highlighted an important theme emphasized throughout the week-long conference—that cellular context has an important role in shaping how oncogenic mutations or pathway activation rewires metabolism.

Targeting cancer metabolism

There was extensive discussion around targeting metabolism for cancer therapy. Metformin and phenformin, which act in part by mitochondrial complex I inhibition, can activate AMPK and influence cancer cell metabolism. Kevin Struhl (Harvard Medical School, USA) described how metformin can selectively target cancer stem cells, whereas Jessica Howell (Harvard Medical School, USA) described how the therapeutic activity of metformin relies on both AMPK and mTOR signaling to mediate its effect. Similarly, David Shackelford (University of California, Los Angeles, USA) demonstrated efficacy for phenformin in LKB1-deficient mouse models.

Several presentations, including those by Taru Muranen (Harvard Medical School, USA), Karen Vousden and Eyal Gottlieb (both from the Beatson Institute for Cancer Research, UK), provided insight into genetic control mechanisms that cancer cells use to promote survival under conditions of increased biosynthesis. As an example, Vousden illustrated how p53 loss can make cancer cells more dependent on exogenous serine. Several additional presentations, including those by Gottlieb, Richard Possemato (Whitehead Institute/MIT, USA), Michael Pollak (McGill University, USA) and Kevin Marks (Agios Pharmaceuticals, USA), also included data highlighting the important role of serine biosynthesis and metabolism in cancer growth. Collectively, these data highlight a metabolic addiction that may be therapeutically exploitable. Similarly, Cristina Muñoz-Pinedo (Institut d’Investigació Biomèdica, Spain) described how mimicking glucose deprivation with 2-deoxyglucose can cause programmed cell death and may be an effective cancer treatment.

Regulation of hypoxic responses

Peter Carmeliet (University of Leuven, Belgium) highlighted the mechanisms of resistance against VEGF-targeted therapies. Roland Wenger (University of Zurich, Switzerland) discussed the oxygen-responsive transcriptional networks and, in particular, the difference between the transcription factors HIF-1α and HIF-2α. Importantly, he demonstrated a rapid role for HIF-1α, and a later and more persistent response for HIF-2α. These results were central to a recurrent theme calling for the distinction of HIF-1α and HIF-2α target genes and how these responses mediate divergent hypoxic adaptations.

Advances in hypoxic signaling

Brooke Emerling (Harvard Medical School, USA) introduced CUB domain-containing protein 1 (CDCP1) and showed persuasive data on CDCP1 being a HIF-2α target gene involved in cell migration and metastasis, and suggested CDCP1 regulation as an attractive therapeutic target. Johannes Schodel (University of Oxford, UK) described an elegant HIF-ChIP-Seq methodology to define direct transcriptional targets of HIF in renal cancer.

Randall Johnson (University of Cambridge, UK) emphasized that loss of HIF-1α results in decreased lung metastasis. Lorenz Poellinger (Karolinska Institutet, Sweden) focused on how hypoxia can alter the epigenetic landscape of cells, and furthermore, how the disruption of the histone demethylase JMJD1A and/or the H3K9 methyltransferase G9a has opposing effects on tumor growth and HIF target gene expression.

Paul Schumacker (Northwestern University, USA) further emphasized the importance of mitochondrial ROS signaling under hypoxic conditions showing that ROS could be detected in the inter-membrane space of the mitochondria before activating signaling cascades in the cytosol. He also presented evidence for mitochondria as a site of oxygen sensing in diverse cell types. Similarly, Margaret Ashcroft (University College London, UK) argued for a critical role of mitochondria in hypoxic signaling. She presented on a family of mitochondrial proteins (CHCHD4) that influence hypoxic signaling and tumorigenesis and suggested that CHCHD4 is important for HIF and tumor progression.

2.1.1.3  Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?

Dang CV
Cell Cycle. 2010 Oct 1; 9(19):3884-6

A cancer cell comprising largely of carbon, hydrogen, oxygen, phosphorus, nitrogen and sulfur requires not only glucose, which is avidly transported and converted to lactate by aerobic glycolysis or the Warburg effect, but also glutamine as a major substrate. Glutamine and essential amino acids, such as methionine, provide energy through the TCA cycle as well as nitrogen, sulfur and carbon skeletons for growing and proliferating cancer cells. The interplay between utilization of glutamine and glucose is likely to depend on the genetic make-up of a cancer cell. While the MYC oncogene induces both aerobic glycolysis and glutaminolysis, activated β-catenin induces glutamine synthesis in hepatocellular carcinoma. Cancer cells that have elevated glutamine synthetase can use glutamate and ammonia to synthesize glutamine and are hence not addicted to glutamine. As such, cancer cells have many degrees of freedom for re-programming cell metabolism, which with better understanding will result in novel therapeutic approaches.

Figure 1. Glutamine, glucose and glutamate are imported into the cytoplasm of a cell. Glucose is depicted to be converted primarily (large powder blue arrow) to lactate via aerobic glycolysis or the Warburg effect or channeled into the mitochondrion as pyruvate and converted to acetyl-CoA for oxidation. Glutamine is shown imported and used for different processes including glutaminolysis, which involves the conversion of glutamine to glutamate and ammonia by glutaminase (GLS). Glutamate is further oxidized via the TCA cycle to produce ATP and contribute anabolic carbon skeletons. Some cells can import glutamate and use ammonia to generate glutamine through glutamine synthetase (GLUL); glutamine could then be used for different purposes including glutathione synthesis (not shown).

The liver is organized into lobules, which have zones of cells around the perivenous region enriched with glutamine synthetase, which detoxifies ammonia by converting it to glutamine through the amination of glutamate (Fig. 1). As such, liver cancers vary in the degree of glutamine synthetase expression depending on the extent of anaplasia or de-differentiation. Highly undifferentiated liver cancers tend to be more glycolytic than those that retain some of the differentiated characteristics of liver cells. Furthermore, glutamine synthetase (considered as a direct target of activated β-catenin, which also induces ornithine aminotransferase and glutamate transporters) expression in liver cancers has been directly linked to β-catenin activation or mutations.  Hence, the work by Meng et al. illustrates, first and foremost, the metabolic heterogeneity amongst cancer cell lines, such that the ability to utilize ammonia instead of glutamine by Hep3B cells depends on the expression of glutamine synthetase. The Hep3B cells are capable of producing glutamine from glutamate and ammonia, as suggested by the observation that a glutamine-independent derivative of Hep3B has high expression of glutamine synthetase. In this regard, Hep3B could utilize glutamate directly for the production of α-ketoglutarate or to generate glutamine for protein synthesis or other metabolic processes, such as to import essential amino acids.  In contrast to Hep3B, other cell lines in the Meng et al. study were not demonstrated to be glutamine independent and thus become ammonia auxotrophs. Hence, the mode of glutamine or glucose utilization is dependent on the metabolic profile of cancer cells.
The roles of glutamine in different cancer cell lines are likely to be different depending on their genetic and epigenetic composition. In fact, well-documented isotopic labeling studies have demonstrated a role for glutamine to provide anapleurotic carbons in certain cancer and mammalian cell types. But these roles of glutaminolysis, whether providing nitrogen or anabolic carbons, should not be generalized as mutually exclusive features of all cancer cells. From these considerations, it is surmised that the expression of glutamine synthetase in different cancers will determine the extent by which these cancers are addicted to exogenous glutamine.

2.1.1.4  The Warburg effect and mitochondrial stability in cancer cells

Gogvadze V, Zhivotovsky B, Orrenius S.
Mol Aspects Med. 2010 Feb; 31(1):60-74
http://dx.doi.org:/10.1016/j.mam.2009.12.004

The last decade has witnessed a renaissance of Otto Warburg’s fundamental hypothesis, which he put forward more than 80 years ago, that mitochondrial malfunction and subsequent stimulation of cellular glucose utilization lead to the development of cancer. Since most tumor cells demonstrate a remarkable resistance to drugs that kill non-malignant cells, the question has arisen whether such resistance might be a consequence of the abnormalities in tumor mitochondria predicted by Warburg. The present review discusses potential mechanisms underlying the upregulation of glycolysis and silencing of mitochondrial activity in cancer cells, and how pharmaceutical intervention in cellular energy metabolism might make tumor cells more susceptible to anti-cancer treatment.

mitochondrial stabilization gr1

mitochondrial stabilization gr1

http://ars.els-cdn.com/content/image/1-s2.0-S0098299709000934-gr1.sml

Fig. 1. (1) Oligomerization of Bax is mediated by the truncated form of the BH3-only, pro-apoptotic protein Bid (tBid); (2) Bcl-2, Bcl-XL, Mcl-1, and Bcl-w, interact with the pro-apoptotic proteins, Bax and Bak, to prevent their oligomerization; (3) The anti-apoptotic protein Bcl-XL prevents tBid-induced closure of VDAC and apoptosis by maintaining VDAC in open configuration allowing ADT/ATP exchange and normal mitochondrial functioning; (4) MPT pore is a multimeric complex, composed of VDAC located in the OMM, ANT, an integral protein of the IMM, and a matrix protein, CyPD; (5) Interaction with VDAC allows hexokinase to use exclusively intramitochondrial ATP to phosphorylate glucose, thereby maintaining high rate of glycolysis.

mitochodrial stabilization gr2

mitochodrial stabilization gr2

http://ars.els-cdn.com/content/image/1-s2.0-S0098299709000934-gr2.sml

Fig. 2. Different sites of therapeutic intervention in cancer cell metabolism. (1) The non-metabolizable analog of glucose, 2-deoxyglucose, decreases ATP level in the cell; (2) 3-bromopyruvate suppresses the activity of hexokinase, and respiration in isolated mitochondria; (3) Phloretin a glucose transporter inhibitor, decreases ATP level in the cell and markedly enhances the anti-cancer effect of daunorubicin; (4) Dichloroacetate (DCA) shifts metabolism from glycolysistoglucoseoxidation;(5)Apoptolidin,aninhibitorofmitochondrialATPsynthase,inducescelldeathindifferentmalignantcelllineswhenapplied together with the LDH inhibitor oxamate (6).

Warburg Symposium

https://youtu.be/LpE6w6J3jU0

2.1.1.5 Oxidative phosphorylation in cancer cells

Giancarlo Solaini Gianluca SgarbiAlessandra Baracca

BB Acta – Bioenergetics 2011 Jun; 1807(6): 534–542
http://dx.doi.org/10.1016/j.bbabio.2010.09.003

Research Highlights

►Mitochondrial hallmarks of tumor cells.►Complex I of the respiratory chain is reduced in many cancer cells.►Oligomers of F1F0ATPase are reduced in cancer cells.►Mitochondrial membranes are critical to the life or death of cancer cells.

Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances. This article is part of a Special Issue entitled: Bioenergetics of Cancer.

Mitochondria are essential organelles and key integrators of metabolism, but they also play vital roles in cell death and cell signaling pathways critically influencing cell fate decisions [1][2] and [3]. Mammalian mitochondria contain their own DNA (mtDNA), which encodes 13 polypeptides of oxidative phosphorylation complexes, 12S and 16S rRNAs, and 22 tRNAs required for mitochondrial function [4]. In order to synthesize ATP through oxidative phosphorylation (oxphos), mitochondria consume most of the cellular oxygen and produce the majority of reactive oxygen species (ROS) as by-products [5]. ROS have been implicated in the etiology of carcinogenesis via oxidative damage to cell macromolecules and through modulation of mitogenic signaling pathways [6][7] and [8]. In addition, a number of mitochondrial dysfunctions of genetic origin are implicated in a range of age-related diseases, including tumours [9]. How mitochondrial functions are associated with cancer is a crucial and complex issue in biomedicine that is still unravelled [10] and [11], but it warrants an extraordinary importance since mitochondria play a major role not only as energy suppliers and ROS “regulators”, but also because of their control on cellular life and death. This is of particular relevance since tumour cells can acquire resistance to apoptosis by a number of mechanisms, including mitochondrial dysfunction, the expression of anti-apoptotic proteins or by the down-regulation or mutation of pro-apoptotic proteins [12].

Cancer cells must adapt their metabolism to produce all molecules and energy required to promote tumor growth and to possibly modify their environment to survive. These metabolic peculiarities of cancer cells are recognized to be the outcome of mutations in oncogenes and tumor suppressor genes which regulate cellular metabolism. Mutations in genes including P53, RAS, c-MYC, phosphoinosine 3-phosphate kinase (PI3K), and mTOR can directly or through signaling pathways affect metabolic pathways in cancer cells as discussed in several recent reviews [13][14][15][16] and [17]. Cancer cells harboring the genetic mutations are also able to thrive in adverse environments such as hypoxia inducing adaptive metabolic alterations which include glycolysis up-regulation and angiogenesis factor release [18] and [19]. In response to hypoxia, hypoxia-induced factor 1 (HIF-1) [20], a transcription factor, is up-regulated, which enhances expression of glycolytic enzymes and concurrently it down regulates mitochondrial respiration through up-regulation of pyruvate dehydrogenase kinase 1 (PDK1) (see recent reviews [21] and [22]). However, several tumours have been reported to display high HIF-1 activity even in normoxic condition, now referred to as pseudohypoxia [23][24] and [25]. In addition, not only solid tumours present a changed metabolism with respect to matched normal tissues, hematological cell malignancies also are characterized by peculiar metabolisms, in which changes of mitochondrial functions are significant [26],[27] and [28], therefore indicating a pivotal role of mitochondria in tumours independently from oxygen availability.

Collectively, actual data show a great heterogeneity of metabolism changes in cancer cells, therefore comprehensive cellular and molecular basis for the association of mitochondrial bioenergetics with tumours is still undefined, despite the numerous studies carried out. This review briefly revisits the data which are accumulating to account for this association and highlights the more recent advances, particularly focusing on the metabolic and structural changes of mitochondria.

Mitochondria-related metabolic changes of cancer cells

Accumulating evidence indicate that many cancer cells have an higher glucose consumption under normoxic conditions with respect to normal differentiated cells, the so-called “aerobic glycolysis” (Warburg effect), a phenomenon that is currently exploited to detect and diagnose staging of solid and even hematological malignancies [27]. Since the initial publication by Otto Warburg over half a century ago [29], an enormous amount of studies on many different tumours have been carried out to explain the molecular basis of the Warburg effect. Although the regulatory mechanisms underlying aerobic and glycolytic pathways of energy production are complex, making the prediction of specific cellular responses rather difficult, the actual data seem to support the view that in order to favour the production of biomass, proliferating cells are commonly prone to satisfy the energy requirement utilizing substrates other than the complete oxidation of glucose (to CO2 and H2O). More precisely, only part (40 to 75%, according to [30]) of the cells need of ATP is obtained through the scarcely efficient catabolism of glucose to pyruvate/lactate in the cytoplasm and the rest of the ATP need is synthesized in the mitochondria through both the tricarboxylic acid (TCA) cycle (one ATP produced each acetyl moiety oxidized) and the associated oxidative phosphorylation that regenerates nicotinamide- and flavin-dinucleotides in their oxidized state(NAD+ and FAD). This might be due to the substrate availability as it was shown in HeLa cells, where replacing glucose with galactose/glutamine in the culture medium induced increased expression of oxphos proteins, suggesting an enhanced energy production from glutamine [31]. As a conclusion the authors proposed that energy substrate can modulate mitochondrial oxidative capacity in cancer cells. A direct evidence of this phenomenon was provided a few years later in glioblastoma cells, in which it was demonstrated that the TCA cycle flux is significantly sustained by anaplerotic alfa-ketoglutarate produced from glutamine and by acetyl moieties derived from the pyruvate dehydrogenase reaction where pyruvate may have an origin other than glucose [32]. The above changes are the result of genetic alteration and environmental conditions that induce many cancer cells to change their metabolism in order to synthesize molecules necessary to survive, grow and proliferate, including ribose and NADPH to synthesize nucleotides, and glycerol-3 phosphate to produce phospholipids. The synthesis of the latter molecules requires major amount of acetyl moieties that are derived from beta-oxidation of fatty acids and/or from cytosolic citrate (citrate lyase reaction) and/or from the pyruvate dehydrogenase reaction. Given the important requirement for NADPH in macromolecular synthesis and redox control, NADPH production in cancer cells besides being produced through the phosphate pentose shunt, may be significantly sustained by cytosolic isocitrate dehydrogenases and by the malic enzyme (see Ref. [33] for a recent review). Therefore, many cancer cells tend to have reduced oxphos in the mitochondria due to either or both reduced flux within the tricarboxylic acid cycle and/or respiration (Fig. 1). The latter being also caused by reduced oxygen availability, a typical condition of solid tumors, that will be discussed below.

Schematic illustration of mitochondrial metabolism and metabolic reprogramming in tumours gr1

Schematic illustration of mitochondrial metabolism and metabolic reprogramming in tumours gr1

http://ars.els-cdn.com/content/image/1-s2.0-S0005272810007024-gr1.jpg

Fig. 1. Schematic illustration of mitochondrial metabolism and metabolic reprogramming in tumours. In normal cells (A), glucose is phosphorylated by HK-I, then the major part is degraded via glycolysis to pyruvate, which prevalently enters the mitochondria, it is decarboxylated and oxidized by PDH to acetyl-coenzyme A, which enters the TCA cycle where the two carbons are completely oxidized to CO2 whereas hydrogen atoms reduce NAD+ and FAD, which feed the respiratory chain (turquoise). Minor part of glycolytic G-6P is diverted to produce ribose 5-phosphate (R-5P) and NADPH, that will be used to synthesize nucleotides, whereas triose phosphates in minimal part will be used to synthesize lipids and phospholipids with the contribution of NADPH and acetyl-coenzyme A. Amino acids, including glutamine (Gln) will follow the physiological turnover of the proteins, in minimal part will be used to synthesize the nucleotides bases, and the excess after deamination will be used to produce energy. In the mitochondria inner membranes are located the respiratory chain complexes and the ATP synthase (turquoise), which phosphorylates ADP releasing ATP, that in turn is carried to the cytosol by ANT (green) in exchange for ADP. About 1–2% O2 uptaken by the mitochondria is reduced to superoxide anion radical and ROS. In cancer cells (B), where anabolism is enhanced, glucose is mostly phosphorylated by HK-II (red), which is up-regulated and has an easy access to ATP being more strictly bound to the mitochondria. Its product, G-6P, is only in part oxidized to pyruvate. This, in turn, is mostly reduced to lactate being both LDH and PDH kinase up-regulated. A significant part of G-6P is used to synthesize nucleotides that also require amino acids and glutamine. Citrate in part is diverted from the TCA cycle to the cytosol, where it is a substrate of citrate lyase, which supplies acetyl-coenzyme A for lipid and phospholipid synthesis that also requires NADPH. As indicated, ROS levels in many cancer cells increase.

Of particular relevance in the study of the metabolic changes occurring in cancer cells, is the role of hexokinase II. This enzyme is greatly up-regulated in many tumours being its gene promoter sensitive to typical tumour markers such as HIF-1 and P53 [30]. It plays a pivotal role in both the bioenergetic metabolism and the biosynthesis of required molecules for cancer cells proliferation. Hexokinase II phosphorylates glucose using ATP synthesized by the mitochondrial oxphos and it releases the product ADP in close proximity of the adenine nucleotide translocator (ANT) to favour ATP re-synthesis within the matrix (Fig. 1). Obviously, the expression level, the location, the substrate affinity, and the kinetics of the enzyme are crucial to the balancing of the glucose fate, to either allowing intermediates of the glucose oxidation pathway towards required metabolites for tumour growth or coupling cytoplasmic glycolysis with further oxidation of pyruvate through the TCA cycle, that is strictly linked to oxphos. This might be possible if the mitochondrial-bound hexokinase activity is reduced and/or if it limits ADP availability to the mitochondrial matrix, to inhibit the TCA cycle and oxphos. However, the mechanism is still elusive, although it has been shown that elevated oncogene kinase signaling favours the binding of the enzyme to the voltage-dependent anion channel (VDAC) by AKT-dependent phosphorylation [34] (Fig. 2). VDAC is a protein complex of the outer mitochondrial membrane which is in close proximity of ANT that exchanges ADP for ATP through the inner mitochondrial membrane [35]. However, the enzyme may also be detached from the mitochondrial membrane, to be redistributed to the cytosol, through the catalytic action of sirtuin-3 that deacylates cyclophilin D, a protein of the inner mitochondrial membrane required for binding hexokinase II to VDAC (Fig. 2[36]. Removing hexokinase from the mitochondrial membrane has also another important consequence in cancer cells: whatever mechanism its removal activates, apoptosis is induced [37] and [38]. These observations indicate hexokinase II as an important tool used by cancer cells to survive and proliferate under even adverse conditions, including hypoxia, but it may result an interesting target to hit in order to induce cells cytotoxicity. Indeed, a stable RNA interference of hexokinase II gene showed enhanced apoptosis indices and inhibited growth of human colon cancer cells; in accordance in vivo experiments indicated a decreased tumour growth [39].

Schematic illustration of the main mitochondrial changes frequently occurring in cancer cells gr2

Schematic illustration of the main mitochondrial changes frequently occurring in cancer cells gr2

http://ars.els-cdn.com/content/image/1-s2.0-S0005272810007024-gr2.jpg

Fig. 2. Schematic illustration of the main mitochondrial changes frequently occurring in cancer cells. The reprogramming of mitochondrial metabolism in many cancer cells comprises reduced pyruvate oxidation by PDH followed by the TCA cycle, increased anaplerotic feeding of the same cycle, mostly from Gln, whose entry in the mitochondrial matrix is facilitated by UCP2 up-regulation. This increases also the free fatty acids uptake by mitochondria, therefore β-oxidation is pushed to produce acetyl-coenzyme A, whose oxidation contributes to ATP production. In cancer cells many signals can converge on the mitochondrion to regulate the mitochondrial membrane permeability, which may respond by elevating the MPTP (PTP) threshold, with consequent enhancement of apoptosis resistance. ROS belong to this class of molecules since it can enhance Bcl2 and may induce DNA mutations. Dotted lines indicate regulation; solid lines indicate reaction(s).

Respiratory chain complexes and ATP synthase

Beyond transcriptional control of metabolic enzyme expression by oncogenes and tumour suppressors, it is becoming evident that environmental conditions affect the mitochondrial energy metabolism, and many studies in the last decade indicate that mitochondrial dysfunction is one of the more recurrent features of cancer cells, as reported at microscopic, molecular, biochemical, and genetic level [7], [40] and [41]. Although cancer cells under several conditions, including hypoxia, oncogene activation, and mDNA mutation, may substantially differ in their ability to use oxygen, only few reports have been able to identify a strict association between metabolic changes and mitochondrial complexes composition and activity. In renal oncocytomas [42] and in lung epidermoid carcinoma [43], the NADH dehydrogenase activity and protein content of Complex I were found to be strongly depressed; subsequently, in a thyroid oncocytoma cell line [44] a similar decrease of Complex I activity was ascribed to a specific mutation in the ND1 gene of mitochondrial DNA. However, among the respiratory chain complexes, significant decrease of the only Complex I content and activity was found in K-ras transformed cells in our laboratory [45], and could not be ascribed to mtDNA mutations, but rather, based on microarray analysis of oxphos genes, we proposed that a combination of genetic (low transcription of some genes) and biochemical events (assembly factors deficiency, disorganization of structured supercomplexes, and ROS-induced structural damage) might cause the Complex I defects.

In some hereditary tumours (renal cell carcinomas) a correlation has been identified between mitochondrial dysfunctions and content of oxphos complexes [46]. For instance, the low content of ATP synthase, often observed in clear cell type renal cell carcinomas and in chromophilic tumours, seems to indicate that the mitochondria are in an inefficient structural and functional state [46]. However, it cannot be excluded that, in some cases, the structural alteration of ATP synthase may offer a functional advantage to cells exhibiting a deficient respiratory chain for instance to preserve the transmembrane electrical potential (Δψm) [47]. It is likely that low levels of ATP synthases may play a significant role in cancer cell metabolism since it has been reported that in tumours from many different tissues, carcinogenesis specifically affects the expression of F1-ATPase β subunit, suggesting alterations in the mechanisms that control mitochondrial differentiation (see for a detailed review [48]). What it seems intriguing is the overexpression of the inhibitor protein, IF1, reported in hepatocellular carcinomas [49] and [50] and in Yoshida sarcoma [51]. Normally, this protein binds to the F1 domain of the ATP synthase inhibiting its activity [52], and it is believed to limit the ATP hydrolysis occurring in the mitochondria of hypoxic cells, avoiding ATP depletion and maintaining Δψm to a level capable to avoid the induction of cell death [5]. But why is its expression in cancer cells enhanced in front of a reduced F1-ATPase β subunit?

The first possibility is that IF1 has a function similar to that in normal cells, simply avoiding excessive ATP hydrolysis therefore limiting Δψm enhancement, but in cancer cells this is unlikely due to both the reduced level of ATP synthase [46] and the high affinity of IF1 for the enzyme. A second possibility might be that cancer cells need strongly reduced oxphos to adapt their metabolism and acquire a selective growth advantage under adverse environmental conditions such as hypoxia, as it has been experimentally shown [53]. Finally, IF1 might contribute to the saving of the inner mitochondrial membrane structure since it has been reported its capability to stabilize oligomers of ATP synthase, which in turn can determine cristae shapes [54]. In this regard, recent experimental evidence has shed some light on a critical role of mitochondrial morphology in the control of important mitochondrial functions including apoptosis [55] and oxidative phosphorylation [56]. In particular, dysregulated mitochondrial fusion and fission events can now be regarded as playing a role in cancer onset and progression [57]. Accordingly, mitochondria-shaping proteins seem to be an appealing target to modulate the mitochondrial phase of apoptosis in cancer cells. In fact, several cancer tissues: breast, head-and-neck, liver, ovarian, pancreatic, prostate, renal, skin, and testis, showed a pattern suggestive of enlarged mitochondria resulting from atypical fusion [58].

Mitochondrial membrane potential in cancer cells

Critical mitochondrial functions, including ATP synthesis, ion homeostasis, metabolites transport, ROS production, and cell death are highly dependent on the electrochemical transmembrane potential, a physico-chemical parameter consisting of two components, the major of which being the transmembrane electrical potential (Δψm) (see for a recent review [59]). In normal cells, under normoxic conditions, Δψm is build up by the respiratory chain and is mainly used to drive ATP synthesis, whereas in anoxia or severe hypoxia it is generated by the hydrolytic activity of the ATP synthase complex and by the electrogenic transport of ATP in exchange for ADP from the cytosol to the matrix, operated by the adenine nucleotide translocator [17]. Dissipation of the mitochondrial membrane potential (proton leak) causes uncoupling of the respiratory chain electron transport from ADP phosphorylation by the ATP synthase complex. Proton leak functions as a regulator of mitochondrial ROS production and its modulation by uncoupling proteins may be involved in pathophysiology, including tumours. In addition, Δψm plays a role in the control of the mitochondrial permeability transition pore (MPTP), that might be critical in determining reduced sensitivity to stress stimuli that were described in neoplastic transformation [60], implying that dysregulation of pore opening might be a strategy used by tumour cells to escape death. Indeed, it has recently been reported that ERK is constitutively activated in the mitochondria of several cancer cell types, where it inhibits glycogen synthase kinase-3-dependent phosphorylation of CyP-D and renders these cells more refractory to pore opening and to the ensuing cell death [61].

It is worth mentioning a second protein of the inner mitochondrial membrane, the uncoupling protein, UCP2 (Fig. 2), which contributes to regulate Δψm. Indeed, recent observations evidenced its overexpression in various chemoresistent cancer cell lines and in primary human colon cancer. This overexpression was associated with an increased apoptotic threshold [62]. Moreover, UCP2 has been reported to be involved in metabolic reprogramming of cells, and appeared necessary for efficient oxidation of glutamine [63]. On the whole, these results led to hypothesize an important role of the uncoupling protein in the molecular mechanism at the basis of the Warburg effect, that suppose a reduced Δψm-dependent entry of pyruvate into the mitochondria accompanied by enhanced fatty acid oxidation and high oxygen consumption (see for a review [64]). However, in breast cancer Sastre-Serra et al. [65] suggested that estrogens by down-regulating UCPs, increase mitochondrial Δψm, that in turn enhances ROS production, therefore increasing tumorigenicity. While the two above points of view concur to support increased tumorigenicity, the mechanisms at the basis of the phenomenon appear on the opposite of the other. Therefore, although promising for the multiplicity of metabolic effects in which UCPs play a role (see for a recent review [66]), at present it seems that much more work is needed to clarify how UCPs are related to cancer.

A novel intriguing hypothesis has recently been put forward regarding effectors of mitochondrial function in tumours. Wegrzyn J et al. [67] demonstrated the location of the transcription factor STAT3 within the mitochondria and its capability to modulate respiration by regulating the activity of Complexes I and II, and Gough et al. [68] reported that human ras oncoproteins depend on mitochondrial STAT3 for full transforming potential, and that cancer cells expressing STAT3 have increased both Δψm and lactate dehydrogenase level, typical hallmarks of malignant transformation (Fig. 2). A similar increase of Δψm was recently demonstrated in K-ras transformed fibroblasts [45]. In this study, the increased Δψm was somehow unexpected since the cells had shown a substantial decrease of NADH-linked substrate respiration rate due to a compatible reduced Complex I activity with respect to normal fibroblasts. The authors associated the reduced activity of the enzyme to its peculiar low level in the extract of the cells that was confirmed by oxphos nuclear gene expression analysis. This significant and peculiar reduction of Complex I activity relative to other respiratory chain complexes, is recurrent in a number of cancer cells of different origin [42][44][45] and [69]. Significantly, all those studies evidenced an overproduction of ROS in cancer cells, which was consistent with the mechanisms proposed by Lenaz et al. [70] who suggested that whatever factor (i.e. genetic or environmental) initiate the pathway, if Complex I is altered, it does not associate with Complex III in supercomplexes, consequently it does not channel correctly electrons from NADH through coenzyme Q to Complex III redox centres, determining ROS overproduction. This, in turn, enhances respiratory chain complexes alteration resulting in further ROS production, thus establishing a vicious cycle of oxidative stress and energy depletion, which can contribute to further damaging cells pathways and structures with consequent tumour progression and metastasis [69].

Hypoxia and oxidative phosphorylation in cancer cells

Tumour cells experience an extensive heterogeneity of oxygen levels, from normoxia (around 2–4% oxygen tension), through hypoxia, to anoxia (< 0.1% oxygen tension). The growth of tumours beyond a critical mass > 1–2 mm3 is dependent on adequate blood supply to receive nutrients and oxygen by diffusion [88]. Cells adjacent to capillaries were found to exhibit a mean oxygen concentration of 2%, therefore, beyond this distance, hypoxia occurs: indeed, cells located at 200 μm displayed a mean oxygen concentration of 0.2%, which is a condition of severe hypoxia [89]. Oxygen shortage results in hypoxia-dependent inhibition of mitochondrial activity, mostly mediated by the hypoxia-inducible factor 1 (HIF-1)[90] and [91]. More precisely, hypoxia affects structure, dynamics, and function of the mitochondria, and in particular it has a significant inhibitory effect on the oxidative phosphorylation machinery, which is the main energy supplier of cells (see Ref. [22] for a recent review). The activation of HIF-1 occurs in the cytoplasmic region of the cell, but the contribution of mitochondria is critical being both cells oxygen sensors and suppliers of effectors of HIF-1α prolyl hydroxylase like α-ketoglutarate and probably ROS, that inhibit HIF-1α removal [92]. As reported above, mitochondria can also promote HIF-1α stabilization if the TCA flux is severely inhibited with release of intermediate molecules like succinate and fumarate into the cytosol. On the other hand, HIF-1 can modulate mitochondrial functions through different mechanisms, that besides metabolic reprogramming [7][22][93] and [94], include alteration of mitochondrial structure and dynamics[58], induction of microRNA-210 that decreases the cytochrome c oxidase (COX) activity by inhibiting the gene expression of the assembly protein COX10 [95], that also increases ROS generation. Moreover, these stress conditions could induce the anti-apoptotic protein Bcl-2, which has also been reported to regulate COX activity and mitochondrial respiration [96] conferring resistance to cells death in tumours (Fig. 2). This effect might be further enhanced upon severe hypoxia conditions, since COX is also inhibited by NO, the product of activated nitric oxide synthases [97].

The reduced respiration rate occurring in hypoxia favours the release of ROS also by Complex III, which contribute to HIF stabilization and induction of Bcl-2 [98]. In addition, hypoxia reduces oxphos by inhibiting the ATP synthase complex through its natural protein inhibitor IF1 (discussed in a previous section), which contributes to the enhancement of the “aerobic glycolysis”, all signatures of cancer transformation.

The observations reported to date indicate that cancer cells exhibit large varieties of metabolic changes which are associated with alterations in the mitochondrial structure, dynamics and function, and with tumour growth and survival. On one hand, mitochondria can regulate tumour growth through modulation of the TCA cycle and oxidative phosphorylation. The altered TCA cycle provides intermediates for both macromolecular biosynthesis and regulation of transcription factors such as HIF, and it allows cytosolic reductive power enhancement. Oxphos provides significant amounts of ATP which varies among tumour types. On the other hand, mitochondria are crucial in controlling redox homeostasis in the cell, inducing them to be either resistant or sensitive to apoptosis. All these reasons locate mitochondria at central stage to understanding the molecular basis of tumour growth and to seeking for novel therapeutical approaches.

Due to the complexity and variability of mitochondrial roles in cancer, careful evaluation of mitochondrial function in each cancer type is crucial. Deeper and more integrated knowledge of mitochondrial mechanisms and cancer-specific mitochondrial modulating means are expected for reducing tumorigenicity and/or improving anticancer drugs efficacy at the mitochondrial level. Although the great variability of biochemical changes found in tumour mitochondria, some highlighted peculiarities such as reduced TCA cycle flux, reduced oxphos rate, and reduced Complex I activity with respect to tissue specific normal counterparts are more frequent. In addition, deeper examination of supramolecular organization of the complexes in the inner mitochondrial membrane has to be considered in relation to oxphos dysfunction.

2.1.1.6  Oxidation–reduction states of NADH in vivo: From animals to clinical use

Mayevsky A, Chance B.
Mitochondrion. 2007 Sep; 7(5):330-9
http://dx.doi.org:/10.1016/j.mito.2007.05.001

Mitochondrial dysfunction is part of many pathological states in patients, such as sepsis or stroke. Presently, the monitoring of mitochondrial function in patients is extremely rare, even though NADH redox state is routinely measured in experimental animals. In this article, we describe the scientific backgrounds and practical use of mitochondrial NADH fluorescence measurement that was applied to patients in the past few years. In addition to NADH, we optically measured the microcirculatory blood flow and volume, as well as HbO(2) oxygenation, from the same tissue area. The four detected parameters provide real time data on tissue viability, which is critical for patients monitoring.

(very important article)

2.1.1.7  Mitochondria in cancer. Not just innocent bystanders

Frezza C, and Gottlieb E
Sem Cancer Biol 2009; 19: 4-11
http://dx.doi.org:/10.1016/j.semcancer.2008.11.008

The first half of the 20th century produced substantial breakthroughs in bioenergetics and mitochondria research. During that time, Otto Warburg observed abnormally high glycolysis and lactate production in oxygenated cancer cells, leading him to suggest that defects in mitochondrial functions are at the heart of malignant cell transformation. Warburg’s hypothesis profoundly influenced the present perception of cancer metabolism, positioning what is termed aerobic glycolysis in the mainstream of clinical oncology. While some of his ideas stood the test of time, they also frequently generated misconceptions regarding the biochemical mechanisms of cell transformation. This review examines experimental evidence which supports or refutes the Warburg effect and discusses the possible advantages conferred on cancer cells by ‘metabolic transformation’.

Fig.1. Mitochondria as a crossroad for catabolic and anabolic pathways in normal and cancer cells. Glucose and glutamine are important carbon sources which are metabolized in cells for the generation of energy and anabolic precursors. The pathways discussed in the text are illustrated and colour coded: red, glycolysis; white, TCA cycle; pink, non-essential amino acids synthesis; orange, pentose phosphate pathway and nucleotide synthesis; green, fatty acid and lipid synthesis; blue, pyruvate oxidation in the mitochondria; brown, glutaminolysis; black, malic enzyme reaction. Solid arrows indicate a single step reaction;dashed-dotted arrows indicate transport across membranes and dotted arrows indicate multi-step reactions. Abbreviations: HK, hexokinase; AcCoA, acetyl co-enzyme A; OAA, oxaloacetate; αKG, α-ketoglutarate.

http://ars.els-cdn.com/content/image/1-s2.0-S1044579X08001041-gr1.sml

Fig. 2. Mitochondria as a target for multiple metabolic transformation events. Principal metabolic perturbations of cancer cells are induced by genetic reprogramming and environmental changes. The activation of Akt and MYC oncogenes and the loss of p53 tumor suppressor gene are among the most frequent events in cancer. Furthermore, all solid tumors are exposed to oxidative stress and hypoxia hence to HIF activation.These frequent changes in cancer cells trigger a dramatic metabolic shift from oxidative phosphorylation to glycolysis. In addition, direct genetic lesions of mtDNA or of nuclear encoded mitochondrial enzyme (SDH or FH) can directly abrogate oxidative phosphorylation in cancer. 3- D structures of the respiratory complexes in the scheme were retrieved from Protein DataBank (PDB:www.rcsb.org) except for complex I which was retrieved from [87]. PDB codes are as follow: SDH (II), 1 LOV; complex III (III), 1BGY; COX (IV), 1OCC; ATP synthase (V), 1QO1.

http://ars.els-cdn.com/content/image/1-s2.0-S1044579X08001041-gr2.sml

Fig. 3. The physiological roles of SDH in the TCA cycle and the ETC and its potential roles in cancer. (A) Ribbon diagram of SDH structure (PBD code: 1LOV). The catalytic subunits: the flavoprotein (SDHA) and the iron-sulphur protein (SDHB) are depicted in red and yellow, respectively, and the membrane anchors and ubiquinone binding proteins SDHC and SDHD are depicted in cyan and green, respectively. (B) Other than being a TCA enzyme, SDH is an additional entry point to the ETC (most electrons are donated from NADH to complex I—not shown in this diagram). The electron flow in and out of complex II and III is depicted by the yellow arrows. During succinate oxidation to fumarate by SDHA, a two-electron reduction of FAD to FADH2 occurs. Electrons are transferred through their on–Sulphur centres on SDHB to ubiquinone (Q) bound to SDHC and SDHD in the inner mitochondrial membrane (IMM), reducing it to ubiquinol (QH2). Ubiquinol transfers its electrons through complex III, in a mechanism named the Q cycle, to cytochrome c (PDB: 1CXA). Electrons then flow from cytochrome c to COX where the final four-electron reduction of molecular oxygen to water occurs (not shown in this diagram). Complex III is the best characterized site of ROS production in the ETC, where a single electron reduction of oxygen to superoxide can occur (red arrow). It was proposed that obstructing electron flow within complex II might support a single electron reduction of oxygen at the FAD site (red arrow). Superoxide is dismutated to hydrogen peroxide which can then leave the mitochondria and inhibit PHD in the cytosol, leading to HIF[1] stabilization. Succinate or fumarate, which accumulate in SDH- or FH-deficient tumors, can also leave the mitochondria and inhibit PHD activity in the cytosol. The red dotted line represents the outer mitochondrial membrane (OMM).

2.1.1.8  Mitochondria in cancer cells: what is so special about them?

Gogvadze V, Orrenius S, Zhivotovsky B.
Trends Cell Biol. 2008 Apr; 18(4):165-73
http://dx.doi.org:/10.1016/j.tcb.2008.01.006

The past decade has revealed a new role for the mitochondria in cell metabolism–regulation of cell death pathways. Considering that most tumor cells are resistant to apoptosis, one might question whether such resistance is related to the particular properties of mitochondria in cancer cells that are distinct from those of mitochondria in non-malignant cells. This scenario was originally suggested by Otto Warburg, who put forward the hypothesis that a decrease in mitochondrial energy metabolism might lead to development of cancer. This review is devoted to the analysis of mitochondrial function in cancer cells, including the mechanisms underlying the upregulation of glycolysis, and how intervention with cellular bioenergetic pathways might make tumor cells more susceptible to anticancer treatment and induction of apoptosis.

Glucose utilization pathway

Glucose utilization pathway

http://www.cell.com/cms/attachment/591821/4554537/gr1.sml

Figure 1. Glucose utilization pathway. When glucose enters the cell, it is phosphorylated by hexokinase to glucose-6-phosphate, which is further metabolized by glycolysis to pyruvate. Under aerobic conditions, most of the pyruvate in non-malignant cells enters the mitochondria, with only a small amount being metabolized to lactic acid. In mitochondria, pyruvate dehydrogenase (PDH) converts pyruvate into acetyl-CoA, which feeds into the Krebs cycle. Oxidation of Krebs cycle substrates by the mitochondrial respiratory chain builds up the mitochondrial membrane potential (Dc) – the driving force for ATP synthesis. By contrast, in tumor cells, the oxidative (mitochondrial) pathway of glucose utilization is suppressed, and most of the pyruvate is converted into lactate. Thus, the fate of pyruvate is determined by the relative activities of two key enzymes – lactate dehydrogenase and pyruvate dehydrogenase.

Mechanisms of mitochondrial silencing in tumors

Mechanisms of mitochondrial silencing in tumors

http://www.cell.com/cms/attachment/591821/4554539/gr2.sml

Figure 2. Mechanisms of mitochondrial silencing in tumors. The activity of PDH is regulated by pyruvate dehydrogenase kinase 1 (PDK1), the enzyme that phosphorylates and inactivates pyruvate dehydrogenase. HIF-1 inactivates PDH through PDK1 induction, resulting in suppression of the Krebs cycle and mitochondrial respiration. In addition, HIF-1 stimulates expression of the lactate dehydrogenase A gene, facilitating conversion of pyruvate into lactate by lactate dehydrogenase (LDH). Mutation of p53 can suppress the mitochondrial respiratory activity through downregulation of the Synthesis of Cytochrome c Oxidase 2 (SCO2) gene, the product of which is required for the assembly of cytochrome c oxidase (COX) of the mitochondrial respiratory chain. Thus, mutation of p53 can suppress mitochondrial respiration and shift cellular energy metabolism towards glycolysis.

Production of ROS by mitochondria

In any cell, the majority of ROS are by-products of mitochondrial respiration. Approximately 2% of the molecular oxygen consumed during respiration is converted into the superoxide anion radical, the precursor of most ROS. Normally, a four-electron reduction of O2, resulting in the production of two molecules of water, is catalyzed by complex IV (COX) of the mitochondrial respiratory chain. However, the electron transport chain contains several redox centers (e.g. in complex I and III) that can leak electrons to molecular oxygen, serving as the primary source of superoxide production in most tissues. The one-electron reduction of oxygen is thermodynamically favorable for most mitochondrial oxidoreductases. Superoxide-producing sites and enzymes were recently analyzed in detail in a comprehensive review [87]. ROS, if not detoxified, oxidize cellular proteins, lipids, and nucleic acids and, by doing so, cause cell dysfunction or death. A cascade of water and lipid soluble antioxidants and antioxidant enzymes suppresses the harmful ROS activity. An imbalance that favors the production of ROS over antioxidant defenses, defined as oxidative stress, is implicated in a wide variety of pathologies, including malignant diseases. It should be mentioned that mitochondria are not only a major source of ROS but also a sensitive target for the damaging effects of oxygen radicals. ROS produced by mitochondria can oxidize proteins and induce lipid peroxidation, compromising the barrier properties of biological membranes. One of the targets of ROS is mitochondrial DNA (mtDNA), which encodes several proteins essential for the function of the mitochondrial respiratory chain and, hence, for ATP synthesis by oxidative phosphorylation. mtDNA, therefore, represents a crucial cellular target for oxidative damage, which might lead to lethal cell injury through the loss of electron transport and ATP generation. mtDNA is especially susceptible to attack by ROS, owing to its close proximity to the electron transport chain, the major locus for free-radical production, and the lack of protective histones. For example, mitochondrially generated ROS can trigger the formation of 8-hydroxydeoxyguanosine as a result of oxidative DNA damage; the level of oxidatively modified bases in mtDNA is 10- to 20-fold higher than that in nuclear DNA. Oxidative damage induced by ROS is probably a major source of mitochondrial genomic instability leading to respiratory dysfunction.

Figure 3. Stabilization of mitochondria against OMM permeabilization in tumor cells. OMM permeabilization is a key event in apoptotic cell death. (a) During apoptosis, tBid-mediated oligomerization of Bax causes OMM permeabilization and release of cytochrome c (red circles). (b) Bcl-2 protein binds Bax and prevents its oligomerization. A shift in the balance between pro- apoptotic and antiapoptotic proteins in cancer cells, in favor of the latter, reduces the availability of Bax and prevents OMM permeabilization. (c) Upregulation of hexokinase in tumors and its binding to VDAC in the OMM not only facilitates glucose phosphorylation using mitochondrially generated ATP but keeps VDAC in the open state, preventing its interaction with tBid (de).

http://www.cell.com/cms/attachment/591821/4554543/gr4.sml

Figure 4. Shifting metabolism from glycolysis to glucose oxidation. Utilization of pyruvate is controlled by the relative activities of two enzymes, PDH and LDH. In cancer cells, PDH activity is suppressed by PDH kinase-mediated phosphorylation, and, therefore, instead of entering the Krebs cycle, pyruvate is converted into lactate. Several attempts have been made to redirect pyruvate towards oxidation in the mitochondria. Thus, inhibition of PDK1 by dichloroacetate might stimulate the activity of PDH and, hence, direct pyruvate to the mitochondria. A similar effect can be achieved by inhibition of LDH by oxamate. Overall, suppression of PDK1 and LDH activities will stimulate mitochondrial ATP production and might be lethal to tumor cells, even if these inhibitors are used at non-toxic doses. In addition, stimulation of mitochondrial function, for example though overexpression of mitochondrial frataxin, a protein associated with Friedreich ataxia, was shown to stimulate oxidative metabolism and inhibited growth in several cancer cell lines [86].
2.1.1.9  Glucose avidity of carcinomas

Ortega AD1, Sánchez-Aragó M, Giner-Sánchez D, Sánchez-Cenizo L, et al.
Cancer Letters 276 (2009) 125–135
http://dx.doi.org:/10.1016/j.canlet.2008.08.007

The cancer cell phenotype has been summarized in six hallmarks [D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell 100 (1) (2000) 57-70]. Following the conceptual trait established in that review towards the comprehension of cancer, herein we summarize the basis of an underlying principle that is fulfilled by cancer cells and tumors: its avidity for glucose. Our purpose is to push forward that the metabolic reprogramming that operates in the cancer cell represents a seventh hallmark of the phenotype that offers a vast array of possibilities for the future treatment of the disease. We summarize the metabolic pathways that extract matter and energy from glucose, paying special attention to the concerted regulation of these pathways by the ATP mass-action ratio. The molecular and functional evidences that support the high glucose uptake and the “abnormal” aerobic glycolysis of the carcinomas are detailed discussing also the role that some oncogenes and tumor suppressors have in these pathways. We overview past and present evidences that sustain that mitochondria of the cancer cell are impaired, supporting the original Warburg’s formulation that ascribed the high glucose uptake of cancer cells to a defective mitochondria. A simple proteomic approach designed to assess the metabolic phenotype of cancer, i.e., its bioenergetic signature, molecularly and functionally supports Warburg’s hypothesis. Furthermore, we discuss the clinical utility that the bioenergetic signature might provide. Glycolysis is presented as the “selfish” pathway used for cellular proliferation, providing both the metabolic precursors and the energy required for biosynthetic purposes, in the context of a plethora of substrates. The glucose avidity of carcinomas is thus presented as the result of both the installment of glycolysis for cellular proliferation and of the impairment of mitochondrial activity in the cancer cell. At the end, the repression of mitochondrial activity affords the cancer cell with a cell-death resistant phenotype making them prone to malignant growth.

Fig. 1. Pathways of glucose metabolism. The model shows some of the relevant aspects of the metabolism of glucose. After entering the cell by specific transporters, glucose can be (i) catabolized by the pentose phosphate pathway (PPP) to obtain reducing power in the form of NADPH, (ii) used for the synthesis of carbohydrates or (iii) utilized by glycolysis to generate pyruvate and other metabolic intermediates that could be used in different anabolic processes (blue rectangles). In the cytoplasm, the generated pyruvate can be reduced to lactate and further exported from the cell or oxidized in the mitochondria by pyruvate dehydrogenase to generate acetyl-CoA, which is condensed with oxaloacetate in the tricarboxylic acid cycle (TCA cycle). The operation of the TCA cycle completes the oxidation of mitochondrial pyruvate. Different pathways that drain intermediates of the TCA cycle (oxaloacetate, succinyl-CoA, a-ketoglutarate and citrate) for biosynthetic purposes (blue rectangles) are represented. The transfer of electrons obtained in biological oxidations (NADH/FADH2) to molecular oxygen by respiratory complexes of the inner mitochondrial membrane (in green) is depicted by yellow lines. The utilization of the proton gradient generated by respiration for the synthesis of ATP by the H+-ATP synthase (in orange) in oxidative phosphorylation (OXPHOS) is also indicated. The incorporation of glutamine carbon skeletons into the TCA cycle is shown. The utilization of NADPH in anabolic pathways is also indicated.

Fig. 3. Fluxes of matter and energy in differentiated, proliferating and cancer cells. In differentiated cells, the flux of glycolysis is low because the requirement for precursors for anabolic purposes is low and there is a high energy yield by the oxidation of pyruvate in mitochondrial oxidative phosphorylation (OXPHOS). In this situation, mitochondrial activity produces large amounts of ROS that are normally quenched by the cellular antioxidant defense. In proliferating and cancer cells, there is a high demand of glucose to provide metabolic precursors for the biosynthesis of the macromolecules of daughter cells and because most of the energy required for anabolic purposes derives from non-efficient non-respiratory modes (glycolysis, pentose phosphate pathway) of energy generation. Limiting mitochondrial activity in these situations ensures less ROS production and their further downstream consequences. In addition, cancer cells have less overall mitochondrial complement or activity than normal cells by repressing the biogenesis of mitochondria.

Fig. 2. Genetic alterations underlying the glycolytic phenotype of cancer cells. The diagram represents the impact of gain-of-function mutations in oncogenes (ovals) and loss-of-function mutations in tumor suppressors (rectangles) in glycolysis and in the mitochondrial utilization of pyruvate in cancer cells. Hypoxia (low O2) induces the stabilization of HIF-1, which promotes transcriptional activation of the glucose transporter, glycolytic genes and PDK1. The expression of PDK1 results in the inactivation of pyruvate dehydrogenase and thus in a decreased oxidation of pyruvate in the TCA cycle concurrent to its enhanced cytoplasmic reduction to lactate by lactate dehydrogenase (LDHA). In addition, HIF1a reciprocally regulates the expression of two isoforms of the cytochrome c oxidase complex. The oncogen myc also supports an enhanced glycolytic pathway by transcriptional activation of glycolytic genes. High levels of c-myc could also promote the production of reactive oxygen species (ROS) that could damage nuclear (nDNA) and mitochondrial (mtDNA). The loss-of-function of the tumor suppressor p53 promotes an enhanced glycolytic phenotype by the repression of TIGAR expression. Likewise, loss-of-function of p53 diminished the expression of SCO2, a gene required for the appropriate assembly of cytochrome c oxidase, and thus limits the activity of mitochondria in the cancer cell.
Discussion:

Jose E S Roselino

  1. Warburg Effect revisited
    It is very interesting the series of commentaries following Warburg Effect revisited. However, it comes as no surprise that almost all of them have small or greater emphasis in the molecular biology (changes in gene expression) events of the metabolic regulation involved.
    I would like to comment on some aspects: 1- Warburg did the initial experiments following Pasteur line of reasoning that aimed at carbon flow through the cell (yeast in his case) instead of describing anything inside the cell. It is worth to recall that for the sake of his study, Pasteur considered anything inside the cell under the domain of divine forces. He, at least in defence of his work, entirely made outside the cell, considered that inside the cells was beyond human capability of understanding – He has followed vitalism as his line of reasoning in defence of his work – Interestingly, the same scientist that has ruled out spontaneous generation when Pasteurization was started. Therefore, Pasteur measured everything outside the cell (mainly sugar, ethanol – the equivalent of our lactic acid end product of anaerobic metabolism) and found that as soon as yeasts were placed in the presence of oxygen, sugar was consumed at low speed in comparison with the speed measured in anaerobiosis and ethanol was also produced at reduced speed. This is an indication of a fast biological regulatory mechanism that obviously, do not require changes in gene expression. As previously said, Warburg work translated for republishing in the Journal Biological Chemistry mentioned “grana” for mitochondria calling attention on an “inside-the-cell” component. It seems that, there is not a unique, single site of metabolism, where the Pasteur Effect – Warburg Effect seems to be elicited by the shift from anaerobiosis to aerobiosis or vice versa.
    In order to find a core for the mechanism the best approach seems to take into account one of the most important contributions of one of the greatest north-American biochemists, Briton Chance. He has made it with his polarographic method of following continuously the oxygen consumption of the cell´s mitochondria.
    Mitochondria burn organic carbon molecules under a very stringent control mechanism of oxidative-phosphorylation ATP production. Measured in the form of changes in the speed of oxygen consumption over time as Respiratory Control Ratio (RCR). When no ATP is required by the cell, oxygen consumption goes at low speed (basal or state II or IV). When ADP is offered to the mitochondria as an indication that ATP synthesis is necessary, oxygen consumption is activated in state III respiration. Low respiration means low burning activity of organic (carbon) molecules what in this case, means indirectly low glucose consumption. While high respiration is the converse – greater glucose consumption.
    Aerobic metabolism of glucose to carbonic acid and water provides a change in free energy enough for 38 molecules of ATP (the real production is +/- 32 ATP in aerobic condition) while glucose to lactic acid metabolism in anaerobiosis leads to 2 ATP production after discounting the other 2 required at initial stages of glucose metabolism.
    The low ATP yield in anaerobiosis explains the fast glucose metabolism in anaerobiosis while the control by RCR in mitochondria explains the reduction in glucose metabolism under aerobiosis as long as the ATP requirements of the cell remains the same – This is what it is assumed to happen in quiescent cells. Not necessarily in fast growing cells as cancer cells are. However, this will not be discussed here. In my first experiments in the early seventies, with M. Rouxii a dimorphic mold-yeast biological system the environmental change (aerobic – anaerobic) led to morphogenetic change presented as morphogenetic expression of the Pasteur Effect. In this case, the enzyme that replaces mitochondria in ATP production (Pyruvate Kinase) converting phosphoenolpyruvate into pyruvate together with ADP into ATP, shows changes that can be interpreted as change in gene expression together with new self-assembly of enzyme subunits. (Dimer AA – yeast in anaerobic growth or sporangiospores- converted into dimer AB in aerobic mold). In Leloir opinions at that time, PK I (AA) was only highly glycosylated, while PK II (AB) was less glycosylated without changes in gene expression.

    In case you read comments posted, you will see that the reference to aerobic glycolysis, continues to be made together with, new deranged forms of reasoning as is indicated by referring to: Mitochondrial role in ion homeostasis…
    Homeostasis is a regulation of something, ions, molecules, pH etc. that is kept outside the cell, therefore any role for mitochondria on it is only made indirectly, by its ATP production.
    However, mitochondria has a role together with other cell components in the regulation of for instance, intracellular Ca levels (Something that is not a homeostatic regulation). This is a very important point for the following reason: Homeostasis is maintained as a composite result of several differentiated cellular, tissue and organ functions. Differentiated function is something clearly missing in cancer cells. The best form to refer to the mitochondrial function regarding ions is to indicate a mitochondrial role in ion fluxes.
    In short, to indicate how an environmental event or better saying condition could favour genetic changes instead of being caused by genetic changes is to follow the same line of reasoning that is followed in understanding the role of cardioplegia. To stop heart beating is adequate for heart surgery it is also adequate for heart cells by sparing the ATP use during surgery and therefore, offering better recovery condition to the heart afterwards.
    In the case, here considered, even assuming that the genome is not made more unstable during hypoxic condition it is quite possible to understand that sharing ATP with both differentiated cell function and replication may led quality control of DNA in short supply of much needed ATP and this led to maintenance of mutations as well as less organized genome.

    • Thank you. I enjoy reading your comments. They are very instructive. I don’t really think that I comprehend the use of the term “epigenetics” and longer. In fact, it was never clear to me when I first heard it used some years ago.

      The term may have been closely wedded to the classic hypothesis of a unidirectional DNA–> RNA–> protein model that really has lost explanatory validity for the regulated cell in its environment. The chromatin has an influence, and protein-protein interactions are everywhere. As you point out, these are adjusting to a fast changing substrate milieu, and the genome is not involved. But in addition, the proteins may well have a role in suppression or activation of signaling pathways, and thereby, may well have an effect on gene expression. I don’t have any idea about how it would work, but mutations would appear to follow the metabolic condition of the cell over time. It would appear to be – genomic modification.

  2. In aerobic glucose metabolism, the oxidation of citric acid requires ADP and Mg²+, which will increase the speed of the reaction: Iso-citric acid + NADP (NAD) — isocitrate dehydrogenase (IDH) = alpha-ketoglutaric acid. In the Krebs cycle (the citric cycle), IDH1 and IDH2 are NADP+-dependent enzymes that normally catalyze the inter-conversion of D-isocitrate and alpha-ketoglutarate (α-KG). The IDH1 and IDH2 genes are mutated in > 75% of different malignant diseases. Two distinct alterations are caused by tumor-derived mutations in IDH1 or IDH2: the loss of normal catalytic activity in the production of α-ketoglutarate (α-KG) and the gain of catalytic activity to produce 2-hydroxyglutarate (2-HG), [22].
    This product is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including demethylases, prolyl-4-hydroxylase and the TET enzymes family (Ten-Eleven Translocation-2), resulting in genome-wide alternations in histones and DNA methylation. [23]
    IDH1 and IDH2 mutations have been observed in myeloid malignancies, including de novo and secondary AML (15%–30%), and in pre-leukemic clone malignancies, including myelodysplastic syndrome and myeloproliferative neoplasm (85% of the chronic phase and 20% of transformed cases in acute leukemia), [24].
    Normally, cells in the body communicate via intra-cytoplasmic channels and maintain the energetic potential across cell membranes, which is 1-2.5 µmol of ATP in the form of ATP-ADP/ATP-ADP-IMP. These normal energetic values occur during normal cell division. If the intra-cellular and extra-cellular levels of Mg2+ are high, the extra-cellular charges of the cells will not be uniformly distributed.
    This change in distribution induces a high net positive charge for the cell and induces a loss of contact inhibition via the electromagnetic induction of oscillation [28, 29, 30]. Thereafter, malignant cells become invasive and metastasize.
    ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
    -22. Hartmann C, Meyer J, Balss J. Capper D, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 2009; 118: 464-474.

    23. Raymakers R.A, Langemeijer S.M., Kuiper R.P, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet 2009; 41; 838–849.

    24 Wagner K, Damm F, Gohring G., Gorlich K et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J. Clin. Oncol.2010; 28: 2356–2364.
    Plant Molecular Biology 1989; 1: 271–303.

    29. Chien MM, Zahradka CE, Newel MC, Fred JW. Fas induced in B cells apoptosis require an increase in free cytosolic magnesium as in early event. J Biol Chem.1999; 274: 7059-7066.

    30. Milionis H J, Bourantas C L, Siamopoulos C K, Elisaf MS. Acid bases and electrolytes abnormalities in Acute Leukemia. Am J Hematol 1999; (62): 201-207.

    31. Thomas N Seyfried; Laura M Shelton.Cancer as a Metabolic Disease. Nutr Metab 2010; 7: 7

    – Aurelian Udristioiu, M.D,
    – Lab Director, EuSpLM,
    – City Targu Jiu, Romania
    AACC, National Academy of Biochemical Chemistry (NACB) Member, Washington D.C, USA.

 

 

 

 

 

 

 

 

Read Full Post »

The Metabolic View of Epigenetic Expression

Writer and Curator: Larry H Bernstein, MD, FCAP

Introduction

This is the fifth contribution to a series of articles on cancer, genomics, and metabolism.   I begin this after reading an article by Stephen Williams “War on Cancer May Need to Refocus Says Cancer Expert on NPR”, and after listening to NPR “On the Media”. This is an unplanned experience, perhaps partly related to an Op-Ed in the New York Times two days before by Angelina Jolie Pittman.  Taking her article prior to pre-emptive breast surgery for the BRCA1 mutation two years ago and her salpingo-oophorectomy at age 39 years with her family history, and her adoption of several children even prior to her marriage to Brad Pitt, reveals an unusual self-knowledge as well as perspective on the disease risk balanced with her maternal instincts.  I sense (but don’t know) that she had a good knowledge not stated about the estrogen sensitivity of breast cancer for some years, and balanced that knowledge in her life decisions.

Tracing the history of cancer and the Lyndon Johnson initiated “War on Cancer” the initiative is presented as misguided.  Moreover, the imbalance is posed aas focused overly on genomics, and there is an imbalnced in the attention to the types of cancer, bladder cancer (urothelial) receiving too little attention. However, the events that drive this are complex, and not surprising.  The funding is driven partly by media attention (a film star or President’s wife) and not to be overlooked, watch where the money flows.  People who have the ability to donate and also have a family experience will give, regardless of the statistics because it is 100 percent in their eyes.

Insofar as the scientific endeavor goes, young scientists are committed to a successful research career, and they also need funding, so they have to balance the risk of success and failure in the choice of problems they choose to work on.  But until the 20th century, the biological sciences were largely descriptive. The emergence of a “Molecular Biology” is a unique 20th century development. The work of Pathology – pioneered by Rokitansky, Virchow, and to an extent also the anatomist/surgeon John Harvey – was observational science.  The description of Hodgkin’s lymphoma was observational, and it was a breakthrough in medicine.

With the emergence of genomics from biochemistry and genetics in molecular biology (biology at the subcellular level), a part of medicine that was well founded became an afterthought.  After all, after many years of the history of medicine and pathology, it is well known that cancers are not only a dysmetabolism of cellular replication and cellular regulation, but cancers have a natural history related to organ system, tissue specificity, sex, and age of occurrence. This should be well known to the experienced practitioner, but not necessarily to the basic researcher with no little clinical exposure.  Consequently, it was quite remarkable to me to find that the truly amazing biochemist who gave a “Harvey Lecture” at Harvard on the pyridine nucleotide transhydrogenases, and who shared in the discovery of Coenzyme A, had made the observation that organs that are primarily involved with synthetic activity -adrenal, pituitary, and thyroid, testis, ovary, breast (most notably) – have a more benign course than those of stomach, colon, pancreas, melanoma, hematopoietic, and sarcomas. The liver is highly synthetic, but doesn’t fit so nicely because of the role in detoxification and the large role in glucose and fat catabolism.  Further, this was at a time that we knew nothing about the cell death pathway and cellular repair, and how is it in concert with cell proliferation.

The first important reasoning about cancer metabolism was opened by Otto Warburg in the late 1920s.  I have  little reason to doubt his influence on Nathan Kaplan, who used the terms DPN(+/H) and TPN(+/H), disregarding the terms NAD(+/H) and NADP(+/H), although I was told it was because of the synthesis of the pyridine nucleotide adducts for study (APDPN, etc.).

In a recent article, I had an interesting response from Jose ES Rosalino:

In mRNA Translation and Energy Metabolism in Cancer

Topisirovic and N. Sonenberg – Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXVI – http://dx.doi.org:/10.1101/sqb.2011.76.010785

“A prominent feature of cancer cells is the use of aerobic glycolysis under conditions in which oxygen levels are sufficient to support energy production in the mitochondria (Jones and Thompson 2009; Cairns et al. 2010). This phenomenon, named the “Warburg effect,” after its discoverer Otto Warburg, is thought to fuel the biosynthetic requirements of the neoplastic growth (Warburg 1956; Koppenol et al. 2011) and has recently been acknowledged as one of the hallmarks of cancer (Hanahan and Weinberg 2011). mRNA translation is the most energy-demanding process in the cell (Buttgereit and Brand 1995). Again, the use of aerobic glycolysis expression has being twisted.”

To understand my critical observation consider this: Aerobic glycolysis is the carbon flow that goes from Glucose to CO2 and water (includes Krebs cycle and respiratory chain for the restoration of NAD, FAD etc.

Anerobic glyclysis is the carbon flow that goes from glucose to lactate. It uses conversion of pyruvate to lactate to regenerate NAD.

“Pasteur effect” is an expression coined by Warburg it refers to the reduction in the carbon flow from glucose when oxygen is offered to yeasts. The major reason for that is in general terms, derived from the fact that carbon flow is regulated by several cell requirements but majorly by the ATP needs of the cell. Therefore, as ATP is generated 10 more efficiently in aerobiosis than under anaerobiosis, less carbon flow is required under aerobiosis than under anaerobiosis to maintain ATP levels. Warburg, after searching for the same regulatory mechanism in normal and cancer cells for comparison found that transformed cell continued their large flow of glucose carbons to lactate despite of the presence of oxygen.

So, it is wrong to describe that aerobic glycolysis continues in the presence of oxygen. It is what it is expected to occur. The wrong thing is that anaerobic glycolysis continues under aerobiosis.

In our discussion of transcription and cell regulatory processes, we have already encountered a substantial amount of “enzymology” that drives what is referred to as “epigenetics”.  Enzymatic reactions are involved almost everywhere we look at the processes involved in RNA nontranscriptional affairs.

Enzyme catalysis

Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation
K Sellers,…, TW-M Fan
J Clin Invest. Jan 2015; xx
http://dx.doi.org:/10.1172/JCI72873

Anabolic biosynthesis requires precursors supplied by the Krebs cycle, which in turn requires anaplerosis to replenish precursor intermediates. The major anaplerotic sources are pyruvate and glutamine, which require the activity of pyruvate carboxylase (PC) and glutaminase 1 (GLS1), respectively. Due to their rapid proliferation, cancer cells have increased anabolic and energy demands; however, different cancer cell types exhibit differential requirements for PC- and GLS-mediated pathways for anaplerosis and cell proliferation. Here, we infused patients with early-stage non–small-cell lung cancer (NSCLC) with uniformly 13C-labeled glucose before tissue resection and determined that the cancerous tissues in these patients had enhanced PC activity. Freshly resected paired lung tissue slices cultured in 13C6-glucose or 13C5, 15N2-glutamine tracers confirmed selective activation of PC over GLS in NSCLC. Compared with noncancerous tissues, PC expression was greatly enhanced in cancerous tissues, whereas GLS1 expression showed no trend. Moreover, immunohistochemical analysis of paired lung tissues showed PC overexpression in cancer cells rather than in stromal cells of tumor tissues. PC knockdown induced multinucleation, decreased cell proliferation and colony formation in human NSCLC cells, and reduced tumor growth in a mouse xenograft model. Growth inhibition was accompanied by perturbed Krebs cycle activity, inhibition of lipid and nucleotide biosynthesis, and altered glutathione homeostasis. These findings indicate that PC-mediated anaplerosis in early stage NSCLC is required for tumor survival and proliferation.

Accelerated glycolysis under aerobic conditions (the “Warburg effect”) has been a hallmark of cancer for many decades (1). It is now recognized that cancer cells must undergo many other metabolic reprograming changes (2) to meet the increased anabolic and energetic demands of proliferation (3, 4). It is also becoming clear that different cancer types may utilize a variety of metabolic adaptations that are context dependent, commensurate with the notion that altered metabolism is a hallmark of cancer (12). Enhanced glucose uptake and aerobic glycolysis generates both energy (i.e., ATP) and molecular precursors for the biosynthesis of complex carbohydrates, sugar nucleotides, lipids, proteins, and nucleic acids. However, increased glycolysis alone is insufficient to meet the total metabolic demands of proliferating cancer cells. The Krebs cycle is also a source of energy via the oxidation of pyruvate, fatty acids, and amino acids such as glutamine. Moreover, several Krebs cycle intermediates are essential for anabolic and glutathione metabolism, including citrate, oxaloacetate, and α-ketoglutarate (Figure 1A).

Figure 1. PC is activated in human NSCLC tumors. (A) PC and GLS1 catalyze the major anaplerotic inputs (blue) into the Krebs cycle to support the anabolic demand for biosynthesis (green). Also shown is the fate of 13C from 13C6-glucose through glycolysis and into the Krebs cycle via PC (red).
(B) Representative Western blots of PC and GLS1 protein expression levels in human NC lung (N) and NSCLC (C) tissues. (C) Pairwise PC and GLS1 expression (n = 86) was normalized to α-tubulin and plotted as the log10 ratio of CA/NC tissues. For PC, nearly all log ratios were positive (82 of 86), with a clustering in the 0.5–1 range (i.e., typically 3- to 10-fold higher expression in the tumor tissue; Wilcoxon test, P < 0.0001). In contrast, GLS1 expression was nearly evenly distributed between positive and negative log10 ratios and showed no statistically significant difference between the CA and NC tissues (Wilcoxon test, P = 0.213). Horizontal bar represents the median. (D) In vivo PC activity was enhanced in CA tissue compared with that in paired NC lung tissues (n = 34) resected from the same human patients given 13C6-glucose 2.5–3 hours before tumor resection. PC activity was inferred from the enrichment of 13C3-citrate (Cit+3), 13C5-Cit (Cit+5), 13C3-malate (Mal+3), and 13C3-aspartate (Asp+3) as determined by GC-MS. *P < 0.05 and **P < 0.01 by paired Student t test. Error bars represent the SEM.

Continued functioning of the Krebs cycle requires the replenishment of intermediates that are diverted for anabolic uses or glutathione synthesis. This replenishment process, or anaplerosis, is accomplished via 2 major pathways: glutaminolysis (deamidation of glutamine via glutaminase [GLS] plus transamination of glutamate to α-ketoglutarate) and carboxylation of pyruvate to oxaloacetate via ATP-dependent pyruvate carboxylase (PC) (EC 6.4.1.1) (refs. 3, 20, 21, and Figure 1A). The relative importance of these pathways is likely to depend on the nature of the cancer and its specific metabolic adaptations, including those to the microenvironment (20, 22). For example, glutaminolysis was shown to be activated in the glioma cell line SF188, while PC activity was absent, despite the high PC activity present in normal astrocytes. However, SF188 cells use PC to compensate for GLS1 suppression or glutamine restriction (20), and PC, rather than GLS1, was shown to be the major anaplerotic input to the Krebs cycle in primary glioma xenografts in mice. It is also unclear as to the relative importance of PC and GLS1 in other cancer cell types or, most relevantly, in human tumor tissues in situ. Our preliminary evidence from 5 non–small-cell lung cancer (NSCLC) patients indicated that PC expression and activity are upregulated in cancerous (CA) compared with paired noncancerous (NC) lung tissues (21), although it was unclear whether PC activation applies to a larger NSCLC cohort or whether PC expression was associated with the cancer and/or stromal cells

Here, we have greatly extended our previous findings (21) in a larger cohort (n = 86) by assessing glutaminase 1 (GLS1) status and analyzing in detail the biochemical and phenotypic consequences of PC suppression in NSCLC. We found PC activity and protein expression levels to be, on average, respectively, 100% and 5- to 10-fold higher in cancerous (CA) lung tissues than in paired NC lung tissues resected from NSCLC patients, whereas GLS1 expression showed no significant trend. We have also applied stable isotope–resolved metabolomic (SIRM) analysis to paired freshly resected CA and NC lung tissue slices in culture (analogous to the Warburg slices; ref. 25) using either [U-13C] glucose or [U-13C,15N] glutamine as tracers. This novel method provided information about tumor metabolic pathways and dynamics without the complication of whole-body metabolism in vivo.

PC expression and activity, but not glutaminase expression, are significantly enhanced in early stages of malignant NSCLC tumors. PC protein expression was significantly higher in primary NSCLC tumors than in paired adjacent NC lung tissues (n = 86, P < 0.0001, Wilcoxon test) (Figure 1, B and C). The median PC expression was 7-fold higher in the tumor, and the most probable (modal) overexpression in the tumor was approximately 3-fold higher (see Supple-mental Table 1; supplemental material available online with this article; http://dx.doi.org:/10.1172/JCI72873DS1). We found that PC expression was also higher in the tumor tissue compared with that detected in the NC tissue in 82 of 86 patients. In contrast, GLS1 expression was not significantly different between the tumor and NC tissues (P = 0.213, Wilcoxon test) (Figure 1C and Supplemental Table 1). The 13C3-Asp produced from 13C6-glucose (Figure 1A) infused into NSCLC patients was determined by gas chromatography–mass spectrometry (GC-MS) to estimate in vivo PC activity. A bolus injection of 10 g 13C6-glucose in 50 ml saline led to an average of 44% 13C enrichment in the plasma glucose immediately after infusion (Supplemental Table 2). Because the labeled glucose was absorbed by various tissues over the approximately 2.5 hours between infusion and tumor resection, plasma glucose enrichment dropped to 17% (Supplemental Table 2). The labeled glucose in both CA and NC lung tissues was metabolized to labeled lactate, but this occurred to a much greater extent in the CA tissues (Supplemental Figure 1A), which indicates accelerated glycolysis in these tissues.

Fresh tissue (Warburg) slices confirm enhanced PC and Krebs cycle activity in NSCLC. To further assess PC activity relative to GLS1 activity in human lung tissues, thin (<1 mm thick) slices of paired CA and NC lung tissues freshly resected from 13 human NSCLC patients were cultured in 13C6-glucose or 13C5,15N2-glutamine for 24 hours. These tissues maintain biochemical activity and histological integrity for at least 24 hours under culture conditions (Figure 2A, Supplemental Figure 2, A and B, and ref. 26). When the tissues were incubated with 13C6-glucose, CA slices showed a significantly greater percentage of enrichment in glycolytic 13C3-lactate (3 in Figure 2B) than did the NC slices, indicative of the Warburg effect. In addition, the CA tissues had significantly higher fractions of 13C4-, 13C5-, and 13C6-citrate (4, 5, and 6 of citrate, respectively, in Figure 2B) than did the NC tissues. These isotopologs require the combined action of PDH, PC, and multiple turns of the Krebs cycle (Figure 2C). Consistent with the labeled citrate data, the increase in the percentage of enrichment of 13C3-, 13C4-, and 13C5-glutamate (3, 4, and 5 of glutamate, respectively, in Figure 2B) in the CA tissues indicates enhanced Krebs cycle and PC activity.

Figure 2. Ex vivo CA lung tissue slices have enhanced oxidation of glucose through glycolysis and the Krebs cycle with and without PC input compared with that of paired NC lung slices. Thin slices of CA and NC lung tissues freshly resected from 13 human NSCLC patients were incubated with 13C6-glucose for 24 hours as described in the Methods. The percentage of enrichment of lactate, citrate, glutamate, and aspartate was determined by GC-MS. (A) 1H{13C} HSQC NMR showed an increase in labeled lactate, glutamate, and aspartate. In addition, CA tissues had elevated 13C abundance in the ribose moiety of the adenine-containing nucleotides (1′-AXP), indicating that the tissues were viable and had enhanced capacity for nucleotide synthesis. (B) CA tissue slices (n = 13) showed increased glucose metabolism through glycolysis based on the increased percentage of enrichment of 13C3-lactate (“3”), and through the Krebs cycle based on the increased percentage of enrichment of 13C4–6-citrate (“4–6”) and 13C3–5-glutamate (“3–5”) (see 13C fate tracing in C). *P < 0.05 and **P < 0.01 by paired Student’s t test. Error bars represent the SEM. (C) An atom-resolved map illustrates how PC, PDH, and 2 turns of the Krebs cycle activity produced the 13C isotopologs of citrate and glutamate in B, whose enrichment were significantly enhanced in CA tissue slices.

Figure 4. PC suppression via shRNA inhibits proliferation and tumorigenicity of human NSCLC cell lines in vitro and in vivo. Proliferation and colony-formation assays were initiated 1 week after transduction and selection with puromycin. A549 xenograft in NSG mice was performed 8 days after transduction. *P < 0.01, **P < 0.001, ***P < 0.0001, and ****P < 0.00001 by Student t test, assuming unequal variances. Error bars represent the SEM. (A) NSCLC cells lines were transduced with shPC55 or shEV. Proliferation assays (n = 6) revealed substantial growth inhibition induced by PC knockdown in all 5 cell lines after a relatively long latency period. (B) Colony-formation assays indicated that PC knockdown reduced the capacity of A549 and PC9 cells to form colonies in soft agar (n = 3). (C) Tumor xenografts from shPC55-transduced A549 cells showed a 2-fold slower growth rate than did control shEV tumors (P < 0.001 by the unpaired Welch version of the t test). Tumor size was calculated as πab/4, where a and b are the x,y diameters. Each point represents an average of 6 mice. The solid lines are the nonlinear regression fits to the equation: size = a + bt2, as described in the Methods. (D) The extent of PC knockdown in the mouse xenografts (n = 6) was lesser than that in cell cultures, leading to less attenuation of PC expression (30%–60% of control) and growth inhibition. In addition, PC expression in the excised tumors correlated with the individual growth rates, as determined by Pearson’s correlation coefficient.

Fatty acyl synthesis from 13C5-glutamine (“Even” in Figure 6B) via glutaminolysis and the Krebs cycle was greatly attenuated in PC-suppressed cells. Taken together, these results suggest that PC knockdown severely inhibits lipid production by blocking the biosynthesis of fatty acyl components but not the glucose-derived glycerol backbone. This is consistent with decreased Krebs cycle activity (Figure 5), which in turn curtails citrate export from the mitochondria to supply the fatty acid precursor acetyl CoA in the cytoplasm.

Figure 5. PC knockdown perturbs glucose and glutamine flux through the Krebs cycle. 13C Isotopolog concentrations were determined by GC-MS (n = 3). Values represent the averages of triplicates, with standard errors. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 by Student’s t test, assuming unequal variances. The experiments were repeated 3 times. (A) A549 cells were transduced with shPC55 for 10 days before incubation with 13C6-glucose for 24 hours. As expected, the 13C isotopologs of Krebs cycle metabolites produced via PC and Krebs cycle activity were depleted in PC-deficient cells (tracked by blue dots in the atom-resolved map and blue circles in the bar graphs; see also Figure 2C). In addition, 13C6-glucose metabolism via PDH was also perturbed (indicated by red dots and circles). (B) Treatment of PC-knockdown cells with 13C5,15N2-glutamine revealed that anaplerotic input via GLS did not compensate for the loss of PC activity, since GLS activity was attenuated, as inferred from the activity markers (indicated by red dots and circles). Decarboxylation of glutamine-derived malate by malic enzyme (ME) and reentry of glutamine-derived pyruvate into the Krebs cycle via PC or PDH (shown in blue and green, respectively) were also attenuated. Purple diamonds denote 15N; black diamonds denote 14N.

Figure 6. PC suppression hinders Krebs cycle–fueled biosynthesis. (A) 13C atom–resolved pyrimidine biosynthesis from 13C6-glucose and 13C5-glutamine is depicted with a 13C5-ribose moiety (red dots) produced via the pentose phosphate pathway (PPP) and 13C1-3  uracil ring (blue dots) derived from  13C2-4-aspartate produced via the Krebs cycle or the combined action of ME and PC (blue dots). A549 cells transduced with shPC55 or shEV were incubated with 13C6-glucose or 13C5-glutamine for 24 hours. Fractional enrichment of UTP and CTP isotopologs from FT-ICR-MS analysis of polar cell extracts showed reduced enrichment of 13C6-glucose–derived 13C5-ribose (the “5” isotopolog) and 13C6-glucose– or 13C5-glutamine–derived 13C1-3-pyrimidine rings (the “6–8” or “1–3” isotopologs, highlighted by dashed green rectangles; for the “6–8” isotopologs, 5 13Cs arose from ribose and 1–3 13Cs from the ring) (10, 45). These data suggest that PC knockdown inhibits de novo pyrimidine biosynthesis from both glucose and glutamine. (B) Glucose and glutamine carbons enter fatty acids via citrate. FT-ICR-MS analysis of labeled lipids from the nonpolar cell extracts showed that PC knockdown severely inhibited the incorporation of glucose and glutamine carbons into the fatty acyl chains (even) and fatty acyl chains plus glycerol backbone (odd >3) of phosphatidylcholine lipids. However, synthesis of the 13C3-glycerol backbone (the “3” isotopolog) or its precursor 13C3-α-glycerol-3-phosphate (αG3P, m+3) from 13C6-glucose was enhanced rather than inhibited by PC knockdown. These data suggest that PC suppression specifically hinders fatty acid synthesis in A549 cells. Values represent the averages of triplicates (n = 3), with standard errors. *P < 0.05, **P < 0.01,  and ***P < 0.001 by Student’s t test, assuming unequal variances.

De novo glutathione synthesis was analyzed by 1H{13C} HSQC NMR. Glutathione synthesis from both glucose and glutamine was suppressed by PC knockdown (Supplemental Figure 9, A and B). Reduced de novo synthesis led to a large decrease in the total level of reduced glutathione (GSH; Supplemental Figure 12, A and B). At the same time, PC-knockdown cells accumulated slightly more oxidized GSH (GSSG; Supplemental Figure 12, A and B), leading to a significantly reduced GSH/GSSG ratio both in cell culture and in vivo (Supplemental Figure 12C). To determine whether this perturbation of glutathione homeostasis compromises the ability of PC-suppressed cells to handle oxidative stress, we measured ROS production by DCFDA fluorescence. PC-knockdown cells had over 70% more basal ROS than did control cells (0 mM H2O2; Supplemental Figure 12D). When cells were exposed to increasing concentrations of H2O2, the knockdown cells were less able to quench ROS, as they produced up to 300% more ROS than did control cells (Supplemental Figure 12D). However, N-acetylcysteine (NAC) at 10 mM did not rescue the growth of PC-knockdown cells, suggesting that such a growth effect is not simply related to an inability to regenerate GSH from GSSG. Altogether, these results show that PC suppression compromises anaplerotic input into the Krebs cycle, which in turn reduces the activity of the Krebs cycle, while limiting the ability of A549 cells to synthesize nucleotides, lipids, and glutathione. These downstream effects of PC knockdown were also evident when comparing the metabolism of shPC55-transduced A549 cells against that of A549 cells transduced with a scrambled vector (shScr) (Supplemental Figure 13), which suggests that they are on-target effects of PC knockdown.

  1. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314. 2. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999; 24(2):68–72.
    3. Fan TW, et al. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes. Mol Cancer. 2008;7:79.
    4. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033.
    10. Le A, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110–121
    20. Cheng T, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A. 2011;108(21):8674–8679.
    21. Fan TW, et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13) C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 2009;8:41.
    22. Marin-Valencia I, et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012;15(6):827–837.
    25. Warburg O. Versuche an überlebendem Carcinomgewebe (Methoden). Biochem Zeitschr. 1923;142:317–333.
    45. Lorkiewicz P, Higashi RM, Lane AN, Fan TW. High information throughput analysis of nucleotides and their isotopically enriched isotopologues by direct-infusion FTICR-MS. Metabolomics. 2012;8(5):930–939.

In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation.
Gameiro PA, Yang J, Metelo AM,…, Stephanopoulos G, Iliopoulos O.
Cell Metab. 2013 Mar 5; 17(3):372-85.
http://dx.doi.org:/10.1016/j.cmet.2013.02.002

Hypoxic and VHL-deficient cells use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate. To gain insights into the role of HIF and the molecular mechanisms underlying RC, we took advantage of a panel of disease-associated VHL mutants and showed that HIF expression is necessary and sufficient for the induction of RC in human renal cell carcinoma (RCC) cells. HIF expression drastically reduced intracellular citrate levels. Feeding VHL-deficient RCC cells with acetate or citrate or knocking down PDK-1 and ACLY restored citrate levels and suppressed RC. These data suggest that HIF-induced low intracellular citrate levels promote the reductive flux by mass action to maintain lipogenesis. Using [(1-13)C]glutamine, we demonstrated in vivo RC activity in VHL-deficient tumors growing as xenografts in mice. Lastly, HIF rendered VHL-deficient cells sensitive to glutamine deprivation in vitro, and systemic administration of glutaminase inhibitors suppressed the growth of RCC cells as mice xenografts.

Cancer cells undergo fundamental changes in their metabolism to support rapid growth, adapt to limited nutrient resources, and compete for these supplies with surrounding normal cells. One of the metabolic hallmarks of cancer is the activation of glycolysis and lactate production even in the presence of adequate oxygen. This is termed the Warburg effect, and efforts in cancer biology have revealed some of the molecular mechanisms responsible for this phenotype (Cairns et al., 2011). More recently, 13C isotopic studies have elucidated the complementary switch of glutamine metabolism that supports efficient carbon utilization for anabolism and growth (DeBerardinis and Cheng, 2010). Acetyl-CoA is a central biosynthetic precursor for lipid synthesis, being generated from glucose-derived citrate in well-oxygenated cells (Hatzivassiliou et al., 2005). Warburg-like cells, and those exposed to hypoxia, divert glucose to lactate, raising the question of how the tricarboxylic acid (TCA) cycle is supplied with acetyl-CoA to support lipogenesis. We and others demonstrated, using 13C isotopic tracers, that cells under hypoxic conditions or defective mitochondria primarily utilize glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) (Filipp et al., 2012; Metallo et al., 2012; Mullen et al., 2012; Wise et al., 2011).

The transcription factors hypoxia inducible factors 1α and 2α (HIF-1α, HIF-2α) have been established as master regulators of the hypoxic program and tumor phenotype (Gordan and Simon, 2007; Semenza, 2010). In addition to tumor-associated hypoxia, HIF can be directly activated by cancer-associated mutations. The von Hippel-Lindau (VHL) tumor suppressor is inactivated in the majority of sporadic clear-cell renal carcinomas (RCC), with VHL-deficient RCC cells exhibiting constitutive HIF-1α and/or HIF-2α activity irrespective of oxygen availability (Kim and Kaelin, 2003). Previously, we showed that VHL-deficient cells also relied on RC for lipid synthesis even under normoxia. Moreover, metabolic profiling of two isogenic clones that differ in pVHL expression (WT8 and PRC3) suggested that reintroduction of wild-type VHL can restore glucose utilization for lipogenesis (Metallo et al., 2012). The VHL tumor suppressor protein (pVHL) has been reported to have several functions other than the well-studied targeting of HIF. Specifically, it has been reported that pVHL regulates the large subunit of RNA polymerase (Pol) II (Mikhaylova et al., 2008), p53 (Roe et al., 2006), and the Wnt signaling regulator Jade-1. VHL has also been implicated in regulation of NF-κB signaling, tubulin polymerization, cilia biogenesis, and proper assembly of extracellular fibronectin (Chitalia et al., 2008; Kim and Kaelin, 2003; Ohh et al., 1998; Thoma et al., 2007; Yang et al., 2007). Hypoxia inactivates the α-ketoglutarate-dependent HIF prolyl hydroxylases, leading to stabilization of HIF. In addition to this well-established function, oxygen tension regulates a larger family of α-ketoglutarate-dependent cellular oxygenases, leading to posttranslational modification of several substrates, among which are chromatin modifiers (Melvin and Rocha, 2012). It is therefore conceivable that the effect of hypoxia on RC that was reported previously may be mediated by signaling mechanisms independent of the disruption of the pVHL-HIF interaction. Here we

  • demonstrate that HIF is necessary and sufficient for RC,
  • provide insights into the molecular mechanisms that link HIF to RC,
  • detected RC activity in vivo in human VHL-deficient RCC cells growing as tumors in nude mice,
  • provide evidence that the reductive phenotype of VHL-deficient cells renders them sensitive to glutamine restriction in vitro, and
  • show that inhibition of glutaminase suppresses growth of VHL-deficient cells in nude mice.

These observations lay the ground for metabolism-based therapeutic strategies for targeting HIF-driven tumors (such as RCC) and possibly the hypoxic compartment of solid tumors in general.

HIF Inactivation Is Necessary for Downregulation of Reductive Carboxylation by pVHL

(A) Expression of HIF-1 α, HIF-2α, and their target protein GLUT1 in UMRC2-derived cell lines, as indicated.

(B) Carbon atom transition map: the fate of [1-13C1] and [5-13C1]glutamine used to trace reductive carboxylation in this work (carbon atoms are represented by circles). The [1-13C1] (green circle) and [5-13C1] (red circle) glutamine-derived isotopic labels are retained during the reductive TCA cycle (bold red pathway). Metabolites containing the acetyl-CoA carbon skeleton are highlighted by dashed circles.

(C) Relative contribution of reductive carboxylation.

(D and E) Relative contribution of glucose oxidation to the carbons of indicated metabolites (D) and citrate (E). Student’s t test compared VHL-reconstituted to vector-only or to VHL mutants (Y98N/Y112N). Error bars represent SEM. Pyr, pyruvate; Lac, lactate; AcCoA, acetyl-CoA, Cit, citrate; IsoCit, isocitrate; Akg, α-ketoglutarate; Suc, succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate; Asp, aspartate; Glu, glutamate; PDH, pyruvate dehydrogenase; ME, malic enzyme; IDH, isocitrate dehydrogenase enzymes; ACO, aconitase enzymes; ACLY, ATP-citrate lyase; GLS, glutaminase.

To test the effect of HIF activation on the overall glutamine incorporation in the TCA cycle, we labeled an isogenic pair of VHL-deficient and VHL-reconstituted UMRC2 cells with [U-13C5]glutamine, which generates M4 fumarate, M4 malate, M4 aspartate, and M4 citrate isotopomers through glutamine oxidation. As seen in Figure S1B, VHL-deficient/VHL-positive UMRC2 cells exhibit similar enrichment of M4 fumarate, M4 malate, and M4 asparate (but not citrate) showing that VHL-deficient cells upregulate reductive carboxylation without compromising oxidative metabolism from glutamine. Next, we tested whether HIF inactivation by pVHL is necessary to regulate the reductive utilization of glutamine for lipogenesis. To this end, we traced the relative incorporation of [U-13C6]glucose or [5-13C1]glutamine into palmitate. Labeled carbon derived from [5-13C1]glutamine can be incorporated into fatty acids exclusively through RC, and the labeled carbon cannot be transferred to palmitate through the oxidative TCA cycle (Figure 1B, red carbons). Tracer incorporation from [5-13C1]glutamine occurs in the one carbon (C1) of acetyl-CoA, which results in labeling of palmitate at M1, M2, M3, M4, M5, M6, M7, and M8 mass isotopomers. In contrast, lipogenic acetyl-CoA molecules originating from [U-13C6]glucose are fully labeled, and the labeled palmitate is represented by M2, M4, M6, M8, M10, M12, M14, and M16 mass isotopomers. VHL-deficient control cells and cells expressing pVHL type 2B mutants exhibited high palmitate labeling from the [5-13C1]glutamine; conversely, reintroduction of wild-type or type 2C pVHL mutant (L188V) resulted in high labeling from [U-13C6]glucose (Figures 2A and 2B, box inserts highlight the heavier mass isotopomers).

hif-inactivation-is-necessary-for-downregulation-of-reductive-carboxylation-by-pvhl

hif-inactivation-is-necessary-for-downregulation-of-reductive-carboxylation-by-pvhl

Figure 2.  HIF Inactivation Is Necessary for Downregulation of Reductive Lipogenesis by pVHL

Next, to determine the specific contribution from glucose oxidation or glutamine reduction to lipogenic acetyl-CoA, we performed isotopomer spectral analysis (ISA) of palmitate labeling patterns. ISA indicates that wild-type pVHL or pVHL L188V mutant-reconstituted UMRC2 cells relied mainly on glucose oxidation to produce lipogenic acetyl-CoA, while UMRC2 cells reconstituted with a pVHL mutant defective in HIF inactivation (Y112N or Y98N) primarily employed RC. Upon disruption of the pVHL-HIF interaction, glutamine becomes the preferred substrate for lipogenesis, supplying 70%–80% of the lipogenic acetyl-CoA (Figure 2C). This is not a cell-line-specific phenomenon, but it applies to VHL-deficient human RCC cells in general; the same changes are observed in 786-O cells reconstituted with wild-type pVHL or mutant pVHL or infected with vector only as control (Figure S2). Type 2A pVHL mutants (Y112H, which retain partial HIF binding) confer an intermediate reductive phenotype between wild-type VHL (which inactivates HIF) and type 2B pVHL mutants (which are totally defective in HIF regulation) as seen in Figures 1 and ​and 2.2. Taken together, these data demonstrate that the ability of pVHL to regulate reductive carboxylation and lipogenesis from glutamine tracks genetically with its ability to bind and degrade HIF, at least in RCC cells.

HIF Is Sufficient to Induce RC from Glutamine in RCC Cells

To test the hypothesis that HIF-2α is sufficient to promote RC from glutamine, we expressed a pVHL-insensitive HIF-2α mutant (HIF-2α P405A/P531A, marked as HIF-2α P-A) in VHL-reconstituted 786-O cells (Figure 3). HIF-2α P-A is constitutively expressed in this polyclonal cell population, despite the reintroduction of wild-type VHL, reflecting a pseudohypoxia condition (Figure 3A). We confirmed that this mutant is transcriptionally active by assaying for the expression of its targets genes GLUT1, LDHA, HK1, EGLN, HIG2, and VEGF (Figures 3B and S3A). As shown in Figure 3C, reintroduction of wild-type VHLinto 786-O cells suppressed RC, whereas the expression of the constitutively active HIF-2α mutant was sufficient to stimulate this reaction, restoring the M1 enrichment of TCA cycle metabolites observed in VHL-deficient 786-O cells. Expression of HIF-2α P-A also led to a concomitant decrease in glucose oxidation, corroborating the metabolic alterations observed in glutamine metabolism (Figures 3D and 3E). Additional evidence of the HIF2α-regulation on the reductive phenotype was obtained with [U-13C5]glutamine, which generates M5 citrate, M3 fumarate, M3 malate, and M3 aspartate through RC (Figure 3F).

Our current work showed that HIF-2α is sufficient to induce the reductive program in RCC cells that express only the HIF-2α paralog, while mouse NEK cells appeared to use HIF-1α preferentially to promote RC. Together with the evidence that HIF-1α and HIF-2α may have opposite roles in tumor growth, it is possible that the cellular context dictates which paralog activates RC. It is also possible that HIF-2α adopts the RC regulatory function of HIF-1α upon deletion of the latter in RCC cells. Further studies are warranted in understanding the relative role of HIF-α paralogs in regulating RC in different cell types.

Finally, the selective sensitivity to glutaminase inhibitors exhibited by VHL-deficient cells, together with the observed RC activity in vivo, strongly suggests that reductive glutamine metabolism may fuel tumor growth. Investigating whether the reductive flux correlates with tumor hypoxia and/or contributes to the actual cell survival under low oxygen conditions is warranted. Together, our findings underscore the biological significance of reductive carboxylation in VHL-deficient RCC cells. Targeting this metabolic signature of HIF may open viable therapeutic opportunities for the treatment of hypoxic and VHL-deficient tumors.

Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer
Dowling P, Hughes DJ, Larkin AM, Meiller J, …, Clynes M
Clin Chim Acta. 2015 Feb 20;441:133-41.
http://dx.doi.org:/10.1016/j.cca.2014.12.005.

Highlights

  • Identification of a number of significant proteins and metabolites in CRC patients
  • 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase all significant
  • Intense staining for 14-3-3 epsilon in tissue specimens from CRC patients
  • Tissue 14-3-3 epsilon levels concordant with abundance in the circulation
  • Biomolecules provide insight into the biology associated with tumor development

Background: Colorectal cancer (CRC), a heterogeneous disease that is common in both men and women, continues to be one of the predominant cancers worldwide. Lifestyle, diet, environmental factors and gene defects all contribute towards CRC development risk. Therefore, the identification of novel biomarkers to aid in the management of CRC is crucial. The aim of the present study was to identify candidate biomarkers for CRC, and to develop a better understanding of their role in tumorogenesis. Methods: In this study, both plasma and tissue samples from patients diagnosed with CRC, together with non-malignant and normal controls were examined using mass spectrometry based proteomics and metabolomics approaches.
Results: It was established that the level of several biomolecules, including serotonin, gamma enolase, pyruvate kinase and members of the 14-3-3 family of proteins, showed statistically significant changes when comparing malignant versus non-malignant patient samples, with a distinct pattern emerging mirroring cancer cell energy production. Conclusion: The diagnosis and management of CRC could be enhanced by the discovery and validation of new candidate biomarkers, as found in this study, aimed at facilitating early detection and/or patient stratification together with providing information on the complex behavior of cancer cells.

Table 2 – List of proteins found to show statistically significant differences between control (n=10) and CRC (n=16; 8 stage III/8 stage IV) patient plasma samples fractionated using Proteominer beads. Information provided in the table includes accession number, discovery platform used, protein description, the number of unique peptides for quantitation, a mascot score for protein identification (confidence number), ANOVA p-values(≥0.05), fold change in protein abundance (≥2-fold) and highest/lowest mean change.

Table 3 – List of metabolites found to show statistically significant differences between control (n=8) and CRC (n=16; 8 stage III/8 stage IV) patient plasma samples. Included in the table is the Human Metabolome Database (HMDB) entry, platform used to analyse the biochemicals, biochemical name, ANOVA p-values (≥0.05), fold-change and highest/lowest mean change.

Fig.1. Box and whisker plots for: (A) M2-PK, (B) gamma enolase, (C) 14-3-3 (pan) and (D) serotonin. ELISA analysisofM2-PK, gamma enolase, serotonin and 14-3-3 (pan) in plasma samples from control (n = 20), polyps (n = 10), adenoma (n = 10), stage I/II CRC (n= 20) and stage III/IV (n= 20)patients. The figures show statistically significant p-value for various comparisons between the different sample groups. This ELISA measurement for 14-3-3 detects all known isoforms of mammalian 14-3-3 proteins (β/α, γ, ε, η, ζ/δ, θ/τ and σ).

Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer- Focusing on mitochondria
Huiqin Zhonga, Huiyong Yin
Redox Biol Apr 2015; 4: 193–199

Oxidative stress-induced lipid peroxidation has been associated with human physiology and diseases including cancer. Overwhelming data suggest that reactive lipid mediators generated from this process, such as 4-hydroxynonenal (4-HNE), are biomarkers for oxidative stress and important players for mediating a number of signaling pathways. The biological effects of 4-HNE are primarily due to covalent modification of important biomolecules including proteins, DNA, and phospholipids containing amino group. In this review, we summarize recent progress on the role of 4-HNE in pathogenesis of cancer and focus on the involvement of mitochondria: generation of 4-HNE from oxidation of mitochondria-specific phospholipid cardiolipin; covalent modification of mitochondrial proteins, lipids, and DNA; potential therapeutic strategies for targeting mitochondrial ROS generation, lipid peroxidation, and 4-HNE.

Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, hydroxyl radicals, singlet oxygen, and lipid peroxyl radicals, are ubiquitous and considered as byproducts of aerobic life [1]. Most of these chemically reactive molecules are short-lived and react with surrounding molecules at the site of formation while some of the more stable molecules diffuse and cause damages far away from their sites of generation. Overproduction of these ROS, termed oxidative stress, may provoke oxidation of polyunsaturated fatty acids (PUFAs) in cellular membranes through free radical chain reactions and form lipid hydroperoxides as primary products [2]; some of these primary oxidation products may decompose and lead to the formation of reactive lipid electrophiles. Among these lipid peroxidation (LPO) products, 4-hydroxy-2-nonenals (4-HNE) represents one of the most bioactive and well-studied lipid alkenals [3]. 4-HNE can modulate a number of signaling processes mainly through forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and membrane lipids. These properties have been extensively summarized in some excellent reviews [4], [5], [6], [7], [8], [9] and [10].

Conclusions

Lipid peroxidation-derived 4-HNE is a prototypical reactive lipid electrophile that readily forms covalent adducts with nucleophilic functional groups in macromolecule such as proteins, DNA, and lipids (Fig. 3). A body of work have shown that generation of 4-HNE macromolecule adducts plays important pathological roles in cancer through interactions with mitochondria. First of all, mitochondria are one of the most important cellular sites of 4-HNE production, presumably from oxidation of abundant PUFA-containing lipids, such as L4CL. Emerging evidence suggest that this process play a critical role in apoptosis. Secondly, in response to the toxicity of 4-HNE, mitochondria have developed a number of defense mechanisms to convert 4-HNE to less reactive chemical species and minimize its toxic effects. Thirdly, 4-HNE macromolecule adducts in mitochondria are involved in the cancer initiation and progression by modulating mitochondrial function and metabolic reprogramming. 4-HNE protein adducts have been widely studied but the mtDNA modification by lipid electrophiles has yet to emerge. The biological consequence of PE modification remains to be defined, especially in the context of cancer. Last but not the least, manipulation of mitochondrial ROS generation, lipid peroxidation, and production of lipid electrophiles may be a viable approach for cancer prevention and treatment.

K.J. Davies. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50 (4–5) (2000): 279–289. http://dx.doi.org/10.1080/713803728.1132732

Shoeb, N.H. Ansari, S.K. Srivastava, K.V. Ramana. 4-hydroxynonenal in the pathogenesis and progression of human diseases. Current Medicinal Chemistry, 21 (2) (2014):230–237 http://dx.doi.org/10.2174/09298673113209990181 23848536

J.D. West, L.J. Marnett. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chemical Research in Toxicology, 19 (2)(2006): 173–194 http://dx.doi.org/10.1021/tx050321u.16485894

Barrera, S. Pizzimenti,…, A. Lepore, et al. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxidants & Redox Signaling (2014) http://dx.doi.org/10.1089/ars.2014.6166 25365742

J.R. Roede, D.P. Jones. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 51 (5) (2010):380–390 http://dx.doi.org/10.1002/em.20553 20544880

Guéraud, M. Atalay, N. Bresgen, …, I. Jouanin, W. Siems, K. Uchida. Chemistry and biochemistry of lipid peroxidation products. Free Radical Research, 44 (10) (2010): 1098–1124 http://dx.doi.org/10.3109/10715762.2010.498477.20836659

Z.H. Chen, E. Niki. 4-hydroxynonenal (4-HNE) has been widely accepted as an inducer of oxidative stress. Is this the whole truth about it or can 4-HNE also exert protective effects? IUBMB Life, 58 (5–6) (2006): 372–373. http://dx.doi.org/10.1080/15216540600686896 16754333

Aldini, M. Carini, K.-J. Yeum, G. Vistoli. Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds. Free Radical Biology and Medicine, 69 (0) (2014): 145–156 http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.017 24456906

Fig. 2.   Catabolism of 4-HNE in mitochondria. ROS induced lipid peroxidation in IMM and OMM (outer membrane of mitochondria) leads to 4-HNE formation. In matrix, 4-HNE conjugation with GSH produces glutathionyl-HNE (GS-HNE); this process occurs spontaneously or can be catalyzed by GSTs. 4-HNE is reduced to 1,4-dihydroxy-2-nonene (DHN) catalyzed ADH or AKRs. ALDH2 catalyzes the oxidation of 4-HNE to form 4-hydroxy-2-nonenoic acid (HNA).

Role of 4-hydroxynonenal in cancer focusing on mitochondria

Role of 4-hydroxynonenal in cancer focusing on mitochondria

http://ars.els-cdn.com/content/image/1-s2.0-S2213231714001359-gr2.jpg

Role of 4-hydroxynonenal in cancer focusing on mitochondria

http://ars.els-cdn.com/content/image/1-s2.0-S2213231714001359-gr3.jpg

Fig. 3. A schematic view of 4-HNE macromolecule adducts in cancer cell. 4-HNE macromolecule adducts are involved in cancer initiation, progression, metabolic reprogramming, and cell death. 4-HNE (depicted as a zigzag line) is produced through ROS-induced lipid peroxidation of mitochondrial and plasma membranes. Biological consequences of 4-HNE adduction:

  1. reducing membrane integrity;
  2. affecting protein function in cytosol;
  3. causing nuclear and mitochondrial DNA damage;
  4. inhibiting ETC activity;
  5. activating UCPs activity;
  6. reducing TCA activity;
  7. inhibiting ALDH2 activity.

DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation.
Kelavkar UP1, Harya NS, … , Chandran U, Dhir R, O’Keefe DS.
Prostaglandins Other Lipid Mediat. 2007 Jan; 82(1-4):185-97

Fifteen (15)-lipoxygenase type 1 (15-LO-1, ALOX15), a highly regulated, tissue- and cell-type-specific lipid-peroxidating enzyme has several functions ranging from physiological membrane remodeling, pathogenesis of atherosclerosis, inflammation and carcinogenesis. Several of our findings support a possible role for 15-LO-1 in prostate cancer (PCa) tumorigenesis. In the present study, we identified a CpG island in the 15-LO-1 promoter and demonstrate that the methylation status of a specific CpG within this island region is associated with transcriptional activation or repression of the 15-LO-1 gene. High levels of 15-LO-1 expression was exclusively correlated with one of the CpG dinucleotides within the 15-LO-1 promoter in all examined PCa cell-lines expressing 15-LO-1 mRNA. We examined the methylation status of this specific CpG in microdissected high grade prostatic intraepithelial neoplasia (HGPIN), PCa, metastatic human prostate tissues, normal prostate cell lines and human donor (normal) prostates. Methylation of this CpG correlated with HGPIN, PCa and metastatic human prostate tissues, while this CpG was unmethylated in all of the normal prostate cell lines and human donor (normal) prostates that either did not display or had minimal basal 15-LO-1 expression. Immunohistochemistry for 15-LO-1 was performed in prostates from PCa patients with Gleason scores 6, 7 [(4+3) and (3+4)], >7 with metastasis, (8-10) and 5 normal (donor) individual males. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect 15-LO-1 in PrEC, RWPE-1, BPH-1, DU-145, LAPC-4, LNCaP, MDAPCa2b and PC-3 cell lines. The specific methylated CpG dinucleotide within the CpG island of the 15-LO-1 promoter was identified by bisulfite sequencing from these cell lines. The methylation status was determined by COBRA analyses of one specific CpG dinucleotide within the 15-LO-1 promoter in these cell lines and in prostates from patients and normal individuals. Fifteen-LO-1, GSTPi and beta-actin mRNA expression in BPH-1, LNCaP and MDAPCa2b cell lines with or without 5-aza-2′-deoxycytidine (5-aza-dC) and trichostatin-A (TSA) treatment were investigated by qRT-PCR. Complete or partial methylation of 15-LO-1 promoter was observed in all PCa patients but the normal donor prostates showed significantly less or no methylation. Exposure of LNCAP and MDAPCa2b cell lines to 5-aza-dC and TSA resulted in the downregulation of 15-LO-1 gene expression. Our results demonstrate that 15-LO-1 promoter methylation is frequently present in PCa patients and identify a new role for epigenetic phenomenon in PCa wherein hypermethylation of the 15-LO-1 promoter leads to the upregulation of 15-LO-1 expression and enzyme activity contributes to PCa initiation and progression.

Transcriptional regulation of 15-lipoxygenase expression by promoter methylation.
Liu C1, Xu D, Sjöberg J, Forsell P, Björkholm M, Claesson H
Exp Cell Res. 2004 Jul 1; 297(1):61-7.

15-Lipoxygenase type 1 (15-LO), a lipid-peroxidating enzyme implicated in physiological membrane remodeling and the pathogenesis of atherosclerosis, inflammation, and carcinogenesis, is highly regulated and expressed in a tissue- and cell-type-specific fashion. It is known that interleukins (IL) 4 and 13 play important roles in transactivating the 15-LO gene. However, the fact that they only exert such effects on a few types of cells suggests additional mechanism(s) for the profile control of 15-LO expression. In the present study, we demonstrate that hyper- and hypomethylation of CpG islands in the 15-LO promoter region is intimately associated with the transcriptional repression and activation of the 15-LO gene, respectively. The 15-LO promoter was exclusively methylated in all examined cells incapable of expressing 15-LO (certain solid tumor and human lymphoma cell lines and human T lymphocytes) while unmethylated in 15-LO-competent cells (the human airway epithelial cell line A549 and human monocytes) where 15-LO expression is IL4-inducible. Inhibition of DNA methylation in L428 lymphoma cells restores IL4 inducibility to 15-LO expression. Consistent with this, the unmethylated 15-LO promoter reporter construct exhibited threefold higher activity in A549 cells compared to its methylated counterpart. Taken together, demethylation of the 15-LO promoter is a prerequisite for the gene transactivation, which contributes to tissue- and cell-type-specific regulation of 15-LO expression.

mechanism of the lipoxygenase reaction

Radical mechanism of the lipoxygenase reaction pattabhiraman

Radical mechanism of the lipoxygenase reaction pattabhiraman

http://edoc.hu-berlin.de/dissertationen/pattabhiraman-shankaranarayanan-2003-11-03/HTML/pattabhiraman_html_705b7fbd.png

Position determinants of lipoxygenase reaction pattabhiraman

Position determinants of lipoxygenase reaction pattabhiraman

http://edoc.hu-berlin.de/dissertationen/pattabhiraman-shankaranarayanan-2003-11-03/HTML/pattabhiraman_html_m3642741b.jpg

Position determinants of lipoxygenase reaction

This suggests that the space inside the active site cavity plays an important role in the positional specificity (Borngräber et al., 1999). The reverse process on 12-LOX works equally well (Suzuki et al., 1994; Watanabe and Haeggstrom, 1993). However, conversion to 5-LOX by mutagenesis has not been successful. The positional determinant residues on 15-LOX were mutated to those of 5-LOX but the enzyme was inactive (Sloane et al., 1990). 15-LOX possess the ability to oxygenate 15-HpETE to form 5, 15-diHpETE. Methylation of carboxy end of the substrate increased the activity significantly. This phenomenon was hypothesised to be due to an inverse orientation of the substrate at the active site. In this case the caroboxy end may slide into the cavity as suggested by experiments with modified [page 6↓]substrates and site directed mutagenesis (Schwarz et al., 1998; Walther et al., 2001). Thus, the determinant of positional specificity is not only the volume but also the orientation of the substrate in the active site.

The N-terminal domain of the enzyme does not play a major role in the dioxygenation reaction of 12/15 lipoxygenase. N-terminal domain truncations did not impair the lipoxygenase activity. The ability of the enzyme to bind to membranes, however, is impaired in the mutants (point and truncations) of the N-ternimal domain without significant alterations to the catalytic activity (Walther et al., 2002). Mutation to Trp 181, which is localised in the catalytic domain, also impaired membrane binding function. This suggests that the C-terminal domain is responsible for the catalytic activity and a concerted action of N-terminal and C-terminal domain was necessary for effective membrane binding.

Metabolomic studies

New paradigms for metabolic modeling of human cells

Mardinoglu A, Nielsen J
Curr Opin Biotechnol. 2015 Jan 2; 34C:91-97.
http://dx.doi.org:/10.1016/j.copbio.2014

integration of genetic and biochemical knowledge

integration of genetic and biochemical knowledge

http://ars.els-cdn.com/content/image/1-s2.0-S0958166914002286-fx1.jpg

Highlights

  • We presented the timeline of generation and evaluation of global reconstructions of human metabolism.
  • We reviewed the generation of the context specific GEMs through the use of human generic GEMs.
  • We discussed the generation of multi-tissue GEMs in the context of whole-body metabolism.
  • We finally discussed the integration of GEMs with other biological networks.

Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented.

http://ars.els-cdn.com/content/image/1-s2.0-S0958166914002286-gr2.sml

Inter- and intra-tumor profiling of multi-regional colon cancer and metastasis
Kogita A, Yoshioka Y, …, Nakai T, Okuno K, Nishio K
Biochem Biophys Res Commun. 2015 Feb 27; 458(1):52-6.
http://dx.doi.org:/10.1016/j.bbrc.2015.01.064

Highlights

  • Mutation profiling of tumors of multi-regional colon cancers using targeted sequencing.
  • Formalin-fixed paraffin embedded samples were available for next-generation sequencing.
  • Different clones existed in primary tumors and metastatic tumors.
  • Muti-clonalities between intra- and inter-tumors.

Intra- and inter-tumor heterogeneity may hinder personalized molecular-target treatment that depends on the somatic mutation profiles. We performed mutation profiling of formalin-fixed paraffin embedded tumors of multi-regional colon cancer and characterized the consequences of intra- and inter-tumor heterogeneity and metastasis using targeted re-sequencing. We performed targeted re-sequencing on multiple spatially separated samples obtained from multi-regional primary colon carcinoma and associated metastatic sites in two patients using next-generation sequencing. In Patient 1 with four primary tumors (P1-1, P1-2, P1-3, and P1-4) and one liver metastasis (H1), mutually exclusive pattern of mutations was observed in four primary tumors. Mutations in primary tumors were identified in three regions; KARS (G13D) and APC (R876*) in P1-2, TP53 (A161S) in P1-3, and KRAS (G12D), PIK3CA (Q546R), and ERBB4 (T272A) in P1-4. Similar combinatorial mutations were observed between P1-4 and H1. The ERBB4 (T272A) mutation observed in P1-4, however, disappeared in H1. In Patient 2 with two primary tumors (P2-1 and P2-2) and one liver metastasis (H2), mutually exclusive pattern of mutations were observed in two primary tumors. We identified mutations; KRAS (G12V), SMAD4 (N129K, R445*, and G508D), TP53 (R175H), and FGFR3 (R805W) in P2-1, and NRAS (Q61K) and FBXW7 (R425C) in P2-2. Similar combinatorial mutations were observed between P2-1 and H2. The SMAD4 (N129K and G508D) mutations observed in P2-1, however, were nor detected in H2. These results suggested that different clones existed in primary tumors and metastatic tumor in Patient 1 and 2 likely originated from P1-4 and P2-1, respectively. In conclusion, we detected the muti-clonalities between intra- and inter-tumors based on mutational profiling in multi-regional colon cancer using next-generation sequencing. Primary region from which metastasis originated could be speculated by mutation profile. Characterization of inter- and inter-tumor heterogeneity can lead to underestimation of the tumor genomics landscape and treatment strategy of personal medicine.

Fig.1. Treatment timelines for the two patients. A) Patient 1 (a 55-year-old man) had multifocal sigmoid colon cancers, and all of which were surgically resected in their entirety (P1-1, P1-2, P1-3, and P1-4). The patient received adjuvant chemotherapy (8 courses of XELOX). Eight months later, a single liver metastasis (H1) was detected, and the patients received neoadjuvant treatment of XELOX plus bevacizumab. Thereafter, he received a partial hepatectomy. B) Patient 2 (an 84-year-old woman) had cecal and sigmoid colon cancers (P2-1 and P2-2, respectively) with a single liver metastasis (H2). She received a subtotal colectomy and subsegmental hepatectomy.

Fig. 2. Schematic representation of intra-tumor heterogeneity in two patients. A) In patient 1, primary tumor (P1-4) contains two or more subclones. The clone without the ERBB4 (T272A) mutation created the liver metastasis. B) In patient 2, primary tumor (P2-1) contains two or more subclones. The clone without the SMAD4 (N129K and G508D) mutation created the liver metastasis.

Loss of Raf-1 Kinase Inhibitor Protein Expression Is Associated With Tumor Progression and Metastasis in Colorectal Cancer

Parham MinooInti ZlobecKristi BakerLuigi TornilloLuigi TerraccianoJeremy R. Jass, and Alessandro Lugli
American Journal of Clinical Pathology, 127, 820-827
http://dx.doi.org:/10.1309/5D7MM22DAVGDT1R8(2007)

Raf-1 kinase inhibitor protein (RKIP) is known as a critical down-regulator of the mitogen-activated protein kinase signaling pathway and a potential molecular determinant of malignant metastasis. The aim of this study was to determine the prognostic significance of RKIP expression in colorectal cancer (CRC). Immunohistochemical staining for RKIP was performed on a tissue microarray comprising 1,197 mismatch repair (MMR)-proficient and 141 MMR-deficient CRCs. The association of RKIP with clinicopathologic features was analyzed. Loss of cytoplasmic RKIP was associated with distant metastasis (P = .038), higher N stage (P = .032), vascular invasion (P = .01), and worse survival (P = .001) in the MMR-proficient group. In MMR-deficient CRCs, loss of cytoplasmic RKIP was associated with distant metastasis (P = .043) and independently predicted worse survival (P = .004). Methylation analysis of 28 cases showed that loss of RKIP expression is unlikely to be due to promoter methylation.

Raf-1 kinase inhibitor protein (RKIP) is a ubiquitously expressed and highly conserved protein that belongs to the phosphatidylethanolamine-binding protein family.1,2 RKIP is present in the cytoplasm and at the cell membrane3 and appears to have multiple biologic functions that implicate spermatogenesis, neural development, cardiac function, and membrane biogenesis.4-6 RKIP has also been shown to have a role in the regulation of multiple signaling pathways. Originally, RKIP was identified as a phospholipid-binding protein and, subsequently, as an interacting partner of Raf-1 kinase that blocks mitogen-activated protein kinase (MAPK) initiated by Raf-1.7 Initial studies showed that RKIP achieves this role by competitive interference with the binding of MEK to Raf-1.8 Recently, RKIP was shown to inhibit activation of Raf-1 by blocking phosphorylation of Raf-1 by p21-activated kinase and Src family kinases.9 It has also been suggested that RKIP could be involved in regulation of apoptosis by modulating the NF-κB pathway10 and in regulation of the spindle checkpoint via Aurora B.11 RKIP has also been implicated in tumor biology. In breast and prostate cancers, ectopic expression of RKIP sensitized cells to chemotherapeutic-induced apoptosis, and reduced expression of RKIP led to resistance to chemotherapy.12 A link between RKIP and cancer was first established in prostate cancer, with RKIP showing reduced expression in prostate cancer cells and the lowest expression levels in metastatic cells, suggesting that RKIP expression is inversely associated with the invasiveness of prostate cancer.13 Restoration of RKIP expression in metastatic prostate cancer cells inhibited invasiveness of the cells in vitro and in vivo in spontaneous lung metastasis but not the growth of the primary tumor in a murine model.13

Clinicopathologic Parameters The clinicopathologic data for 1,420 patients included T stage (T1, T2, T3, and T4), N stage (N0, N1, and N2), tumor grade (G1, G2, and G3), vascular invasion (presence or absence), and survival. The distribution of these features has been described previously.18-20 For 478 patients, information on local recurrence and distant metastasis was also available.

Methylation of RKIP Methylation of RKIP promoter was examined by methylation-specific polymerase chain reaction (PCR) using an AmpliTaq Gold kit (Roche, Branchburg, NJ) as described previously.25 The primers for amplification of the unmethylated sequence were 5′-TTTAGTGATATTTTTTGAGATATGA-3′ and 3′-CACTCCCTAACCTCTAATTAACCAA-5′ and for the methylated reaction were 5′-TTTAGCGATATTTTTTGAGATACGA-3′ and 3′-GCTCCCTAACCTCTAATTAACCG- 5′. The conditions for amplification were 10 minutes at 95°C followed by 39 cycles of denaturing at 95°C for 30 seconds, annealing at 52°C for 30 seconds, and 30 seconds of extension at 72°C. The PCR products were subjected to electrophoresis on 8% acrylamide gels and visualized by SYBR gold nucleic acid gel stain (Molecular Probes, Eugene, OR). CpGenome Universal Methylated DNA (Chemicon, Temecula, CA) was used as a positive control sample for methylation. Randomization of MMR-Proficient CRCs The 1,197 MMR-proficient CRCs were randomly assigned into 2 groups consisting of 599 (group 1) and 598 (group 2) cases and matched for sex, tumor location, T stage, N stage, tumor grade, vascular invasion, and survival ❚Table 1❚. Immunohistochemical cutoff scores for RKIP expression were determined for group 1, and the association of RKIP expression and T stage, N stage, tumor grade, vascular invasion, local recurrence, distant metastasis, and 10-year survival were studied in group 2.

❚Table 1❚ Characteristics of the Randomized Mismatch Repair–Proficient Subgroups of Colorectal Cancer Cases*

Variable p
Group Gp 1 (n=599) Gp 2 (n=598) 0.235
Sex M F M F
288 (48.3) 308

(51.7)

287

(48.2)

308

(51.8)

0.82
Tumor location Right-sided 417 (70.6) 417 (71.2) Left-sided 174 (29.4) 169 (28.8)
T1 T2 T3 T4
T stage 25 (4.3) 35 (6.0) 92(15.8) 97(16.7) 375(64.2)
365(62.8)
92(15.8)
84(14.5)
0.514
N stage N0 N1 N2
289(50.7) 154(27.0) 154(26.9) 127(22.3) 120(21.0) 0.847
Tumor grade G1 G2 G3
14 (2.4) 13 (2.2) 503(86.7) 507(86.7) 63 (10.9) 65 (11.1) 0.969
Vascular invasion Presence 412 (70.9) 422 (72.1) Absence 169 (29.1) 163 (27.9) 0.643
Median survival, mo 68.0 (57.0-91.0) 76.0 (62.0-88.0) 0.59

(95% confidence interval) * Data are given as number (percentage) unless otherwise indicated.
Data were not available for all cases; percentages are based on the number of cases available for the variable, not the total number of cases in the group. Cases were assigned into groups matched for all variables listed. †
The χ2 test was used for sex, tumor location, T stage, N stage, tumor grade, and vascular invasion and log-rank test for survival analysis. P > .05 indicates that there is no difference between groups 1 and 2.
Breast and prostate cancer: more similar than different

Gail P. Risbridger1, Ian D. Davis2, Stephen N. Birrell3 & Wayne D. Tilley3
Nature Reviews Cancer 10, 205-212 (March 2010)
http://dx.doi.org:/10.1038/nrc2795

Breast cancer and prostate cancer are the two most common invasive cancers in women and men, respectively. Although these cancers arise in organs that are different in terms of anatomy and physiological function both organs require gonadal steroids for their development, and tumours that arise from them are typically hormone-dependent and have remarkable underlying biological similarities. Many of the recent advances in understanding the pathophysiology of breast and prostate cancers have paved the way for new treatment strategies. In this Opinion article we discuss some key issues common to breast and prostate cancer and how new insights into these cancers could improve patient outcomes.

Emerging field of metabolomics. Big promise for cancer biomarker identification and drug discovery
Patel S, Ahmed S.
J Pharm Biomed Anal. 2015 Mar 25; 107C:63-74.
http://DX.doi.ORG:/10.1016/j.jpba.2014.12.020

Highlights

  • Mass spectrometry, nuclear magnetic resonance and chemometrics have enabled cancer biomarker discovery.
  • Metabolomics can non-invasively identify biomarkers for diagnosis, prognosis and treatment of cancer.
  • All major types of cancers and their biomarkers discovered by metabolomics have been discussed.
  • This review sheds light on the pitfalls and potentials of metabolomics with respect to oncology.

Most cancers are lethal and metabolic alterations are considered a hallmark of this deadly disease. Genomics and proteomics have contributed vastly to understand cancer biology. Still there are missing links as downstream to them molecular divergence occurs. Metabolomics, the omic science that furnishes a dynamic portrait of metabolic profile is expected to bridge these gaps and boost cancer research. Metabolites being the end products are more stable than mRNAs or proteins. Previous studies have shown the efficacy of metabolomics in identifying biomarkers associated with diagnosis, prognosis and treatment of cancer. Metabolites are highly informative about the functional status of the biological system, owing to their proximity to organismal phenotypes. Scores of publications have reported about high-throughput data generation by cutting-edge analytic platforms (mass spectrometry and nuclear magnetic resonance). Further sophisticated statistical softwares (chemometrics) have enabled meaningful information extraction from the metabolomic data. Metabolomics studies have demonstrated the perturbation in glycolysis, tricarboxylic acid cycle, choline and fatty acid metabolism as traits of cancer cells. This review discusses the latest progress in this field, the future trends and the deficiencies to be surmounted for optimally implementation in oncology. The authors scoured through the most recent, high-impact papers archived in Pubmed, ScienceDirect, Wiley and Springer databases to compile this review to pique the interest of researchers towards cancer metabolomics.

Table.  Novel Cancer Markers Identified by Metabolomics

Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate
Jurre J Kamphorst, Michelle K Chung, Jing Fan and Joshua D Rabinowitz
Cancer & Metabolism 2014, 2:23
http://dx.doi.org:/10.1186/2049-3002-2-23

Background: Cell growth requires fatty acids for membrane synthesis. Fatty acids are assembled from 2-carbon units in the form of acetyl-CoA (AcCoA). In nutrient and oxygen replete conditions, acetyl-CoA is predominantly derived from glucose. In hypoxia, however, flux from glucose to acetyl-CoA decreases, and the fractional contribution of glutamine to acetyl-CoA increases. The significance of other acetyl-CoA sources, however, has not been rigorously evaluated. Here we investigate quantitatively, using 13C-tracers and mass spectrometry, the sources of acetyl-CoA in hypoxia. Results: In normoxic conditions, cultured cells produced more than 90% of acetyl-CoA from glucose and glutamine-derived carbon. In hypoxic cells, this contribution dropped, ranging across cell lines from 50% to 80%. Thus, under hypoxia, one or more additional substrates significantly contribute to acetyl-CoA production. 13C-tracer experiments revealed that neither amino acids nor fatty acids are the primary source of this acetyl-CoA. Instead, the main additional source is acetate. A large contribution from acetate occurs despite it being present in the medium at a low concentration (50–500 μM). Conclusions: Acetate is an important source of acetyl-CoA in hypoxia. Inhibition of acetate metabolism may impair tumor growth.

Cancer cells have genetic mutations that drive proliferation. Such proliferation creates a continuous demand for structural components to produce daughter cells [13]. This includes demand for fatty acids for lipid membranes. Cancer cells can obtain fatty acids both through uptake from extracellular sources and through de novo synthesis, with the latter as a major route by which non-essential fatty acids are acquired in many cancer types [4,5].

The first fatty acid to be produced by de novo fatty acid synthesis is palmitate. The enzyme fatty acid synthase (FAS) makes palmitate by catalyzing the ligation and reduction of 8-acetyl (2-carbon) units donated by cytosolic acetyl-CoA. This 16-carbon fatty acid palmitate is then incorporated into structural lipids or subjected to additional elongation (again using acetyl-CoA) and desaturation reactions to produce the diversity of fatty acids required by the cell.

Acetyl-CoA sits at the interface between central carbon and fatty acid metabolism. In well-oxygenated conditions with abundant nutrients, its 2-carbon acetyl unit is largely produced from glucose. First, pyruvate dehydrogenase produces acetyl-CoA from glucose-derived pyruvate in the mitochondrion, followed by ligation of the acetyl group to oxaloacetate to produce citrate. Citrate is then transported into the cytosol and cytosolic acetyl-CoA produced by ATP citrate lyase.

In hypoxia, flux from glucose to acetyl-CoA is impaired. Low oxygen leads to the stabilization of the HIF1 complex, blocking pyruvate dehydrogenase (PDH) activity via activation of HIF1-responsive pyruvate dehydrogenase kinase 1 (PDK1) [6,7]. As a result, the glucose-derived carbon is shunted towards lactate rather than being used for generating acetyl-CoA, affecting carbon availability for fatty acid synthesis.

To understand how proliferating cells rearrange metabolism to maintain fatty acid synthesis under hypoxia, multiple studies focused on the role of glutamine as an alternative carbon donor[810]. The observation that citrate M+5 labeling from U-13C-glutamine increased in hypoxia led to the hypothesis that reductive carboxylation of glutamine-derived α-ketoglutarate enables hypoxic cells to maintain citrate and acetyl-CoA production. As was noted later, though, dropping citrate levels in hypoxic cells make the α-ketoglutarate to citrate conversion more reversible and an alternative explanation of the extensive citrate and fatty acid labeling from glutamine in hypoxia is isotope exchange without a net reductive flux [11]. Instead, we and others found that hypoxic cells can at least in part bypass the need for acetyl-CoA for fatty acid synthesis by scavenging serum fatty acids [12,13].

In addition to increased serum fatty acid scavenging, we observed a large fraction of fatty acid carbon (20%–50% depending on the cell line) in hypoxic cells not coming from either glucose or glutamine. Here, we used 13C-tracers and mass spectrometry to quantify the contribution from various carbon sources to acetyl-CoA and hence identify this unknown source. We found only a minor contribution of non-glutamine amino acids and of fatty acids to acetyl-CoA in hypoxia. Instead, acetate is the major previously unaccounted for carbon donor. Thus, acetate assimilation is a route by which hypoxic cells can maintain lipogenesis and thus proliferation.

Figure 1. Percentage 13C-labeling of cytosolic acetyl-CoA can be quantified from palmitate labeling. (A) Increasing 13C2-acetyl-CoA labeling shifts palmitate labeling pattern to the right. 13C2-acetyl-CoA labeling can be quantified by determining a best fit between observed palmitate labeling and computed binomial distributions (shown on right-hand side) from varying fractions of acetyl-CoA (AcCoA) labeling. (B) Steady-state palmitate labeling from U-13C-glucose and U-13C-glutamine in MDA-MB-468 cells. (C) Percentage acetyl-CoA production from glucose and glutamine. For (B) and (C), data are means ± SD of n = 3.

Fraction palmitate M + x = (16/x)(p)x (1−p)(16−x)

We applied this approach to MDA-MB-468 cells grown in medium containing U-13C-glucose and U-13C-glutamine. The resulting steady-state palmitate labeling patterns showed multiple heavily 13C-labeled forms as well as a remaining unlabeled M0 peak (Figure 1B). The M0-labeled form results from scavenging of unlabeled serum fatty acids and can be disregarded for the purpose of determining AcCoA labeling. From the remaining labeling distribution, we calculated 87% AcCoA labeling from glucose and 6% from glutamine, with 93% collectively accounted for by these two major carbon sources (Additional file 1: Figure S1). Similar results were also obtained for HeLa and A549 cells (Figure 1C)

Figure 2. Acetyl-CoA labeling from 13C-glucose and 13C-glutamine decreases in hypoxia. (A) Steady-state palmitate labeling from U-13C-glucose and U-13C-glutamine in normoxic and hypoxic (1% O2) conditions. (B) Percentage acetyl-CoA production from glucose and glutamine in hypoxia. (C) One or more additional carbon donors contribute substantially to acetyl-CoA production in hypoxia. Abbreviations: Gluc, glucose; Gln, glutamine. Data are means ± SD of n = 3.

Figure 3.  Amino acids (other than glutamine) and fatty acids are not major sources of cytosolic acetyl-CoA in hypoxia. (A) Palmitate labeling in hypoxic (1% O2) MDA-MB-468 cells, grown for 48 h in medium where branched chain amino acids plus lysine and threonine were substituted with their respective U-13C-labeled forms. (B) Same conditions, except that glucose and glutamine only or glucose and all amino acids, were substituted with the U-13C-labeled forms. (C) Palmitate labeling in hypoxic (1% O2) MDA-MB-468 cells, grown in medium supplemented with 20 μM U-13C-palmitate for 48 h. Data are means ± SD of n = 3.

Acetate is the main additional AcCoA carbon source in hypoxia

We next investigated if hypoxic cells could activate acetate to AcCoA. Although we used dialyzed serum in our experiments and acetate is not a component of DMEM, we contemplated the possibility that trace levels could still be present or that acetate is produced as a catabolic intermediate from other sources (for example from protein de-acetylation). We cultured MDA-MB-468 cells in 1% O2 in DMEM containing U-13C-glucose and U-13C-glutamine and added increasing amounts of U-13C-acetate (Figure 4A). AcCoA labeling rose considerably with increasing U-13C-acetate concentrations, from approximately 50% to 86% with 500 μM U-13C-acetate. No significant increase in labeling of AcCoA was observed in normoxic cells following incubation with U-13C-acetate. Thus, acetate selectively contributes to AcCoA in hypoxia.

Figure 4.  The main additional AcCoA source in hypoxia is acetate. (A) Percentage 13C2-acetyl-CoA labeling quantified from palmitate labeling in hypoxic (1% O2) and normoxic MDA-MB-468 cells grown in medium with U-13C-glucose and U-13C-glutamine and additionally supplemented with indicated concentrations of U-13C-acetate. (B) Acetate concentrations in fresh 10% DFBS, DMEM, and DMEM with 10% DFBS. (C) Percentage 13C2-acetyl-CoA labeling for hypoxic (1% O2) HeLa and A549 cells. For (A) and (C), data are means ± SD of n ≥ 2. For (B), data are means ± SEM of n = 3.

Tumors require a constant supply of fatty acids to sustain cellular replication. It is thought that most cancers derive a considerable fraction of the non-essential fatty acids through de novo synthesis. This requires AcCoA with its 2-carbon acetyl group acting as the carbon donor. In nutrient replete and well-oxygenated conditions, AcCoA is predominantly made from glucose. However, tumor cells often experience hypoxia, causing limited entry of glucose-carbon into the TCA cycle. This in turn affects AcCoA production, and it has been proposed that hypoxic cells can compensate by increasing AcCoA production from glutamine-derived carbon in a pathway involving reductive carboxylation of α-ketoglutarate [810].

Irrespective of the precise net contribution of acetate in hypoxia, a remarkable aspect is that a significant contribution occurs based only on contaminating acetate (~300 μM) in the culturing medium. This is considerably less than glucose (25 mM) or glutamine (4 mM). Acetate concentrations in the plasma of human subjects have been reported in the range of 50 to 650 μM [2225], and therefore, significant acetate conversion to AcCoA may occur in human tumors. This is supported by clinical observations that 11C-acetate PET can be used to image tumors, in particular those where conventional FDG-PET typically fails [26]. Our results indicate that 11C-acetate PET could be particularly important in notoriously hypoxic tumors, such as pancreatic cancer. Preliminary results provide evidence in this direction [27].

Finally, as our measurements of fatty acid labeling reflect specifically cytosolic AcCoA, it is likely that the cytosolic acetyl-CoA synthetase ACSS2 plays an important role in the observed acetate assimilation. Accordingly, inhibition of ACSS2 merits investigation as a potential therapeutic approach.

In hypoxic cultured cancer cells, one-quarter to one-half of cytosolic acetyl-CoA is not derived from glucose, glutamine, or other amino acids. A major additional acetyl-CoA source is acetate. Low concentrations of acetate (e.g., 50–650 μM) are found in the human plasma and also occur as contaminants in typical tissue culture media. These amounts are avidly incorporated into cellular acetyl-CoA selectively in hypoxia. Thus, 11C-acetate PET imaging may be useful for probing hypoxic tumors or tumor regions. Moreover, inhibiting acetate assimilation by targeting acetyl-CoA synthetases (e.g., ACSS2) may impair tumor growth.

Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line
Barrajón-Catalán E, Taamalli A, Quirantes-Piné R, …, Micol V, Zarrouk M
J Pharm Biomed Anal. 2015 Feb; 105:156-62.
http://dx.doi.org:/10.1016/j.jpba.2014.11.048

A new differential metabolomic approach has been developed to identify the phenolic cellular metabolites derived from breast cancer cells treated with a supercritical fluid extracted (SFE) olive leaf extract. The SFE extract was previously shown to have significant antiproliferative activity relative to several other olive leaf extracts examined in the same model. Upon SFE extract incubation of JIMT-1 human breast cancer cells, major metabolites were identified by using HPLC coupled to electrospray ionization quadrupole-time-of-flight mass spectrometry (ESI-Q-TOF-MS). After treatment, diosmetin was the most abundant intracellular metabolite, and it was accompanied by minor quantities of apigenin and luteolin. To identify the putative antiproliferative mechanism, the major metabolites and the complete extract were assayed for cell cycle, MAPK and PI3K proliferation pathways modulation. Incubation with only luteolin showed a significant effect in cell survival. Luteolin induced apoptosis, whereas the whole olive leaf extract incubation led to a significant cell cycle arrest at the G1 phase. The antiproliferative activity of both pure luteolin and olive leaf extract was mediated by the inactivation of the MAPK-proliferation pathway at the extracellular signal-related kinase (ERK1/2). However, the flavone concentration of the olive leaf extract did not fully explain the strong antiproliferative activity of the extract. Therefore, the effects of other compounds in the extract, probably at the membrane level, must be considered. The potential synergistic effects of the extract also deserve further attention. Our differential metabolomics approach identified the putative intracellular metabolites from a botanical extract that have antiproliferative effects, and this metabolomics approach can be expanded to other herbal extracts or pharmacological complex mixtures.

Pancreatic cancer early detection. Expanding higher-risk group with clinical and metabolomics parameters
Shiro Urayama
World J Gastroenterol. 2015 Feb 14; 21(6): 1707–1717.
http://dx.doi.org:/10.3748/wjg.v21.i6.1707

Pancreatic ductal adenocarcinoma (PDAC) is the fourth and fifth leading cause of cancer death for each gender in developed countries. With lack of effective treatment and screening scheme available for the general population, the mortality rate is expected to increase over the next several decades in contrast to the other major malignancies such as lung, breast, prostate and colorectal cancers. Endoscopic ultrasound, with its highest level of detection capacity of smaller pancreatic lesions, is the commonly employed and preferred clinical imaging-based PDAC detection method. Various molecular biomarkers have been investigated for characterization of the disease, but none are shown to be useful or validated for clinical utilization for early detection. As seen from studies of a small subset of familial or genetically high-risk PDAC groups, the higher yield and utility of imaging-based screening methods are demonstrated for these groups. Multiple recent studies on the unique cancer metabolism including PDAC, demonstrate the potential for utility of the metabolites as the discriminant markers for this disease. In order to generate an early PDAC detection screening strategy available for a wider population, we propose to expand the population of higher risk PDAC group with combination clinical and metabolomics parameters.

Core tip: This is a summary of current pancreatic cancer cohort early detection studies and a potential approach being considered for future application. This is an area that requires heightened efforts as lack of effective treatment and screening scheme for wider population is leading this particular disease to be the second lethal cancer by 2030.

Currently, pancreatic ductal adenocarcinoma (PDAC) is the fourth major cause of cancer mortality in the United States[1]. It is predicted that 46420 new cases and 39590 deaths would result from pancreatic cancer in the United States in 2014[2]. Worldwide, there were 277668 new cases and 266029 deaths from this cancer in 2008[3]. In comparison to other major malignancies such as breast, colon, lung and prostate cancers with their respective 89%, 64%, 16%, 99% 5-year survival rate, PDAC at 6% is conspicuously low[2]. For PDAC, the only curative option is surgical resection, which is applicable in only 10%-15% of patients due to the common discovery of late stage at diagnosis[4]. In fact, PDAC is notorious for late stage discovery as evidenced by the low percentage of localized disease at diagnosis, compared to other malignancies: breast (61%), colon (40%), lung (16%), ovarian (19%), prostate (91%), and pancreatic cancer (7%) [5]. With the existing effective screening methods, the decreasing trends of cancer death rate are seen in major malignancies such as breast, prostate and colorectal cancer. In contrast, it is estimated that PDAC is expected to be surfacing as the second leading cause of cancer death by 2030[6].

With the distinct contribution of late-stage discovery and general lack of effective medical therapy, a critical approach in reversing the poor outcome of pancreatic cancer is to develop an early detection scheme for the tumor. In support of this, we see the trend that despite the poor prognosis of the disease, for those who have undergone curative resection with negative margins, the 5-year survival rate is 22% in contrast to 2% for the advanced-stage with distant metastasis[7,8]. An earlier diagnosis with tumor less than 2 cm (T1) is associated with a better 5-year survival of 58% compared to 17% for stage IIB PDAC[9]. Ariyama et al. [10] reported complete survival of 79 patients with less than 1 cm tumors after surgical resection. Furthermore, as a recent report indicates, the estimated time from the transformation to pre-metastatic growths of pancreatic cancer is approximately 15 years[11]; there is a wide potential window of opportunity to apply developing technologies in early detection of this cancer.

Current screening programs have demonstrated that the EUS evaluation can detect premalignant lesions and early cancers in certain small subset of high-risk groups. However, as the overwhelming majority of PDAC cases involve patients who develop the disease sporadically without a recognized genetic abnormality, the application of this modality for PDAC detection screening is very limited for the general adult population.

Select population based approach

Identification of a higher-PDAC-risk group: As the prevalence of PDAC in the general United States population over the age 55 is approximately 68 per 100000, a candidate discriminant test with a specificity of 98% and a sensitivity of 100% would generate 1999 false-positive test results and 68 true-positives[74]. Thus, relying on a single determinant for distinguishing the PDAC early-stage cases from the general population would necessitate a highly accurate test with a specificity of greater than 99%. More practical approach, then, would be to begin with a subset of population with a higher prevalence, and in conjunction with novel surrogate markers to curtail the at-risk subset, we could begin to identify the group with significantly increased PDAC risk for whom the endoscopic/imaging-based screening strategy could be applied.

An initial approach in selection of the screening population is to utilize selective clinical parameters that could be used to curtail the subset of the general population at increased PDAC risk. For instance, based on the epidemiological evidence, such clinical parameters include hyperglycemia or diabetes, which are noted in 50%-80% of pancreatic cancer patients [7579]. Though not encompassing all PDAC patients, this subset includes a much larger proportion of PDAC patients for whom we may select further for screening. Similarly, patients with a history of chronic pancreatitis or obesity are reported to have increased PDAC risk during their lifetime[8085].

With the recent advancement in the technology and resumed interest in the cancer-associated metabolic abnormality [89,90], application of metabolomics in the cancer field has attracted more attention [91]. Cancer-related metabolic reprogramming, Warburg effect, has been known since nearly a century ago in association with various solid tumors including PDAC [92], as cancer cells undergo energetically inefficient glycolysis even in the presence of oxygen in the environment (aerobic glycolysis)[93]. A number of common cancer mutations including Akt1, HIF (hypoxia-inducible factor), and p53 have been shown to support the Warburg effect through glycolysis and down-regulation of metabolite flux through the Krebs cycle [94101]. In PDAC, increased phosphorylation or activation of Akt1 has also been reported (illuminating on the importance of enzyme functionality)[102] as well as involvement of HIF1 in the tumor growth via effects on glycolytic process [103,104] and membrane-bound glycoprotein (MUC17) regulation [105] – reflective of activation of metabolic pathways. Further evidences of loss-of-function genetic mutations in key mitochondrial metabolic enzymes such as succinate dehydrogenase and fumarate hydratase, isocitrate dehydrogenase, phosphoglycerate dehydrogenase support carcinogenesis and the Warburg effect [106110]. Other important alternative pathways in cancer metabolism such as glutaminolysis and pyruvate kinase isoform suppression have been shown to accumulate respective upstream intermediates and reduction of associated end products such as NADPH, ribose-5-phosphate and nucleic acids [111-116]. As such, various groups have reported metabolomics biomarker applications for different cancers [117,118].

As a major organ involved in metabolic regulation in a healthy individual, pancreatic disorder such as malignancy is anticipated to influence the normal metabolism, presenting further rationale and interest in elucidating the implication of malignant transformation and PDAC development. Proteomic analysis of the pancreatic cancer cells demonstrated alteration in proteins involved in metabolic pathways including increased expression of glycolytic and reduced Krebs cycle enzymes, and accumulation of key proteins involved in glutamine metabolism, in support of Warburg effect. These in turn play significant role in nucleotide and amino acid biosynthesis required for sustaining the proliferating cancer cells[119]. Applications of sensitive mass spectrometric techniques in metabolomics study of PDAC detection biomarkers have led to identification of a set of small molecules or metabolites (or biochemical intermediates) that are potent discriminants of developing PDAC and the controls (See Figure ​1  as an example of metabolomics based analysis, allowing segregation of PDAC from benign cases). Recent reports from our group as well as others have demonstrated that specific candidate metabolites consisting of amino acids, bile acids, and a number of lipids and fatty acids – suspected to be reflective of tumor proliferation as well as many systemic response yet to be determined – were identified as potential discriminant for blood-based PDAC biomarkers[120-123]. As a further supporting data, elucidation of lipids and fatty acids as discriminant factors from PDAC and benign lesions from the cancer tissue and adjacent normal tissue has been reported recently[124].

metabolomics based analysis for PDC WJG-21-1707-g001

metabolomics based analysis for PDC WJG-21-1707-g001

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323446/bin/WJG-21-1707-g001.gif

Figure 1 Example of metabolomics based analysis, allowing segregation of pancreatic ductal adenocarcinoma from benign cases. Heat map illustration of discriminant capability of a metabolite set derived from gas chromatography and liquid chromatography/mass spectrometry …

By virtue of simultaneously depicting the multiple metabolite levels, metabolomics approach reveals various biochemical pathways that are uniquely involved in malignant conditions and has led to findings such as abnormalities of glycine and its mitochondrial biosynthetic pathway, as a potential therapeutic target in certain cancers[125]. Moreover, in combination with other systems biology approaches such as transcriptomics and proteomics, further refinement in characterization of cancer development and therapeutic targets as well as identification of potential biomarkers could be realized for PDAC. Since many enzymes in a metabolic network determine metabolites’ level and nonlinear quantitative relationship from the genes to the proteome and metabolome levels exist, a metabolome cannot be easily decomposed to a specific single marker, which will designate the cancer state[126]. Thus, in order to delineate a pathological state such as PDAC, multiple metabolomic features might be required for accurate depiction of a developing cancer. Future studies are anticipated to incorporate cancer systems’ biological knowledge, including metabolomics, for optimal designation of PDAC biomarkers, which would be utilized in conjunction with a clinical-parameter-derived population subset for establishing the PDAC screening population. Subsequently, further validation studies for the PDAC biomarkers need to be performed.

Current imaging-based detection and diagnostic methods for PDAC is effectively providing answers to clinical questions raised for patients with signs or symptoms of suspected pancreatic lesions. However, the endoscopic/imaging-based screening schemes are currently limited in applications to early PDAC detection in asymptomatic patients, aside from a small group of known genetically high-risk groups. There is a high demand for developing a method of selecting distinct subsets among the general population for implementing the endoscopic/imaging screening test effectively. Application of combinations of clinical risk parameters/factors with the developing molecular biomarkers from translational science such as metabolomics analysis brings hopes of providing us with early PDAC detection markers, and developing effective early detection screening scheme for the patients in the near future.

Serum metabolomic profiles evaluated after surgery may identify patients with estrogen receptor negative early breast cancer at increased risk of disease recurrence
Tenori L, Oakman C, Morris PG, …, Luchinat C, Di Leo A.
Mol Oncol. 2015 Jan; 9(1):128-39.
http://dx.doi.org:/10.1016/j.molonc.2014.07.012

Purpose: Metabolomics is a global study of metabolites in biological samples. In this study we explored whether serum metabolomic spectra could distinguish between early and metastatic breast cancer patients and predict disease relapse. Methods: Serum samples were analysed from women with metastatic (n = 95) and predominantly oestrogen receptor (ER) negative early stage (n = 80) breast cancer using high resolution nuclear magnetic resonance spectroscopy. Multivariate statistics and a Random Forest classifier were used to create a prognostic model for disease relapse in early patients.
Results: In the early breast cancer training set (n = 40), metabolomics correctly distinguished between early and metastatic disease in 83.7% of cases. A prognostic risk model predicted relapse with 90% sensitivity (95% CI 74.9-94.8%), 67% specificity (95% CI 63.0-73.4%) and 73% predictive accuracy (95% CI 70.6-74.8%). These results were reproduced in an independent early breast cancer set (n = 40), with 82% sensitivity, 72% specificity and 75% predictive accuracy. Disease relapse was associated with significantly lower levels of histidine (p = 0.0003) and higher levels of glucose (p = 0.01), and lipids (p = 0.0003), compared with patients with no relapse.
Conclusions: The performance of a serum metabolomic prognostic model for disease relapse in individuals with ER-negative early stage breast cancer is promising. A confirmation study is ongoing to better define the potential of metabolomics as a host and tumour-derived prognostic tool.

Figure 1 e Clusterization of serum metabolomic profiles. Discrimination between metastatic (green, n [ 95) and early (red, n [ 40) breast cancer patients using the random forest classifier. (a) CPMG; (b) NOESY1D; (c) Diffusion.

Figure 2 e Training set. Comparison between metabolomic classification and actual relapse. The receiver operator curves (ROC) and the area under the curve (AUC) scores are presented for CPMG, NOESY1D and Diffusion.

Figure 3 e Validation set. Comparison between CPMG random forest risk score metabolomic classification and actual relapse The receiver operator curve (ROC) and the area under the curve (AUC) score are presented for the CPMG analysis.

Figure 4 e Discriminant metabolites. Discriminant metabolites (p < 0.05) between profiles from early (green, n [ 80) and metastatic (red, n [ 95) breast cancer patients. Box and whisker plots: horizontal line within the box [ mean; bottom and top lines of the box [ 25th and 75th percentiles, respectively; bottom and top whiskers [ 5th and 95th percentiles, respectively. Median values (arbitrary units) are provided in the associated table, along with raw p values and p values adjusted for multiple testing. pts: patients.

Transparency in metabolic network reconstruction enables scalable biological discovery
Benjamin D Heavner, Nathan D Price
Current Opinion in Biotechnology, Aug 2015; 34: 105–109
Highlights

  • Assembling a network reconstruction can reveal knowledge gaps.
  • Building a functional metabolic model enables testable prediction.
  • Recent work has found that most models contain the same reactions.
  • Reconstruction and functional model building should be explicitly separated.

Reconstructing metabolic pathways has long been a focus of active research. Now, draft models can be generated from genomic annotation and used to simulate metabolic fluxes of mass and energy at the whole-cell scale. This approach has led to an explosion in the number of functional metabolic network models. However, more models have not led to expanded coverage of metabolic reactions known to occur in the biosphere. Thus, there exists opportunity to reconsider the process of reconstruction and model derivation to better support the less-scalable investigative processes of biocuration and experimentation. Realizing this opportunity to improve our knowledge of metabolism requires developing new tools that make reconstructions more useful by highlighting metabolic network knowledge limitations to guide future research.

metabolic network reconstruction

metabolic network reconstruction

http://ars.els-cdn.com/content/image/1-s2.0-S0958166914002250-fx1.jpg

Mapping metabolic pathways has been a focus of significant scientific efforts dating from the emergence of biochemistry as a distinct scientific field in the late 19th century [1]. This endeavor remains an important effort for at least two compelling reasons. First, cataloguing and characterizing the full range of metabolic processes across species (which because of genomics are being discovered at an incredible pace) is a fundamentally important step towards a complete understanding of our ecological environment. Second, mapping metabolic pathways in organisms — many of which can be found with specialized properties shaped by their environment — facilitates metabolic engineering to advance nascent industrial biotechnology efforts ranging from augmenting/replacing petroleum-derived chemical precursors or fuels to biopharmaceutical production [2]. However, despite laudable efforts to enable high-throughput ‘genomic enzymology’ [3•], the traditional biochemical approaches of enzyme expression, purification, and characterization remain time-intensive, capital-intensive, and labor-intensive, and have not expanded in scale like our ability to identify and characterize life genomically. Characterizing new metabolic function is further hampered by the challenge of cultivating environmental isolates in laboratory conditions [4]. Fortunately, recent efforts to leverage genome functional annotation and established knowledge of biochemistry have enabled the computational assembly of ‘draft metabolic reconstructions’ [5], which are parts lists of metabolic network components. In this context, a reconstruction is not just the information embodied in the stoichiometric matrix describing metabolic network structure, but also the associated metadata and annotation that entails an organism-specific knowledge base. Such a reconstruction can serve as the basis for making functional models amenable to mathematical simulation. Thus, a reconstruction is a bottom-up assembly of biochemical information, and a model can serve as a framework for integrating top-down information (for example, model constraints can be generated from statistically inferred gene regulatory networks [6]). Such computational approaches are significantly faster and less expensive than biochemical characterization [7]. They are also providing new resources facilitate cultivation of novel environmental isolates [8], and the scope of draft metabolic network coverage across the biome has increased much faster than wet lab characterization. If the distinction between reconstruction and model formulation can be strengthened and supported through software implementation, there is great opportunity for using both tasks to further advance rapid discovery of biological function.

The iterative process of manual curation of a draft metabolic network reconstruction to assemble a higher confidence compendium of organism-specific metabolism (a process termed ‘biocuration’ [9 and 10]) remains time-intensive and labor-intensive. Biocuration of metabolic reconstructions currently advances on a decadal time scale [11 and 12]. Thus, much research effort has focused instead on developing techniques for rapid development of models that are amenable to simulation [13 and 14]. Thousands of models have been derived from automatically assembled draft reconstructions [15], but most of these models consist of highly conserved portions of metabolism since they are propagated primarily via orthology. Though the number of models is large, they do not reflect the true diversity of cellular metabolic capabilities across different organisms [16•]. Applying the rapid and scalable process of draft network reconstruction to support and accelerate the less-scalable processes of biocuration and in vitro or in vivo experimentation remains an unrealized opportunity. The path forward should focus on increased emphasis on transparently documenting the reconstruction process and developing tools to highlight, rather than obscure, knowledge limitations that ultimately cause limitations to model predictive accuracy.

More explicit annotation of metabolic network reconstruction and model derivation steps can help direct research efforts

Testing implicit hypotheses arising from reconstruction assembly provides one opportunity for guiding experimental efforts. However, the very act of identifying ambiguous information in the literature should also be exploited to contribute to experimental efforts, independent of the choices a researcher makes in assembling a reconstruction. Preliminary steps to facilitate large-scale computational identification of biological uncertainty have been made, such as the development of the Evidence Ontology [18]. However, realizing the potential for using reconstruction assembly to highlight experimental opportunities will require a broader shift to emphasize the limits of our knowledge, rather than only the predictive power of a model that can be derived from a reconstruction. Computational reconstruction of metabolic networks provides two distinct opportunities for guiding experimental efforts even before a mathematically computable model is derived from the assembled knowledge: highlighting areas of uncertainty in the current knowledge of an organism, and introducing hypotheses of metabolic function as choices are made throughout biocuration efforts.

The subsequent process of deriving a mathematically computable model from a reconstruction provides additional opportunities for scalable hypothesis generation that could be exploited to inform experimental efforts. While stoichiometrically constrained models derived from reconstructions are ‘parameter-light’ when compared to dynamic enzyme kinetic models, they are not really ‘parameter free’ [19]. As modelers derive a model from an assembled reconstruction, they must make choices. And, like the ambiguities and choices that are made and should be highlighted in assembling a reconstruction, highlighting the choices made in deriving a model provides further opportunity for scalable hypothesis generation. Examples of choices that often arise in deriving a functional model include adding intracellular transport reactions, filling network gaps, or trimming network dead ends to improve network connectivity [20]. Researchers seeking to conduct Flux Balance Analysis (FBA) [21] or similar approaches must formulate an objective function, can include testable parameters such as ATP maintenance requirements, and can compare model predictions to designated reference phenotype observations. Each of these model-building and tuning activities presents opportunities to rapidly develop and prioritize new hypotheses of metabolic function.

The effort to computationally reconstruct biochemical knowledge to compile organism-specific reconstructions, and to derive computable models from these reconstructions, is a relatively young field of research with abundant opportunity for facilitating biological discovery of metabolic function. Judgment is required in assembling a reconstruction, and there should be careful consideration of the fact that judgment calls represent an implicit hypothesis. Making these hypotheses more explicit would help guide subsequent investigation. Bernhard Palsson and colleagues call for ‘an open discussion to define the minimal quality criteria for a genome scale reconstruction’ [16•] — an effort we fully support. We believe that such a beneficial ‘minimal quality criteria’ should be guided by the goals of reproducibility and transparency, including those aspects that can help to guide discovery of novel gene functions.

Read Full Post »

Stress and Anxiety

Writer and Curator: Larry H Bernstein, MD, FCAP

 

Introduction

This article follows immediately after two on diet and obesity and diet and exercise. The hypothalamus has been discussed in some detail, although There is more that needs to be said about glutamate receptors, which is a topic in itself. However, this material fits in place quite well.  There is a considerable amount of obesity, and exercise is limited by time and commitment.  The shrinking middle class and the working poor, and the unemployed poor as well, have a struggle to make ends meet, and with the divorce rates that we are seeing, it is stressful for a single mother to carry on a complete life as mother and caregiver, and it is not unusual to see one or both couples in a household, regardless of sex, to hold two jobs.  Students enter colleges for higher education and leave with significant debts.  Graduates with advanced degrees may have to compete with a crowd of qualified applicants for an academic position, or even for a job in technology.  In addition, there is an increase in stress related disorders in the   pre-school, elementary and middle school population.  We no longer have to read the front pages to learn that a violent act has been carried out somewhere, in some neighborhood in our great nation that has experienced a great civil war, two world wars, the Mc Carthy hearings, the Cold War, and Vietnam, and the Iraq War, all of which was accompanied by migrations, immigration, and outsourcing of jobs.  The following is another look at how we are adjusting.

 

Effectiveness of a meditation-based stress management program as an adjunct to pharmacotherapy in patients with anxiety disorder

Sang Hyuk Lee, Seung Chan Ahn, Yu Jin Lee, Tae Kyu Choi, et al.
J Psychosomatic Research 62 (2007) 189–195
http://dx.doi.org:/10.1016/j.jpsychores.2006.09.009

Objective: The objective of this study was to examine the effectiveness of a meditation-based stress management program in patients with anxiety disorder.
Methods: Patients with anxiety disorder were randomly assigned to an 8-week clinical trial of either a meditation-based stress management program or an anxiety disorder education program. The Hamilton Anxiety Rating Scale (HAM-A), the Hamilton Depression Rating Scale (HAM-D), the State–Trait Anxiety Inventory (STAI), the Beck Depression Inventory, and the Symptom Checklist- 90 — Revised (SCL-90-R) were used to measure outcome at 0, 2, 4, and 8 weeks of the program. Results: Compared to the education group, the meditation-based stress management group showed significant improvement in scores on all anxiety scales (HAM-A, P=.001; STAI state, P=.001; STAI trait, P=.001; anxiety subscale of SCL-90-R,P=.001) and in the SCL-90-R hostility subscale (P=.01). Findings on depression measures were inconsistent, with no significant improvement shown by subjects in the meditation-based stress management group compared to those in the education group. The meditation-based stress management group did not show significant improvement in somatization, obsessive–compulsive symptoms, and interpersonal sensitivity scores, or in the SCL-90-R phobic anxiety subscale compared to the education group. Conclusions: A meditation-based stress management program can be effective in relieving anxiety symptoms in patients with anxiety disorder. However, well-designed, randomized, and controlled trials are needed to scientifically prove the worth of this intervention prior to treatment.

 

Evidence and Potential Mechanisms for Mindfulness Practices and Energy Psychology for Obesity and Binge-Eating Disorder

Renee Sojcher, Susan Gould Fogerite, and Adam Perlman
Explore 2012; 8(5):271-276
http://dx.doi.org/10.1016/j.explore.2012.06.003

Obesity is a growing epidemic. Chronic stress produces endocrine and immune factors that are contributors to obesity’s etiology. These biochemical alsocan affect appetite and eating behaviors that can lead to binge-eating disorder. The inadequacies of standard care and the problem of patient noncompliance have inspired a search for alternative treatments. Proposals in the literature have called for combination therapies involving behavioral or new biological therapies. This manuscript suggests that mindbody interventions would be ideal for such combinations. Two mind body modalities, energy psychology and mindfulness meditation, are reviewed for their potential in treating weight loss, stress, and behavior modification related to binge-eating disorder.

Whereas mindfulness meditation and practices show more compelling evidence, energy psychology, in the infancy stages of elucidation, exhibits initially promising outcomes but requires further evidence-based trials. “Diets Don’t Work” has been a mantra repeated over and over in the media. In fact, in a 2006 study in which investigators compared several popular diets comprising either high carbohydrates, high protein, or high fat, they found a rapid regression of compliance after six months, to the extent that it did not matter which diet had initially been more effective. In another study, authors examined a combination of diet and exercise compared with diet alone and observed that 50% of their subjects in both groups regained the weight that they lost after one year, despite their having lost more weight with the combination therapy. Despite the failure of diet alone in most studies, strategies incorporating both diet and exercise can be effective: a Cochrane review on exercise for overweight or obesity concluded that exercise had a positive effect on body weight and cardiovascular risk factors and that this effect was enhanced by a combination of exercise with dietary interventions.

The authors of a more recent study found that the benefits of exercise in inducing weight loss may come through psychological pathways rather than through actual energy expenditure. These factors include self-regulation and self-efficacy, which may mediate the relationship between exercise and weight change. Psychological interventions, particularly behavioral therapy and CBT, have been shown to be effective, especially when combined with diet and exercise. However, these interventions are costly and require extensive clinical contact for long durations to achieve efficacy. The authors of a recent randomized controlled trial (RCT) with a three-year follow-up period looked at a new form of CBT that addresses patients’ overeating and low level of activity, as well as factors that impede weight maintenance, and found that this form of therapy did not result in improved weight maintenance. These authors concluded that CBT is not sufficiently effective in helping patients maintain their weight loss in the long term. Although 20% of people will not change their eating behaviors under stress, most do; approximately 40% will increase and 40% will decrease their eating.

The emotional eaters, who tend to increase food intake, are more likely to crave high-fat/sweet and rewarding comfort foods. The basis for this behavior is becoming understood to entail brain pathways that involve learning and memory of reward and pleasure. Habit formation and decreased cognitive control are also involved. These habits form the basis of BED. Binge eating occurs when a person eats larger amounts of food than normal in a short amount of time. It therefore involves a loss of control and is often precipitated by a range of negative emotions, such as anxiety, depression, anger, and loneliness. Overweight subjects may or may not be characterized as binge eaters.

The stress response, also known as the “fight or flight response,” involves the interaction of the autonomic nervous system, which includes the sympathetic and the parasympathetic nervous systems, the hypothalamic pituitary adrenal axis and endocrine secretion. Together, these systems comprise neuro-endocrine pathways that collaborate to maintain the body’s regulation of homeostasis. This mechanism is very effective when stress is acute, but in the case of chronic stress, the effect can be injurious to one’s physiological state. Over time, chronic exposure to stress hormones contributes to“ allostatic load.” The stress hormones released by the body, mostly cortisol, can alter the body’s fuel metabolism, especially by adipose tissue, leading to an increase in upper-body obesity. Furthermore, hormones such as leptin, ghrelin, and neuropeptide Y can affect appetite and cause changes in fat mass storage. This results in the linking of stress and obesity.

Given the limited success of conventional approaches and the new information about the psychological and physiological mechanisms underlying obesity, we propose that a specific sub-group of mind-body therapies, including energy psychology and mindfulness-based approaches, could add an important new dimension to the integrative treatment of eating disorders. Energy psychology refers to a family of therapies that are used for treating physical disorders and psychological symptoms, which includes Thought Field Therapy, Emotional Freedom Techniques (EFT), Eye Movement Desensitization and Reprocessing, and Tapas Acupressure Technique (TAT). These therapies incorporate concepts originating from non-Western healing and spiritual systems, including acupuncture, acupressure, yoga, meditation, and qigong, and they combine physical activity with mental activation on the basis of the premise that the body is composed of electrical signals or energy fields. Energy psychology has been quite controversial among psychotherapists and has been the subject of much heated debate in the literature. Nonetheless, the clinical application of these practices is growing and is beginning to be investigated for efficacy. Mindfulness-Based Eating Awareness Training (ie,MB-EAT) involves the cultivation of mindfulness, mindful eating, emotional balance, and self-acceptance.

A pilot trial of a six-week group curriculum for providing mindfulness training to obese individuals, called Mindful Eating and Living (ie,MEAL), showed significant increases in measures of mindfulness and cognitive restraint around eating and significant decreases in weight, eating disinhibition, bingeeating, depression, perceived stress, physical symptoms, negative affect ,and C-reactive protein. In a recent systematic review of eight studies, authors examined a variety of mindfulness techniques in treating eating disorders, including anorexia, bulimia, and BED. Because trial quality varied and sample sizes were small, the researchers concluded that mindfulness may be effective in treating eating disorders but that further research was needed. The authors noted, however, that all of the articles that met the study’s criterion reported positive outcomes for the mindfulness intervention. Two additional studies recently addressed the treatment of obesity with a combination of mindfulness strategies and ACT. Lillis et al. conducted a RCT on 87 subjects who had all completed at least a six-month weight loss program. Using a wait list control against treatment of the experimental group through a one-day workshop, the authors found that, compared with the control group, the experimental group showed greater improvements in obesity-related stigma, quality of life, psychological distress, and reduction of body mass in a three-month follow-up. Alberts et al. conducted an RCT on 19 participants in a 10-week dietary group treatment that examined the effect of mindfulness plus ACT on food cravings. Experimental subjects underwent an additional seven-week, manual-based mindfulness/acceptance training. The control group received information on healthy food choices. The experimental group showed significantly lower food cravings, a lower preoccupation with food in four subscales, less loss of control, and better positive outcome expectancy, as compared with the control group. There was no significant effect observed for emotional craving. The authors of both of these studies conclude that mindfulness strategies combined with acceptance are effective in reducing the behaviors that lead many obese patients to overeat. With regards to stress, mindfulness can reduce psychological factors that have been shown to contribute to obesity.

In a recent well conducted systematic review, Mars and Abbey examined 22 studies with conditions ranging from participants with Axis I disorders, various diagnosed medical disorders, and healthy subjects. Axis I disorders include a range of psychopathologies such as childhood developmental and adjustment abnormalities, adult anxiety, and mood, sleep, and sexual disorders. Subjects with BED are known to have greater comorbidity forAxis I disorders. The authors report that five studies examining Axis I disorders showed statistically significant results for an eight-week, two hours per week MBCT program in reducing psychological stress, recurring bouts of depression, and pain. They conclude that, despite some methodological difficulties in the trials, mindfulness therapy may have a positive impact on reducing stress and depression. Despite increasing public awareness of obesity’s detrimental effects on health, the conventional approaches to managing this condition have not been effective. The recommended standard care for overweight and obesity, namely diet and exercise, are for the most part ineffective in the long term. Behavioral therapy and CBT may have some effect but are costly and difficult to implement. Issues with bariatric surgery and pharmacological therapies attributable to cost and the potential for harm, as well as lack of long-term efficacy, have limited their utility.

The effectiveness of a stress coping program based on mindfulness meditation on the stress, anxiety, and depression experienced by nursing students in Korea

Yune Sik Kang, So Young Choi, Eunjung Ryu
Nurse Education Today 29 (2009) 538–543
http://dx.doi.org:/10.1016/j.nedt.2008.12.003

This study examined the effectiveness of a stress coping program based on mindfulness meditation on the stress, anxiety, and depression experienced by nursing students in Korea. A nonequivalent, control group, pre-posttest design was used. A convenience sample of 41 nursing students were randomly assigned to experimental (n=21) and control groups (n=20). Stress was measured with the PWI-SF(5-point) developed by Chang. Anxiety was measured with Spieberger’s state anxiety y inventory. Depression was measured with the Beck depression inventory. The experimental group attended 90-min sessions for eight weeks. No intervention was administered to the control group. Nine participants were excluded from the analysis because they did not complete the study due to personal circumstances, resulting in16 participants in each group for the final analysis. Results for the two groups showed

(1) a significant difference in stress scores (F=6.145,p=0.020),

(2) a significant difference in anxiety scores (F=6.985,p=0.013), and

(3) no significant difference in depression scores (t=1.986,p=0.056).

A stress coping program based on mindfulness meditation was an effective intervention for nursing students to decrease their stress and anxiety, and could be used to manage stress in student nurses. In the future, long-term studies should be pursued to standardize and detail the program, with particular emphasis on studies to confirm the effects of the program in patients with diseases, such as cancer.

 

 

Meditation and Anxiety Reduction: A Literature Review

M. M. Delmonte Clin
Psychol Rev 1985; 5: 91-102
Meditation is increasingly being practiced as a therapeutic technique. The effects of practice on psychometrically assessed anxiety levels has been extensively researched. Prospective meditators tend to report above average anxiety. In general, high anxiety levels predict a subsequent low frequency of practice. However, the evidence suggests that those who practice regularly tend to show significant decreases in anxiety. Meditation does not appear to be more effective than comparative interventions in reducing anxiety. There is evidence to suggest that hypnotizability and expectancy may both play a role in reported anxiety decrease. Certain individuals with a capacity to engage in autonomous self-absorbed relaxation, may benefit most from meditation.

 

Meta-analysis on the effectiveness of mindfulness-based stress reduction therapy on mental health of adults with a chronic disease: What should the reader not make of it?

Ernst Bohlmeijer, Rilana Prenger, ErikTaal
Letters to the Editor/J Psychosom Res 69 (2010) 613–615
http://dx.doi.org:/10.1016/j.jpsychores.2010.09.005

In a letter to the editor, Nyklíček et al. discuss the study of Bohlmeijer et al. [1]on the meta-analysis on the effectiveness of mindfulness-based stress reduction (MBSR) therapy on mental health of adults with a chronic disease. They claim that the effects of MBSR are underestimated in this meta-analysis due to the inclusion of a study using an active education support group as control group and to the omission of some subscales for which larger effect sizes have been found. We do not agree that the study using an active education support group as a control group should not have been included in the meta-analysis. It is a common procedure to include studies with various types of control groups, e.g., waiting-list, placebo, minimal interventions, or evidence-based treatment. Normally, subgroup analyses can be conducted, contrasting studies that use differen ttypes of control groups. As seven studies used a waiting-list control condition and only one study used an education support group, this subgroup comparison was not useful. However, when we conducted a meta-analysis of the seven RCTs using a waiting-list control group an overall effect size of 0.30 instead of 0.26 was found. In addition, it is often found in meta-analyses that the largest effect sizes are reported in studies that use waiting-list control groups, e.g. ,Refs.[2,3]. The fact that almost all studies included in our meta-analysis in fact used waiting-list control groups makes it unlikely that the effects of MBSR were underestimated. As to the second claim by Nyklíček e tal.that some outcomes were selectively omitted from the meta-analysis, we can state that the subscales of the POMS were included in the meta-analysis.The program that was used in our study, Comprehensive Meta-Analysis, combined the scales that measure the same outcome, e.g., anxiety in one study. So the larger effects sizes for the subscales of the POMS were included in the meta-analysis. Lastly, Nyklíčeketal. State that ‘decentering’ is not an exclusive process of MBCT but is a central feature of MBSR as well. MBCT was specifically developed for people with recurrent depression and on the basis of a thorough analysis of the role of specific cognitions in people with recurrent depression. In ouropinion, this may explain the large effect sizes that have been found in randomized controlled trials, e.g., [4]. In general, other studies have shown that integrating MBSR in behavioral therapy is a very promising strategy for enhancing the efficacy of treatments of psychological  distress[5,6]. However, more studies with different target groups are needed to answer the question as to which mindfulness-based intervention is most effective for which target group in which setting. Overall, in response to the letter to the editor by Nyklíček et al. we cannot corroborate their claim that the effects of MBSR were underestimated and have to stand with our conclusion that, on the basis of current RCTs, MBSR has small leffects on depression and anxiety in people with chronic medical diseases.

[1] BohlmeijerET, PrengerR, TaalE, CuijpersP.
The effects of mindfulness-based stress reduction therapy on the mental health of adults with a chronic medical disease: A meta-analysis.
JPsychosom Res 2010; 68:539–44.

[2]Powers MB, Zum Vörde Sive Vörding MB, Emmelkamp PMG.
Acceptance and commitment therapy: A meta-analytic review.
Psychoth Psychosom 2009; 78:73–80.

Read Full Post »

Diet and Diabetes

Writer and Curator: Larry H Bernstein, MD, FCAP 

 

Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice

Yunpeng Qi, Changtao Jiang, Jie Cheng, Kristopher W. Krausz, et al.

Biochimica et Biophysica Acta 1851 (2015) 19–29

http://dx.doi.org/10.1016/j.bbalip.2014.04.008

Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tgmice.Metabolomics analysis identified 13metabolites in bile acid synthesis including taurochenodeoxy-cholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.

Bile acid synthesis is the major pathway for catabolism of cholesterol to bile acids. In the liver, cholesterol 7α-hydroxylase (CYP7A1) is the first and rate-limiting enzyme of the bile acid biosynthetic pathway producing two primary bile acids, cholic acid (CA, 3α, 7α, 12α-OH) and chenodeoxycholic acid (CDCA, 3α, 7α-OH) in humans. Sterol-12α hydroxylase (CYP8B1) catalyzes the synthesis of CA. In mice, CDCA is converted to α-muricholic acid (α-MCA: 3α, 6β, 7α-OH) and β-muricholic acid (β-MCA: 3α, 6β, 7β-OH). Bile acids are conjugated to taurine or glycine, secreted into the bile and stored in the gallbladder. After a meal, bile acids are released into the gastrointestinal tract. In the intestine, conjugated bile acids are first de-conjugated and then 7α-dehydroxylase activity in the gut flora converts CA to deoxycholic acid (DCA: 3α, 12α), and CDCA to lithocholic acid (LCA: 3α), two major secondary bile acids in humans.

In humans, most bile acids are glycine or taurine-conjugated and CA, CDCA and DCA are the most abundant bile acids. In mice, most bile acids are taurine-conjugated and CA and α- and β-MCAs are the most abundant bile acids. Bile acids facilitate absorption of dietary fats, steroids, and lipid soluble vitamins into enterocytes and are transported via portal circulation to the liver for metabolism and distribution to other tissues and organs. About 95% of bile acids are reabsorbed in the ileum and transported to the liver to inhibit CYP7A1 and bile acid synthesis. Enterohepatic circulation of bile acids provides a negative feedback mechanism to maintain bile acid homeostasis. Alteration of bile acid synthesis, secretion and transport causes cholestatic liver diseases, gallstone diseases, fatty liver disease, diabetes and obesity.

 Bile acid synthesis

 

Bile acid synthesis. In the classic bile acid synthesis pathway, cholesterol is converted to cholic acid (CA, 3α, 7α, 12α) and chenodeoxycholic acid (CDCA, 3α, 7α). CYP7A1 is the rate-limiting enzyme and CYP8B1 catalyzes the synthesis of CA. In mouse liver, CDCA is converted to α-muricholic acid (α-MCA, 3α, 6β, 7α) and β-MCA (3α, 6β, 7β). Most bile acids in mice are taurine (T)-conjugated and secreted into bile. In the intestine, gut bacteria de-conjugate bile acids and then remove the 7α-hydroxyl group from CA and CDCA to form secondary bile acids deoxycholic acid (DCA, 3α, 12α) and lithocholic acid (LCA, 3α), respectively. T-α-MCA and T-β-MCA are converted to T-hyodeoxycholic acid (THDCA, 3α, 6α), T-ursodeoxycholic acid (TUDCA, 3α, 7β), T-hyocholic acid (THCA, 3α, 6α, 7α) and T-murideoxycholic acid (TMDCA, 3α, 6β). These secondary bile acids are reabsorbed and circulated to liver to contribute to the bile acid pool. Secondary bile acids ω-MCA (3α, 6α, 7β) and LCA are excreted into feces.

Two FXR-dependent mechanisms are known to inhibit bile acid synthesis.  In the liver bile acid-activated FXR induces a negative receptor small heterodimer partner (SHP) to inhibit trans-activation activity of hepatic nuclear factor 4α(HNF4α) and liver receptor homologue-1 (LRH-1) that bind to the bile acid response element in the CYP7A1 and CYP8B1 gene promoters (Fig. 2, Pathway 1). In the intestine, bile acids activate FXR to induce fibroblast growth factor (mouse FGF15, or human FGF19), which activates hepatic FGF receptor 4 (FGFR4) and cJun N-terminal kinase 1/2 (JNK1/2) and extracellular-regulated kinase (ERK1/2) signaling of mitogen-activated protein kinase (MAPK) pathways to inhibit trans-activation of CYP7A1/CYP8B1 gene by HNF4α (Pathway 2). Several FXR-independent cell-signaling pathways have been reported and are shown as Pathway 3 (Fig. 2). Conjugated bile acids are known to activate several protein kinase Cs (PKC) and growth factor receptors, epidermal growth factor receptor (EGFR), and insulin receptor (IR) signaling to inhibit CYP7A1/CYP8B1 and bile acid synthesis via activating the ERK1/2, p38 and JNK1/2 pathways.

 

Bile acid signaling pathways. Bile acids activate FXR, TGR5 and cell signaling pathways to inhibit CYP7A1 and CYP8B1 gene transcription.

1) Hepatic FXR/SHP pathway: bile acid activated-FXR induces SHP, which inhibits HNF4α and LRH-1 trans-activation of CYP7A1 and CYP8B1 gene transcription in hepatocytes. Bile acid response element binds HNF4α and LRH-1.

2) Intestinal FXR/FGF19/FGFR4 pathway: in the intestine, FXR induces FGF15 (mouse)/FGF19 (human), which is secreted into portal circulation to activate FGF receptor 4 (FGFR4) in hepatocytes. FGFR4 signaling stimulates JNK1/2 and ERK1/2 pathways of MAPK signaling to inhibit CYP7A1 gene transcription by phosphorylation and inhibition of HNF4α binding activity.

3) FXR-independent signaling pathways: Conjugated bile acids activate PKCs,which activate the MAPK pathways to inhibit CYP7A1. Bile acids also activate insulin receptor (IR) signaling IRS/PI3K/PDK1/AKT, possibly via activation of epidermal growth factor receptor (EGFR) signaling, MAPKs (MEK, MEKK), to inhibit CYP7A1 gene transcription. The secondary bile acid TLCA activates TGR5 signaling in Kupffer cells. TGR5 signaling may regulate CYP7A1 by an unknown mechanism. TCA activates sphingosine-1-phosphate (S1P) receptor 2 (S1PR2), which may activate AKT and ERK1/2 to inhibit CYP7A1. S1P kinase 1 (Sphk1) phosphorylates sphingosine (Sph) to S-1-P, which activates S1PR2. On the other hand, nuclear SphK2 interacts with and inhibits histone deacetylase (HDAC1/2) and may induce CYP7A1. The role of S1P, SphK2, and S1PR2 signaling in regulation of bile acid synthesis is not known.

 

When challenged with an HFD, CYP7A1-tg mice had lower body fat mass and higher lean mass compared to wild-type mice. As a platform for comprehensive and quantitative description of the set of lipid species, lipidomics was used to investigate the mechanism of this phenotype. By use of an unsupervised PCA model with the cumulative R2X 0.677 for serum and 0.593 for liver, CYP7A1-tg and wild-type mice were clearly separated based on the scores plot (Supplementary Fig. S2), indicating that these two groups have distinct lipidomic profiles. Supervised PLS-DA models were then established to maximize the difference of metabolic profiles between CYP7A1-tg and wild-type groups as well as to facilitate the screening of lipid marker metabolites (Fig. 3).

PLS-DA analysis of CYP7A1-tg and wild-type (WT)mice challenged with HFD. Based on the score plots, distinct lipidomic profiles of male CYP7A1-tg and wild-type groups were shown for serum (A) and liver samples (B). Based on the loading plots (C for serum and D for liver) the most significant ions that led to the separation between CYP7A1-tg and wild-type groups were obtained and identified as follows: 1. LPC16:0; 2. LPC18:0; 3. LPC18:1; 4. LPC 18:2; 5. PC16:0-20:4; 6. PC16:0-22:6; 7. SM16:0. (not shown)

Fig. 5. OPLS-DA highlighted thirteen markers in bile acid pathway that contribute significantly to the clustering of CYP7A1-tg and wild-type (WT) mice. Ileum bile acids are shown. (not shown)

(A) In the score plot, female CYP7A1-tg andWTmicewere well separated;

(B) using a statistically significant thresholds of variable confidence approximately 0.75 in the S-plot, a number of ions were screened out as potential markers, which were later identified as 13 bile acid metabolites, including α-MCA, TCA, CDCA, and TCDCA etc.

Our recent study of CYP7A1-tg mice revealed that increased CYP7A1 expression and enlarged bile acid pool resulted in significant improvement of lipid homeostasis and resistance to high-fed diet-induced hepatic steatosis, insulin resistance, and obesity in CYP7A1-tg mice. In this study, metabolomics and lipidomics were employed to characterize the metabolic profiles of CYP7A1-tg mice and to provide new insights into the critical role of bile acids in regulation of lipid metabolism and metabolic diseases. Lipidomics analysis of serum lipid profiles of high fat diet-fed CYP7A1-tg identified 7 lipidomic markers that were reduced in CYP7A1-tg mice compared to wild type mice. Metabolomics analysis identified 13 bile acid metabolites that were altered in CYP7A1-tg mice. In CYP7A1-tg mice, TCA and TDCA were reduced, whereas T-β-MCA was increased in the intestine compared to that of wild type mice. The decrease of serum LPC, PC, SM and CER, and 12α-hydroxylated bile acids, and increase of T-β-MCA may contribute to the resistance to diet-induced obesity and diabetes in CYP7A1-tg mice (Fig. 8).

The present metabolomics and lipidomics analysis revealed that even upon challenging with HFD, CYP7A1-tg mice had reduced lipid levels including LPC, PC, SM and CER. Metabolomics studies of human steatotic liver tissues and HFD-fed mice showed that serum and liver LPC and PC and other lipids levels were increased compared with non-steatotic livers, suggesting altered lipid metabolism contributes to non-alcoholic fatty liver disease (NAFLD). In HFD-fed CYP7A1-tg mice, reduced serum PC, LPC, SM and CER levels suggest a role for bile acids in maintaining phospholipid homeostasis to prevent NAFLD. SMs are important membrane phospholipids that interact with cholesterol in membrane rafts and regulate cholesterol distribution and homeostasis. A role for SM and CER in the pathogenesis of insulin resistance, diabetes and obesity and development of atherosclerosis has been reported. CER has a wide range of biological functions in cellular signaling such as activating protein kinase C and c-Jun N-terminal kinase (JNK), induction of β-cell apoptosis and insulin resistance. CER increases reactive oxidizing species and activates the NF-κB pathway, which induces proinflammatory cytokines, diabetes and insulin resistance. CER is synthesized from serine and palmitoyl-CoA or hydrolysis of SM by acid sphingomyelinase (ASM). HFD is known to increase CER and SM in liver. The present observation of decreased SM and CER levels in HFD-fed CYP7A1-tg mice indicated that bile acids might reduce HFD-induced increase of SM and CER. DCA activates an ASM to convert SM to CER, and Asm−/− hepatocytes are resistant to DCA induction of CER and activation of the JNK pathway [65]. In CYP7A1-tg mice, enlarged bile acid pool inhibits CYP8B1 and reduces CA and DCA levels. Thus, decreasing DCA may reduce ASM activity and SM and CER levels, and contribute to reducing inflammation and improving insulin sensitivity in CYP7A1-tg mice. It has been reported recently that in diabetic patients, serum 12α-hydroxylated bile acids are increased and correlated to insulin resistance [66].

Fig. 8. Mechanisms of anti-diabetic and anti-obesity function of bile acids in CYP7A1-tg mice. In CYP7A1-tg mice, overexpressing CYP7A1 increases bile acid pool size and reduces cholic acid by inhibiting CYP8B1. Lipidomics analysis revealed decreased serum LPC, PC, SM and CER. These lipidomic markers are increased in hepatic steatosis and NAFLD. Bile acids may reduce LPC, PC, SM and CER levels and protect against high fat diet-induced insulin resistance and obesity in CYP7A1-tgmice. Metabolomics analysis showed decreased intestinal TCA and TDCA and increased intestinal T-β-MCA in CYP7A1-tgmice.High fat diets are known to increase CA synthesis and intestinal inflammation. It is proposed that decreasing CA and  DCA synthesis may increase intestinal T-β-MCA,which antagonizes FXR signaling to increase bile acid synthesis and prevent high fat diet-induced insulin resistance and obesity. (not shown)

In conclusion,metabolomics and lipidomicswere employed to characterize the metabolic profiles of CYP7A1-tg mice, aiming to provide new insights into the mechanism of bile acid signaling in regulation of lipid metabolism and maintain lipid homeostasis. A number of lipid and bile acid markers were unveiled in this study. Decreasing of lipid markers, especially SM and CER may explain the improved insulin sensitivity and obesity in CYP7A1-tg mice. Furthermore, this study uncovered that enlarged bile acid pool size and altered bile acid composition may reduce de-conjugation by gut microbiota and increase tauroconjugated muricholic acids, which partially inhibit intestinal FXR signaling without affecting hepatic FXR signaling. This study is significant in applying metabolomics for diagnosis of lipid biomarkers for fatty liver diseases, obesity and diabetes. Increasing CYP7A1 activity and bile acid synthesis coupled to decreasing CYP8B1 and 12α-hydroxylated bile acids may be a therapeutic strategy for treating diabetes and obesity.

 

Bile acids are nutrient signaling hormones

Huiping Zhou, Phillip B. Hylemon
Steroids 86 (2014) 62–68
http://dx.doi.org/10.1016/j.steroids.2014.04.016

Bile salts play crucial roles in allowing the gastrointestinal system to digest, transport and metabolize nutrients. They function as nutrient signaling hormones by activating specific nuclear receptors (FXR, PXR, Vitamin D) and G-protein coupled receptors [TGR5, sphingosine-1 phosphate receptor 2 (S1PR2), muscarinic receptors]. Bile acids and insulin appear to collaborate in regulating the metabolism of nutrients in the liver. They both activate the AKT and ERK1/2 signaling pathways. Bile acid induction of the FXR-a target gene, small heterodimer partner (SHP), is highly dependent on the activation PKCf, a branch of the insulin signaling pathway. SHP is an important regulator of glucose and lipid metabolism in the liver. One might hypothesize that chronic low grade inflammation which is associated with insulin resistance, may inhibit bile acid signaling and disrupt lipid metabolism. The disruption of these signaling pathways may increase the risk of fatty liver and non-alcoholic fatty liver disease (NAFLD). Finally, conjugated bile acids appear to promote cholangiocarcinoma growth via the activation of S1PR2.

 

In the past, bile salts were considered to be just detergent molecules that were required for the solubilization of cholesterol in the gall bladder, promoting the digestion of dietary lipids and stimulating the absorption of lipids, cholesterol and fat-soluble vitamins in the intestines. Bile salts were also known to stimulate bile flow, promote cholesterol secretion from the liver, and have antibacterial properties. However, in 1999, three independent laboratories reported that bile acids were natural ligands for the farnesoid X receptor (FXR-α) . The recognition that bile acids activated specific nuclear receptors started a renaissance in the field of bile acid research. Since 1999, bile acids have been reported to activate other nuclear receptors (pregnane X receptor, vitamin D receptor), G protein coupled receptors [TGR5, sphingosine-1-phosphate receptor 2 (S1PR2), muscarinic receptor 2 (M2)] and cell signaling pathways (JNK1/2, AKT, and ERK1/2). Deoxycholic acid (DCA), a secondary bile acid, has also been reported to activate the epidermal growth factor receptor (EGFR). It is now clear that bile acids function as hormones or nutrient signaling molecules that help to regulate glucose, lipid, lipoprotein, and energy metabolism as well as inflammatory responses.

Bile acids are synthesized from cholesterol in liver hepatocytes, conjugated to either glycine or taurine and actively secreted via ABC transporters on the canalicular membrane into biliary bile. Conjugated bile acids are often referred to as bile salts. Bile acid synthesis represents a major output pathway of cholesterol from the body. Bile acids are actively secreted from hepatocytes via the bile salt export protein (BSEP, ABCB11) along with phospholipids by ABCB4 and cholesterol by ABCG5/ABCG8 in a fairly constant ratio under normal conditions. Bile acids are detergent molecules and form mixed micelles with cholesterol and phospholipids, which help to keep cholesterol in solution in the gall bladder. Eating stimulates the gall bladder to contract, emptying its contents into the small intestines. Bile salts are crucial for the solubilization and absorption of cholesterol and lipids as well as lipid soluble vitamins (A, D, E, and K). They activate pancreatic enzymes and form mixed micelles with lipids in the small intestines, promoting their absorption. Bile acids are efficiently recovered from the intestines, primarily the ileum, by the apical sodium dependent transporter (ASBT). Bile acids are secreted from ileocytes, on the basolateral side, by the organic solute OSTα/OSTβ transporter. Secondary bile acids, formed by 7α-dehydroxylation of primary bile acids by anaerobic gut bacteria, can be passively absorbed from the large bowel or secreted in the feces. Absorbed bile acids return to the liver via the portal blood where they are actively transported into hepatocytes primarily via the sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1). Bile acids are again actively secreted from the hepatocytes into the bile, stimulating bile flow and the secretion of cholesterol and phospholipids. Bile acids undergo enterohepatic circulation several times each day (Fig. 1). During their enterohepatic circulation approximately 500–600 mg/day are lost via fecal excretion and must be replaced by new bile acid synthesis in the liver. The bile acid pool size is tightly regulated as excess bile acids can be highly toxic to mammalian cells.

Enterohepatic circulation of bile acids

 

Enterohepatic circulation of bile acids. Bile acids are synthesized and conjugated mainly to glycine or taurine in hepatocytes. Bile acids travel to the gall bladder for storage during the fasting state. During digestion, bile acids travel to the duodenum via the common bile duct. 95% of the bile acids delivered to the duodenum are absorbed back into blood within the ileum and circulate back to the liver through the portal vein. 5% of bile acids are lost in feces.

There are two pathways of bile acid synthesis in the liver, the neutral pathway and the acidic pathway (Fig. 2). The neutral pathway is believed to be the major pathway of bile acid synthesis in humans under normal physiological conditions. The neutral pathway is initiated by cholesterol 7α-hydroxylase (CYP7A1), which is the rate-limiting step in this biochemical pathway. CYP7A1 is a cytochrome P450 monooxygenase, and the gene encoding this enzyme is highly regulated by a feed-back repressive mechanism involving the FXR-dependent induction of fibroblast growth factor 15/19 (FGF15/19) by bile acids in the intestines. FGF15/19 binds to the fibroblast growth factor receptor 4 (FGFR4)/β-Klotho complex in hepatocytes activating both the JNK1/2 and ERK1/2 signaling cascades. Activation of the JNK1/2 pathway has been reported to down-regulate CYP7A1 mRNA in hepatocytes. FGFR4 and β-Klotho mice have increased levels of CYP7A1 and upregulated bile acid synthesis. Moreover, treatment of FXR mice with a specific FXR agonist failed to repress CYP7A1 in the liver. These results support an important role of FGF15, synthesized in the intestines by activation of FXR, in the regulation of CYP7A1 and bile acid synthesis in the liver. CYP7A1 has also been reported to be down-regulated by glucagon and pro-inflammatory cytokines and up-regulated by glucose and insulin during the postprandial period.

Fig. 2. (not shown) Biosynthetic pathways of bile acids. Two major pathways are involved in bile acid synthesis. The neutral (or classic) pathway is controlled by cholesterol 7α-hydroxylase (CYP7A1) in the endoplasmic reticulum. The acidic (or alternative) pathway is controlled by sterol 27-hydroxylase (CYP27A1) in mitochondria. The sterol 12α-hydroxylase (CYP8B1) is required to synthesis of cholic acid (CA). The oxysterol 7α-hydroxylase (CYP7B1) is involved in the formation of chenodeoxycholic acid (CDCA) in acidic pathway. The neutral pathway is also able to form CDCA by CYP27A1.

The neutral pathway of bile acid synthesis produces both cholic acid (CA) and chenodeoxycholic acid (CDCA) (Fig. 2). The ratio of CA and CDCA is primarily determined by the activity of sterol 12α-hydroxylase (CYP8B1). The gene encoding CYP8B1 is also highly regulated by bile acids. Bile acids induce the gene encoding small heterodimer partner (SHP) in the liver via activation of the farnesoid X receptor (FXR-α). SHP is an orphan nuclear receptor without a DNA binding domain. It interacts with several transcription factors, including hepatocyte nuclear factor 4 (HNF4α) and liver-related homolog-1 (LRH-1), and acts as a dominant negative protein to inhibit transcription. In this regard, a liver specific knockout of LRH-1 completely abolished the expression of CYP8B1, but had little effect on CYP7A1. These results suggest that the interaction of SHP with LRH-1, caused by bile acids, may be the key regulator of hepatic CYP8B1 and the ratio of CA/CDCA. The acidic or alternative pathway of bile acid synthesis is initiated in the inner membrane of mitochondria by sterol 27-hydroxylase (CYP27A1). This enzyme also has low sterol 25-hydroxylase activity. CYP27A1 is capable of further oxidizing the 27-hydroxy group to a carboxylic acid. Unlike, CYP7A1, CYP27A1 is widely expressed in various tissues in the body where it may produce regulatory oxysterols. Even though CYP27A1 is the initial enzyme in the acidic pathway of bile acid synthesis, it may not be the rate limiting step. The inner mitochondrial membrane is very low in cholesterol content. Hence, cholesterol transport into the mitochondria appears to be the rate limiting step.

The acidic pathway of bile acid synthesis is now being viewed as an important pathway for generating regulatory oxysterols. For example, 25-hydroxy-cholesterol and 27-hydroxycholesterol are natural ligands for the liver X receptor (LXR), which is involved in regulating cholesterol and lipid metabolism. Moreover, recent studies report that 25-hydroxycholesterol, formed by CYP27A1, can be converted into 5-cholesten-3β-25-diol-3-sulfate in the liver. The sulfated 25-hydroxycholesterol is a regulator of inflammatory responses, lipid metabolism and cell proliferation, and is located in the liver. Recent evidence suggests that sulfated 25-hydroxycholesterol is a ligand for peroxisome proliferator-activated receptor gamma (PPARc), which is a major regulator of inflammation and lipid metabolism. The 7α-hydroxylation of oxysterols is catalyzed by oxysterol 7α-hydroxylase (CYP7B1). This biotransformation allows some of these oxysterols to be converted to bile acids. Finally, oxysterols generated in extrahepatic tissues can be transported to the liver and metabolized into bile acids.

Bile acids can activate several different nuclear receptors (FXR, PXR and Vitamin D) and GPCRs (TGR5, S1PR2, and [M2] Muscarinic receptor). The ability of different bile acids to activate FXR-α occurs in the following order CDCA > LCA = DCA > CA; for the pregnane X receptor (PXR) LCA > DCA > CA and the vitamin D receptor, 3-oxo-LCA > LCA > DCA > CA. LCA is the best activator of PXR and the vitamin D receptor which correlates with the hydrophobicity and toxicity of this bile acid toward mammalian cells. Activation of PXR and the vitamin D receptor induces genes encoding enzymes which metabolize LCA into a more hydrophilic and less toxic metabolite. These nuclear receptors appear to function in the protection of cells from hydrophobic bile acids. In contrast, FXR-α appears to play a much more extensive role in the body by regulating bile acid synthesis, transport, and enterohepatic circulation. Moreover, FXR-α also participates in the regulation of glucose, lipoprotein and lipid metabolism in the liver as well as a suppressor of inflammation in the liver and intestines.

TGR5, also referred to as membrane-type bile acid receptor (MBAR), was the first GPCR to be reported to be activated by bile acids in the order LCA > DCA > CDCA > CA. TGR5 is a Gas type receptor which activates adenyl cyclase activity increasing the rate of the synthesis of c-AMP. TGR5 is widely expressed in human tissues, including: intestinal neuroendocrine cells, gall bladder, spleen, brown adipose tissue, macrophages and cholangiocytes, but not hepatocytes. TGR5 may play a role in various physiological processes in the body. TGR5 appears to be important in regulating energy metabolism. It has been postulated that bile acids may activate TGR5 in brown adipose tissue, activating type 2-iodothyroxine deiodinase and leading to increased levels of thyroid hormone and stimulation of energy metabolism. Moreover, TGR5 has been reported to promote the release of glucagon-like peptide-1 release from neuroendocrine cells, which increases insulin release in the pancreas. These results suggest that TGR5 may play a role in glucose homeostasis in the body. TGR5 is a potential target for drug development for treating type 2 diabetes and other metabolic disorders.

Interrelationship between sphingosine 1-phosphate receptor 2 and the insulin signaling pathway

 

Interrelationship between sphingosine 1-phosphate receptor 2 and the insulin signaling pathway in regulating hepatic nutrient metabolism. S1PR2, sphingosine 1-phosphate receptor 2; Src, Src Kinase; EGFR, epidermal growth factor receptor; PPARa, peroxisome proliferator-activated receptor alpha; NTCP, Na+/taurocholate cotransporting polypeptide; BSEP, bile salt export pump; PC, phosphotidylcholine; PECK, phosphoenolpyruvate carboxykinase; G6Pase, glucose-6-phosphatase; PDK1, phosphoinositide-dependent protein kinase 1; AKT, protein kinase B; SREBP, sterol regulatory element-binding protein; PKCf, protein kinase C zeta; FXR, farnesoid X receptor; SHP, small heterodimeric partner; MDR3, phospholipid transporter (ABCB4); GSK3b, glycogen synthase kinase 3 beta.

 

Both unconjugated and conjugated bile acids activate the insulin signaling (AKT) and ERK1/2 pathways in hepatocytes. Interesting, insulin and bile acids both activated glycogen synthase activity to a similar extent in primary rat hepatocytes. Moreover, the addition of both insulin and bile acids to the culture medium resulted in an additive effect on activation of glycogen synthase activity in primary hepatocytes. Infusion of taurocholate (TCA) into the chronic bile fistula rat rapidly activated the AKT and ERK1/2 signaling pathway and glycogen synthase activity. In addition, there was a rapid down-regulation of the gluconeogenic genes, PEP carboxykinase (PEPCK) and glucose-6-phophatase (G-6-Pase) and a marked up-regulation of SHP mRNA in these sample livers. These results suggest that TCA functions much like insulin to regulate hepatic glucose metabolism both in vitro and in vivo.

It has been reported that PKCζ phosphorylates FXR-α and may allow for its activation of target gene expression. In contrast, phosphorylation of FXR-α by AMPK inhibits the ability of FXR to induce target genes. PKCζ has been reported to be important for the translocation of the bile acid transporters NTCP (SLC10A1) and BSEP (ABC B11) to the basolateral and canalicular membranes, respectively. Finally, it has been recently reported that PKCζ phosphorylates SHP allowing both to translocate to the nucleus and down-regulate genes via epigenetic mechanisms. In total, these results all suggest that the insulin signaling pathway is an important regulator of FXR-α activation and bile acid signaling in the liver.

The activation of the insulin signaling pathway and FXR-α appear to collaborate in the coordinate regulation of glucose, bile acid and lipid metabolism in the liver. SHP, an FXR target gene, is an important pleotropic regulator of multiple metabolic pathways in the liver (Fig. 3). The S1PR2 appears to be an important regulator of hepatic lipid metabolism as S1PR2 mice rapidly (2 weeks) develop overt fatty livers on a high fat diet as compared to wild type mice (unpublished data). It is well established that inflammation and the synthesis of inflammatory cytokines i.e. TNFα inhibit insulin signaling by activation of the JNK1/2 signaling pathway, which phosphorylates insulin receptor substrate 1. Inflammation is believed to be an important factor in the development of type 2 diabetes and fatty liver disease. A Western diet is correlated with low grade chronic inflammation and insulin resistance. Inhibition of the insulin signaling pathway may decrease the ability of bile acids to activate FXR-α, induce SHP and other FXR target genes, leading to an increased risk of fatty liver and non-alcoholic fatty liver disease (NAFLD).

There appears to be extensive interplay between bile salts and insulin signaling in the regulation of nutrient metabolism in both the intestines and liver. Bile salts play a key role in the solubilization and absorption of nutrients from the intestines. The absorption of nutrients stimulates the secretion of insulin from the pancreas. Moreover, bile acids may also stimulate the secretion of insulin by activating TGR5 in intestinal neuroendocrine cells resulting in the secretion of glucagon-like peptide-1. In the liver, bile salts and insulin both activate the AKT and ERK1/2 signaling pathways which yields a stronger signal than either alone. The activation of PKCζ, a branch of the insulin signaling pathway, is required for the optimal induction of FXR target genes and the regulation of the cellular location of bile acid transporters

 

Fruit and vegetable consumption and risk of type 2 diabetes mellitus: A dose-response meta-analysis of prospective cohort studies

  1. Wu, D. Zhang, X. Jiang, W. Jiang
    Nutrition, Metabolism & Cardiovascular Diseases (2015) 25, 140-147
    http://dx.doi.org/10.1016/j.numecd.2014.10.004

Background and aims: We conducted a dose-response meta-analysis to summarize the evidence from prospective cohort studies regarding the association of fruit and vegetable consumption with risk of type 2 diabetes mellitus (T2DM). Methods and results: Pertinent studies were identified by searching Embase and PubMed through June 2014. Study-specific results were pooled using a random-effect model. The dose-response relationship was assessed by the restricted cubic spline model and the multivariate random-effect meta-regression. We standardized all data using a standard portion size of 106 g. The Relative Risk (95% confidence interval) [RR (95% CI)] of T2DM was 0.99 (0.98-1.00) for every 1 serving/day increment in fruit and vegetable (FV) (P < 0.18), 0.98 (0.95-1.01) for vegetable (P < 0.12), and 0.99 (0.97-1.00) for fruit (P < 0.05). The RR (95%CI) of T2DM was 0.99 (0.97-1.01), 0.98 (0.96-1.01), 0.97 (0.93-1.01), 0.96 (0.92-1.01), 0.96 (0.91-1.01) and 0.96 (0.91-1.01) for 1, 2, 3, 4, 5 and 6 servings/day of FV (P for non-linearity < 0.44). The T2DM risk was 0.96 (0.95-0.99), 0.94 (0.90-0.98), 0.94 (0.89-0.98), 0.96 (0.91-1.01), 0.98 (0.92-1.05) and 1.00 (0.93-1.08) for 1, 2, 3, 4, 5 and 6 servings/day of vegetable (P for non-linearity < 0.01). The T2DM risk was 0.95 (0.93-0.97), 0.91 (0.89-0.94), 0.88 (0.85-0.92), 0.92 (0.88-0.96) and 0.96 (0.92-1.01) for 0.5, 1, 2, 3 and 4 servings/day of fruit (P for non-linearity < 0.01). Conclusions: Two-three servings/day of vegetable and 2 servings/day of fruit conferred a lower risk of T2DM than other levels of vegetable and fruit consumption, respectively.

dose-response analysis between total fruit and vegetable consumption and risk of type 2 diabetes mellitus

 

The dose-response analysis between total fruit and vegetable consumption and risk of type 2 diabetes mellitus. The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval.

 

Healthy behaviours and 10-year incidence of diabetes: A population cohort study

G.H. Long , I. Johansson , O. Rolandsson , …, E. Fhärm, L.Weinehall, et al.
Preventive Medicine 71 (2015) 121–127
http://dx.doi.org/10.1016/j.ypmed.2014.12.013

Objective. To examine the association between meeting behavioral goals and diabetes incidence over 10 years in a large, representative Swedish population. Methods. Population-based prospective cohort study of 32,120 individuals aged 35 to 55 years participating in a health promotion intervention in Västerbotten County, Sweden (1990 to 2013). Participants underwent an oral glucose tolerance test, clinical measures, and completed diet and activity questionnaires. Poisson regression quantified the association between achieving six behavioral goals at baseline – body mass index (BMI) < 25 kg/m2, moderate physical activity, non-smoker, fat intake  < 30% of energy, fibre intake ≥15 g/4184 kJ and alcohol intake ≤ 20 g/day – and diabetes incidence over 10 years. Results. Median interquartile range (IQR) follow-up time was 9.9 (0.3) years; 2211 individuals (7%) developed diabetes. Only 4.4% of participants met all 6 goals (n = 1245) and compared to these individuals, participants meeting 0/1 goals had a 3.74 times higher diabetes incidence (95% confidence interval (CI) = 2.50 to 5.59), adjusting for sex, age, calendar period, education, family history of diabetes, history of myocardial infarction and long-term illness. If everyone achieved at least four behavioral goals, 14.1% (95% CI: 11.7 to 16.5%) of incident diabetes cases might be avoided. Conclusion. Interventions promoting the achievement of behavioral goals in the general population could significantly reduce diabetes incidence.

 

Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): A population based study

Shira Zelber-Sagi, Dorit Nitzan-Kaluski, Rebecca Goldsmith, et al.
Journal of Hepatology 47 (2007) 711–717
http://dx.doi.org:/10.1016/j.jhep.2007.06.020

Background/Aims: Weight loss is considered therapeutic for patients with NAFLD. However, there is no epidemiological evidence that dietary habits are associated with NAFLD. Dietary patterns associated with primary NAFLD were investigated. Methods: A cross-sectional study of a sub-sample (n = 375) of the Israeli National Health and Nutrition Survey. Exclusion criteria were any known etiology for secondary NAFLD. Participants underwent an abdominal ultrasound, biochemical tests, dietary and anthropometric evaluations. A semi-quantitative food-frequency questionnaire was administered. Results: After exclusion, 349 volunteers (52.7% male, mean age 50.7 ± 10.4, 30.9% primary NAFLD) were included. The NAFLD group consumed almost twice the amount of soft drinks (P = 0.03) and 27% more meat (P < 0.001). In contrast, the NAFLD group consumed somewhat less fish rich in omega-3 (P = 0.056). Adjusting for age, gender, BMI and total calories, intake of soft drinks and meat was significantly associated with an increased risk for NAFLD (OR = 1.45, 1.13–1.85 95% CI and OR = 1.37, 1.04–1.83 95% CI, respectively). Conclusions: NAFLD patients have a higher intake of soft drinks and meat and a tendency towards a lower intake of fish rich in omega-3. Moreover, a higher intake of soft drinks and meat is associated with an increased risk of NAFLD, independently of age, gender, BMI and total calories.

 

The association between types of eating behavior and dispositional mindfulness in adults with diabetes. Results from Diabetes MILES. The Netherlands

Sanne R. Tak, Christel Hendrieckx, Giesje Nefs, Ivan Nyklícek, et al.
Appetite 87 (2015) 288–295
http://dx.doi.org/10.1016/j.appet.2015.01.006

Although healthy food choices are important in the management of diabetes, making dietary adaptations is often challenging. Previous research has shown that people with type 2 diabetes are less likely to benefit from dietary advice if they tend to eat in response to emotions or external cues. Since high levels of dispositional mindfulness have been associated with greater awareness of healthy dietary practices in students and in the general population, it is relevant to study the association between dispositional mindfulness and eating behavior in people with type 1 or 2 diabetes. We analyzed data from Diabetes MILES – The Netherlands, a national observational survey in which 634 adults with type 1 or 2 diabetes completed the Dutch Eating Behavior Questionnaire (to assess restrained, external and emotional eating behavior) and the Five Facet Mindfulness Questionnaire-Short Form (to assess dispositional mindfulness), in addition to other psychosocial measures. After controlling for potential confounders, including  demographics, clinical variables and emotional distress, hierarchical linear regression analyses showed that higher levels of dispositional mindfulness were associated with eating behaviors that were more restrained (β = 0.10) and less external (β = −0.11) and emotional (β = −0.20). The mindfulness subscale ‘acting with awareness’ was the strongest predictor of both external and emotional eating behavior, whereas for emotional eating, ‘describing’ and ‘being non-judgmental’ were also predictive. These findings suggest that there is an association between dispositional mindfulness and eating behavior in adults with type 1 or 2 diabetes. Since mindfulness interventions increase levels of dispositional mindfulness, future studies could examine if these interventions are also effective in helping people with diabetes to reduce emotional or external eating behavior, and to improve the quality of their diet.

 

Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome

Ali Abid, Ola Taha, William Nseir, Raymond Farah, Maria Grosovski, Nimer Assy
Journal of Hepatology 51 (2009) 918–924
http://dx.doi.org:/10.1016/j.jhep.2009.05.033

Background/Aims: The independent role of soft drink consumption in non-alcoholic fatty liver disease (NAFLD) patients remains unclear. We aimed to assess the association between consumption of soft drinks and fatty liver in patients with or without metabolic syndrome. Methods: We recruited 31 patients (age: 43 ± 12 years) with NAFLD and risk factors for metabolic syndrome, 29 patients with NAFLD and without risk factors for metabolic syndrome, and 30 gender- and age-matched individuals without NAFLD. The degree of fatty infiltration was measured by ultrasound. Data on physical activity and intake of food and soft drinks were collected during two 7-day periods over 6 months using a food questionnaire. Insulin resistance, inflammation, and oxidant–antioxidant markers were measured.
Results: We found that 80% of patients with NAFLD had excessive intake of  soft drink beverages (>500 cm3/day) compared to 17% of healthy controls (p < 0.001). The NAFLD group consumed five times more carbohydrates from soft drinks compared to healthy controls (40% vs. 8%, p < 0.001). Seven percent of patients consumed one soft drink per day, 55% consumed two or three soft drinks per day, and 38% consumed more than four soft drinks per day for most days and for the 6-month period. The most common soft drinks were Coca-Cola (regular: 32%; diet: 21%) followed by fruit juices (47%). Patients with NAFLD with metabolic syndrome had similar malonyldialdehyde, paraoxonase, and C-reactive protein (CRP) levels but higher homeostasis model assessment (HOMA) and higher ferritin than NAFLD patients without metabolic syndrome (HOMA: 8.3 ± 8 vs. 3.7 ± 3.7 mg/dL, p < 0.001; ferritin: 186 ± 192 vs. 87 ± 84 mg/dL, p < 0.01). Logistic regression analysis showed that soft drink consumption is a strong predictor of fatty liver (odds ratio: 2.0; p < 0.04) independent of metabolic syndrome and CRP level. Conclusions: NAFLD patients display higher soft drink consumption independent of metabolic syndrome diagnosis. These findings might optimize NAFLD risk stratification.

 

Dietary predictors of arterial stiffness in a cohort with type 1 and type 2 diabetes

K.S. Petersen, J.B. Keogh, P.J. Meikle, M.L. Garg, P.M. Clifton
Atherosclerosis 238 (2015) 175-181
http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.012

Objective: To determine the dietary predictors of central blood pressure, augmentation index and pulse wave velocity (PWV) in subjects with type 1 and type 2 diabetes. Methods: Participants were diagnosed with type 1 or type 2 diabetes and had PWV and/or pulse wave analysis performed. Dietary intake was measured using the Dietary Questionnaire for Epidemiological Studies Version 2 Food Frequency Questionnaire. Serum lipid species and carotenoids were measured, using liquid chromatography electrospray ionization- tandem mass spectrometry and high performance liquid chromatography, as biomarkers  of dairy and vegetable intake, respectively. Associations were determined using linear regression adjusted for potential confounders. Results: PWV (n = 95) was inversely associated with reduced fat dairy intake (β = -0.01; 95% CI -0.02, -0.01; p = 0 < 0.05) in particular yoghurt consumption (β = 0.04; 95% CI -0.09, -0.01; p = 0 < 0.05) after multivariate adjustment. Total vegetable consumption was negatively associated with PWV in the whole cohort after full adjustment (β =0.04; 95% CI -0.07, -0.01; p < 0.05). Individual lipid species, particularly those containing 14:0, 15:0, 16:0, 17:0 and 17:1 fatty acids, known to be of ruminant origin, in lysophosphatidylcholine, cholesterol ester, diacylglycerol, phosphatidylcholine, sphingomyelin and triacylglycerol classes were positively associated with intake of full fat dairy, after adjustment for multiple comparisons. However, there was no association between serum lipid species and PWV. There were no dietary predictors of central blood pressure or augmentation index after multivariate adjustment. Conclusion: In this cohort of subjects with diabetes reduced fat dairy intake and vegetable consumption were inversely associated with PWV. The lack of a relationship between serum lipid species and PWV suggests that the fatty acid composition of dairy may not explain the beneficial effect.

In this cohort with type 1 and type 2 diabetes there was an inverse association between reduced fat dairy intake, in particular yoghurt consumption, and PWV, which persisted after multivariate adjustment. Serum lipid species, known to be of ruminant origin, were positively associated with full fat dairy consumption; however there was no association between these lipid species and PWV. In addition, higher vegetable intake was also associated with lower PWV. There were no dietary predictors of central blood pressure or augmentation index identified in this cohort.

In this study there was no relationship between augmentation index and PWV, which has been previously reported. Augmentation index is not a direct measure of arterial stiffness and is influenced by the timing and magnitude of the wave reflection. In contrast, PWV is a robust measure of arterial stiffness as it is determined by measuring the velocity of the waveform between the carotid and femoral arteries. Previously, it has been shown that in a population with diabetes PWV was elevated compared with healthy controls, however augmentation index was not different. Lacy et al.  concluded that augmentation index is not a reliable measure of arterial stiffness in people with diabetes. This may explain why we did not see an association between augmentation index and dietary intake, despite seeing correlations with PWV.

 

Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway

Juan Huang, Kaipeng Huang, Tian Lan, Xi Xie, .., Peiqing Liu, Heqing Huang
Molecular and Cellular Endocrinology 365 (2013) 231–240
http://dx.doi.org/10.1016/j.mce.2012.10.024

Curcumin, a major polyphenol from the golden spice Curcuma longa commonly known as turmeric, has been recently discovered to have renoprotective effects on diabetic nephropathy (DN). However, the mechanisms underlying these effects remain unclear. We previously demonstrated that the sphingosine kinase 1-sphingosine 1-phosphate (SphK1-S1P) signaling pathway plays a pivotal role in the pathogenesis of DN. This study aims to investigate whether the renoprotective effects of curcumin on DN are associated with its inhibitory effects on the SphK1-S1P signaling pathway. Our results demonstrated that the expression and activity of SphK1 and the production of S1P were significantly down-regulated by curcumin in diabetic rat kidneys and glomerular mesangial cells (GMCs) exposed to high glucose (HG). Simultaneously, SphK1-S1P-mediated fibronectin (FN) and transforming growth factor-beta 1 (TGF-b1) overproduction were inhibited. In addition, curcumin dose dependently reduced SphK1 expression and activity in GMCs transfected with SphKWT and significantly suppressed the increase in SphK1-mediated FN levels. Furthermore, curcumin inhibited the DNA-binding activity of activator protein 1 (AP-1), and c-Jun small interference RNA (c-Jun-siRNA) reversed the HG-induced up-regulation of SphK1. These findings suggested that down-regulation of the SphK1-S1P pathway is probably a novel mechanism by which curcumin improves the progression of DN. Inhibiting AP-1 activation is one of the therapeutic targets of curcumin to modulate the SphK1-S1P signaling pathway, thereby preventing diabetic renal fibrosis.

The creation of the STZ-induced DN model relies on the level and continuous cycle of high blood glucose in vivo. Long-term hyperglycemia induces significant structural changes in the kidney, including glomerular hypertrophy, GBM thickening, and later glomerulosclerosis and tubulointerstitial fibrosis, leading to microalbuminuria and elevated Cr levels. These effects usually occur at around 8–12 weeks after diabetes formation. In the current study, the experimental diabetic model was induced by a single intraperitoneal injection of STZ (60 mg/kg). When the experiment was terminated at 12 weeks, FBG, KW/BW, BUN, Cr, and UP 24 h were significantly increased and body weight was remarkably decreased in the STZ-induced diabetic rats compared with those in the normal control group. Furthermore, PAS staining of the kidneys revealed the induction of glomerular hypertrophy, mesangial matrix expansion, and increased regional adhesion of the glomerular tuft to the Bowman’s capsule in the diabetic rats. This finding indicated the emergence of the diabetic renal injury model characterized by renal hypertrophy, glomerulus damage, and renal dysfunction. As the limited water solubility of curcumin, various methods such as heat treatment, mild alkali and sodium carboxymethyl cellulose are used to increase the solubility of curcumin before administration. Based on our previous study, we employed 1% sodium carboxymethyl cellulose as the vehicle to solubilize curcumin. Compared with the diabetic group, curcumin treatment slightly reduced FBG level and significantly decreased KW/BW, BUN, Cr, and UP 24 h. Moreover, curcumin remarkably improved glomerular pathological changes in the diabetic kidneys. Consistent with previous studies, the current results demonstrated that curcumin prominently ameliorated renal function and renal parenchymal alterations in the diabetic renal injury model. Previous studies revealed that the amelioration of renal dysfunction in diabetes by curcumin was partly related to its function in inhibiting inflammatory injury. Based on these findings, the current experiment further explored whether the renoprotective effects of curcumin are associated with the regulation of the SphK1-S1P signaling pathway.

S1P is a polar sphingolipid metabolite acting as an extracellular mediator and an intracellular second messenger. Ample evidence proves that S1P participates in cell growth, proliferation, migration, adhesion, molecule expression, and angiogenesis. The formation of S1P is catalyzed by SphK1. Recently, the SphK1-S1P signaling pathway has gained considerable attention because of its potential involvement in the progression of DN. Hyperglycemia, AGE, and oxidative stress can activate SphK1 and can increase the intracellular level of S1P. Geoffroy et al. (2004) reported that the treatment of cells with low AGE concentration increases SphK activity and S1P production, thereby and S1P content were significantly increased simultaneously with the up-regulated expression of FN and TGF-β1 (mRNA and protein) in the diabetic rat kidneys. These findings indicated the activation of the SphK1-S1P signaling pathway and the appearance of pathological alterations, including ECM accumulation. After curcumin treatment for 12 weeks, elevations of the said indexes were significantly inhibited. HG remarkably activated the SphK1-S1P signaling pathway and increased FN and TGF-β1 expressions in GMCs. Curcumin dramatically suppressed the SphK1-S1P pathway as well as FN and TGF-β1 levels in a dose-dependent manner. Overall, these results indicated that curcumin ameliorated the pathogenic progression of DN by inhibiting the activation of the SphK1-S1P signaling pathway, resulting in the down-regulation of TGF-β1 and the subsequent reduction of ECM accumulation.

SphK1 expression is mediated by a novel AP-1 element located within the first intron of the human SphK1 gene. AP-1 sites are also found in rat SphK1 promoter from NCBI. Numerous studies indicated that curcumin can inhibit the activity of AP-1 and is widely used as an AP-1 inhibitor. Therefore, further elucidating the link between the inhibition of the SphK1-S1P signaling pathway by curcumin and the suppression of AP-1 activity is important. The data showed that treatment with c-Jun-siRNA significantly down-regulated the basal levels of SphK1 expression. Thus, inhibiting AP-1 activity is one of the therapeutic targets of curcumin in modulating the SphK1-S1P signaling pathway, thereby inhibiting diabetic renal fibrosis.

In summary, curcumin inhibited SphK1 expression and activity, reduced S1P content, and effectively inhibited increased FN and TGF-β1 expressions mediated by the SphK1-S1P signaling pathway. Moreover, the inhibitory effect of curcumin on SphK1-S1P was independent of its hypoglycemic and anti-oxidant roles and might be closely related to the inhibition of AP-1 activity. Our findings suggested that the SphK1-S1P pathway might be a novel mechanism by which curcumin attenuates renal fibrosis and ameliorates DN. In addition, the present study provides further experimental evidence for the clinical application and new drug exploration of curcumin.

 

Antidiabetic Activity of Hydroalcoholic Extracts of Nardostachys jatamansi in Alloxan-induced Diabetic Rats

  1. A. Aleem, B. Syed Asad, Tasneem Mohammed, et al.
    British Journal of Medicine & Medical Research 4(28): 4665-4673, 2014

A review of literature indicates that diabetes mellitus was fairly well known and well conceived as an entity in India with complications like angiopathy, retinopathy, nephropathy, and causing neurological disorders. The antidiabetic study was carried out to estimate the anti-hyperglycemic potential of Nardostachys Jatamansi rhizome’s hydroalcoholic extracts in alloxan induced diabetic rats over a period of two weeks. The hydroalcoholic extract HAE1 at a dose (500mg/kg) exhibited significant antihyperglycemic activity than extract HAE2 at a dose (500mg/kg) in diabetic rats. The hydroalcoholic extracts showed improvement in different parameters associated with diabetes, like body weight, lipid profile and biochemical parameters. Extracts also showed improvement in regeneration of β-cells of pancreas in diabetic rats. Histopath-ological studies strengthen the healing of pancreas by hydroalcoholic extracts (HAE1& HAE2) of Nardostachys Jatamansi, as a probable mechanism of their antidiabetic activity.
Metabolic syndrome and serum carotenoids : findings of a cross-sectional study in Queensland, Australia

Coyne, T, Ibiebele, T,… McClintock, C and Shaw, J
Brit J Nutrition: Int J Nutr Sci 2009; 102(11). pp. 1668-1677
Several components of the metabolic syndrome, particularly diabetes and cardiovascular disease, are known to be oxidative stress-related conditions and there is research to suggest that antioxidant nutrients may play a protective role in these conditions. Carotenoids are compounds derived primarily from plants and several have been shown to be potent antioxidant nutrients. The aim of this study was to examine the associations between metabolic syndrome status and major serum carotenoids in adult Australians. Data on the presence of the metabolic syndrome, based on International Diabetes Federation criteria, were collected from 1523 adults aged 25 years and over in six randomly selected urban centers in Queensland, Australia, using a cross sectional study design. Weight, height, BMI, waist circumference, blood  pressure, fasting and 2-hour blood glucose and  lipids were determined, as well as five serum carotenoids. Mean serum alpha-carotene, beta-carotene and the sum of the five carotenoid concentrations were significantly lower (p<0.05) in persons with the metabolic syndrome (after adjusting for age, sex, education, BMI status, alcohol intake, smoking, physical activity status and vitamin/mineral use) than persons without the syndrome. Alpha, beta and total carotenoids also decreased significantly (p<0.05) with increased number of components of the metabolic syndrome, after adjusting for these confounders. These differences were significant among former smokers and non-smokers, but not in current smokers. Low concentrations of serum alpha-carotene, beta carotene and the sum of five carotenoids appear to be associated with metabolic syndrome status. Additional research, particularly longitudinal studies, may help to determine if these associations are causally related to the metabolic syndrome, or are a result of the pathologies of the syndrome.

Although there is no universal definition of the metabolic syndrome, it is generally described as a constellation of pathologies or anthropometric conditions, which include central obesity, glucose intolerance, lipid abnormalities, and hypertension. It is, however, universally accepted that the presence of the metabolic syndrome is associated with increased risk of type 2 diabetes and cardiovascular disease. The prevalence of the metabolic syndrome in developed countries varies widely depending upon definitions used and age ranges included, but is estimated to be 24% among adults 20 years and over in the US. Given the impending worldwide epidemic of obesity, diabetes and cardiovascular disease, strategies aimed at greater understanding of the pathology of the syndrome, as well as strategies aimed at preventing or treating persons with the syndrome are urgently required.

Few studies have investigated associations of antioxidant nutrients and the metabolic syndrome. Ford and colleagues reported lower levels of several carotenoids and vitamins C and E among those with metabolic syndrome present compared with those without the syndrome in the Third National Health and Nutrition Examination Survey. Sugiura et al.  suggested that several carotenoids may exert a protective effect against the development of the metabolic syndrome, especially among current smokers. Confirming these findings in another population may add strength to these associations.

Our study showed significantly lower concentrations of β-carotene, α-carotene and the sum of the five carotenoids among those with the metabolic syndrome present compared to those without. We also found decreasing concentrations of all the carotenoids tested as the number of the metabolic syndrome components increased. These findings are consistent with data reported by Ford et al. from the third 262 National Health and Nutrition Examination Survey (NHANES III). In the NHANES III study, significantly lower concentrations of all the carotenoids, except lycopene, were found among persons with the metabolic syndrome compared with those without, after adjusting for  confounding factors similar to those in our study.

 

Related references in Pharmaceutical Intelligence:

EU approves Lilly diabetes drug Trulicity, dulaglutide

http://pharmaceuticalintelligence.com/2014/11/26/eu-approves-lilly-diabetes-drug-trulicity-dulaglutide/

Metformin, thyroid-pituitary axis, diabetes mellitus, and metabolism

http://pharmaceuticalintelligence.com/2014/09/28/metformin-thyroid-pituitary-axis-diabetes-mellitus-and-metabolism/

Study suggests consuming whey protein before meals could help improve blood glucose control in people with diabetes

http://pharmaceuticalintelligence.com/2014/07/12/study-suggests-consuming-whey-protein-before-meals-could-help-improve-blood-glucose-control-in-people-with-diabetes/

It may take guts to cure diabetes: Human GI cells retrained to produce insulin

http://pharmaceuticalintelligence.com/2014/07/02/it-may-take-guts-to-cure-diabetes-human-gi-cells-retrained-to-produce-insulin/

Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes

http://pharmaceuticalintelligence.com/2014/06/25/discovery-of-imigliptin-a-novel-selective-dpp-4-inhibitor-for-the-treatment-of-type-2-diabetes/

Endothelial Cell Dysfunction plays a role in the Pathogenesis of Alzheimer’s Disease, Atherosclerosis, Diabetes, and Pulmonary Hypertension: New Research @Cleveland Clinic

Reporter: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2014/06/02/endothelial-cell-dysfunction-plays-a-role-in-the-pathogenesis-of-alzheimers-disease-atherosclerosis-diabetes-and-pulmonary-hypertension-new-research-cleveland-clinic/

Molecule as a Switchpoint discovered @ETH: Catalyst for Adult-onset diabetes (DM2) Decoded

Reporter: Aviva Lev-Ari, PhD,RN

http://pharmaceuticalintelligence.com/2014/05/06/molecule-as-a-switchpoint-discovered-etz-catalyst-for-adult-onset-diabetes-dm2-decoded/

Use of Exenatide Once Weekly in Patients with Type 2 Diabetes: The Pathophysiological and Pharmacological Rationale

Reporter: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2014/02/20/use-of-exenatide-once-weekly-in-patients-with-type-2-diabetes-the-pathophysiological-and-pharmacological-rationale/

Daily Sugar Intake: Diet Soft Drinks – Weight Gain and Diabetes

Reporter: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2014/01/21/daily-sugar-intake-diet-soft-drinks-weight-gain-and-diabetes/

Cardiovascular Risk Reduction in Diabetes in Sub-Saharan Africa

http://pharmaceuticalintelligence.com/2014/01/13/cardiovascular-risk-reduction-in-diabetes-in-sub-saharan-africa/

Developments in the Genomics and Proteomics of Type 2 Diabetes Mellitus and Treatment Targets

http://pharmaceuticalintelligence.com/2013/12/08/developments-in-the-genomics-and-proteomics-of-type-2-diabetes-mellitus-and-treatment-targets/

Human Stem Cells Elucidate the Mechanisms of Beta-Cell Failure in Diabetes

http://pharmaceuticalintelligence.com/2013/12/05/human-stem-cells-elucidate-the-mechanisms-of-beta-cell-failure-in-diabetes/

Brown Fat Stem Cells for Treating Diabetes and Obesity

http://pharmaceuticalintelligence.com/2013/12/02/brown-fat-stem-cells-for-treating-diabetes-and-obesity/

Tackling diabetes treatment from a different angle

http://pharmaceuticalintelligence.com/2013/11/13/tackling-diabetes-treatment-from-a-different-angle/

Exercising with diabetes – Statesman Journal

Scoop.it – Cardiovascular Disease: PHARMACO-THERAPY

http://pharmaceuticalintelligence.com/2013/10/21/exercising-with-diabetes-statesman-journal/

Protein Target for Controlling Diabetes, Fractalkine: Mediator cell-to-cell Adhesion though CX3CR1 Receptor, Released from cells Stimulate Insulin Secretion

Reporter: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2013/04/16/protein-target-for-controlling-diabetes-fractalkine-mediator-cell-to-cell-adhesion-though-cx3cr1-receptor-released-from-cells-stimulate-insulin-secretion/

Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

The research is presented in the following three parts. References for each part are at the end.
Aviva Lev-Ari, PhD, RN
PART I:             Genetics and Biochemistry of Peroxisome proliferator-activated receptor

Reporter: Aviva Lev-Ari, PhD, RN

PART II:             Peroxisome proliferator-activated receptors as stimulants of angiogenesis in cardiovascular disease and diabetes

Reporter: Aviva Lev-Ari, PhD, RN

PART III:            PPAR-gamma Role in Activation of eNOS: The Cardiovascular Benefit

Author and Curator: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2012/11/13/peroxisome-proliferator-activated-receptor-ppar-gamma-receptors-activation-ppar%CE%B3-transrepression-for-angiogenesis-in-cardiovascular-disease-and-ppar%CE%B3-transactivation-for-treatment-of-dia/

Commentary on Dr. Baker’s post “Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes”   Author and Curator: Ritu Saxena, Ph.D.

http://pharmaceuticalintelligence.com/2012/10/03/commentary-on-dr-bakers-post-junk-dna-codes-for-valuable-mirnas-non-coding-dna-controls-diabetes/

Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes

Author: Margaret Baker, PhD, Registered Patent Agent

http://pharmaceuticalintelligence.com/2012/09/24/junk-dna-codes-for-valuable-mirnas/

Prevention of Type 2 Diabetes: Is Bariatric Surgery the Solution?

Reporter: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2012/08/23/prevention-of-type-2-diabetes-is-bariatric-surgery-the-solution/

Therapeutic Targets for Diabetes and Related Metabolic Disorders

Reporter: Aviva Lev-Ari, PhD, RN

http://pharmaceuticalintelligence.com/2012/08/20/therapeutic-targets-for-diabetes-and-related-metabolic-disorders/

Pathophysiology of GLP-1 in Type 2 Diabetes

Reporter: Aviva Lev-Ari, PhD, RN    By Mark Abrahams, MD

http://pharmaceuticalintelligence.com/2012/08/17/pathophysiology-of-glp-1-in-type-2-diabetes/

Mitochondrial Mechanisms of Disease in Diabetes Mellitus

Reporter: Aviva Lev-Ari, PhD, RN   By Mark Abrahams, MD

http://pharmaceuticalintelligence.com/2012/08/01/mitochondrial-mechanisms-of-disease-in-diabetes-mellitus/

Action of Hormones on the Circulation

http://pharmaceuticalintelligence.com/2015/02/17/action-of-hormones-on-the-circulation/

Gastrointestinal Endocrinology

http://pharmaceuticalintelligence.com/2015/02/10/gastrointestinal-endocrinology/

Pancreatic Islets

http://pharmaceuticalintelligence.com/2015/02/08/pancreatic-islets/

Pituitary Neuroendocrine Axis

http://pharmaceuticalintelligence.com/2015/02/04/pituitary-neuroendocrine-axis/

Natural Products Chemistry

http://pharmaceuticalintelligence.com/2015/01/27/natural-products-chemistry/

Outline of Medical Discoveries between 1880 and 1980

http://pharmaceuticalintelligence.com/2014/12/03/outline-of-medical-discoveries-between-1880-and-1980/

Summary and Perspectives: Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

http://pharmaceuticalintelligence.com/2014/11/09/summary-and-perspectives-impairments-in-pathological-states-endocrine-disorders-stress-hypermetabolism-cancer/

Summary of Metabolomics

http://pharmaceuticalintelligence.com/2014/11/08/summary-of-metabolomics/

Summary of Signaling and Signaling Pathways

http://pharmaceuticalintelligence.com/2014/11/01/summary-of-signaling-and-signaling-pathways/

Complex Models of Signaling: Therapeutic Implications

http://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

more…

 

Read Full Post »

Altitude Adaptation

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

Land adapted animals depend on respiration for oxygen supply, but have adapted to altitudes that have difference oxygen contents.  In this discussion we explore how animals have adapted to oxygen supply in different terrestrial habitats, and also how humans adjust to short term changes in high and extreme altitudes.

High-altitude adaptation is an evolutionary modification in animals, most notably in birds and mammals, by which species are subjected to considerable physiological changes to survive in extremely high mountainous environments. As opposed to short-term adaptation, or more properly acclimatization (which is basically an immediate physiological response to changing environment), the term “high-altitude adaptation” has strictly developed into the description of an irreversible, long-term physiological responses to high-altitude environments, associated with heritable behavioral and genetic changes. Perhaps, the phenomenon is most conspicuous, at least best documented, in human populations such as the Tibetans, the South Americans and the Ethiopians, who live in the otherwise uninhabitable high mountains of the Himalayas, Andes and Ethiopia respectively; and this represents one of the finest examples of natural selection in action.

Oxygen, essential for animal life, is proportionally abundant in the atmosphere with height from the sea level; hence, the highest mountain ranges of the world are considered unsuitable for habitation. Surprisingly, some 140 million people live permanently at high altitudes (>2,500 m) in North, Central and South America, East Africa, and Asia, and flourish very well for millennia in the exceptionally high mountains, without any apparent complications. This has become a recognized instance of the process of Darwinian evolution in humans acting on favorable characters such as enhanced respiratory mechanisms. As a matter of fact, this adaptation is so far the fastest case of evolution in humans that is scientifically documented. Among animals only few mammals (such as yak, ibex, Tibetan gazelle, vicunas, llamas, mountain goats, etc.) and certain birds are known to have completely adapted to high-altitude environments.

These adaptations are an example of convergent evolution, with adaptations occurring simultaneously on three continents. Tibetan humans and Tibetan domestic dogs found the genetic mutation in both species, EPAS1. This mutation has not been seen in Andean humans, showing the effect of a shared environment on evolution.

At elevation higher than 8,000 metres (26,000 ft), which is called the “death zone” in mountaineering, the available oxygen in the air is so low that it is considered insufficient to support life. And higher than 7,600 m is seriously lethal. Yet, there are Tibetans, Ethiopians and Americans who habitually live at places higher than 2,500 m from the sea level. For normal human population, even a brief stay at these places means mountain sickness, which is a syndrome of hypoxia or severe lack of oxygen, with complications such as fatigue, dizziness, breathlessness, headaches, insomnia, malaise, nausea, vomiting, body pain, loss of appetite, ear-ringing, blistering and purpling and of the hands and feet, and dilated veins. Amazingly for the native highlanders, there are no adverse effects; in fact, they are perfectly normal in all respects. Basically, the physiological and genetic adaptations in these people involve massive modification in the oxygen transport system of the blood, especially molecular changes in the structure and functions hemoglobin, a protein for carrying oxygen in the body. This is to compensate for perpetual low oxygen environment. This adaptation is associated with better developmental patterns such as high birth weight, increased lung volumes, increased breathing, and higher resting metabolism.

http://en.wikipedia.org/wiki/High-altitude_adaptation

Acute Mountain Sickness: Pathophysiology, Prevention, and Treatment

Chris Imraya, Alex Wright, Andrew Subudhie,, Robert Roache
Progress in Cardiovascular Diseases 52 (2010) 467–484
http://dx.doi.org:/10.1016/j.pcad.2010.02.003

Barometric pressure falls with increasing altitude and consequently there is a reduction in the partial pressure of oxygen resulting in a hypoxic challenge to any individual ascending to altitude. A spectrum of high altitude illnesses can occur when the hypoxic stress outstrips the subject’s ability to acclimatize. Acute altitude-related problems consist of the common syndrome of acute mountain sickness, which is relatively benign and usually self-limiting, and the rarer, more serious syndromes of high-altitude cerebral edema and high-altitude pulmonary edema. A common feature of acute altitude illness is rapid ascent by otherwise fit individuals to altitudes above 3000 m without sufficient time to acclimatize. The susceptibility of an individual to high altitude syndromes is variable but generally reproducible. Prevention of altitude-related illness by slow ascent is the best approach, but this is not always practical. The immediate management of serious illness requires oxygen (if available) and descent of more than 300 m as soon as possible. In this article, we describe the setting and clinical features of acute mountain sickness and high altitude cerebral edema, including an overview of the known pathophysiology, and explain contemporary practices for both prevention and treatment exploring the comprehensive evidence base for the various interventions.

Acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) strike people who travel too fast to high altitudes that lie beyond their current level of acclimatization. Understanding AMS and HACE is important because AMS can sharply limit recreation and work at high altitude. The syndromes can be identified early and reliably without sophisticated instruments, and when AMS and HACE are recognized early, most cases respond rapidly with complete recovery in a few hours (AMS) to days (HACE).

High-altitude headache (HAH) is the primary symptom of AMS. High-altitude headache in AMS usually occurs with some combination of other symptoms.
These are –  insomnia, fatigue (beyond that expected from the day’s activities), dizziness, anorexia, and nausea. The headache often worsens during the night and with exertion. Insomnia is the next most frequent complaint. Poor sleep can occur secondary to periodic breathing, severe headache, dizziness, and shortness of breath, among other causes. Anorexia and nausea are common, with vomiting reported less frequently in trekkers to 4243 m.

AMS is distinguished only by symptoms. The progression of AMS to HACE is marked by altered mental status, including impaired mental capacity, drowsiness, stupor, and ataxia. Coma may develop as soon as 24 hours after the onset of ataxia or change in mental status. The severity of AMS can be scored using the Lake Louise Questionnaire, or the more detailed Environmental Symptoms Questionnaire, or by the use of a simple analogue scale. Today, more than 100 years after the first clear clinical descriptions of AMS and HACE, we have advanced our understanding of the physiology of acclimatization to high altitude, and the pathophysiology of AMS and HACE.

As altitude increases, barometric pressure falls (see Fig ). This fall in barometric pressure causes a corresponding drop in the partial pressure of oxygen (21% of barometric pressure) resulting in hypobaric hypoxia. Hypoxia is the major challenge humans face at high altitude, and the primary cause of AMS and HACE. It follows that oxygen partial pressure is more important than
geographic altitude, as exemplified near the poles where the atmosphere is thinner and, thus, barometric pressure is lower. Lower barometric pressure at the poles can result in oxygen partial pressures that are physiologically equivalent to altitudes 100 to 200 m higher at more moderate latitudes. We define altitude regions as high altitude (1500-3500 m), very high altitude (3500-5500 m), and extreme altitude (>5500 m).

Neurological consequences of increasing altitude

Neurological consequences of increasing altitude

Neurological consequences of increasing altitude: The relation among altitude (classified as high [1500–3500 m], very high [3500-5500 m] and extreme [>5500 m]), the partial pressure of oxygen, and the neurological consequences of acute and gradual exposure to these pressure changes. Neurological consequences will vary greatly from person to person and with rate of ascent. HACE is far more common at higher altitudes, although there are case reports of HACE at 2500 m.

It is important for any discussion of AMS and HACE to have as a starting point an understanding of acclimatization. The process of acclimatization involves a series of adjustments by the body to meet the challenge of hypoxemia. While we have a general understanding of systemic changes associated with acclimatization, the underlying molecular and cellular processes are not yet fully described. Recent findings suggest that the process may be initiated by widespread molecular up-regulation of hypoxia inducible factor-1. Downstream processes ultimately act to offset hypoxemia, including elevated ventilation leading to a rise in arterial oxygen saturation (SaO2), a mild diuresis and contraction of plasma volume such that more oxygen is carried per unit of blood, elevated blood flow and oxygen delivery, and eventually a greater circulating hemoglobin mass. Acclimatization can be viewed as the end-stage process of how humans can best adjust to hypoxia. But optimal acclimatization takes from days to weeks, or perhaps even months.

The initial and immediate strategy to protect the body from hypoxia is to increase ventilation. This compensatory mechanism is triggered by stimulation of the carotid bodies, which sense hypoxemia (low arterial PO2), and increase central respiratory drive. This is a fast response, occurring within minutes of exposure to hypoxia persisting throughout high altitude exposure. This is why one cautions against the use of respiratory depressants such as alcohol and some sleeping medications, which can depress the hypoxic drive to breathe and may thus worsen hypoxemia. Pharmacological simulation of this natural process by acetazolamide, a respiratory stimulant and mild diuretic, largely protects from AMS and HACE by stimulating acclimatization. Circulatory responses are key to improving oxygen delivery, and are likely regulated by marked elevations in sympathetic activity. Field experience suggests that a marked elevation in early morning resting heart rate is a sign of challenges to acclimatization, perhaps secondary to increased hypoxemia, or dehydration. For the pathophysiology of AMS and HACE responses of the cerebral circulation are especially important. Maintenance of cerebral oxygen delivery is a critical factor for survival at high altitude. The balance between hypoxic vasodilation and hypocapnia-induced vasoconstriction determines overall cerebral blood flow (CBF). In a classic study, CBF increased 24% on abrupt ascent to 3810 m, and then returned to normal over 3 to 5 days. Recent studies, largely using regional transcranial Doppler measures of CBF velocity as a proxy for CBF, report discernible individual variation in the CBF response to hypoxia. All advanced brain imaging studies to date have shown both elevations in CBF in hypoxic humans and striking heterogeneity of CBF distribution in the hypoxic brain, with CBF rising up to 33% in the hypothalamus, and 20% in the thalamus with no other significant changes. Also, it is becoming clear that cerebral autoregulation, the process by which cerebral perfusion is maintained as blood pressure varies, is impaired in hypoxia. Thus, hypoxia modulates cerebral autoregulation and raises interesting questions about the importance of this process in AMS and acclimatization, since it appears to be a uniform response in all humans made hypoxemic. Further, hematocrit and hemoglobin concentration are elevated after 12 to 24 hours of hypoxic exposure due to a fall in plasma volume, but after several weeks,  plasma volume returns to near sea level values. Normalization of plasma volume coupled with an increase in red cell mass secondary to the hypoxia stimulated erythropoiesis leads to an increase in total blood volume after several weeks of acclimatization. Adequate iron stores are required for adequate hematologic acclimatization to high altitude. Acclimatization, then, is a series of physiological responses to hypoxia that serve to offset hypoxemia, improve systemic oxygen delivery, and avoid AMS and HACE. When acclimatization fails, or the challenge of hypoxia is too great, AMS and HACE can develop.

AMS occurs in susceptible individuals when ascent to high altitude outpaces the ability to acclimatize. For example, most people ascending very rapidly to high altitude will get AMS. The symptoms, although often initially incapacitating, usually resolve in 24 to 48 hrs. The incidence and severity of AMS depend on the rate of ascent and the altitude attained, the length of time at altitude, the degree of physical exertion, and the individual’s physiological susceptibility. The chief significance of AMS is that planned activities may be impossible to complete during the first few days at a new altitude due to symptoms. In addition, in a few individuals, AMS may progress to life-threatening HACE or HAPE. At 4000 m and above, the incidence of AMS ranges from 50% to 65% depending on the rate and mode of ascent, altitude reached, and sleeping altitude. A survey of 3158 travelers visiting resorts in the Rocky Mountains of Colorado revealed that 25% developed AMS, and most decreased their daily activity because of their symptoms.

Singh et al. proposed that the high-altitude syndromes are secondary to the body’s responses to hypobaric hypoxia, not due simply to hypoxemia. They based this conclusion on 2 observations:

  • there is a delay between the onset of hypoxia and the onset of symptoms after ascent (from hours to days), and
  • not all symptoms are immediately reversed with oxygen.

On the other hand, scientists have long assumed that AMS and HACE are due solely to hypoxia, based largely on 2 reports:

  • the pioneering experiments of Paul Bert and
  • the Glass House experiment of Barcroft.

When these assumptions were tested in a laboratory setting to study symptom responses to hypobaric hypoxia (simulated high altitude), hypoxia alone, and hypobaric normoxia, AMS occurred soonest and with greater severity with simulated altitude, compared with either normobaric hypoxia or normoxic hypobaria.  In 2 studies, one in normobaric hypoxia found no MRI signs of vasogenic edema but suggested that AMS was associated with “cytotoxic edema”, whereas a comparable study in hypobaric hypoxia found combined vasogenic and intracellular edema. The conclusions from the 2 studies have very different implications for refining a theory of the pathophysiology of AMS. Although the studies were not designed for a direct comparison between hypobaria and hypoxia, the discrepancy points out an assumption about normobaric hypoxia and the pathophysiology of AMS that may warrant further investigation.

Our central hypothesis regarding the pathophysiology of AMS, and by extension of HACE, is that it is centered on dysfunction within the brain. This is not a new idea, but it is one of current intense interest thanks to advances in brain imaging and neuroscience techniques. Barcroft, writing in 1924, argued that the brain’s response to hypoxia was central to understanding the pathophysiology of mountain sickness.

A low ventilatory response to hypoxia coupled with increased symptoms of AMS led to intensive investigation of a link between the chemical control of ventilation and the pathogenesis of AMS. The results of these investigations suggest that for most people, the ventilatory response to hypoxia has little predictive value for AMS risk. Only if the extremes of ventilator responsiveness are contrasted can accurate predictions be made, where those with extremely low ventilatory drives being more likely to suffer AMS. At the extreme end of the distribution (i.e., for very high responses), the protective role of a brisk hypoxic ventilatory response may be due to increased arterial oxygen content and cerebral oxygen delivery despite mild hypocapnic cerebral vasoconstriction.

Hansen and Evans were the first to publish a comprehensive hypothesis of the pathophysiology of AMS centered on the brain. Their theory posited that compression of the brain, either by increased cerebral venous volume, reduced absorption of cerebral spinal fluid, or increased brain-tissue hydration (edema), initiates the development of the symptoms and signs of AMS and HACE. Ross built on these ideas with his “tight fit hypothesis,” published in 1985, and others have developed these ideas into a series of testable hypotheses congruent with today’s knowledge of AMS and HACE. The tight fit hypothesis states that expanded intracranial volume (due to the reasons put forth by Hansen and Evans, or other causes) plus the volume available for intracranial buffering of that expanded volume would predict who would get AMS. Greater buffering capacity leads to AMS resistance, lower buffering capacity, or a ‘tight fit’ of the brain in the cranial vault, would lead to greater AMS susceptibility. Overall, it is clear that brain volume increases in humans on exposure to hypoxia. It is less certain whether this elevation in brain volume plays a role in AMS.

Hackett’s pioneering MRI study in HACE, with marked white matter edema suggestive of a vasogenic origin, has led to a decade of studies looking for a similar finding in AMS. In moderate to severe AMS, all imaging studies have shown some degree of cerebral edema. But in mild to moderate AMS, admittedly an arbitrary and subjective distinction, brain edema is present in some MRI studies of AMS subjects, but not in all. It seems reasonable to conclude from the available data that the increase in brain volume observed is at least partially due to brain edema, and that earlier studies missed the edema more for technical than physiological reasons. It is less clear whether the brain edema is largely of intracellular or vasogenic origin, and what role if any it plays in the pathophysiology of AMS.

Although we support transcranial doppler for many investigations in integrative physiology, the complex interplay of hypoxia and hypocapnia that is present in acutely hypoxic humans may present a situation where whole brain imaging is a more reliable and accurate tool to discern the role of CBF in the onset of AMS. To date, no brain imaging studies have addressed global cerebral perfusion in AMS.

The management of AMS and HACE is based on our current understanding of the physiological and pathophysiological responses to hypoxia. Hypoxia itself, however, does not immediately lead to AMS as there is a delay of several hours after arrival at high altitude before symptoms develop. Increased knowledge of hypoxic inducible factor and cytokines that alter capillary permeability may lead to the discovery of new drugs for the prevention and alleviation of AMS and HACE.

Much work has focused on the role of vascular endothelial growth factor (VEGF), a potent permeability factor up-regulated by hypoxia. Some studies have found no evidence of an association of changes in plasma concentrations of VEGF and AMS, whereas others support the hypothesis that VEGF contributes to the pathogensis of AMS. Clearly a better understanding of the mechanisms of increased capillary permeability of cerebral capillaries will greatly enhance the management of AMS and HACE.

Flying high: A theoretical analysis of the factors limiting exercise performance in birds at altitude

Graham R. Scott, William K. Milsom
Respiratory Physiology & Neurobiology 154 (2006) 284–301
http://dx.doi.org:/10.1016/j.resp.2006.02.012

The ability of some bird species to fly at extreme altitude has fascinated comparative respiratory physiologists for decades, yet there is still no consensus about what adaptations enable high altitude flight. Using a theoretical model of O2 transport, we performed a sensitivity analysis of the factors that might limit exercise performance in birds. We found that the influence of individual physiological traits on oxygen consumption (˙VO2 ) during exercise differed between sea level, moderate altitude, and extreme altitude. At extreme altitude, hemoglobin (Hb) O2 affinity, total ventilation, and tissue diffusion capacity for O2 (DTO2) had the greatest influences on VO2; increasing these variables should therefore have the greatest adaptive benefit for high altitude flight. There was a beneficial interaction between DTO2 and the P50 of Hb, such that increasing DTO2 had a greater influence on VO2 when P50 was low. Increases in the temperature effect on P50 could also be  beneficial for high flying birds, provided that cold inspired air at extreme altitude causes a substantial difference in temperature between blood in the lungs and in the tissues. Changes in lung diffusion capacity for O2, cardiac output, blood Hb concentration, the Bohr coefficient, or the Hill coefficient likely have less adaptive significance at high altitude. Our sensitivity analysis provides theoretical suggestions of the adaptations most likely to promote high altitude flight in birds and provides direction for future in vivo studies.

The bird lung is unique among the lungs of air-breathing vertebrates, with a blood flow that is crosscurrent to gas flow, and a gas flow that occurs unidirectionally through rigid parabronchioles. As such, bird lungs are inherently more efficient than the lungs of other air-breathing vertebrates (Piiper and Scheid, 1972, 1975). While this may partially account for the greater hypoxia tolerance of birds in general when compared to mammals (cf. Scheid, 1990), its presence in all birds excludes the crosscurrent lung as a possible adaptation specific to high altitude fliers. Similarly, an extremely small diffusion distance across the blood–gas interface compared to other air breathers seems to be a characteristic of all bird lungs, and not just those of high fliers (Maina and King, 1982; Powell and Mazzone, 1983; Shams and Scheid, 1989). Partly because of this small diffusion distance, the inherent O2 diffusion capacity across the gas–blood interface (DLO2) is generally high in birds. Interestingly, pulmonary vasoconstriction does not appear to increase during hypoxia in bar-headed geese (Faraci et al., 1984a). This may be a significant advantage during combined exercise and severe hypoxia, and suggests that regulation of lung blood flow could be important in high altitude birds. In addition, the CO2/pH sensitivity of ventilation is commonly assessed by comparing the isocapnic and poikilocapnic hypoxic ventilatory responses; however, the isocapnic ventilatory responses to hypoxia of both low and high altitude birds have not been compared. In this regard, the ventilator response in high altitude birds may also depend on their capacity to maintain intracellular pH during alkalosis, or to buffer changes in extracellular pH due to hyperventilation. It therefore remains to be conclusively determined whether high altitude fliers have a greater capacity to increase ventilation during severe hypoxia.

After diffusing into the blood in the lungs, oxygen is primarily circulated throughout the body bound to hemoglobin. A high cardiac output is therefore important for exercise at high altitude to supply the working muscle with adequate amounts of O2. Indeed, animals selectively bred for exercise performance have higher maximum cardiac outputs, as do species that have evolved for exercise performance. Whether cardiac output limits exercise performance per se, however, is less clear; other factors may limit intense exercise, and in more athletic species (or individuals) cardiac output may be higher simply out of necessity. Excessive cardiac output may even be detrimental if blood transit times in the lungs or tissues are substantially reduced. Unfortunately, very little is known about cardiac performance in high flying birds. Both the high altitude bar-headed goose and the low altitude pekin duck can increase cardiac output at least five-fold during hypoxia at rest (Black and Tenney, 1980), but no comparison of maximum cardiac performance has been made between high and low altitude birds.

Once oxygenated blood is circulated to the tissues, O2 moves to the tissue mitochondria, the site of oxidative phosphorylation and oxygen consumption. Transport of oxygen from the blood to the mitochondria involves several steps. Oxygen must first dissociate from Hb and diffuse through the various compartments of the blood, but in both birds and mammals the conductances of these steps are high, and are unlikely to impose much of a limitation to O2 transport. In contrast, diffusion across the vascular wall and through the extracellular spaces is thought to provide the most sizeable limitation to O2 transport. Consequently, the size of the capillary–muscle fiber interface is an extremely important determinant of a muscle’s aerobic capacity. Finally, oxygen diffuses across the muscle fiber membrane and moves through the cytoplasm until it associates with cytochrome c oxidase, the O2 acceptor in the mitochondrial electron transport chain. Myoglobin probably assists intracellular O2 transport, so diffusion through the muscle likely provides very little resistance to O2 flux.

It is obvious that the ability of some bird species to fly at extreme altitudes is poorly understood. The adaptive benefit of high hemoglobin oxygen affinity is well established, but its relative importance is unknown. Some evidence suggests that traits increasing oxygen diffusion capacity in flight muscle are adaptive in high fliers as well, but the adaptive significance of differences in the respiratory and cardiovascular systems of high altitude fliers is not clear. The remainder of this study assesses these possibilities using theoretical sensitivity analysis, and explores potential adaptations for high altitude flight in birds.

Oxygen transport in birds

Oxygen transport in birds

Oxygen transport in birds. The crosscurrent parabronchial lung is unidirectionally ventilated by air sacs, and oxygen diffuses into blood capillaries from air capillaries (not shown) all along the length of the parabronchi. Oxygen is then circulated in the blood, and diffuses to mitochondria in the tissues. The rate of oxygen transport at both the lungs and tissues can be calculated using the Fick equation, and the amount of O2 transferred from the lungs into the blood can be calculated using an oxygen conservation equation.

Oxygen tensions in the lung

Oxygen tensions in the lung

Oxygen tensions in the lung (A) and tissue (B) capillaries during normoxia. In the crosscurrent avian lung, PO2 varies in two dimensions: PO2 increases along the path of blood flow through the lungs, but does not increase by as much at the end of the parabronchi as at the start (gas PO2 decreases along the length of the parabronchi). In the tissues, blood PO2 decreases continuously along the capillary length as O2 diffuses to tissue mitochondria. To reach a solution, our model iterates between gas transport calculations in the lungs (A) and tissues (B) until a stable result is reached.

varying different biochemical features of hemoglobin (Hb) on oxygen consumption

varying different biochemical features of hemoglobin (Hb) on oxygen consumption

The effects of varying different biochemical features of hemoglobin (Hb) on oxygen consumption during exercise in normoxia (PIO2 of 150 Torr; red), moderate hypoxia (84 Torr; green dashed), and severe hypoxia (30 Torr; dark blue). (A) P50, the PO2 at 50% Hb saturation; (B and C) Bohr coefficient (φ); and (D and E) Hill coefficient (n) (see Section 2 for a mathematical description of each). In (B)–(E), the effects of each variable were assessed at the P50 of pekin ducks (40 Torr; B and D) as well as the P50 of bar-headed geese (25 Torr; C and E).

Unlike in vivo studies, theoretical sensitivity analyses allow individual physiological variables to be altered independently so their individual effects on oxygen consumption can be assessed. By applying this analysis to hypoxia in birds, we feel we can predict which factors most likely limit oxygen consumption and exercise performance. As a consequence, our analysis identifies which steps in the oxygen cascade can provide the basis for adaptive change in birds that evolved for high altitude flight, namely ventilation and tissue diffusion capacity.

Since our interest was in the factors limiting exercise performance at altitude, the starting data for our model were obtained from previous studies on pekin ducks near maximal oxygen consumption. These ducks were exercising on a treadmill, however, and were not flying. Unfortunately, to the best of our knowledge only one previous study has made all the required measurements for this analysis during flight, and this was only done in normoxia (in pigeons, Butler et al., 1977). Pekin ducks are the only species for which we could find all the required measurements for our analysis during exercise in both normoxia and hypoxia. Only the lung and tissue diffusion capacities remained to be calculated in our analysis, but previous experimental determinations of DLO2 in pekin ducks were similar to the values calculated in this study (Scheid et al., 1977). Similar values for DTO2 are not available.

The physiological variables limiting exercise performance in birds during moderate hypoxia are similar to those limiting performance in normoxia. DTO2 continues to pose the greatest limitation, and limitations imposed by the circulation (˙Q and CHb) are still greater at a lower P50. Unlike normoxia, however, ˙VO2 in moderate hypoxia appears to be limited less by the circulation and more by respiratory variables, as is also the case in humans (Wagner, 1996). The most substantial difference between severe hypoxia and normoxia/moderate hypoxia is in the effects of altering ventilation. Ventilation appears to become a major limitation to exercise performance at extreme altitude. DTO2 also appears to limit ˙VO2 in severe hypoxia, but only at lower P50 values. This is not entirely unsurprising: in severe hypoxia the venous blood of pekin ducks (a species which has a higher P50) is almost completely deoxygenated in vivo, so there are no possible benefits of increasing DTO2 . At the lower P50, there is a substantially higher arterial oxygen content, so more oxygen can be removed, and increasing DTO2 can have a greater influence. In humans during severe hypoxia, DTO2, DLO2, and ˙V have the greatest influence on exercise performance.

Tissue diffusion capacity should also be adaptive in high altitude birds with a high hemoglobin O2 affinity. In the present study, a simultaneous decrease in P50 (from 40 to 25 Torr) and increase in DTO2 (twofold) increased ˙VO2 by 51%. Thus, in high flying birds that are known to have a low P50, such as the barheaded goose and Ruppell’s griffon (Gyps rueppellii), increases in flight muscle diffusion capacity should be of extreme importance. This suggestion is supported by research demonstrating greater muscle capillarization in bar-headed geese than in low altitude fliers, as the size of the capillary–muscle fiber interface is known to be the primary structural determinant of O2 flux into the muscle.

Our analysis suggests that an enhanced capacity to increase ventilation should also benefit birds significantly in severe hypoxia, and could therefore be an important source of adaptation for high altitude flight. This is likely true regardless of P50; although there is a small amount of interaction between P50 and ventilation, increasing ˙V always had a substantial effect on oxygen consumption. Data from the literature addressing this possibility have unfortunately been inconclusive. Both bar-headed geese and pekin ducks can effectively increase ventilation, thus reducing the inspired-arterial O2 difference, during severe poikilocapnic hypoxia at rest, as well as during moderate poikilocapnic hypoxia and running exercise.

oxyhemoglobin dissociation curve

oxyhemoglobin dissociation curve

In contrast to the Bohr effect and Hill coefficient, the temperature effect on Hb-O2 binding affinity may have a substantial effect on oxygen consumption, and may therefore be a source of adaptive change for high altitude flight. An effect of temperature on ˙VO2 may arise if hyperventilation during flight at extreme altitude cools the pulmonary blood. This would reduce the P50 of Hb in the lungs, and thus facilitate oxygen uptake. When this blood enters the exercising muscles it would then be rewarmed to body temperature, and oxygen would be released from Hb. Our modelling suggests that a temperature effect on Hb could significantly enhance ˙VO2 . The greater the difference in temperature between blood in the lungs and in the muscles, and the greater the temperature effect on Hb-O2 binding, the greater the increase in ˙VO2 . At normal levels of temperature sensitivity, the increase in ˙VO2 was approximately 5% for every 1 ◦C difference. It could be adaptive at high altitude to alter the magnitude of the temperature effect on Hb while allowing lung temperature to fall. At present, however, it is unknown whether the Hb of high altitude birds has a heightened sensitivity to temperature, or whether pulmonary blood is actually cooled during high altitude flight.

Using a theoretical sensitivity analysis that allows individual physiological variables to be altered independently, we have identified the factors most likely to limit oxygen consumption and exercise performance in birds, and by extension, the physiological changes that are likely adaptive for high altitude flight. The adaptive benefits of some of these changes, in particular hemoglobin oxygen affinity, are already well established for high flying birds. For other traits, such as an enhanced hypoxic ventilatory response or O2 diffusion capacity of flight muscle, adaptive differences have not been conclusively recognized in studies in vivo. Furthermore, the beneficial interaction between increasing DTO2 and decreasing hemoglobin P50 has not yet been demonstrated in vivo. Our theoretical analysis suggests that changes in these respiratory processes could also adapt birds to environmental extremes, and future studies should explore these findings.

Adaptation and Convergent Evolution within the Jamesonia-Eriosorus Complex in High-Elevation Biodiverse Andean Hotspots

Patricia Sanchez-Baracaldo, Gavin H. Thomas
PLoS ONE 9(10): e110618. http://dx.doi.org:/10.1371/journal.pone.0110618

The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude paramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Paramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the paramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among paramo than non-paramo lineages supporting the hypothesis of adaptation and divergence in the unique Pa´ramo biodiversity hotspot.

AltitudeOmics: Rapid Hemoglobin Mass Alterations with Early Acclimatization to and De-Acclimatization from 5,260 m in Healthy Humans

Benjamin J. Ryan, NB Wachsmuth, WF Schmidt, WC Byrnes, et al.
PLoS ONE 9(10): e108788. http://dx.doi.org:/10.1371/journal.pone.0108788

It is classically thought that increases in hemoglobin mass (Hb mass) take several weeks to develop upon ascent to high altitude and are lost gradually following descent. However, the early time course of these erythropoietic adaptations has not been thoroughly investigated and data are lacking at elevations greater than 5,000 m, where the hypoxic stimulus is dramatically increased. As part of the AltitudeOmics project, we examined Hb mass in healthy men and women at sea level (SL) and 5,260 m following 1, 7, and 16 days of high altitude exposure (ALT1/ALT7/ALT16). Subjects were also studied upon return to 5,260 m following descent to 1,525 m for either 7 or 21 days. Compared to SL, absolute Hb mass was not different at ALT1 but increased by 3.7-5.8% (mean 6 SD; n = 20; p<0.01) at ALT7 and 7.6-6.6% (n = 21; p=0.001) at ALT16. Following descent to 1,525 m, Hb mass was reduced compared to ALT16 (-6.0+3.7%; n = 20; p = 0.001) and not different compared to SL, with no difference in the loss in Hb mass between groups that descended for 7 (-6.3+3.0%; n = 13) versus 21 days (-5.7+5.0; n = 7). The loss in Hb mass following 7 days at 1,525 m was correlated with an increase in serum ferritin
(r =20.64; n = 13; p,0.05), suggesting increased red blood cell destruction. Our novel findings demonstrate that Hb mass increases within 7 days of ascent to 5,260 m but that the altitude-induced Hb mass adaptation is lost within 7 days of descent to 1,525 m. The rapid time course of these adaptations contrasts with the classical dogma, suggesting the need to further examine mechanisms responsible for Hb mass adaptations in response to severe hypoxia.

Cardiovascular adjustments for life at high altitude

Roger Hainsworth, Mark J. Drinkhill
Respiratory Physiology & Neurobiology 158 (2007) 204–211
http://dx.doi.org:/10.1016/j.resp.2007.05.006

The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. There are increases in sympathetic activity resulting in increases in systemic vascular resistance, blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. Systemic vasoconstriction may also occur as a reflex response to the high pulmonary arterial pressures. Many communities live permanently at high altitude and most dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Despite living all their lives at altitude, some dwellers, particularly Andeans, may develop a maladaptation syndrome known as chronic mountain sickness. The most prominent characteristic of this is excessive polycythemia, the cause of which has been attributed to peripheral chemoreceptor dysfunction. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death.

High altitude places are not only destinations of adventurous travelers, many people are born, live their lives and die in these cold and hypoxic regions. According to WHO, in 1996 there were approximately 140 million people living at altitudes over 2,500m and there are several areas of permanent habitation at over 4,000 m. These are in three main regions of the world: the Andes of South America, the highlands of Eastern Africa, and the Himalayas of South-Central Asia. This review is concerned with the effects of exposure to high altitude on the cardiovascular system and its autonomic control, in visitors, and the means by which the permanent high altitude dwellers have adapted to their environment.

For visitors the period of initial adaptation, i.e. the first days and weeks following arrival at attitude, is a critical time since it is during this period that acute mountain sickness and/or pulmonary edema may occur. The processes of adaptation occurring during this initial period may well determine the individual’s ability to continue to function normally. Recent studies in animals and man have highlighted the role of the autonomic nervous system in adaptation and in particular the importance of sympathetic activation of the cardiovascular system following high altitude exposure.

An increase in resting heart rate in response to acute hypoxia has been
described in several species including man. Vogel and Harris (1967)
investigated the effects of simulated exposure to high altitude in man
at pressures equivalent to 600, 3,400 and 4,600m using a hypobaric
chamber. Each level of chamber pressure was developed over a 30 min
period andwas maintained for 48 h in an attempt to simulate expedition
conditions. After 10 h at the equivalent of 3,400 m resting
heart rate was significantly increased and by 40 h it had increased by
16% from the resting value at 600 m. At 4,600 m it increased by 34%.
Similar findings, an increase in heart rate of 18%, were shown following
ascent to 4,300 m for periods up to 5 weeks. However, this study also
demonstrated that the rate of ascent also influenced the magnitude of
the heart rate increase. A gradual increase in altitude over a period
of 2 weeks resulted in the resting heart rate increasing by 25%
compared with an abrupt ascent which resulted in an increase of
only 9%. As subjects acclimatize at altitudes up to about 4,500 m
much of the increase in heart rate is lost and resting heart rates
return towards their sea level values. Acute hypoxia also causes
increases in cardiac output both at rest and for given levels of
exercise compared with values during normoxia.

The effect of hypoxia on the pulmonary circulation is dramatic
resulting in pulmonary hypertension caused by an increase in
pulmonary vascular resistance. The onset has been shown in man
to be very rapid, reaching a maximum within 5 min. Zhao et al.
(2001) demonstrated that breathing 11% oxygen for 30 min
increased mean pulmonary artery pressure by 56%, from 16 to
25 mmHg. The effect of hypoxia on the pulmonary circulation is
even more pronounced during exercise, as demonstrated in studies
carried out on subjects of Operation Everest II. Resting pulmonary
artery pressure increased from 15 mmHg at sea level to 34 mmHg
at the equivalent of 8,840 m. During near maximal exercise at
8,840 m it increased from the sea level value of 33–54 mm Hg.
In the short term the mechanism of this pulmonary artery vaso-
constriction has been shown to involve inhibition of O2 sensitive
K+ channels leading to depolarization of pulmonary artery smooth
muscle cells and activation of voltage gated Ca2+ channels. This
causes Ca2+ influx and vasocon-striction. This process is
immediately reversed by breathing oxygen.

Healthy high altitude residents show excellent adaptation to their
environment. These adaptations are likely to be associated with
altered gene expression as the expression of genes associated with
vascular control and reactions to hypoxia have been found to be high
in altitude dwellers. Different communities, however, seem to adopt
different adaptation strategies. For example Andeans hyperventilate
to decrease end-tidal and arterial CO2 levels to as low as 25 mmHg
and have hemoglobin levels well above those in sea-level people.
Tibetans Hyperventilate but have normal hemoglobin levels below
4,000 m. Ethiopian highlanders, on the other hand, have CO2 and
hemoglobin levels similar to those of sea-level dwellers.

Blood volumes are larger in high altitude dwellers. In Andeans this
is due to large packed cell volumes whereas in Ethiopians it was the
plasma volumes that were large. Probably as the result of the large
blood volumes, tolerance to orthostatic stress was greater than that
in sea-level residents.

CMS is a condition frequently found in long term residents of high
altitudes, particularly in the Andes where it is a major public health
problem. It also occurs in residents on the Tibetan plateau, although
not in Ethiopians. Patients with CMS develop excessive polycythemia
and various clinical features including dyspnea, palpitations, insomnia,
dizziness, headaches, confusion, loss of appetite, lack of mental
concentration and memory alterations. Patients may also complain
of decreased exercise tolerance, bone pains, acral paresthesia and
occasionally hemoptysis. The impairment of mental function may
be reversed by phlebotomy. Physical examination reveals cyanosis,
due to the combination of polycythemia and low oxygen saturation,
and a marked pigmentation of the skin exposed to the sun.
Hyperemia of conjunctivae is characteristic and the retinal vessels
are also dilated and engorged. The second heart sound is frequently
accentuated and there is an increased cardiac size, mainly due to
right ventricular hypertrophy. As the condition progresses, overt
congestive heart failure becomes evident, characterized by dyspnea
at rest and during mild effort, peripheral edema, distension of
superficial veins, and progressive cardiac dilation.

The major mechanism for the control of blood pressure is through
regulation of peripheral vascular resistance, but most studies have
examined only the control of heart rate. We have recently studied
the responses of forearm vascular resistance to carotid baroreceptor
stimulation in high altitude residents with and without CMS, both at
their resident altitude and shortly after descent to sea level. Results
showed that baroreflex “set point” was higher in CMS, but only at
altitude. At sea level, values were similar.

The chronic hypoxia at high altitude stresses many of the body’s
homeostatic mechanisms. There have been many investigations
which have examined the effects on respiration. However, cardio-
vascular effects are no less important and it is largely through effects
on the cardiovascular system that both acute and chronic mountain
sickness are caused. The hypoxia exerts both direct and reflex effects.
In the lung it causes vasoconstriction and pulmonary hypertension.
The sympathetic nervous system is excited partly through a central
effect of the hypoxia, through stimulation of chemoreceptors and
possibly pulmonary arterial baroreceptors and altered systemic
baroreceptor function. In some individuals the excessive hemopoiesis
causes increased blood viscosity and tissue hypoperfusion leading
to the syndrome of chronic mountain sickness.

New Insights in the Pathogenesis of High-Altitude Pulmonary Edema

Urs Scherrer, Emrush Rexhaj, Pierre-Yves Jayet, et al.
Progress in Cardiovascular Diseases 52 (2010) 485–492
http://dx.doi.org:/10.1016/j.pcad.2010.02.004

High-altitude pulmonary edema is a life-threatening condition occurring in predisposed but otherwise healthy individuals. It therefore permits the study of underlying mechanisms of pulmonary edema in the absence of confounding factors such as coexisting cardiovascular or pulmonary disease, and/or drug therapy. There is evidence that some degree of asymptomatic alveolar fluid accumulation may represent a normal phenomenon in healthy humans shortly after arrival at high altitude. Two fundamental mechanisms then determine whether this fluid accumulation is cleared or whether it progresses to HAPE: the quantity of liquid escaping from the pulmonary vasculature and the rate of its clearance by the alveolar respiratory epithelium. The former is directly related to the degree of hypoxia induced pulmonary hypertension, whereas the latter is determined by the alveolar epithelial sodium transport. Here, we will review evidence that, in HAPE-prone subjects, impaired pulmonary endothelial and epithelial NO synthesis and/or bioavailability may represent a central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and, in turn, capillary stress failure and alveolar fluid flooding. We will then demonstrate that exaggerated pulmonary hypertension, although possibly a condition sine qua non, may not always be sufficient to induce HAPE and how defective alveolar fluid clearance may represent a second important pathogenic mechanism.

Cerebral Blood Flow at High Altitude

Philip N. Ainslie and Andrew W. Subudhi
High Altitude Medicine & Biology 2014; 15(2): 133–140
http://dx.doi.org:/10.1089/ham.2013.1138

This brief review traces the last 50 years of research related to cerebral blood flow (CBF) in humans exposed to high altitude. The increase in CBF within the first 12 hours at high altitude and its return to near sea level values after 3–5 days of acclimatization was first documented with use of the Kety-Schmidt technique in 1964. The degree of change in CBF at high altitude is influenced by many variables, including arterial oxygen and carbon dioxide tensions, oxygen content, cerebral spinal fluid pH, and hematocrit, but can be collectively summarized in terms of the relative strengths of four key integrated reflexes:

  • hypoxic cerebral vasodilatation;
  • 2) hypocapnic cerebral vasoconstriction;
  • 3) hypoxic ventilatory response; and
  • 4) hypercapnic ventilatory response.

Understanding the mechanisms underlying these reflexes and their interactions with one another is critical to advance our understanding of global and regional CBF regulation. Whether high altitude populations exhibit cerebrovascular adaptations to chronic levels of hypoxia or if changes in CBF are related to the development of acute mountain sickness are currently unknown; yet overall, the integrated CBF response to high altitude appears to be sufficient to meet the brain’s large and consistent demand for oxygen.

Relative to its size, the brain is the most oxygen dependent organ in the body, but many pathophysiological and environmental processes may either cause or result in an interruption to its oxygen supply. As such, studying the brain at high altitude is an appropriate model to investigate both acute and chronic effects of hypoxemia on cerebrovascular function. The cerebrovascular responses to high altitude are complex, involving mechanistic interactions of physiological, metabolic, and biochemical processes.

This short review is organized as follows: An historical overview of the earliest CBF measurements collected at high altitude introduces a summary of reported CBF changes at altitude over the last 50 years in both lowlanders and high-altitude natives. The most tenable candidate mechanism(s) regulating CBF at altitude are summarized with a focus on available data in humans, and a role for these mechanisms in the pathophysiology of AMS is considered. Finally, suggestions for future directions are provided.

Angelo Mosso (1846–1910) is undoubtedly the forefather of high altitude cerebrovascular physiology. In order to pursue his principal curiosity of the physiological effects of hypobaria, Mosso built barometric chambers and was reported to expose himself pressures as low as 192 mmHg (equivalent to > 10,000 m). He was also responsible for the building of the Capanna Margherita laboratory on Monta Rosa at 4,559 m. In both settings, Mosso utilized his hydrosphygmomanometer to measure changes in ‘‘brain pulsations’’ in patients that had suffered removal of skull sections, due to illness or trauma. Indicative of changes in CBF, these recordings preceded the next estimates of CBF in humans by some 50 years.

At sea level, Kety and Schmidt (1945) were the first to quantify human CBF using an inert tracer (nitrous oxide, N2O) combined with arterial and jugular venous sampling. This method for the measurement of global CBF is based on the Fick principle, whereby the integrated difference of multiple arterial and venous blood samples during the first 10 or more minutes after the sudden introduction into the lung of a soluble gas tracer is inversely proportional to cerebral blood flow.  In 1948, they showed that breathing 10% oxygen increased CBF by 35%; however, it was not until 1964 that the first measurements of CBF were made in humans at high altitude. The motivation for these high altitude experiments was stimulated, in part, from the earlier discovery of the brain’s ventral medullary cerebrospinal fluid (CSF) pH sensors in animals. Following the location of these central chemoreceptors, Severinghaus and colleagues examined in humans the role of CSF pH and bicarbonate in acclimatization to high altitude (3,810 m) at the White Mountain (California, USA) laboratories (Severinghaus et al., 1963). A year later, at the same location, John Severinghaus performed his seminal study of CBF at high altitude. He was joined by Tom Hornbein—shortly after his first ascent of Everest by the West Ridge—who was part of the research team and also volunteered for the study (Fig.). The results showed clear time dependent changes in CBF during acclimatization to high altitude (HA).

the Kety-Schmidt nitrous oxide method of measuring CBF

the Kety-Schmidt nitrous oxide method of measuring CBF

  • From left to right, Larry Saidman (administering the gas), Tom Hornbien (volunteer), Ed Munson (drawing jugular venous blood samples), and John Severinghaus. Here (1964) the Kety-Schmidt nitrous oxide method of measuring CBF is used. The subject breathed about 15% N2O for 15 min while arterial and jugular venous blood was frequently sampled. (B) Results from Severinghaus et al. (1966). Graphs shows that CBF as estimated by cerebral A-VO2 differences from sea level controls increased about 24% within hours of arrival at 3810 m, and fell over 4 days to about 13% above control. CBF by the N2O method was increased by 40% on day 1, and returned to 6% above control on day 4. However, the N2O method data had greater variance. Acute normoxia on day 1 and day 4 returned CBF to sea level values within 15 min. Photograph courtesy of Dr. John W Severinghaus.

Native Tibetan (or Himalayan) and Andean populations arrived approximately 25,000 and 11,000 years ago, suggesting that these populations either carried traits that allowed them to thrive at high altitude or were able to adapt to the environment. The physiological and genetic traits associated with native high-altitude populations have been elegantly reviewed (Beall, 2007; Erzurum et al., 2007; Frisancho, 2013). As such, this topic is briefly summarized here with the focus on CBF at altitude in context of Andean and Tibetan high-altitude residents.

In general, native Andeans have lower CBF values compared to sea level natives. The first evidence suggesting lower flow was reported in 8 Peruvian natives living at 4300m altitude in Cerro de Pasco (Milledge and Sørensen, 1972). The authors found the mean arterial–venous oxygen content difference across the brain was 7.9 – 1 vol%, about 20% higher than the published sea level mean of 6.5 vol%. They suggested that CBF probably was proportionately about 20% below sea level normal values, assuming that brain metabolic rate was normal, and postulated that the mechanism might be high blood viscosity given the high hematocrit (58 – 6%) in these subjects. However, since the cerebral metabolic rate for oxygen (CMRO2) is constant even in severe hypoxia (Kety and Schmidt 1948b; Ainslie et al. 2013), the inverse linear relationship between CBF and arterial–venous oxygen content differences could also explain the reduction in CBF, as less flow would be needed to match the oxygen demand of the brain when arterial content is elevated. A similar study (Sørensen et al., 1974), using arterio-venous differences combined (in a subgroup) with a modified version of Kety–Schmidt method (krypton instead of N2O,) conducted in high-altitude residents in La Paz in Bolivia at 3800 m, also reported a 15%–20% reduction in CBF (with a reported average hematocrit of 50%) compared to a sea level control group.

Percent changes in cerebral blood flow

Percent changes in cerebral blood flow

Percent changes in cerebral blood flow (D%CBF, graph A), arterial oxygen content (Cao2, graph B), and cerebral oxygen delivery (CDO2, graph C) with time at high-altitude from seven studies at various altitudes and durations. Severinghaus et al. (1966) studied CBF using the Kety-Schmidt technique in five subjects brought rapidly by car to 3810 m. Using the Xe133 method, Jensen et al. (1990) measured CBF in 12 subjects at 3475 m. Huang et al. (1987) measured ICA and VA blood velocities as a metric of CBF on Pikes Peak (4300 m). Baumgartner et al. (1994) studied 24 subjects who rapidly ascended to 3200m by cable car, slept one night at 3600 m, and ascended by foot to 4559m the next day. Cerebral blood flow was estimated by transcranial Doppler ultrasound. About two-thirds of the subjects developed symptoms of AMS, data included are the mean of all subjects. Lucas et al. (2011) employed an 8–9 day ascent to 5050m and estimated changes in CBF by transcranial Doppler ultrasound of the middle cerebral artery. Willie et al. (2013) following the same ascent measured flow (Duplex ultrasound; and TCCD) in the ICA and VA and estimated global flow from: 2*ICA + 2* VA. The same methodological approach was used time Subudhi upon rapid ascent via car and oxygen breathing to 5240 m (Subudhi et al. 2013). Cao2 was calculated from: (1.39 · [Hb] · SaO2) + Pao2 *0.003. In some studies [Hb] data were not available, and typical data from previous studies over comparable time at related elevation were used. In other studies, Pao2 was not always reported; therefore, Sao2 was used to estimate Pao2 via (Severinghaus, 1979).

Only two studies have measured serial changes in CBF during progressive ascent to high altitude, but the findings may help explain small discrepancies between studies. In 2011, Wilson et al. (2011) measured diameter and velocity in the MCA (using transcranial color-coded Duplex-ultrasound, TCCD) following partial acclimation to 5300m (n = 24), 6400 m (n = 14), and 7950m (n = 5). Remarkable elevations (200%) in flow in the MCA occurred at 7950 m. Notably, the authors estimated *24% dilation of the MCA occurred at 6400 m. Dilation of the MCA further increased to *90% at 7950m (Fig.) and was rapidly reversed with oxygen supplementation (Fig.). Cerebral oxygen delivery and oxygenation were maintained by commensurate elevations of CBF even at these extreme altitudes. In another recent study, CBF and MCA diameter were measured at 1338 m, 3440 m, 4371 m, and over time at 5050 m (Willie et al., 2013). Dilation of the MCA was observed upon arrival at 5050 m with subsequent normalization of CBF and MCA diameter by days 10–12. Such findings are consistent with unchanged diameter following 17 days at 5400m (Wilson et al., 2011). It is important to note that according to Poiseuille’s Law, flow is proportional to radius raised to the fourth power. Therefore, consistent with previous concerns about TCD (Giller, 2003), that the MCA dilates at such levels of hypoxemia indicates that previous studies using TCD at altitude may have underestimated flow (see previous Fig.) and thus may explain differences between studies. These findings are particularly important because they suggest regional regulation of CBF occurs in both large and small cerebral arteries.

Changes in blood flow in the middle cerebral artery (MCA) upon progressive ascent to 7950 m

Changes in blood flow in the middle cerebral artery (MCA) upon progressive ascent to 7950 m

Changes in blood flow in the middle cerebral artery (MCA) upon progressive ascent to 7950 m. Data were collected following partial acclimation to 5300 m (n = 24), at 6400 m (n = 14), and at 7950 m (n = 5). Remarkable elevations (200%) in flow in the MCA occurred at 7950 m following removal of breathing supplementary oxygen and breathing air for 20 min. Dilation (*24%) of the MCA occurred at 6400 m, which was further increased to 90% at 7950 m. Oxygen supplementation at this highest altitude rapidly reversed the observed MCA vessel dilation (denoted by blue triangle). Elevations in CBF via cerebral vasodilation were adequate to maintain oxygen delivery, even at these extreme altitudes. Modified from Wilson et al. (2011).

Summary of the major factors acting to increase ( plus) and decrease (minus) CBF during exposure to hypoxia

Summary of the major factors acting to increase ( plus) and decrease (minus) CBF during exposure to hypoxia

Summary of the major factors acting to increase ( plus) and decrease (minus) CBF during exposure to hypoxia. Cao2, arterial oxygen content; CBV, cerebral blood volume; EDHF, endothelium-derived hyperpolarizing factor; ET-1, endothelin-1; HCT, hematocrit; NO, nitric oxide; O2-, superoxide; PGE, prostaglandins; SNA, sympathetic nerve activity; VAH, ventilatory acclimatization to hypoxia/altitude. Modified from Ainslie and Ogoh (2010); Ainslie et al. (2014).

It is clear that many aspects of CBF regulation and brain function at high altitude warrant further investigation. Indeed, several questions remain. For example, over the period of ventilatory acclimatization (weeks to months), how do interactions between the hypoxic ventilatory response, hypercapnic ventilatoy response, hypoxic cerebral vasodilatation, and hypocapnic cerebral vasoconstriction interact to alter CBF? Furthermore, what is the role of NO and/or adenosine in mediating cerebral vasodilation at high altitude? And last, what is the time-course of recovery in CBF following descent to sea level?

 

Cognitive Impairments at High Altitudes and Adaptation

Xiaodan Yan
High Alt Med Biol. 15:141–145, 2014
http://dx.doi.org:/10.1089/ham.2014.1009

High altitude hypoxia has been shown to have significant impact on cognitive performance. This article reviews the aspects in which, and the conditions under which, decreased cognitive performance has been observed at high altitudes. Neural changes related to high altitude hypoxia are also reviewed with respect to their possible contributions to cognitive impairments. In addition, potential adaptation mechanisms are reviewed among indigenous high altitude residents and long-term immigrant residents, with discussions about methodological concerns related to these studies.

The amount of cognitive impairments at high altitudes is related to the chronicity of exposure. Acute exposure usually refers to a duration of several weeks, whereas chronic exposure usually refer to ‘‘extended permanence’’ in the high altitude environment (Virue´s-Ortega and others, 2004). The altitude of ascending or residence is another factor affecting the severity of impairments. This review will first summarize the cognitive impairments in acute exposure, then talk about impairments in chronic exposure, with discussions about the effect of altitudes in corresponding sections.

 

High altitude-related neurocognitive impairments with ascending altitudes

High altitude-related neurocognitive impairments with ascending altitudes

 

 

High altitude-related neurocognitive impairments with ascending altitudes in acute high altitude exposure (Wilson and others, 2009).

human brain consumes about 20% of the total oxygen intake

human brain consumes about 20% of the total oxygen intake

The human brain consumes about 20% of the total oxygen intake, which is disproportional to its size (about 2% of the total body weight). In this figure, oxygen consumption is reflected from glucose consumption in positron emission tomography (PET) (Alavi and Reivich, 2002).

The possibility of adaptation to high altitude hypoxia has always been an intriguing issue. In the acute cases, the human body does have some capacity for acclimatization, which varies significantly for different individuals. The question is, in chronic cases, for example, does growing up at high altitude regions guarantee sufficient adaption to occur to compensate for the risk of cognitive impairments? Existing research tends to suggest that, although some level of adaptation does occur, neural and cognitive impairments are still observed in these populations who are native or long-term residents at high altitude.

Although multiple studies have suggested that growing up at high altitudes is associated with cognitive impairments, it is not to say that adaptation does not happen with prolonged chronic exposure to high altitudes. One study has revealed that as a function of the length of low altitude residence (across the range of 1–5 years), some neuroimaging parameters of original highlanders who grew up at high altitude regions had shown the trend of converging towards the patterns of original low altitude residents, although such changes were not accompanied by statistically significant changes in cognitive performance (Yan and others, 2010). It is possible that, given sufficiently long time for normoxia adaptation, the neural and cognitive impairments associated with high altitude hypoxia may be alleviated to a certain extent.

In summary, various cognitive impairments associated with high altitude hypoxia have been reported from existing studies, which are accompanied by findings about neural impairments, suggesting that these cognitive impairments have legitimate neural basis. The specific relationships between physiological symptoms and cognitive impairments appear to be complicated and require further elucidation. There are cognitive impairments associated with both acute and chronic exposure to high altitudes; however, particular caution should be taken when interpreting the findings about cognitive impairments among native high altitude residents because of the differences
in cultural and socioeconomic factors. Existing studies have suggested that there can be some level of adaptation to high altitudes, in spite of the fact that some neuronal impairment may be irreversible.

Exercise Capacity and Selected Physiological Factors by Ancestry and Residential Altitude: Cross-Sectional Studies of 9–10-Year-Old Children in Tibet

Bianba, Sveinung Berntsen, Lars Bo Andersen, Hein Stigum, et al.
High Alt Med Biol. 2014; 15:162–169
http://dx.doi.org:/10.1089/ham.2013.1084

Aim: Several physiological compensatory mechanisms have enabled Tibetans to live and work at high altitude, including increased ventilation and pulmonary diffusion capacity, both of which serve to increase oxygen transport in the blood. The aim of the present study was to compare exercise capacity (maximal power output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and during maximal exercise, resting hemoglobin concentration, and forced vital capacity) in groups of native Tibetan children living at different residential altitudes (3700 vs. 4300 m above sea level) and across ancestry (native Tibetan vs. Han Chinese children living at the same altitude of 3700 m). Methods: A total of 430 9–10-year-old native Tibetan children from Tingri (4300 m) and 406 native Tibetan and 406 Han Chinese immigrants (77% lowland-born and 33% highland-born) from Lhasa (3700 m) participated in two cross-sectional studies. The maximal power output (Wmax) was assessed using an ergometer cycle. Results: Lhasa Tibetan children had a 20% higher maximal power output (watts/kg) than Tingri Tibetan and 4% higher than Lhasa Han Chinese. Maximal heart rate, arterial oxygen saturation at rest, lung volume, and arterial oxygen saturation were significantly associated with exercise capacity at a given altitude, but could not fully account for the differences in exercise capacity observed between ancestry groups or altitudes. Conclusions: The superior exercise capacity in native Tibetans vs. Han Chinese may reflect a better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3700 m demonstrated a better exercise capacity than residents at a higher altitude of 4300m when measured at their respective residential altitudes. Such altitude- or ancestry-related difference could not be fully attributed to the physiological factors measured.

Group size effects on foraging and vigilance in migratory Tibetan antelope

Xinming Lian, Tongzuo Zhang, Yifan Cao, Jianping Su, Simon Thirgood
Behavioural Processes 76 (2007) 192–197
http://dx.doi.org:/10.1016/j.beproc.2007.05.001

Large group sizes have been hypothesized to decrease predation risk and increase food competition. We investigated group size effects on vigilance and foraging behavior during the migratory period in female Tibetan antelope Pantholops hodgsoni, in the Kekexili Nature Reserve of Qinghai Province, China. During June to August, adult female antelope and yearling females gather in large migratory groups and cross the Qinghai–Tibet highway to calving grounds within the Nature Reserve and return to Qumalai county after calving. Large groups of antelope aggregate in the migratory corridor where they compete for limited food resources and attract the attention of mammalian and avian predators and scavengers. We restricted our sampling to groups of less than 30 antelopes and thus limit our inference accordingly. Focal-animal sampling was used to record the behavior of the free-ranging antelope except for those with lambs. Tibetan antelope spent more time foraging in larger groups but frequency of foraging bouts was not affected by group size. Conversely, the time spent vigilant and frequency of vigilance bouts decreased with increased group size. We suggest that these results are best explained by competition for food and risk of predation.

High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle

Zoltan Acsa, Zoltan Boria, Masaki Takedaa, Peter Osvatha, et al.
Respiratory Physiology & Neurobiology 196 (2014) 33–37
http://dx.doi.org/10.1016/j.resp.2014.02.006

We hypothesized that high altitude exposure and physical activity associated with the attack to Mt Everest could alter mRNA levels of DNA repair and metabolic enzymes and cause oxidative stress-related challenges in human skeletal muscle. Therefore, we have tested eight male mountaineers (25–40 years old) before and after five weeks of exposure to high altitude, which included attacks to peaks above 8000 m. Data gained from biopsy samples from vastus lateralis revealed increased mRNA levels of both cytosolic and mitochondrial superoxide dismutase. On the other hand 8-oxoguanine DNA glycosylase(OGG1) mRNA levels tended to decrease while Ku70 mRNA levels and SIRT6 decreased with altitude exposure. The levels of SIRT1 and SIRT3 mRNA did not change significantly. But SIRT4 mRNA level increased significantly, which could indicate decreases in fatty acid metabolism, since SIRT4 is one of the important regulators of this process. Within the limitations of this human study, data suggest that combined effects of high altitude exposure and physical activity climbing to Mt. Everest, could jeopardize the integrity of the particular chromosome.

High-altitude adaptations in vertebrate hemoglobins

Roy E. Weber
Respiratory Physiology & Neurobiology 158 (2007) 132–142
http://dx.doi.org:/10.1016/j.resp.2007.05.001

Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between theO2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin’s intrinsic O2-affinity and its allosteric interaction with cellular effectors (organic phosphates, protons and chloride). Whereas short-term altitudinal adaptations predominantly involve adjustments in allosteric interactions, long-term, genetically-coded adaptations typically involve changes in the structure of the hemoglobin molecules. The latter commonly comprise substitutions of amino acid residues at the effector binding sites, the heme protein contacts, or at inter-subunit contacts that stabilize either the low-affinity (‘Tense’) or the high-affinity (‘Relaxed’) structures of the molecules. Molecular heterogeneity (multiple iso-Hbs with differentiated oxygenation properties) can further broaden the range of physico-chemical conditions where Hb functions under altitudinal hypoxia. This treatise reviews the molecular and cellular mechanisms that adapt hemoglobin-oxygen affinities in mammals, birds and ectothermic vertebrates at high altitude.

Vertebrate animals display remarkable ability to tolerate high altitudes and cope with the concomitant decreases in O2 tension that potentially constrain aerobic life (Monge and Leon-Velarde, 1991;Weber, 1995; Samaja et al., 2003). Compared to an ambient PO2 of approximately 160 mm Hg at sea level, inspired tension approximates only 95 mm Hg for llamas and frogs from Andean habitats above 4000 m, 45 mm Hg for bar-headed geese that fly across the Himalayas, and 33 mm Hg for Ruppell’s griffon that soars at 11,300 m over Africa’s Ivory Coast. Apart from the distinct adaptations manifest in blood’s O2-transporting properties, tolerance to decreased O2 availability may entail reconfigurations at the organ and cellular levels that include a switch to partial anaerobiosis. Driven by needs to reduce aerobic metabolic rate and maintain functional integrity (Ramirez et al., 2007), these pertain to a core triad of adaptations:

  1. metabolic suppression,
  2. tolerance to metabolite (e.g. lactate) accumulation, and
  3. defenses against increased free radicals associated with return to high O2 tensions (Bickler and Buck, 2007).

The response to oxygen lack comprises two phases

  1. defense, which includes metabolic arrest (a suppression of ATP-demand and ATP-supply) and channel arrest (decreases cell membrane permeability), and
  2. rescue, which commonly involves preferential expression of proteins that are implicated in extending metabolic down-regulation (Hochachka et al., 1996).

These responses vary greatly in different species and different tissues. Thus, although mixed-venous lactate concentrations increase strongly in sea-level as well as high-altitude acclimated pigeons that are exposed to altitude (from 1–2 mM at sea level to 5–7 mM at 9000 m) (Weinstein et al., 1985), and humans performing submaximal work at high altitude show a transient ‘lactate paradox’ (lower peak lactate levels that humans living at sea level (Lundby et al., 2000)), many species do not exhibit altitude-related changes in anaerobic metabolism.

Organismic adaptations to survive and perform physical exercise at extreme altitudinal hypoxia are diverse. In birds the undisputed high-altitude champions, where flapping flight may raise the energy demand 10–20-fold compared to resting levels (Scott et al., 2006), a highly efficient “cross-current” ventilation perfusion arrangement in the lungs may increase arterial O2 tensions above the tensions in expired air (Scheid, 1979) and drastically reduce the difference between inhalant and arterial O2 tensions (to 1 mm Hg in bar-headed geese subjected to simulated altitude of 11580 m) (Black and Tenney, 1980). The Andean frog Telmatobius culeus has a highly ‘oversized’ (folded) and vascularized skin that is ventilated by ‘bobbing’ behavior to support water(=skin) breathing. Manifold organismic adaptations moreover include combinations of increased muscle Mb concentrations (Reynafarje and Morrison, 1962) increased muscle capillarization (manifest in mammals and birds (cf. Monge et al., 1991)) and decreased red cell size (seen in amphibians but not high-altitude reptiles (Ruiz et al., 1989; Ruiz et al., 1993)). Amphibians exhibit an interspecific correlation between erythrocyte count and the degree of vascularization of respiratory surfaces and muscle tissues (Hutchison and Szarski, 1965), that reflect differences in their ability to tolerate altitudinal hypoxia.

A sensitivity analysis of the factors that may limit exercise performance identifies high Hb-O2 affinity, together with high total ventilation and high tissue diffusion capacity as the physiological traits that have greatest adaptive benefit for bird flight at extreme high altitude (Scott and Milsom, 2006). Blood O2 affinity is a combination of the intrinsic O2 affinity of the ‘stripped’ (purified) Hb molecules and the interaction of allosteric effectors (like organic phosphates, protons and chloride ions) that decrease Hb-O2 affinity inside the rbcs (Weber and Fago, 2004). Short-term adaptations in O2 affinity are commonly mediated by changes in erythrocytic effectors such as organic phosphates (2,3-diphosphoglycerate, DPG, in mammals, inositol pentaphosphate, IPP, in birds, ATP in reptiles, and ATP and DPG in amphibians), whereas long-term adaptations (that include interspecific ones that are genetically determined) commonly involve changes in Hb structure (amino acid exchanges) that alter Hb’s intrinsic O2 affinity or its sensitivity to allosteric effectors.

Vertebrate Hbs are tetrameric molecules composed of two α (or α-like) chains and two β (or β-like) chains, which in humans consist of 141 and 146 amino acid residues, respectively. Each subunit exhibits a highly characteristic “globin fold” comprised of seven or eight α-helices (labelled A, B, C, etc.) linked by nonhelical (EF, FG) segments, and N- and C-terminal extensions termed NA and HC, respectively. Individual amino acid residues are identified by their sequential positions in chain or/and the helix; thus α1131(H14)-Ser refers to Serine that is the 131st residue of α1 chain and the 14th of the H. During (de-) oxygenation Hb switches between two major structural states:

  1. the high affinity oxygenated R (relaxed) state that prevails at the respiratory surfaces, and
  2. the low affinity, deoxygenated T (tense) state that occurs predominantly in the tissues and is constrained by additional hydrogen bonds and salt bridges.

The Hbs exhibit cooperative homotropic interactions between the O2 binding heme groups (that cause the S-shaped O2 equilibrium curves and increase O2 loading and unloading for a given change in O2 tension) as well as inhibitory, heterotropic interactions between the hemes and the binding sites of effectors that decrease O2 affinity (increase the half-saturation O2 loading tension, P50) and facilitate O2 unloading.

A comparison of Hbs from different species (cf. Perutz, 1983) reveals that variation in the sensitivities to effectors correlates generally with exchanges of very few of the approximately 287 amino acid residues that comprise each αβ dimer. Thus in adult human Hb (HbA) at physiological pH, the majority of the Bohr effect (pH dependence of Hb-O2 affinity that facilitates O2 release in relatively acid working muscles) results from proton binding at the C-terminal residues of the β-chains (β146-His) (cf. Lukin and Ho, 2004). Correspondingly DPG binds to only four β-chain residues (β1-Val, β2-His, β82-Lys and β143-His), CO2 binding (carbamate formation) occurs at the uncharged amino-termini of both chains (α1-Val and β1-Val), and monovalent anions like chloride are considered to bind at one α-chain site (between α1-Val and α131–Ser) and one β-chain site (between  β82-Lys and β1-Val) (cf. Riggs, 1988).

The small number of sites that primarily determine Hb-O2 affinity and its sensitivity to effectors aligns with the neutral theory of molecular evolution (Kimura, 1979), which holds that the majority of amino acid substitutions are non-adaptive and harmless—and facilitates identification of key molecular mechanisms implicated in adaptations at altitude.

The role of effectors in altitude adaptation is aptly illustrated in humans where Hb structure (intrinsic O2 affinity) remains unchanged. Newcomers and permanent residents at moderate altitude (e.g. 2000 m) show increased DPG levels, resulting in a decreased O2 affinity that positions arterial and mixed venous O2 tensions on the steep part of the O2 equilibrium curve, increasing O2 capacitance ([1]bO2) and O2 transport, without materially compromising O2 loading (Turek et al., 1973; Mairbaurl, 1994). The increased DPG correlates with erythropoietin-mediated formation of new rbcs that have higher glycolytic rates and higher DPG and ATP levels than old rbcs. However, faster increases in P50 than in DPG level indicate contributions from other factors, such as chloride and ATP, and Mg ions that neutralize the anionic effectors (Mairbaurl et al., 1993). At higher altitudes (4559 m) increased hyperventilation that drives off CO2 causes respiratory alkalosis (Mairbaurl, 1994). The higher pH increases O2 affinity via the Bohr effect and, offsetting the effect of increased DPG, leads to a similar O2 affinity and arterio-venous O2 saturation  difference as at sea level (Fig.). O2 unloading in the tissues is moreover enhanced by metabolic acidification of capillary blood (Fig.).

Obviously right-shifted curves (that favor O2 unloading) becomes counterproductive at extreme altitudes where O2 loading becomes compromised, predicting that decreased O2 affinity becomes maladaptive under severe hypoxic stress. This is consistent with the observation that a carbamylation-induced increase in blood O2 affinity of rats (that lowers P50 from 27 to 15 mm Hg), increases survival under hypobaric hypoxia equivalent to 9200 meters’ altitude (Eaton et al., 1974). The altitude limit where increased affinity rather than a decreased affinity optimizes tissue O2 supply < 5000 m in man (Samaja et al., 2003)] depends on organismic adaptations (e.g. efficiency of gas exchange) and thus will vary between species. Mammals that permanently inhabit high altitudes and show high blood O2 affinities include the Andean rodent Chinchilla brevicaudata living at 3000–5000 m (blood P50 = 23 mm Hg compared to 38 mm Hg in the rat) (Ostojic et al., 2002). The deer mouse, Peromyscus maniculatus that occurs continuously from sea level to altitudes above 4300 m shows a strong correlation between blood O2 affinity and native altitude (Snyder et al., 1988). That genetically based differences in cofactor levels may contribute to this relationship follows from lower DPG/Hb ratios found in specimens resident, and native to, high altitude than in those from low altitude, after long-term acclimation of both groups to low altitude (Snyder, 1982).

O2 equilibrium curves of human blood illustrating the effects of increases in red cell DPG and pH at high-altitude

O2 equilibrium curves of human blood illustrating the effects of increases in red cell DPG and pH at high-altitude

 

O2 equilibrium curves of human blood illustrating the effects of increases in red cell DPG and pH at high-altitude (4559 m). Solid curves refer to arterial blood (P50 = 26  mm,upper section) and cubical venous blood (P50 = 27.5 mm Hg, lower section); their displacement reflects the Bohr effect. The broken curves depict effects of increased DPG levels (↑DPG) at unchanged pH, increased pH (↑pH) at unchanged DPG, and of decreased tissue pH (↓pH) resulting from higher degrees of metabolic acidification in the tissues. Open and shaded vertical columns indicate O2 unloaded at sea level and 4559 m, respectively, for venous O2 tensions (PvO2) of 25 and 15 mm Hg,respectively [Modified after (Mairbaurl, 1994)].

Camelids. The high blood-O2 affinities in Andean camelids (llama, vicunia, alpaca and guanaco) whose natural habitats exceed 3000 m (Bartels et al., 1963) compared to those of similarly-sized lowland mammals are well-established. In the camelids a β2His→Asn substitution deletes two of the seven DPG contacts in the tetrameric Hb, which increases blood O2 affinity by reducing the DPG effect. Although the intrinsic Hb-O2 affinity is lower in llama than in the related, lowland camel (Bauer et al., 1980), llama blood has a higher O2 affinity due to a three-fold lower DPG-binding than in camel Hb that has the same DPG binding sites as humans (Bauer et al., 1980). In vicunia, a higher O2 affinity than in llama (that has identical β-chains), correlates with the α130Ala→Thr substitution, which introduces a hydroxyl polar group that predictably reduces the chloride binding at adjacent α131Asn residue .

Sheep and goats commonly express two isoforms, HbA and HbB. The heterogeneity is controlled by two autosomal alleles with codominant expression. Whereas individuals expressing HbA have higher blood-O2 affinity than those that express HbB, heterozygotes that express both forms at equimolar concentrations in the same erythrocytes show intermediate affinity. Anemic blood loss induces switching from HbA to HbC that has a similarly high affinity. Hbs A, B and C have identical α-chains but different β[1]-chains. It appears unknown whether altitudinal exposure (which like anemia, induces tissue hypoxia) modulates Hb heterogeneity via selective expression of specific β-chains.

Compared to most mammals that possess one major adult and one major fetal Hb, yak, Poephagus (=Bos) grunniens, a native to altitudes of 3000–6000 m in Tibet, Nepal and Bhutan, has two or four major adult Hbs and two major fetal Hbs. These Hbs exhibit higher intrinsic affinities than closely-related bovine Hb, marked DPG sensitivities and, exceptional amongst mammals, differentiated O2 affinities that indicates an extended range of ambient O2 tensions (and altitudes) in which the composite Hb functions.

(Not shown).  Representation of interchain contacts considered to underly differentiated O2 affinities in Rueppell’s griffon isoHbs A, A , D and D that have identical β- chains but different α- chains. Accordingly the van der Waal’s contact between β134Ile and β1125-Asp in Hbs A , D and D stabilizes the low-affinity, T-state less strongly than the H-bond between Thr 134 and β1125-Asp and thus increases O2 affinity in Hbs A, D and D. Analogously, the hydrogen bonds between α138-β297/99 that stabilize the high-affinity oxystructure (raising O2 affinity in isoHbs D and D) cannot form in HbA and HbA that have Pro at α138.

Ostriches, the largest extant birds, exhibit a β2His→Gln exchange (that reduces phosphate interaction). They moreover ‘use’ ITP (inositol phosphate) that carries fewer negative charges, and predictably has lesser allosteric effect, than IPP (Isaacks et al., 1977), predicting a high blood O2 affinity that is compatible with ‘scaling’ and (as in elephants) increases high altitude tolerance.

Whereas some adult birds express one major iso-Hb (HbA), the majority of species, reportedly all that fly at high altitudes (Hiebl et al., 1987), also express a less abundant HbD. HbD has the same β-chains as HbA but different α-chains (αD) and exhibits higher O2 affinities (Huisman et al., 1964). There is no consistent evidence for hypoxia-induced changes in HbD expression.

An example of how “molecular anatomy is just as key to understanding molecular adaptation as phylogeny and physiological ecology” (Golding and Dean, 1998) is Hb of the high-altitude tolerant bar-headed goose that has a sharply higher blood O2 affinity than that of the closely related graylag goose that is restricted to lower altitudes (P50 = 29.7 and 39.5mmHg at 37 ◦C and pH 7.4). The Hbs differ by only four (greylag→bar-headed) amino acid exchanges: α18Gly→Ser, α63Ala→Val, β125Glu→Asp and α119Pro→Ala. The last mentioned exchange that is unique in birds, predictably increases O2 affinity, by deleting a contact between α1119 and β155 that destabilizes the T-structure (Perutz, 1983). Moreover, Andean ‘goose’ Hb that also has high blood O2 affinity shows β55 Leu→Ser that deletes the same contact. Significantly, two human Hb mutants (α119Pro–Ala and β155Met→Ser) engineered by site-directed mutagenesis to mimic the mutations found in bar-headed and Andean geese possess markedly higher O2 affinities than native HbA.

Although “the study of molecular adaptation has long been fraught with difficulties not the least of which is identifying out the hundreds of amino acid replacements, those few directly responsible for major adaptations” Hb’s adaptations to high altitude are a prime example of how “an amino acid replacement of modest effect at the molecular level causes a dramatic expansion in an ecological niche” [quotations from (Golding et al., 1998)].

However, the pathway of molecular O2 from the respiratory medium to the cellular combustion sites via the Hb molecules is regulated by a symphony of supplementary adaptations that span different levels of biological organization, each of which (according to the principle of symmorphosis) may become maximally recruited in extreme cases (as in birds actively flying above 10,000 m). Apart from hyperventilation, that appears to occur ubiquitously (and increases blood O2 affinity via increased pH), different species subjected to less extreme hypoxic stress utilize different adaptations among the arsenal of organismic, cellular and molecular strategies that favor efficient aerobic utilization of the scarce O2 available at high altitude. No clear correlations exist between the adaptive strategies recruited by different animals on the one hand, and their phylogenetic position, mode of life or ecological niches on the other. An overall limitation is that short-term adaptive adjustments in O2 affinity (that may occur within individual animals) necessarily involves rapid adaptive responses, such as changes in the levels of erythrocytic effectors, whereas the long-term acclimations that have accumulated in permanent high-altitude dwellers during evolutionary development.

Genetic Diversity of Microsatellite DNA Loci of Tibetan Antelope (Chiru, Pantholops hodgsonii) in Hoh Xil National Nature Reserve, Qinghai, China

Hui Zhou, Diqiang Li, Yuguang Zhang, Tao Yang, Yi Liu
J Genetics and Genomics (Formerly Acta Genetica Sinica) 2007; 34(7): 600-607

The Tibetan antelope (Pantholops hodgsonii), indigenous to China, became an endangered species because of considerable reduction both in number and distribution during the 20th century. Presently, it is listed as an AppendixⅠspecies by CITES and as CategoryⅠ by the Key Protected Wildlife List of China. Understanding the genetic diversity and population structure of the Tibetan antelope is significant for the development of effective conservation plans that will ensure the recovery and future persistence of this species. Twenty-five microsatellites were selected to obtain loci with sufficient levels of polymorphism that can provide in-formation for the analysis of population structure. Among the 25 loci that were examined, nine of them showed high levels of genetic diversity. The nine variable loci (MCM38, MNS64, IOBT395, MCMAI, TGLA68, BM1329, BMS1341, BM3501, and MB066) were used to examine the genetic diversity of the Tibetan antelope (n = 75) in Hoh Xil National Nature Reserve(HXNNR), Qinghai, China. The results obtained by estimating the number of population suggested that all the 75 Tibetan antelope samples were from the same population. The mean number of alleles per locus was 9.4 ± 0.5300 (range, 7–12) and the mean effective number of alleles was 6.519 ± 0.5271 (range, 4.676–9.169). The observed mean and expected heterozygosity were 0.844 ± 0.0133 (range, 0.791–0.897) and 0.838 ± 0.0132 (range, 0.786–0.891), respectively. Mean Polymorphism Information Content (PIC) was 0.818 ± 0.0158 (range, 0.753–0.881). The value of Fixation index (Fis) ranged from −0.269 to −0.097 with the mean of −0.163 ± 0.0197. Mean Shannon’s information index was 1.990 ± 0.0719 among nine loci (range, 1.660–2.315). These results provide baseline data for the evaluation of the level of genetic variation in Tibetan antelope, which will be important for the development of conservation strategies in future.

Expression profiling of abundant genes in pulmonary and cardiac muscle tissues of Tibetan Antelope (Pantholops hodgsonii)

Xiaomei Tong, Yingzhong Yang, Weiwei Wang, Zenzhong Bai, et al.
Gene 523 (2013) 187–191
http://dx.doi.org/10.1016/j.gene.2013.03.011

The Tibetan Antelope (TA), which has lived at high altitude for millions of years, was selected as the model species of high hypoxia-tolerant adaptation. Here we constructed two cDNA libraries from lung and cardiac muscle tissues, obtained EST sequences from the libraries, and acquired extensive expression data related energy metabolism genes. Comparative analyses of synonymous (Ks) and nonsynonymous (Ka) substitution rates of nucleus-encoded mitochondrial unigenes among different species revealed that many antelope genes have undergone rapid evolution. Surfactant-associated protein A (SP-A) and surfactant-associated protein B (SP-B) genes in the AT lineage experienced accelerated evolution compared to goat and sheep, and these two genes are highly expressed in the lung tissue. This study suggests that many specific genes of lung and cardiac muscle tissues showed unique expression profiles and may undergo fast adaptive evolution in TA. These data provide useful information for studying on molecular adaptation to high-altitude in humans as well as other mammals.

Exogenous Sphingosine-1-Phosphate Boosts Acclimatization in Rats Exposed to Acute Hypobaric Hypoxia: Assessment of Haematological and Metabolic Effects

Sonam Chawla, Babita Rahar, Mrinalini Singh, Anju Bansal, et al.
PLoS ONE 9(6): e98025. http://dx.doi.org:/10.1371/journal.pone.0098025

Background: The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach: Efficacy of intravenously administered S1P in improving hematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620 m for 6 hours) following S1P pre-treatment for three days. Major Findings: Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing hemoglobin, hematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1a mediated  erythropoiesis and renal S1P receptor 1 mediated hemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion: The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes.

S1P Stabilizes HIF-1a and Boosts HIF-1a Mediated Hypoxia Adaptive Responses

S1P pre-conditioning led to 1.9 fold higher HIF-1a level in the kidney tissue (p<0.001) and 1.3 fold higher HIF-1a level in the liver tissue (p<0.001) in 1 mg/kg b.w. S1P group than in hypoxia control group. However, the hypoxia control group also had 1.3 folds higher HIF-1a levels in both liver and kidney tissues than in normoxia control groups, indicating a non-hypoxic boost of HIF-1a in S1P treated animals (Figure 1a and b). Further, plasma Epo levels were also observed to be significantly higher following S1P pre-treatment compared to the hypoxia control groups (p=0.05) (Figure 1a). Epo being primarily secreted by the kidneys and its expression being under regulation of HIF-1a, the raised plasma Epo level could be attributed to higher HIF-1a level in the kidney.

Figure 1. (not shown) Effect of S1P treatment on HIF-1a accumulation and downstream gene expression. a) Renal HIF-1a accumulation and Epo accumulation in plasma. HIF-1a accumulation in the renal tissue homogenate and build-up of erythropoietin in plasma was quantified. b) Hepatic HIF-1a accumulation. c) Effect S1P pre-treatment on circulatory VEGF. Vascular endothelial growth factor (VEGF) was quantified in plasma of experimental animals. These estimations were carried out using sandwich ELISA, and were carried out in triplicates for each experimental animal. Values are representative of mean 6 SD (n = 6). Statistical significance was calculated using ANOVA/post hoc Bonferroni. NC: Normoxia control, HC: Hypoxia control, 1: 1 mg S1P/kg b.w., 10: 10 mg S1P/kg b.w., 100: 100 mg S1P/kg b.w.,  p<0.05 compared with the normoxic control, p<0.01 compared with the normoxic control, p<0.001 compared with the normoxic control,  p<0.05 compared with the hypoxic control,  p<0.01 compared with the hypoxic control,  p<0.001 compared with the hypoxic control. http://dx.doi.org:/10.1371/journal.pone.0098025.g001

Figure 2.(not shown)  Effect of S1P treatment on S1P1 expression in renal tissue. Representative immune-blot of S1P1. Densitometric analysis of blot normalized against the loading control (α-tubulin). Values are representative of mean 6 SD (n = 6). Statistical significance was calculated using ANOVA/post hoc Bonferroni. NC: Normoxia control, HC: Hypoxia control, 1: 1 mg S1P/kg b.w., 10: 10 mg S1P/kg b.w., 100: 100 mg S1P/kg b.w.,  p<0.05 compared with the normoxic control,  p<0.01 compared with the normoxic control, p<0.001 compared with the normoxic control, p< 0.05 compared with the hypoxic control, p<0.01 compared with the hypoxic control, p<0.001 compared with the hypoxic control. http://dx.doi.org:/10.1371/journal.pone.0098025.g002

Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal—plateau pika (Ochotona curzoniae)

T.B. Zhao, H.X. Ning, S.S. Zhu, P. Sun, S.X. Xu, Z.J. Chang, and X.Q. Zhao
Biochemical and Biophysical Research Communications 316 (2004) 565–572
http://dx.doi.org:/10.1016/j.bbrc.2004.02.087

Hypoxia-inducible factor 1 is a transcription factor composed of HIF-1α and HIF-1β. It plays an important role in the signal transduction of cell response to hypoxia. Plateau pika (Ochotona curzoniae) is a high hypoxia-tolerant and cold adaptation species living only at 3000–5000m above sea level on the Qinghai-Tibet Plateau. In this study, HIF-1α cDNA of plateau pika was cloned and its expression in various tissues was studied. The results indicated that plateau pika HIF-1α cDNA was highly identical to those of the human (82%), bovine (89%), mouse (82%), and Norway rat (77%). The deduced amino acid sequence (822 bp) showed 90%, 92%, 86%, and 86% identities with those of the human, bovine, house mouse, and Norway rat, respectively. Northern blot analyses detected two isoforms named pLHIF-1α and pSHIF-1α. The HIF-1α mRNA was highly expressed in the brain and kidney, and much less in the heart, lung, liver, muscle, and spleen, which was quite different from the expression pattern of mouse mRNA. Meanwhile, a new variant of plateau pika HIF-1α mRNA was identified by RT-PCR and characterized. The deduced protein, composed of 536 amino acids, lacks a part of the oxygen-dependent degradation domain (ODD), both transactivation domains (TADs), and the nuclear localization signal motif (NLS). Our results suggest that HIF-1α may play an important role in the pika’s adaptation to hypoxia, especially in brain and kidney, and pika HIF-1α function pattern may be different from that of mouse HIF-1α. Furthermore, for the high ratio of HIF-1α homology among the animals, the HIF-1α gene may be a good phylogenetic performer in recovering the true phylogenetic relationships among taxa.

Comparative Proteomics Analyses of Kobresia pygmaea Adaptation to Environment along an Elevational Gradient on the Central Tibetan Plateau

Xiong Li, Yunqiang Yang, Lan Ma, Xudong Sun, et al.
PLoS ONE 9(6): e98410. http://dx.doi.org:/10.1371/journal.pone.0098410

Variations in elevation limit the growth and distribution of alpine plants because multiple environmental stresses impact plant growth, including sharp temperature shifts, strong ultraviolet radiation exposure, low oxygen content, etc. Alpine plants have developed special strategies to help survive the harsh environments of high mountains, but the internal mechanisms remain undefined. Kobresia pygmaea, the dominant species of alpine meadows, is widely distributed in the Southeastern Tibet Plateau, Tibet Autonomous Region, China. In this study, we mainly used comparative proteomics analyses to investigate the dynamic protein patterns for K. pygmaea located at four different elevations (4600, 4800, 4950 and 5100 m). A total of 58 differentially expressed proteins were successfully detected and functionally characterized. The proteins were divided into various functional categories, including material and energy metabolism, protein synthesis and degradation, redox process, defense response, photosynthesis, and protein kinase. Our study confirmed that increasing levels of antioxidant and heat shock proteins and the accumulation of primary metabolites, such as proline and abscisic acid, conferred K. pygmaea with tolerance to the alpine environment. In addition, the various methods K. pygmaea used to regulate material and energy metabolism played important roles in the development of tolerance to environmental stress. Our results also showed that the way in which K. pygmaea mediated stomatal characteristics and photosynthetic pigments constitutes an enhanced adaptation to alpine environmental stress. According to these findings, we concluded that K. pygmaea adapted to the high-elevation environment on the Tibetan Plateau by aggressively accumulating abiotic stress related metabolites and proteins and by the various life events mediated by proteins. Based on the species flexible physiological and biochemical processes, we surmised that environment change has only a slight impact on K. pygmaea except for possible impacts to populations on vulnerable edges of the species’ range
Altered mitochondrial biogenesis and its fusion gene expression is involved in the high-altitude adaptation of rat lung

Loganathan Chitra, Rathanam Boopathy
Respiratory Physiology & Neurobiology 192 (2014) 74– 84
http://dx.doi.org/10.1016/j.resp.2013.12.007

Intermittent hypobaric hypoxia-induced preconditioning (IHH-PC) of rat favored the adaption of lungs to severe HH conditions, possibly through stabilization of mitochondrial function. This is based on the data generated on regulatory coordination of nuclear DNA-encoded mitochondrial biogenesis; dynamics,and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (mt-OXPHOS) genes expression. At16th day after start of IHH-PC (equivalent to 5,000 m, 6 h/d, 2 w of treatment), rats were exposed to severe HH stimulation at 9142 m for 6 h. The IHH-PC significantly counteracted the HH-induced effect of increased lung: water content; tissue damage; and oxidant injury. Further, IHH-PC significantly increased the mitochondrial number, mtDNA content and mt- OXPHOS complex activity in the lung tissues. This observation is due to an increased expression of genes involved in mitochondrial biogenesis (PGC-1α,ERRα, NRF1, NRF2 and TFAM), fusion (Mfn1 and Mfn2) and mt OXPHOS. Thus, the regulatory pathway formed by PGC-1α/ERRα/Mfn2 axes is required for the mitochondrial adaptation provoked by IHH-PC regimen to counteract subsequent HH stress.

Molecular characteristics of Tibetan antelope (Pantholops hodgsonii) mitochondrial DNA control region and phylogenetic inferences with related species

  1. Feng, B. Fan, K. Li, Q.D. Zhang, et al.
    Small Ruminant Research 75 (2008) 236–242
    http://dx.doi.org:/10.1016/j.smallrumres.2007.06.011

Although Tibetan antelope (Pantholops hodgsonii) is a distinctive wild species inhabiting the Tibet-Qinghai Plateau, its taxonomic classification within the Bovidae is still unclear and little molecular information has been reported to date. In this study of Tibetan antelope, the complete control regions of mtDNA were sequenced and compared to those of Tibetan sheep (Ovis aries) and goat (Capra hircus). The length of the control region in Tibetan antelope, sheep and goat is 1067, 1181/1106 and 1121 bp, respectively. A 75-bp repeat sequence was found near the 5’ end of the control region of Tibetan antelope and sheep, the repeat numbers of which were two in Tibetan antelope and three or four in sheep. Three major domain regions, including HVI, HVII and central domain, in Tibetan antelope, sheep and goat were outlined, as well as other less conserved blocks, such as CSB-1, CSB-2, ETAS-1 and ETAS-2. NJ cluster analysis of the three species revealed that Tibetan antelope was more closely related to Tibetan sheep than Tibetan goat. These results were further confirmed by phylogenetic analysis using the partial control region sequences of these and 13 other antelope species. Tibetan antelope is better assigned to the Caprinae rather than the Antilopinae subfamily of the Bovidae.

Read Full Post »

Neonatal Pathophysiology

Neonatal Pathophysiology

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

This curation deals with a large and specialized branch of medicine that grew since the mid 20th century in concert with the developments in genetics and as a result of a growing population, with large urban populations, increasing problems of premature deliveries.  The problems of prematurity grew very preterm to very low birth weight babies with special problems.  While there were nurseries, the need for intensive care nurseries became evident in the 1960s, and the need for perinatal care of pregnant mothers also grew as a result of metabolic problems of the mother, intrauterine positioning of the fetus, and increasing numbers of teen age pregnancies as well as nutritional problems of the mother.  There was also a period when the manufacturers of nutritional products displaced the customary use of breast feeding, which was consequential.  This discussion is quite comprehensive, as it involves a consideration of the heart, the lungs, the brain, and the liver, to a large extent, and also the kidneys and skeletal development.

It is possible to outline, with a proportionate emphasis based on frequency and severity, this as follows:

  1. Genetic and metabolic diseases
  2. Nervous system
  3. Cardiovascular
  4. Pulmonary
  5. Skeletal – bone and muscle
  6. Hematological
  7. Liver
  8. Esophagus, stomach, and intestines
  9. Kidneys
  10. Immune system

Fetal Development

Gestation is the period of time between conception and birth when a baby grows and develops inside the mother’s womb. Because it’s impossible to know exactly when conception occurs, gestational age is measured from the first day of the mother’s last menstrual cycle to the current date. It is measured in weeks. A normal gestation lasts anywhere from 37 to 41 weeks.

Week 5 is the start of the “embryonic period.” This is when all the baby’s major systems and structures develop. The embryo’s cells multiply and start to take on specific functions. This is called differentiation. Blood cells, kidney cells, and nerve cells all develop. The embryo grows rapidly, and the baby’s external features begin to form.

Week 6-9:   Brain forms into five different areas. Some cranial nerves are visible. Eyes and ears begin to form. Tissue grows that will the baby’s spine and other bones. Baby’s heart continues to grow and now beats at a regular rhythm. Blood pumps through the main vessels. Your baby’s brain continues to grow. The lungs start to form. Limbs look like paddles. Essential organs begin to grow.

Weeks 11-18: Limbs extended. Baby makes sucking motion. Movement of limbs. Liver and pancreas produce secretions. Muscle and bones developing.

Week 19-21: Baby can hear. Mom feels baby – and quickening.

http://www.nlm.nih.gov/medlineplus/ency/article/002398.htm

fetal-development

fetal-development

https://polination.files.wordpress.com/2014/02/abortion-new-research-into-fetal-development.jpg

Inherited Metabolic Disorders

The original cause of most genetic metabolic disorders is a gene mutation that occurred many, many generations ago. The gene mutation is passed along through the generations, ensuring its preservation.

Each inherited metabolic disorder is quite rare in the general population. Considered all together, inherited metabolic disorders may affect about 1 in 1,000 to 2,500 newborns. In certain ethnic populations, such as Ashkenazi Jews (Jews of central and eastern European ancestry), the rate of inherited metabolic disorders is higher.

Hundreds of inherited metabolic disorders have been identified, and new ones continue to be discovered. Some of the more common and important genetic metabolic disorders include:

Lysosomal storage disorders : Lysosomes are spaces inside cells that break down waste products of metabolism. Various enzyme deficiencies inside lysosomes can result in buildup of toxic substances, causing metabolic disorders including:

  • Hurler syndrome (abnormal bone structure and developmental delay)
  • Niemann-Pick disease (babies develop liver enlargement, difficulty feeding, and nerve damage)
  • Tay-Sachs disease (progressive weakness in a months-old child, progressing to severe nerve damage; the child usually lives only until age 4 or 5)
  • Gauchers disease and others

Galactosemia: Impaired breakdown of the sugar galactose leads to jaundice, vomiting, and liver enlargement after breast or formula feeding by a newborn.

Maple syrup urine disease: Deficiency of an enzyme called BCKD causes buildup of amino acids in the body. Nerve damage results, and the urine smells like syrup.

Phenylketonuria (PKU): Deficiency of the enzyme PAH results in high levels of phenylalanine in the blood. Mental retardation results if the condition is not recognized.

Glycogen storage diseases: Problems with sugar storage lead to low blood sugar levels, muscle pain, and weakness.

Metal metabolism disorders: Levels of trace metals in the blood are controlled by special proteins. Inherited metabolic disorders can result in protein malfunction and toxic accumulation of metal in the body:

Wilson disease (toxic copper levels accumulate in the liver, brain, and other organs)

Hemochromatosis (the intestines absorb excessive iron, which builds up in the liver, pancreas, joints, and heart, causing damage)

Organic acidemias: methylmalonic acidemia and propionic acidemia.

Urea cycle disorders: ornithine transcarbamylase deficiency and citrullinemia

Hemoglobinopathies – thalassemias, sickle cell disease

Red cell enzyme disorders – glucose-6-phosphate dehydrogenase, pyruvate kinase

This list is by no means complete.

http://www.webmd.com/a-to-z-guides/inherited-metabolic-disorder-types-and-treatments

New variations in the galactose-1-phosphate uridyltransferase (GALT) gene

Clinical and molecular spectra in galactosemic patients from neonatal screening in northeastern Italy: Structural and functional characterization of new variations in the galactose-1-phosphate uridyltransferase (GALT) gene

E Viggiano, A Marabotti, AP Burlina, C Cazzorla, MR D’Apice, et al.
Gene 559 (2015) 112–118
http://dx.doi.org/10.1016/j.gene.2015.01.013
Galactosemia (OMIM 230400) is a rare autosomal recessive inherited disorder caused by deficiency of galactose-1-phosphate uridyltransferase (GALT; OMIM 606999) activity. The incidence of galactosemia is 1 in 30,000–60,000, with a prevalence of 1 in 47,000 in the white population. Neonates with galactosemia can present acute symptoms, such as severe hepatic and renal failure, cataract and sepsis after milk introduction. Dietary restriction of galactose determines the clinical improvement in these patients. However, despite early diagnosis by neonatal screening and dietary treatment, a high percentage of patients develop long-term complications such as cognitive disability, speech problems, neurological and/or movement disorders and, in females, ovarian dysfunction.

With the benefit of early diagnosis by neonatal screening and early therapy, the acute presentation of classical galactosemia can be prevented. The objectives of the current study were to report our experience with a group of galactosemic patients identified through the neonatal screening programs in northeastern Italy during the last 30 years.

No neonatal deaths due to galactosemia complications occurred after the introduction of the neonatal screening program. However, despite the early diagnosis and dietary treatment, the patients with classical galactosemia showed one or more long-term complications.

A total of 18 different variations in the GALT gene were found in the patient cohort: 12 missense, 2 frameshift, 1 nonsense, 1 deletion, 1 silent variation, and 1 intronic. Six (p.R33P, p.G83V, p.P244S, p.L267R, p.L267V, p.E271D) were new variations. The most common variation was p.Q188R (12 alleles, 31.5%), followed by p.K285N (6 alleles, 15.7%) and p.N314D (6 alleles, 15.7%). The other variations comprised 1 or 2 alleles. In the patients carrying a new mutation, the biochemical analysis of GALT activity in erythrocytes showed an activity of < 1%. In silico analysis (SIFT, PolyPhen-2 and the computational analysis on the static protein structure) showed potentially damaging effects of the six new variations on the GALT protein, thus expanding the genetic spectrum of GALT variations in Italy. The study emphasizes the difficulty in establishing a genotype–phenotype correlation in classical galactosemia and underlines the importance of molecular diagnostic testing prior to making any treatment.

Diagnosis and Management of Hereditary Hemochromatosis

Reena J. Salgia, Kimberly Brown
Clin Liver Dis 19 (2015) 187–198
http://dx.doi.org/10.1016/j.cld.2014.09.011

Hereditary hemochromatosis (HH) is a diagnosis most commonly made in patients with elevated iron indices (transferrin saturation and ferritin), and HFE genetic mutation testing showing C282Y homozygosity.

The HFE mutation is believed to result in clinical iron overload through altering hepcidin levels resulting in increased iron absorption.

The most common clinical complications of HH include cirrhosis, diabetes, nonischemic cardiomyopathy, and hepatocellular carcinoma.

Liver biopsy should be performed in patients with HH if the liver enzymes are elevated or serum ferritin is greater than 1000 mg/L. This is useful to determine the degree of iron overload and stage the fibrosis.

Treatment of HH with clinical iron overload involves a combination of phlebotomy and/or chelation therapy. Liver transplantation should be considered for patients with HH-related decompensated cirrhosis.

Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann–Pick Type C disease among intellectually disabled using discrete event simulation

CDM van Karnebeek, Tima Mohammadi, Nicole Tsaod, Graham Sinclair, et al.
Molecular Genetics and Metabolism 114 (2015) 226–232
http://dx.doi.org/10.1016/j.ymgme.2014.07.004

Background: Recently a less invasive method of screening and diagnosing Niemann–Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods.
Methods: A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted.
Results: The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients’ quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs.
Conclusion: Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients’ quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence.

Neurological and Behavioral Disorders

Estrogen receptor signaling during vertebrate development

Maria Bondesson, Ruixin Hao, Chin-Yo Lin, Cecilia Williams, Jan-Åke Gustafsson
Biochimica et Biophysica Acta 1849 (2015) 142–151
http://dx.doi.org/10.1016/j.bbagrm.2014.06.005

Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affectingboth the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

 

Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults

Synne Aanes, Knut Jørgen Bjuland, Jon Skranes, Gro C.C. Løhaugen
NeuroImage 105 (2015) 76–83
http://dx.doi.org/10.1016/j.neuroimage.2014.10.023

The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure–function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19–20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural–functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth.

The relation of infant attachment to attachment and cognitive and behavioural outcomes in early childhood

Yan-hua Ding, Xiu Xua, Zheng-yan Wang, Hui-rong Li, Wei-ping Wang
Early Human Development 90 (2014) 459–464
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.004

Background: In China, research on the relation of mother–infant attachment to children’s development is scarce.
Aims: This study sought to investigate the relation of mother–infant attachment to attachment, cognitive and behavioral development in young children.                                                                                                                            Study design: This study used a longitudinal study design.
Subjects: The subjects included healthy infants (n=160) aged 12 to 18 months.
Outcome measures: Ainsworth’s “Strange Situation Procedure” was used to evaluate mother–infant attachment types. The attachment Q-set (AQS) was used to evaluate the attachment between young children and their mothers. The Bayley scale of infant development-second edition (BSID-II) was used to evaluate cognitive developmental level in early childhood. Achenbach’s child behavior checklist (CBCL) for 2- to 3-year-oldswas used to investigate behavioral problems.
Results: In total, 118 young children (73.8%) completed the follow-up; 89.7% of infants with secure attachment and 85.0% of infants with insecure attachment still demonstrated this type of attachment in early childhood (κ = 0.738, p b 0.05). Infants with insecure attachment collectively exhibited a significantly lower mental development index (MDI) in early childhood than did infants with secure attachment, especially the resistant type. In addition, resistant infants were reported to have greater social withdrawal, sleep problems and aggressive behavior in early childhood.
Conclusion: There is a high consistency in attachment development from infancy to early childhood. Secure mother–infant attachment predicts a better cognitive and behavioral outcome; whereas insecure attachment, especially the resistant attachment, may lead to a lower cognitive level and greater behavioral problems in early childhood.

representations of the HPA axis

representations of the HPA axis

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

Fetal programming of schizophrenia: Select mechanisms

Monojit Debnatha, Ganesan Venkatasubramanian, Michael Berk
Neuroscience and Biobehavioral Reviews 49 (2015) 90–104
http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.

NMDA receptor dysfunction in autism spectrum disorders

Eun-Jae Lee, Su Yeon Choi and Eunjoon Kim
Current Opinion in Pharmacology 2015, 20:8–13
http://dx.doi.org/10.1016/j.coph.2014.10.007

Autism spectrum disorders (ASDs) represent neurodevelopmental disorders characterized by two core symptoms;

(1)  impaired social interaction and communication, and
(2)  restricted and repetitive behaviors, interests, and activities.

ASDs affect ~ 1% of the population, and are considered to be highly genetic in nature. A large number (~600) of ASD-related genetic variations have been identified (sfari.org), and target gene functions are apparently quite diverse. However, some fall onto common pathways, including synaptic function and chromosome remodeling, suggesting that core mechanisms may exist.

Abnormalities and imbalances in neuronal excitatory and inhibitory synapses have been implicated in diverse neuropsychiatric disorders including autism spectrum disorders (ASDs). Increasing evidence indicates that dysfunction of NMDA receptors (NMDARs) at excitatory synapses is associated with ASDs. In support of this, human ASD-associated genetic variations are found in genes encoding NMDAR subunits. Pharmacological enhancement or suppression of NMDAR function ameliorates ASD symptoms in humans. Animal models of ASD display bidirectional NMDAR dysfunction, and correcting this deficit rescues ASD-like behaviors. These findings suggest that deviation of NMDAR function in either direction contributes to the development of ASDs, and that correcting NMDAR dysfunction has therapeutic potential for ASDs.

Among known synaptic proteins implicated in ASD are metabotropic glutamate receptors (mGluRs). Functional enhancement and suppression of mGluR5 are associated with fragile X syndrome and tuberous sclerosis, respectively, which share autism as a common phenotype. More recently, ionotropic glutamate receptors, namely NMDA receptors (NMDARs) and AMPA receptors (AMPARs), have also been implicated in ASDs. In this review, we will focus on NMDA receptors and summarize evidence supporting the hypothesis that NMDAR dysfunction contributes to ASDs, and, by extension, that correcting NMDAR dysfunction has therapeutic potential for ASDs. ASD-related human NMDAR genetic variants.

Chemokines roles within the hippocampus

Chemokines roles within the hippocampus

IL-1 mediates stress-induced activation of the HPA axis

IL-1 mediates stress-induced activation of the HPA axis

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

Three Classes of Glutamate Receptors

Three Classes of Glutamate Receptors

Clinical studies on ASDs have identified genetic variants of NMDAR subunit genes. Specifically, de novo mutations have been identified in the GRIN2B gene, encoding the GluN2B subunit. In addition, SNP analyses have linked both GRIN2A (GluN2A subunit) and GRIN2B with ASDs. Because assembled NMDARs contain four subunits, each with distinct properties, ASD-related GRIN2A/ GRIN2B variants likely alter the functional properties of NMDARs and/or NMDAR-dependent plasticity.

Pharmacological modulation of NMDAR function can improve ASD symptoms. D-cycloserine (DCS), an NMDAR agonist, significantly ameliorates social withdrawal and repetitive behavior in individuals with ASD. These results suggest that reduced NMDAR function may contribute to the development of ASDs in humans.

We can divide animal studies into two groups. The first group consists of animals in which NMDAR modulators were shown to normalize both NMDAR dysfunction and ASD-like behaviors, establishing strong association between NMDARs and ASD phenotypes (Fig.). In the second group, NMDAR modulators were shown to rescue ASD-like behaviors, but NMDAR dysfunction and its correction have not been demonstrated.

ASD models with data showing rescue of both NMDAR dysfunction and ASD like behaviors Mice lacking neuroligin-1, an excitatory postsynaptic adhesion molecule, show reduced NMDAR function in the hippocampus and striatum, as evidenced by a decrease in NMDA/AMPA ratio and long-term potentiation (LTP). Neuroligin-1 is thought to enhance synaptic NMDAR function, by directly interacting with and promoting synaptic localization of NMDARs.

Fig not shown.

Bidirectional NMDAR dysfunction in animal models of ASD. Animal models of ASD with bidirectional NMDAR dysfunction can be positioned on either side of an NMDAR function curve. Model animals were divided into two groups.

Group 1: NMDAR modulators normalize both NMDAR dysfunction and ASD-like behaviors (green).

Group 2: NMDAR modulators rescue ASD-like behaviors, but NMDAR dysfunction and its rescue have not been demonstrated (orange). Note that Group 2 animals are tentatively placed on the left-hand side of the slope based on the observed DCS rescue of their ASD-like phenotypes, but the directions of their NMDAR dysfunctions remain to be experimentally determined.

ASD models with data showing rescue of ASD-like behaviors but no demonstrated NMDAR dysfunction

Tbr1 is a transcriptional regulator, one of whose targets is the gene encoding the GluN2B subunit of NMDARs. Mice haploinsufficient for Tbr1 (Tbr1+/-) show structural abnormalities in the amygdala and limited GluN2B induction upon behavioral stimulation. Both systemic injection and local amygdalar infusion of DCS rescue social deficits and impaired associative memory in Tbr1+/- mice. However, reduced NMDAR function and its DCS-dependent correction have not been demonstrated.

Spatial working memory and attention skills are predicted by maternal stress during pregnancy

André Plamondon, Emis Akbari, Leslie Atkinson, Meir Steiner
Early Human Development 91 (2015) 23–29
http://dx.doi.org/10.1016/j.earlhumdev.2014.11.004

Introduction: Experimental evidence in rodents shows that maternal stress during pregnancy (MSDP) negatively impacts spatial learning and memory in the offspring. We aim to investigate the association between MSDP (i.e., life events) and spatial working memory, as well as attention skills (attention shifting and attention focusing), in humans. The moderating roles of child sex, maternal anxiety during pregnancy and postnatal care are also investigated.  Methods: Participants were 236mother–child dyads that were followed from the second trimester of pregnancy until 4 years postpartum. Measurements included questionnaires and independent observations.
Results: MSDP was negatively associated with attention shifting at 18monthswhen concurrent maternal anxiety was low. MSDP was associated with poorer spatial working memory at 4 years of age, but only for boys who experienced poorer postnatal care.
Conclusion: Consistent with results observed in rodents, MSDP was found to be associated with spatial working memory and attention skills. These results point to postnatal care and maternal anxiety during pregnancy as potential targets for interventions that aim to buffer children from the detrimental effects of MSDP.

Acute and massive bleeding from placenta previa and infants’ brain damage

Ken Furuta, Shuichi Tokunaga, Seishi Furukawa, Hiroshi Sameshima
Early Human Development 90 (2014) 455–458
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.002

Background: Among the causes of third trimester bleeding, the impact of placenta previa on cerebral palsy is not well known.
Aims: To clarify the effect ofmaternal bleeding fromplacenta previa on cerebral palsy, and in particular when and how it occurs.
Study design: A descriptive study.
Subjects: Sixty infants born to mothers with placenta previa in our regional population-based study of 160,000 deliveries from 1998 to 2012. Premature deliveries occurring atb26 weeks of gestation and placenta accrete were excluded.
Outcome measures: Prevalence of cystic periventricular leukomalacia (PVL) and cerebral palsy (CP).
Results: Five infants had PVL and 4 of these infants developed CP (1/40,000 deliveries). Acute and massive bleeding (>500 g) within 8 h) occurred at around 30–31 weeks of gestation, and was severe enough to deliver the fetus. None of the 5 infants with PVL underwent antenatal corticosteroid treatment, and 1 infant had mild neonatal hypocapnia with a PaCO2 < 25 mm Hg. However, none of the 5 PVL infants showed umbilical arterial academia with pH < 7.2, an abnormal fetal heart rate monitoring pattern, or neonatal hypotension.
Conclusions: Our descriptive study showed that acute and massive bleeding from placenta previa at around 30 weeks of gestation may be a risk factor for CP, and requires careful neonatal follow-up. The underlying process connecting massive placental bleeding and PVL requires further investigation.

Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes

Courtney J. Wusthoff, Irene M. Loe
Seminars in Fetal & Neonatal Medicine 20 (2015) 52e57
http://dx.doi.org/10.1016/j.siny.2014.12.003

Extreme neonatal hyperbilirubinemia has long been known to cause the clinical syndrome of kernicterus, or chronic bilirubin encephalopathy (CBE). Kernicterus most usually is characterized by choreoathetoid cerebral palsy (CP), impaired upward gaze, and sensorineural hearing loss, whereas cognition is relatively spared. The chronic condition of kernicterus may be, but is not always, preceded in the acute stage by acute bilirubin encephalopathy (ABE). This acute neonatal condition is also due to hyperbilirubinemia, and is characterized by lethargy and abnormal behavior, evolving to frank neonatal encephalopathy, opisthotonus, and seizures. Less completely defined is the syndrome of bilirubin-induced neurologic dysfunction (BIND).

Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism.

As noted in a technical report by the American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “it is apparent that the use of a single total serum bilirubin level to predict long-term outcomes is inadequate and will lead to conflicting results”. As described above, this has certainly been the case in research to date. To clarify how hyperbilirubinemia influences neurodevelopmental outcome, more sophisticated consideration is needed both of how to assess bilirubin exposure leading to neurotoxicity, and of those comorbid conditions which may lower the threshold for brain injury.

For example, premature infants are known to be especially susceptible to bilirubin neurotoxicity, with kernicterus reported following TB levels far lower than the threshold expected in term neonates. Similarly, among extremely preterm neonates, BBC is proportional to gestational age, meaning that the most premature infants have the highest UB, even for similar TB levels. Thus, future studies must be adequately powered to examine preterm infants separately from term infants, and should consider not just peak TB, but also BBC, as independent variables in neonates with hyperbilirubinemia. Similarly, an analysis by the NICHD NRN found that, among ELBW infants, higher UB levels were associated with a higher risk of death or NDI. However, increased TB levels were only associated with death or NDI in unstable infants. Again, UB or BBC appeared to be more useful than TB.

Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections?

Jon F. Watchko, Michael J. Painter, Ashok Panigrahy
Seminars in Fetal & Neonatal Medicine 20 (2015) 47e51
http://dx.doi.org/10.1016/j.siny.2014.12.004

Investigators have hypothesized a range of subcortical neuropathology in the genesis of bilirubin induced neurologic dysfunction (BIND). The current review builds on this speculation with a specific focus on the cerebellum and its connections in the development of the subtle neuromotor disabilities of BIND. The focus on the cerebellum derives from the following observations:
(i) the cerebellum is vulnerable to bilirubin-induced injury; perhaps the most vulnerable region within the central nervous system;
(ii) infants with cerebellar injury exhibit a neuromotor phenotype similar to BIND; and                                                       (iii) the cerebellum has extensive bidirectional circuitry projections to motor and non-motor regions of the brain-stem and cerebral cortex that impact a variety of neurobehaviors.
Future study using advanced magnetic resonance neuroimaging techniques have the potential to shed new insights into bilirubin’s effect on neural network topology via both structural and functional brain connectivity measurements.

Bilirubin-induced neurologic damage is most often thought of in terms of severe adverse neuromotor (dystonia with or without athetosis) and auditory (hearing impairment or deafness) sequelae. Observed together, they comprise the classic neurodevelopmental phenotype of chronic bilirubin encephalopathy or kernicterus, and may also be seen individually as motor or auditory predominant subtypes. These injuries reflect both a predilection of bilirubin toxicity for neurons (relative to glial cells) and the regional topography of bilirubin-induced neuronal damage characterized by prominent involvement of the globus pallidus, subthalamic nucleus, VIII cranial nerve, and cochlear nucleus.

It is also asserted that bilirubin neurotoxicity may be associated with other less severe neurodevelopmental disabilities, a condition termed “subtle kernicterus” or “bilirubin-induced neurologic dysfunction” (BIND). BIND is defined by a constellation of “subtle neurodevelopmental disabilities without the classical findings of kernicterus that, after careful evaluation and exclusion of other possible etiologies, appear to be due to bilirubin neurotoxicity”. These purportedly include:

(i) mild-to-moderate disorders of movement (e.g., incoordination, clumsiness, gait abnormalities, disturbances in static and dynamic balance, impaired fine motor skills, and ataxia);                                                                                             (ii) disturbances in muscle tone; and
(iii) altered sensorimotor integration. Isolated disturbances of central auditory processing are also included in the spectrum of BIND.

  • Cerebellar vulnerability to bilirubin-induced injury
  • Cerebellar injury phenotypes and BIND
  • Cerebellar projections
Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brain-stem from a 34 gestational-week premature kernicteric infant formalin-fixed for two weeks. Yellow staining is evident in the cerebellar dentate nuclei (upper arrow) and vestibular nuclei at the pontomedullary junction (lower arrowhead). Photo is courtesy of Mahmdouha Ahdab-Barmada and reprinted with permission from Taylor-Francis Group (Ahdab Barmada M. The neuropathology of kernicterus: definitions and debate. In: Maisel MJ, Watchko JF editors. Neonatal jaundice. Amsterdam: Harwood Academic Publishers; 2000. p. 75e88

Whether cerebellar injury is primal or an integral part of disturbed neural circuitry in bilirubin-induced CNS damage is unclear. Movement disorders, however, are increasingly recognized to arise from abnormalities of neuronal circuitry rather than localized, circumscribed lesions. The cerebellum has extensive bidirectional circuitry projections to an array of brainstem nuclei and the cerebral cortex that modulate and refine motor activities. In this regard, the cerebellum is characteristically subdivided into three lobes based on neuroanatomic and phylogenetic criteria as well as by their primary afferent and efferent connections. They include:
(i) flocculonodular lobe (archicerebellum);
(ii) anterior lobe (paleocerebellum); and
(iii) posterior lobe (neocerebellum).

The archicerebellum, the oldest division phylogenically, receives extensive input from the vestibular system and is therefore also known as the vestibulocerebellum and is important for equilibrium control. The paleocerebellum, also a primitive region, receives extensive somatosensory input from the spinal cord, including the anterior and posterior spinocerebellar pathways that convey unconscious proprioception, and is therefore also known as the spinocerebellum. The neocerebellum is the most recently evolved region, receives most of the input from the cerebral cortex, and is thus termed the cerebrocerebellum. This area has greatly expanded in association with the extensive development of the cerebral cortex in mammals and especially primates. To cause serious longstanding dysfunction, cerebellar injury must typically involve the deep cerebellar nuclei and their projections.

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other brain regions including the cerebral cortex. Most cerebro-cerebellar afferent projections pass through the basal (anterior or ventral) pontine nuclei and intermediate cerebellar peduncle, whereas most cerebello-cerebral efferent projections pass through the dentate and ventrolateral thalamic nuclei. DCN, deep cerebellar nuclei; RN, red nucleus; ATN, anterior thalamic nucleus; PFC, prefrontal cortex; MC, motor cortex; PC, parietal cortex; TC, temporal cortex; STN, subthalamic nucleus; APN, anterior pontine nuclei. Reprinted under the terms of the Creative Commons Attribution License from D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit to cognition. Front Neural Circuits 2013; 6:116.

Given the vulnerability of the cerebellum to bilirubin-induced injury, cerebellar involvement should also be evident in classic kernicterus, contributing to neuromotor deficits observed therein. It is of interest, therefore, that cerebellar damage may play a role in the genesis of bilirubin-induced dystonia, a prominent neuromotor feature of chronic bilirubin encephalopathy in preterm and term neonates alike. This complex movement disorder is characterized by involuntary sustained muscle contractions that result in abnormal position and posture. Moreover, dystonia that is brief in duration results in chorea, and, if brief and repetitive, leads to athetosis ‒ conditions also classically observed in kernicterus. Recent evidence suggests that dystonic movements may depend on disruption of both basal ganglia and cerebellar neuronal networks, rather than isolated dysfunction of only one motor system.

Dystonia is also a prominent feature in Gunn rat pups and neonatal Ugt1‒/‒-deficient mice both robust models of kernicterus. The former is used as an experimental model of dystonia. Although these models show basal ganglia injury, the sine qua non of bilirubin-induced murine neuropathology is cerebellar damage and resultant cerebellar hypoplasia.

Studies are needed to define more precisely the motor network abnormalities in kernicterus and BIND. Magnetic resonance imaging (MRI) has been widely used in evaluating infants at risk for bilirubin-induced brain injury using conventional structural T1-and T2-weighted imaging. Infants with chronic bilirubin encephalopathy often demonstrate abnormal bilateral, symmetric, high-signal intensity on T2-weighted MRI of the globus pallidus and subthalamic nucleus, consistent with the neuropathology of kernicterus. Early postnatal MRI of at-risk infants, although frequently showing increased T1-signal in these regions, may give false-positive findings due to the presence of myelin in these structures.

Diffusion tensor imaging and tractography could be used to delineate long-term changes involving specific white matter pathways, further elucidating the neural basis of long-term disability in infants and children with chronic bilirubin encephalopathy and BIND. It will be equally valuable to use blood oxygen level-dependent (BOLD) “resting state” functional MRI to study intrinsic connectivity in order to identify vulnerable brain networks in neonates with kernicterus and BIND. Structural networks of the CNS (connectome) and functional network topology can be characterized in infants with kernicterus and BIND to determine disease-related pattern(s) with respect to both long- and short-range connectivity. These findings have the potential to shed novel insights into the pathogenesis of these disorders and their impact on complex anatomical connections and resultant functional deficits.

Audiologic impairment associated with bilirubin-induced neurologic damage

Cristen Olds, John S. Oghalai
Seminars in Fetal & Neonatal Medicine 20 (2015) 42e46
http://dx.doi.org/10.1016/j.siny.2014.12.006

Hyperbilirubinemia affects up to 84% of term and late preterm infants in the first week of life. The elevation of total serum/plasma bilirubin (TB) levels is generally mild, transitory, and, for most children, inconsequential. However, a subset of infants experiences lifelong neurological sequelae. Although the prevalence of classic kernicterus has fallen steadily in the USA in recent years, the incidence of jaundice in term and premature infants has increased, and kernicterus remains a significant problem in the global arena. Bilirubin-induced neurologic dysfunction (BIND) is a spectrum of neurological injury due to acute or sustained exposure of the central nervous system(CNS) to bilirubin. The BIND spectrum includes kernicterus, acute bilirubin encephalopathy, and isolated neural pathway dysfunction.

Animal studies have shown that unconjugated bilirubin passively diffuses across cell membranes and the blood‒brain barrier (BBB), and bilirubin not removed by organic anion efflux pumps accumulates within the cytoplasm and becomes toxic. Exposure of neurons to bilirubin results in increased oxidative stress and decreased neuronal proliferation and presynaptic neuro-degeneration at central glutaminergic synapses. Furthermore, bilirubin administration results in smaller spiral ganglion cell bodies, with decreased cellular density and selective loss of large cranial nerve VIII myelinated fibers. When exposed to bilirubin, neuronal supporting cells have been found to secrete inflammatory markers, which contribute to increased BBB permeability and bilirubin loading.

The jaundiced Gunn rat is the classic animal model of bilirubin toxicity. It is homozygous for a premature stop codon within the gene for UDP-glucuronosyltransferase family 1 (UGT1). The resultant gene product has reduced bilirubin-conjugating activity, leading to a state of hyperbilirubinemia. Studies with this rat model have led to the concept that impaired calcium homeostasis is an important mechanism of neuronal toxicity, with reduced expression of calcium-binding proteins in affected cells being a sensitive index of bilirubin-induced neurotoxicity. Similarly, application of bilirubin to cultured auditory neurons from brainstem cochlear nuclei results in hyperexcitability and excitotoxicity.

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brain-stem response (ABR). The ipsilateral (green) and contralateral (blue) auditory pathways are shown, with structures that are known to be affected by hyperbilirubinemia highlighted in red. Roman numerals in parentheses indicate corresponding waves in the normal human ABR (inset). Illustration adapted from the “Ear Anatomy” series by Robert Jackler and Christine Gralapp, with permission.

Bilirubin-induced neurologic dysfunction (BIND)

Vinod K. Bhutani, Ronald Wong
Seminars in Fetal & Neonatal Medicine 20 (2015) 1
http://dx.doi.org/10.1016/j.siny.2014.12.010

Beyond the traditional recognized areas of fulminant injury to the globus pallidus as seen in infants with kernicterus, other vulnerable areas include the cerebellum, hippocampus, and subthalamic nuclear bodies as well as certain cranial nerves. The hippocampus is a brain region that is particularly affected by age related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive deficits. Lower grey matter volumes within the limbic-striato-thalamic circuitry are common to other etiological mechanisms of subtle neurologic injury. Lower grey matter volumes in the amygdala, caudate, frontal and medial gyrus are found in schizophrenia and in the putamen in autism. Thus, in terms of brain volumetrics, schizophrenia and autism spectrum disorders have a clear degree of overlap that may reflect shared etiological mechanisms. Overlap with injuries observed in infants with BIND raises the question about how these lesions are arrived at in the context of the impact of common etiologies.

Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health

Olena Babenko, Igor Kovalchuk, Gerlinde A.S. Metz
Neuroscience and Biobehavioral Reviews 48 (2015) 70–91
http://dx.doi.org/10.1016/j.neubiorev.2014.11.013

Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.

Sensitive time-windows for susceptibility in neurodevelopmental disorders

Rhiannon M. Meredith, Julia Dawitz and Ioannis Kramvis
Trends in Neurosciences, June 2012; 35(6): 335-344
http://dx.doi.org:/10.1016/j.tins.2012.03.005

Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.

Fig (not shown)

Misregulated mechanisms underlying spine morphology in NDDs. Several proteins implicated in monogenic NDDs (highlighted in red) are linked to the regulation of the synaptic cytoskeleton via F-actin through different Rho-mediated signaling pathways (highlighted in green). Mutations in OPHN1, TSC1/2, FMRP, p21-activated kinase (PAK) are directly linked to human NDDs of intellectual disability. For instance, point mutations in OPHN1 and a PAK isoform are linked to non-syndromic mental retardation, whereas mutations or altered expression of TSC1/2 and FMRP are linked to TSC and FXS, respectively. Cytoplasmic interacting protein (CYFIP) and LIM-domain kinase 1 (LIMK1) are known to interact with FMRP and PAK, respectively [105]. LIMK1 is one of many dysregulated proteins contributing to the NDD Williams syndrome. Mouse models are available for all highlighted (red) proteins and reveal specific synaptic and behavioral deficits. Local protein synthesis in synapses, dendrites and glia is also regulated by proteins such as TSC1/2 and the FMRP/CYFIP complex. Abbreviations: 4EBP, 4E binding protein; eIF4E, eukaryotic translation initiation factor 4E.

Fig (not shown)

Sensitive time-windows, synaptic phenotypes and NDD gene targets. Sensitive time-windows exist in neural circuits, during which gene targets implicated in NDDs are normally expressed. Misregulation of these genes can affect multiple synaptic phenotypes during a restricted developmental period. The effect upon synaptic phenotypes is dependent upon the temporal expression of these NDD genes and their targets. (a) Expression outside a critical period of development will have no effect upon synaptic phenotypes. (b,c) A temporal expression pattern that overlaps with the onset (b) or closure (c) of a known critical period can alter the synaptic phenotype during that developmental time-window.

Outstanding questions

(1) Can treatment at early presymptomatic stages in animal models for NDDs prevent or ease the later synaptic, neuronal, and behavioral impairments?

(2) Are all sensory critical periods equally misregulated in mouse models for a specific NDD? Are there different susceptibilities for auditory, visual and somatosensory neurocircuits that reflect the degree of impairments observed in patients?

(3) If one critical period is missed or delayed during formation of a layer-specific connection in a network, does the network overcome this misregulated connectivity or plasticity window?

(4) In monogenic NDDs, does the severity of misregulating one particular time-window for synaptic establishment during development correlate with the importance of that gene for that synaptic circuit?

(5) Why do critical periods close in brain development?

(6) What underlies the regression of some altered synaptic phenotypes in Fmr1-KO mice?

(7) Can the concept of susceptible time-windows be applied to other NDDs, including schizophrenia and Tourette’s syndrome?

Cardiovascular

Cardiac output monitoring in newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 143–148
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.032

There is an increased interest in methods of objective cardiac output measurement in critically ill patients. Several techniques are available for measurement of cardiac output in children, although this remains very complex in newborns. Cardiac output monitoring could provide essential information to guide hemodynamic management. An overview is given of various methods of cardiac output monitoring with advantages and major limitations of each technology together with a short explanation of the basic principles.

Fick principle

According to the Fick principle the volume of blood flow in a given period equals the amount of substance entering the blood stream in the same period divided by the difference in concentrations of the substrate upstream respectively downstream to the point of entry in the circulation. This substance can be oxygen (O2-Fick) or carbon dioxide (CO2-FICK), so cardiac output can be calculated by dividing measured pulmonary oxygen uptake by the arteriovenous oxygen concentration difference. The direct O2-Fick method is regarded as gold standard in cardiac output monitoring in a research setting, despite its limitations. When the Fick principle is applied for carbon dioxide (CO2 Fick), the pulmonary carbon dioxide exchange is divided by the venoarterial CO2 concentration difference to calculate cardiac output.

In the modified CO2 Fick method pulmonary CO2 exchange is measured at the endotracheal tube. Measurement of total CO2 concentration in blood is more complex and simultaneous sampling of arterial and central venous blood is required. However, frequent blood sampling will result in an unacceptable blood loss in the neonatal population.

Blood flow can be calculated if the change in concentration of a known quantity of injected indicator is measured in time distal to the point of injection, so an indicator dilution curve can be obtained. Cardiac output can then be calculated with the use of the Stewart–Hamilton equation. Several indicators are used, such as indocyanine green, Evans blue and brilliant red in dye dilution, cold solutions in thermodilution, lithium in lithium dilution, and isotonic saline in ultrasound dilution.

Cardiovascular adaptation to extra uterine life

Alice Lawford, Robert MR Tulloh
Paediatrics And Child Health 2014; 25(1): 1-6.

The adaptation to extra uterine life is of interest because of its complexity and the ability to cause significant health concerns. In this article we describe the normal changes that occur and the commoner abnormalities that are due to failure of normal development and the effect of congenital cardiac disease. Abnormal development may occur as a result of problems with the mother, or with the fetus before birth. After birth it is essential to determine whether there is an underlying abnormality of the fetal pulmonary or cardiac development and to determine the best course of management of pulmonary hypertension or congenital cardiac disease. Causes of underdevelopment, maldevelopment and maladaptation are described as are the causes of critical congenital heart disease. The methods of diagnosis and management are described to allow the neonatologist to successfully manage such newborns.

Fetal vascular structures that exist to direct blood flow

Fetal structure Function
Arterial duct Connects pulmonary artery to the aorta and shunts blood right to left; diverting flow away from fetal lungs
Foramen ovale Opening between the two atria thatdirects blood flow returning to right

atrium through the septal wall into the left atrium bypassing lungs

Ductus venosus Receives oxygenated blood fromumbilical vein and directs it to the

inferior vena cava and right atrium

Umbilical arteries Carrying deoxygenated blood fromthe fetus to the placenta
Umbilical vein Carrying oxygenated blood from theplacenta to the fetus

Maternal causes of congenital heart disease

Maternal disorders rubella, SLE, diabetes mellitus
Maternal drug use Warfarin, alcohol
Chromosomal abnormality Down, Edward, Patau, Turner, William, Noonan

 

Fetal and Neonatal Circulation  The fetal circulation is specifically adapted to efficiently exchange gases, nutrients, and wastes through placental circulation. Upon birth, the shunts (foramen ovale, ductus arteriosus, and ductus venosus) close and the placental circulation is disrupted, producing the series circulation of blood through the lungs, left atrium, left ventricle, systemic circulation, right heart, and back to the lungs.

Clinical monitoring of systemic hemodynamics in critically ill newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 137–141
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.031

Circulatory failure is a major cause of mortality and morbidity in critically ill newborn infants. Since objective measurement of systemic blood flow remains very challenging, neonatal hemodynamics is usually assessed by the interpretation of various clinical and biochemical parameters. An overview is given about the predictive value of the most used indicators of circulatory failure, which are blood pressure, heart rate, urine output, capillary refill time, serum lactate concentration, central–peripheral temperature difference, pH, standard base excess, central venous oxygen saturation and color.

Key guidelines

➢ The clinical assessment of cardiac output by the interpretation of indirect parameters of systemic blood flow is inaccurate, irrespective of the level of experience of the clinician

➢ Using blood pressure to diagnose low systemic blood flow will consequently mean that too many patients will potentially be undertreated or overtreated, both with substantial risk of adverse effects and iatrogenic damage.

➢ Combining different clinical hemodynamic parameters enhances the predictive value in the detection of circulatory failure, although accuracy is still limited.

➢ Variation in time (trend monitoring) might possibly be more informative than individual, static values of clinical and biochemical parameters to evaluate the adequacy of neonatal circulation.

Monitoring oxygen saturation and heart rate in the early neonatal period

J.A. Dawson, C.J. Morley
Seminars in Fetal & Neonatal Medicine 15 (2010) 203e207
http://dx.doi.org:/10.1016/j.siny.2010.03.004

Pulse oximetry is commonly used to assist clinicians in assessment and management of newly born infants in the delivery room (DR). In many DRs, pulse oximetry is now the standard of care for managing high risk infants, enabling immediate and dynamic assessment of oxygenation and heart rate. However, there is little evidence that using pulse oximetry in the DR improves short and long term outcomes. We review the current literature on using pulse oximetry to measure oxygen saturation and heart rate and how to apply current evidence to management in the DR.

Practice points

  • Understand how SpO2 changes in the first minutes after birth.
  • Apply a sensor to an infant’s right wrist as soon as possible after birth.
  • Attach sensor to infant then to oximeter cable.
  • Use two second averaging and maximum sensitivity.

Using pulse oximetry assists clinicians:

  1. Assess changes in HR in real time during transition.
  2. Assess oxygenation and titrate the administration of oxygen to maintain oxygenation within the appropriate range for SpO2 during the first minutes after birth.

Research directions

  • What are the appropriate centiles to target during the minutes after birth to prevent hypoxia and hyperoxia: 25th to 75th, or 10th to 90th, or just the 50th (median)?
  • Can the inspired oxygen be titrated against the SpO2 to keep the SpO2 in the ‘normal range’?
  • Does the use of centile charts in the DR for HR and oxygen saturation reduce the rate of hyperoxia when infants are treated with oxygen.
  • Does the use of pulse oximetry immediately after birth improve short term outcomes, e.g. efficacy of immediate respiratory support, intubation rates in the DR, percentage of inspired oxygen, rate of use of adrenalin or chest compressions, duration of hypoxia/hyperoxia and bradycardia.
  • Does the use of pulse oximetry in the DR improve short term respiratory and long term neurodevelopmental outcomes for preterm infants, e.g. rate of intubation, use of surfactant, and duration of ventilation, continuous positive airway pressure, or supplemental oxygen?
  • Can all modern pulse oximeters be used effectively in the DR or do some have a longer delay before giving an accurate signal and more movement artefact?
  • Would a longer averaging time result in more stable data?

Peripheral haemodynamics in newborns: Best practice guidelines

Michael Weindling, Fauzia Paize
Early Human Development 86 (2010) 159–165
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.033

Peripheral hemodynamics refers to blood flow, which determines oxygen and nutrient delivery to the tissues. Peripheral blood flow is affected by vascular resistance and blood pressure, which in turn varies with cardiac function. Arterial oxygen content depends on the blood hemoglobin concentration (Hb) and arterial pO2; tissue oxygen delivery depends on the position of the oxygen-dissociation curve, which is determined by temperature and the amount of adult or fetal hemoglobin. Methods available to study tissue perfusion include near-infrared spectroscopy, Doppler flowmetry, orthogonal polarization spectral imaging and the peripheral perfusion index. Cardiac function, blood gases, Hb, and peripheral temperature all affect blood flow and oxygen extraction. Blood pressure appears to be less important. Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing the intrathoracic pressure.

graphic

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation. Taken from Yoxall and Weindling

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

graphic

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue.  (a) oxygen delivery (DO2). (b) As DO2 decreases, VO2 is dependent on DO2. The slope of the line indicates the FOE, which in this case is about 0.50. (c) The slope of the line indicates the FOE in the normal situation where oxygenation is DO2 independent, usually < 0.35

The oxygen-dissociation curve

The oxygen-dissociation curve

graphic

The oxygen-dissociation curve

Considerable information about the response of the peripheral circulation has been obtained using NIRS with venous occlusion. Although these measurements were validated against blood co-oximetry in human adults and infants, they can only be made intermittently by a trained operator and are thus not appropriate for general clinical use. Further research is needed to find other better measures of peripheral perfusion and oxygenation which may be easily and continuously monitored, and which could be useful in a clinical setting.

Peripheral oxygenation and management in the perinatal period

Michael Weindling
Seminars in Fetal & Neonatal Medicine 15 (2010) 208e215
http://dx.doi.org:/10.1016/j.siny.2010.03.005

The mechanisms for the adequate provision of oxygen to the peripheral tissues are complex. They involve control of the microcirculation and peripheral blood flow, the position of the oxygen dissociation curve including the proportion of fetal and adult hemoglobin, blood gases and viscosity. Systemic blood pressure appears to have little effect, at least in the non-shocked state. The adequate delivery of oxygen (DO2) depends on consumption (VO2), which is variable. The balance between VO2 and DO2 is given by fractional oxygen extraction (FOE ¼ VO2/DO2). FOE varies from organ to organ and with levels of activity. Measurements of FOE for the whole body produce a range of about 0.15-0.33, i.e. the body consumes 15-33% of oxygen transported.

Fig (not shown)

Biphasic relationship between oxygen delivery (DO2) and oxygen consumption (VO2) in tissue. Dotted lines show fractional oxygen extraction (FOE). ‘A’ indicates the normal situation when VO2 is independent ofDO2 and FOE is about 0.30. AsDO2 decreases in the direction of the arrow, VO2 remains independent of DO2 until the critical point is reached at ‘B’; in this illustration, FOE is about 0.50. The slope of the dotted line indicates the FOE (¼ VO2/DO2), which increases progressively as DO2 decreases.

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Graphic
(A)Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction in anaemic and control infants. (From Wardle et al.)  (B) HbF synthesis and concentration. (From Bard and Widness.) (C) Oxygen dissociation curve.

Peripheral fractional oxygen extraction in babies

Peripheral fractional oxygen extraction in babies

graphic

Peripheral fractional oxygen extraction in babies with asymptomatic or symptomatic anemia compared to controls. Bars represent the median for each group. (From Wardle et al.)

Practice points

  • Peripheral tissue DO2 is complex: cardiac function, blood gases, Hb concentration and the proportion of HbF, and peripheral temperature all play a part in determining blood flow and oxygen extraction in the sick, preterm infant. Blood pressure appears to be less important.
  • Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing intrathoracic pressure.
  • Central blood pressure is a poor surrogate measurement for the adequacy of DO2 to the periphery. Direct measurement, using NIRS, laser Doppler flowmetry or other means, may give more useful information.
  • Reasons for total hemoglobin concentration (Hb) being a relatively poor indicator of the adequacy of the provision of oxygen to the tissues:
  1. Hb is only indirectly related to red blood cell volume, which may be a better indicator of the body’s oxygen delivering capacity.
  2. Hb-dependent oxygen availability depends on the position of the oxygen-hemoglobin dissociation curve.
  3. An individual’s oxygen requirements vary with time and from organ to organ. This means that DO2 also needs to vary.
  4. It is possible to compensate for a low Hb by increasing cardiac output and ventilation, and so the ability to compensate for anemia depends on an individual’s cardio-respiratory reserve as well as Hb.
  5. The normal decrease of Hb during the first few weeks of life in both full-term and preterm babies usually occurs without symptoms or signs of anemia or clinical consequences.

The relationship between VO2 and DO2 is complex and various factors need to be taken into account, including the position of the oxygen dissociation curve, determined by the proportion of HbA and HbF, temperature and pH. Furthermore, diffusion of oxygen from capillaries to the cell depends on the oxygen tension gradient between erythrocytes and the mitochondria, which depends on microcirculatory conditions, e.g. capillary PO2, distance of the cell from the capillary (characterized by intercapillary distances) and the surface area of open capillaries. The latter can change rapidly, for example, in septic shock where arteriovenous shunting occurs associated with tissue hypoxia in spite of high DO2 and a low FOE.

Changes in local temperature deserve particular consideration. When the blood pressure is low, there may be peripheral vasoconstriction with decreased local perfusion and DO2. However, the fall in local tissue temperature would also be expected to be associated with a decreased metabolic rate and a consequent decrease in VO2. Thus a decreased DO2 may still be appropriate for tissue needs.

Pulmonary

Accurate Measurements of Oxygen Saturation in Neonates: Paired Arterial and Venous Blood Analyses

Shyang-Yun Pamela K. Shiao
Newborn and Infant Nurs Rev,  2005; 5(4): 170–178
http://dx.doi.org:/10.1053/j.nainr.2005.09.001

Oxygen saturation (So2) measurements (functional measurement, So2; and fractional measurement, oxyhemoglobin [Hbo2]) and monitoring are commonly investigated as a method of assessing oxygenation in neonates. Differences exist between the So2 and Hbo2 when blood tests are performed, and clinical monitors indicate So2 values. Oxyhemoglobin will decrease with the increased levels of carbon monoxide hemoglobin (Hbco) and methemo-globin (MetHb), and it is the most accurate measurements of oxygen (O2) association of hemoglobin (Hb). Pulse oximeter (for pulse oximetry saturation [Spo2] measurement) is commonly used in neonates. However, it will not detect the changes of Hb variations in the blood for accurate So2 measurements. Thus, the measurements from clinical oximeters should be used with caution. In neonates, fetal hemoglobin (HbF) accounts for most of the circulating Hb in their blood. Fetal hemoglobin has a high O2 affinity, thus releases less O2 to the body tissues, presenting a left-shifted Hbo2 dissociation curve.5,6 To date, however, limited data are available with HbF correction, for accurate arterial and venous (AV) So2 measurements (arterial oxygen saturation [Sao2] and venous oxygen saturation [Svo2]) in neonates, using paired AV blood samples.

In a study of critically ill adult patients, increased pulmonary CO production and elevation in arterial Hbco but not venous Hbco were documented by inflammatory stimuli inducing pulmonary heme oxygenase–1. In normal adults, venous Hbco level might be slightly higher than or equal to arterial Hbco because of production of CO by enzyme heme oxygenase–2, which is predominantly produced in the liver and spleen. However, hypoxia or pulmonary inflammation could induce heme oxygenase–1 to increase endogenous CO, thus elevating pulmonary arterial and systemic arterial Hbco levels in adults. Both endogenous and exogenous CO can suppress proliferation of pulmonary smooth muscles, a significant consideration for the prevention of chronic lung diseases in newborns. Despite these considerations, a later study in healthy adults indicated that the AV differences in Hbco were from technical artifacts and perhaps from inadequate control of different instruments. Thus, further studies are needed to provide more definitive answers for the AV differences of Hbco for adults and neonates with acute and chronic lung diseases.

Methemoglobin is an indicator of Hb oxidation and is essential for accurate measurement of Hbo2, So2, and oxygenation status. No evidence exists to show the AV MetHb difference, although this difference was elucidated with the potential changes of MetHb with different O2 levels.  Methemoglobin can be increased with nitric oxide (NO) therapy, used in respiratory distress syndrome (RDS) to reduce pulmonary hypertension and during heart surgery. Nitric oxide, in vitro, is an oxidant of Hb, with increased O2 during ischemia reperfusion. In hypoxemic conditions in vivo, nitrohemoglobin is a product generated by vessel responsiveness to nitrovasodilators. Nitro-hemoglobin can be spontaneously reversible in vivo, requiring no chemical agents or reductase. However, when O2 levels were increased experimentally in vitro following acidic conditions (pH 6.5) to simulate reperfusion conditions, MetHb levels were increased for the hemolysates (broken red cells). Nitrite-induced oxidation of Hb was associated with an increase in red blood cell membrane rigidity, thus contributing to Hb breakdown. A newer in vitro study of whole blood cells, however, concluded that MetHb formation is not dependent on increased O2 levels. Additional studies are needed to examine in vivo reperfusion of O2 and MetHb effects.

Purpose: The aim of this study was to examine the accuracy of arterial oxygen saturation (Sao2) and venous oxygen saturation (Svo2) with paired arterial and venous (AV) blood in relation to pulse oximetry saturation (Spo2) and oxyhemoglobin (Hbo2) with fetal hemoglobin determination, and their Hbo2 dissociation curves. Method: Twelve preterm neonates with gestational ages ranging from 27 to 34 weeks at birth, who had umbilical AV lines inserted, were investigated. Analyses were performed with 37 pairs of AV blood samples by using a blood volume safety protocol. Results: The mean differences between Sao2 and Svo2, and AV Hbo2 were both 6 percent (F6.9 and F6.7 percent, respectively), with higher Svo2 than those reported for adults. Biases were 2.1 – 0.49 for Sao2, 2.0 – 0.44 for Svo2, and 3.1 – 0.45 for Spo2, compared against Hbo2. With left-shifted Hbo2 dissociation curves in neonates, for the critical values of oxygen tension values between 50 and 75 millimeters of mercury, Hbo2 ranged from 92 to 93.4 percent; Sao2 ranged from 94.5 to 95.7 percent; and Spo2 ranged from 93.7 to 96.3 percent (compared to 85–94 percent in healthy adults). Conclusions: In neonates, both left-shifted Hbo2 dissociation curve and lower AV differences of oxygen saturation measurements indicated low flow of oxygen to the body tissues. These findings demonstrate the importance of accurate assessment of oxygenation statues in neonates.

In these neonates, the mean AV blood differences for both So2 and Hbo2 were about 6 percent, which was much lower than those reported for healthy adults (23 percent) for O2 supply and demand. In addition, with very high levels of HbF releasing less O2 to the body tissue, the results of blood analyses are worrisome for these critically ill neonates for low systemic oxygen states.  O’Connor and Hall determined AV So2 in neonates without HbF determination. Much of the AV So2 difference is dependent on Svo2 measurement. The ranges of Svo2 spanned for 35 percent, and the ranges of Sao2 spanned 6 percent in these neonates. The greater intervals for Svo2 measurements contribute to greater sensitivity for the measurements (than Sao2 measurements) in responding to nursing care and changes of O2 demand. Thus, Svo2 measurement is essential for better assessment of oxygenation status in neonates.

The findings of this study on AV differences of So2 were limited with very small number of paired AV blood samples. However, critically ill neonates need accurate assessment of oxygenation status because of HbF, which releases less O2 to the tissues. Decreased differences of AV So2 measurements added further possibilities of lower flow of O2 to the body tissues and demonstrated the greater need to accurately assess the proper oxygenation in the neonates. The findings of this study continued to clarify the accuracy of So2 measurements for neonates. Additional studies are needed to examine So2 levels in neonates to further validate these findings by using larger sample sizes.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal  ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

Scott A. Sands, BA Edwards, VJ Kelly, MR Davidson, MH Wilkinson, PJ Berger
PLoS Comput Biol 5(12): e1000588
http://dx.doi.org:/10.1371/journal.pcbi.1000588

Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea (_SSaO2 ) is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates _SSaO2 throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar PO2 causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates _SSaO2 during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines _SSaO2 during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia.

A novel approach to study oxidative stress in neonatal respiratory distress syndrome

Reena Negi, D Pande, K Karki, A Kumar, RS Khanna, HD Khanna
BBA Clinical 3 (2015) 65–69
http://dx.doi.org/10.1016/j.bbacli.2014.12.001

Oxidative stress is an imbalance between the systemic manifestation of reactive oxygen species and a biological system’s ability to readily detoxify the reactive intermediates or to repair the resulting damage. It is a physiological event in the fetal-to-neonatal transition, which is actually a great stress to the fetus. These physiological changes and processes greatly increase the production of free radicals, which must be controlled by the antioxidant defense system, the maturation of which follows the course of the gestation. This could lead to several functional alterations with important repercussions for the infants. Adequately mature and healthy infants are able to tolerate this drastic change in the oxygen concentration. A problem occurs when the intrauterine development is incomplete or abnormal. Preterm or intrauterine growth retarded (IUGR) and low birth weight neonates are typically of this kind. An oxidant/antioxidant imbalance in infants is implicated in the pathogenesis of the major complications of prematurity including respiratory distress syndrome (RDS), necrotizing enterocolitis (NEC), chronic lung disease, retinopathy of prematurity and intraventricular hemorrhage (IVH).

Background: Respiratory distress syndrome of the neonate (neonatal RDS) is still an important problem in treatment of preterm infants. It is accompanied by inflammatory processes with free radical generation and oxidative stress. The aim of study was to determine the role of oxidative stress in the development of neonatal RDS. Methods: Markers of oxidative stress and antioxidant activity in umbilical cord blood were studied in infants with neonatal respiratory distress syndrome with reference to healthy newborns. Results: Status of markers of oxidative stress (malondialdehyde, protein carbonyl and 8-hydroxy-2-deoxy guanosine) showed a significant increase with depleted levels of total antioxidant capacity in neonatal RDS when compared to healthy newborns. Conclusion: The study provides convincing evidence of oxidative damage and diminished antioxidant defenses in newborns with RDS. Neonatal RDS is characterized by damage of lipid, protein and DNA, which indicates the augmentation of oxidative stress. General significance: The identification of the potential biomarker of oxidative stress consists of a promising strategy to study the pathophysiology of neonatal RDS.

Neonatal respiratory distress syndrome represents the major lung complications of newborn babies. Preterm neonates suffer from respiratory distress syndrome (RDS) due to immature lungs and require assisted ventilation with high concentrations of oxygen. The pathogenesis of this disorder is based on the rapid formation of the oxygen reactive species, which surpasses the detoxification capacity of antioxidative defense system. The high chemical reactivity of free radical leads to damage to a variety of cellular macro molecules including proteins, lipids and nucleic acid. This results in cell injury and may induce respiratory cell death.

Malondialdehyde (MDA) is one of the final products of polyunsaturated fatty acids peroxidation. The present study showed increased concentration of MDA in neonates with respiratory disorders than that of control in consonance with the reported study.

Anemia, Apnea of Prematurity, and Blood Transfusions

Kelley Zagol, Douglas E. Lake, Brooke Vergales, Marion E. Moorman, et al
J Pediatr 2012;161:417-21
http://dx.doi.org:/10.1016/j.jpeds.2012.02.044

The etiology of apnea of prematurity is multifactorial; however, decreased oxygen carrying capacity may play a role. The respiratory neuronal network in neonates is immature, particularly in those born preterm, as demonstrated by their paradoxical response to hypoxemia. Although adults increase the minute ventilation in response to hypoxemia, newborns have a brief increase in ventilation followed by periodic breathing, respiratory depression, and occasionally cessation of respiratory effort. This phenomenon may be exacerbated by anemia in preterm newborns, where a decreased oxygen carrying capacity may result in decreased oxygen delivery to the central nervous system, a decreased efferent output of the respiratory neuronal network, and an increase in apnea.

Objective Compare the frequency and severity of apneic events in very low birth weight (VLBW) infants before and after blood transfusions using continuous electronic waveform analysis. Study design We continuously collected waveform, heart rate, and oxygen saturation data from patients in all 45 neonatal intensive care unit beds at the University of Virginia for 120 weeks. Central apneas were detected using continuous computer processing of chest impedance, electrocardiographic, and oximetry signals. Apnea was defined as respiratory pauses of >10, >20, and >30 seconds when accompanied by bradycardia (<100 beats per minute) and hypoxemia (<80% oxyhemoglobin saturation as detected by pulse oximetry). Times of packed red blood cell transfusions were determined from bedside charts. Two cohorts were analyzed. In the transfusion cohort, waveforms were analyzed for 3 days before and after the transfusion for all VLBW infants who received a blood transfusion while also breathing spontaneously. Mean apnea rates for the previous 12 hours were quantified and differences for 12 hours before and after transfusion were compared. In the hematocrit cohort, 1453 hematocrit values from all VLBW infants admitted and breathing spontaneously during the time period were retrieved, and the association of hematocrit and apnea in the next 12 hours was tested using logistic regression. Results Sixty-seven infants had 110 blood transfusions during times when complete monitoring data were available. Transfusion was associated with fewer computer-detected apneic events (P < .01). Probability of future apnea occurring within 12 hours increased with decreasing hematocrit values (P < .001). Conclusions Blood transfusions are associated with decreased apnea in VLBW infants, and apneas are less frequent at higher hematocrits.

Bronchopulmonary dysplasia: The earliest and perhaps the longest lasting obstructive lung disease in humans

Silvia Carraro, M Filippone, L Da Dalt, V Ferraro, M Maretti, S Bressan, et al.
Early Human Development 89 (2013) S3–S5
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.015

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy, an umbrella term for a number of different diseases that evolve as a consequence of a neonatal respiratory disorder. BPD is defined as the need for supplemental oxygen for at least 28 days after birth, and its severity is graded according to the respiratory support required at 36 post-menstrual weeks.

BPD was initially described as a chronic respiratory disease occurring in premature infants exposed to mechanical ventilation and oxygen supplementation. This respiratory disease (later named “old BPD”) occurred in relatively large premature newborn and, from a pathological standpoint, it was characterized by intense airway inflammation, disruption of normal pulmonary structures and lung fibrosis.

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy. From a clinical standpoint BPD subjects are characterized by recurrent respiratory symptoms, which are very frequent during the first years of life and, although becoming less severe as children grow up, they remain more common than in term-born controls throughout childhood, adolescence and into adulthood. From a functional point of view BPD subjects show a significant airflow limitation that persists during adolescence and adulthood and they may experience an earlier and steeper decline in lung function during adulthood. Interestingly, patients born prematurely but not developing BPD usually fare better, but they too have airflow limitations during childhood and later on, suggesting that also prematurity per se has life-long detrimental effects on pulmonary function. For the time being, little is known about the presence and nature of pathological mechanisms underlying the clinical and functional picture presented by BPD survivors. Nonetheless, recent data suggest the presence of persistent neutrophilic airway inflammation and oxidative stress and it has been suggested that BPD may be sustained in the long term by inflammatory pathogenic mechanisms similar to those underlying COPD. This hypothesis is intriguing but more pathological data are needed.  A better understanding of these pathogenetic mechanisms, in fact, may be able to orient the development of novel targeted therapies or prevention strategies to improve the overall respiratory health of BPD patients.

We have a limited understanding of the presence and nature of pathological mechanisms in the lung of BPD survivors. The possible role of asthma-like inflammation has been investigated because BPD subjects often present with recurrent wheezing and other symptoms resembling asthma during their childhood and adolescence. But BPD subjects have normal or lower than normal exhaled nitric oxide levels and exhaled air temperatures, whereas they are higher than normal in asthmatic patients.

Of all obstructive lung diseases in humans, BPD has the earliest onset and is possibly the longest lasting. Given its frequent association with other conditions related to preterm birth (e.g. growth retardation, pulmonary hypertension, neurodevelopmental delay, hearing defects, and retinopathy of prematurity), it often warrants a multidisciplinary management.

Effects of Sustained Lung Inflation, a lung recruitment maneuver in primary acute respiratory distress syndrome, in respiratory and cerebral outcomes in preterm infants

Chiara Grasso, Pietro Sciacca, Valentina Giacchi, Caterina Carpinato, et al.
Early Human Development 91 (2015) 71–75
http://dx.doi.org/10.1016/j.earlhumdev.2014.12.002

Background: Sustained Lung Inflation (SLI) is a maneuver of lung recruitment in preterm newborns at birth that can facilitate the achieving of larger inflation volumes, leading to the clearance of lung fluid and formation of functional residual capacity (FRC). Aim: To investigate if Sustained Lung Inflation (SLI) reduces the need of invasive procedures and iatrogenic risks. Study design: 78 newborns (gestational age ≤ 34 weeks, weighing ≤ 2000 g) who didn’t breathe adequately at birth and needed to receive SLI in addition to other resuscitation maneuvers (2010 guidelines). Subjects: 78 preterm infants born one after the other in our department of Neonatology of Catania University from 2010 to 2012. Outcome measures: The need of intubation and surfactant, the ventilation required, radiological signs, the incidence of intraventricular hemorrhage (IVH), periventricular leukomalacia, retinopathy in prematurity from III to IV plus grades, bronchopulmonary dysplasia, patent ductus arteriosus, pneumothorax and necrotizing enterocolitis. Results: In the SLI group infants needed less intubation in the delivery room (6% vs 21%; p b 0.01), less invasive mechanical ventilation (14% vs 55%; p ≤ 0.001) and shorter duration of ventilation (9.1 days vs 13.8 days; p ≤ 0.001). There wasn’t any difference for nasal continuous positive airway pressure (82% vs 77%; p = 0.43); but there was less surfactant administration (54% vs 85%; p ≤ 0.001) and more infants received INSURE (40% vs 29%; p=0.17). We didn’t found any differences in the outcomes, except for more mild intraventricular hemorrhage in the SLI group (23% vs 14%; p = 0.15; OR= 1.83). Conclusion: SLI is easier to perform even with a single operator, it reduces the necessity of more complicated maneuvers and surfactant without statistically evident adverse effects.

Long-term respiratory consequences of premature birth at less than 32 weeks of gestation

Anne Greenough
Early Human Development 89 (2013) S25–S27
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.004

Chronic respiratory morbidity is a common adverse outcome of very premature birth, particularly in infants who had developed bronchopulmonary dysplasia (BPD). Prematurely born infants who had BPD may require supplementary oxygen at home for many months and affected infants have increased healthcare utilization until school age. Chest radiograph abnormalities are common; computed tomography of the chest gives predictive information in children with ongoing respiratory problems. Readmission to hospital is common, particularly for those who have BPD and suffer respiratory syncytial virus lower respiratory infections (RSV LRTIs). Recurrent respiratory symptoms requiring treatment are common and are associated with evidence of airways obstruction and gas trapping. Pulmonary function improves with increasing age, but children with BPD may have ongoing airflow limitation. Lung function abnormalities may be more severe in those who had RSV LRTIs, although this may partly be explained by worse premorbid lung function. Worryingly, lung function may deteriorate during the first year. Longitudinal studies are required to determine if there is catch up growth.

Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia

Anita Bhandari and Sharon McGrath-Morrow
Seminars in Perinatology 37 (2013)132–137
http://dx.doi.org/10.1053/j.semperi.2013.01.010

Bronchopulmonary dysplasia (BPD) is the commonest cause of chronic lung disease in infancy. The incidence of BPD has remained unchanged despite many advances in neonatal care. BPD starts in the neonatal period but its effects can persist long term. Premature infants with BPD have a greater incidence of hospitalization, and continue to have a greater respiratory morbidity and need for respiratory medications, compared to those without BPD. Lung function abnormalities, especially small airway abnormalities, often persist. Even in the absence of clinical symptoms, BPD survivors have persistent radiological abnormalities and presence of emphysema has been reported on chest computed tomography scans. Concern regarding their exercise tolerance remains. Long-term effects of BPD are still unknown, but given reports of a more rapid decline in lung function and their susceptibility to develop chronic obstructive pulmonary disease phenotype with aging, it is imperative that lung function of survivors of BPD be closely monitored.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

Prediction of neonatal respiratory distress syndrome in term pregnancies by assessment of fetal lung volume and pulmonary artery resistance index

Mohamed Laban, GM Mansour, MSE Elsafty, AS Hassanin, SS EzzElarab
International Journal of Gynecology and Obstetrics 128 (2015) 246–250
http://dx.doi.org/10.1016/j.ijgo.2014.09.018

Objective: To develop reference cutoff values for mean fetal lung volume (FLV) and pulmonary artery resistance index (PA-RI) for prediction of neonatal respiratory distress syndrome (RDS) in low-risk term pregnancies. Methods: As part of a cross-sectional study, women aged 20–35 years were enrolled and admitted to a tertiary hospital in Cairo, Egypt, for elective repeat cesarean at 37–40 weeks of pregnancy between January 1, 2012, and July 31, 2013. FLV was calculated by virtual organ computer-aided analysis, and PA-RI was measured by Doppler ultrasonography before delivery. Results: A total of 80 women were enrolled. Neonatal RDS developed in 11 (13.8%) of the 80 newborns. Compared with neonates with RDS, healthy neonates had significantly higher FLVs (P b 0.001) and lower PA-RIs (P b 0.001). Neonatal RDS is less likely with FLV of at least 32 cm3 or PA-RI less than or equal to 0.74. Combining these two measures improved the accuracy of prediction. Conclusion: The use of either FLV or PA-RI predicted neonatal RDS. The predictive value increased when these two measures were combined

Pulmonary surfactant - a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary surfactant – a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary hypertension in bronchopulmonary dysplasia

Sara K.Berkelhamer, Karen K.Mestan, and Robin H. Steinhorn
Seminars In  Perinatology 37 (2013)124–131
http://dx.doi.org/10.1053/j.semperi.2013.01.009

Pulmonary hypertension (PH) is a common complication of neonatal respiratory diseases, including bronchopulmonary dysplasia (BPD), and recent studies have increased aware- ness that PH worsens the clinical course, morbidity and mortality of BPD. Recent evidence indicates that up to 18% of all extremely low-birth-weight infants will develop some degree of PH during their hospitalization, and the incidence rises to 25–40% of the infants with established BPD. Risk factors are not yet well understood, but new evidence shows that fetal growth restriction is a significant predictor of PH. Echocardiography remains the primary method for evaluation of BPD-associated PH, and the development of standardized screening timelines and techniques for identification of infants with BPD-associated PH remains an important ongoing topic of investigation. The use of pulmonary vasodilator medications, such as nitric oxide, sildenafil, and others, in the BPD population is steadily growing, but additional studies are needed regarding their long-term safety and efficacy.
An update on pharmacologic approaches to bronchopulmonary dysplasia

Sailaja Ghanta, Kristen Tropea Leeman, and Helen Christou
Seminars In Perinatology 37 (2013)115–123
http://dx.doi.org/10.1053/j.semperi.2013.01.008

Bronchopulmonary dysplasia (BPD) is the most prevalent long-term morbidity in surviving extremely preterm infants and is linked to increased risk of reactive airways disease, pulmonary hypertension, post-neonatal mortality, and adverse neurodevelopmental outcomes. BPD affects approximately 20% of premature newborns, and up to 60% of premature infants born before completing 26 weeks of gestation. It is characterized by the need for assisted ventilation and/or supplemental oxygen at 36 weeks postmenstrual age. Approaches to prevention and treatment of BPD have evolved with improved understanding of its pathogenesis. This review will focus on recent advancements and detail current research in pharmacotherapy for BPD. The evidence for both current and potential future experimental therapies will be reviewed in detail. As our understanding of the complex and multifactorial pathophysiology of BPD changes, research into these current and future approaches must continue to evolve.

Methylxanthines
Diuretics and bronchodilators
Corticosteroids
Macrolide antibiotics
Recombinant human Clara cell 10-kilodalton protein(rhCC10)
Vitamin A
Surfactant
Leukotriene receptor antagonist
Pulmonary vasodilators

Skeletal and Muscle

Skeletal Stem Cells in Space and Time

Moustapha Kassem and Paolo Bianco
Cell  Jan 15, 2015; 160: 17-19
http://dx.doi.org/10.1016/j.cell.2014.12.034

The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.

The groundbreaking concept that bone, cartilage, marrow adipocytes, and hematopoiesis-supporting stroma could originate from a common progenitor and putative stem cell was surprising at the time when it was formulated (Owen and Friedenstein, 1988). The putative stem cell, nonhematopoietic in nature, would be found in the postnatal bone marrow stroma, generate tissues previously thought of as foreign to each other, and support the turnover of tissues and organs that self-renew at a much slower rate compared to other tissues associated with stem cells (blood, epithelia). This concept also connected bone and bone marrow as parts of a single-organ system, implying their functional interplay. For many years, the evidence underpinning the concept has been incomplete.

While multipotency of stromal progenitors has been demonstrated by in vivo transplantation experiments, self-renewal, the defining property of a stem cell, has not been easily demonstrated until recently in humans (Sacchetti et al., 2007) and mice (Mendez-Ferrer et al., 2010). Meanwhile, a confusing and plethoric terminology has been introduced into the literature, which diverted and confounded the search for a skeletal stem cell and its physiological significance (Bianco et al., 2013).

Two studies in this issue of Cell (Chan et al., 2015; Worthley et al., 2015), using a combination of rigorous single-cell analyses and lineage tracing technologies, mark significant steps toward rectifying the course of skeletal stem cell discovery by making several important points, within and beyond skeletal physiology.

First, a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors can in fact be identified and linked to defined phenotype(s) in the mouse. The system is framed conceptually, and approached experimentally, similar to the hematopoietic system.

Second, based on its assayable functions and potential, the stem cell at the top of the hierarchy is defined as a skeletal stem cell (SSC). As noted earlier (Sacchetti et al., 2007) (Bianco et al., 2013), this term clarifies, well beyond semantics, that the range of tissues that the self-renewing stromal progenitor (originally referred to as an ‘‘osteogenic’’ or ‘‘stromal’’ stem cell) (Owen and Friedenstein, 1988) can actually generate in vivo, overlaps with the range of tissues that make up the skeleton.

Third, these cells are spatially restricted, local residents of the bone/bone marrow organ. The systemic circulation is not a sizable contributor to their recruitment to locally deployed functions.

Fourth, a native skeletogenic potential is inherent to the system of progenitor/ stem cells found in the skeleton, and internally regulated by bone morphogenetic protein (BMP) signaling. This is reflected in the expression of regulators and antagonists of BMP signaling within the system, highlighting potential feedback mechanisms modulating expansion or quiescence of specific cell compartments.

Fifth, in cells isolated from other tissues, an assayable skeletogenic potential is not inherent: it can only be induced de novo by BMP reprogramming. These two studies (Chan et al., 2015, Worthley et al., 2015) corroborate the classical concept of ‘‘determined’’ and ‘‘inducible’’ skeletal progenitors (Owen and Friedenstein, 1988): the former residing in the skeleton, the latter found in nonskeletal tissues; the former capable of generating skeletal tissues, in vivo and spontaneously, the latter requiring reprogramming signals in order to acquire a skeletogenic capacity; the former operating in physiological bone formation, the latter in unwanted, ectopic bone formation in diseases such as fibrodysplasia ossificans progressiva.

To optimize our ability to obtain specific skeletal tissues for medical application, the study by Chan et al. offers a glimpse of another facet of the biology of SSC lineages and progenitors. Chan et al. show that a homogeneous cell population inherently committed to chondrogenesis can alter its output to generate bone if cotransplanted with multipotent progenitors. Conversely, osteogenic cells can be shifted to a chondrogenic fate by blockade of vascular endothelial growth factor receptor, consistent with the avascular and hypoxic milieu of cartilage. This has two important implications:

  • commitment is flexible in the system;
  • the choir is as important as the soloist and can modulate the solo tune.

Reversibility and population behavior thus emerge as two features that may be characteristic, albeit not unique, of the stromal system, resonating with conceptually comparable evidence in the human system.

The two studies by Chan et al. and Worthely et al. emphasize the relevance not only of their new data, but also of a proper concept of a skeletal stem cell per se, for proper clinical use. Confusion arising from improper conceptualization of skeletal stem cells has markedly limited clinical development of skeletal stem cell biology.

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel L. Worthley, Michael Churchill, Jocelyn T. Compton, Yagnesh Tailor, et al.
Cell, Jan 15, 2015; 160: 269–284
http://dx.doi.org/10.1016/j.cell.2014.11.042

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).

Identification and Specification of the Mouse Skeletal Stem Cell

Charles K.F. Chan, Eun Young Seo, James Y. Chen, David Lo, A McArdle, et al.
Cell, Jan 15, 2015; 160: 285–298
http://dx.doi.org/10.1016/j.cell.2014.12.002

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.

Bone mesenchymal development

Bone mesenchymal development

Bone mesenchymal development

The bone-remodeling cycle

The bone-remodeling cycle

Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions

Qin Feng, Bert W. O’Malley
Steroids 90 (2014) 39–43
http://dx.doi.org/10.1016/j.steroids.2014.06.008

Selective estrogen receptor modulators (SERMs) are a class of small-molecule chemical compounds that bind to estrogen receptor (ER) ligand binding domain (LBD) with high affinity and selectively modulate ER transcriptional activity in a cell- and tissue-dependent manner. The prototype of SERMs is tamoxifen, which has agonist activity in bone, but has antagonist activity in breast. Tamoxifen can reduce the risk of breast cancer and, at same time, prevent osteoporosis in postmenopausal women. Tamoxifen is widely prescribed for treatment and prevention of breast cancer. Mechanistically the activity of SERMs is determined by the selective recruitment of coactivators and corepressors in different cell types and tissues. Therefore, understanding the coregulator function is the key to understanding the tissue selective activity of SERMs.

Hematopoietic

Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche

Owen J. Tamplin, Ellen M. Durand, Logan A. Carr, Sarah J. Childs, et al.
Cell, Jan 15, 2015; 160: 241–252
http://dx.doi.org/10.1016/j.cell.2014.12.032

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization.

Neonatal anemia

Sanjay Aher, Kedar Malwatkar, Sandeep Kadam
Seminars in Fetal & Neonatal Medicine (2008) 13, 239e247
http://dx.doi.org:/10.1016/j.siny.2008.02.009

Neonatal anemia and the need for red blood cell (RBC) transfusions are very common in neonatal intensive care units. Neonatal anemia can be due to blood loss, decreased RBC production, or increased destruction of erythrocytes. Physiologic anemia of the newborn and anemia of prematurity are the two most common causes of anemia in neonates. Phlebotomy losses result in much of the anemia seen in extremely low birthweight infants (ELBW). Accepting a lower threshold level for transfusion in ELBW infants can prevent these infants being exposed to multiple donors.

Management of anemia in the newborn

Naomi L.C. Luban
Early Human Development (2008) 84, 493–498
http://dx.doi.org:/10.1016/j.earlhumdev.2008.06.007

Red blood cell (RBC) transfusions are administered to neonates and premature infants using poorly defined indications that may result in unintentional adverse consequences. Blood products are often manipulated to limit potential adverse events, and meet the unique needs of neonates with specific diagnoses. Selection of RBCs for small volume (5–20 mL/kg) transfusions and for massive transfusion, defined as extracorporeal bypass and exchange transfusions, are of particular concern to neonatologists. Mechanisms and therapeutic treatments to avoid transfusion are another area of significant investigation. RBCs collected in anticoagulant additive solutions and administered in small aliquots to neonates over the shelf life of the product can decrease donor exposure and has supplanted the use of fresh RBCs where each transfusion resulted in a donor exposure. The safety of this practice has been documented and procedures established to aid transfusion services in ensuring that these products are available. Less well established are the indications for transfusion in this population; hemoglobin or hematocrit alone are insufficient indications unless clinical criteria (e.g. oxygen desaturation, apnea and bradycardia, poor weight gain) also augment the justification to transfuse. Comorbidities increase oxygen consumption demands in these infants and include bronchopulmonary dysplasia, rapid growth and cardiac dysfunction. Noninvasive methods or assays have been developed to measure tissue oxygenation; however, a true measure of peripheral oxygen offloading is needed to improve transfusion practice and determine the value of recombinant products that stimulate erythropoiesis. The development of such noninvasive methods is especially important since randomized, controlled clinical trials to support specific practices are often lacking, due at least in part, to the difficulty of performing such studies in tiny infants.
The Effect of Blood Transfusion on the Hemoglobin Oxygen Dissociation Curve of Very Early Preterm Infants During the First Week of Life

Virginie De HaUeux, Anita Truttmann, Carmen Gagnon, and Harry Bard
Seminars in Perinatology, 2002; 26(6): 411-415
http://dx.doi.org:/10.1053/sper.2002.37313

This study was conducted during the first week of life to determine the changes in Ps0 (PO2 required to achieve a saturation of 50% at pH 7.4 and 37~ and the proportions of fetal hemoglobin (I-IbF) and adult hemoglobin (HbA) prior to and after transfusion in very early preterm infants. Eleven infants with a gestational age <–27 weeks have been included in study. The hemoglobin dissociation curve and the Ps0 was determined by Hemox-analyser. Liquid chromatography was also performed to determine the proportions of HbF and HbA. The mean gestational age of the 11 infants was 25.1 weeks (-+1 weeks) and their mean birth weight was 736 g (-+125 g). They received 26.9 mL/kg of packed red cells. The mean Ps0 prior and after transfusion was 18.5 +- 0.8 and 21.0 + 1 mm Hg (P = .0003) while the mean percentage of HbF was 92.9 -+ 1.1 and 42.6 -+ 5.7%, respectively. The data of this study show a decrease of hemoglobin oxygen affinity as a result of blood transfusion in very early preterm infants prone to O 2 toxicity. The shift in HbO 2 curve after transfusion should be taken into consideration when oxygen therapy is being regulated for these infants.

Effect of neonatal hemoglobin concentration on long-term outcome of infants affected by fetomaternal hemorrhage

Mizuho Kadooka, H Katob, A Kato, S Ibara, H Minakami, Yuko Maruyama
Early Human Development 90 (2014) 431–434
http://dx.doi.org/10.1016/j.earlhumdev.2014.05.010

Background: Fetomaternal hemorrhage (FMH) can cause severe morbidity. However, perinatal risk factors for long-term poor outcome due to FMH have not been extensively studied.                                                                                 Aims: To determine which FMH infants are likely to have neurological sequelae.
Study design: A single-center retrospective observational study. Perinatal factors, including demographic characteristics, Kleihauer–Betke test, blood gas analysis, and neonatal blood hemoglobin concentration ([Hb]), were analyzed in association with long-term outcomes.
Subjects: All 18 neonates referred to a Neonatal Intensive Care Unit of Kagoshima City Hospital and diagnosed with FMH during a 15-year study period. All had a neonatal [Hb] b7.5 g/dL and 15 of 17 neonates tested had Kleihauer–Betke test result N4.0%.
Outcome measures: Poor long-term outcome was defined as any of the following determined at 12 month old or more: cerebral palsy, mental retardation, attention deficit/hyperactivity disorder, and epilepsy.
Results: Nine of the 18 neonates exhibited poor outcomes. Among demographic characteristics and blood variables compared between two groups with poor and favorable outcomes, significant differences were observed in [Hb] (3.6 ± 1.4 vs. 5.4 ± 1.1 g/dL, P = 0.01), pH (7.09 ± 0.11 vs. 7.25 ± 0.13, P = 0.02) and base deficits (17.5 ± 5.4 vs. 10.4 ± 6.0 mmol/L, P = 0.02) in neonatal blood, and a number of infants with [Hb] ≤ 4.5 g/dL (78%[7/9] vs. 22%[2/9], P= 0.03), respectively. The base deficit in neonatal arterial blood increased significantly with decreasing neonatal [Hb].
Conclusions: Severe anemia causing severe base deficit is associated with neurological sequelae in FMH infants

Clinical and hematological presentation among Indian patients with common hemoglobin variants

Khushnooma Italia, Dipti Upadhye, Pooja Dabke, Harshada Kangane, et al.
Clinica Chimica Acta 431 (2014) 46–51
http://dx.doi.org/10.1016/j.cca.2014.01.028

Background: Co-inheritance of structural hemoglobin variants like HbS, HbD Punjab and HbE can lead to a variable clinical presentation and only few cases have been described so far in the Indian population.
Methods: We present the varied clinical and hematological presentation of 22 cases (HbSD Punjab disease-15, HbSE disease-4, HbD Punjab E disease-3) referred to us for diagnosis.
Results: Two of the 15 HbSDPunjab disease patients had moderate crisis, one presented with mild hemolytic anemia; however, the other 12 patients had a severe clinical presentation with frequent blood transfusion requirements, vaso occlusive crisis, avascular necrosis of the femur and febrile illness. The 4 HbSE disease patients had a mild to moderate presentation. Two of the 3 HbD Punjab E patients were asymptomatic with one patient’s sibling having a mild presentation. The hemoglobin levels of the HbSD Punjab disease patients ranged from 2.3 to 8.5 g/dl and MCV from 76.3 to 111.6 fl. The hemoglobin levels of the HbD Punjab E and HbSE patients ranged from 10.8 to 11.9 and 9.8 to 10.0 g/dl whereas MCV ranged from 67.1 to 78.2 and 74.5 to 76.0 fl respectively.
Conclusions: HbSD Punjab disease patients should be identified during newborn screening programs and managed in a way similar to sickle cell disease. Couple at risk of having HbSD Punjab disease children may be given the option of prenatal diagnosis in subsequent pregnancies.

Sickle cell anemia is the most common hemoglobinopathy seen across the world. It is caused by a point mutation in the 6th codon of the beta (β) globin gene leading to the substitution of the amino acid glutamic acid to valine. The sickle gene is frequently seen in Africa, some Mediterranean countries, India, Middle East—Saudi Arabia and North America. In India the prevalence of hemoglobin S (HbS) carriers varies from 2 to 40% among different population groups and HbS is mainly seen among the scheduled tribe, scheduled caste and other backward class populations in the western, central and parts of eastern and southern India. Sickle cell anemia has a variable clinical presentation in India with the most severe clinical presentation seen in central India whereas patients in the western region show a mild to moderate clinical presentation.

Hemoglobin D Punjab (HbD Punjab) (also known as HbD Los-Angeles, HbD Portugal, HbD North Carolina, D Oak Ridge and D Chicago) is another hemoglobin variant due to a point mutation in codon 121 of the β globin gene resulting in the substitution of the amino acid glutamic acid to glycine. It is a widely distributed hemoglobin with a relatively low prevalence of 0.86% in the Indo-Pak subcontinent, 1–3% in north-western India, 1–3% in the Black population in the Caribbean and North America and has also been reported among the English. It accounts for 55.6% of all the Hb variants seen in the Xenjiang province of China.

Hemoglobin E (HbE) is the most common abnormal hemoglobin in Southeast Asia. In India, the frequency ranges from 4% to 51% in the north eastern region and 3% to 4% in West Bengal in the east. The HbE mutation (β26 GAG→AAG) creates an alternative splice site and the βE chain is insufficiently synthesized, hence the phenotype of this disorder is that of a mild form of β thalassemia.

Though these 3 structural variants are prevalent in different regions of India, their interaction is increasingly seen in all states of the country due to migration of people to different regions for a better livelihood. There are very few reports on interaction of these commonly seen Hb variants and the phenotypic–genotypic presentation of these cases is important for genetic counseling and management.

HbF of patients with HbSD Punjab disease with variable clinical severity. The HbF values of 4 patients are not included as they were post blood transfusion

The genotypes of the patients were confirmed by restriction enzyme digestion and ARMS (Fig). Patients 1 to 15 were characterized as compound heterozygous for HbS and HbD Punjab whereas patients 16 to 19 were characterized as compound heterozygous for HbS and HbE. Patient nos. 20 to 22 were characterized as compound heterozygous for HbE and HbD Punjab.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

The 3 common β globin gene variants of hemoglobin, HbS, HbE and HbD Punjab are commonly seen in India, with HbS having a high prevalence in the central belt and some parts of western, eastern and southern India, HbE in the eastern and north eastern region whereas HbD is mostly seen in the north western part of India. These hemoglobin variants have been reported in different population groups. However, with migration and intermixing of the different populations from different geographic regions, occasional cases of HbSD Punjab and HbSE are being reported. There are several HbD variants like HbD Punjab, HbD Iran, HbD Ibadan. However, of these only HbD Punjab interacts with HbS to form a clinically significant condition as the glutamine residue facilitates polymerization of HbS. HbD Iran and HbD Ibadan are non-interacting and produce benign conditions like the sickle cell trait. The first case of HbSD Punjab disease was a brother and sister considered to have atypical sickle cell disease in 1934. This family was further reinvestigated and reported as the first case of HbD Los Angeles which has the same mutation as the HbD Punjab. Serjeant et al. reported HbD Punjab in an English parent in 6 out of 11 HbSD-Punjab disease cases. This has been suggested to be due to the stationing of nearly 50,000 British troops on the Indian continent for a period of 200 y and the introduction into Britain of their Anglo-Indian children.

HbSD Punjab disease shows a similar pattern to HbS homozygous on alkaline hemoglobin electrophoresis but can be differentiated on acid agar gel electrophoresis and on HPLC. In HbSD Punjab disease cases, the peripheral blood films show anisocytosis, poikilocytosis, target cells and irreversibly sickled cells. Values of HbF and HbA2 are similar to those in sickle homozygous cases. HbSD Punjab disease is characterized by a moderately severe hemolytic anemia.

Twenty-one cases of HbSDPunjab were reported by Serjeant of which 16 were reported by different workers among patients originating from Caucasian, Spanish, Australian, Irish, English, Portuguese, Black, American, Venezuelan, Caribbean, Mexican, Turkish and Jamaican backgrounds. Yavarian et al. 2009 reported a multi centric origin of HbD Punjab which in combination with HbS results in sickle cell disease. Patel et al. 2010 have also reported 12 cases of HbSD Punjab from the Orissa state of eastern India. Majority of these cases were symptomatic, presenting with chronic hemolytic anemia and frequent painful crises.

HbF levels >20% were seen in 4 out of our 11 clinically severe patients of HbSD-Punjab disease with the mean HbF levels of 16.8% in 8 clinically severe patients, while 3 clinically severe patients were post transfused. However, the 3 patients with a mild to moderate clinical presentation showed a mean HbF level of 8.6%. This is in contrast to the relatively milder clinical presentation associated with high HbF seen in patients with sickle cell anemia. This was also reported by Adekile et al. 2010 in 5 cases of HbS-DLos Angeles where high HbF did not ameliorate the severe clinical presentation seen in these patients.

These 15 cases of HbSDPunjab disease give us an overall idea of the severe clinical presentation of the disease in different regions of India. However the HbDPunjabE cases were milder or asymptomatic and the HbSE cases were moderately symptomatic. Since most of the cases of HbSDPunjab disease were clinically severe, it is important to pick up these cases during newborn screening and enroll them into a comprehensive care program with the other sickle cell disease patients with introduction of therapeutic interventions such as penicillin prophylaxis if required and pneumococcal immunization. In fact, 2 of our cases (No. 6 and 7) were identified during newborn screening for sickle cell disorders. The parents can be given information on home care and educated to detect symptoms that may lead to serious medical emergencies. The parents of these patients as well as the couples who are at risk of having a child with HbSDPunjab disease could also be counseled about the option of prenatal diagnosis in subsequent pregnancies. It is thus important to document the clinical and hematological presentation of compound heterozygotes with these common β globin chain variants.

Common Hematologic Problems in the Newborn Nursery

Jon F. Watchko
Pediatr Clin N Am – (2015) xxx-xxx
http://dx.doi.org/10.1016/j.pcl.2014.11.011

Common RBC disorders include hemolytic disease of the newborn, anemia, and polycythemia. Another clinically relevant hematologic issue in neonates to be covered herein is thrombocytopenia. Disorders of white blood cells will not be reviewed.

KEY POINTS

(1)               Early clinical jaundice or rapidly developing hyperbilirubinemia are often signs of hemolysis, the differential diagnosis of which commonly includes immune-mediated disorders, red-cell enzyme deficiencies, and red-cell membrane defects.

(2)             Knowledge of the maternal blood type and antibody screen is critical in identifying non-ABO alloantibodies in the maternal serum that may pose a risk for severe hemolytic disease in the newborn.

(3)             Moderate to severe thrombocytopenia in an otherwise well-appearing newborn strongly suggests immune-mediated (alloimmune or autoimmune) thrombocytopenia.

Hemolytic conditions in the neonate

1. Immune-mediated (positive direct Coombs test)  a. Rhesus blood group: Anti-D, -c, -C, -e, -E, CW, and several others

  b. Non-Rhesus blood groups: Kell, Duffy, Kidd, Xg, Lewis, MNS, and others

  c. ABO blood group: Anti-A, -B

2. Red blood cell (RBC) enzyme defects

  a. Glucose-6-phosphate dehydrogenase (G6PD) deficiency

  b. Pyruvate kinase deficiency

  c. Others

3. RBC membrane defects

  a. Hereditary spherocytosis

  b. Elliptocytosis

  c. Stomatocytosis

  d. Pyknocytosis

  e. Others

4. Hemoglobinopathies

  a. alpha-thalassemia

  b. gamma-thalassemia

Standard maternal antibody screeningAlloantibody                                 Blood Group

D, C, c, E, e, f, CW, V                     Rhesus

K, k, Kpa, Jsa                                  Kell

Fya, Fyb                                          Duffy

Jka, Jkb                                           Kidd

Xga                                                  Xg

Lea, Leb                                          Lewis

S, s, M, N                                        MNS

P1                                                    P

Lub                                                  Lutheran

Non-ABO alloantibodies reported to cause moderate to severe hemolytic disease of the newbornWithin Rh system: Anti-D, -c, -C, -Cw, -Cx, -e, -E, -Ew, -ce, -Ces, -Rh29, -Rh32, -Rh42, -f, -G, -Goa, -Bea, -Evans, -Rh17, -Hro, -Hr, -Tar, -Sec, -JAL, -STEM

Outside Rh system:  Anti-LW, -K, -k, -Kpa, -Kpb, -Jka, -Jsa, -Jsb, -Ku, -K11, -K22, -Fya, -M, -N, -S, -s, -U, -PP1 pk, -Dib, -Far, -MUT, -En3, -Hut, -Hil, -Vel, -MAM, -JONES, -HJK, -REIT

 

Red Blood Cell Enzymopathies

G6PD9 and pyruvate kinase (PK) deficiency are the 2 most common red-cell enzyme disorders associated with marked neonatal hyperbilirubinemia. Of these, G6PD deficiency is the more frequently encountered and it remains an important cause of kernicterus worldwide, including the United States, Canada, and the United Kingdom, the prevalence in Western countries a reflection in part of immigration patterns and intermarriage. The risk of kernicterus in G6PD deficiency also relates to the potential for unexpected rapidly developing extreme hyperbilirubinemia in this disorder associated with acute severe hemolysis.

Red Blood Cell Membrane Defects

Establishing a diagnosis of RBC membrane defects is classically based on the development of Coombs-negative hyperbilirubinemia, a positive family history, and abnormal RBC smear, albeit it is often difficult because newborns normally exhibit a marked variation in red-cell membrane size and shape. Spherocytes, however, are not often seen on RBC smears of hematologically normal newborns and this morphologic abnormality, when prominent, may yield a diagnosis of hereditary spherocytosis (HS) in the immediate neonatal period. Given that approximately 75% of families affected with hereditary spherocytosis manifest an autosomal dominant phenotype, a positive family history can often be elicited and provide further support for this diagnosis. More recently, Christensen and Henry highlighted the use of an elevated mean corpuscular hemoglobin concentration (MCHC) (>36.0 g/dL) and/or elevated ratio of MCHC to mean corpuscular volume, the latter they term the “neonatal HS index” (>0.36, likely >0.40) as screening tools for HS. An index of greater than 0.36 had 97% sensitivity, greater than 99% specificity, and greater than 99% negative predictive value for identifying HS in neonates. Christensen and colleagues also provided a concise update of morphologic RBC features that may be helpful in diagnosing this and other underlying hemolytic conditions in newborns.

The diagnosis of HS can be confirmed using the incubated osmotic fragility test when coupled with fetal red-cell controls or eosin-5-maleimide flow cytometry. One must rule out symptomatic ABO hemolytic disease by performing a direct Coombs test, as infants so affected also may manifest prominent micro-spherocytosis. Moreover, HS and symptomatic ABO hemolytic disease can occur in the same infant and result in severe hyperbilirubinemia and anemia.  Of other red-cell membrane defects, only hereditary elliptocytosis,  stomato-cytosis, and infantile pyknocytosis have been reported to exhibit significant hemolysis in the newborn period. Hereditary elliptocytosis and stomatocytosis are both rare. Infantile pyknocytosis, a transient red-cell membrane abnormality manifesting itself during the first few months of life, is more common.

Risk factors for bilirubin neurotoxicityIsoimmune hemolytic disease

G6PD deficiency

Asphyxia

Sepsis

Acidosis

Albumin less than 3.0 g/dL
Data from Maisels MJ, Bhutani VK, Bogen D, et al. Hyperbilirubinemia in the newborn infant > or 535 weeks’ gestation: an update with clarifications. Pediatrics 2009; 124:1193–8.

Polycythemia

Polycythemia (venous hematocrit 65%) in seen in infants across a range of conditions associated with active erythropoiesis or passive transfusion.76,77 They include, among others, placental insufficiency, the infant of a diabetic mother, recipient in twin-twin transfusion syndrome, and several aneuploidies, including trisomy. The clinical concern related to polycythemia is the risk for microcirculatory complications of hyperviscosity. However, determining which polycythemic infants are hyperviscous and when to intervene is a challenge.

 

 

Liver

Metabolic disorders presenting as liver disease

Germaine Pierre, Efstathia Chronopoulou
Paediatrics and Child Health 2013; 23(12): 509-514
The liver is a highly metabolically active organ and many inherited metabolic disorders have hepatic manifestations. The clinical presentation in these patients cannot usually be distinguished from liver disease due to acquired causes like infection, drugs or hematological disorders. Manifestations include acute and chronic liver failure, cholestasis and hepatomegaly. Metabolic causes of acute liver failure in childhood can be as high as 35%. Certain disorders like citrin deficiency and Niemann-Pick C disease may present in infancy with self-limiting cholestasis before presenting in later childhood or adulthood with irreversible disease. This article reviews important details from the history and clinical examination when evaluating the pediatric patient with suspected metabolic disease, the specialist and genetic tests when investigating, and also discusses specific disorders, their clinical course and treatment. The role of liver transplantation is also briefly discussed. Increased awareness of this group of disorders is important as in many cases, early diagnosis leads to early intervention with improved outcome. Diagnosis also allows genetic counselling and future family planning.

Adult liver disorders caused by inborn errors of metabolism: Review and update

Sirisak Chanprasert, Fernando Scaglia
Molecular Genetics and Metabolism 114 (2015) 1–10
http://dx.doi.org/10.1016/j.ymgme.2014.10.011

Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.

Inborn errors of metabolism (IEMs) are a group of genetic diseases characterized by abnormal processing of biochemical reactions, resulting in accumulation of toxic substances that could interfere with normal organ functions, and failure to synthesize essential compounds. IEMs are individually rare, but collectively numerous. The clinical presentations cover a broad spectrum and can involve almost any organ system. The age of onset is highly variable but IEMs afflict mostly the pediatric population.

Wilson disease is an autosomal recessive genetic disorder of copper metabolism. It is characterized by an abnormal accumulation of inorganic copper in various tissues, most notably in the liver and the brain, especially in the basal ganglia. The disease was first described in 1912 by Kinnier Wilson, and affects between 1 in 30,000 and 1 in 100,000 individuals. Clinical features are variable and depend on the extent  and the severity of copper deposition. Typically, patients tend to develop hepatic disease at a younger age than the neuropsychiatric manifestations. Individuals withWilson disease eventually succumb to complications of end stage liver disease or become debilitated from neurological problems, if they are left untreated.

The clinical presentations of Wilson disease are varied affecting many organ systems. However, the overwhelming majority of cases display hepatic and neurologic symptoms. In general, patients with hepatic disease present between the first and second decades of life although patients as young as 3 years old or over 50 years old have also been reported. The most common modes of presentations are acute self-limited hepatitis and chronic active hepatitis that are indistinguishable from other hepatic disorders although liver aminotransferases are generally much lower than in autoimmune or viral hepatitis. Acute fulminant hepatic failure is less common but is observed in approximately 3% of all cases of acute liver failure. Symptoms of acute liver failure include jaundice, coagulopathy, and hepatic encephalopathy. Cirrhosis can develop over time and may be clinically silent. Hepatocellular carcinoma (HCC) is rarely associated with Wilson disease, but may occur in the setting of cirrhosis and chronic inflammation.

Copper is an essential element, and is required for the proper functioning of various proteins and enzymes. The total body content of copper in a healthy adult individual is approximately 70–100 mg, while the daily requirements are estimated to be between 1 and 5 mg. Absorption occurs in the small intestine. Copper is taken up to the hepatocytes via the copper transporter hTR1. Once inside the cell, copper is bound to various proteins including metallothionein and glutathione, however, it is the metal chaperone, ATOX1 that helps direct copper to the ATP7B protein for intracellular transport and excretion. At the steady state, copper will be bound to ATP7B and is then incorporated to ceruloplasmin and secreted into the systemic circulation. When the cellular copper concentration arises, ATP7B protein will be redistributed from the trans-Golgi network to the prelysosomal vesicles facilitating copper excretion into the bile. The molecular defects in ATP7B lead to a reduction of copper excretion. Excess copper is accumulated in the liver causing tissue injury. The rate of accumulation of copper varies among individuals, and it may depend on other factors such as alcohol consumption, or viral hepatitis infections. If the liver damage is not severe, patients will accumulate copper in various tissues including the brain, the kidney, the eyes, and the musculoskeletal system leading to clinical disease. A failure of copper to incorporate into ceruloplasmin leads to secretion of the unsteady protein that has a shorter half-life, resulting in the reduced concentrations of ceruloplasmin seen in most patients with Wilson disease.

Wilson disease used to be a progressive fatal condition during the first half of the 20th century because there was no effective treatment available at that time. Penicillamine was the first pharmacologic agent introduced in 1956 for treating this condition. Penicillamine is a sulfhydryl-bearing amino acid cysteine doubly substituted with methyl groups. This drug acts as a chelating agent that promotes the urinary excretion of copper. It is rapidly absorbed in the gastrointestinal track, and over 80% of circulating penicillamine is excreted via the kidneys. Although it is very effective, approximately 10%–50% of Wilson disease patients with neuropsychiatric presentations may experience worsening of their symptoms, and often times the worsening symptoms may not be reversible.

Alpha1-antitrypsin deficiency

Alpha1-antitrypsin deficiency (AATD) is one of the most common genetic liver diseases in children and adults, affecting 1 in 2000 to 1 in 3000 live births worldwide. It is transmitted in an autosomal co-dominant fashion with variable expressivity. Alpha1 antitrypsin (A1AT) is a member of the serine protease inhibitor (SERPIN) family. Its function is to counteract the proteolytic effect of neutrophil elastase and other neutrophil proteases. Mutations in the SERPINA1, the gene encoding A1AT, result in changes in the protein structure with the PiZZ phenotype being the most common cause of liver and lung disease-associated AATDs. Although, it classically causes early onset chronic obstructive pulmonary disease (COPD) in adults, liver disease characterized by chronic inflammation, hepatic fibrosis, and cirrhosis is not uncommon in the adult population. Decreased plasma concentration of A1AT predisposes lung tissue to be more susceptible to injury from protease enzymes. However, the underlying mechanism of liver injury is different, and is believed to be caused by accumulation of polymerized mutant A1AT in the hepatocyte endoplasmic reticulum (ER). Currently, there is no specific treatment for liver disease-associated AATD, but A1AT augmentation therapy is available for patients affected with pulmonary involvement.

A1AT is a single-chain, 52-kDa polypeptide of approximately 394 amino acids [56]. It is synthesized in the liver, circulates in the plasma, and functions as an inhibitor of neutrophil elastase and other proteases such as cathepsin G, and proteinase 3. A1AT has a globular shape composed of two central β sheets surrounded by a small β sheet and nine α helices. The pathophysiology underlying liver disease is thought to be a toxic gain-of-function mutation associated with the PiZZ phenotypes. This hypothesis has been supported by the fact that null alleles which produce no detectable plasma A1AT, are not associated with liver disease. In addition, the transgenic mouse model of AATD PiZZ developed periodic acid-Schiff-positive diastase-resistant intrahepatic globule early in life similar to AATD patients. The PiZZ phenotype results in the blockade of the final processing of A1AT in the liver, as only 15% of the A1AT reaches the circulation whereas 85% of non-secreted protein is accumulated in the hepatocytes.

Citrin deficiency

Citrin deficiency is a relatively newly-defined autosomal recessive disease. It encompasses two different sub-groups of patients, neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), and adult onset citrullinemia type 2 (CTLN 2).

AGC2 exports aspartate out of the mitochondrial matrix in exchange for glutamate and a proton. Thus, this protein has an important role in ureagenesis and gluconeogenesis. In CTLN2, a defect in this protein is believed to limit the supply of aspartate for the formation of argininosuccinate in the cytosol resulting in impairment of ureagenesis. Interestingly, the mouse model of citrin deficiency (Ctrn−/−) fails to develop symptoms of CTLN2 suggesting that the mitochondrial aspartate is not the only source of ureagenesis. However, it should be noted that the rodent liver expresses higher glycerol-phosphate shuttle activity than the human counterpart. With the intact glycerol-phosphate dehydrogenase, it can compensate for the deficiency of AGC2, as demonstrated by the AGC2 and glycerol-phosphate dehydrogenase double knock-out mice that exhibit similar features to those observed in human CTLN2.

HFE-associated hemochromatosis

HFE-associated hemochromatosis is an inborn error of iron metabolism characterized by excessive iron storage resulting in tissue and organ damage. It is the most common autosomal recessive disorder in the Caucasian population, affecting 0.3%–0.5% of individuals of Northern European descent. The term “hemochromatosis” was coined in 1889 by the German pathologist Friedrich Daniel Von Recklinghausen, who described it as bronze stain of organs caused by a blood borne pigment.

The classic clinical triad of cirrhosis, diabetes, and bronze skin pigmentation is rarely observed nowadays given the early recognition, diagnosis, and treatment of this condition. The most common presenting symptoms are nonspecific including weakness, lethargy, and arthralgia.

The liver is a major site of iron storage in healthy individuals and as such it is the organ that is universally affected in HFE-associated hemochromatosis. Elevation of liver aminotransferases indicative of hepatocyte injury is the most common mode of presentation and it can be indistinguishable from other causes of hepatitis. Approximately 15%–40% of patients with HFE-associated hemochromatosis have other liver conditions, including chronic viral hepatitis B or C infection, nonalcoholic fatty liver disease, and alcoholic liver disease.

 

The liver in haemochromatosis

Rune J. Ulvik
Journal of Trace Elements in Medicine and Biology xxx (2014) xxx–xxx
http://dx.doi.org/10.1016/j.jtemb.2014.08.005

The review deals with genetic, regulatory and clinical aspects of iron homeostasis and hereditary hemochromatosis. Hemochromatosis was first described in the second half of the 19th century as a clinical entity characterized by excessive iron overload in the liver. Later, increased absorption of iron from the diet was identified as the pathophysiological hallmark. In the 1970s genetic evidence emerged supporting the apparent inheritable feature of the disease. And finally in 1996 a new “hemochromato-sis gene” called HFE was described which was mutated in about 85% of the patients. From the year2000 onward remarkable progress was made in revealing the complex molecular regulation of iron trafficking in the human body and its disturbance in hemochromatosis. The discovery of hepcidin and ferroportin and their interaction in regulating the release of iron from enterocytes and macrophages to plasma were important milestones. The discovery of new, rare variants of non-HFE-hemochromatosis was explained by mutations in the multicomponent signal transduction pathway controlling hepcidin transcription. Inhibited transcription induced by the altered function of mutated gene products, results in low plasma levels of hepcidin which facilitate entry of iron from enterocytes into plasma. In time this leads to progressive accumulation of iron and subsequently development of disease in the liver and other parenchymatous organs. Being the major site of excess iron storage and hepcidin synthesis the liver is a cornerstone in maintaining normal systemic iron homeostasis. Its central pathophysiological role in HFE-hemochromatosis with downgraded hepcidin synthesis, was recently shown by the finding that liver transplantation normalized the hepcidin levels in plasma and there was no sign of iron accumulation in the new liver.

Gastrointestinal

Decoding the enigma of necrotizing enterocolitis in premature infants

Roberto Murgas TorrazzaNan Li, Josef Neu
Pathophysiology 21 (2014) 21–27
http://dx.doi.org/10.1016/j.pathophys.2013.11.011

Necrotizing enterocolitis (NEC) is an enigmatic disease that affects primarily premature infants. It often occurs suddenly and when it occurs, treatment attempts at treatment often fail and results in death. If the infant survives, there is a significant risk of long term sequelae including neurodevelopmental delays. The pathophysiology of NEC is poorly understood and thus prevention has been difficult. In this review, we will provide an overview of why progress may be slow in our understanding of this disease, provide a brief review diagnosis, treatment and some of the current concepts about the pathophysiology of this disease.

Necrotizing enterocolitis (NEC) has been reported since special care units began to house preterm infants .With the advent of modern neonatal intensive care approximately 40 years ago, the occurrence and recognition of the disease markedly increased. It is currently the most common and deadly gastro-intestinal illness seen in preterm infants. Despite major efforts to better understand, treat and prevent this devastating disease, little if any progress has been made during these 4 decades. Underlying this lack of progress is the fact that what is termed “NEC” is likely more than one disease, or mimicked by other diseases, each with a different etiopathogenesis.

Human gut microbiome

Human gut microbiome

Term or near term infants with “NEC” when compared to matched controls usually have occurrence of their disease in the first week after birth, have a significantly higher frequency of prolonged rupture of membranes, chorio-amnionitis, Apgar score <7 at 1 and 5 min, respiratory problems, congenital heart disease, hypoglycemia, and exchange transfusions. When a “NEC” like illness presents in term or near term infants, it should be noted that these are likely to be distinct in pathogenesis than the most common form of NEC and should be differentiated as such.

The infants who suffer primary ischemic necrosis are term or near term infants (although this can occur in preterms) who have concomitant congenital heart disease, often related to poor left ventricular output or obstruction. Other factors that have been associated with primary ischemia are maternal cocaine use, hyperviscosity caused by polycythemia or a severe antecedent hypoxic–ischemic event. Whether the dis-ease entity that results from this should be termed NEC can be debated on historical grounds, but the etiology is clearly different from the NEC seen in most preterm infants.

The pathogenesis of NEC is uncertain, and the etiology seems to be multifactorial. The “classic” form of NEC is highly associated with prematurity; intestinal barrier immaturity, immature immune response, and an immature regulation of intestinal blood flow (Fig.). Although genetics appears to play a role, the environment, especially a dysbiotic intestinal microbiota acting in concert with host immaturities predisposes the preterm infant to disruption of the intestinal epithelia, increased permeability of tight junctions, and release of inflammatory mediators that leads to intestinal mucosa injury and therefore development of necrotizing enterocolitis.

NEC is a multifactorial disease

NEC is a multifactorial disease

What causes NEC? NEC is a multifactorial disease with an interaction of several etiophathologies

It is clear from this review that there are several entities that have been described as NEC. What is also clear is that despite having some overlap in the final parts of the pathophysiologic cascade that lead to necrosis, the disease that is most commonly seen in the preterm infant is likely to have an origin that differs markedly from that seen in term infants with congenital heart disease or severe hypoxic–ischemic injury. Thus, epidemiologic studies will need to differentiate these entities, if the aim is to dissect common features that are most highly associated with development of the disease. At this juncture, we areleft with more of a population based preventative approach, where the use of human milk, evidence based feeding guide-lines, considerations for microbial therapy once these are proved safe and effective and approved as such by regulatory authorities, and perhaps even measures that prevent prematurity will have a major impact on this devastating disease.

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines, including thymic stromal lymphoprotein (TSLP), transforming growthfactor (TGF), and interleukin-10 (IL-10), that can influence pro-inflammatory cytokine production by dendritic cells (DC) and macrophages present in the laminapropria (GALT) and Peyer’s patches. Signals from commensal organisms may influence tissue-specific functions, resulting in T-cell expansion and regulation of the numbers of Th-1,
Th-2, and Th-3 cells. Also modulated by the microbiota, other IEC derived factors, including APRIL (a proliferation-inducing ligand),B-cell activating factor (BAFF), secretory leukocyte peptidase inhibitor (SLPI), prostaglandin E2(PGE2), and other metabolites, directly regulate functions ofboth antigen presenting cells and lymphocytes in the intestinal ecosystem. NK: natural killer cell; LN: lymph node; DC: dendritic cells.Modified from R. Sharma, C. Young, M. Mshvildadze, J. Neu, Intestinal microbiota does it play a role in diseases of the neonate? NeoReviews 10 (4) (2009)e166, with permission

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Current Issues in the Management of Necrotizing Enterocolitis

Marion C. W. Henry and R. Lawrence Moss
Seminars in Perinatology, 2004; 28(3): 221-233
http://dx.doi.org:/10.1053/j.semperi.2004.03.010

Necrotizing enterocolitis is almost exclusively a disease of prematurity, with 90% of all cases occurring in premature infants and 90% of those infants weighing less than 2000 g. Prematurity is the only risk factor for necrotizing enterocolitis consistently identified in case control studies and the disease is rare in countries where prematurity is uncommon such as Japan and Sweden. When necrotizing enterocolitis does occur in full-term infants, it appears to by a somewhat different disease, typically associated with some predisposing condition.

NEC occurs in one to three in 1,000 live births and most commonly affects babies born between 30-32 weeks. It is most often diagnosed during the second week of life and occurs more often in previously fed infants. The mortality from NEC has been cited as 10% to 50% of all NEC cases. Surgical mortality has decreased over the last several decades from 70% to between 20 and 50%. The incremental cost per case of acute hospital care is estimated at $74 to 186 thousand compared to age matched controls, not including additional costs of long term care for the infants’ with lifelong morbidity. Survivors may develop short bowel syndrome, recurrent bouts of catheter-related sepsis, malabsorption, malnutrition, and TPN induced liver failure.

Although extensive research concerning the pathophysiology of necrotizing enterocolitis has occurred, a complete understanding has not been fully elucidated. The classic histologic finding is coagulation necrosis; present in over 90% of specimens. This finding suggests the importance of ischemia in the pathogenesis of NEC. Inflammation and bacterial overgrowth also are present. These findings support the assumptions by Kosloske that NEC occurs by the interaction of 3 events:

  • intestinal ischemia,
  • colonization by pathogenic bacteria and
  • excess protein substrate in the intestinal lumen.

Additionally, the immunologic immaturity of the neonatal gut has been implicated in the development of NEC. Reparative tissue changes including epithelial regeneration, formation of granulation tissue and fibrosis, and mixed areas of acute and chronic inflammatory changes suggest that the pathogenesis of NEC may involve a chronic process of injury and repair.

Premature newborns born prior to the 32nd week of gestational age may have compromised intestinal peristalsis and decreased motility. These motility problems may lead to poor clearance of bacteria, and subsequent bacterial overgrowth. Premature infants also have an immature intestinal tract in terms of immunologic immunity.

There are fewer functional B lymphocytes present and the ability to produce sufficient secretory IgA is reduced. Pepsin, gastric acid and mucus are also not produced as well in prematurity. All of these factors may contribute to the limited proliferation of intestinal flora and the decreased binding of these flora to mucosal cells (Fig).

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC.

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis.

As understanding of the pathophysiology of necrotizing enterocolitis continues to evolve, a unifying concept is emerging. Initially, there is likely a subclinical insult leading to NEC. This may arise from a brief episode of hypoxia or infection. With colonization of the intestines, bacteria bind to the injured mucosa eliciting an inflammatory response which leads to further inflammation.

Intestinal Microbiota Development in Preterm Neonates and Effect of Perinatal Antibiotics

Silvia Arboleya, Borja Sanchez,, Christian Milani, Sabrina Duranti, et al.
Pediatr 2014;-:—).  http://dx.doi.org/10.1016/j.jpeds.2014.09.041

Objectives Assess the establishment of the intestinal microbiota in very low birth-weight preterm infants and to evaluate the impact of perinatal factors, such as delivery mode and perinatal antibiotics.
Study design We used 16S ribosomal RNA gene sequence-based microbiota analysis and quantitative polymerase chain reaction to evaluate the establishment of the intestinal microbiota. We also evaluated factors affecting the microbiota, during the first 3 months of life in preterm infants (n = 27) compared with full-term babies (n = 13).
Results Immaturity affects the microbiota as indicated by a reduced percentage of the family Bacteroidaceae during the first months of life and by a higher initial percentage of Lactobacillaceae in preterm infants compared with full term infants. Perinatal antibiotics, including intrapartum antimicrobial prophylaxis, affects the gut microbiota, as indicated by increased Enterobacteriaceae family organisms in the infants.

Human gut microbiome

Human gut microbiome

Conclusions Prematurity and perinatal antibiotic administration strongly affect the initial establishment of microbiota with potential consequences for later health.

Ischemia and necrotizing enterocolitis: where, when, and how

Philip T. Nowicki
Seminars in Pediatric Surgery (2005) 14, 152-158
http://dx.doi.org:/10.1053/j.sempedsurg.2005.05.003

While it is accepted that ischemia contributes to the pathogenesis of necrotizing enterocolitis (NEC), three important questions regarding this role subsist. First, where within the intestinal circulation does the vascular pathophysiology occur? It is most likely that this event begins within the intramural microcirculation, particularly the small arteries that pierce the gut wall and the submucosal arteriolar plexus insofar as these represent the principal sites of resistance regulation in the gut. Mucosal damage might also disrupt the integrity or function of downstream villous arterioles leading to damage thereto; thereafter, noxious stimuli might ascend into the submucosal vessels via downstream venules and lymphatics. Second, when during the course of pathogenesis does ischemia occur? Ischemia is unlikely to the sole initiating factor of NEC; instead, it is more likely that ischemia is triggered by other events, such as inflammation at the mucosal surface. In this context, it is likely that ischemia plays a secondary, albeit critical role in disease extension. Third, how does the ischemia occur? Regulation of vascular resistance within newborn intestine is principally determined by a balance between the endothelial production of the vasoconstrictor peptide endothelin-1 (ET-1) and endothelial production of the vasodilator free radical nitric oxide (NO). Under normal conditions, the balance heavily favors NO-induced vasodilation, leading to a low resting resistance and high rate of flow. However, factors that disrupt endothelial cell function, eg, ischemia-reperfusion, sustained low-flow perfusion, or proinflammatory mediators, alter the ET-1:NO balance in favor of constriction. The unique ET-1–NO interaction thereafter might facilitate rapid extension of this constriction, generating a viscous cascade wherein ischemia rapidly extends into larger portions of the intestine.

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation. Small mesenteric arteries pierce the muscularis layers and terminate in the submucosa where they give rise to 1A (1st order) arterioles. 2A (2nd order) arterioles arise from the 1A. Although not shown here, these 2A arterioles connect merge with several 1A arterioles, thus generating an arteriolar plexus, or manifold that serves to pressurize the terminal downstream microvasculature. 3A (3rd order) arterioles arise from the 2A and proceed to the mucosa, giving off a 4A branch just before descent into the mucosa. This 4A vessel travels to the muscularis layers. Each 3A vessel becomes the single arteriole perfusing each villus.

Collectively, these studies indicate that disruption of endothelial cell function has the potential to disrupt the normal balance between NO and ET-1 within the newborn intestinal circulation, and that such an event can generate significant ischemia. In this context, it is important to note that NO and ET-1 each regulate the expression and activity of the other. An increased [NO] within the microvascular environment reduces ET-1 expression and compromises ligand binding to the ETA receptor (thus decreasing its contractile efficacy), while ET-1 compromises eNOS expression. Thus, factors that upset the balance between NO and ET-1 will have an immediate and direct effect on vascular tone, but also exert an additional indirect effect by extenuating the disruption of balance between these two factors.

It is not difficult to construct a hypothesis that links the perturbations of I/R and sustained low-flow perfusion with an initial inflammatory insult. Initiation of an inflammatory process at the mucosal–luminal interface could have a direct impact on villus and mucosal 3A arterioles, damaging arteriolar integrity and disrupting villus hemodynamics. Ascent of proinflammatory mediators to the submucosal 1A–2A arteriolar plexus could occur via draining venules and lymphatics, generating damage to vascular effector systems therein; these mediators might include cytokines and platelet activating factor, as these elements have been recovered from human infants with NEC. This event, coupled with a generalized loss of 3A flow throughout a large portion of the mucosal surface, could compromise flow rate within the submucosal arteriolar plexus.

Necrotizing enterocolitis: An update

Loren Berman, R. Lawrence Moss
Seminars in Fetal & Neonatal Medicine 16 (2011) 145e150
http://dx.doi.org:/10.1016/j.siny.2011.02.002

Necrotizing enterocolitis (NEC) is a leading cause of death among patients in the neonatal intensive care unit, carrying a mortality rate of 15e30%. Its pathogenesis is multifactorial and involves an over reactive response of the immune system to an insult. This leads to increased intestinal permeability, bacterial translocation, and sepsis. There are many inflammatory mediators involved in this process, but thus far none has been shown to be a suitable target for preventive or therapeutic measures. NEC usually occurs in the second week of life after the initiation of enteral feeds, and the diagnosis is made based on physical examination findings, laboratory studies, and abdominal radiographs. Neonates with NEC are followed with serial abdominal examinations and radiographs, and may require surgery or primary peritoneal drainage for perforation or necrosis. Many survivors are plagued with long term complications including short bowel syndrome, abnormal growth, and neurodevelopmental delay. Several evidence-based strategies exist that may decrease the incidence of NEC including promotion of human breast milk feeding, careful feeding advancement, and prophylactic probiotic administration in at-risk patients. Prevention is likely to have the greatest impact on decreasing mortality and morbidity related to NEC, as little progress has been made with regard to improving outcomes for neonates once the disease process is underway.

Immune Deficiencies

Primary immunodeficiencies: A rapidly evolving story

Nima Parvaneh, Jean-Laurent Casanova,  LD Notarangelo, ME Conley
J Allergy Clin Immunol 2013;131:314-23.
http://dx.doi.org/10.1016/j.jaci.2012.11.051

The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.

Combined Immunodeficiencies

  • T-cell receptor a gene mutation: T-cell receptor ab1 T-cell depletion

T cells comprise 2 distinct lineages that express either ab or gd T-cell receptor (TCR) complexes that perform different tasks in immune responses. During T-cell maturation, the precise order and efficacy of TCR gene rearrangements determine the fate of the cells. Productive β-chain gene rearrangement produces a pre-TCR on the cell surface in association with pre-Tα invariant peptide (β-selection). Pre-TCR signals promote α-chain recombination and transition to a double-positive stage (CD41CD81). This is the prerequisite for central tolerance achieved through positive and negative selection of thymocytes.

  • Ras homolog gene family member H deficiency: Loss of naive T cells and persistent human papilloma virus infections
  • MST1 deficiency: Loss of naive T cells

New insight into the role of MST1 as a critical regulator of T-cell homing and function was provided by the characterization of 8 patients from 4 unrelated families who had homozygous nonsense mutations in STK4, the gene encoding MST1. MST1 was originally identified as an ubiquitously expressed kinase with structural homology to yeast Ste. MST1 is the mammalian homolog of the Drosophila Hippo protein, controlling cell growth, apoptosis, and tumorigenesis. It has both proapoptotic and antiapoptotic functions.

  • Lymphocyte-specific protein tyrosine kinase deficiency: T-cell deficiency with CD41 lymphopenia

Defects in pre-TCR– and TCR-mediated signaling lead to aberrant T-cell development and function (Fig). One of the earliest biochemical events occurring after engagement of the (pre)-TCR is the activation of lymphocyte-specific protein tyrosine kinase (LCK), a member of the SRC family of protein tyrosine kinases. This kinase then phosphorylates immunoreceptor tyrosine-based activation motifs of intracellular domains of CD3 subunits. Phosphorylated immunoreceptor tyrosine-based activation motifs recruit z-chain associated protein kinase of 70 kDa, which, after being phosphorylated by LCK, is responsible for activation of critical downstream events. Major consequences include activation of the membrane-associated enzyme phospholipase Cg1, activation of the mitogen-activated protein kinase, nuclear translocation of nuclear factor kB (NFkB), and Ca21/Mg21 mobilization. Through these pathways, LCK controls T-cell development and activation. In mice lacking LCK, T-cell development in the thymus is profoundly blocked at an early double-negative stage.

TCR signaling

TCR signaling

TCR signaling. Multiple signal transduction pathways are stimulated through the TCR. These pathways collectively activate transcription factors that organize T-cell survival, proliferation, differentiation, homeostasis, and migration. Mutant molecules in patients with TCR-related defects are indicated in red.

  • Uncoordinated 119 deficiency: Idiopathic CD41 lymphopenia

Idiopathic CD41 lymphopenia (ICL) is a very heterogeneous clinical entity that is defined, by default, by persistent CD41 T-cell lymphopenia (<300 cells/mL or <20% of total T cells) in the absence of HIV infection or any other known cause of immunodeficiency.

Well-Defined Syndromes with Immunodeficiency

  • Wiskott-Aldrich syndrome protein–interacting protein deficiency: Wiskott-Aldrich syndrome-like phenotype

In hematopoietic cells Wiskott-Aldrich syndrome protein (WASP) is stabilized through forming a complex with WASP interacting protein (WIP).

  • Phospholipase Cg2 gain-of-function mutations: Cold urticaria, immunodeficiency, and autoimmunity/autoinflammatory

This is a unique phenotype, sharing features of antibody deficiency, autoinflammatory diseases, and immune dysregulatory disorders, making its classification difficult. Two recent studies validated the pleiotropy of genetic alterations in the same gene.

Predominantly Antibody Defects

  • Defect in the p85a subunit of phosphoinositide 3-kinase: Agammaglobulinemia and absent B cells
  • CD21 deficiency: Hypogammaglobulinemia
  • LPS-responsive beige-like anchor deficiency:
  • Hypogammaglobulinemia with autoimmunity and

early colitis

Defects Of Immune Dysregulation

  • Pallidin deficiency: Hermansky-Pudlak syndrome type 9
  • CD27 deficiency: Immune dysregulation and
  • persistent EBV infection

Congenital Defects Of Phagocyte Number, Function, Or Both

  • Interferon-stimulated gene 15 deficiency: Mendelian susceptibility to mycobacterial diseases

Defects In Innate Immunity

  • NKX2-5 deficiency: Isolated congenital asplenia
  • Toll/IL-1 receptor domain–containing adaptor inducing IFN-b and TANK-binding kinase 1 deficiencies: Herpes simplex encephalitis
  • Minichromosome maintenance complex component 4 deficiency: NK cell deficiency associated with growth retardation and adrenal insufficiency

Autoinflammatory Disorders

  • A disintegrin and metalloproteinase 17 deficiency: Inflammatory skin and bowel disease

 

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte/macrophage cells and T/NK lymphocytes. Genes in the IL-12/IFN-g pathway are particularly important for protection against mycobacterial disease. IRF8 is an IFN-g–inducible transcription factor required for the induction of various target genes, including IL-12. The NF-kB essential modulator (NEMO) mutations in the LZ domain impair CD40-NEMO–dependent pathways. Some gp91phox mutations specifically abolish the respiratory burst in monocyte-derived macrophages. ISG15 is secreted by neutrophils and potentiates IFN-g production by NK/T cells. Genetic defects that preclude monocyte development (eg, GATA2) can also predispose to mycobacterial infections (not shown). Mutant molecules in patients with unusual susceptibility to infection are indicated in red.

The field of PIDs is advancing at full speed in 2 directions. New genetic causes of known PIDs are being discovered (eg, CD21 and TRIF). Moreover, new phenotypes qualify as PIDs with the identification of a first genetic cause (eg, generalized pustular psoriasis). Recent findings contribute fundamental knowledge about immune system biology and its perturbation in disease. They are also of considerable clinical benefit for the patients and their families. A priority is to further translate these new discoveries into improved diagnostic methods and more effective therapeutic strategies, promoting the well-being of patients with PIDs.

Primary immunodeficiencies

Luigi D. Notarangelo
J Allergy Clin Immunol 2010; 125(2): S182-194
http://dx.doi.org:/10.1016/j.jaci.2009.07.053

In the last years, advances in molecular genetics and immunology have resulted in the identification of a growing number of genes causing primary immunodeficiencies (PIDs) in human subjects and a better understanding of the pathophysiology of these disorders. Characterization of the molecular mechanisms of PIDs has also facilitated the development of novel diagnostic assays based on analysis of the expression of the protein encoded by the PID-specific gene. Pilot newborn screening programs for the identification of infants with severe combined immunodeficiency have been initiated. Finally, significant advances have been made in the treatment of PIDs based on the use of subcutaneous immunoglobulins, hematopoietic cell transplantation from unrelated donors and cord blood, and gene therapy. In this review we will discuss the pathogenesis, diagnosis, and treatment of PIDs, with special attention to recent advances in the field.

 

 

Read Full Post »

The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy

Curator and Interviewer: Stephen J. Williams, Ph.D.

Article ID #167: The Vibrant Philly Biotech Scene: Focus on KannaLife Sciences and the Discipline and Potential of Pharmacognosy. Published on 2/19/2015

WordCloud Image Produced by Adam Tubman

 

philly2nightThis post is the third in a series of posts highlighting interviews with Philadelphia area biotech startup CEO’s and show how a vibrant biotech startup scene is evolving in the city as well as the Delaware Valley area. Philadelphia has been home to some of the nation’s oldest biotechs including Cephalon, Centocor, hundreds of spinouts from a multitude of universities as well as home of the first cloned animal (a frog), the first transgenic mouse, and Nobel laureates in the field of molecular biology and genetics. Although some recent disheartening news about the fall in rankings of Philadelphia as a biotech hub and recent remarks by CEO’s of former area companies has dominated the news, biotech incubators like the University City Science Center and Bucks County Biotechnology Center as well as a reinvigorated investment community (like PCCI and MABA) are bringing Philadelphia back. And although much work is needed to bring the Philadelphia area back to its former glory days (including political will at the state level) there are many bright spots such as the innovative young companies as outlined in these posts.

In today’s post, I had the opportunity to talk with both Dr. William Kinney, Chief Scientific Officer and Thoma Kikis, Founder/CMO of KannaLife Sciences based in the Pennsylvania Biotech Center of Bucks County.   KannaLifeSciences, although highlighted in national media reports and Headline news (HLN TV)for their work on cannabis-derived compounds, is a phyto-medical company focused on the discipline surrounding pharmacognosy, the branch of pharmacology dealing with natural drugs and their constituents.

Below is the interview with Dr. Kinney and Mr. Kikis of KannaLife Sciences and Leaders in Pharmaceutical Business Intelligence (LPBI)

 

PA Biotech Questions answered by Dr. William Kinney, Chief Scientific Officer of KannaLife Sciences

 

 

LPBI: Your parent company   is based in New York. Why did you choose the Bucks County Pennsylvania Biotechnology Center?

 

Dr. Kinney: The Bucks County Pennsylvania Biotechnology Center has several aspects that were attractive to us.  They have a rich talent pool of pharmaceutically trained medicinal chemists, an NIH trained CNS pharmacologist,  a scientific focus on liver disease, and a premier natural product collection.

 

LBPI: The Blumberg Institute and Natural Products Discovery Institute has acquired a massive phytochemical library. How does this resource benefit the present and future plans for KannaLife?

 

Dr. Kinney: KannaLife is actively mining this collection for new sources of neuroprotective agents and is in the process of characterizing the active components of a specific biologically active plant extract.  Jason Clement of the NPDI has taken a lead on these scientific studies and is on our Advisory Board. 

 

LPBI: Was the state of Pennsylvania and local industry groups support KannaLife’s move into the Doylestown incubator?

 

Dr. Kinney: The move was not State influenced by state or industry groups. 

 

LPBI: Has the partnership with Ben Franklin Partners and the Center provided you with investment opportunities?

 

Dr. Kinney: Ben Franklin Partners has not yet been consulted as a source of capital.

 

LPBI: The discipline of pharmacognosy, although over a century old, has relied on individual investigators and mainly academic laboratories to make initial discoveries on medicinal uses of natural products. Although there have been many great successes (taxol, many antibiotics, glycosides, etc.) many big pharmaceutical companies have abandoned this strategy considering it a slow, innefective process. Given the access you have to the chemical library there at Buck County Technology Center, the potential you had identified with cannabanoids in diseases related to oxidative stress, how can KannaLife enhance the efficiency of finding therapeutic and potential preventive uses for natural products?

 

Dr. Kinney: KannaLife has the opportunity to improve upon natural molecules that have shown medically uses, but have limitations related to safety and bioavailability. By applying industry standard medicinal chemistry optimization and assay methods, progress is being made in improving upon nature.  In addition KannaLife has access to one of the most commercially successful natural products scientists and collections in the industry.

 

LPBI: How does the clinical & regulatory experience in the Philadelphia area help a company like Kannalife?

 

Dr. Kinney: Within the region, KannaLife has access to professionals in all areas of drug development either by hiring displaced professionals or partnering with regional contract research organizations.

 

LPBI  You are focusing on an interesting mechanism of action (oxidative stress) and find your direction appealing (find compounds to reverse this, determine relevant disease states {like HCE} then screen these compounds in those disease models {in hippocampal slices}).  As oxidative stress is related to many diseases are you trying to develop your natural products as preventative strategies, even though those type of clinical trials usually require massive numbers of trial participants or are you looking to partner with a larger company to do this?

 

Dr. Kinney: Our strategy is to initially pursue Hepatic Encephalophy (HE) as the lead orphan disease indication and then partner with other organizations to broaden into other areas that would benefit from a neuroprotective agent.  It is expected the HE will be responsive to an acute treatment regimen.   We are pursuing both natural products and new chemical entities for this development path.

 

 

General Questions answered by Thoma Kikis, Founder/CMO of KannaLife Sciences

 

LPBI: How did KannaLife get the patent from the National Institutes of Health?

 

My name is Thoma Kikis I’m the co-founder of KannaLife Sciences. In 2010, my partner Dean Petkanas and I founded KannaLife and we set course applying for the exclusive license of the ‘507 patent held by the US Government Health and Human Services and National Institutes of Health (NIH). We spent close to 2 years working on acquiring an exclusive license from NIH to commercially develop Patent 6,630,507 “Cannabinoids as Antioxidants and Neuroprotectants.” In 2012, we were granted exclusivity from NIH to develop a treatment for a disease called Hepatic Encephalopathy (HE), a brain liver disease that stems from cirrhosis.

 

Cannabinoids are the chemicals that compose the Cannabis plant. There are over 85 known isolated Cannabinoids in Cannabis. The cannabis plant is a repository for chemicals, there are over 400 chemicals in the entire plant. We are currently working on non-psychoactive cannabinoids, cannabidiol being at the forefront.

 

As we started our work on HE and saw promising results in the area of neuroprotection we sought out another license from the NIH on the same patent to treat CTE (Chronic Traumatic Encephalopathy), in August of 2014 we were granted the additional license. CTE is a concussion related traumatic brain disease with long term effects mostly suffered by contact sports players including football, hockey, soccer, lacrosse, boxing and active military soldiers.

 

To date we are the only license holders of the US Government held patent on cannabinoids.

 

 

LPBI: How long has this project been going on?

 

We have been working on the overall project since 2010. We first started work on early research for CTE in early-2013.

 

 

LPBI: Tell me about the project. What are the goals?

 

Our focus has always been on treating diseases that effect the Brain. Currently we are looking for solutions in therapeutic agents designed to reduce oxidative stress, and act as immuno-modulators and neuroprotectants.

 

KannaLife has an overall commitment to discover and understand new phytochemicals. This diversification of scientific and commercial interests strongly indicates a balanced and thoughtful approach to our goals of providing standardized, safer and more effective medicines in a socially responsible way.

 

Currently our research has focused on the non-psychoactive cannabidiol (CBD). Exploring the appropriate uses and limitations and improving its safety and Metered Dosing. CBD has a limited therapeutic window and poor bioavailability upon oral dosing, making delivery of a consistent therapeutic dose challenging. We are also developing new CBD-like molecules to overcome these limitations and evaluating new phytochemicals from non-regulated plants.

 

KannaLife’s research is led by experienced pharmaceutically trained professionals; Our Scientific team out of the Pennsylvania Biotechnology Center is led by Dr. William Kinney and Dr. Douglas Brenneman both with decades of experience in pharmaceutical R&D.

 

 

LPBI: How do cannabinoids help neurological damage? -What sort of neurological damage do they help?

 

Cannabinoids and specifically cannabidiol work to relieve oxidative stress, and act as immuno-modulators and neuroprotectants.

 

So far our pre-clinical results show that cannabidiol is a good candidate as a neuroprotectant as the patent attests to. Our current studies have been to protect neuronal cells from toxicity. For HE we have been looking specifically at ammonia and ethanol toxicity.

 

 

– How did it go from treating general neurological damage to treating CTE? Is there any proof yet that cannabinoids can help prevent CTE? What proof?

 

We started examining toxicity first with ammonia and ethanol in HE and then posed the question; If CBD is a neuroprotectant against toxicity then we need to examine what it can do for other toxins. We looked at CTE and the toxin that causes it, tau. We just acquired the license in August from the NIH for CTE and are beginning our pre-clinical work in the area of CTE now with Dr. Ron Tuma and Dr. Sara Jane Ward at Temple University in Philadelphia.

 

 

LPBI: How long until a treatment could be ready? What’s the timeline?

 

We will have research findings in the coming year. We plan on filing an IND (Investigational New Drug application) with the FDA for CBD and our molecules in 2015 for HE and file for CTE once our studies are done.

 

 

LPBI: What other groups are you working with regarding CTE?

 

We are getting good support from former NFL players who want solutions to the problem of concussions and CTE. This is a very frightening topic for many players, especially with the controversy and lawsuits surrounding it. I have personally spoken to several former NFL players, some who have CTE and many are frightened at what the future holds.

 

We enrolled a former player, Marvin Washington. Marvin was an 11 year NFL vet with NY Jets, SF 49ers and won a SuperBowl on the 1998 Denver Broncos. He has been leading the charge on KannaLife’s behalf to raise awareness to the potential solution for CTE.

 

We tried approaching the NFL in 2013 but they didn’t want to meet. I can understand that they don’t want to take a position. But ultimately, they’re going to have to make a decision and look into different research to treat concussions. They have already given the NIH $30 Million for research into football related injuries and we hold a license with the NIH, so we wanted to have a discussion. But currently cannabinoids are part of their substance abuse policy connected to marijuana. Our message to the NFL is that they need to lead the science, not follow it.

 

Can you imagine the NFL’s stance on marijuana treating concussions and CTE? These are topics they don’t want to touch but will have to at some point.

 

LPBI: Thank you both Dr. Kinney and Mr. Kikis.

 

Please look for future posts in this series on the Philly Biotech Scene on this site

Also, if you would like your Philadelphia biotech startup to be highlighted in this series please contact me or

http://pharmaceuticalintelligence.com at:

sjwilliamspa@comcast.net or @StephenJWillia2  or @pharma_BI.

Our site is read by ~ thousand international readers DAILY and thousands of Twitter followers including venture capital.

 

Other posts on this site in this VIBRANT PHILLY BIOTECH SCENE SERIES OR referring to PHILADELPHIA BIOTECH include:

The Vibrant Philly Biotech Scene: Focus on Computer-Aided Drug Design and Gfree Bio, LLC

RAbD Biotech Presents at 1st Pitch Life Sciences-Philadelphia

The Vibrant Philly Biotech Scene: Focus on Vaccines and Philimmune, LLC

What VCs Think about Your Pitch? Panel Summary of 1st Pitch Life Science Philly

1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

LytPhage Presents at 1st Pitch Life Sciences-Philadelphia

Hastke Inc. Presents at 1st Pitch Life Sciences-Philadelphia

PCCI’s 7th Annual Roundtable “Crowdfunding for Life Sciences: A Bridge Over Troubled Waters?” May 12 2014 Embassy Suites Hotel, Chesterbrook PA 6:00-9:30 PM

Pfizer Cambridge Collaborative Innovation Events: ‘The Role of Innovation Districts in Metropolitan Areas to Drive the Global an | Basecamp Business

Mapping the Universe of Pharmaceutical Business Intelligence: The Model developed by LPBI and the Model of Best Practices LLC

 

 

Read Full Post »

Gastrointestinal Endocrinology

Writer and Curator: Larry H Bernstein, MD, FCAP

The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic DiseasesMark Brown and Stanley L. Hazen

Annual Review of Medicine Jan 2015; 66: 343-359
http://dx.doi.org:/10.1146/annurev-med-060513-093205

The human gastrointestinal tract is home to trillions of bacteria, which vastly outnumber host cells in the body. Although generally overlooked in the field of endocrinology, gut microbial symbionts organize to form a key endocrine organ that converts nutritional cues from the environment into hormone-like signals that impact both normal physiology and chronic disease in the human host. Recent evidence suggests that several gut microbial-derived products are sensed by dedicated host receptor systems to alter cardiovascular disease (CVD) progression. In fact, gut microbial metabolism of dietary components results in the production of proatherogenic circulating factors that act through a meta-organismal endocrine axis to impact CVD risk. Whether pharmacological interventions at the level of the gut microbial endocrine organ will reduce CVD risk is a key new question in the field of cardiovascular medicine. Here we discuss the opportunities and challenges that lie ahead in targeting meta-organismal endocrinology for CVD prevention.

Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle

Antonella Amato, Sara Baldassano, Rosa Liotta1, Rosa Serio and Flavia Mulè
J Endocrinol April 1, 2014 221 29-37
http://dx.doi.org:/10.1530/JOE-13-0525

Glucagon-like peptide 1 (GLP1) is a naturally occurring peptide secreted by intestinal L-cells. Though its primary function is to serve as an incretin, GLP1 reduces gastrointestinal motility. However, only a handful of animal studies have specifically evaluated the influence of GLP1 on colonic motility. Consequently, the aims of this study were to investigate the effects induced by exogenous GLP1, to analyze the mechanism of action, and to verify the presence of GLP1 receptors (GLP1Rs) in human colon circular muscular strips. Organ bath technique, RT-PCR, western blotting, and immunofluorescence were used. In human colon, exogenous GLP1 reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions without affecting the frequency and the resting basal tone. This inhibitory effect was significantly reduced by exendin (9–39), a GLP1R antagonist, which per se significantly increased the spontaneous mechanical activity. Moreover, it was abolished by tetrodotoxin, a neural blocker, or Nω-nitro-L-arginine – a blocker of neuronal nitric oxide synthase (nNOS). The biomolecular analysis revealed a genic and protein expression of the GLP1R in the human colon. The double-labeling experiments with anti-neurofilament or anti-nNOS showed, for the first time, that immunoreactivity for the GLP1R was expressed in nitrergic neurons of the myenteric plexus. In conclusion, the results of this study suggest that GLP1R is expressed in the human colon and, once activated by exogenous GLP1, mediates an inhibitory effect on large intestine motility through NO neural release.

The impact of dipeptidyl peptidase 4 inhibition on incretin effect, glucose tolerance, and gastrointestinal-mediated glucose disposal in healthy subjects

N A Rhee, S H Østoft, J J Holst, C F Deacon, T Vilsbøll and F K Knop
Eur J Endocrinol September 1, 2014 171 353-36
http://dx.doi.org:/10.1530/EJE-14-0314

Objective Inhibition of dipeptidyl peptidase 4 (DPP4) is thought to intensify the physiological effects of the incretin hormones. We investigated the effects of DPP4 inhibition on plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1), incretin effect, glucose tolerance, gastrointestinal-mediated glucose disposal (GIGD) and gastric emptying in healthy subjects. Design A randomised, controlled and open-labelled study. Methods Ten healthy subjects (six women; age, 40±5 years (mean±S.E.M.); BMI, 24±3 kg/m2; fasting plasma glucose, 5.1±0.2 mmol/l and HbA1c, 34±1 mmol/mol (5.3±0.1%)) were randomised to two-paired study days comprising a 4-h 50 g oral glucose tolerance test (OGTT) with paracetamol (A) and an isoglycaemic intravenous (i.v.) glucose infusion (B), with (A1+B1) and without (A2+B2) preceding administration of the DPP4 inhibitor sitagliptin. Results Isoglycaemia was obtained in all subjects on the paired study days. Significant increases in fasting levels and OGTT-induced responses of active GLP1 and GIP were seen after DPP4 inhibition. No significant impact of DPP4 inhibition on fasting plasma glucose (5.1±0.1 vs 4.9±0.1 mmol/l, P=0.3), glucose tolerance (area under the curve (AUC) for plasma glucose, 151±35 vs 137±26 mmol/l×min, P=0.7) or peak plasma glucose during OGTT (8.5±0.4 vs 8.1±0.3 mmol/l, P=0.3) was observed. Neither incretin effect (40±9% (without DPP4 inhibitor) vs 40±7% (with DPP4 inhibitor), P=1.0), glucagon responses (1395±165 vs 1223±195 pmol/l×min, P=0.41), GIGD (52±4 vs 56±5%, P=0.40) nor gastric emptying (Tmax for plasma paracetamol: 86±9 vs 80±12 min, P=0.60) changed following DPP4 inhibition. Conclusions These results suggest that acute increases in active incretin hormone levels do not affect glucose tolerance, GIGD, incretin effect, glucagon responses or gastric emptying in healthy subjects.

Morphology and Tissue Distribution of Four Kinds of Endocrine Cells in the Digestive Tract of the Chinese Yellow Quail (Coturnix japonica)

He, M., Liang, X., Wang, K., (…), Li, X., Liu, L.
Analytical and Quantitative Cytology and Histology 2014; 36 (4), pp. 199-205

Objective: To describe the tissue distribution, density, and the morphological characteristics of 4 kinds of endocrine cells in the digestive tract of the Chinese yellow quail (Coturnix japonica). Study design: The streptavidin-biotin-peroxidase complex immunohistochemical method was used to identify the distribution of somatostatin (SS), serotonin (5-HT), gastrin and neuropeptide Y (NPY) in digestive tracts including proventriculus, duodenum, jejunum, ileum, and rectum. SPSS 19.0 software was used to perform biological statistical analysis. Results: The results showed that the SS and 5-HT secreting cells were mainly distributed in the proventriculus (19.2±6.9 and 16.1±3.4 cfu/mm2) and duodenum (2.9±2.0 and 1.9±0.6 cfu/mm2). Gastrin and NPY were not detected in each section of the digestive tract. Moreover, there was no significant difference in the quantitative distribution and morphological characteristics of SS and 5-HT secreting cells in the digestive tract between male and female quails. Conclusion: The distribution and morphological characteristics of endocrine cells were closely related to the physiological functions of different parts in the digestive tract. The preferential location of endocrine cells provides additional information for future studies on the physiological roles of gastrointestinal peptides in the gastrointestinal tract of the Chinese yellow quail

GEP-NETS update: Functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs)

Wouter W de Herder
Eur J Endocrinol May 1, 2014 170 R173-R183
http://dx.doi.org:/10.1530/EJE-14-0077

For patients with neuroendocrine tumours (NETs) of the gastrointestinal tract and pancreas (GEP) (GEP-NETs), excellent care should ideally be provided by a multidisciplinary team of skilled health care professionals. In these patients, a combination of nuclear medicine imaging and conventional radiological imaging techniques is usually mandatory for primary tumour visualisation, tumour staging and evaluation of treatment. In specific cases, as in patients with occult insulinomas, sampling procedures can provide a clue as to where to localise the insulin-hypersecreting pancreatic NETs. Recent developments in these fields have led to an increase in the detection rate of primary GEP-NETs and their metastatic deposits. Radiopharmaceuticals targeted at specific tumour cell properties and processes can be used to provide sensitive and specific whole-body imaging. Functional imaging also allows for patient selection for receptor-based therapies and prediction of the efficacy of such therapies. Positron emission tomography/computed tomography (CT) and single-photon emission CT/CT are used to map functional images with anatomical localisations. As a result, tumour imaging and tumour follow-up strategies can be optimised for every individual GEP-NET patient. In some cases, functional imaging might give indications with regard to future tumour behaviour and prognosis.

An immunohistochemical study on the distribution of endocrine cells in the digestive tract of gray goose (Anser anser)

Jun YANG1, Lei ZHANG,, Xin LI, , Leii ZHANG, , Xiangjiang LIU, , Kemei PENG

Turk. J. Vet. Anim. Sci. 2012; 36(4): 373-379
http://dx.doi.org:/10.3906/vet-1101-654

The objective of this study was to investigate the morphology and the distribution of 5-hydroxytryptamine (5-HT), somatostatin (SS), gastrin (Gas), glucagon (Glu), and substance P immunoreactive (IR) cells in the digestive tract of gray goose by the immunohistochemical streptavidin-peroxidase method.

The samples were taken from 10 healthy  adult gray geese. Th e results showed that 5 kinds of IR cells were mainly distributed between the mucous epithelium and intestinal gland. The number of 5-HT-IR cells was highest in the rectum and duodenum, but none were observed  in the pylorus. SS-IR cells appeared in great numbers in the pylorus, duodenum, and cecum; however, they were not found in esophagus. Gas-IR cells were mainly distributed in the glandular stomach and jejunum. Glu-IR cells appeared  in small numbers in the glandular stomach, duodenum, and jejunum, but were not detected in other tissues. Substance  P-IR cells were located in the jejunum, cecum, and rectum. Analysis of the present study showed that the distribution and morphological features of these 5 different endocrine cells were related to the feeding habits and metabolism in the digestive tract of the gray goose

Chapter 154 – Somatostatin

Mathias Guggera, Jean-Claude Meunierb

Handbook of Biologically Active Peptides 2006, Pages 1123–1130
http:/dx.doi.org:/10.1016/B978-012369442-3/50157-4

Somatostatin is abundant in the mucosa and in the enteric nervous system of the gastrointestinal tract and in the pancreas. In these tissues, it exerts a broad range of mainly inhibitory physiological actions in multiple targets, including endocrine glands, exocrine glands, smooth muscles, blood vessels, and immune cells, mediated by up to six somatostatin receptor subtypes. Several diseases of the gastrointestinal tract are characterized by disturbances in the somatostatin production or by overexpression of somatostatin receptors. In particular, somatostatin receptors have been found to be overexpressed in neuroendocrine gastroenteropancreatic tumors. These tumors can be diagnostically and therapeutically targeted with somatostatin analogs. In addition, various nonneoplastic diseases, including bleeding in the upper gastrointestinal tract, fistulas, and diarrhea can also be treated with somatostatin analogs.

Immunocytochemical study of the distribution of endocrine cells in the pancreas of the Brazilian sparrow species Zonotrichia Capensis Subtorquata (Swaison, 1837)

Nascimento, AA.*; Sales, A.; Cardoso, TRD.; Pinheiro, NL.; Mendes, RMM.
Braz. J. Biol. Nov. 2007; 67(4):  São Carlos

In the present study, we investigated types of pancreatic endocrine cells and its respective peptides in the Brazilian sparrow species using immunocytochemistry. The use of polyclonal specific antisera for somatostatin, glucagon, avian pancreatic polypeptide (APP), YY polypeptide (PYY) and insulin, revealed a diversified distribution in the pancreas. All these types of immunoreactive cells were observed in the pancreas with different amounts. Insulin- Immunoreactive cells to (B cells) were most numerous, preferably occupying the central place in the pancreatic islets. Somatostatin, PPA, PYY and glucagon immunoreactive cells occurred in a lower frequency in the periphery of pancreatic islets.

Immunolocalisation of the serotonin in the fundus ventriculi and duodenum of the Asia minor ground squirrel: (Spermophilus xanthoprymnus)

Timurkaan, S., Özkan, E., Ilgün, R., Gür, F.M
Veterinarski Arhiv 2009; 79 (1), pp. 69-76

Serotonin immunoreactive cells were located and distributed in the fundus and duodenum with variable frequencies. They were spherical or spindle-shaped and the highest frequency serotonin immunoreactive cells were detected in the whole fundic region. The regional distribution of the endocrine cells in the fundus and duodenum of the citellus resembled other mammalian species.

An Immunohistochemical Study of Gastrointestinal Endocrine Cells in the BALB/c Mouse

Ku, S.K., Lee, H.S., Lee, J.H.
J Vet Med Series C: Anatomia Histologia Embryologia 2004; 33 (1), pp. 42-48

The distributions and frequencies of some endocrine cells in the eight portions of the gastrointestinal tract (GIT) of BALB/c mouse were studied. Endocrine cells were stained using immunohistochemical method with seven types of anti-sera against bovine chromogranin (BCG), serotonin, gastrin, cholecystokinin (CCK)-8, somatostatin, glucagon and human pancreatic polypeptide (HPP), and the regional distributions and their relative frequencies were observed in the eight portions of the GIT of BALB/c mice. All seven types of immunoreactive (IR) cells were identified. Most of the IR cells in the intestinal portion were generally spherical or spindle in shape (open type cell) while round-shaped cells (closed type cell) were found in the intestinal gland and stomach regions occasionally. Their relative frequencies varied according to each portion of the GIT. BCG-IR cells were observed throughout the whole GIT except for the rectum and they were most predominant in the pylorus. Serotonin-IR cells were detected throughout the whole GIT and they showed the highest frequency in the fundus. Gastrin- and CCK-IR cells were restricted to the pylorus and duodenum with a majority in the pylorus and rare or a few frequencies in the duodenum. Compared with other mammals, somatostatin-IR cells were restricted to the fundus and pylorus with a few frequencies, respectively. In addition, glucagon- and HPP-IR cells were restricted to the fundus and duodenum, respectively, with relative low frequencies. Some species-dependent unique distributions and frequencies of endocrine cells were observed in the GIT of BALB/c mouse compared with other rodents.

Immunohistochemical study of the distribution of serotonin in the gastrointestinal tract of the porcupines (Hystrix cristata)

Timurkaan, S., Karan, M., Aydin, A.
Revue de Medecine Veterinaire 2005; 156 (11), pp. 533-536

Serotonin immunoreactive cells were located in the gastric glands and in the intestinal epithelium with variable frequencies. They were spherical or spindle-shaped. Serotonin immuno-reactive cells were detected in almost all regions of the gastrointestinal tract and they showed highest frequency in the stomach and colon.

Effects of carbachol on gastrin and somatostatin release in rat antral tissue culture

Wolfe, M.M., Jain, D.K., Reel, G.M., McGuigan, J.E.
Gastroenterology 1984; 87 (1), pp. 86-93

Recent studies have demonstrated that somatostatin-containing cells are in close anatomic proximity to gastrin-producing cells in antral mucosa, suggesting a potential local regulatory role for somatostatin. The purpose of this study was to examine further the relationships between gastrin and somatostatin and the effects of the cholinergic agonist carbachol on content and release of gastrin and somatostatin using rat antral mucosa in tissue culture. Antral mucosa was cultured at 37 °C in KrebsHenseleit buffer, pH 7.4, gassed with 95% O2-5% CO2. After 1 h, the culture medium was decanted and the tissue was boiled to extract mucosal gastrin and somatostatin. Inclusion of carbachol 2.5 × 10-6 M in the culture medium decreased medium somatostatin from 1.91 ± 0.28 (SEM) ng/mg tissue protein to 0.62 ± 0.12 ng/mg (p < 0.01), extracted mucosal somatostatin from 2.60 ± 0.30 to 1.52 ± 0.16 ng/mg (p < 0.001), and percentage of somatostatin released from 42% ± 2.6% to 27% ± 2.2% (p < 0.01). Carbachol also increased culture media gastrin from 14 ± 2.5 to 27 ± 3.0 ng/mg protein (p < 0.01). Tissue content and release of gastrin and somatostatin were also examined during culture of rat antral mucosa in culture media containing antibodies to somatostatin in the presence and in the absence of carbachol. Incubation with somatostatin antisera, both with and without carbachol, markedly increased culture media concentrations of somatostatin, all of which was effectively bound by antibodies present in the media. Antibody binding of somatostatin was accompanied by significant increases in culture media gastrin concentrations, both in the presence and in the absence of carbachol. Results of these studies support the hypothesis that antral somatostatin exerts a local regulatory effect on gastrin release and that cholinergic stimulation of gastrin release is mediated, at least in part, through inhibition of somatostatin synthesis and release.

Endogenous somatostatin-28 modulates postprandial insulin secretion. Immunoneutralization studies in baboons

J W Ensinck, R E Vogel, E C Laschansky, D J Koerker, et al.
J Clin Invest. 1997; 100(9):2295–2302.
http://dx.doi.org:/10.1172/JCI119767

Somatostatin-28 (S-28), secreted into the circulation from enterocytes after food, and S-14, released mainly from gastric and pancreatic D cells and enteric neurons, inhibit peripheral cellular functions. We hypothesized that S-28 is a humoral regulator of pancreatic B cell function during nutrient absorption. Consistent with this postulate, we observed in baboons a two to threefold increase in portal and peripheral levels of S-28 after meals, with minimal changes in S-14. We attempted to demonstrate a hormonal effect of these peptides by measuring their concentrations before and after infusing a somatostatin-specific monoclonal antibody (mAb) into baboons and comparing glucose, insulin, and glucagon-like peptide-1 levels before and for 4 h after intragastric nutrients during a control study and on 2 d after mAb administration (days 1 and 2). Basal growth hormone (GH) and glucagon levels and parameters of insulin and glucose kinetics were also measured. During immunoneutralization, we found that (a) postprandial insulin levels were elevated on days 1 and 2; (b) GH levels rose immediately and were sustained for 28 h, while glucagon fell; (c) basal insulin levels were unchanged on day 1 but were increased two to threefold on day 2, coincident with decreased insulin sensitivity; and (d) plasma glucose concentrations were similar to control values. We attribute the eventual rise in fasting levels of insulin to its enhanced secretion in compensation for the heightened insulin resistance from increased GH action. Based on the elevated postmeal insulin levels after mAb administration, we conclude that S-28 participates in the enteroinsular axis as a decretin to regulate postprandial insulin secretion.

The Therapeutic Value of Somatostatin and Its Analogues

Sadaf Farooqi, John S. Bevan, Michael C. Shepperd, John A. H. Wass
Pituitary June 1999; 2(1), pp 79-88
http:/dx.doi.org:/10.1023/A:1009978106476

In this review we discuss the physiological effects of somatostatin, which are mediated by specific receptor subtypes on different tissues. These observations have suggested new therapeutic possibilities for the use of the synthetic somatostatin analogues in the treatment of acromegaly as well as a number of other endocrine and non-endocrine disorders.

Somatostatin and Somatostatin Receptors

Ujendra Kumar, Michael Grant
Cellular Peptide Hormone Synthesis and Secretory Pathways
(Results and Problems in Cell Differentiation) 2010; 50: pp 97-120
http://dx.doi.org:/10.1007/400_2009_29

The biological effects of somatostatin (SST) were first encountered unexpectedly in the late 1960s in two unrelated studies, one by Krulich et al. (1968) who reported on a growth hormone (GH)-releasing inhibitory substance from hypothalamic extracts, and the other, by Hellman and Lernmark (1969), on the presence of a potent insulin inhibitory factor from the extracts of pigeon pancreatic islets. However, the inhibitory substance was not officially identified until 1973 by Guillemin’s group (Brazeau et al. 1973). In both synthetic and naturally occurring forms, this tetradecapeptide, originally coined as somatotropin release-inhibitory factor (SRIF, SST-14) was shown by Brazeau et al. to be the substance controlling hypothalamic GH release. This single achievement not only pioneered SST research but was also duly recognized, as Guillemin shared the 1977 Nobel Prize in Medicine. The following years bequeathed an exponential increase in SST-related studies. It soon became clear that SST-synthesis was not restricted to the hypothalamus. Its production is widely distributed throughout the central nervous system (CNS), peripheral neurons, the gastrointestinal tract, and the pancreatic islets of Langerhans (Luft et al. 1974; Arimura et al. 1975; Dubois 1975; Hokfelt et al. 1975; Orci et al. 1975; Pelletier et al. 1975; Polak et al. 1975; Patel and Reichlin 1978). In fact, SST-like immunoreactivity can be found throughout various tissues of vertebrates and invertebrates, including the plant kingdom (Patel 1992; Tostivint et al. 2004). Given its broad anatomical distribution, it is no wonder that SST produces a wide spectrum of biological effects. Generally regarded as an inhibitory factor, SST can function either locally on neighboring cells or distantly through the circulation, to regulate such physiological processes as glandular secretion, neurotransmission, smooth muscle contractility, nutrient absorption, and cell division (Reichlin 1983a, b; Patel 1992, 1999; Patel et al. 2001; Barnett 2003).

Receptor-Mediated Tumor Targeting with Radiopeptides. Part 1. General Concepts and Methods: Applications to Somatostatin Receptor-Expressing Tumors

Alex N. Eberle, Gabriele Mild, and Sylvie Froidevaux
Journal of Receptors and Signal Transduction  2004; 24(4) , Pages 319-455
http://dx.doi.org:/10.1081/RRS-200040939

Radiolabeled peptides have become important tools in nuclear oncology, both as diagnostics and more recently also as therapeutics. They represent a distinct sector of the molecular targeting approach, which in many areas of therapy will implement the old “magic bullet” concept by specifically directing the therapeutic agent to the site of action. In this three-part review, we present a comprehensive overview of the literature on receptor-mediated tumor targeting with the different radiopeptides currently studied. Part I summarizes the general concepts and methods of targeting, the selection of radioisotopes, chelators, and the criteria of peptide ligand development. Then, the >400 studies on the application to somatostatin/somatostatin-release inhibiting factor receptor-mediated tumor localization and treatment will be reviewed, demonstrating that peptide radiopharmaceuticals have gained an important position in clinical medicine.

The somatostatin neuroendocrine system: physiology and clinical relevance in gastrointestinal and pancreatic disorders

Malcolm J. Low
Best Practice & Res Clin Endocr & Metab, 2004; 18(4), pp. 607–622
http://dx.doi.org:/10.1016/j.beem.2004.08.005

The physiologic functions of hypothalamic somatostatin in the regulation of pituitary hormone secretion and the clinical use of somatostatin analogs for the treatment of pituitary adenomas have been reviewed. Similarly, the distribution, normal function and potential pathogenic roles of somatostatin in the central nervous system have been reported in detail. This review will focus exclusively on the physiologic actions of somatostatin and its receptors in the gastrointestinal tract, pancreas and immune system. Diagnostic and therapeutic roles of somatostatin analogs in a diverse catalog of neoplastic, inflammatory and autoimmune conditions affecting peripheral systems are outlined, with an emphasis on both well-established indications and current areas of exploration.

Somatostatin is produced in enteroendocrine D cells and intrinsic neurons of the stomach, intestines and pancreas. Its physiologic actions are mediated primarily by somatostatin receptors type 2 and 5, and include the inhibition of secretion of most endocrine and exocrine factors. Diseases directly attributable to somatostatin excess or deficiency are rare, although there is a complex pathogenic relationship between persistent Helicobacter pylori infection and reduced somatostatin in chronic gastritis. Abundant somatostatin receptors on many neoplastic and inflammatory cells are the basis for sensitive in vivo imaging with radiolabeled somatostatin analogs and provide a therapeutic target. Current indications for somatostatin therapy include hormone-expressing neuroendocrine tumors, intractable diarrhea and variceal bleeding secondary to portal hypertension. Exciting advances are being made in the development of high-affinity nonpeptide analogs with receptor-subtype selectivity and increased bioavailability. Somatostatin analogs coupled to high-energy radionuclides show promise as novel cytotoxic agents for certain metastatic tumors.

Evolution of the somatostatin gene family Both forms of mammalian somatostatin are derived post-translationally from a common pro-hormone by the action of specific pro-protein convertases (PCs). Genetic studies indicate a primary role for PC2 in the generation of SST147, which is the predominant form of somatostatin produced in the brain and most other tissues. SST28 is found in its highest concentrations in the gastrointestinal tract, especially the mucosal epithelial cells of the intestines.
A revised evolutionary concept of the somatostatin gene family is that a primordial gene underwent duplication during or before the advent of chordates and that the two resulting genes subsequently underwent differing rates of mutation to produce the distinct prepro-somatostatin and prepro-cortistatin genes in mammals. A second gene duplication event likely occurred in teleosts to generate PSS1 and PSS-II from the ancestral somatostatin gene.
It is possible that additional related genes have not yet been identified. Recent studies utilizing unique polyclonal antisera and a strain of somatostatin-deficient mouse have demonstrated the existence of a novel gastrointestinal peptide with homology to the amino acid sequence of SST28(1–13) that has been named thrittene.
Somatostatin gene organization and regulation The mammalian PPS1 (or SMST) gene has a relatively simple organization consisting of two coding exons separated by one intron. A single promoter directs transcription of the PPS1 gene in all tissues, and there are no known alternative mRNA splicing events. The molecular mechanisms underlying the developmental and hormonal regulation of somatostatin gene transcription have been most extensively studied in pancreatic islets and islet-derived cell lines. The proximal enhancer elements in the somatostatin gene promoter that bind complexes of homeodomain-containing transcription factors (PAX6, PBX, PREP1) to upregulate transcription in pancreatic islets may actually represent gene silencer elements in neurons (promoter elements TSEII and UE-A). Conversely, another related cis-element in the somatostatin gene (promoter element TSEI) apparently binds a homeodomain transcription factor PDX1 (also called STF1/ IDX1/IPF1) that is common to developing brain, pancreas and foregut, and regulates gene expression in both the CNS and gut.
Enteroendocrine cells of the gut mucosa differentiate from pluripotential stem cells in the crypts, share molecular phenotypes and retain close paracrine interactions among the daughter cells. Similarly, pancreatic islet cells share common precursors. Recent studies have demonstrated that bone marrow contains a stem cell population capable of producing islet-like cell clusters in vitro that contain somatostatin-positive cells together with the other cell types found in normally differentiated islets.
Somatostatin Receptors  There are five somatostatin receptor subtypes (SSTR1–5) encoded by separate genes located on different chromosomes. Alternative mRNA splicing generates SSTR2α and SSTR2β from heteronuclear RNA after transcription from the single SSTR2 gene. SSTRs are members of the rhodopsin-like G protein-coupled receptor superfamily and are most closely related structurally to the opioid receptors. The unique amino acid signature of SSTRs is contained in a seven-element fingerprint of peptide sequences located in conserved regions of the N and C termini, extra- and intra-cellular loops, and transmembrane domains. SSTRs are expressed in discrete or partially overlapping distributions in multiple target organs and differ in their coupling to second messenger signaling molecules, and therefore in their range and mechanism of intracellular actions. The subtypes also differ in their binding affinity to specific somatostatin-like ligands. Some of these differences have important implications for the use of somatostatin analogs in diagnostic imaging and in pharmacotherapy.
All SSTR subtypes are coupled to pertussis toxin-sensitive G proteins and bind SST14 and SST28 with high affinity in the low nanomolar range, although SST28 has a modestly higher affinity for SSTR5. All the subtypes are expressed in brain and pituitary to varying degrees with different distributions, but SSTR2 and SSTR5 are clearly the most abundant in peripheral tissues. These two subtypes are also the most physiologically important in pancreatic islets. SSTR5 is responsible for the inhibition of insulin secretion from b-cells, and SSTR2 is essential for the inhibition of glucagon from a-cells. SSTR1 is expressed at low levels in gastrointestinal structures. The binding of somatostatin to its receptors leads to the activation of one or more inhibitory G proteins (Gi/o), which in turn decrease adenylyl cyclase activity and the concentration of intracellular cAMP. Other G protein-mediated actions common to all The somatostatin neuroendocrine system 609 SSTRs are activation of a vanadate-sensitive phosphotyrosine phosphatase (PTP) and modulation of mitogen-activated protein kinases (MAPKs).
Inhibition of endocrine and exocrine secretion Somatostatin has diverse biologic activities in the gastrointestinal system. It is secreted from D cells into the extracellular space to act as a paracrine factor on nearby endocrine cells and as an autocrine factor to inhibit its own secretion. Most of the circulating hormonal somatostatin originates from the stomach and intestines. Basal plasma levels are in the range of 30–100 pg/ml and increase postprandially by as much as 100% over baseline for a duration up to 2 hours. The release of somatostatin from enteric D cells is regulated by a combination of nutritional, humoral, neural and paracrine signals.

The modulatory role of somatostatin in gastric acid secretion by parietal cells illustrates the typical complexity of hormonal, paracrine and neural integration within the gastrointestinal tract.
Somatostatin secreted from gastric D cells modulates the gastrin-enterochromaffin-like cell—parietal cell axis. Gastrin, secreted from G cells, stimulates the release of histamine from enterochromaffin-like cells (ECL), which is in turn a major secretagog of hydrochloric acid (HCl) from gastric parietal (P) cells. Somatostatin (SST14) inhibits secretion from each of these cell types, although the predominant actions are on the G and ECL cells. Food intake mediates gastric acid secretion by activating both vagal nerves and intrinsic gastric neurons. D cells are stimulated by the autocrine release of amylin, the paracrine release of bombesin and atrial natiuretic peptide (ANP), the enteric neuron release of pituitary adenylate cyclase-activating peptide (PACAP) and cholecystokinin (CCK), and the T lymphocyte release of interleukin-4 (IL-4).D cells are inhibited by histamine acting on H3 receptors in a negative paracrine feedback loop from ECL cells and by other factors, including gamma-aminobutyric acid (GABA) and opioid peptides. The pathways illustrated are not all-inclusive but represent many of the key regulatory steps.

Practice points

† long-acting somatostatin analogs are primary therapeutic tools for the symptomatic treatment of the excessive hormone and monoamine secretion from carcinoids and other neuroendocrine tumors

† somatostatin and long-acting somatostatin analogs are effective first-line
medical treatment for upper gastrointestinal bleeding from esophageal varices associated with hepatic cirrhosis and portal hypertension but are not indicatedfor the treatment of bleeding from gastric varices or duodenal ulcers

† radiolabeled somatostatin analogs provide a sensitive imaging technique for a wide range of neoplastic and inflammatory disorders, including neuroendocrine tumors, meningiomas and sarcoidosis because of their high level expression of somatostatin receptors.

The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review

J Van Op den bosch, D Adriaensen, L Van Nassauw, Jean-Pierre Timmermans
Regulatory Peptides 156 (2009) 1–8
http://dx.doi.org:/10.1016/j.regpep.2009.04.003

Extensive functional and morphological research has demonstrated the pivotal role of somatostatin (SOM) in the regulation of a wide variety of gastrointestinal activities. In addition to its profound inhibitory effects on gastrointestinal motility and exocrine and endocrine secretion processes along the entire gastrointestinal tract, SOM modulates several organ-specific activities. In contrast to these well-known SOM-dependent effects, knowledge on the SOM receptors (SSTR) involved in these effects is much less conclusive. Experimental data on the identities of the SSTRs, although species- and tissue-dependent, point towards the involvement of multiple receptor subtypes in the vast majority of gastrointestinal SOM-mediated effects. Recent evidence demonstrating the role of SOM in intestinal pathologies has extended the interest of gastrointestinal research in this peptide even further. More specifically, SOM is supposed to suppress intestinal inflammatory responses by interfering with the extensive bidirectional communication between mucosal mast cells and neurons. This way, SOM not only acts as a powerful inhibitor of the inflammatory cascade at the site of inflammation, but exerts a profound anti-nociceptive effect through the modulation of extrinsic afferent nerve fibers. The combination of these physiological and pathological activities opens up new opportunities to explore the potential of stable SOM analogues in the treatment of GI inflammatory pathologies.

Schematic overview of the distribution of the SSTRs 1–5

Schematic overview of the distribution of the SSTRs 1–5

Schematic overview of the distribution of the SSTRs 1–5 in the murine small intestine under control conditions (left panel) and during intestinal schistosomiasis (right panel). In non-inflamed conditions, SSTR1, SSTR2A and SSTR4 are expressed in non-neuronal (glial cells, enterocytes…) and neuronal cells, both from intrinsic and extrinsic origin. SSTR3 and SSTR5 are undetectable. In response to intestinal schistosomiasis, profound sprouting of nerve fibres expressing SSTR1, SSTR3 and SSTR4 is observed, in addition to the expression of SSTR1 and SSTR3 in mucosal mast cells (MMC).

Somatostatin and Its Receptor Family

Yogesh C. Patel
Frontiers in Neuroendocrinology 1999; 20, 157–198 Article ID frne.1999.0183

Somatostatin (SST), a regulatory peptide, is produced by neuroendocrine, inflammatory, and immune cells in response to ions, nutrients, neuropeptides, neurotransmitters, thyroid and steroid hormones, growth factors, and cytokines. The peptide is released in large amounts from storage pools of secretory cells, or in small amounts from activated immune and inflammatory cells, and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells that are widely distributed in the brain and periphery. These actions are mediated by a family of seven  transmembrane (TM) domain G-protein-coupled receptors that comprise five distinct subtypes (termed SSTR1–5) that are endoded by separate genes segregated on different chromosomes. The five receptor subtypes bind the natural SST peptides, SST-14 and SST-28, with low nanomolar affinity. Short synthetic octapeptide and hexapeptide analogs bind well to only three of the subtypes, 2, 3, and 5. Selective nonpeptide agonists with nanomolar affinity have been developed for four of the subtypes (SSTR1, 2, 3, and 4) and putative peptide antagonists for SSTR2 and SSTR5 have been identified. The ligand binding domain for SST ligands is made up of residues in TMs III–VII with a potential contribution by the second extracellular loop. SSTRs are widely expressed in many tissues, frequently as multiple subtypes that coexist in the same cell. The five receptors share common signaling pathways such as the inhibition of adenylyl cyclase, activation of phosphotyrosine phosphatase (PTP), and modulation of mitogen-activated protein kinase (MAPK) through G-protein-dependent mechanisms.

Somatostatin receptors

Lars Neisig Møller, Carsten Enggaard Stidsen, Bolette Hartmann, Jens Juul Holst
Biochimica et Biophysica Acta 1616 (2003) 1 – 84
http://dx.doi.org:/10.1016/S0005-2736(03)00235-9

In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst1-sst5), one of which is represented by two splice variants (sst2A and sst2B). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst2 and sst5 receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.

Somatostatin And Its Analogues In The Therapy Of Gastrointestinal Disease

Wynick, J. M. Polak And S. R. Bloom
Pharmac. Ther. 1989; 41, pp. 353-370

During the course of efforts to determine the distribution of growth hormone-releasing factor (GHRF) in rat hypothalamus a substance that inhibited growth hormone release was unexpectedly detected by Krulich et aL (1968). Their findings led them to hypothesize that the secretion of growth hormone from the pituitary was regulated by two different interacting neurohumoral factors–one stimulatory, the other inhibitory–each under the control of the nervous system. At about the same time Hellman and Lernmark (1969) found a factor in extracts of pigeon pancreatic islet-cells that inhibited insulin release in vivo from cultured pancreatic islet-cells. These two observations, seemingly unrelated, were ultimately to converge with the chemical identification of somatostatin, as an inhibitory peptide found in both the hypothalamus and pancreas.

Growth hormone-release inhibitory activity was re-discovered in 1972 by Brazeau et al. (1973). A concentrated effort to isolate and sequence the active principal was successful and it proved to be a cyclic peptide, to which the term ‘somatostatin’ (somatotrophin release inhibitory factor) was applied.               Subsequent work (Reichlin, 1982a,b, 1983a,b; Iverson, 1983; Guillemin, 1978a,b) has considerably expanded the initially simple concept of somatostatin as a 14 amino-acid containing peptide (tetradecapeptide), bridged by a sulphur-sulphur bond whose main function was the regulation of growth-hormone secretion (Bonfils, 1985). Somatostatin related peptides are now known to constitute a family that includes the original identified peptide (designated somatostatin 14), an N-terminal extended somatostatin (somatostatin 28), several species specific variants and larger prohormone forms.
The name somatostatin may now be considered to be inappropriate because this compound is distributed widely in cells that have nothing to do with growth-hormone regulation or release. Tissues where somatostatin may be found include the nervous system, the gut and endocrine glands.
Somatostatin is present in every vertebrate class and even in primitive invertebrates (Vale et al., 1976; Falkmer et al., 1978; Jackson, 1978). This would suggest that this molecule and its controlling gene or genes evolved before the appearance on earth of differentiated cell-cell and nerve-cell communication (Roth et al., 1982). The evolutionary paths of mammals and fish are thought to have diverged at least 400 million years ago. The fact that the phenotype of somatostatin 14 is so well conserved (as to a lesser degree is that of somatostatin 28) suggests that throughout evolutionary history the specific configuration of somatostatin 14 has endowed a selective advantage on the animal kingdom, and its absence is not compatible with life.
Though widely distributed in cells throughout the body of vertebrates somatostatin does not in Guillemin’s words (1978a), “inhibit secretion of everything and anything” (since, for example it has no effect on the release of LH and FSH). Despite this it has certainly earned itself the nickname ‘endocrine cyanide’ (Bloom and Polak, 1987). The peptide is found in most but not all organs and displays specific and selective functions depending on its location. Within the nervous system somatostatinergic neurons are found in the cortex, limbic system, anterior pituitary, brain stem and spinal cord.
The various biological effects of somatostatin seem to be mediated through its specific high affinity receptors found in the brain, pituitary, adrenal, pancreas and gastrointestinal tract. Not only normal target tissue, but also tumors from the same endocrine tissues i.e. human pituitary adenomas, human and hamster pancreatic insulinomas, glucagonomas and VIPomas all bear somatostatin receptors (Reubi et al., 1981, 1982a, 1984a, 1985a, 1987a,b). Interestingly, tumors from tissues which are not established targets for somatostatin also seem to bear somatostatin receptors (Goodman et al., 1982; Reubi et al., 1986). Reubi et al. (1987b) demonstrated that many endocrine tumors including meningiomas, breast, pancreatic and pituitary tumors all have somatostatin receptors however, they demonstrated no receptors in prostatic carcinomas, ovarian carcinomas, endometrial carcinomas, primary liver cell carcinomas, pheochromocytomas, aldosterone secreting tumors, medullary carcinoma of the thyroid and a number of pulmonary carcinoids. Somatostatin receptors were also found in benign or malignant tumors originating from tissues not primarily known as somatostatin target organs, the biological function of such receptors is therefore unknown though it may be that they mediate the anti-proliferative effect of somatostatin and may therefore potentially be of therapeutic interest (Blankenstein et al., 1983, 1984).

Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumoursModlin,

M. Pavel[1], M. Kidd & B. I. Gustafsson
Aliment Pharmacol Ther 2009; 31, 169–188
http://dx.doi.org:/10.1111/j.1365-2036.2009.04174.x

Background

The discovery of somatostatin (SST) and the synthesis of a variety of analogues constituted a major therapeutic advance in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours (GEP-NETs). They currently provide the most efficient treatment to achieve symptomatic relief and have recently been demonstrated to inhibit tumour growth.

Aim To review 35 years of experience regarding the clinical application and

efficacy of SST analogues. Methods The PubMed database (1972–2009) was searched using somatostatin as a search term with combinations of terms including ‘treatment’; ‘neuroendocrine’; ‘carcinoid’; ‘tumor’; ‘octreotide’; ‘lanreotide’ and ‘pasireotide’. Results In a review of 15 studies including 481 patients, the slow-release formulations Sandostatin LAR and Somatuline SR⁄ Autogel achieved symptomatic relief in 74.2% (61.9–92.8%) and 67.5% (40.0–100%), biochemical response in 51.4% (31.5–100%) and 39.0% (17.9–58%), and tumor response in 69.8% (47.0–87.5%) and 64.4% (48.0–87.0%) respectively. New SST analogues like SOM230 (pasireotide) that exhibit pan SST receptor activity and analogues with high affinity to specific somatostatin receptor (sstr) subtypes show promise. Conclusion As more precise understanding of NET cell biology evolves and molecular biological tools advance, more accurate identification of individual tumours sstr profile will probably facilitate a more precise delineation of SST analogue treatment.

Novel Autonomic Neurotransmitters And Intestinal Function

S. Taylor and R. A. R. Bywater
Pharmac. Ther. 1989; 40, pp. 401 to 438

In this review we will discuss some of the difficulties encountered in ascribing a neurotransmitter function to the more recently discovered peptides and other substances within the intestine. We will also provide a brief (and of necessity incomplete) account of some of the properties of intestinal putative neurotransmitters, and their possible roles in the functions of the small and large intestine.
The Enteric Nervous System The diverse intestinal functions associated with transit, digestion and absorption rely upon an intact enteric nervous system. The enteric nervous system essentially consists of those neurons whose cell bodies lie within the walls of the gastrointestinal tract. In the small and large intestine the cell bodies lie within the myenteric and submucous plexuses; their processes ramify throughout the majority of the intestinal wall and in many areas give rise to additional plexuses (Furness and Costa, 1987; Gabella, 1987). Functionally, these neurons can be divided into sensory neurons, interneurons and motor neurons. Some enteric neurons receive projections from extrinsic neurons and/or send projections centrally; we will not consider these projections further here.
The early observations of the co-existence of peptides in the enteric nervous system (Schultzberg et al., 1980) have now been extended and these studies demonstrate that the co-existence of two or more peptides is the rule rather than the exception (H6kfelt et al., 1987). The mix of peptides within neurons does not appear to be random; rather, there appears to be a systematic grouping of peptides in neurons with particular projections. This has led to the concept of “chemical coding” of enteric neurons. According to this concept, particular combinations of peptides are associated with particular neural pathways and perhaps with particular functions. For example, in the guinea pig small intestine, two chemically coded groups of submucous neurons have projections of different lengths running to the mucosa. Cell bodies with longer projections show immunoreactivity for dynorphin (DYN) and VIP. The other group shows immunoreactivity for choline acetyltransferase (CHAT), cholecystokinin, (CCK), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and somatostatin (SOM) (Costa et al., 1986a; Furness et al., 1987a). More recently it has been demonstrated that both groups of neurons show immunoreactivity for galanin (GAL) (Furness et al., 1987a,b). As for the neurotransmitter roles in the gut, the key question then becomes; “How does the presence of specific combinations of chemical substances (including peptides) relate to neuronal function?” It has been known for several years that “classical” transmitter substances can coexist in combination with various peptides (H6kfelt et al., 1980; Gilbert and Emson, 1983).
The above commentary upon the possible co-existence of several putative transmitter substances highlights the complex neurochemistry of the enteric nervous system. A corresponding degree of complexity appears to exist for the neuronal circuitry that ultimately directs the differing, but highly organized, patterns of motility and the secretory/absorptive functions of the intestinal tract. In vitro electrophysiological studies of the myenteric and submucous plexuses have indicated that several different types of neurons are present, each with their own biophysical characteristics. Furthermore, neurotransmission through, and probably between, the plexuses involves synaptic potentials which have time courses ranging from several milliseconds up to several minutes, depending upon the characteristics (stimulus strength, frequency and train length, etc.) and location of the applied electrical stimulus (see Wood, 1987, for references). Intracellular recordings from smooth muscle cells have also shown that excitatory and inhibitory junction potentials (EJPs and IJPS) of varying time courses can be evoked at various locations along the intestine during transmural electrical stimulation in response to selective stimulus regimens (see, for instance, Bywater and Taylor, 1986).
A number of authors have proposed criteria which should be fulfilled in order that transmitter status can be bestowed upon a particular substance (see Furness and Costa, 1982, for references). These criteria were developed with reference to the classical transmitter substances such as ACh, using the paradigm of a single transmitter per neuron. Regardless of the coexistence of several putative transmitters, status can only be granted to those substances that are found to be released from that nerve terminal. In the enteric nervous system a particular putative transmitter may be contained in several different functional pathways. However, in general, the methods used for eliciting release of putative transmitter substances (e.g. transmural electrical stimulation) are not specific for particular projections. Thus, for any substance, the association of demonstrated release with a given transmitter role is not facile.

New roles of the multidimensional adipokine: Chemerin

Syeda Sadia Fatima, Rehana Rehman, Mukhtiar Baig, Taseer Ahmed Khan
Peptides 62 (2014) 15–20
http://dx.doi.org/10.1016/j.peptides.2014.09.019

The discovery of several adipokines with diverse activities and their involvement in regulation of various pathophysiological functions of human body has challenged the researchers. In the family of adipokine, chemerin is a novel and unique addition. Ever since the first report on chemerin as a chemo-attractant protein, there are numerous studies showing a multitasking capacity of chemerin in the maintenance of homeostasis, for the activation of natural killer cells, macrophages and dendritic cells in both innate and adaptive immunity. Its diversity ranges from generalized inflammatory cascades to being explicitly involved in the manifestation of arthritis, psoriasis and peritonitis. Its association with certain cancerous tissue may render it as a potential tumor marker. In present review, we aim to consolidate recent data of investigations on chemerin in context to functional characteristics with a special reference to its role as a metabolic signal in inflammation and non-metabolic syndromes.

Neuropeptide Y is expressed in subpopulations of insulin- and non-insulin-producing islet cells in the rat after dexamethasone treatment: a combined immunocytochemical and in situ hybridisation study

Myrs6n a, *, B. Ahr6n b, F. Sundler
Regulatory Peptides 1995; 60, 19-31

Neuropeptide Y (NPY) is known to occur in adrenergic and non-adrenergic nerves in rat pancreatic islets. Analysis of islet extracts has revealed local NPY synthesis after glucocorticoid treatment. The cellular localization of NPY expression in rat islets following dexamethasone treatment (2 mg/kg daily, for 12 days), was investigated by a combination of immunocytochemistry (ICC) and in situ hybridization (ISH). NPY-immunoreactive nerve fibers were seen in pancreatic islets of both control and dexamethasone-treated rats. In the controls weak NPY immunoreactivity but no NPY mRNA was observed in occasional i:dets. After dexamethasone treatment, clusters of islet cells distributed both centrally and peripherally displayed intense NPY immunoreactivity and NPY mRNA labelling. Immunocytochemical double staining and ISH combined with ICC for NPY and islet hormones revealed that most NPY expressing cells were identical with insulin cells; a few cells were identical[ with somatostatin or pancreatic polypeptide (PP) cells. In contrast, glucagon cells seemed to be devoid of NPY immunoreactivity and NPY mRNA labelling. Thus, in the rat, glucocorticoids cause a marked upregulation of NPY expression in islet cells, preferentially the insulin cells. The expression of NPY might represent an islet adaptation mechanism to the reduced peripheral insulin sensitivity.

Neuropeptide Y is expressed in islet somatostatin cells of the hamster pancreas: a combined immunocytochemical and in situ hybridization study

Ulrika Myrsrn, Frank Sundler
Regulatory Peptides 1995; 57, 65-76

Neuropeptide Y (NPY) is known to occur in the autonomic nervous system, including the pancreatic islet innervation. We now present evidence that NPY is also expressed in endocrine islet cells in hamster pancreas. Thus, NPY-immunoreactivity and gene expression were detected in peripheral islet cells, using immunocytochemistry (ICC), in situ hybridization (ISH), and a combination of these techniques. Double immunostaining for NPY and somatostatin enabled localization of NPY to the vast majority of the somatostatin cells. However, a few somatostatin cells were devoid of NPY immunoreactivity and an occasional NPY-immunoreactive cell was devoid of somatostatin. ISH with an NPY mRNA specific probe, showed labelling of cells in the islet periphery. Furthermore, combined ISH for NPY mRNA and ICC for somatostatin showed autoradiographic labelling of somatostatin cells to a varying degree. Both somatostatin and NPY are inhibitors of insulin and/or glucagon secretion. Thus, in the islets these two peptides may be coreleased and cooperate in the, regulation of islet hormone secretion. The role for NPY emanating from islet cells is probably paracrine rather than endocrine.

Neuropeptide Y and Peptide YY Immunoreactivities in the Pancreas of Various Vertebrates

Wei-Guang Ding, Hiroshi Kimura, Masaki Fujimura And Mineko Fujimiya
Peptides,  1997; 18(10), pp. 1523–1529   PII S0196-9781(97)00237-4

NPY-like immunoreactivity was observed in nerve fibers and endocrine cells
in pancreas of all species examined except the eel, which showed no NPY innervation. The density of NPY-positive nerve fibers was higher in mammals than in the lower vertebrates. These nerve fibers were distributed throughout the parenchyma, and were particularly associated with the pancreatic duct
and vascular walls. In addition, the density of NPY-positive endocrine cells was found to be higher in lower vertebrates than mammals; in descending order; eel 5 turtle 5 chicken . bullfrog . mouse 5 rat 5 human . guinea pig 5 dog. These NPY-positive cells in the eel and certain mammals tended to be localized throughout the islet region, whereas in the turtle and chicken they were mainly scattered in the exocrine region. PYY-immunoreactivity was only present in the pancreatic endocrine cells of all species studied, and localized similarly to NPY. Thus these two peptides may play endocrine or paracrine roles in the regulation of islet hormone secretion in various vertebrate species.

Inhibitory effect of somatostatin on inflammation and nociception

Erika Pintér, Zsuzsanna Helyes, János Szolcsányi
Pharmacology & Therapeutics 112 (2006) 440–456

Somatostatin is released from capsaicin-sensitive, peptidergic sensory nerve endings in response to noxious heat and chemical stimuli such as vanilloids, protons or lipoxygenase products. It reaches distant parts of the body via the circulation and exerts systemic anti-inflammatory and analgesic effects. Somatostatin binds to G-protein coupled membrane receptors (sst1–sst5) and diminishes neurogenic inflammation by prejunctional action on sensory-efferent nerve terminals, as well as by postjunctional mechanisms on target cells. It decreases the release of pro-inflammatory neuropeptides from sensory nerve endings and also acts on receptors of vascular endothelial, inflammatory and immune cells. Analgesic effect is mediated by an inhibitory action on peripheral terminals of nociceptive neurons, since circulating somatostatin cannot exert central action.
Somatostatin itself is not suitable for drug development because of its broad spectrum and short elimination half-life, stable, receptor-selective agonists have been synthesized and investigated. The present overview is aimed at summarizing the physiological importance of somatostatin and sst receptors, pharmacological significance of synthetic agonists and their potential in the development of novel anti-inflammatory and analgesic drugs. These compounds might provide novel perspectives in the pharmacotherapy of acute and chronic painful inflammatory diseases, as well as neuropathic conditions.

the sources, target cells and effects of somatostatin (SST) involved in inflammatory and nociceptive processes

the sources, target cells and effects of somatostatin (SST) involved in inflammatory and nociceptive processes

This schematic drawing demonstrates the sources, target cells and effects of somatostatin (SST) involved in inflammatory and nociceptive processes

Characterization, detection and regulation of somatostatin receptors

The physiological actions of SST are initiated by its binding to membrane receptors. Five human somatostatin receptors (sst), have been cloned and characterized and referred to as sst1-5 receptors using the nomenclature suggested by Hoyer et al. (1995). Structurally, sst receptors are 7 transmembrane domain glycoproteins, comprised of 7 membrane spanning α helical domains connected by short loops, an N-terminal extracellular domain and a C-terminal intracellular domain. On the basis of binding studies using synthetic somatostatin analogs, sst receptors can be divided into 2 different subgroups: SRIF1 group comprising sst2, sst3 and sst5 are able to bind octapeptide analogs, whereas SRIF2 group comprising sst1 and sst4 have negligible affinity for these compounds. Within sst2 receptors, sst2A and sst2B are encoded on the same chromosome 17 and generated through alternative splicing of sst2 mRNA (Patel et al., 1993). None of the peptide analogs bind exclusively to only one of the sst subtypes, although new approaches might yield subtype-selective agonists and antagonists (Hofland et al., 1995; Hoyer et al., 1995; Patel et al., 1995; Reisine & Bell, 1995; Florio & Schettini, 1996; Patel, 1997; Meyerhof, 1998; Janecka et al., 2001). Somatostatin receptors are linked to multiple cellular effector systems via G-proteins. They mediate the inhibition of adenylate cyclase activity (Jakobs et al., 1983; Patel et al., 1995), reduce the conductance of voltage-dependent Ca2+ channels (Schally, 1988; Patel et al., 1995) and activate K+ channels (Mihara et al., 1987; Moore et al., 1988; Wang et al., 1989). Somatostatin receptors also mediate the stimulation of tyrosine phosphatase activity, induce a reduction of cell proliferation and inhibit a Na+/H+ exchanger (NHE1) (Barber et al., 1989; Buscail et al., 1994; Patel et al., 1995). Sst receptors represent a major class of inhibitory receptors which play an important role in modulating higher brain functions, secretory processes, cell proliferation and apoptosis.
Endogenous Somatostatin-28 Modulates Postprandial Insulin Secretion Immunoneutralization Studies in Baboons

John W. Ensinck, Robin E. Vogel, Ellen C. Laschansky, Donna J. Koerker, et al.
J Clin Invest 1997. 100: 2295–2302.).  http://dx.doi.org/10.1172/JCI119767

Somatostatin-28 (S-28), secreted into the circulation from enterocytes after food, and S-14, released mainly from gastric and pancreatic δ cells and enteric neurons, inhibit peripheral cellular functions. We hypothesized that S-28 is a humoral regulator of pancreatic β cell function during nutrient absorption. Consistent with this postulate, we observed in baboons a two to threefold increase in portal and peripheral levels of S-28 after meals, with minimal changes in S-14. We attempted to demonstrate a hormonal effect of these peptides by measuring their concentrations before and after infusing a somatostatin-specific monoclonal antibody (mAb) into baboons and comparing glucose, insulin, and glucagon-like peptide-1 levels before and for 4 h after intragastric nutrients during a control study and on 2 d after mAb administration (days 1 and 2). Basal growth hormone (GH) and glucagon levels and parameters of insulin and glucose kinetics were also measured. During immunoneutralization, we found that
(a) postprandial insulin levels were elevated on days 1 and 2;
(b) GH levels rose immediately and were sustained for 28 h, while glucagon fell; (c) basal insulin levels were unchanged on day 1 but were increased two to threefold on day 2, coincident with decreased insulin sensitivity; and
(d) plasma glucose concentrations were similar to control values.
We attribute the eventual rise in fasting levels of insulin to its enhanced secretion in compensation for the heightened insulin resistance from increased GH action. Based on the elevated postmeal insulin levels after mAb administration, we conclude that S-28 participates in the enteroinsular axis as a decretin to regulate postprandial insulin secretion.

Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS

L van Bloemendaal, J S ten Kulve, S E la Fleur, R G Ijzerman and M Diamant
Journal of Endocrinology 2014; 221, T1–T16
http://dx.doi.org:/10.1530/JOE-13-0414

The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behavior and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.

Critical role for peptide YY in protein-mediated satiation and body-weight regulation

Rachel L. Batterham, Helen Heffron, Saloni Kapoor, Joanna E. Chivers, et al.
Cell Metab 2006; 4, 223–233 http://dx.doi.org:/10.1016/j.cmet.2006.08.001

Dietary protein enhances satiety and promotes weight loss, but the mechanisms by which appetite is affected remain unclear. We investigated the role of gut hormones, key regulators of ingestive behavior, in mediating the satiating effects of different macronutrients. In normal-weight and obese human subjects, high-protein intake induced the greatest release of the anorectic hormone peptide YY (PYY) and the most pronounced satiety. Long-term augmentation of dietary protein in mice increased plasma PYY levels, decreased food intake, and reduced adiposity. To directly determine the role of PYY in mediating the satiating effects of protein, we generated PYY null mice, which were selectively resistant to the satiating and weight-reducing effects of protein and developed marked obesity that was reversed by exogenous PYY treatment. Our findings suggest that modulating the release of endogenous satiety factors, such as PYY, through alteration of specific diet constituents could provide a rational therapy for obesity.

Read Full Post »

Parathyroids and Bone Metabolism

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

 

Parathyroid hormone (PTH), parathormone or parathyrin, is secreted by the chief cells of the parathyroid glands as a polypeptide containing 84 amino acids. It acts to increase the concentration of calcium (Ca2+) in the blood, whereas calcitonin (a hormone produced by the parafollicular cells (C cells) of the thyroid gland) acts to decrease calcium concentration. PTH acts to increase the concentration of calcium in the blood by acting upon the parathyroid hormone 1 receptor (high levels in bone and kidney) and the parathyroid hormone 2 receptor (high levels in the central nervous system, pancreas, testis, and placenta). PTH half-life is approximately 4 minutes.[2] It has a molecular mass of 9.4 kDa.

hPTH-(1-34) crystallizes as a slightly bent, long helical dimer. Analysis reveals that the extended helical conformation of hPTH-(1-34) is the likely bioactive conformation.[4] The N-terminal fragment 1-34 of parathyroid hormone (PTH) has been crystallized and the structure has been refined to 0.9 Å resolution.

The_ribbon_cartoon_structure - hPTH helical dimer

The_ribbon_cartoon_structure – hPTH helical dimer

http://upload.wikimedia.org/wikipedia/commons/1/1e/The_ribbon_cartoon_structure.png

Regulation of serum calcium

PTH was one of the first hormones to be shown to use the G-protein, adenylyl cyclase second messenger system.

Normal total plasma calcium level ranges from 8.5 to 10.2 mg/dL (2.12 mmol/L to 2.55 mmol/L).

Region Effect
bone It enhances the release of calcium from the large reservoir contained in the bones.[7] Bone resorption is the normal destruction of bone by osteoclasts, which are indirectly stimulated by PTH. Stimulation is indirect since osteoclasts do not have a receptor for PTH; rather, PTH binds to osteoblasts, the cells responsible for creating bone. Binding stimulates osteoblasts to increase their expression of RANKL and inhibits their expression of Osteoprotegerin (OPG). OPG binds to RANKL and blocks it from interacting with RANK, a receptor for RANKL. The binding of RANKL to RANK (facilitated by the decreased amount of OPG available for binding the excess RANKL) stimulates these osteoclast precursors to fuse, forming new osteoclasts, which ultimately enhances bone resorption
kidney It enhances active reabsorption of calcium and magnesium from distal tubules and the thick ascending limb. As bone is degraded, both calcium and phosphate are released. It also decreases the reabsorption of phosphate, with a net loss in plasma phosphate concentration. When the calcium:phosphate ratio increases, more calcium is free in the circulation
intestine via kidney It enhances the absorption of calcium in the intestine by increasing the production of activated vitamin D. Vitamin D activation occurs in the kidney. PTH up-regulates25-hydroxyvitamin D3 1-alpha-hydroxylase, the enzyme responsible for 1-alpha hydroxylation of 25-hydroxy vitamin D, converting vitamin D to its active form (1,25-dihydroxy vitamin D). This activated form of vitamin D increases the absorption of calcium (as Ca2+ ions) by the intestine via calbindin.

http://en.wikipedia.org/wiki/Parathyroid_hormone

Development of Present Concepts of the Parathyroid –
The Parathyroids – Progress, problems and practice,
in Current Problems in Surgery, 1971; 8(8): 3-64.
Leon Goldman, Gilbert Gordon, Betty S. Roof
http://dx.doi.org/10.1016/S0011-3840(71)80008-4

The parathyroid gland first achieved clinical significance because of hypoparathyroid tetany. Tetany: a syndrome manifested by painful muscle spasms or rigors; is derived from the Greek:  tetanos, past participle of the verb teinein, meaning “to stretch,” Tetany : stretched, or spastic, in modern terms “up tight.,’ When the word was used by Hippocrates, no differentiation was made between the types of muscular spasms caused by neurotoxins (e.g., lockjaw) and those of metabolic causes. The word ~ went through the Latin, tetanus, and to French. Te’tanie, where the attribute of intermittent muscular spasm was added.

Owea's drawing of parathyroid gland of Indian rhinoceros

Owea’s drawing of parathyroid gland of Indian rhinoceros

Owea’s drawing of parathyroid gland of Indian rhinoceros

According to file Oxford English Dictionary, the relation of tetany to surgical operations was noted in tile year 1805 in The Medical Journal XIV, 304: “tetanie affections very often to|low the great operations. . .” It is not clear from this reference what type of operations were invo]ved.  The relationship of tetany to thyroidectomy was recognized as early as 1878 when WoIfler described convulsions in one of the patients on whom Billroth had performed a total thyroidectomy. The great surgeon WilIiam Stewart Halsted suggested that postoperative hypoparathyroidism had not been reported earlier because before that time total thyroidectomy had always been fatal, leaving insufficient time for tetany to develop. In 1883 Weiss collected 13 cases of tetany, all following total thyroidcctomy. The relation to total thyroidectomy became historically significant later when postoperative tetany was misinterpreted as the acute form of thyroid insufficiency, while myxedema was correctly recognized as the chronic form.
Anatomically, the parathyroid glands had been noted fleetingly by Remak (1855), by Virchow (1863) and probably by others in the course of human dissection. Perhaps better publicized was the description by Sir Richard Owen, published in 1852. As Hunterian Professor and Conservator of the Museum in the Royal College of Surgeons, Owen anatomized animals that died at the London Zoo. In 1849, while performing an autopsy on tile Great Indian rhinoceros, Owen clearly noted, drew and named the parathyroid gland (Fig. 1). However, microscopic examination was not reported, and it was not known at that time whether the parathyroid gland was separate.
The causal relationship of the parathyroid gland to post-thyroidectomy tetany was clarified by the French physiologist Eugdne Gley in 1891. He showed that, in the rabbit, removal of the thyroid gland was not responsible for these seizures but that removal of the parathyroid glands caused fatal convulsions.
Very soon after this, a parallel discovery was made in Berkeley, California, by Jacques Loeb.  Loeb noticed that the rhythmic contractions of a frog muscle in a saline medium were stopped by the addition of calcium. He concluded that calcium has the important function of inhibiting excessive neuromuscular
irritability.  Loeb’s studies led MacCallum, in 1909, to investigate the possibility that a low blood calcium level might be responsible for the increased excitability of the muscles, in hypoparathyroid tetany.  He and Voegtlin removed the parathyroids from dogs and showed that tetany ensued when the serum calcium level fell. They also showed that administration of calcium promptly relieved tetany. Less well known is their publication in the following
year, which entirely recanted the earlier view. Their observations that calcium, magnesium and strontium immediately abolish tetany, and the report of Joseph and Sleltzer that infusion of hypertonic sodium chloride slowly relieves this kind of tetany, led MacCallum to believe that the effect of calcium was nonspecific.
By this time thyroid surgery was being performed widely. The Reverdin brothers in Geneva noted what they considered complex nervous manifestations following total thyroidectomv, Moussu’ s observations in animals were confirmed in patients; post-thyroidectomy convulsions were not necessarily fatal.
Thyroid surgery was now sufficiently improved so that Kocher was able to find symptoms of tetany–and these were transient ….. in only 1 of his 18 cases of total thyroidectomy. How many more would have been identified as victims of hypoparathyroidism by appropriate chemical examination can only be conjectured. By 1907 Halsted had recognized the importance of the parathyroids and how essential the intimate knowledge of their anatomy is to the goiter surgeon. Halsted put a bright young medical student to work on this project as a penalty for delinquent attendance at lectures. The sketch of the beautiful dissection by the student, Herbert McLean Evans, was used by Halsted to illustrate his monograph on The Operative History of Goiter. On the basis of this knowledge, of anatomy, it was established that the parathyroids are usually related to the posterior capsule and that leaving this capsule intact greatly reduces the risk of tetany.
In 1923 the distinguished Norwegian physician-physiologist, Harald Salvesen published beautiful, imaginative and thorough studies in which he showed, that complete parathyroid ablation invariably lowered the blood calcium, that the blood sugar level was not altered and that guanidine accumulation occurred only terminally during agonal convulsions. He further found that parathyroid tetany could be prevented by calcium feeding and confirmed MacCallum’s earlier observation that it could be promptly corrected by calcium infusion. He also noted that one of his dogs with parathyroid tetany developed a cataract. In our opinion, the relation of the parathyroid gland to calcium metabolism was first firmly established by Salvesen in 1923.
Consider the knowledge and use of endocrines in 1923. Desiccated thyroid, which Osler had praised as the miracle of modern metabolic therapy, was the only orally effective endocrine preparation. ]nsulin had just been discovered. Another potent preparation was the hydrochloric acid extract of parathyroid glands made by Adolph Hanson. That it was an effective preparation is perhaps best attested by the fact that it is still used, under the name Parathyroid Extract USP, and that much of the work on the actions of parathyroid hormone has been carried out with this crude extract. In 1925 Collip, who had been of such immeasurable help to Banting, Best and McLeod in preparing a clean, potent insulin extract from normal pancreas, applied his genius to the parathyroid with an equally satisfactory result. His relatively clean parathyroid extract  made it possible for the first time to elucidate the actions of the parathyroid glands in man.
Using this preparation, Albright and Ellsworth in 1929 clarified the two fundamental actions of parathyroid hormone (PTH) identical with those obtained nowadays with the most highly purified preparations. These two actions are:
(1) elevation of serum calcium and
(2) excretion of phosphate by the kidneys, with a consequent lowering of the serum phosphate.
It will later be shown that the action that raises serum calcium levels is, for the most part, an increase in the rate of bone breakdown. It remained for Copp and associates to show in 1961 that another horrnone, calcitonin, with an opposite action, is necessary for maintenance of calcium homeostasis. And still later Chase and Aurbach showed in 1968 that the phosphaturic action of PTH is mediated by the enzyme adenyl cyclase, which stimulates production of cyclic 3’5′-adenosine monophosphate (AMP).
It is now clear that hypophosphatemia predisposes to hyperealcemia and that hyperphosphatemia can actually abolish hypercalcemia. However, numerous experiments, one of them by Albright’s collaborators, Ellsworth and Futeher in 1935 showed that parathyroid extract raised the serum calcium level in the absence of the kidneys.  Clearly, therefore, the calcium-mobilizing effect of PTH is not the result of the phosphate diuretic action only. Conclusive evidence was obtained by Barnicot of Cambridge in 1948. …
The brilliant group at the Massachusetts General Hospital, led by Aub and including two young men destined to make brilliant records in American medicine Fuller Albright and Waiter Bauer soon showed that the kind of hyperparathyroidism described by Recklinghausen, Mandl and Askanazy is, in fact, the end stage of a series of chemical events predictable from the known actions of PTH. Starting with the famous case of Captain Charles Martell, a mariner with severe bone disease, who shrank in stature in 10 years, Albright soon clarified the most significant feature of hyperparathyroidism: the hypercalcemia that is found in at least 99% of patients with proved primary hyperparathyroidism.
It was not until 1953 that Jonas Shota directly demonstrated the other action of excess PTH in hyperparathyroidism: a low rate of tubular reabsorption of phosphate (TRP), as fifteen years later, in 1968, Chase and Aurbach would show that this action is mediated by renal adenyl cyclase and cyclic AMP. Meanwhile, in 1935, Pappenheimer and Wilens had described another form of hyperparathyroidism arising not as a primary tumor, but as a secondary or compensatory response to the metabolic abnormalities of uremia. Goldman independently described this phenomenon. It .is noteworthy that hyperparathyroidism secondary to lack of dietary calcium had already been described by Erdheiqm and that  these 2 causes of secondary hyperparathyroidism, Uremia and intestinal malabsorption, have subsequently been shown, to have in comrnon inadequate intestinal absorption of calcium.
Since the classic studies of Sandstrom, Gley, Loeb, Salvesen, Cotlip, Aub, Bauer and Albright, enormous strides have advanced our knowledge of parathyroid physiology. Isolation, purification, and characterization of  the hormone and development of a highly sensitive  radioimmunoassay for PTH.  Almost slmultaneously in1959, Aurbach, Rasmussen and Craig obtained a purified bovine PTH. These two groups of investigators identified a similar peptide with a molecular weight of about 8,500 and with biological activity of about 3.000 units/mg. This peptide contains 84 amino acid residfies the first 30-45 are necessary for biologic and immunologic activity. A tentative molecular structure reported by Potts, Aurbach and Sherwood in 1965 has subsequently been modified by Brewer and Ronan, with confirmation by Niall et aI. in Potts’s laboratory. The heterogeneous  nature of circulating PTH was first: shown by Berson and Yalow using two antisera prepared from beef PTH but showing quantitative differences in reaction to circulating PTH. They were able  to detect two parathormones, one with a half-life of only 10-20 minutes, and another with a half-life of about 1.5 hours.
The parathyroid hormone-regulated transcriptome in osteocytes: Parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function

Hillary C. St. John, MB Meyer, NA Benkusky, AH Carlson, M Prideaux, et al.
Bone 72 (2015) 81–91
http://dx.doi.org/10.1016/j.bone.2014.11.010

Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1, 25-(OH)2 D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH’s effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1, 25-(OH)2 D3 revealed a subset of genes that was strongly overlapping. While 1, 25-(OH)2 D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1, 25-(OH)2 D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms through which PTH and 1, 25-(OH)2 D3 regulate a plethora of genes important to the osteoblast/osteocyte lineage.

Bone, a dynamic and integrating tissue

The guest editors Bram C.J. van der Eerden, Anna Teti, Willian F. Zambuzzi
Archives of Biochemistry and Biophysics 561 (2014) 1–2
http://dx.doi.org/10.1016/j.abb.2014.08.012

The special issue ‘Bone, a dynamic and integrating tissue’ provides the most recent information regarding the interacting nature of bone cells with their immediate neighboring cells within the skeleton as well as with distant target cells in other organs, using different types of both cellular and non-cellular communication. It should appeal to any scientist or clinician in the field, given the wide variety of topics, covering molecular, experimental cell and animal biology, biomechanics and -physics, genetics and medicine.

This special issue arose from a collaboration between the guest editors within ‘INTERBONE’, a European Union funded Marie Curie Actions – People – International Research Staff Scheme (PIRSESGA-2011-295181) on the interplay among bone cells, matrices and systems.

Over the recent years, many developments have paved new avenues to study signaling pathways and mechanisms in bone in much greater detail. Genetic progress has been made, which has provided us with novel genes behind already known as well as hitherto idiopathic bone diseases. The enormous expansion of specific animal models has enabled us to study new mechanisms and pathways in vivo in great spatial and temporal detail. As a consequence, novel treatment modalities have seen the light, which are predominantly focusing on bone anabolic therapies. These advances will not cease to exist and an exciting biological era lies ahead of us, with many discoveries to be made.

In this special issue of Archives in Biochemistry and Biophysics, experts in the field of bone metabolism have addressed the recent developments in which special attention is paid to the concept that bone is not just a static, isolated organ, but a dynamic and integrating tissue. Over the last decade, discoveries have led to the notion that bone cells are interacting with many other cell types within bone. Besides this intraskeletal communication, bone cells produce factors that are capable of controlling cell types and organs elsewhere in the organism, which are now being recognized as bona fide hormones.

All contributors have explored the recent advances made in their research area. The latest progress in osteoblast/osteocyte and osteoclast biology is revisited with special focus on bone morphogenetic proteins, microRNAs and extracellular vesicles as illustrative examples of different levels of communication between cell types. In separate chapters, the interaction of osteoblasts and osteoclasts, as well as their cross-talk with endothelial cells, fat cells, immune cells, hematopoietic stem cells and different types of cancer cells is discussed extensively, further emphasizing the interactive nature of bone cells in their microenvironment. Beside cell–cell interaction, attention has been paid to the osteointegration of bone cells in a non-cellular context, including extracellular matrix and metal devices, combining main components for bone bioengineering. Finally, the endocrine role of bone is discussed in great detail by several contributors, focusing on the control of bone cell function by the brain as well as the role of bone-produced factors in, amongst others, phosphate homeostasis, energy metabolism and fertility.

The Great Beauty of the osteoclast

Alfredo Cappariello, Antonio Maurizi, Vimal Veeriah, Anna Teti
Archives of Biochemistry and Biophysics 561 (2014) 13–21
http://dx.doi.org/10.1016/j.abb.2014.08.009

Much has been written recently on osteoclast biology, but this cell type still astonishes scientists with its multifaceted functions and unique properties. The last three decades have seen a change in thinking about the osteoclast, from a cell with a single function, which just destroys the tissue it belongs to, to an ‘‘orchestrator’’ implicated in the concerted regulation of bone turnover. Osteoclasts have unique morphological features, organelle distribution and plasma membrane domain organization. They require polarization to cause extracellular bone breakdown and release of the digested bone matrix products into the circulation. Osteoclasts contribute to the control of skeletal growth and renewal. Alongside other organs, including kidney, gut, thyroid and parathyroid glands, they also affect calcemia and phosphatemia. Osteoclasts are very sensitive to pro-inflammatory stimuli, and studies in the ‘00s ascertained their tight link with the immune system, bringing about the question why bone needs a cell regulated by the immune system to remove the extracellular matrix components. Recently, osteoclasts have been demonstrated to contribute to the hematopoietic stem cell niche, controlling local calcium concentration and regulating the turnover of factors essential for hematopoietic stem cell mobilization. Finally, osteoclasts are important regulators of osteoblast activity and angiogenesis, both by releasing factors stored in the bone matrix, and secreting ‘‘clastokines’’ that regulate the activity of neighboring cells. All these facets will be discussed in this review article, with the aim of underscoring The Great Beauty of the osteoclast.

Osteoclasts: more than ‘bone eaters’

Julia F. Charles and Antonios O. Aliprantis
Trends in Molecular Medicine, Aug 2014; 20(8): 449-459
http://dx.doi.org/10.1016/j.molmed.2014.06.001

As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption.
First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors.
Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.

Bone is a composite tissue of protein and mineral which undergoes continual remodeling to grow, heal damage, and regulate calcium and phosphate metabolism. This remodeling process is executed by the concerted and sequential effort of bone-resorbing osteoclasts and bone-forming osteoblasts, acting in what has been termed the basic multicellular unit (BMU) (Figure 1A). Osteocytes, long-lived osteoblast-derived cells that reside within the bone matrix, monitor bone quality and stress, and coordinate remodeling through membrane-bound and secreted factors. Skeletal integrity is maintained throughout the life-span by matching bone formation and resorption, a process referred to as osteoclast:osteoblast  ‘coupling.’ Coupling is thoroughly summarized in recent excellent reviews and in Figure 1.

Coupling: how osteoclasts ‘talk back’ to cells of the osteoblast lineage Coupling of bone formation to resorption is likely achieved through multiple mechanisms, including signals that stimulate the proliferation of pre-osteoblasts, their recruitment to resorption lacunae, and their differentiation into bone-forming cells. Cellular mediators of coupling include osteoclasts, osteoblasts, osteocytes, macrophages, and T cells, which produce a variety of factors including Wnt pathway regulators, such as sclerostin, and cytokines such as oncostatin M

Osteoclasts–osteoblast interactions in the basic multicellular unit (BMU).

Osteoclasts–osteoblast interactions in the basic multicellular unit (BMU).

Osteoclasts–osteoblast interactions in the basic multicellular unit (BMU).
Cell–cell contact mechanisms may also mediate OC-OB communication. Bidirectional signaling from OC ephrins and OB Eph receptors, and reverse signaling through RANKL on OBs, have both been invoked.

Box 1. Usurping local resources: osteoclasts feed bone invaders

Liberation of growth factors embedded in bone matrix by osteoclasts may promote metastatic tumor growth in bone. Reciprocal stimulation of osteoclasts by cancer cell derived parathyroid hormone related protein (PTHrP), and other factors, could potentiate growth factor release in what has been termed the ‘vicious cycle’ ]. Xenograft experiments utilizing breast cancer cells expressing a TGFβ responsive reporter demonstrated osteolytic metastases had high TGFβ activity. Inhibition of osteoclastic bone resorption with pamidronate reduced TGFβ activity and osteolytic lesions, suggesting that matrix resorption is a relevant source of TGFβ for skeletal metastasis in vivo. Although prophylactic pamidronate treatment decreased frequency of bone metastasis, the drug did not decrease disease progression if administered after tumor cell inoculation. Thus, whether inhibiting the release of matrix growth factors by osteoclasts has a substantive effect on tumor growth is unclear. Several bisphosphonates, as well as the anti-RANKL antibody denosumab, reduce skeletal events in metastatic cancer, but data on whether they prevent bone metastasis are inconsistent.

Immunoregulation by osteoclasts. Osteoclast precursors (OCPs) and osteoclasts (OCs) inhibit CD4 and CD8 T cell proliferation via nitric oxide (NO) production in response to T cell derived interferon g (IFNg). IFNg in turn inhibits differentiation of OCPs into mature OCs. OCs also present antigen through major histocompatibility complex class I (MHCI) to skew CD8+ T cells toward an induced Treg phenotype termed OC-iTcreg. OC-iTcreg cells in turn inhibit OCP differentiation to mature OC through IFNg, interleukin 10 (IL10), and IL6.

In mouse models, we suggest that systems for the temporal deletion of conditional alleles in osteoclasts and their precursors be established. Moreover, clinical research in humans with emerging therapeutics which specifically target key regulators of bone remodeling, such as RANKL, cathepsin K, and sclerostin, could include nested translational studies that specifically address their effects on the immune system, HSCs, and tumor growth, where appropriate. In these ways, a clear picture of osteoclast biology beyond their role as ‘bone eaters’ will emerge.

Leukemia inhibitory factor: A paracrine mediator of bone metabolism

Natalie A. Sims & Rachelle W. Johnson
Growth Factors, April 2012; 30(2): 76–87
http://dx.doi.org:/10.3109/08977194.2012.656760

Leukemia inhibitory factor (LIF) is a soluble interleukin-6 family cytokine that regulates a number of physiologic functions, including normal skeletal remodeling. LIF signals through the cytokine co-receptor glycoprotein-130 in complex with its cytokine-specific receptor [LIF receptor (LIFR)] to activate signaling cascades in cells of the skeletal system, including stromal cells, chondrocytes, osteoblasts, osteocytes, adipocytes, and synovial fibroblasts. LIF action on skeletal cells is cell-type specific, and frequently dependent on the state of cell differentiation. This review describes the expression patterns of LIF and LIFR in bone, their regulation by physiological and inflammatory agents, as well as cell-specific influences of LIF on osteoblast, osteoclast, chondrocyte, and adipocyte differentiation. The actions of LIF in normal skeletal growth and maintenance, in pathological states (e.g. autocrine tumor cell signaling and growth in bone) and inflammatory conditions (e.g. arthritis) will be discussed, as well as the signaling pathways activated by LIF and their importance in bone formation and resorption.

In vivo evidence of IGF-I–estrogen crosstalk in mediating the cortical bone response to mechanical strain

Subburaman Mohan, CG Bhat, JE Wergedal and C Kesavan
Bone Research (2014) 2, 14007 http://dx.doi.org:/10.1038/boneres.2014.7

Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (HIGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P50.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%–6% in both control pOVX (P,0.05) and H IGF-I KO pOVX (P50.05) mice. Two weeks of mechanical loading caused a 7%–8% and an 11%–13%(P,0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P50.13) and Ct.Th (6%, P,0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P,0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%–17%) and thickness (17%–23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading.

Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

Nan Su, Min Jin and Lin Chen
Bone Research (2014) 2, 14003; http://dx.doi.org:/10.1038/boneres.2014.3

Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.

Osteoporosis in men: a review

Robert A Adler
Bone Research (2014) 2, 14001; http://dx.doi.org:/10.1038/boneres.2014.1

Osteoporosis and consequent fracture are not limited to postmenopausal women. There is increasing attention being paid to osteoporosis in older men. Men suffer osteoporotic fractures about 10 years later in life than women, but life expectancy is increasing faster in men than women. Thus, men are living long enough to fracture, and when they do the consequences are greater than in women, with men having about twice the 1-year fatality rate after hip fracture, compared to women. Men at high risk for fracture include those men who have already had a fragility fracture, men on oral glucocorticoids or those men being treated for prostate cancer with androgen deprivation therapy. Beyond these high risk men, there are many other risk factors and secondary causes of osteoporosis in men. Evaluation includes careful history and physical examination to reveal potential secondary causes, including many medications, a short list of laboratory tests, and bone mineral density testing by dual energy X-ray absorptiometry (DXA) of spine and hip. Recently, international organizations have advocated a single normative database for interpreting DXA testing in men and women. The consequences of this change need to be determined. There are several choices of therapy for osteoporosis in men, with most fracture reduction estimation based on studies in women.

From skeletal to non skeletal: The intriguing roles of BMP-9: A literature review

  1. Leblanc, G. Drouin, G. Grenier, N. Faucheux, R. Hamdy
    Advances in Bioscience and Biotechnology, 2013; 4: 31-46
    http://dx.doi.org/10.4236/abb.2013.410A4004

In the well-known superfamily of transforming growth factors beta (TGF-), bone morphogenetic proteins (BMPs) are one of the most compelling cytokines for their major role in regulation of cell growth and differentiation in both embryonic and adult tissues. This subfamily was first described for its ability of potentiating bone formation, but nowadays, the power of BMPs is well beyond the bone healing scope. Some of the BMPs have been well studied and described in the literature, but the BMP9 is still worthy of attention. It has been shown by many authors that it is the most potent osteogenic BMP. Moreover, it has been de- scribed as one of the rare circulating BMPs. In this paper, we will review the recent literature on BMP9 and the different avenues for future research in that field. Our primary scope is to review its relation to bone formation and to elaborate on the available literature on other systems.

Fong et al. recently demonstrated in vitro that rhBMP9 can also augment bone resorption. This increase was shown to be functional and not related to osteoclast formation. Furthermore, rhBMP9 could alter the intrinsic apoptosis pathway and increase survival of osteoclasts. The effect of rhBMP9 on osteoclast was explained by the presence of ALK1 and BMPRII co-receptors and their activation of the Smad 1/5/8 and non-smad MAPK/ERK pathways. These results show for the first time that BMP9 can directly affect human osteoclasts, acting on their function and their survival.

Insulin resistance is a systemic multifactorial impairment of glucose uptake. Muscle, a glucose consuming organ, needs Akt2 to be able to activate insulin-induced glucose uptake and this pathway seems to be severely impaired in insulin resistance. Interestingly, a combination of bioinformatic and high- throughput functional analyses have shown BMP9 to be the first hepatic factor to regulate blood glucose concencentration. Moreover, this effect was thought to be mediated by activation of Akt kinase in differentiated myotubes. Then, it has been demonstrated that recombinant BMP9 (1 and 5 mg/kg) improves glucose homeostasis in vivo in diabetic and non-diabetic rodents. The mechanism relied on the upregulation of Smad5 and Akt2 in differentiated rats myotubes. On the opposite side, Smad5 was downregulated in myotubes by de xamethasone, a well known hyperglycemia inducer and Smad5 knockdown in rats decreased Akt2 expression and phosphorylation leading to a decrease in insulin-induced glucose uptake by myotubes. It was then hypothesized that Smad5 regulated glucose uptake in skeletal muscle through Akt2 expression and phosphorylation. These findings also revealed Smad5 as a potential target for the treatment of type 2 diabetes. Hence, BMP9 could be seen as a potential activator of Smad5 for that purpose.

BMP9 is a major member of the TGF- superfamily that is implied in many fundamental developmental and pa- thologic processes. Future research will certainly bring answers to the many questions left open, and those an- swers will unquestionably lead to clinical applications.

Understanding Bone Loss

Max Stanley Chartrand, PhD.
DigiCare® Behavioral Research

During their lifetimes, at least half of those over age 50 will be at risk of developing osteoporosis. When we speak of bone loss we are primarily speaking of three diagnostic stages: Osteoarthritis (1-2% loss per annum), Osteopenia (3% per annum), and Osteoporosis (4-5%+ per annum) that are caused almost entirely by diet, hydration, lifestyle, medications, and environ-mental stressors.

Human bones are highly vascularized and mineralized tissues that are constantly being shaped and developed by cells called osteoblasts and torn down and resorbed by cells called osteoclasts. Recent research confirms that throughout one’s lifespan it is osteoblast activity that controls and dictates osteoclast activity as long as the body receives the nutrients it requires to maintain homeostasis. Growing children, for instance, have a far greater abundance of osteoblasts than of osteoclasts. By the time they reach young adulthood (at about age 26 for men, 22 for women) osteoclasts increase while osteoblasts slow down. Even so, humans of any age can increase osteoblast activity and slow the formation of osteoclasts through weight bearing exercise and other methods.

Long bone

Long bone

Long bone
The problem of bone shrinkage and decline in strength presents most often in health states involving:

  1. Sedentary Lifestyle, making weight bearing exercise a frontline defense against bone loss for everyone.
  2. Acidosis (low pH), from a diet that is nutritionally lacking, genetically modified, degerminated, irradiated, laden with toxins & over-processed.
  3. Chronic dehydration from too much caffeine and high fructose corn syrup (a GMO) and not enough water that is both ionized and alkalized.
  4. Lacking in calcium that is live, ionically charged, as well as phosphorus, magnesium, boron, and other minerals comprised in human bones. On the other hand, commercially available calcium causes atherosclerosis, kidney stones, bone spurs, cataracts, and yet MORE bone loss!
  5. Taking prescription medications, especially acid reflux meds, NSAIs and steroids. These and more interfere with osteoblast activity and weaken immunology. Osteoporosis meds prevent living bone mass!
  6. Unhealed injuries and deterioration of the spine, such as compression fractures (>50% of the US adult population), spinal stenosis, kyphosis, and scoliosis. These cause even more rapid loss of bone mass.
  7. Subclinical infections: tooth and gum sepsis, around artificial joints, keratosis obturans, kidney and bladder infections, neuropathies, and osteomyelitis as a result of injuries and/or shock to the bones.
  8. Heavy metal accumulations: lead, mercury, cadmium, arsenic, formaldehyde, cyanide, etc. found in the drinking water, fresh foods, cosmetics, paints, fuels, and a host of commonly used products.
  9.  Lifestyle Substances– Smoking, alcohol, excess coffee, marijuana, opium (including opiate pain killers), diet sodas, caffeine drinks.

The Kinetics of Skeletal Remodeling

Jan 1, 1966  by Lent C. Johnson
Semin Musculoskelet Radiol. 2000;4(1):1-15.

Bone tumor dynamics: an orthopedic pathology perspective.
Johnson LC1, Vinh TN, Sweet DE.

The diagnosis and classification of primary bone tumors remains as much a challenge today as it has for the last 80 plus years. Although pathology is invariably equated with the image of a diagnostic microscope, the vast majority of diagnoses are made grossly with the unaided eye, as are the tissue specimens selected for microscopic “confirmation.” Radiologic studies, particularly plain radiographs, remain the gold standard in gross pathologic diagnosis of the skeleton. Today, confirmation and final classification continue as the pathologist’s domain, but perhaps not for long, considering the evolving ancillary imaging techniques and progressive sophistication of magnetic resonance (MR) imaging. The bone tumor cases collected and compiled by Ernest Codman, M.D. during the second through fourth decades of this century formed the basis of the first tumor registry. The Codman Bone Sarcoma Registry demonstrated among other things the importance of radiographic/pathologic correlation, underscoring the reliability of a bone tumor’s location, margin (host bone/tumor interface), periosteal reaction, and matrix patterns as an accurate guide to classification and likely future biologic behavior. “A General Theory of Bone Tumors,” written by Lent C. Johnson nearly 50 years ago and published in the Bulletin of The New York Academy of Medicine (February 1953, second series, vol. 29, no. 2, pp. 164-171), provided a conceptual cellular approach to the understanding bone tumor dynamics reinforcing radiologic/pathologic correlation as a reliable diagnostic tool. At the time of Dr. Lent C. Johnson’s death (1910-1998), he was literally working on an updated version of his original article, the latter of which is being reprinted as the core of this illustrated revision. Our continued experience with bone tumors over the past five decades has only served to validate, on a daily basis, the fundamental principles outlined in Johnson’s original article. In like fashion, it is important to keep in mind that terminology and nomenclature has also evolved since 1953, despite a continued inability to achieve complete consensus.
PMID:  11061688    http://www.ncbi.nlm.nih.gov/pubmed/11061688

Interactions between adrenal-regulatory and calcium-regulatory hormones in human health

Brown, J.M., Vaidya, A.

Curr Opinion in Endocr, Diabetes and Obesity 2014; 21 (3), pp. 193-201

Purpose of review: To summarize the evidence characterizing the interactions between adrenal-regulating and calcium-regulating hormones, and the relevance of these interactions to human cardiovascular and skeletal health. Recent findings: Human studies support the regulation of parathyroid hormone (PTH) by the renin-angiotensin-aldosterone system (RAAS): angiotensin II may stimulate PTH secretion via an acute and direct mechanism, whereas aldosterone may exert a chronic stimulation of PTH secretion.
Studies in primary aldosteronism, congestive heart failure, and chronic
kidney disease have identified associations between hyperaldosteronism, hyperparathyroidism, and bone loss, which appear to improve when
inhibiting the RAAS. Conversely, elevated PTH and insufficient vitamin D
status have been associated with adverse cardiovascular outcomes, which
may be mediated by the RAAS. Studies of primary hyperparathyroidism implicate PTH-mediated stimulation of the RAAS, and recent evidence shows that the vitamin D-vitamin D receptor complex may negatively regulate renin expression and RAAS activity. Ongoing human interventional studies are evaluating the influence of RAAS inhibition on PTH and the influence of vitamin D receptor agonists on RAAS activity. Summary: Although previously considered independent endocrine systems, emerging evidence supports a complex web of interactions between adrenal-regulating and calcium-regulating hormones, with implications for human cardiovascular and
skeletal health.

Backbone modification of a polypeptide drug alters duration of action in vivo

Cheloha, R.W., Maeda, A., Dean, T., Gardella, T.J., Gellman, S.H.

Nature Biotechnology 2014; 32 (7), pp. 653-655 http://dx.doi.org/doi:10.1038/nbt.2920

Systematic modification of the backbone of bioactive polypeptides through amino acid residue incorporation could provide a strategy for generating molecules with improved drug properties, but such alterations can result in lower receptor affinity and potency. Using an agonist of parathyroid hormone receptor-1 (PTHR1), a G protein-coupled receptor in the B-family, we present an approach for residue replacement that enables both high activity and improved pharmacokinetic properties in vivo.

Mouse and human BAC transgenes recapitulate tissue-specific expression
of the vitamin D receptor in mice and rescue the VDR-null phenotype

Lee, S.M., Bishop, K.A., Goellner, J.J., O’Brien, C.A., Pike, J.W.
Endocrinology 2014; 155 (6), pp. 2064-2076
http://dx.doi.org/10.1210/en.2014-1107

The biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are mediated by the vitamin D receptor (VDR), which is expressed in numerous target tissues in a cell type-selective manner. Recent studies using genomic analyses and recombined bacterial artificial chromosomes (BACs) have defined the specific features of mouse and human VDR gene loci in vitro. In the current study, we introduced recombined mouse and human VDR BACs as transgenes into mice and explored their expression capabilities in vivo. Individual transgenic mouse strains selectively expressed BAC derived mouse or human VDR proteins in appropriate vitamin D target tissues, thereby recapitulating the tissue-specific expression of endogenous mouse VDR. The mouse VDR transgene was also regulated by 1,25(OH)2D3 and dibutyryl-cAMP. When crossed into a VDR-null mouse background, both transgenes restored wild-type basal as well as 1,25(OH)2D3-inducible gene expression patterns in the appropriate tissues. This maneuver resulted in the complete rescue of the aberrant phenotype noted in the VDR-null mouse, including systemic features associated with altered calcium and phosphorus homeostasis and disrupted production of parathyroid hormone and fibroblast growth factor 23, and abnormalities associated with the skeleton, kidney, parathyroid gland, and the skin. This study suggests that both mouse and human VDR transgenes are capable of recapitulating basal and regulated expression of the VDR in the appropriate mouse tissues and restore 1,25(OH)2D 3 function. These results provide a baseline for further dissection of mechanisms integral to mouse and human VDR gene expression and offer the potential to explore the consequence of selective mutations in VDR proteins in vivo.

The sclerostin-independent bone anabolic activity of intermittent PTH treatment is mediated by T-cell-produced Wnt10β

Li, J.-Y., Walker, L.D., Tyagi, A.M., (…), Neale Weitzmann, M., Pacifici, R
Journal of Bone and Mineral Research 2014; 29 (1), pp. 43-54
http://onlinelibrary.wiley.com/doi/10.1002/jbmr.2044/pdf

Both blunted osteocytic production of the Wnt inhibitor sclerostin (Scl) and increased T-cell production of the Wnt ligand Wnt10b contribute to the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. However, the relative contribution of these mechanisms is unknown. In this study, we modeled the repressive effects of iPTH on Scl production in mice by treatment with a neutralizing anti-Scl antibody (Scl-Ab) to determine the contribution of T-cell-produced Wnt10b to the Scl-independent modalities of action of iPTH. We report that combined treatment with Scl-Ab and iPTH was more potent than either iPTH or Scl-Ab alone in increasing stromal cell production of OPG, osteoblastogenesis, osteoblast life span, bone turnover, bone mineral density, and trabecular bone volume and structure in mice with T cells capable of producing Wnt10b. In T-cell-null mice and mice lacking T-cell production of Wnt10b, combined treatment increased bone turnover significantly more than iPTH or Scl-Ab alone. However, in these mice, combined treatment with Scl-Ab and iPTH was equally effective as Scl-Ab alone in increasing the osteoblastic pool, bone volume, density, and structure. These findings demonstrate that the Scl-independent activity of iPTH on osteoblasts and bone mass is mediated by T-cell-produced Wnt10b. The data provide a proof of concept of a more potent therapeutic effect of combined treatment with iPTH and Scl-Ab than either alone.

N-cadherin restrains PTH activation of Lrp6/β-catenin signaling and osteoanabolic action

Revollo, L., Kading, J., Jeong, S.Y., (…), Mbalaviele, G., Civitelli, R.
Journal of Bone and Mineral Research 2015; 30 (2), pp. 274-28

Interaction between parathyroid hormone/parathyroid hormone-related peptide receptor 1 (PTHR1) and low-density lipoprotein receptor-related protein 6 (Lrp6) is important for parathyroid hormone (PTH) signaling and anabolic action. Because N-cadherin has been shown to negatively regulate canonical Wnt/β-catenin signaling, we asked whether N-cadherin alters PTH signaling and stimulation of bone formation. Ablation of the N-cadherin gene (Cdh2) in primary osteogenic lineage cells resulted in increased Lrp6/PTHR1 interaction in response to PTH1-34, associated with enhanced PTH-induced PKA signaling and PKA-dependent β-catenin C-terminus phosphorylation, which promotes β-catenin transcriptional activity. β-catenin C-terminus phosphorylation was abolished by Lrp6 knockdown. Accordingly, PTH1-34 stimulation of Tcf/Lef target genes, Lef1 and Axin2, was also significantly enhanced in Cdh2-deficient cells. This enhanced responsiveness to PTH extends to the osteo-anabolic effect of PTH, as mice with a conditional Cdh2 deletion in Osx+ cells treated with intermittent doses of PTH1-34 exhibited significantly larger gains in trabecular bone mass relative to control mice, the result of accentuated osteoblast activity. Therefore, N-cadherin modulates Lrp6/PTHR1 interaction, restraining the intensity of PTH-induced β-catenin signaling, and ultimately influencing bone formation in response to intermittent PTH administration.

EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis

Tonna, S., Takyar, F.M., Vrahnas, C., (…), Martin, T.J., Sims, N.A.
FASEB Journal 2014; 28 (10), pp. 4482-4496 10.1096/fj.14-254300

Cells that form bone (osteoblasts) express both ephrinB2 and EphB4, and previous work has shown that pharmacological inhibition of the ephrinB2/ EphB4 interaction impairs osteoblast differentiation in vitro and in vivo. The purpose of this study was to determine the role of ephrinB2 signaling in the osteoblast lineage in the process of bone formation. Cultured osteoblasts from mice with osteoblast-specific ablation of ephrinB2 showed delayed expression of osteoblast differentiation markers, a finding that was reproduced by ephrinB2, but not EphB4, RNA interference. Microcomputed tomography, histomorphometry, and mechanical testing of the mice lacking ephrinB2 in osteoblasts revealed a 2-fold delay in bone mineralization, a significant reduction in bone stiffness, and a 50% reduction in osteoblast differentiation induced by anabolic parathyroid hormone (PTH) treatment, compared to littermate sex- and age-matched controls. These defects were associated with significantly lower mRNA levels of late osteoblast differentiation markers and greater levels of osteoblast and osteocyte apoptosis, indicated by TUNEL staining and transmission electron microscopy of bone samples, and a 2-fold increase in annexin V staining and 7-fold increase in caspase 8 activation in cultured ephrinB2 deficient osteoblasts. We conclude that osteoblast differentiation and bone strength are maintained by antiapoptotic actions of ephrinB2 signaling within the osteoblast lineage.-
Bone involvement in primary hyperparathyroidism and changes after parathyroidectomy

Rolighed, L., Rejnmark, L., Christiansen, P.
European Endocrinology 2014; 10 (1), pp. 84-87

Parathyroid hormone (PTH) is produced and secreted by the parathyroid glands and has primary effects on kidney and bone. During the pathological growth of one or more parathyroid glands, the plasma level of PTH increases and causes primary hyperparathyroidism (PHPT). This disease is normally characterized by hyperparathyroid hypercalcemia. In PHPT a continuously elevated PTH stimulates
the kidney and bone causing a condition with high bone turnover, elevated plasma calcium and increased fracture risk. If bone resorption is not followed by a balanced formation of new bone, irreversible bone loss may occur in these patients. Medical treatment can help to minimize the loss of bone but the cure of PHPT is by parathyroidectomy. After operation, bone mineral density increases during the return to normal bone metabolism. Supplementation with calcium and vitamin D after operation may improve the normalization to normal bone metabolism with a secondary reduction in fracture risk.

Primary hyperparathyroidism and the skeleton

Mosekilde, L.
Clinical Endocrinology 2008; 69 (1), pp. 1-19
http://dx.doi.org:/10.1111/j.1365-2265.2007.03162.x

Today, primary hyperparathyroidism (PHPT) in the developed countries is typically a disease with few or no obvious clinical symptoms. However, even in the asymptomatic cases the endogenous excess of PTH increases bone turnover leading to an insidious reversible loss of cortical and trabecular bone because of an expansion of the remodelling space and an irreversible loss of cortical bone due to increased endocortical resorption. In contrast trabecular bone structure and integrity to a large extent is maintained and there may be a slight periosteal expansion. Most studies have reported decreased bone mineral density (BMD) in PHPT mainly located at cortical sites, whereas sites rich in trabecular bone only show a modest reduction or even a slight increase in BMD. The frequent occurrence of vitamin D insufficiency and deficiency in PHPT and increased plasma FGF23 levels may also contribute to the decrease in BMD. The effect of smoking is unsolved. Epidemiological studies have shown that the relative risk of spine and nonspine fractures is increased in untreated PHPT starting up to 10 years before the diagnosis is made. Successful surgery for PHPT normalizes bone turnover, increases BMD and decreases fracture risk based on larger epidemiological studies. However, 10 years after surgery fracture risk appears to increase again due to an increase in forearm fractures. There are no randomized controlled studies (RCTs) demonstrating a protective effect of medical treatment on fracture risk in PHPT. Less conclusive studies suggest that vitamin D supplementation may have a beneficial effect on plasma PTH and BMD in vitamin D deficient PHPT patients. Hormone replacement therapy (HRT) and maybe SERM appear to reduce bone turnover and increase BMD. However, their nonskeletal side-effects preclude their use for this purpose. Bisphosphonates reduce bone turnover and increase BMD in PHPT as in osteoporosis and may be a therapeutical option in selected patients with low BMD. Obviously, there is a need for larger RCTs with fractures as end-points that appraise this possibility. Calcimimetics reduce plasma calcium and PTH in PHPT but has no beneficial effect on bone turnover or BMD. In symptomatic hypercalcemic PHPT with low BMD where curative surgery is impossible or contraindicated a combination of a calcimimetic and a bisphosphonate may be an undocumented therapeutical option that needs further evaluation.

Current Issues in the Presentation of Asymptomatic Primary Hyperparathyroidism: Proceedings of the Fourth International Workshop

Shonni J. Silverberg, Bart L. Clarke, Munro Peacock, Francisco Bandeira, et al. The Journal of Clinical Endocrinology & Metabolism 2014; 99(10) http://dx.doi.org/10.1210/jc.2014-1415

Objective: This report summarizes data on traditional and nontraditional manifestations of primary hyperparathyroidism (PHPT) that have been published since the last International Workshop on PHPT.

Participants: This subgroup was constituted by the Steering Committee to address key questions related to the presentation of PHPT. Consensus was established at a closed meeting of the Expert Panel that followed.

Evidence: Data from the 5-year period between 2008 and 2013 were
presented and discussed to determine whether they support changes in recommendations for surgery or nonsurgical follow-up.

Consensus Process: Questions were developed by the International Task
Force on PHPT. A comprehensive literature search for relevant studies was undertaken. After extensive review and discussion, the subgroup came to agreement on what changes in the recommendations for surgery or nonsurgical follow-up of asymptomatic PHPT should be made to the Expert Panel.

Conclusions:

1) There are limited new data available on the natural history of
asymptomatic PHPT. Although recognition of normocalcemic PHPT
(normal serum calcium with elevated PTH concentrations; no secondary
cause for hyperparathyroidism) is increasing, data on the clinical
presentation and natural history of this phenotype are limited.
2) Although there are geographic differences in the predominant
phenotypes of PHPT (symptomatic, asymptomatic, normocalcemic),
they do not justify geography-specific management guidelines.
3) Recent data using newer, higher resolution imaging and analytic
methods have revealed that in asymptomatic PHPT, both trabecular
bone and cortical bone are affected.
4) Clinically silent nephrolithiasis and nephrocalcinosis can be detected
by renal imaging and should be listed as a new criterion for surgery.
5) Current data do not support a cardiovascular evaluation or surgery
for the purpose of improving cardiovascular markers, anatomical or
functional abnormalities.
6) Some patients with mild PHPT have neuropsychological complaints
and cognitive abnormalities, and some of these patients may benefit
from surgical intervention. However, it is not possible at this time to
predict which patients with neuropsychological complaints or cognitive
issues will improve after successful parathyroid surgery.

Sclerosing Bone Dysplasias: Leads Toward Novel Osteoporosis Treatments

Igor Fijalkowski, Eveline Boudin, Geert Mortier, Wim Van Hul
Current Osteoporosis Reports Sept 2014; 12(3), pp 243-251
http://dx.doi.org:/10.1007/s11914-014-0220-5

Sclerosing bone dysplasias are a group of rare, monogenic disorders characterized by increased bone density resulting from the disturbance in the fragile equilibrium between bone formation and resorption. Over the last decade, major contributions have been made toward better understanding of the pathogenesis of these conditions. These studies provided us with important insights into the bone biology and yielded the identification of numerous drug targets for the prevention and treatment of osteoporosis. Here, we review this heterogeneous group of disorders focusing on their utility in the development of novel osteoporosis therapies.

Clinical development of neridronate: potential for new applications

Gatti D, Rossini M, Viapiana O, Idolazzi L, Adami S
Ther & Clin Risk Manag Apr 2013; 2013(9): Pages 139—147

Neridronate is an aminobisphosphonate, licensed in Italy for the treatment
of osteogenesis imperfecta (OI) and Paget’s disease of bone (PDB).  A characteristic property of neridronate is that it can be administered both intravenously and intramuscularly, providing a useful system for administration in homecare. In this review, we discuss the latest clinical results of neridronate administration in OI and PDB, as well as in osteoporosis and other conditions. We will focus in particular on the latest evidence of the effect of neridronate on treatment of complex regional pain syndrome type I.

Disorders of bone remodeling

Feng, X., McDonald, J.M.
Ann Rev of Pathol: Mechanisms of Disease 2011; 6, pp. 121-145
http://dx.doi.org:/10.1146/annurev-pathol-011110-130203

The skeleton provides mechanical support for stature and locomotion, protects vital organs, and controls mineral homeostasis. A healthy skeleton must be maintained by constant bone modeling to carry out these crucial functions throughout life. Bone remodeling involves the removal of old or damaged bone by osteoclasts (bone resorption) and the subsequent replacement of new bone formed by osteoblasts (bone formation). Normal bone remodeling requires a tight coupling of bone resorption to bone formation to guarantee no alteration in bone mass or quality after each remodeling cycle. However, this important physiological process can be derailed by a variety of factors, including menopause-associated hormonal changes, age-related factors, changes in physical activity, drugs, and secondary diseases, which lead to the development of various bone disorders in both women and men. We review the major diseases of bone remodeling, emphasizing our current understanding of the underlying pathophysiological mechanisms.

Paget’s disease and hypercalcemia: Coincidence or causal relationship?

Green, I., Altman, A.
Harefuah 2009; 148 (10), pp. 708-710

Paget’s disease is a chronic disease in which osteoclast mediated bone resorption precedes imperfect osteoblast mediated bone repair. Symptoms include bone pain, pathological fractures, osteoarthritis and neurological symptoms. There is evidence that genetic and viral component are involved in the etiology. Hypercalcemia is rare and when it is diagnosed, primary hyperparathyroidism should be ruled out. The authors present a patient with Paget’s disease and concomitant hypercalcemia. Evaluation for hypercalcemia revealed an adenoma of the parathyroid. However, despite the removal of the adenoma, the symptoms persisted. Previous studies
showed that hyperparathyroidism causes hypercalcemia in Paget’s disease patients. Removal of the adenoma led to improvement in calcium and alkaline phosphatase (ALP) levels but clinical improvement is seen only in patients with high calcium level prior to the operation. This leads to the assumption that symptoms of Paget’s disease are due to osteoclast hypersensitivity to parathyroid hormone (PTH) and by removing the adenoma the osteoclast activity is also reduced. In summary, the most common cause of hypercalcemia in Paget’s disease patients is hyperparathyroidism and adenectomy may improve the biochemical and sometimes also the clinical symptoms of Paget’s disease.

Signaling networks that control the lineage commitment and differentiation of bone cells

Soltanoff, C.S., Yang, S., Chen, W., Li, Y.-P.
Critical Reviews in Eukaryotic Gene Expression 2009; 19 (1), pp. 1-46

Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget’s disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases.
Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level.
This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.

Salmon calcitonin: a review of current and future therapeutic indications

  1. H. Chesnut III, M. Azria, S. Silverman, M. Engelhardt, M. Olson, L. Mindeholm Osteoporosis International 2008; 19(4), pp 479-491
    http://dx.doi.org:/10.1007/s00198-007-0490-1

Salmon calcitonin, available as a therapeutic agent for more than 30 years, demonstrates clinical utility in the treatment of such metabolic bone diseases as osteoporosis and Paget’s disease, and potentially in the treatment of osteoarthritis. This review considers the physiology and pharmacology of salmon calcitonin, the evidence based research demonstrating efficacy and safety of this medication in postmenopausal osteoporosis with potentially an effect on bone quality to explain its abilities to reduce the risk of spine fracture, the development of an oral salmon calcitonin preparation, and the therapeutic rationale for this preparation’s chondroprotective effect in osteoarthritis.

Pharmacotherapies to Manage Bone Loss-Associated Diseases:  A Quest for the Perfect Benefit-to-Risk Ratio

Valverde

Current Medicinal Chemistry : 15 (3): Pages 284-304
http://dx.doi.org:/10.2174/092986708783497274

In this review, benefits and side-effects of current and emerging therapies to treat and prevent pathological bone loss are described. Bisphosphonates are the antiresorptive compounds most widely used in the treatment of bone-loss associated diseases. They are generally well-tolerated although have recently been associated with osteonecrosis of the jaw and other complications. Therapies modulating estrogen receptor activation are indicated in the prevention and treatment of either breast cancer or osteoporosis in postmenopausal women. Thus, hormone replacement therapy is effective in prevention of osteoporosis, but its long-term use can increase the risk of breast cancer, stroke and embolism. Tamoxifen benefits all stages of breast cancer, but its use may lead to uterine cancer and thromboembolism. Raloxifene is approved in prevention of breast cancer and treatment of postmenopausal osteoporosis, but its use can increase the risk of fatal stroke. Aromatase inhibitors are superior to tamoxifen at advanced stages of disease and as adjuvants, but their use increase fracture incidence. Fulvestrant is as effective as aromatase inhibitors in the treatment of advanced breast cancer and does not cause bone fractures. Another antiresorptive available for the treatment of postmenopausal osteoporosis, Pagets disease and hypercalcemia is calcitonin, which also exhibits analgesic effects. A promising antiresorptive agent currently in clinical trials is denosumab. Aditional therapies for osteoporosis that decrease fracture risk consist of PTH-like anabolic agents and the dual action bone agent strontium ranelate. Antiseptics and antibiotics are used extensively in periodontal disease intervention to target bacterial biofilm, although hostdirected therapies are also being developed. – See more at: http://www.eurekaselect.com/66301/article#sthash.EGNCH4Eu.dpuf

Parathyroid Hormone An Anabolic Treatment for Osteoporosis

Paul Morley, James F. Whitfield and Gordon E. Willick
Current Pharmaceutical Design Pages 671-687
http://dx.doi.org:/10.2174/1381612013397780

Osteoporosis is a disease characterised by low bone mass, structural deterioration of bone and increased risk of fracture. The prevalence, and cost, of osteoporosis is increasing dramatically with our ageing population and the World Health Organization now considers it to be the second-leading healthcare problem. All currently approved therapies for osteoporosis (eg., estrogen, bisphosphonates, calcitonin and selective estrogen receptor modulators) are anti-resorptive agents that act on osteoclasts to prevent further bone loss. A new class of bone anabolic agent capable of building mechanically strong new bone in patients with established osteoporosis is
in development. While the parathyroid hormone (PTH) is classically considered to be a bone catabolic agent, when delivered intermittently at low doses PTH potently stimulates cortical and trabecular bone growth in animals humans. The native hPTH-(1-84) and its osteogenic fragment, hPTH-(1-34), have already entered Phase III clinical trials. Understanding the mechanism of PTHs osteogenic actions has led to the development of smaller PTH analogues which can also build mechanically normal bone in osteopenic rats. These new PTH analogues are promising candidates for treating osteoporosis in humans as they are as efficacious as hPTH-(1-84) and hPTH-(1-34), but there is evidence that they may have considerably less ability to induce hypercalcemia, the major side effect of PTH therapy. In addition to treating osteoporosis, PTHs may be used to promote fracture healing, to restore bone loss in immobilized patients, or following excessive glucocorticoid or prolonged spaceflight, and to treat psoriasis. http://www.eurekaselect.com/65008/article#sthash.FWa67NrB.dpuf

Effects of Parathyroid Hormone on Cancellous Bone Mass and Structure in Osteoporosis

Naohisa Miyakoshi
Current Pharmaceutical Design  ;10(21): Pages 2615-2627
http://dx.doi.org:/10.2174/1381612043383737

Parathyroid hormone (PTH) is the major hormonal regulator of calcium homeostasis. PTH is a potent stimulator of bone formation and can restore bone to an osteopenic skeleton, when administered intermittently. Osteoblasts are the primary target cells for the anabolic effects of PTH in bone tissue. Anabolic effects of PTH on bone have been demonstrated in animals and humans, by numerous measurement techniques including bone mineral density and bone histomorphometry. Clinically, the most important aspect of treatment for osteoporosis is prevention of fractures. Microstructural alterations, such as loss of trabecular connectivity, have been implicated in increased propensity for fracture. Recent two-dimensional (2D) and three-dimensional (3D) assessments of cancellous bone structure have shown that PTH can re-establish lost trabecular connectivity in animals and humans.
These results provide new insight into the positive clinical effects of PTH in osteoporosis. In recent randomized controlled clinical trials of intermittent
PTH treatment, PTH decreased incidence of vertebral and non-vertebral fractures
in postmenopausal women. Thus, PTH shows strong potential as therapy for osteoporosis. However, 2D and 3D structural analysis of advanced osteopenia in animals has shown that there is a critical limit of trabecular connectivity and bone strength below which PTH cannot completely reverse the condition. Given that PTH treatment fails to completely restore trabecular connectivity and bone strength in animals with advanced osteopenia, early treatment of osteoporosis appears important and efficacious for preventing fractures caused by decreased bone strength resulting from decreased trabecular connectivity. – See more at: http://www.eurekaselect.com/62780/article#sthash.OnoaRPyh.dpuf

Clinical applications of RANK-ligand inhibition

Romas, E.
Internal Medicine Journal 2009; 39 (2), pp. 110-116
http://dx.doi.org:/10.1111/j.1445-5994.2008.01732.x

An enhanced rate of bone remodelling fuelled by osteoclastogenesis mediates diseases such as osteoporosis, arthritic bone destruction, Paget’s disease and malignancy-induced bone loss. Thus, the control of osteoclastogenesis is of major clinical importance. The receptor activator of nuclear factor κB (RANK); its ligand, RANKL and decoy receptor, osteoprotegerin, are critical determinants of osteoclastogenesis, and increased RANK signalling is involved in several bone diseases, providing the rationale for RANKL inhibition. The effects of RANKL inhibition are being witnessed in clinical trials of neutralizing fully human monoclonal antibodies that target RANKL (e.g. denosumab) and which induce profound and sustained inhibition of bone resorption. The relative efficacy, cost-effectiveness and side-effects of targeted RANKL inhibition compared with conventional antiresorptive drugs (i.e. bisphosphonates) should be resolved by clinical trials in coming years.

Clinical development of neridronate: potential for new applications

Davide Gatti, M Rossini, O Viapiana, L Idolazzi, SAdami
Therapeutics and Clinical Risk Management 2013:9 139–147
http://dx.doi.org/10.2147/TCRM.S35788

Neridronate is an aminobisphosphonate, licensed in Italy for the treatment of osteogenesis imperfecta (OI) and Paget’s disease of bone (PDB). A characteristic property of neridronate is that it can be administered both intravenously and intramuscularly, providing a useful system for administration in homecare. In this review, we discuss the latest clinical results of neridronate administration in OI and PDB, as well as in osteoporosis and other conditions. We will focus in particular on the latest evidence of the effect of neridronate on treatment of complex regional pain syndrome type I.

The Sclerostin‐Independent Bone Anabolic Activity of Intermittent PTH Treatment Is Mediated by T‐Cell–Produced Wnt10β

Jau‐Yi Li, Lindsey D Walker, Abdul Malik Tyagi, Jonathan Adams, et al.
Journal of Bone and Mineral Research, Jan 2014; 29(1): pp 43–54
http://dx.doi.org:/10.1002/jbmr.2044

Both blunted osteocytic production of the Wnt inhibitor sclerostin (Scl) and increased T‐cell production of the Wnt ligand Wnt10β contribute to the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. However, the relative contribution of these mechanisms is unknown. In this study, we modeled the repressive effects of iPTH on Scl production in mice by treatment with a neutralizing anti‐Scl antibody (Scl‐Ab) to determine the contribution of T‐cell–produced Wnt10β to the Scl‐independent modalities of action of iPTH. We report that combined treatment with Scl‐Ab and iPTH was more potent than either iPTH or Scl‐Ab alone in increasing stromal cell production of OPG, osteoblastogenesis, osteoblast life span, bone turnover, bone mineral density, and trabecular bone volume and structure in mice with T cells capable of producing Wnt10β. In T‐cell–null mice and mice lacking T‐cell production of Wnt10β, combined treatment increased bone turnover significantly more than iPTH or Scl‐Ab alone. However, in these mice, combined treatment with Scl‐Ab and iPTH was equally effective as Scl‐Ab alone in increasing the osteoblastic pool, bone volume, density, and structure. These findings demonstrate that the Scl‐independent activity of iPTH on osteoblasts and bone mass is mediated by T‐cell–produced Wnt10β. The data provide a proof of concept of a more potent therapeutic effect of combined treatment with iPTH and Scl‐Ab than either alone.

Treatment of Paget’s disease with hypercalcemia

Donald H. Gutteridge – Letter to the Editor
Bone 12 Jan 2006; 39(668)
http://dx.doi.org:/10.1016/j.bone.2006.01.165

Selby et al. [7] “Guidelines on the management of Paget’s disease of bone” produced a very helpful review, with 139 references. I take issue however with their approach to the clinical problem of concurrent Paget’s and hypercalcemia.
Firstly, the combination is not rare. Of 1836 literature and personally reported unselected patients with Paget’s disease, 90 had concurrent hypercalcemia due to primary hyperparathyroidism [PHPT], i.e., 4.9% [4]. The number with unspecified hypercalcemia would have exceeded 5%.                                     Secondly, the authors give similar weight to immobilization and PHPT as causes. Immobilization as a cause of hypercalcemia in Paget’s disease is rare [4,3]. The former paper studied 184 consecutive new referrals with Paget’s disease over 15 years. Hypercalcemia was present in 21: two had malignancy (multiple myeloma, secondary cancer); the remaining 19 had biochemical PHPT with most confirmed by neck exploration; none had hypercalcemia of immobilization. Gillespie [3] reported two patients who died following pagetic fractures with immobilization. One was diagnosed and treated as immobilization hypercalcemia; both had large parathyroid adenomas at autopsy.
Thirdly, they have recommended that “patients with Paget’s disease and hypercalcemia should be treated with bisphosphonate”. Since most patients with this combination have PHPT, since bisphosphonate treatment of Paget’s disease is associated with parathyroid hormone (PTH) stimulation [5] and since activation of Paget’s disease occurs with increased PTH [2], it seems reasonable to exclude PHPT (and other causes— e.g., milk alkali syndrome and vitamin D toxicity) and consider neck exploration before bisphosphonate treatment. The response to parathyroidectomy can be profound—and is predictable. In those with PHPT there is a significant linear relationship between preoperative severity (plasma calcium corrected for plasma albumin) and postoperative improvement in bone turnover (%fall in plasma alkaline phosphatase) [4]. In those 7 patients with a preoperative calcium >3.0 mmol/l, the postoperative mean fall in plasma alkaline phosphatase was 68%. Bisphosphonate treatment may be an option in those with PHPT and mild asymptomatic hypercalcemia; likewise following a reasonable interval (say 6 months) after successful neck exploration, should increased bone turnover and pagetic symptoms persist.

In those rare cases with the combination of Paget’s disease, hypercalcemia and immobilized pagetic fracture, where other causes of hypercalcemia have been excluded [1,6], bisphosphonate treatment is eminently reasonable.

[1] Bannister P, Roberts M, Sheridan P. Recurrent hypercalcaemia in a young man with mono-ostotic Paget’s disease. Postgrad Med J 1986;62:481–3.
[2] Genuth SM, Klein L. Hypoparathyroidism and Paget’s disease: the effect of parathyroid hormone administration. J Clin Endocrinol Metab 1972;35: 693–9.
[3] Gillespie WJ. Hypercalcaemia in Paget’s disease of bone. Aust N Z J Surg 1979;49:84–6.
[4] Gutteridge DH, Gruber HE, Kermode DG, Worth GK. Thirty cases of concurrent Paget’s disease and primary hyperparathyroidism: sex distribution, histomorphometry, and prediction of the skeletal response to parathyroidectomy. Calcif Tissue Int 1999;65:427–35.
[5] Harinck HIJ, Bijvoet OLM, Blanksma HJ, Dahlinghaus-Nienhuys PJ. Efficacious management with aminobisphosphonate (APD) in Paget’s disease of bone. Clin Orthop Relat Res 1987;217:79–98.
[6] Nathan AW, Ludlam HA, Wilson DW, Dandona P. Hypercalcaemia due to immobilization of a patient with Paget’s disease of bone. Postgrad Med J 1982;58:714–5.
[7] Selby PL, Davie MWJ, Ralston SH, Stone MD. Guidelines on the management of Paget’s disease of bone. Bone 2002;31:10–9.

The authors of the article entitled “Guidelines on the management of Paget’s disease of bone” published in BONE 2002:31:10–9, have elected not to respond to the above letter to the Editor.

Safety of Bisphosphonates in the Treatment of Osteoporosis

Robert R. Recker, E. Michael Lewiecki, Paul D. Miller, James Reiffel
The American Journal of Medicine (2009) 122, S22–S32
http://dx.doi.org:/10.1016/j.amjmed.2008.12.004

In this review 4 experts consider the major safety concerns relating to bisphosphonate therapy for osteoporosis. Specific topics covered are skeletal safety (particularly with respect to atypical fractures and delayed healing), gastrointestinal intolerance, hypocalcemia, acute-phase (i.e., postdose) reactions, chronic musculoskeletal pain, renal safety, and cardiovascular safety (specifically, atrial fibrillation).

The bone-remodeling cycle

The bone-remodeling cycle

The bone-remodeling cycle.
Remodeling of bone in a multicellular bone unit starts with osteoblastic activation of osteoclast differentiation, fusion, and activation (A and B).
When resorption lacunae are formed, the osteoclasts leave the area and mononucleated cells of uncertain origin appear and “clean up” the organic matrix remnants left by the osteoclast, also possibly forming the cement line (dotted line) at the bottom of the lacunae
(C). During the resorption process, coupling factors, including insulin-like growth factor–I and transforming growth factor–β, are released from the bone-extracellular matrix, and these growth factors contribute to the recruitment of osteoblasts to the resorption lacunae and their activation.
(D). The osteoblasts will then fill the lacunae with new bone; when the same amount of bone is formed as is being resorbed, the remodeling process is finished, and the mineralized extracellular matrix will be covered by osteoid and a single-cell layer of osteoblasts
(E). (Reprinted with permission from J Dent Res.6)

SUMMARY

Persistent, long-term antifracture efficacy has been demonstrated for bisphosphonates, and there is no evidence that the antifracture efficacy declines during treatment periods lasting as long as 10 years. Bisphosphonate-induced oversuppression of remodeling and return of fracturing remains a theoretical possibility.
It is likely that a few patients who are potential candidates for bisphosphonate treatment have preexisting oversuppression of bone remodeling. Treatment with a bisphosphonate in these cases would not be helpful and might even be harmful. The problem when encountering a patient with fractures and deciding whether to recommend treatment with a bisphosphonate is that no reliable diagnostic method exists that allows detection of the rare instance of preexisting oversuppression of remodeling.  When pretreatment BMD is not particularly low, that is, not lower than normal or mildly osteopenic, the persistence of fracturing during treatment may mean that oversuppression of remodeling was already present and a change in medication would be appropriate. There is no evidence that bisphosphonate treatment impairs fracture healing. Indeed, there are a substantial number of reports involving animal models, as well as a few human case reports, to suggest that bisphosphonate treatment actually improves fracture healing. In general, it is important to bear in mind the positive benefit-to-risk ratio for this therapeutic class when making treatment recommendations for patients with osteoporosis.

Bisphosphonate Safety:

1.               Gastrointestinal Intolerance,2.               Hypocalcemia,

3.               Acute-Phase Reaction, and

4.               Chronic Bone and Muscle Pain

PTH: Potential role in management of heart failure

  1. Gruson, A. Buglioni, J.C. Burnett Jr.
    Clinica Chimica Acta 433 (2014) 290–296
    http://dx.doi.org/10.1016/j.cca.2014.03.029

Biomarkers play an important role for the diagnosis and prognosis of heart failure (HF), a disease with high morbidity and mortality as well as a huge impact on healthcare budgets. Parathyroid hormone (PTH) is a major systemic calcium-regulating hormone and an important regulator of bone and mineral homeostasis. PTH testing is important for differential diagnosis of calcemia related disorders and for the management of patients with chronic kidney disease. As secondary hyperparathyroidism has been evidenced in HF patients, PTH testing might be relevant in HF patients for risk stratification and more personalized selection of treatment.

Heart failure and neurohormonal activation

Heart failure is a syndrome characterized by increasing prevalence, high morbidity, elevated hospital readmission rate and high mortality. The continuing improvement of diagnosis, prognosis, treatment and management of HF requires a better understanding of the different sub-phenotypes and heterogeneity of this syndrome at the cellular, organ, and systemic level. Neurohormonal activation, one of the hallmarks of HF, plays a significant role in the myocardial and multi-organ adaptation. The comprehensive understanding of neurohormonal activation has allowed the identification of several biomarkers, such as natriuretic peptides, which are now playing an important role in HF management. Beside their contribution to the diagnosis of HF, natriuretic peptides are also relevant for follow-up and prognosis of HF patients.  Nevertheless, natriuretic peptides are more related to ventricular stretch, and biomarkers from other biological pathways like cardiac remodeling might provide additional value for the risk stratification of HF patients. The integration of biomarkers from several pathophysiological pathways along with imaging and genetic testing, might therefore be used to define HF subtypes, responding differently to specific therapeutic actions and contributing to more tailored based approaches.
Abnormalities of bone and mineral metabolism are also found in HF.  Secondary hyperparathyroidism has been evidenced in this context and several recent reports have documented the potential use of parathyroid hormone (PTH) testing for a more personalized management of HF patients. The aim of this article is therefore to review some of the cardiac effects of PTH and the potential role of PTH testing in HF.

Parathyroid hormone: biology and cardiac effects
PTH is one of the major regulators of the bone and mineral metabolism and its secretion is modulated by changes in concentration of calcium in the blood; decreased calcium concentrations stimulating PTH secretion via calcium-sensing receptors in the parathyroid gland. In response to hypocalcemia,
PTH has different targets to increase circulating calcium concentration. A fundamental target is the renal tubule where PTH will increase phosphorus excretion in the proximal tract and will enhance calcium reabsorption from the ascending limb of the loop of Henle to the collecting duct. The proximal renal tubule is also a target where PTH will stimulate the 1-α hydroxylation of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D: this biologically active form of vitamin D acts on the gut to increase absorption of both dietary calcium and phosphorus. Another target of PTH is the osteoclasts, leading to increased bone resorption with release of phosphorus and calcium in the blood.
PTH is a polypeptide containing 84 amino acids secreted by the parathyroid glands after cleavage from preproparathyroid hormone to proparathyroid hormone to the mature hormone. However, it displays several circulating forms and related fragments. PTH is secreted predominantly as an intact molecule, but it is rapidly cleaved in peripheral tissues to amino terminus and carboxy terminus fragments. The amino terminus fragment is biologically active and has a relatively short circulating half-life. The carboxy-terminal species include a 7-84 peptide and a variety of shorter fragments. These fragments can have a longer half-life and accumulate in renal failure. PTH assays measure not only the full-length form of PTH but also isoforms as well as fragments and differences can be observed between assays depending on the antibody specificities.

Cardiac effects of PTH
Primary hyperparathyroidism has been associated with heart diseases, underlying the potential cardiac consequences of increased circulating levels of PTH. Furthermore, as the heart is one of the target organs of PTH, the involvement of this hormone in the pathogenesis of cardiovascular diseases was previously suggested. PTH has different effects on the heart and can stimulate hypertrophy, arrhythmias and a pro-oxidative state. PTH has a direct hypertrophic action on cardiomyocytes. PTH is able, through a direct effect mediated through its receptors, to activate protein kinase C which further stimulates hypertrophic growth and reexpression of fetal type proteins in cardiomyocytes. PTH was also reported as a potent activator of protein kinase A (PKA) and several other downstream effectors related to cardiomyocyte hypertrophy. The hypertrophic effect of PTH on cardiac cells is also reinforced by its ability to stimulate an anti-hypertrophic response, including the natriuretic peptide gene transcription and by the increased of plasma concentrations of N-terminal pro-B-type natriuretic peptide (NT-proBNP) observed in patients with primary hyperparathyroidism. The hypertrophic effect of PTH on the heart was also evidence by a close relation between PTH levels and left ventricular mass.
In addition to its hypertrophic action, PTH can stimulate cardiac arrhythmias. PTH was documented as a chronotropic agent able to cause early death ofmyocytes in rat. Importantly, Bogin et al. showed in cultured heart cells of rat, that both amino-terminal PTH 1–34 and intact PTH 1–84 produced an immediate, sustained and significant rise in beats per minute and that the cells died earlier than control cardiomyocytes. Similar bservations were obtained by Shimoyama et al. In human, recent data showed that chronic renal failure and hyperparathyroidism are associated with a sympathetic over-activity. In that case, PTH 1–34 was able to facilitate norepinephrine release in human heart atria by activating the PTH-receptors. Therefore, highly increased PTH levels that can be observed in HF patients can participate to the elevated sympathetic nerve activity and the associated cardiovascular mortality.
The cardiac impact of PTH is also related to calcium overloading in myocardial cells. This cytoplasmic calcium overloading induced by PTH in myocardial cells appears as a paradox for hyperparathyroidism states. The mechanisms behind the increase of intracellular calcium involve a receptor-mediated rise in L-type calcium channel at the plasma membrane level leading to a secondary entry of calcium into cardiomyocyte and mobilization of calcium from sarcoplasmic reticulum. Both PTH 1–34 and PTH 1–84 produced such a dose dependent increase of intracellular calcium in cardiomyocytes. This increase of cytosolic calcium can be prevented by the calcium channel blocker verapamil.
Hyperparathyroidism has also been documented to trigger oxidative stress. When PTH levels are increased, a higher H2O2 production is observed in peripheral blood mononuclear cells. The increase in intracellular calcium induced by PTH might impair the mitochondrial function and ATP production, inducing the production of reactive oxygen species and leading to oxidative stress as well as inflammation and, at the end, to cardiomyocyte necrosis.
Lastly, increased circulating concentrations of PTH might stimulate adrenal aldosterone synthesis, initiating a vicious circle between hyperparathyroidism and hyperaldosteronism and leading to more proinflammatory, pro-oxidant and pro-fibrotic actions.

The rise of PTH in HF
Through its cardiac effects PTH can participate to the pathophysiology of cardiovascular diseases and a chronic excess to high circulating levels of PTH can have some deleterious consequences for the HF patients. Several factors might explain the increase of circulating PTH levels in HF patients.
First of all, impaired cation homeostasis and calcium loss should be considered.   Alteration in electrolyte equilibrium is frequent in HF patients as a consequence of hormonal changes in this pathological condition (hyperadrenergic state and secondary hyperaldosteronism). Calcium wasting is also triggered by diuretics, used to treat HF patients.
A second important factor can be a deficiency of vitamin D. Low vitamin D levels are frequently observed in HF patients and can lead to a rise in PTH levels.
Another documented factor is the interrelationship between hemodynamic state and serum intact PTH levels in patients with HF. Indeed, in a cross-sectional study including 105 patients with chronic HF, log-transformed intact PTH levels were positively and significantly correlated with pulmonary capillary wedge pressure and inversely correlated with stroke volume index after adjusting for variables associated with PTH.

The cross talk between PTH and aldosterone
The cross talk between PTH and FGF-23
Circulating levels of PTH and heart failure
PTH levels in HF patients
PTH testing and heart failure: conclusions and perspectives
PTH testing: assay matters

secondary hyperparathyroidism

secondary hyperparathyroidism

Potential involvement of secondary hyperparathyroidism in the worsening course of heart failure significant correlations were observed, through generation assays, between PTH and natriuretic peptides aswell as galectin-3. Importantly, the different immunoreactivities might impact on the value of PTH testing in treatment and prognosis of HF.

The measurement of PTH concentrations in HF can, like in patients with chronic kidney disease, help to monitor the efficiency of the treatment (drugs as well as medical devices). The use of PTH testing in HF patients might also allow the selection of more personalized and tailored therapies. HF patients with higher PTH levels could be relevant candidates for vitamin D supplementation or other pharmacological treatment. Based on the positive relationship between aldosterone and PTH, higher PTH levels can be an additional reason to use aldosterone blockers in HF patients.

Parathyroid hormone and cardiovascular disease events: A systematic review and meta-analysis of prospective studies

Adriana J. van Ballegooijen, I Reinders, M Visser, and IA Brouwer
Am Heart J 2013;165:655-664.e5
http://dx.doi.org/10.1016/j.ahj.2013.02.014

The parathyroid hormone (PTH) is a key hormone for the maintenance of calcium homeostasis. Low serum calcium triggers the secretion of PTH from the parathyroid glands.1 This results in a raise in serum calcium by promoting the release of calcium from bone, reduces calcium excretion by the kidneys, and increases the calcium absorption by the small intestine. In turn, the increase in calcium inhibits PTH secretion from the parathyroid glands.
In addition to traditionally known target organs, PTH is of interest for its potential impact on cardiovascular disease (CVD) risk. Observational studies have demonstrated that chronic PTH elevation is linked to hypertension, cardiac hypertrophy, and myocardial dysfunction. Furthermore, PTH receptors are present in the myocardium and exert hypertrophic effects on cardiomyocytes. Taken together, these associations suggest plausible mechanisms whereby elevated PTH concentrations may be involved in pathological processes that lead to CVD.

Background Parathyroid hormone (PTH) excess might play a role in cardiovascular health. We therefore conducted a systematic review and meta-analysis to evaluate the association between PTH and cardiovascular disease (CVD) events, and intermediate outcomes.
Methods We conducted a systematic and comprehensive database search using MEDLINE and Embase between 1947 and October 2012. We included English-language prospective studies that reported risk estimates for PTH and CVD events, and intermediate outcomes. The characteristics of study populations, exposure, and outcomes of total CVD events, fatal and non-fatal CVD events were reported, and a quality assessment was conducted. Results were extracted for the highest versus lowest PTH concentrations, and meta-analyses were carried out using random effects models.
Results The systematic literature search yielded 5770 articles, and 15 studies were included. Study duration ranged between 2 and 14 years. All studies were performed primarily in whites with a mean age between 55 and 75 years. The metaanalyses included 12 studies, of which 10 investigated total CVD events; 7, fatal CVD events; and 3, non-fatal CVD events. PTH excess indicated an increased risk for total CVD events: pooled HR (95% CI), 1.45 (1.24-1.71). The results for fatal CVD events and non-fatal CVD events were: HR 1.50 (1.18-1.91) and HR 1.48 (1.14-1.92). Heterogeneity was moderately present; however, sensitivity analyses for follow-up duration, prior CVD, or PTH as dichotomous values showed similar results.
Conclusions The meta-analysis indicates that higher PTH concentrations are associated with increased risk of CVD events.

Impact of estrogen on mechanically stimulated cells in vitro

Jörg Neunzehn, Ulrich Meyer and Hans-Peter Wiesman
Int.J.Curr.Microbiol.App.Sci (2014) 3(5) 898-906
Estrogen deficiency and decreased exercise known to be major causes for osteoporosis in elderly patients are assumed on important role in implant failure. Hormone replacement therapy and exercise are established methods to prevent the accompanying bone loss, thereby improving the conditions for implant osseointegration. Whereas the clinical effects of estrogen on bone are well documented, less is known about estrogen effects on loaded and unloaded osteoblasts on a cellular level. This study was aimed at investigating the effects of estrogen on mechanically stimulated osteoblast like cells in culture. Mechanically unstimulated cultures served as controls. Our investigations revealed that estrogen had a suppressive effect on the proliferative response of osteoblasts towards mechanical strain. Estrogen increased the synthesis of bone specific proteins in mechanically stimulated cultures whereas estrogen had no effect on unstimulated cells. The differentiation effects significant altered at estrogen doses of 10nmol and 10 μmol. Our data suggest a positive effect of hormone substitution on the composition of the extracellular matrix in loaded bones. In the context of implant dentistry, hormone repaints therapy should be regarded as a medical tool to improve the conditions for an undisturbed implant healing.

Normal bone physiology, remodelling and its hormonal regulation

Jennifer S Walsh
Surgery 2014; 33:1

The skeleton has structural and locomotor functions, and is a mineral reservoir. Bone turnover by osteoclasts and osteoblasts is a lifelong process, incorporating growth, modelling and remodeling to repair microdamage and access the mineral reservoir.
Bone formation and resorption are the basis of growth, modeling and remodeling. The bone remodeling cycle is an ongoing process that renews bone to repair microdamage and maintain strength. It also maintains serum calcium in the normal physiological range by release of mineral from the bone matrix as required. About 5-10% of the adult skeleton is replaced by remodeling each year.
On trabecular bone and at the endocortical surface, remodeling takes place on the surface of bone, but within cortical bone the osteoclasts form a cutting cone through the bone matrix. The signal to initiate remodeling may be endocrine (such as increased parathyroid hormone (PTH) in response to hypocalcaemia), which leads to generalized increases in osteoclast activation. Localized remodeling is initiated in response to microdamage, probably by signals from osteocytes. During a remodeling cycle, osteoclasts on the bone surface become activated and resorb bone matrix, creating a defect which is filled in by osteoblasts. The cycle usually takes about 200 days to complete. The bone remodeling cycle is highly regulated, and resorption and formation are closely coupled.
Signaling between bone cells is essential for the coordination of these processes. Osteoblasts regulate osteoclast activity through the receptor activator of nuclear factor-kB (RANK)/RANK ligand/osteoprotegerin system, and osteocytes regulate osteoblast activity through sclerostin secretion. If resorption and formation are balanced there is no net change in bone mass after each cycle, but with ageing and some disease states resorption exceeds formation leading to remodeling imbalance, decreased bone mass and loss of microstructural integrity. The rate of remodeling is determined by loading and endocrine influences. The most important endocrine regulator of bone turnover is probably estrogen, but other hormones regulating bone metabolism include insulin-like growth factor-1, parathyroid hormone and gut and adipocyte hormones.

Differential Diagnosis, Causes, and Management of Hypercalcemia

Fredriech K. W. Chan, et al.
Current Problems In Surgery June 1997; 34(6)

Hypercalcemia is a challenging clinical syndrome, both in diagnosis and therapy. The two most common causes of hypercalcemia, primary hyperparathyroidism and malignancy, account for approximately 90% of all patients with an elevated calcium level. In the general population, primary hyperparathyroidism is more common than malignancy. In a hospitalized population, malignancy is by far the more common. The differential diagnosis of hypercalcemia should be focused initially on the distinction between primary hyperparathyroidism and malignancy.

Primary hyperparathyroidism is caused by excessive, abnormally regulated secretion of parathyroid hormone from one or more adenomatous or hyperplastic parathyroid glands. In 80% of cases, primary hyperparathyroidism is due to a single adenoma. In 15% to 20% of patients, all four glands are enlarged as a result of hyperplasia. Parathyroid hyperplasia is also encountered in patients with Multiple Endocrine Neoplasia, Type I or II. Rarely, in fewer than 0.5% of patients, primary hyperparathyroidism is due to parathyroid carcinoma. The clinical features of primary hyperparathyroidism result from the hypercalcemia and the excessive output of parathyroid hormone (PTH).
The major target organs are the bones and the kidneys. The classic but rare bone disease of primary hyperparathyroidism is osteitis fibrosa cystica. Since the advent of the multichannel autoanalyzer in the early 1970s, an era marked by a great increase in incidence of primary hyperparathyroidism, the prevalence of radiologically apparent bone disease in patients with primary hyperparathyroidism has declined from 10% to 15% to a vanishingly small 1% to 2%. Sensitive technologies such as bone densitometry and bone histomorphometry, however, have revealed skeletal involvement with preferential reduction of cortical bone mass and relative preservation of cancellous bone mass. Although the incidence of nephrolithiasis in primary hyperparathyroidism has also decreased markedly, from approximately 60% in the 1940s and 1950s to 15% to 20% now, nephrolithiasis is still the most frequent complication of primary hyperparathyroidism.
Primary hyperparathyroidism also can be associated with neuropsychiatric, gastrointestinal, and cardiovascular manifestations. However, evidence that these features are pathophysiologically linked to the hyperparathyroid process or are reversible after successful parathyroidectomy is not compelling.

Management of Skeletal Health in Patients With Asymptomatic Primary Hyperparathyroidism

  1. Michael Lewiecki
    J Clin Densitometry: Assessment of Skeletal Health, 2010; 13(4), 324e334.
    http://dx.doi.org:/10.1016/j.jocd.2010.06.004

Asymptomatic primary hyperparathyroidism (PHPT) may cause adverse skeletal effects that include high bone remodeling, reduced bone mineral density (BMD), and increased fracture risk. Parathyroid surgery, the definitive treatment for PHPT, has been shown to increase BMD and appears to reduce fracture risk. Current guidelines recommend parathyroid surgery for patients with symptomatic PHPT or asymptomatic PHPT with serum calcium > 1 mg/dL above the upper limit of normal, calculated creatinine clearance < 60 mL/min, osteoporosis, previous fracture, or age > 50 yr. The type of operation performed (parathyroid exploration or minimally invasive procedure) and localizing studies to identify the abnormal parathyroid glands preoperatively should be individualized according to the skills of the surgeon and the resources of the institution. In patients who choose not to be treated surgically or who have contraindications for surgery, medical therapy should include a daily calcium intake of at least 1200 mg and maintenance of serum 25-hydroxyvitamin D levels of at least 20 ng/mL (50 nmol/L). Bisphosphonates and estrogens have been shown to provide skeletal benefits that appear to be similar to parathyroid surgery. Cinacalcet reduces serum calcium in PHPT patients with intractable hypercalcemia but has not been shown to improve BMD. It is not known whether any medical intervention reduces fracture risk in patients with PHPT. There are insufficient data on the natural history and treatment of normocalcemic PHPT to make recommendations for management of this disorder.

Hyperparathyroidism

William D Fraser
thelancet July 11, 2009; 374: 145-158 – Seminar

Hyperparathyroidism is due to increased activity of the parathyroid glands, either from an intrinsic abnormal change altering excretion of parathyroid hormone (primary or tertiary hyperparathyroidism) or from an extrinsic abnormal change affecting calcium homoeostasis stimulating production of parathyroid hormone (secondary hyperparathyroidism). Primary hyperparathyroidism is the third most common endocrine disorder, with the highest incidence in postmenopausal women. Asymptomatic disease is common, and severe disease with renal stones and metabolic bone disease arises less frequently now than it did 20–30 years ago. Primary hyperparathyroidism can be cured by surgical removal of an adenoma, increasingly by minimally invasive parathyroidectomy. Medical management of mild disease is possible with bisphosphonates, hormone replacement therapy, and calcimimetics. Vitamin D deficiency is a common cause of secondary hyperparathyroidism, particularly in elderly people. However, the biochemical definition of vitamin D deficiency and its treatment are subject to much debate. Secondary hyperparathyroidism as the result of chronic kidney disease is important in the genesis of renal bone disease, and several new treatments could help achieve the guidelines set out by the kidney disease outcomes quality initiative.

Table 1: Changing clinical presentation of primary hyperparathyroidism
1930–1970 1970–2000
Nephrolithiasis 51–57% 17–37%
Hypercalciuria 36% 40%
Overt skeletal disease 10–23% 4–14%
Asymptomatic 6–18% 22–80%
Modified from reference 12
Panel 1: Recommendations for surgery from the National Institutes of Health
consensus conference on primary hyperparathyroidism in 1990 and 2002• Serum albumin-adjusted calcium greater than 0·25 mmol/L
above the upper limit of local laboratory reference range

• Urine calcium greater than 10 mmol per 24 h

• Creatinine clearance reduced by 30% or more

• Bone mineral density T score less than –2·5 (at any site)

• Age younger than 50 years

• Patient request; adequate follow-up unlikely

Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease

Andreas Tomaschitz, Eberhard Ritz, Burkert Pieske, Jutta Rus-Machan
Metabolism Clinical and  Experimental 2014; 63: 20 31
http://dx.doi.org/10.1016/j.metabol.2013.08.016

Several studies demonstrated a strong link between dysregulation of the aldosterone and parathyroid hormone (PTH) axes on the one hand and CV pathology on the other hand. Such evidence documents clinically relevant interactions between aldosterone and PTH and a resulting impact on CV health. This review provides an up to date overview discussing the mechanisms and the clinical relevance underlying the interactions between aldosterone and PTH.

Inappropriate aldosterone and parathyroid hormone (PTH) secretion is strongly linked with development and progression of cardiovascular (CV) disease. Accumulating evidence suggests a bidirectional interplay between parathyroid hormone and aldosterone. This interaction may lead to a disproportionally increased risk of CV damage, metabolic and bone diseases.

This review focuses on mechanisms underlying the mutual interplay between aldosterone and PTH as well as their potential impact on CV, metabolic and bone health. PTH stimulates aldosterone secretion by increasing the calcium concentration in the cells of the adrenal zona glomerulosa as a result of binding to the PTH/PTH-rP receptor and indirectly by potentiating angiotensin 2 induced effects. This may explain why after parathyroidectomy lower aldosterone levels are seen in parallel with improved cardiovascular outcomes.

Aldosterone mediated effects are inappropriately pronounced in conditions such as chronic heart failure, excess dietary salt intake (relative aldosterone excess) and primary aldosteronism.

PTH is increased as a result of
(1) the MR (mineralocorticoid receptor)mediated calciuretic and magnesiuretic effects with a trend of hypocalcemia and hypomagnesemia; the resulting secondary hyperparathyroidism causes myocardial fibrosis and disturbed bone metabolism; and

(2) direct effects of aldosterone on parathyroid cells via binding to the MR. This adverse sequence is interrupted by mineralocorticoid receptor blockade and adrenalectomy.

Hyperaldosteronism due to klotho deficiency results in vascular calcification, which can be mitigated by spironolactone treatment. In view of the documented reciprocal interaction between aldosterone and PTH as well as the potentially ensuing target organ damage, studies are needed to evaluate diagnostic and therapeutic strategies to address this increasingly recognized pathophysiological phenomenon.

The classical view that aldosterone acts exclusively on the electrolyte transport in epithelial cells has been broadened after the mineralocorticoid receptor (MR) has been identified in non-epithelial cells as well, e.g. vascular smooth muscle cells and cardiomyocytes. Apart from classical genomic effects, non-genomic aldosterone mediated effects have been identified in various tissues and organs outside of the kidneys and colon, e.g. inner ear, choroid plexus, endothelial cells and cardiomyocytes.

In the past it had been documented that primary aldosteronism (PA; absolute aldosterone excess) contributed to the development of CVD. Several studies suggested, however, that “absolute aldosterone excess” is only the tip of the iceberg leading to the concept of “relative aldosterone excess” . Several large cross-sectional and prospective studies demonstrated a consistent relationship between circulating aldosterone levels, CV risk factors and mortality risk.

Such recent studies also document that even circulating aldosterone concentrations in the “normal” range may result in inappropriate aldosterone–MR interaction which may be reversed by MR blockade.
The identification of PTH receptors within the CV system e.g. in cardiomyocytes, vascular smooth muscle, and endothelial cells, indicates that inappropriate PTH secretion may impact on the CV health beyond the dysregulation of calcium and phosphate homeostasis.

Application of PTH after myocardial infarction attenuates ischaemic cardiomyopathy by increasing migration of bone marrow-derived stem cells to the ischaemic myocardium. On the other hand the PTH excess in primary hyperparathyroidism (pHPT) is linked in the long-term to a spectrum of adverse effects e.g. bone loss and increased fracture risk, coronary microvascular dysfunction, derangement of lipid and glucose metabolism, subclinical aortic valve calcification, increased aortic stiffness, endothelial dysfunction and arterial hypertension.

Interactions between vitamin D, klotho and aldosterone
Increased activity of systemic or local renin–angiotensin systems (RAS) is linked to increased target organ damage. The organ and tissue protective effects of vitamin D have in part been explained by vitamin D induced modulation of RAS activity.

In landmark experiments Li et al. documented markedly elevated renin mRNA expression in the juxtaglomerular apparatus of vitamin D receptor (VDR) knock-out mice compared to wild type mice. Furthermore, 1,25-dihydroxy vitamin D (1,25(OH2)D3) modulated renin gene transcription and renin synthesis and this was independent of serum calcium, PTH and angiotensin 2. Angiotensin 2 in turn reduces renal klotho expression resulting in modulations of FGF-23-signaling and of 1-α hydroxylase activity. Klotho is a membrane (and circulating) protein which is highly expressed in the kidney and modulates the inhibitory effects of FGF-23 on calcitriol formation; klotho contributes to the regulation of renal tubular calcium and phosphate reabsorption. The modulatory effects of vitamin D on the RAS might result in a lower risk of development and progression of CV morbidity and mortality.

Evidence for stimulating effects of PTH on adrenal aldosterone secretion Aldosterone synthesis is mainly initiated by angiotensin 2 and potassium via activating the Ca2+-messenger system in zona glomerulosa (ZG) cells to stimulate the steroidogenic cascade within the mitochondria. The Ca2+-messenger system further participates in the initiation of steroidogenesis by facilitating the cholesterol transfer into the mitochondria. Findings from experimental, mechanistic, observational and interventional studies suggest that PTH contributes to the regulation of aldosterone secretion in the ZG of the adrenal glands.

The interaction between aldosterone and Klotho and its relationship to vascular osteoinduction

The interaction between aldosterone and Klotho and its relationship to vascular osteoinduction

The interaction between aldosterone and Klotho and its relationship to vascular osteoinduction

Estradiol determines the effects of PTH on ERa-dependent transcription in MC3T3-E1 cells

Monika H.E. Christensen, IS Fenne, MH Flågeng, B Almås, et al.
Biochemical and Biophysical Research Communications 450 (2014) 360–365
http://dx.doi.org/10.1016/j.bbrc.2014.05.109

Bone remodeling is a continuous process regulated by several hormones such as estrogens and parathyroid hormone (PTH). Here we investigated the influence of PTH on estrogen receptor alpha (ERa)-dependent transcriptional activity in MC3T3-E1 osteoblasts. Cells that were transfected with an ER-responsive reporter plasmid and treated with PTH showed increased luciferase activity. However, in the presence of 17b-estradiol, we observed that PTH inhibited ERa-mediated transcription. cAMP mimicked the effects by PTH, and the findings were confirmed in COS-1 cells transfected with expression vector encoding the catalytic subunit of cAMP-dependent protein kinase (PKA). Furthermore, PTH exhibited specific effects on the mRNA expression of the decoy receptor osteoprotegerin (OPG) and the receptor activator of NF kappa-B ligand (RANKL) in MC3T3-E1 osteoblasts. In the absence of 17b-estradiol, PTH and cAMP enhanced the OPG/RANKL ratio, whereas, OPG/RANKL was suppressed when estradiol was present. In conclusion, our results indicate that the presence of estradiol determines whether PTH and cAMP stimulates or inhibits ERa-dependent activity and the OPG/RANKL mRNA expression in an osteoblastic cell line.

Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis

Qiang Huang, Bo Gao, Qiang Jie, Bo-Yuan Wei, et al.
Bone 66 (2014) 306–314
http://dx.doi.org/10.1016/j.bone.2014.06.010

Reactive oxygen species (ROS) are a significant pathogenic factor of osteoporosis. Ginsenoside-Rb2 (Rb2), a 20(S)-protopanaxadiol glycoside extracted from ginseng, is a potent antioxidant that generates interest regarding the bone metabolism area. We tested the potential anti-osteoporosis effects of Rb2 and its underlying mechanism in this study. We produced an oxidative damage model induced by hydrogen peroxide (H2O2) in osteoblastic MC3T3-E1 cells to test the essential anti-osteoporosis effects of Rb2 in vitro. The results indicated that treatment of 0.1 to 10 μMRb2 promoted the proliferation of MC3T3-E1 cells, improved alkaline phosphatase (ALP) expression, elevated calcium mineralization and mRNA expressions of Alp, Col1a1, osteocalcin (Ocn) and osteopontin (Opn) against oxidative damage induced by H2O2. Importantly, Rb2 reduced the expression levels of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and inhibited the H2O2-induced production of ROS. The in vivo study indicated that the Rb2 administered for 12 weeks partially decreased blood malondialdehyde (MDA) activity and elevated the activity of reduced glutathione (GSH) in ovariectomized (OVX)mice. Moreover, Rb2 improved the micro-architecture of trabecular bones and increased bone mineral density (BMD) of the 4th lumbar vertebrae (L4) and the distal femur. Altogether, these results demonstrated that the potential anti-osteoporosis effects of Rb2 were linked to a reduction of oxidative damage and bone-resorbing cytokines, which suggests that Rb2 might be effective in preventing and alleviating osteoporosis.

Inflammatory cytokines in Paget’s disease of bone

GRW de Castro, Z Buss, JS Da Rosa, TS Fröde
International Immunopharmacology 18 (2014) 277–281
http://dx.doi.org/10.1016/j.intimp.2013.12.003

This study was undertaken to evaluate the expression of inflammatory cytokines in patients with Paget’s disease of bone (PDB). Serum levels of tumoral necrosis factor-α, interleukin 1β, interleukin-6 and interleukin-17
were measured in 51 patients with PDB and in 24 controls with primary osteoarthritis. Compared to controls, patients with Paget’s disease of bone presented higher levels of interleukin 6 and reduced interleukin 17, but levels of tumoral necrosis factor α and interleukin 1 β did not differ significantly. We found no significant differences when patients were compared according to disease activity or current treatment. There were no correlations between cytokine levels and bone-specific alkaline phosphatase or extension of Paget’s disease of bone on bone scintigraphs. In conclusion, patients with PDB present significant differences on levels of certain cytokines in comparison to primary osteoarthritis patients, but these alterations did not appear to have a clear correlation with parameters of disease activity or severity.

Development and validation of a novel cell-based assay for potency determination of human parathyroid hormone (PTH)
Axel Hohenstein, Meike Hebell, Heidi Zikry, Maria El Ghazaly, et al.
Journal of Pharmaceutical and Biomedical Analysis 98 (2014) 345–350
http://dx.doi.org/10.1016/j.jpba.2014.06.004

Disorders of bone metabolism
Orthopaedics I: General Principles

Nicola Peel
Surgery 33:1

Bone remodeling is critical to bone health. Alterations in the normal processes and regulation of remodeling may impact on bone mass and bone strength. Changes may be generalized or focal and underlie many of the common disorders of bone metabolism. This article focuses on the changes in bone remodeling which underlie both the development and treatment of osteoporosis. Osteomalacia, as an example of a mineralization disorder and Paget’s disease as an example of a focal disorder of bone remodeling, are also briefly reviewed.

There are many causes of increased bone turnover with the most common being the loss of estrogen at menopause. Increased bone turnover is initiated by increased activation frequency of osteoclasts. The consequent increase in remodeling space leads to bone loss which is, at least in part, reversible. Increased bone turnover is also associated with an increased risk of trabecular perforation with the increased number of remodeling sites acting as stress risers within the trabecular architecture. Bone loss within the trabecular compartment occurs preferentially from the horizontal, non-weight bearing plates resulting in disproportionate loss of bone strength for the reduction in bone mass.
Alterations in bone turnover also have potential to affect bone.

strength by changing the degree of mineralization. Primary mineral apposition occurs early after production of bone matrix by osteoblasts. After completion of the cycle, secondary mineral apposition occurs over many months. Increased bone turnover leads to reduced mineralization as the time between remodeling cycles reduces. Conversely, decreased bone turnover rates reduce the average time between remodeling at any site and hence lead to a greater degree of mineralization. Biomechanical principles indicate that the yield strength (stiffness) of highly mineralized bone increases but that it will withstand less deformation before fracture and therefore becomes brittle. A reduced degree of mineralization results in greater pliability but a reduction in bone strength.
Alterations in bone remodeling underpin changes in bone mass and bone strength. The impact of these changes is manifest in the development and clinical presentation of osteoporosis.

Paget’s disease

Paget’s disease

Paget’s disease: (a) increased uptake on nuclear medicine scanning in the right hemipelvis, sacrum and left femur and (b) left femur showing radiological changes of Paget’s including a fissure fracture in the proximal lateral cortex

Paget’s disease is an example of a localised disorder of bone turnover. Its aetiology remains unclear. Paget’s disease is not uncommon but is often asymptomatic and diagnosed coincidentally. It is estimated to affect approximately 2% of adults over the age of 55 in the UK but the prevalence varies markedly between populations. It is increasingly prevalent with increasing age and affects men more frequently than women. In 80% of cases more than one bone is involved, characteristically in an asymmetric distribution.
Pagetic bone is characterized by the presence of giant multinucleated osteoclasts resulting in dramatic increases in bone resorption in the affected bones. These regions undergo a lytic phase followed by a compensatory increase in bone formation. Rapid bone formation results in an accumulation of woven bone, which is mechanically abnormal resulting in loss of bone strength.
The typical clinical manifestation is of bone pain, which may be associated with bone expansion and deformity. Complications of Paget’s disease include the development of secondary osteoarthritis, fissure fractures and very rarely, osteosarcomatous change (<1% of cases).

.

Read Full Post »

« Newer Posts - Older Posts »