Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
TIKUN OLAM is the Jewish principle of fixing the world, improving our planet, for the benefit of all.
What are Israeli scientists working on in the middle of a war?
Israelis don’t build palm-shaped islands, towering skyscrapers, or expensive hotels, and their leaders don’t drive cars with huge silver bodies (a reference to Dubai and the United Arab Emirates).
Israel’s pride lies in the fact that its technologies can be used by all of humanity:
1. Tel Aviv University is developing a nasal vaccine that will protect people from Alzheimer’s and stroke.
2. The Technion (Haifa) has developed a simple blood test that can detect several types of cancer.
3. The Ichilov Center (Tel Aviv) has isolated a protein that makes colonoscopy unnecessary to detect colon cancer through a simple blood test. Colon cancer kills about 500,000 people a year.
4. Acne may not be fatal, but in many cases it causes distress in teenagers. The Carlite laboratory has created a drug. High-intensity ultraviolet radiation kills acne-causing bacteria.
5. The Given imaging lab has developed a tiny, pill-shaped camera that is swallowed and transmits thousands of images of the digestive system. These high-quality images (2 per second for 8 hours) can identify polyps, cancer, and sources of bleeding. The images are sent to a chip, which stores them and sends them to a computer. At the end of the process, the camera is removed through the anus.
6. The Hebrew University has developed an electrical neurostimulator (batteries) that is implanted in the chests of Parkinson’s patients, similar to a pacemaker. The emissions from this device block the nerve signals that cause tremors.
7. The simple smell of a patient’s breath can detect whether they have lung cancer. The Russell Berry Institute for Nanotechnology has created sensors capable of detecting and recording 42 biomarkers that indicate the presence of lung cancer without the need for a biopsy.
8. In many cases, catheterization will be possible. *Endopat* [EndoPAT 2000 and EndoPAT X] developed by Itamar Medical Ltd. is a device placed between the fingers that can measure the condition of the arteries and predict the possibility of a heart attack in the next 7 years.
[added by ALA]:
The EndoPAT 2000 is no longer sold by ZOLL Itamar as of May 1, 2025.
9. At Bar-Ilan University, a new drug is being studied that fights viruses through the bloodstream. It is called *trap and wire* because it causes the virus to self-destruct. It is very useful in combating hepatitis and, in the future, AIDS and Ebola.
10. Israeli scientists at the *Hadassah* Medical Center (Jerusalem) have discovered the first cure for *amyotrophic lateral sclerosis*, also known as “Loewering’s disease,” in an Orthodox rabbi. Stephen Hawking, a famous British scientist, suffered from this disease and used methods invented by Israeli scientists to communicate.
*You won’t hear this from the media!* – The world shouldn’t live on bad news alone… so share it as good news.
China is Making Large Inroads into Biotech: Is Investment Money Following? Is US Investment Money Following the China Biotech Boom?
Curator:Stephen J. Williams, Ph.D.
A common route for raising capital or exit strategy for many US biotechs has been strategic transfer or sale of intellectual property (IP) or strategic partnership with large pharmaceutical companies looking to acquire new biotechnologies or expand their own pipelines. Most US based biotechs had enjoyed a favorable (although not fully exclusive) deal-making environment with US pharmaceutical companies with some competition from international biotech companies. US government agencies such as FINRA, CFIUS, and the SEC closely monitored such international deals and the regulatory environment for such international deal making in the biotechnology space was tight.
Smaller Chinese biotechs have operated in the United States (at various biotech hubs around the country) and have usually set up as either service entities to the biotech industry as contract research organizations (Wuxi AppTech), developing research reagents for biotech (Sino Biological) or conducting research for purposes of transferring IP to a parent company in China. Most likely Chinese biotechs set up research operations because of the overabundance of biotech hubs in the United States, with a dearth of these innovation hubs in the China mainland.
However, as highlighted in the Next in Health Podcast Series from PriceWaterHouseCoopers (PwC), China has been rapidly been developing innovation hubs as well as biotech hubs. And Chinese biotech companies are staying home in mainly China and exporting their IP to major US pharmaceutical companies. As PwC notes this deal making between Chinese biotech in China and US pharmaceutical companies have rapidly expanded recently.
The following are notes from PriceWaterHouseCoopers (PwC) podcast entitled: Strategic Shifts: Navigating China’s Biotech Boom and Its Impact on US Pharma:
Tune in as Glenn Hunzinger, PwC’s Health Industries Leader and Roel van den Akker, PwC’s Pharma and Life Sciences Deals Leader discuss the rapid rise of China’s biotech industry and what it means for U.S. pharmaceutical companies. They discuss the evolving role of Chinese biotech in the global innovation landscape and share perspectives on how U.S. pharmaceutical companies can thoughtfully assess opportunities, manage cross-border complexities, and build effective partnering and diligence strategies.
Discussion highlights:
China’s biotech industry is growing fast and becoming a global player, with U.S. companies increasingly looking to partner with Chinese firms on cutting-edge science
U.S. pharma leaders are encouraged to move beyond skepticism and stay curious by building relationships, learning from local innovation, and exploring new partnership opportunities
Successfully partnering with Chinese biotech firms requires a careful and well-structured approach that accounts for global complexity, protects data and IP, and uses creative deal structures like new company formations to manage risk and stay flexible
U.S. companies need to be proactive in order to stay competitive by actively exploring global innovation, understanding the risks, and having a clear strategy to bring high-potential science to U.S. patients
In 2019 there were zero in licensing deals from China to US pharma…. Today one in five come from China.
China evolved into a expanding economy because China invested in biotech companies
Lots of skilled people
Built centers that rivaled biotech innovation centers in places like Boston, California Bay Area, and Philadelphia
China has gone from low cost manufacturing country to an innovative economy with great science coming out of it. US pharma boardrooms need to understand this
The analysts at PWC suggest to look at Data integrity, IP protection and risks before bringing China biotech IP in US. It is imperative that companies do ample due diligence.
China’s rise as a biotech innovation hub: 4 key strategic questions for US biopharma executives
May 08, 2025
Roel van den Akker; Partner, Pharmaceutical & Life Science Deals Leader, PwC
China’s biotech sector is evolving at breakneck speed — and the implications for US pharma are too significant to ignore. Over the past five years, China has transitioned from being a nice to watch market to a central pillar of global biopharma innovation. Today, one-third of in-licensed molecules at US pharma multinationals originate from China, up from virtually zero in 2019.
China’s biotech sector, however, is not monolithic or uniform. The ecosystem spans high-quality, globally competitive biotech hubs in cities like Hangzhou and Suzhou — home to companies producing first-in-class and novel innovations in ophthalmology, cardiovascular, and immunology — as well as a long tail of undercapitalized players where execution and capability gaps remain profound.
And now, Washington is paying attention, too. A recent report from the US National Security Commission on Emerging Biotechnology (NSCEB) highlighted China’s ambitions to dominate biotech as a “strategic priority” with dual-use implications across health and security. The report urges the US government and private sector to reassess dependencies and increase scrutiny of biotechnology partnerships abroad. For the US biopharma industry, this isn’t just a supply chain concern — it is a boardroom issue.
With the licensing market still skewed toward buyers, venture funding remaining depressed in China and IPO windows in Hong Kong slowly reopening, there is a compelling window for US companies to secure differentiated assets at relatively attractive terms. Speedy deal execution is increasingly important as the highest quality assets are being quickly scooped up. But navigating this terrain can require more than opportunism. It calls for deliberate strategy, structured governance and a nuanced geopolitical risk framework.
Here are four questions every US biopharma executive should be asking:
1. What is our posture toward preclinical and clinical science from China?
Are we approaching Chinese innovation with a default posture of skepticism or strategic curiosity? Many top-tier Chinese biotechs are now generating US-caliber data at the speed of light, particularly in therapeutic modalities such as mAbs, ADCs and T-cell engagers, but plenty still have execution gaps. Those that elect to lean in will likely need a deliberate eco-system approach geared towards being the partner of choice and local brand building.
2. What does our China diligence playbook look like?
In light of national security concerns, companies need a China-specific diligence framework — one that goes beyond the science. This includes scrutiny around data integrity, IP protection, export controls, and cross border data sharing.
3. What is our plan post-licensing or acquisition?
Ownership is just the start. US companies need a clear strategy for globalizing China-origin assets — from IND transfers to FDA filing to commercial launch. In some cases, that may require reworking the preclinical package or rebuilding the CMC infrastructure entirely. Increasingly, US (or Europe)-based “Newcos” may serve as geopolitical firewalls.
4. How can we preserve agility amid regulatory and political volatility?
With rising US-China tensions and new export control proposals under review, companies must future-proof deal structures. This could include regional carveouts, US-only development rights, or milestone-gated commitments. The NSCEB report makes clear: passive engagement is no longer tenable.
Innovation strategy meets national interest
The trendlines are clear: China is not just a manufacturing hub — it is an increasingly important source of global biotech innovation. But sourcing innovation from China now sits at the intersection of science, strategy and security. US pharma and biopharma companies can no longer afford to treat China engagement as tactical. Those who adopt a deliberate, resilient and agile China strategy — grounded in scientific rigor and geopolitical realism — likely lead in tomorrow’s innovation race.
A researcher prepares medicine at a laboratory in Nanjing University in Nanjing, Jiangsu province, April 29, 2011. REUTERS/Aly Song/File Photo Purchase Licensing Rights
U.S. drugmakers turn to Chinese companies as they face patent expirations
Licensing deals accelerate while traditional mergers decline
Chinese biotechs are challenging Western peers, analysts say
June 16 (Reuters) – U.S. drugmakers are licensing molecules from China for potential new medicines at an accelerating pace, according to new data, betting they can turn upfront payments of as little as $80 million into multibillion-dollar treatments.
Through June, U.S. drugmakers have signed 14 deals potentially worth $18.3 billion to license drugs from China-based companies. That compares with just two such deals in the year-earlier period, according to data from GlobalData provided exclusively to Reuters.
How to stop the shift of drug discovery from the U.S. to China. The FDA must make it easier to do such work in the U.S.
Scott GottliebMay 6, 2025
Five years ago, U.S. pharmaceutical companies didn’t license any new drugs from China. By 2024, one-third of their new compounds were coming from Chinese biotechnology firms.
Why are U.S. drugmakers sending their business to China? As in many other industries, it’s so much cheaper to synthesize new compounds inside Chinese biotechnology firms once a novel biological target has been discovered in American laboratories.
Yet the costs of developing new drugs in the U.S. needn’t be so high. They are driven up, in part, by increasing regulatory requirements that burden early-stage drug discovery in America. That’s especially true for Phase I clinical trials, in which drugs are tested in people for the first time.
Newsletter
The smartest thinkers in life sciences on what’s happening — and what’s to come
This shift of discovery work to China is going to accelerate if we don’t take deliberate steps to make it easier to do such work here in America. Yet the imperative to modernize early-stage drug development — to ensure that groundbreaking drug discovery remains in the U.S. rather than migrating to China — is colliding head-on with an impulse to slash the very government workforce capable of spearheading these reforms. These conflicting impulses have created a paradoxical tension: on one hand, the desire to stay competitive with China in biotechnology innovation, and on the other, a parallel campaign to reduce and in some cases dismantle the investments and institutions essential to achieving that goal.
In most cases, Chinese firms are not discovering new biological targets, nor are they crafting genuinely novel compounds to engage these targets through homegrown Chinese research. Instead, they piggyback on Western innovations by scouring U.S. patents, zeroing in on biological targets that are initially uncovered in American labs, and then developing “me too” drugs that replicate American-made compounds with only superficial tweaks, or producing “fast follower” drugs that capitalize on the original breakthroughs while refining key features to try to surpass U.S. innovation. Facing fewer regulations, the Chinese drugmakers can move more quickly than U.S. biotechnology companies — synthesizing copy-cat drugs based on our biological advances and then promptly moving these Chinese-made compounds into early-stage clinical trials, outpacing their American counterparts.
According to the investment bank Jefferies, large American drug companies spent more than $4.2 billion over the past year licensing or acquiring new compounds originally synthesized by Chinese firms. Many comprised advanced compounds such as antibody drugs and cell therapies — underscoring Chinese companies’ growing sophistication in adopting the latest American technologies. The cost of licensing these compounds from China, rather than synthesizing them in American labs, can be significantly lower. At a time when research funding in the U.S. is being cut, and research budgets are becoming painfully stretched, companies are looking to lower the cost of building their pipelines. In a fast-moving field such as oncology, this shift toward Chinese-synthesized compounds is particularly striking: I am told by someone inside the FDA process that nearly three-quarters of new small molecule cancer drugs submitted to the Food and Drug Administration for permission to begin U.S.-based clinical trials are initially made in China.
Usually, only a few months elapse between the moment a U.S. research team publishes a patent identifying a new biological target and when a biotechnology firm in China creates the corresponding drug that capitalizes on these findings. Because Chinese firms can synthesize new molecules at a fraction of the cost incurred by U.S. biotechnology companies — owing to a large and skilled but much cheaper workforce — they find the most intriguing biological targets pursued by Western researchers, rapidly churning out potent yet less expensive copycat molecules that they then market to Western companies.
A major challenge for U.S. firms is the long and costly process of obtaining FDA approval for Phase I studies, in which drugmakers test a new drug’s safety and tolerability in a small group of human volunteers. In China, launching this initial phase of clinical trials is far simpler, giving Chinese biotechnology companies a competitive advantage: By swiftly advancing their molecules into early-stage patient testing, Chinese firms can more readily determine which compounds hit their biological targets and show the greatest therapeutic promise. This allows the Chinese firms to quickly refine their molecules and then leapfrog their American counterparts, who are slowed by more cautious regulatory processes. While China’s regulatory process doesn’t uphold the patient safeguards that Americans rightly insist upon, the U.S. FDA could still streamline its path into early-stage drug development, bolstering America’s competitive edge without compromising patient safety.
In the U.S., one of the costliest early hurdles is the exhaustive animal testing that the FDA requires before a drug can be advanced into Phase I studies. These “pre-clinical” studies help safeguard patients, but the agency also uses this testing to weed out potential failures before a drug requires more intensive FDA scrutiny in later trials.
Over time, this regulatory framework has frontloaded a significant share of costs to the earliest phases of drug development, when biotechnology startups are often running on shoestring budgets, lack clinical data to attract investors, and can least afford delays. One measure of the increasing difficulty in securing the FDA’s permission for Phase I trials is the growing number of U.S. drugmakers who take compounds discovered on American soil and conduct these clinical trials in other Western markets, where they can obtain data more quickly and inexpensively before bringing it back to the FDA. One popular locale is Australia, where costs run about 60% lower than U.S.-based clinical trials, largely because the Australian government offers tax incentives to attract this kind of biomedical investment.
Many animal studies address esoteric questions about a drug’s long-term effects on parameters that may not be relevant to its eventual use — for example, at doses and durations of use that may be far beyond how patients will ultimately use the drug. The FDA’s preclinical testing protocols sometimes require American researchers to administer new compounds to animals at levels up to 500 times higher than any intended dose for patients, aiming for maximum animal exposure before human trials can begin. Where the FDA needs to screen for certain remote risks, many animal studies could be safely deferred until human trials confirm that a drug may benefit patients. At that point, it becomes easier for biotechnology companies to raise capital to fund these pro forma testing efforts.
To modernize the process, the FDA could tap into the wealth of data from existing drugs to establish a more phased approach to these requirements, where the amount of initial animal testing is more closely matched to a drug’s novelty and a better estimation of its perceived risks. It’s a prime opportunity to employ artificial intelligence — mining current data and extrapolating known information to newly discovered molecules. For new molecules that share structural similarities with established drugs, where a robust body of safety information already exists (and the likelihood of uncovering novel risks is judged to be minimal), some animal studies might simply be unnecessary. To establish a graduated approach to the scope of pre-clinical toxicology studies that the FDA requires for new molecules, Congress could revise the agency’s statutory framework, explicitly empowering it to adopt such flexible standards. It would also require targeted investments, enabling the FDA to craft the necessary tools and protocols to implement these refined methodologies.
Mice and even primates are often poor proxies for many of the remote toxicities the FDA is trying to test for, anyway. The agency can also make a more concerted effort to adopt advanced technologies, like pieces of human organs embedded in chips that can be used to test for remote dangers a drug may pose to specific organs like the heart and liver. These tools can reliably screen for risks at a fraction of the time and cost. FDA Commissioner Marty Makary recently announced his intention to pursue a plan that would phase out animal studies in the preclinical evaluation of antibody drugs, shifting instead toward innovative technologies that assess toxicology without relying on live animals. This positive step requires the FDA to invest in new capabilities, and scientific staff that possess expertise in these novel domains.
But right now, that investment seems unlikely. The size and scientific scope of the FDA staff responsible for reviewing early-stage drug development — and evaluating data collected from animal studies — has failed to keep up with the increasing complexity and sheer volume of applications flooding into the agency to launch Phase I clinical trials. Now, the FDA has made deep staffing cuts, prompted by DOGE, that have specifically targeted scientific teams that would lead these essential reforms.
Adding to these woes, morale at the FDA has declined so markedly that many foresee a wave of voluntary resignations among clinical reviewers. By thinning the ranks of experts who tackle novel scientific questions and resolve issues that span across different drug development programs — especially the elimination of the policy office within the FDA’s Office of New Drugs, which adjudicated these kinds of cross-cutting scientific questions — the government has impeded the early dialogue with drug developers that often results in streamlining requirements for Phase I studies. Even more challenging, it weakens the staff’s ability to develop new guidance documents and put better review practices into place — reforms essential for lasting improvements to the preclinical review process.
Instead of strengthening America’s biotechnology ecosystem, such measures risk accelerating the migration of discovery activities to China, undermining innovation at home. When U.S. drugmakers license compounds from China, they divert funds that might otherwise bolster innovation hubs such as Boston’s Kendall Square or North Carolina’s Research Triangle. The U.S. biotechnology industry was the world’s envy, but if we’re not careful, every drug could be made in China.
Scott Gottlieb, M.D., is a senior fellow at the American Enterprise Institute and served as commissioner of the Food and Drug Administration from 2017 to 2019. He is a partner at the venture capital firm New Enterprise Associates and serves on the boards of directors of Pfizer Inc. and Illumina.
From FierceBiotech: US Biotech Companies are finding that foreign investments may put them in a precarious position for government funding
The Department of Health and Human Services is allegedly denying clinical trial funding for biotechs based on their ties to certain foreign investors, Fierce Biotech has learned.
At the BIO conference in Boston this week, Fierce spoke with a biotech executive who had their grant pulled, as well as an industry thought leader who backed up the claims about a change in the HHS’ funding approach.
“We’re in a situation where some of the companies are confused about their ability to take foreign investment,” said John Stanford, founder and executive director of Incubate, a nonprofit organization of biotech venture capital firms and patient advocacy groups designed to educate policymakers on life science investment and innovation.
“We’ve been hearing about SBIR grants canceled,” Stanford told Fierce in a separate interview at BIO. “Anecdotally, we’ve also heard it’s a lot more than China and it’s countries—Canada, Norway, the EU—that traditionally we think of as allies.”
“Again, that’s anecdotal,” he stressed. “But we would be very concerned [about] the idea that we won’t take Canadian investments or Japanese investments or EU-based investments.”
“We want foreign investors coming to U.S.-based companies to develop drugs for the world,” Stanford said. “That is a win-win-win.”
Back in February, President Donald Trump issued a memorandum titled the “America First Investment Policy” that aims to restrict both inbound and outbound investments related to “foreign adversaries” in certain strategic industries. The document lacks specifics but puts China front and center while mentioning both healthcare and biotech among the sectors it will regulate.
And the investment analysis firm Jeffries noted that
Looking at financial data from FactSet, Jefferies analysts found biotech funding in May 2025 was down 57%, to just over $2.7 billion, compared to the same time last year. That sum was only slightly better than the nearly $2.6 billion raised in April — the worst haul in three years — and was also 44% lower than the average seen across the past 12 months.
Today, total capital remains relatively steady, but it’s flowing differently.
Fewer companies are commanding a greater share of investment, and a new global map of biotech leadership is emerging—one where Israel, Italy, Korea, Saudi Arabia, and NAME are not just participants but strategic innovators and investors in the space.
While some correction was inevitable after the pandemic’s urgency subsided, the sector’s foundation had already changed.
CROs didn’t scale down; they doubled down, offering sponsors the flexibility to develop therapies without taking on the full weight of manufacturing and trials in-house.
This shift underpinned a new era of capital efficiency and strategic outsourcing, which is strongly influenced by new smart technologies that generate code and content at a blink of an eye and refine research protocols.
Selective but Strong: The New Capital Math
After the surge of 2020–2021, a funding correction began in late 2022.
According to Jefferies, biotech funding in May 2025 was down 57 per cent year-over-year, dropping to roughly $2.7 billion.
Public markets also cooled. In 2023, biotech IPOs hit their lowest numbers in a decade, and follow-on offerings became increasingly rare.
This deceleration prompted talk of a “biotech winter.” Yet key indicators suggest a market in transition rather than decline. Private equity and venture capital remain active but are more selective.
While early-stage companies face greater hurdles, late-stage biotechs and those with de-risked clinical programs continue to attract significant funding.
Follow the Late-Stage Money
A recent GlobalData report underscores this trend: late-stage biotech companies now receive nearly double the capital of their earlier-stage counterparts.
Median venture rounds for Phase III companies have climbed to $62.5 million, as investors increasingly prioritise assets with regulatory clarity and near-term commercialisation potential.
The post-COVID period has revealed an important funding shift: fewer biotech companies are securing a larger percentage of available capital.
In an environment of macroeconomic uncertainty, geopolitical risk, and rising interest rates, investors are retreating from speculative bets and doubling down on known quantities.
From Gemini: Is US biotech investment going overseas in 2025? Plot in a bar graph the US biotech investment versus worldwide biotech investment by country
Is US biotech investment going overseas in 2025? Plot in a bar graph the US biotech investment versus worldwide biotech investment by country
Yes the US has many more venture capital firms focused on Biotech investment but it is appearing that investment is not staying in the US.
The global biotech funding landscape in 2023: U.S. leads while Europe and China make strides
In 2023, the U.S. continued to demonstrate its position as the biotech funding leader, commanding over one-third, 35%, of the global investment in the sector. Overall, U.S. biotech firms attracted $56.79 billion in funding, according to a survey of Crunchbase data. Next in line was China, which contributed about 12.7% to the global funding pool, or $20.61 billion. Up next was Europe, which secured more than $11.46 billion and representing more than 7% of the worldwide funding.
While U.S. leads in total biotech funding, Chinese biotech companies, on average, saw larger funding rounds than either Europe or the U.S. The average funding size per company in China was roughly three times larger than that in the U.S. and six times larger than the average in Europe.
But while China-based companies had larger hauls, they were comparatively few. Chinese biotech secured in cumulative $20.61 billion among just 69 firms, with roughly $299 million in funding per company on average. Meanwhile, the 229 European biotech firms that won funding in the past year attracted $11.46 billion in funding, averaging $50 million each. In comparison, the 583 U.S. biotech companies with recent funding attracted $56.79 billion, averaging $97 million per company.
The map below represents the total biotech funding amount in USD across the globe. Funding amounts are shaded based on companies’ cumulative funding totals and density. Darker shades indicate higher funding amounts and density, with the U.S. hubs on the East and West Coasts showing the darkest shade, reflecting the combination of total funding and density.
Size of the US Biotech Market is expected to grow from half a billion in 2023 to 1.7 trillion in 2033. Source novaoneadvisor.com
Biotech investment trends in the US for 2025 present a complex picture. While some reports indicate a general slowdown in venture funding for biotech startups and concerns about tariff impacts, other sources suggest resilience within the sector, with strong revenue growth for public biotech companies in both the US and Europe in 2024, expected to continue into 2025. Additionally, there are calls for significant investment within the US to maintain its leadership in biotechnology. Therefore, it is not definitively clear that US biotech investment is predominantly going overseas in 2025, but rather navigating a challenging and evolving landscape.
Regarding US biotech investment versus worldwide biotech investment by country, here is a bar graph of key biotech investment moves in 2025 based on available data. Please note that this data reflects “key moves” in biotech funding for 2025 as reported by Labiotech, and a comprehensive worldwide investment breakdown for all countries was not available.
From Franklin Templeton: China is Emerging as a Global Biotechnology Player
The combined value of China’s outside licensing deals reached around US$46 billion in 2024, up from US$38 billion in 2023 and US$28 billion in 2022, according to data provider NextPharma. Meanwhile, the number of global companies licensing into China has decreased across the same period. These tailwinds have helped China expand its share of global drug development to nearly 30% compared to 48% for the United States, according to data provider Citeline. Strong IP protection has positioned China to receive global investment, with a 2024 policy encouraging more IP collaboration between global and Chinese companies. US investment bank Stifel projects that molecules licensed by large pharmaceutical firms from China will increase to 37% in 2025. This shift has been largely driven by US companies seeking cheaper drug development alternatives and has led to R&D spending in China outpacing that of the United States.
A Closer Look at the Financials and Comparison between China and US Biotech Investment Trends
This rapid growth of Chinese biopharma was predictable back in 2018 as this article from an investment newsletter suggests:
November 10, 2022Posted by China BriefingWritten by Yi WuReading Time: 5 minutes
Biopharma, short for biopharmaceuticals, are medical products produced using biotechnology (or biotech). Typical biopharma products include pharmaceuticals generated from living organisms, vaccines, gene therapy, etc.
An important subsector of biotech, China’s biopharma industry has much attention home and abroad, especially after Chinese companies developed multiple COVID-19 vaccines now in wide circulation. Market capitalization of Chinese biopharma companies grew to over US$200 billion in 2020 from US$1 billion in 2016.
With China’s rapidly aging population and a growing affluent middle-class, the country’s biopharma industry presents challenging but compelling opportunities to investors.
In this article, we discuss the market size, growth drivers, and global competition facing China’s biopharma industry and suggest potential investment paths.
How big is China’s biopharma market?
Biopharmaceuticals in China is a lucrative business, with significant domestic demand due to an aging population and expanding household budgets for quality products and services as people’s living standards improve.
China’s healthcare market is predicted to expand from around US$900 billion (RMB 6.47 trillion) in 2019 to US$2.3 trillion (RMB 16.53 trillion) in 2030, and its market size is second to only the US. China’s total expenditure on healthcare as a component of its GDP increased to 5.35 percent in 2019 from 4.23 percent in 2010.
What are the growth drivers for China’s biopharma industry?
The broader biotech sector is a main focus of the Chinese government’s “Made in China 2025” strategy. The country needs a steady biopharmaceutical industry to address its healthcare needs and to build an internationally competitive and innovative pharmaceutical industry as part of wider economic restructuring. Under the same momentum, on January 30, 2022, nine agencies jointly issued the “14th Five-year Plan for the Development of the Pharmaceuticals Industry” as a guiding document that clarifies the goals and directions for China’s pharmaceutical industry development in the next five years.
Now let’s compare the size of the US biotech market: You can see the US biotech valuation is now similar to the estimated market capitalization of the China market.
The U.S. biotechnology market size was valued at USD 621.55 billion in 2024 and is projected to reach USD 1,794.11 billion by 2033, registering a CAGR of 12.5% from 2024 to 2033. Ongoing government initiatives are the key factors driving the growth of the market. Also, improving approval processes coupled with the favorable reimbursement policies can fuel market growth further.
Key Takeaways:
DNA sequencing dominated this market and held the highest revenue market share of 18% in 2023
The others’ segment is anticipated to grow at the fastest CAGR of 28.1% during the forecast period.
The health segment dominated the market and accounted for the largest revenue market share of 44.13% in 2023.
Bioinformatics is expected to witness the fastest growth, with a CAGR of 17.2% during the forecast period.
The U.S. biotechnology market is witnessing major growth contributed by the increasing adoption and applications of biotechnology in many industries like pharmaceuticals, agriculture, food production, environmental conservation, and energy. In addition, market players in the industry are increasingly focusing on innovations across many fields such as energy, medicine, and materials science using biological processes to overcome challenges and fuel technological advancements. Also, in recent years there has been a notable surge in the utilization of biotechnological methods including DNA fingerprinting, stem cell technology, and genetic engineering propelling the market expansion soon.
‘The bar has risen’: China’s biotech gains push US companies to adapt
A fast-improving pipeline of drugs invented in China is attracting pharma dealmakers, putting pressure on U.S. biotechs and the VC firms that back them.
Soon after starting a new biotechnology company, David Li realized he needed to rethink his strategy.
Li had been conducting the competitive research biotech entrepreneurs typically undertake before soliciting investment. He drew up a list of drug targets that his startup, Meliora Therapeutics, could pursue and checked them against the potential competition.
Li quickly found that biotechs in China were already working on many of the targets he had on his list. Curious, he visited Shanghai and Suzhou and witnessed a buzzing scene of startups set frenetically to task.
“They’re not really thinking about the U.S. at all. They’re just trying to create more value and stay alive to differentiate themselves from the next guy in China,” he said. “They’re moving quick. There are a lot of them and they’re just quite competitive.”
Li’s experience is illustrative of a trend that could pressure biotech companies in the U.S. and alter their drug development strategies. More and more, large pharmaceutical companies are licensing experimental drugs from China. Venture companies are testing similar tactics by launching new U.S. startups around compounds sourced from China’s laboratories. This shift has been sudden, with licensing deals ramping rapidly over the past two years. And it is occurring even as the shadow of U.S.-China competition within biotech grows longer.
Executives and investors interviewed by BioPharma Dive at the J.P. Morgan Healthcare Conference this week share Li’s outlook. They expect such deals will accelerate and, in the process, force U.S. biotechs to work harder to stand out.
“We’ve been warning people for a while, we’re losing our edge,” said Paul Hastings, CEO of cell therapy maker Nkarta and former chair of the U.S. lobbying group the Biotechnology Innovation Organization. “Innovation is now showing up on our doorstep.”
There’s perhaps no clearer example of this than ivonescimab, a drug developed by China-based Akeso Therapeutics and licensed by U.S.-based Summit Therapeutics. Recent results from a lung cancer study run in China showed ivonescimab outperformed Keytruda, Merck’s dominant immunotherapy and currently the pharmaceutical industry’s most lucrative single product.
The finding “put a huge focus on what’s happening in China,” said Boris Zaïtra, head of business development at Roche, which sells a rival to Keytruda.
Fast-moving research
Today’s deal boom has roots in efforts by the Chinese government to upgrade the country’s biotech capabilities by upping investment in technological innovation. In the life sciences, the initiative provided funding, discounted or even free laboratory space and grants to support what Li described as a “robust ecosystem” of biotechs.
The results are clear. Places like Shanghai and Suzhou are home to a skilled workforce of scientists and hundreds of homegrown companies that employ them. Science parks akin to the U.S. biotech hubs of Cambridge, Massachusetts and San Francisco have sprouted up.
Chinese companies generally can move faster, and at a lower cost, than their U.S. counterparts. Startups can go from launch to clinical trials in 18 months or less, compared to a few years in the U.S., Li estimated. Clinical trial enrollment is speedy, while staffing and supply chain costs are lower, helping companies move drugs along more cost effectively.
“If you’re a national company within China running a trial, just by virtue of the networks that you work within, you pay a fraction of what we pay, and the access to patients is enough that you can go really fast,” said Andy Plump, head of research at Takeda Pharmaceutical. “All of those are enablers.”
And what they’ve enabled is a large and growing stockpile of drug prospects, many of which are designed as “me too better” versions of existing medicines, analysts at the investment bank Jefferies wrote in a December report. Initially focused in oncology, China-based companies are now churning out high-quality compounds across multiple therapeutic areas, including autoimmune conditions and obesity.
“There was a huge boom of investment in China, cost of capital was very low, and all these companies blew out huge pipelines,” said Alexis Borisy, a biotech investor and founder of venture capital firm Curie.Bio. ”Anything that anybody was doing in the biotech and pharmaceutical industry, you could probably find 10 to 50 versions of it across the China ecosystem.”
Me-toos become me-betters
For years now, Western biopharma executives have scouted the pipelines of China’s biotech laboratories — exploration that yielded a smattering of licensing deals and research collaborations. Borisy was among them, starting in 2020 a company called EQRx that sought to bring Chinese versions of already-approved drugs to the U.S. and sell them for less. EQRx’s plan backfired amid scrutiny by the U.S. Food and Drug Administration of medicines tested only in people from a single country.
Now, however, the pace of deals has accelerated rapidly. There are a few reasons for this. According to Plump, one is the improving quality of the drug compounds being developed. The “me toos” are becoming “me betters” that could surpass available therapies and earn significant revenue for companies — like BeiGene’s blood cancer drug Brukinsa, which, in new prescriptions for the treatment of leukemia, overtook two established medicines of the same type last year.
Another reason, Plump said, is that China-based companies are becoming more innovative, studying drug targets that might not have yet yielded marketed medicines, or for which the most advanced competition is in early testing. Li notes how Chinese companies are going after harder “engineering problems,” like making complex, multifunctional antibody drugs, or antibody-drug conjugates.
“There are so many [companies] that the new assets are going to keep coming,” Li said.
Much as in the U.S., China-based biotechs are also fighting for funding, pushing them to consider licensing deals with multinational pharma companies. At the same time, these pharmas are hunting for cheap medicines they can plug into their pipelines ahead of looming patent cliffs. The two trends are “colliding,” said Kristina Burow, a managing director with Arch Venture Partners. “I don’t see an end to that.”
The statistics bear Burow’s view out. According to Jefferies, the number and average value of deals for China-developed drugs reached record levels last year. Another report, from Stifel’s Tim Opler, showed that pharma companies now source about one-third of their in-licensed molecules from China, up from around 10% to 12% between 2020 and 2022.
“I see huge opportunities for us to partner and work together with Chinese companies,” said Plump, of Takeda.
“There’s been a lot of really good, high quality molecules and data that have emerged from China over the last couple of years,” said Robert Plenge, the head of research at Bristol Myers Squibb. “It’s also no longer just simply repeating what’s been done with the exact same type of molecule.”
Geopolitical risks
These deals are happening against an uncertain backdrop. The U.S. Congress has spent the last year or so kicking around iterations of the Biosecure Act, a bill that would restrict U.S. biotechs from working with certain China-based drug contractors. A committee in the House of Representatives is calling for new limits on clinical trials that involve Chinese military hospitals. And the incoming Trump administration has threatened tariffs that could ripple across industrial sectors.
“We don’t know what this new administration is going to do,” said Jon Norris, a managing director at HSBC Innovation Banking.
The Biosecure Act “keeps going sideways,” added Hastings, who believes that any impact from the legislation, if passed, would be minimal. Instead, Hastings wonders if future tariffs may be more problematic. “There will be tariffs on other goods coming from China. Does that include raw materials and innovation? It’s hard to imagine that it won’t,” he said.
But executives and investors expect deals to continue, meaning U.S. biotechs will have to do more to compete.
“U.S. companies will need to figure out what it is they’re able to bring to the table that others can’t,” said Burow, of Arch.
Borisy said startups working on first-of-their-kind drugs need to be more secretive than ever. “Do not publish. Do not present at a scientific meeting. Do not put out a poster. Try to make your initial patent filing as obtuse as possible,” he cautioned.
“The second that paper comes out, or poster at any scientific meeting, or talk or patent, assume it has launched a thousand ships.”
Those that are further along should assume companies in China will be quick on their heels with potentially superior drugs. “The day when you could come out with a bad molecule and open up a field is over,” he said.
Greater competition isn’t necessarily a bad thing, according to Neil Kumar, CEO of BridgeBio Pharma. Drug development could become more efficient as pharmas acquire medicines from a “cheaper” starting point and advance them more quickly.
Venture dollars could be directed towards newer ideas, rather than standing up a host of similar companies.“If all of a sudden this makes us less ‘lemming-like,’” Kumar said, “I have no problem with that.”
Li similarly argues that, going forward, U.S. companies need to focus on “novelty and innovation.” At his own company, Li is now working on things “we felt others were not able to access.”
“The game has always been the same. Bring something super differentiated to market,” he said. But “the bar has risen.”
Gwendolyn Wu and Jacob Bell contributed reporting.
Is Chinese Biotechs just Producing Me-Too Drugs or are they Innovating New Molecular Entities?
The following articles explain the areas in which Chinese Biotech is expanding and focused on.
However the sort answer and summary to the aforementioned question is: Definately Chinese Biotechs are innovating at a rapid pace, and new molecular entities and new classes of drugs are outpacing any copycat or mee-too generic drug development.
This article by Joe Renny on LinkedIn focuses on the degree of innovation in Chinese biotech companies. I put the article in mostly its entirety because Joe did an excellent analysis of China’s biotech industry.
Joe Renny: Strategic Growth Leader | Driving M&A, Pharma Partnerships & Innovation | Unlocking the Commercial Potential of Science | Biotech & Pharmaceuticals
China’s biotech sector is in the midst of a stunning surge – its stocks have skyrocketed over 60% this year (outpacing even China’s high-flying tech sector), and the country now has over 1,250 innovative drugs in development, nearly catching up with the U.S. pipeline of ~1,440. Once known mainly for generic manufacturing, China is rapidly emerging as a source of differentiated innovation. Global pharma giants have taken notice: major licensing deals are proliferating as Western drugmakers snap up Chinese-born therapies in fields like oncology, metabolic diseases (obesity/diabetes), and immunology. The excitement is palpable – but a critical question looms beneath the optimism: Can this wave of innovation meaningfully improve the pharmaceutical industry’s return on investment (ROI)? In other words, will China’s biotech boom fix the underlying economics of drug development, or are the same old ROI challenges here to stay?
From Copycats to Cutting-Edge: China’s Rapid Ascent in Biotech
In the past decade, China’s pharma landscape has transformed from copycat chemistry to cutting-edge biotech. The sheer scale of innovation is unprecedented. A recent analysis found China had over 1,250 novel drug candidates enter development in 2024, far surpassing the EU and nearly reaching U.S. levels. This is a remarkable jump from just a few years ago – back in 2015, China contributed only ~160 compounds globally. Reforms to streamline drug approvals and massive R&D investments (spurred by initiatives like Made in China 2025) have unleashed a boom led by returnee scientists and ambitious startups.
Importantly, the quality of Chinese innovation has leapt upward alongside quantity. Drugs originating in China are increasingly clearing high bars of efficacy and safety. The world’s strictest regulators, including the U.S. FDA and European EMA, have begun fast-tracking more Chinese-developed drugs with priority reviews and “breakthrough” designations. For example, a cell therapy for blood cancer developed by China’s Legend Biotech won FDA approval (marketed by Johnson & Johnson) and is considered superior to a rival U.S. therapy. Another China-origin drug – Akeso Inc.’s novel cancer antibody that outperformed Merck’s Keytruda in trials – triggered a global wave of interest and a $500 million licensing deal in 2022. In short, China is no longer just a low-cost manufacturing base; it’s producing world-class treatments that Big Pharma is eager to get its hands on.
This trend is also evident in the stock markets. After a four-year slump, Chinese biotech stocks have roared back, becoming one of Asia’s best-performing sectors in 2025. The Hang Seng Biotech Index in Hong Kong is up over 60% since January, vastly outperforming broader tech indices. Investors are excited by signals that China is becoming a true global hub for biopharma innovation. According to one analyst, “China biotech is now a disruptive force reshaping global drug innovation… The science is real, the economics are compelling, and the pipeline is starting to deliver”. All of this represents a fundamental shift in the industry’s centre of gravity – and perhaps a new source of competitive pressure on Western incumbents.
Western Pharma’s Response: Licensing Deals and Partnerships Accelerate
Global pharmaceutical companies aren’t standing on the sidelines – they’re rushing to collaborate with and invest in Chinese biotechs. In fact, U.S. and European drugmakers have dramatically stepped up licensing deals to tap China’s innovations. Through the first half of 2025 alone, U.S. companies signed 14 licensing agreements worth up to $18.3 billion for Chinese-origin drugs, a huge jump from just 2 such deals in the same period a year earlier. Many of these partnerships involve potential blockbusters in cancer, metabolic disorders, and other areas where Chinese R&D is making leaps.
Oncology: China has become a hotbed for cancer drug innovation, especially with advanced biologics like bispecific antibodies. In May 2025, Pfizer paid a record $1.25 billion upfront to license a PD-1/VEGF bispecific antibody from China’s 3SBio (a deal worth up to $6 billion with milestones). Weeks later, Bristol Myers Squibb struck an $11.5 billion alliance for a similar immunotherapy developed in China. Virtually every active clinical trial for certain cutting-edge cancer combos (like PD-1/VEGF drugs) now originates in China, making it a goldmine for Western firms seeking the next breakthrough. AstraZeneca, Merck, Novartis, and others have all scooped up Chinese cancer therapies in recent years as they cast their nets wider for innovation.
Metabolic & Obesity Drugs: Western pharma is also eyeing China’s contributions in metabolic diseases. Notably, Merck licensed a Chinese-developed GLP-1 oral drug (for diabetes/obesity) from Hansoh Pharma in late 2022 for up to $1.7 billion. And in 2025, Regeneron paid $80 million upfront (in a deal worth up to $2 billion) for rights to an experimental obesity drug from Hansoh. These deals underscore that Chinese labs are producing competitive candidates in the red-hot obesity/diabetes arena – an area of huge global market potential.
Autoimmune & Other Areas: While oncology leads, Chinese biotechs are also advancing novel therapies in immunology and autoimmune diseases. For example, multiple deals in 2024–25 have focused on inflammatory conditions and neurology, indicating breadth in China’s pipeline. As one industry banker observed, roughly one-third of all new assets licensed by large pharmas in 2024 originated from China, and this could rise to 40–50% in coming years. In other words, nearly half of Big Pharma’s in-licensed pipeline may soon be sourced from China – a radical change from a decade ago.
Underpinning this deal frenzy is a stark reversal of roles: China has shifted from mostly importing therapies to now exporting its homegrown innovations. Back in 2015, Chinese companies mainly signed “license-in” deals to bring foreign drugs to China. But by 2024, nearly half of China’s transactions were license-out deals, with Chinese firms granting global rights to their own drugs. In 2024 alone, Chinese biotechs out-licensed 94 novel projects to overseas partners, often at early clinical stages. This boom in outbound deals – especially for high-value cancer therapies (like ADCs and bispecific antibodies) – highlights China’s maturation as an innovation engine.
In a scientific paper published by Yan et al, the authors provided a comparative analysis between the US, EU, and China of new approved drugs from the years 2019- 2023.
Yan Y, Guo X, Li Z, Shi W, Long M, Yue X, Kong F, Zhao Z. New Drug Approvals in China: An International Comparative Analysis, 2019-2023. Drug Des Devel Ther. 2025 Apr 3;19:2629-2639. doi: 10.2147/DDDT.S514132.
In the paper, the authors retrieved approval data from from the National Medical Products Administration (NMPA), Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA), including information on the generic name, trade name, applicants, target, approval date, drug type, approved indications, therapeutic area, the highest R&D status in China, and special approval status. The approval time gaps between China and other regions were calculated.
Results: Interestingly, China led with 256 new drug approvals, followed by the US (243 approvals), the EU (191 approvals), and Japan (187 approvals). Oncology, hematology, and infectiology were identified as the leading therapeutic areas globally and in China. Notably, PD-1 and EGFR inhibitors saw substantial approval, with 8 drugs each approved by the NMPA. China significantly reduced the approval timeline gap with the US and the EU since 2021, approving 15 first-in-class drugs during the study period.
The authors concluded, that despite the COVID-19 years, Chinese biotech has rapidly innovated in the biotech space and made up for the time gaps with increased research productivity.
Number of drug approvals by regulatory agency. Source: Yan Y, Guo X, Li Z, Shi W, Long M, Yue X, Kong F, Zhao Z. New Drug Approvals in China: An International Comparative Analysis, 2019-2023. Drug Des Devel Ther. 2025 Apr 3;19:2629-2639. doi: 10.2147/DDDT.S514132.
A comparison of drug approvals in US and China, as percentage of clinical use in various disease states. Source: Yan Y, Guo X, Li Z, Shi W, Long M, Yue X, Kong F, Zhao Z. New Drug Approvals in China: An International Comparative Analysis, 2019-2023. Drug Des Devel Ther. 2025 Apr 3;19:2629-2639. doi: 10.2147/DDDT.S514132.
China Biotech Innovation Hubs
The following was generated by Google AI
China has several prominent biotech innovation hubs, with the Yangtze River Delta region (including Shanghai, Suzhou, and Hangzhou) and Beijing being particularly strong. These regions leverage strong academic and research institutions, high R&D expenditures, and significant investment to foster a vibrant biotech ecosystem.
Here’s a closer look at some key hubs:
Yangtze River Delta:
Shanghai: A major hub with a focus on oncology, cell and gene therapy, and a strong track record of biotech IPOs. It’s home to the Zhangjiang Biotech and Pharmaceutical Base, known as China’s “Medicine Valley”.
Suzhou: Known for the BioBay industrial park, which houses numerous biotechnology and technology companies.
Hangzhou: Features a growing biotech sector, with companies like Hangzhou DAC Biotech.
Wuhan: Wuhan Biolake is a key player in areas like biomedicine, bio-agriculture, and bio-manufacturing.
Shenzhen: Features an innovation hub that supports synthetic biology startups and accelerates the commercialization of new biotech materials.
Key Factors Driving Growth:
Strong government support and investment: China has been actively promoting the growth of its biotech sector through various initiatives and funding programs.
High R&D expenditures: China is investing heavily in research and development, particularly in the tech, manufacturing, and biotech sectors.
Increasingly strong talent pool: China is producing a growing number of STEM graduates and globally recognized researchers.
AI and technology integration: AI is being applied to drug design and discovery, accelerating innovation.
Focus on specific areas: Different hubs are specializing in areas like oncology, regenerative medicine, and medical devices.
Overall, China’s biotech sector is experiencing rapid growth and is becoming a significant player in the global landscape, with these hubs leading the way.
Articles of Interest on International Biotech Venture Investment on the Open Access Scientific Journal Include:
Paul G. Yock, Recipient of the 2024 National Medal of Technology and Innovation, Professor of Cardiovascular Medicine at Stanford Medical School
Curator: Aviva Lev-Ari, PhD, RN
NMTI Citation
Paul G. Yock, Stanford University
For innovations in interventional cardiology. Paul Yock’s visionary work understanding the human heart is applied around the world today to improve patient care and save countless lives. His creation of the Biodesign approach to training future leaders of biotechnology and health care ensures his insights and experience will benefit generations to come.
Recipients of the 2024 National Medal of Technology and Innovation, administered by President Joe Biden and Laureates of the National Medal of Science, administered by NSF
Paul Yock – The Martha Meier Weiland Professor in the School of Medicine and Professor of Bioengineering, Cardiovascular Medicine, and (by courtesy) of Mechanical Engineering
Scientific Leadership Council Member, Clark Center Faculty
Dr. Paul Yock is the Martha Meier Weiland Professor of Medicine and founding co-chair of Stanford’s Department of Bioengineering, with courtesy appointments in the Graduate School of Business and the Department of Mechanical Engineering. He is also founder and director of the Stanford Byers Center for Biodesign.
After completing his undergraduate and graduate studies at Amherst College and Oxford, respectively, Paul received his MD from Harvard Medical School followed by internship and residency training at the University of California, San Francisco and a fellowship in cardiology at Stanford. He began his faculty career as an interventional cardiologist at UCSF and then moved to Stanford in 1994.
Paul has authored over 300 peer-reviewed publications, chapters and editorials, two textbooks, and over 50 US patents. He is internationally known for his work in inventing, developing, and testing new devices, including the Rapid Exchange™ stenting and balloon angioplasty system, which is now the primary system in use worldwide. He also invented the fundamental approach to intravascular ultrasound imaging and founded Cardiovascular Imaging Systems (CVIS), later acquired by Boston Scientific. Recent awards include the Transcatheter Therapeutics (TCT) Career Achievement Award, the American College of Cardiology Distinguished Scientist Award, and the National Academy of Engineering’s 2018 Bernard M. Gordon Prize for Innovation in Engineering and Technology Education.
Bio
Yock began his faculty career as an interventional cardiologist at UC San Francisco and then moved to Stanford in 1994. Yock is known for his work in inventing, developing and testing new devices, including the
Rapid Exchange angioplasty and stenting system, which is the primary approach used worldwide. Yock also authored the fundamental patents for
intravascular ultrasound imaging, conducted the initial clinical trials and
established the Stanford Center for Research in Cardiovascular Interventions as a core laboratory for analysis of intravascular ultrasound clinical studies. He also
invented the Smart Needle and
is a co-inventor of the strain-reduction patch for wound healing.
Yock was founding Co-Chair of the Department of Bioengineering and continues research related to new device technologies.
Yock also was the founding director of the Stanford Byers Center for Biodesign – dedicated to advanced training in medical technology innovation.
Abstract: A catheter is provided for insertion in the he blood vessel of a patient for ultrasonically imaging the vessel wall. The catheter includes a tubular element and an internally housed drive cable for effective circumferential scan about the catheter of an ultrasonic generating means. Both the tubular element and the drive cable are of a size and flexibility sufficient to permit their introduction into the vessel and subsequent advancement through the vessel to the location of the vessel wall where imaging is desired.
Abstract: Devices and methods for obtaining a three-dimensional image of an internal body site are provided. The subject devices are elongated structures (e.g., catheters) having a plurality of ultrasonic transducers located at their distal end. The configuration of the plurality of ultrasonic transducers may be reversibly changed from a first to a second configuration, where the radial aperture of the plurality of ultrasonic transducers is greater in the second configuration than in the first configuration. A feature of certain embodiments of the subject invention is that the plurality of ultrasonic tranducers are configured in the second configuration as a substantially continuous set of transducers. In using the subject imaging devices, the distal end of the devices is positioned at the internal body site of interest while the plurality of ultrasonic transducers is in the first configuration.
Type: Application
Filed: November 10, 2004
Publication date: September 29, 2005
Inventors: Richard Popp, Ali Hassan, Christian Eversull, Jeremy Johnson, Paul Yock
Abstract: Apparatus for introduction into the vessel of a patient comprising a guiding catheter adapted to be inserted into the vessel of the patient and a device adapted to be inserted into the guiding catheter. The device includes a flexible elongate member and a sleeve carried by the flexible elongate member near the distal extremity thereof and extending from a region near the distal extremity to a region spaced from the distal extremity of the flexible elongate element. The device also includes a guide wire adapted to extend through the sleeve so that the guide wire extends rearwardly of the sleeve extending alongside of and exteriorally of the flexible elongate element into a region near the proximal extremity of the flexible elongate element.
Abstract: A catheter system for localized or semi-localized administration of agents through the wall of a blood vessel is provided. Various catheter system constructions which use at least one expandable occluding device to create an isolated region are provided. Constructions using one catheter and one occlusion device are provided, along with constructions using two catheters and multiple occlusion devices. The catheter system may include a catheter with a variable stiffness along its length. The catheter system may also include a guide wire integrated with an inner catheter. The catheter can infuse the agent into the blood vessel in a pressure regulated manner. Methods for delivery and infusion of the agent within a blood vessel are also provided.
Type: Application
Filed: February 20, 2004
Publication date: March 17, 2005
Inventors: Michi Garrison, Todd Brinton, Peter Campbell, Steve Roe, Stephen Salmon, Paul Yock
Abstract: Apparatus and method are described for introducing an imaging catheter to the coronary vasculature. A guiding catheter is introduced so that the distal end of the guiding catheter engages a coronary os. The distal end of the guiding catheter is shaped so that a mark on the distal end is oriented in a predetermined orientation relative to the coronary vasculature. An imaging catheter is then introduced through the guiding catheter and an image of the mark is produced with the imaging catheter while in the guiding catheter. In this manner, the relative orientation of the produced image and the coronary vasculature is known.
Type: Grant
Filed: October 20, 1997
Date of Patent: March 9, 1999
Assignee: Cardiovascular Imaging Systems, Inc.
Inventors: Paul Yock, Yue-Teh Jang, Stephen M. Salmon
Abstract: Apparatus and method are described for introducing an imaging catheter to the coronary vasculature. A guiding catheter is introduced so that the distal end of the guiding catheter engages a coronary os. The distal end of the guiding catheter is shaped so that a mark on the distal end is oriented in a predetermined orientation relative to the coronary vasculature. An imaging catheter is then introduced through the guiding catheter and an image of the mark is produced with the imaging catheter while in the guiding catheter. In this manner, the relative orientation of the produced image and the coronary vasculature is known.
Type: Grant
Filed: September 4, 1996
Date of Patent: March 10, 1998
Assignee: Cardiovascular Imaging Systems Inc.
Inventors: Paul Yock, Yue-Teh Jang, Stephen M. Salmon
Abstract: Apparatus and method are described for introducing an imaging catheter to the coronary vasculature. A guiding catheter is introduced so that the distal end of the guiding catheter engages a coronary os. The distal end of the guiding catheter is shaped so that a mark on the distal end is oriented in a predetermined orientation relative to the coronary vasculature. An imaging catheter is then introduced through the guiding catheter and an image of the mark is produced with the imaging catheter while in the guiding catheter. In this manner, the relative orientation of the produced image and the coronary vasculature is known.
Type: Grant
Filed: June 6, 1995
Date of Patent: January 28, 1997
Inventors: Paul Yock, Yue-Teh Jang, Stephen M. Salmon
Recipients of the 2024 National Medal of Technology and Innovation, administered by President Joe Biden and Laureates of the National Medal of Science, administered by NSF
Reporter: Aviva Lev-Ari, PhD, RN
NSF congratulates recipients of the prestigious National Medal of Science and National Medal of Technology and Innovation awards
January 7, 2025
President Joe Biden revealed the newest honorees of the recipients of the National Medal of Science and the National Medal of Technology and Innovation. The laureates were honored during a prestigious ceremony at the White House last Friday. These esteemed awards celebrate groundbreaking contributions that have advanced knowledge, driven progress and tackled the world’s most critical needs while underscoring the vital role of research and creativity in fostering a brighter, more sustainable future.
Among this year’s honorees are several distinguished individuals with ties to NSF. John Dabiri, Feng Zhang and Jennifer Doudna are former recipients of NSF’s prestigious Alan T. Waterman Award, which recognizes exceptional early-career scientists and engineers for their transformative contributions. Keivan Stassun, a current member of the National Science Board and a former member of NSF’s Committee for Equal Opportunity in Science and Engineering, has been a leader in advancing diversity, equity and inclusion in STEM.
These honorees exemplify NSF’s enduring role in fostering groundbreaking research, nurturing talent and driving innovation across the scientific and engineering enterprise. Among the recipients, NSF has funded, at some point in their careers, all 14 recipients of the National Medal of Science and eight of the nine recipients of the National Medal of Technology and Innovation.
The 2024 National Medal of Technology and Innovation (NMTI) Laureates were honored and celebrated at the White House on Friday, January 3 for their trailblazing achievements in science, technology, and innovation.
Nine individuals and two companies were recognized for their groundbreaking accomplishments, ranging from the “camera-on-a-chip” technology integrated into most smartphones today, to improvements in mammogram and other optoelectric technologies that can better detect breast cancer, to the mRNA vaccines that treated a global pandemic, and more.
Acting Under Secretary of Commerce for Intellectual Property and Acting Director of the U.S. Patent and Trademark Office (USPTO) Derrick Brent delivered remarks at the special medaling ceremony of the NMTI, which is administered by the USPTO. Director of the White House Office of Science and Technology Policy Arati Prabhakar presented the Laureates with their NMTI medals alongside 14 Laureates of the National Medal of Science, administered by the National Science Foundation (NSF).
“These medals celebrate some of your greatest achievements,” said Acting USPTO Director Brent in his remarks. “Yet, they also bestow upon you a unique responsibility: mentoring and inspiring the next generation of innovators. Paying it forward is our obligation to history, and to our future.”
Recipients of the 2024 National Medal of Technology and Innovation
Martin Cooper, Illinois Institute of Technology and Dyna LLC
For inventing the handheld cellular phone and revolutionizing worldwide communications. Martin Cooper delivered breakthroughs for cellular telephone and network technologies that have dramatically altered the world as we know it—changing our sense of proximity to others around the globe, the way we perceive ourselves, and our universe of possibilities.
Jennifer A. Doudna, Innovative Genomics Institute
For development of the revolutionary CRISPR-Cas9 gene editing technology, with widespread applications in agriculture and health research. Jennifer Doudna’s innovations are fundamentally transforming our collective health and well-being and have contributed to the development of treatments for sickle cell disease, cancer, type 1 diabetes, and more.
Eric R. Fossum, Dartmouth College
For inventing world-changing “camera-on-a-chip” technology that has turned billions of phones into cameras and transformed everyday life. When NASA needed smaller cameras to take into space, Eric Fossum developed a groundbreaking image sensor and then worked to use it in medicine, business, security, entertainment, and more, while also mentoring legions of young entrepreneurs pushing the bounds of innovation.
Paula T. Hammond, Massachusetts Institute of Technology
For groundbreaking research in nanoscale engineering. Paula Hammond pioneered novel materials that have revolutionized how we deliver cancer drugs to cancer patients and how we store solar energy. An inventor and mentor, Paula has paved the way for a more diverse, inclusive scientific workforce that taps into the full talents of our nation.
Kristina M. Johnson, Johnson Energy Holdings, LLC
For pioneering work that has transformed optoelectronic devices, 3D imaging, and color management systems. Kristina Johnson has channeled her ingenuity and optimism into developing technologies that have improved processes for mammograms and pap smears, promoted clean energy, elevated the entertainment industry, and more—while working to expand the field of STEM for all Americans.
Victor B. Lawrence, Bell Labs and Stevens Institute of Technology
For a lifetime of prolific innovation in telecommunications and high-speed internet technology. Victor Lawrence has dedicated his life to expanding the realm of possibilities worldwide. By bringing fiber-optic connectivity to the African continent and improving global internet accessibility, he has enhanced the security, opportunity, and well-being of people around the world.
David R. Walt, Harvard Medical School
For setting a new gold standard in genetic analysis that is transforming medical research, care, and well-being. David Walt pioneered the use of microwell arrays to analyze thousands of genes at once and detect single molecules, making DNA sequencing exponentially more accurate and affordable, and promising simple biomarker blood tests that may revolutionize our approach to cancer and other conditions—giving people renewed hope.
Paul G. Yock, Stanford University
For innovations in interventional cardiology. Paul Yock’s visionary work understanding the human heart is applied around the world today to improve patient care and save countless lives. His creation of the Biodesign approach to training future leaders of biotechnology and health care ensures his insights and experience will benefit generations to come.
Feng Zhang, Massachusetts Institute of Technology
For development of the revolutionary CRISPR-Cas9 gene editing technology, with widespread applications in agriculture and health research. Feng Zhang’s innovations are fundamentally transforming our collective health and well-being and have contributed to the development of treatments for sickle cell disease, cancer, type 1 diabetes, and more.
National Medal of Technology and Innovation Organization Recipients
Moderna, Inc.
For saving millions of lives around the world by harnessing mRNA vaccine technology to combat a global pandemic. In 2020, Moderna rapidly developed and deployed a COVID-19 mRNA vaccine that was essential to ending the COVID-19 pandemic, opening new frontiers in immunology and advancing America’s leadership in research innovation.
Pfizer Inc.
For saving millions of lives around the world by harnessing mRNA vaccine technology to combat a global pandemic. In 2020, Pfizer rapidly developed and deployed a COVID-19 mRNA vaccine that was essential to ending the COVID-19 pandemic, opening new frontiers in immunology and advancing America’s leadership in research innovation.
On January 3, 2025, President Biden honored the nation’s leading scientists, technologists, and innovators
Jennifer Doudna, professor of chemistry and molecular and cell biology, and a Nobel Laureate in chemistry, has been honored by President Biden with the National Medal of Technology and Innovation as a pioneer of CRISPR gene editing. This award is one of the nation’s highest honors for exemplary achievement and leadership in science and technology. Read the White House briefing(link is external) to read about Doudna and the other recipients of the National Medal of Technology and Innovation.
14 Laureates of the National Medal of Science, administered by the National Science Foundation (NSF).
Huda Akil: University of Michigan
Barry Barish: California Institute of Technology
Gebisa Ejeta: Purdue University
Eve Marder: Brandeis University
Gregory Petsko: Harvard Medical School and Brigham and Women’s Hospital
Myriam Sarachik: The City College of New York
Subra Suresh: Massachusetts Institute of Technology and Brown University
Shelley Taylor: UCLA
Sheldon Weinbaum: The City College of New York
Richard B. Alley: Pennsylvania State University
Larry Martin Bartels: Vanderbilt University
Bonnie L. Bassler: Princeton University
Angela Marie Belcher: Massachusetts Institute of Technology
Helen M. Blau: Stanford University
The 2024 National Medal of Science recipients made contributions in many fields, including astronomy, biology, and engineering.
Astronomy
Wendy Freedman
University of Chicago astronomer who studied the Hubble constant and the expansion of the universe
Keivan Stassun
Vanderbilt University astrophysicist who studied star formation and exoplanets
Biology
Teresa Woodruff
Michigan State University professor who studied ovarian biology, fertility preservation, and women’s health
Helen Blau
Stanford University researcher who contributed to the development of gene editing techniques
Engineering
Ingrid Daubechies
Duke University mathematician who developed wavelet theory, which improved signal processing and image compression
John Dabiri
California Institute of Technology aeronautics engineer who studied fluid mechanics and biomechanics, particularly in designing wind turbines
Emery Brown
Massachusetts General Hospital professor who studied the effects of anesthesia on the brain
The National Medal of Science is the highest science award in the United States. The NSF administers the award, which is selected by a presidential committee.
Established in 1959, the National Medal of Science is administered for the White House by the National Science Foundation. The medal recognizes individuals who have made outstanding contributions to science and engineering.
The National Medal of Technology and Innovation was established in 1980 and is administered for the White House by the U.S. Department of Commerce’s Patent and Trademark Office. It recognizes individuals and organizations for their lasting contributions to America’s competitiveness and quality of life and helped strengthen the nation’s technological workforce.
OpenAI and ChatGPT face unique legal challenges over CopyRight Laws
Reporter: Stephen J. Williams, PhD
In previous weeks on this page and on the sister page ChatGPT applied to Cancer & Oncology, a comparison between ChatGPT, OpenAI, and Google large language model based search reveals a major difference between the algorithms with repect to citation and author credit. In essence while Google returns a hyperlink to the information used to form an answer, ChatGPT and OpenAI are agnostic in crediting or citing the sources of information used to generate answers to queries. With ChatGPT the source data, or more specifically the training set used for the AI algorithm is never properly cited in the query results.
This, as outlined below, is making a big problem when it comes to copyright law and intelectual property. Last week a major lawsuit has been filed because of incorrect and citing, referencing, and attribution of ownership of intellectual property.
As Miles Klee reports in The Rolling Stone
“OpenAI faces allegations of privacy invasion and violating authors’ copyright — but this may be just the tip of the iceberg”
The burgeoning AI industry has just crossed another major milestone, with two new class-action lawsuits calling into question whether this technology violates privacy rights, scrapes intellectual property without consent and negatively affects the public at large. Experts believe they’re likely to be the first in a wave of legal challenges to companies working on such products. Both suits were filed on Wednesday and target OpenAI, a research lab consisting of both a nonprofit arm and a corporation, over ChatGPT software, a “large language model” capable of generating human-like responses to text input. One, filed by Clarkson, a public interest law firm, is wide-ranging and invokes the potentially “existential” threat of AI itself. The other, filed by the Joseph Saveri Law Firm and attorney Matthew Butterick, is focused on two established authors, Paul Tremblay and Mona Awad, who claim that their books were among those ChatGPT was trained on — a violation of copyright, according to the complaint. (Saveri and Butterick are separately pursuing legal action against OpenAI, GitHub and Microsoft over GitHub Copilot, an AI-based coding product that they argue “appears to profit from the work of open-source programmers by violating the conditions of their open-source licenses.”)
Saveri and Butterick’s latest suit goes after OpenAI for direct copyright infringement as well as violations of the Digital Millennium Copyright Act (DMCA). Tremblay (who wrote the novel The Cabin at the End of the World) and Awad (author of 13 Ways of Looking at a Fat Girl and Bunny) are the representatives of a proposed class of plaintiffs who would seek damages as well as injunctive relief in the form of changes to ChatGPT. The filing includes ChatGPT’s detailed responses to user questions about the plots of Tremblay’s and Awad’s books — evidence, the attorneys argue, that OpenAI is unduly profiting off of infringed materials, which were scraped by the chat bot. While the suits venture into uncharted legal territory, they were more or less inevitable, according to those who research AI tech and privacy or practice law around those issues.
“[AI companies] should have and likely did expect these types of challenges,” says Ben Winters, senior counsel at the Electronic Privacy Information Center and head of the organization’s AI and Human Rights Project. He points out that OpenAI CEO Sam Altman mentioned a few prior “frivolous” suits against the company during his congressional testimony on artificial intelligence in May. “Whenever you create a tool that implicates so much personal data and can be used so widely for such harmful and otherwise personal purposes, I would be shocked there is not anticipated legal fire,” Winters says. “Particularly since they allow this sort of unfettered access for third parties to integrate their systems, they end up getting more personal information and more live information that is less publicly available, like keystrokes and browser activity, in ways the consumer could not at all anticipate.”
They say that OpenAI defendants “profit richly” from the use of their copyrighted materials and yet the authors never consented to the use of their copyrighted materials without credit or compensation.
ChatGPT lawsuit says OpenAI has previously utilized illegal ‘shadow libraries’ for AI training datasets
Although many types of material are used to train large language models, “books offer the best examples of high-quality longform writing,” according to the ChatGPT lawsuit.
OpenAI has previously utilized books for its AI training datasets, including unpublished novels (the majority of which were under copyright) available on a website that provides the materials for free. The plaintiffs suggest that OpenAI may have utilized copyrighted materials from “flagrantly illegal shadow libraries.”
Tremblay and Awad note that OpenAI’s March 2023 paper introducing GPT-4 failed to include any information about the training dataset. However, they say that ChatGPT was able to generate highly accurate summaries of their books when prompted, suggesting that their copyrighted material was used in the training dataset without their consent.
They filed the ChatGPT class action lawsuit on behalf of themselves and a proposed class of U.S. residents and entities that own a U.S. copyright for any work used as training data for the OpenAI language models during the class period.
Earlier this year, a tech policy group urged federal regulators to block OpenAI’s GPT-4 AI product because it does not meet federal standards.
What is the general consensus among legal experts on generative AI and copyright?
Given the hype around ChatGPT and the speculation that it could be widely used, it is important to understand the legal implications of the technology. First, do copyright owners of the text used to train ChatGPT have a copyright infringement claim against OpenAI? Second, can the output of ChatGPT be protected by copyright and, if so, who owns that copyright?
To answer these questions, we need to understand the application of US copyright law.
Copyright Law Basics
Based on rights in Article I, Section 8 of the Constitution, Congress passed the first copyright law in 1790. It has been amended several times. Today, US copyright law is governed by the Copyright Act of 1976. This law grants authors of original works exclusive rights to reproduce, distribute, and display their work. Copyright protection applies from the moment of creation, and, for most works, the copyright term is the life of the author plus 70 years after the author’s death. Under copyright law, the copyright holder has the exclusive right to make copies of the work, distribute it, display it publicly, and create derivative works based on it. Others who want to use the work must obtain permission from the copyright holder or use one of the exceptions to copyright law, such as fair use.
The purpose of copyright law is to incentivize authors to create novel and creative works. It does this by granting authors exclusive rights to control the use of their work, thus allowing them to financially benefit from their works. Copyright law also encourages the dissemination of knowledge by allowing others to use copyrighted works under certain conditions, such as through the fair use doctrine, which allows for limited use of copyrighted material for the purposes of criticism, commentary, news reporting, teaching, scholarship, or research. By protecting the rights of authors and creators while also allowing for the use of copyrighted works for the public benefit, copyright law aims to strike a balance between the interests of authors and the public.
Inputs – Training ChatGPT with Copyrighted Material
ChatGPT was trained on a large training dataset sourced from the internet, including a vast amount of text from websites, articles, books, social media posts, and academic papers. Importantly, ChatGPT was not aware of the source of the data, it only saw the text and learned the patterns and relationships between the words, phrases and sentences. The vast majority of the text used to train ChatGPT was certainly subject to copyright protection—except for text that is in the public domain like facts or discoveries or works whose term of copyright protection has ended.
Did the ChatGPT training process violate the copyright of the original authors? To answer that question we must determine: if during the training process OpenAI copied the underlying works—because copyright infringement requires an act of copying works that are protected by copyright; is the output of ChatGPT a “derivative work” under copyright law; and would such copying or production of a derivate work fall under the “fair use” exception of copyright law.
Copying During Training
We are not aware of publicly available information regarding whether, during the training process, the training text for ChatGPT was copied or simply referenced. Therefore, we asked ChatGPT and received this answer:
Prompt: During the ChatGPT training process, was the underlying training text copied into a OpenAI database?
Answer: During the training process, text from various sources is used to train the ChatGPT model. It is likely that the text was copied into an internal database at OpenAI for the purpose of training the model. However, the training text is typically preprocessed to remove any sensitive information such as personal identifiers, copyrighted text, etc. In addition, the text is also used to train the model and not stored in a database. The model uses the text to learn patterns and structure of the language and once the training is done, it doesn’t require the text anymore.
So, it seems that during the training process, text was copied. It is also interesting that ChatGPT stated that the training text was “preprocessed” to remove any copyrighted text. That seems highly unlikely since otherwise nearly all text would have been removed.
Is ChatGPT Output a Derivative Work?
Under US copyright law, the owner of a copyright has the exclusive right “to prepare derivative works based upon the copyrighted work.” A “derivative work” is “a work based upon one or more preexisting works.” ChatGPT is trained on preexisting works and generates output based on that training.
As Daniel Gervais, a professor at Vanderbilt Law School who specializes in intellectual property law, says, the definition of a derivative work under copyright law “could loosely be used as a definition of machine learning when applied to the creation of literary and artistic productions because AI machines can produce literary and artistic content (output) that is almost necessarily ‘based upon’ a dataset consisting of preexisting works.” Under this view, it seems that all ChatGPT output is a derivative work under copyright law.
On a related point, it is worth noting that in producing its output, ChatGPT is not “copying” anything. ChatGPT generates text based on the context of the input and the words and phrase patterns it was trained on. ChatGPT is not “copying” and then changing text.
What About Fair Use?
Let’s assume that the underlying text was copied in some way during the ChatGPT training process. Let’s further assume that outputs from Chatto are, at least sometimes, derivative works under copyright law. If that is the case, do copyright owners of the original works have a copyright infringement claim against OpenAI? Not if the copying and the output generation are covered by the doctrine of “fair use.” If a use qualifies as fair use, then actions that would otherwise be prohibited would not be deemed an infringement of copyright.
In determining whether the use made of a work in any particular case is a fair use, the factors include:
The purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes.
The nature of the copyrighted work.
The amount and substantiality of the portion used in relation to the copyrighted work as a whole.
The effect of the use upon the potential market for or value of the copyrighted work.
In this case, assuming OpenAI copied copyrighted text as part of the ChatGPT training process, such copying was not for a commercial purpose and had no economic impact on the copyright owner. Daniel Gervais says “it is much more likely than not” that training systems on copyrighted data will be covered by fair use.
In determining if a commercial use will be considered “fair use,” the courts will primarily look at the scope and purpose of the use and the economic impact of such use. Does the use in question change the nature of the underlying copyright material in some material way (described as a “transformative” use) and does it economically impact the original copyright holder?
Without a specific example, it is difficult to determine exactly if a resulting output from ChatGPT would be fair use. The fact that ChatGPT does not copy and has been trained on millions of underlying works, it seems likely most output would be fair use—without using significant portions of any one protected work. In addition, because of the vast corpus of text used to train ChatGPT, it seems unlikely that ChatGPT output will have a negative economic impact on any one copyright holder. But, given the capabilities of ChatGPT, that might not always be the case.
Imagine if you asked ChatGPT to “Write a long-form, coming of age, story in the style of J.K. Rowling, using the characters from Harry Potter and the Chamber of Secrets.” In that case, it would seem that the argument for fair use would be weak. This story could be sold to the public and could conceivably have a negative economic impact on J.K. Rowling. A person that wants to read a story about Harry Potter might buy this story instead of buying a book by J. K. Rowling.
Finally, it is worth noting that OpenAI is a non-profit entity that is a “AI research and deployment company.” It seems that OpenAI is the type of research company, and ChatGPT is the type of research project, that would have a strong argument for fair use. This practice has been criticized as “AI Data Laundering,” shielding commercial entities from liability by using a non-profit research institution to create the data set and train AI engines that might later be used in commercial applications.
Outputs – Can the Output of ChatGPT be Protected by Copyright
Is the output of ChatGPT protected by copyright law and, if so, who is the owner? As an initial matter, does the ChatGPT textual output fit within the definition of what is covered under copyright law: “original works of authorship fixed in any tangible medium of expression.”
The text generated by ChatGPT is the type of subject matter that, if created by a human, would be covered by copyright. However, most scholars have opined, and the US Copyright Office has ruled that the output of generative AI systems, like ChatGPT, are not protectable under US copyright law because the work must be an original, creative work of a human author.
In 2022, the US Copyright Office, ruling on whether a picture generated completely autonomously by AI could be registered as a valid copyright, stated “[b]because copyright law as codified in the 1976 Act requires human authorship, the [AI Generated] Work cannot be registered.” The U.S. Copyright Office has issued several similar statements, informing creators that it will not register copyright for works produced by a machine or computer program. The human authorship requirement of the US Copyright Office is set forth as follows:
The Human Authorship Requirement – The U.S. Copyright Office will register an original work of authorship, provided that the work was created by a human being. The copyright law only protects “the fruits of intellectual labor” that “are founded in the creative powers of the mind.” Trade-Mark Cases, 100 U.S. 82, 94 (1879).
While such policies are not binding on the courts, the stance by the US Copyright Office seems to be in line with the purpose of copyright law flowing from the Constitution: to incentivize humans to produce creative works by giving them a monopoly over their creations for a limited period of time. Machines, of course, need and have no such motivation. In fact, copyright law expressly allows a corporation or other legal entity to be the owner of a copyright under the “work made for hire” doctrine. However, to qualify as a work made for hire, the work must be either work prepared by an employee within the scope of his or her employment, or be prepared by a party who “expressly agrees in a written instrument signed by them that the work shall be considered a work made for hire.” Only humans can be employees and only humans or corporations can enter a legally binding contract—machines cannot.
Other articles of note in this Open Access Scientific Journal on ChatGPT and Open AI Include:
Clarivate Analytics – a Powerhouse in IP assets and in Pharmaceuticals Informercials
Curator and Reporter: Aviva Lev-Ari, PhD, RN
We addressed in the past in several articles the emergence of Clarivate in its new life post Reuters years which ended by a SPAC IPO in 2019. This articles included:
Clarivate Analytics expanded IP data leadership by new acquisition of the leading provider of intellectual property case law and analytics Darts-ip
That moment in June in which Mr Klein and his partners cashed in more than $60m came after the stock had doubled to more than $20, in part thanks to a deal to buy the intellectual property management and technology company CPA Global. Onex and Barings, the two private equity firms that owned Clarivate before it went public via Mr Klein’s Spac, also sold stock at the same time.
Clarivate’s share price has since risen to $27.69, so the value of Mr Klein’s remaining stake has continued to swell and his investor group still holds shares worth $395m. The group also has separate warrants on top further augmenting their potential profit.
See Figure
SPAC IPO, 11/2018, $10/share
–>>> Merger, 3/2019, $10/share
–>>>Clarivate PLC, 11/2020, $27/share
… asymmetry of Spac mathematics: the risk in Spacs falls most heavily on outside shareholders even as the return on investment for sponsors looks very promising indeed.
It worth exploring the synergies embedded in a potential acquisition of LPBI Groups Portfolio of IP Assets by Clarivate Analytics, a publishing company that has the infrastructure needed for promotion of LPBI Group’s content in Pharmaceutical Media, Medicine, Life Sciences and Health care and for Monetization of this content.
With the explosive development of decentralized finance, we witness a phenomenal growth in tokenization of all kinds of assets, including equity, funds, debt, and real estate. By taking advantage of blockchain technology, digital assets are broadly grouped into fungible and non-fungible tokens (NFT). Here non-fungible tokens refer to those with unique and non-substitutable properties. NFT has widely attracted attention, and its protocols, standards, and applications are developing exponentially. It has been successfully applied to digital fantasy artwork, games, collectibles, etc. However, there is a lack of research in utilizing NFT in issues such as Intellectual Property. Applying for a patent and trademark is not only a time-consuming and lengthy process but also costly. NFT has considerable potential in the intellectual property domain. It can promote transparency and liquidity and open the market to innovators who aim to commercialize their inventions efficiently. The main objective of this paper is to examine the requirements of presenting intellectual property assets, specifically patents, as NFTs. Hence, we offer a layered conceptual NFT-based patent framework. Furthermore, a series of open challenges about NFT-based patents and the possible future directions are highlighted. The proposed framework provides fundamental elements and guidance for businesses in taking advantage of NFTs in real-world problems such as grant patents, funding, biotechnology, and so forth.
Introduction
Distributed ledger technologies (DLTs) such as blockchain are emerging technologies posing a threat to existing business models. Traditionally, most companies used centralized authorities in various aspects of their business, such as financial operations and setting up a trust with their counterparts. By the emergence of blockchain, centralized organizations can be substituted with a decentralized group of resources and actors. The blockchain mechanism was introduced in Bitcoin white paper in 2008, which lets users generate transactions and spend their money without the intervention of banks1. Ethereum, which is a second generation of blockchain, was introduced in 2014, allowing developers to run smart contracts on a distributed ledger. With smart contracts, developers and businesses can create financial applications that use cryptocurrencies and other forms of tokens for applications such as decentralized finance (DeFi), crowdfunding, decentralized exchanges, data records keeping, etc.2. Recent advances in distributed ledger technology have developed concepts that lead to cost reduction and the simplification of value exchange. Nowadays, by leveraging the advantages of blockchain and taking into account the governance issues, digital assets could be represented as tokens that existed in the blockchain network, which facilitates their transmission and traceability, increases their transparency, and improves their security3.
In the landscape of blockchain technology, there could be defined two types of tokens, including fungible tokens, in which all the tokens have equal value and non-fungible tokens (NFTs) that feature unique characteristics and are not interchangeable. Actually, non-fungible tokens are digital assets with a unique identifier that is stored on a blockchain4. NFT was initially suggested in Ethereum Improvement Proposals (EIP)-7215, and it was later expanded in EIP-11556. NFTs became one of the most widespread applications of blockchain technology that reached worldwide attention in early 2021. They can be digital representations of real-world objects. NFTs are tradable rights of digital assets (pictures, music, films, and virtual creations) where ownership is recorded in blockchain smart contracts7.
In particular, fungibility is the ability to exchange one with another of the same kind as an essential currency feature. The non-fungible token is unique and therefore cannot be substituted8. Recently, blockchain enthusiasts have indicated significant interest in various types of NFTs. They enthusiastically participate in NFT-related games or trades. CryptoPunks9, as one of the first NFTs on Ethereum, has developed almost 10,000 collectible punks and helped popularize the ERC-721 Standard. With the gamification of the breeding mechanics, CryptoKitties10 officially placed NFTs at the forefront of the market in 2017. CryptoKitties is an early blockchain game that enables users to buy, sell, collect, and digital breed cats. Another example is NBA Top Shot11, an NFT trading platform for digital short films buying and selling NBA events.
NFTs are developing remarkably and have provided many applications such as artist royalties, in-game assets, educational certificates, etc. However, it is a relatively new concept, and many areas of application need to be explored. Intellectual Property, including patent, trademark, and copyright, is an important area where NFTs can be applied usefully and solve existing problems.
Although NFTs have had many applications so far, it rarely has been used to solve real-world problems. In fact, an NFT is an exciting concept about Intellectual Property (IP). Applying for a patent and trademark is a time-consuming and lengthy process, but it is also costly. That is, registering a copyright or trademark may take months, while securing a patent can take years. On the contrary, with the help of unique features of NFT technology, it is possible to accelerate this process with considerable confidence and assurance about protecting the ownership of an IP. NFTs can offer IP protection while an applicant waits for the government to grant his/her more formal protection. It is cause for excitement that people who believe NFTs and Blockchain would make buying and selling patents easier, offering new opportunities for companies, universities, and inventors to make money off their innovations12. Patent holders will benefit from such innovation. It would give them the ability to ‘tokenize’ their patents. Because every transaction would be logged on a blockchain, it will be much easier to trace patent ownership changes. However, NFT would also facilitate the revenue generation of patents by democratizing patent licensing via NFT. NFTs support the intellectual property market by embedding automatic royalty collecting methods inside inventors’ works, providing them with financial benefits anytime their innovation is licensed. For example, each inventor’s patent would be minted as an NFT, and these NFTs would be joined together to form a commercial IP portfolio and minted as a compounded NFT. Each investor would automatically get their fair share of royalties whenever the licensing revenue is generated without tracking them down.
The authors in13, an overview of NFTs’ applications in different aspects such as gambling, games, and collectibles has been discussed. In addition4, provides a prototype for an event-tracking application based on Ethereum smart contract, and NFT as a solution for art and real estate auction systems is described in14. However, these studies have not discussed existing standards or a generalized architecture, enabling NFTs to be applied in diverse applications. For example, the authors in15 provide two general design patterns for creating and trading NFTs and discuss existing token standards for NFT. However, the proposed designs are limited to Ethereum, and other blockchains are not considered16. Moreover, different technologies for each step of the proposed procedure are not discussed. In8, the authors provide a conceptual framework for token designing and managing and discuss five views: token view, wallet view, transaction view, user interface view, and protocol view. However, no research provides a generalized conceptual framework for generating, recording, and tracing NFT based-IP, in blockchain network.
Even with the clear benefits that NFT-backed patents offer, there are a number of impediments to actually achieving such a system. For example, convincing patent owners to put current ownership records for their patents into NFTs poses an initial obstacle. Because there is no reliable framework for NFT-based patents, this paper provides a conceptual framework for presenting NFT-based patents with a comprehensive discussion on many aspects, ranging from the background, model components, token standards to application domains and research challenges. The main objective of this paper is to provide a layered conceptual NFT-based patent framework that can be used to register patents in a decentralized, tamper-proof, and trustworthy peer-to-peer network to trade and exchange them in the worldwide market. The main contributions of this paper are highlighted as follows:
Providing a comprehensive overview on tokenization of IP assets to create unique digital tokens.
Discussing the components of a distributed and trustworthy framework for minting NFT-based patents.
Highlighting a series of open challenges of NFT-based patents and enlightening the possible future trends.
The rest of the paper is structured as follows: “Background” section describes the Background of NFTs, Non-Fungible Token Standards. The NFT-based patent framework is described in “NFT-based patent framework” section. The Discussion and challenges are presented in “Discussion” section. Lastly, conclusions are given in “Conclusion” section.
Background
Colored Coins could be considered the first steps toward NFTs designed on the top of the Bitcoin network. Bitcoins are fungible, but it is possible to mark them to be distinguishable from the other bitcoins. These marked coins have special properties representing real-world assets like cars and stocks, and owners can prove their ownership of physical assets through the colored coins. By utilizing Colored Coins, users can transfer their marked coins’ ownership like a usual transaction and benefit from Bitcoin’s decentralized network17. Colored Coins had limited functionality due to the Bitcoin script limitations. Pepe is a green frog meme originated by Matt Furie that; users define tokens for Pepes and trade them through the Counterparty platform. Then, the tokens that were created by the picture of Pepes are decided if they are rare enough. Rare Pepe allows users to preserve scarcity, manage the ownership, and transfer their purchased Pepes.
In 2017, Larva Labs developed the first Ethereum-based NFT named CryptoPunks. It contains 10,000 unique human-like characters generated randomly. The official ownership of each character is stored in the Ethereum smart contract, and owners would trade characters. CryptoPunks project inspired CryptoKitties project. CryptoKitties attracts attention to NFT, and it is a pioneer in blockchain games and NFTs that launched in late 2017. CryptoKitties is a blockchain-based virtual game, and users collect and trade characters with unique features that shape kitties. This game was developed in Ethereum smart contract, and it pioneered the ERC-721 token, which was the first standard token in the Ethereum blockchain for NFTs. After the 2017 hype in NFTs, many projects started in this context. Due to increased attention to NFTs’ use-cases and growing market cap, different blockchains like EOS, Algorand, and Tezos started to support NFTs, and various marketplaces like SuperRare and Rarible, and OpenSea are developed to help users to trade NFTs. As mentioned, in general, assets are categorized into two main classes, fungible and non-fungible assets. Fungible assets are the ones that another similar asset can replace. Fungible items could have two main characteristics: replicability and divisibility.
Currency is a fungible item because a ten-dollar bill can be exchanged for another ten-dollar bill or divided into ten one-dollar bills. Despite fungible items, non-fungible items are unique and distinguishable. They cannot be divided or exchanged by another identical item. The first tweet on Twitter is a non-fungible item with mentioned characteristics. Another tweet cannot replace it, and it is unique and not divisible. NFT is a non-fungible cryptographic asset that is declared in a standard token format and has a unique set of attributes. Due to transparency, proof of ownership, and traceable transactions in the blockchain network, NFTs are created using blockchain technology.
Blockchain-based NFTs help enthusiasts create NFTs in the standard token format in blockchain, transfer the ownership of their NFTs to a buyer, assure uniqueness of NFTs, and manage NFTs completely. In addition, there are semi-fungible tokens that have characteristics of both fungible and non-fungible tokens. Semi-fungible tokens are fungible in the same class or specific time and non-fungible in other classes or different times. A plane ticket can be considered a semi-fungible token because a charter ticket can be exchanged by another charter ticket but cannot be exchanged by a first-class ticket. The concept of semi-fungible tokens plays the main role in blockchain-based games and reduces NFTs overhead. In Fig. 1, we illustrate fungible, non-fungible, and semi-fungible tokens. The main properties of NFTs are described as follows15:
Figure 1
Ownership: Because of the blockchain layer, the owner of NFT can easily prove the right of possession by his/her keys. Other nodes can verify the user’s ownership publicly.
Transferable: Users can freely transfer owned NFTs ownership to others on dedicated markets.
Transparency: By using blockchain, all transactions are transparent, and every node in the network can confirm and trace the trades.
Fraud Prevention: Fraud is one of the key problems in trading assets; hence, using NFTs ensures buyers buy a non-counterfeit item.
Immutability: Metadata, token ID, and history of transactions of NFTs are recorded in a distributed ledger, and it is impossible to change the information of the purchased NFTs.
Non-fungible standards
Ethereum blockchain was pioneered in implementing NFTs. ERC-721 token was the first standard token accepted in the Ethereum network. With the increase in popularity of the NFTs, developers started developing and enhancing NFTs standards in different blockchains like EOS, Algorand, and Tezos. This section provides a review of implemented NFTs standards on the mentioned blockchains.
Ethereum
ERC-721 was the first Standard for NFTs developed in Ethereum, a free and open-source standard. ERC-721 is an interface that a smart contract should implement to have the ability to transfer and manage NFTs. Each ERC-721 token has unique properties and a different Token Id. ERC-721 tokens include the owner’s information, a list of approved addresses, a transfer function that implements transferring tokens from owner to buyer, and other useful functions5.
In ERC-721, smart contracts can group tokens with the same configuration, and each token has different properties, so ERC-721 does not support fungible tokens. However, ERC-1155 is another standard on Ethereum developed by Enjin and has richer functionalities than ERC-721 that supports fungible, non-fungible, and semi-fungible tokens. In ERC-1155, IDs define the class of assets. So different IDs have a different class of assets, and each ID may contain different assets of the same class. Using ERC-1155, a user can transfer different types of tokens in a single transaction and mix multiple fungible and non-fungible types of tokens in a single smart contract6. ERC-721 and ERC-1155 both support operators in which the owner can let the operator originate transferring of the token.
EOSIO
EOSIO is an open-source blockchain platform released in 2018 and claims to eliminate transaction fees and increase transaction throughput. EOSIO differs from Ethereum in the wallet creation algorithm and procedure of handling transactions. dGood is a free standard developed in the EOS blockchain for assets, and it focuses on large-scale use cases. It supports a hierarchical naming structure in smart contracts. Each contract has a unique symbol and a list of categories, and each category contains a list of token names. Therefore, a single contract in dGoods could contain many tokens, which causes efficiency in transferring a group of tokens. Using this hierarchy, dGoods supports fungible, non-fungible, and semi-fungible tokens. It also supports batch transferring, where the owner can transfer many tokens in one operation18.
Algorand
Algorand is a new high-performance public blockchain launched in 2019. It provides scalability while maintaining security and decentralization. It supports smart contracts and tokens for representing assets19. Algorand defines Algorand Standard Assets (ASA) concept to create and manage assets in the Algorand blockchain. Using ASA, users are able to define fungible and non-fungible tokens. In Algorand, users can create NFTs or FTs without writing smart contracts, and they should run just a single transaction in the Algorand blockchain. Each transaction contains some mutable and immutable properties20.
Each account in Algorand can create up to 1000 assets, and for every asset, an account creates or receives, the minimum balance of the account increases by 0.1 Algos. Also, Algorand supports fractional NFTs by splitting an NFT into a group of divided FTs or NFTs, and each part can be exchanged dependently21. Algorand uses a Clawback Address that operates like an operator in ERC-1155, and it is allowed to transfer tokens of an owner who has permitted the operator.
Tezos
Tezos is another decentralized open-source blockchain. Tezos supports the meta-consensus concept. In addition to using a consensus protocol on the ledger’s state like Bitcoin and Ethereum, It also attempts to reach a consensus about how nodes and the protocol should change or upgrade22. FA2 (TZIP-12) is a standard for a unified token contract interface in the Tezos blockchain. FA2 supports different token types like fungible, non-fungible, and fractionalized NFT contracts. In Tezos, tokens are identified with a token contract address and token ID pair. Also, Tezos supports batch token transferring, which reduces the cost of transferring multiple tokens.
Flow
Flow was developed by Dapper Labs to remove the scalability limitation of the Ethereum blockchain. Flow is a fast and decentralized blockchain that focuses on games and digital collectibles. It improves throughput and scalability without sharding due to its architecture. Flow supports smart contracts using Cadence, which is a resource-oriented programming language. NFTs can be described as a resource with a unique id in Cadence. Resources have important rules for ownership management; that is, resources have just one owner and cannot be copied or lost. These features assure the NFT owner. NFTs’ metadata, including images and documents, can be stored off-chain or on-chain in Flow. In addition, Flow defines a Collection concept, in which each collection is an NFT resource that can include a list of resources. It is a dictionary that the key is resource id, and the value is corresponding NFT.
The collection concept provides batch transferring of NFTs. Besides, users can define an NFT for an FT. For instance, in CryptoKitties, a unique cat as an NFT can own a unique hat (another NFT). Flow uses Cadence’s second layer of access control to allow some operators to access some fields of the NFT23. In Table 1, we provide a comparison between explained standards. They are compared in support of fungible-tokens, non-fungible tokens, batch transferring that owner can transform multiple tokens in one operation, operator support in which the owner can approve an operator to originate token transfer, and fractionalized NFTs that an NFT can divide to different tokens and each exchange dependently.Table 1 Comparing NFT standards.
In this section, we propose a framework for presenting NFT-based patents. We describe details of the proposed distributed and trustworthy framework for minting NFT-based patents, as shown in Fig. 2. The proposed framework includes five main layers: Storage Layer, Authentication Layer, Verification Layer, Blockchain Layer, and Application Layer. Details of each layer and the general concepts are presented as follows.
Figure 2
Storage layer
The continuous rise of the data in blockchain technology is moving various information systems towards the use of decentralized storage networks. Decentralized storage networks were created to provide more benefits to the technological world24. Some of the benefits of using decentralized storage systems are explained: (1) Cost savings are achieved by making optimal use of current storage. (2) Multiple copies are kept on various nodes, avoiding bottlenecks on central servers and speeding up downloads. This foundation layer implicitly provides the infrastructure required for the storage. The items on NFT platforms have unique characteristics that must be included for identification.
Non-fungible token metadata provides information that describes a particular token ID. NFT metadata is either represented on the On-chain or Off-chain. On-chain means direct incorporation of the metadata into the NFT’s smart contract, which represents the tokens. On the other hand, off-chain storage means hosting the metadata separately25.
Blockchains provide decentralization but are expensive for data storage and never allow data to be removed. For example, because of the Ethereum blockchain’s current storage limits and high maintenance costs, many projects’ metadata is maintained off-chain. Developers utilize the ERC721 Standard, which features a method known as tokenURI. This method is implemented to let applications know the location of the metadata for a specific item. Currently, there are three solutions for off-chain storage, including InterPlanetary File System (IPFS), Pinata, and Filecoin.
IPFS
InterPlanetary File System (IPFS) is a peer-to-peer hypermedia protocol for decentralized media content storage. Because of the high cost of storing media files related to NFTS on Blockchain, IPFS can be the most affordable and efficient solution. IPFS combines multiple technologies inspired by Gita and BitTorrent, such as Block Exchange System, Distributed Hash Tables (DHT), and Version Control System26. On a peer-to-peer network, DHT is used to coordinate and maintain metadata.
In other words, the hash values must be mapped to the objects they represent. An IPFS generates a hash value that starts with the prefix {Q}_{m} and acts as a reference to a specific item when storing an object like a file. Objects larger than 256 KB are divided into smaller blocks up to 256 KB. Then a hash tree is used to interconnect all the blocks that are a part of the same object. IPFS uses Kamdelia DHT. The Block Exchange System, or BitSwap, is a BitTorrent-inspired system that is used to exchange blocks. It is possible to use asymmetric encryption to prevent unauthorized access to stored content on IPFS27.
Pinata
Pinata is a popular platform for managing and uploading files on IPFS. It provides secure and verifiable files for NFTs. Most data is stored off-chain by most NFTs, where a URL of the data is pointed to the NFT on the blockchain. The main problem here is that some information in the URL can change.
This indicates that an NFT supposed to describe a certain patent can be changed without anyone knowing. This defeats the purpose of the NFT in the first place. This is where Pinata comes in handy. Pinata uses the IPFS to create content-addressable hashes of data, also known as Content-Identifiers (CIDs). These CIDs serve as both a way of retrieving data and a means to ensure data validity. Those looking to retrieve data simply ask the IPFS network for the data associated with a certain CID, and if any node on the network contains that data, it will be returned to the requester. The data is automatically rehashed on the requester’s computer when the requester retrieves it to make sure that the data matches back up with the original CID they asked for. This process ensures the data that’s received is exactly what was asked for; if a malicious node attempts to send fake data, the resulting CID on the requester’s end will be different, alerting the requester that they’re receiving incorrect data28.
Filecoin
Another decentralized storage network is Filecoin. It is built on top of IPFS and is designed to store the most important data, such as media files. Truffle Suite has also launched NFT Development Template with Filecoin Box. NFT.Storage (Free Decentralized Storage for NFTs)29 allows users to easily and securely store their NFT content and metadata using IPFS and Filecoin. NFT.Storage is a service backed by Protocol Labs and Pinata specifically for storing NFT data. Through content addressing and decentralized storage, NFT.Storage allows developers to protect their NFT assets and associated metadata, ensuring that all NFTs follow best practices to stay accessible for the long term. NFT.Storage makes it completely frictionless to mint NFTs following best practices through resilient persistence on IPFS and Filecoin. NFT.Storage allows developers to quickly, safely, and for free store NFT data on decentralized networks. Anyone can leverage the power of IPFS and Filecoin to ensure the persistence of their NFTs. The details of this system are stated as follows30:
Content addressing
Once users upload data on NFT.Storage, They receive a CID, which is an IPFS hash of the content. CIDs are the data’s unique fingerprints, universal addresses that can be used to refer to it regardless of how or where it is stored. Using CIDs to reference NFT data avoids problems such as weak links and “rug pulls” since CIDs are generated from the content itself.
Provable storage
NFT.Storage uses Filecoin for long-term decentralized data storage. Filecoin uses cryptographic proofs to assure the NFT data’s durability and persistence over time.
Resilient retrieval
This data stored via IPFS and Filecoin can be fetched directly in the browser via any public IPFS.
Authentication Layer
The second layer is the authentication layer, which we briefly highlight its functions in this section. The Decentralized Identity (DID) approach assists users in collecting credentials from a variety of issuers, such as the government, educational institutions, or employers, and saving them in a digital wallet. The verifier then uses these credentials to verify a person’s validity by using a blockchain-based ledger to follow the “identity and access management (IAM)” process. Therefore, DID allows users to be in control of their identity. A lack of NFT verifiability also causes intellectual property and copyright infringements; of course, the chain of custody may be traced back to the creator’s public address to check whether a similar patent is filed using that address. However, there is no quick and foolproof way to check an NFTs creator’s legitimacy. Without such verification built into the NFT, an NFT proves ownership only over that NFT itself and nothing more.
Self-sovereign identity (SSI)31 is a solution to this problem. SSI is a new series of standards that will guide a new identity architecture for the Internet. With a focus on privacy, security interoperability, SSI applications use public-key cryptography with public blockchains to generate persistent identities for people with private and selective information disclosure. Blockchain technology offers a solution to establish trust and transparency and provide a secure and publicly verifiable KYC (Know Your Customer). The blockchain architecture allows you to collect information from various service providers into a single cryptographically secure and unchanging database that does not need a third party to verify the authenticity of the information.
The proposed platform generates patents-related smart contracts acting as a program that runs on the blockchain to receive and send transactions. They are unalterable privately identifying clients with a thorough KYC process. After KYC approval, then mint an NFT on the blockchain as a certificate of verification32. This article uses a decentralized authentication solution at this layer for authentication. This solution has been used for various applications in the field of the blockchain (exp: smart city, Internet of Things, etc.33, 34, but we use it here for the proposed framework (patent as NFTs). Details of this solution will be presented in the following.
Decentralized authentication
This section presents the authentication layer similar35 to build validated communication in a secure and decentralized manner via blockchain technology. As shown in Fig. 3, the authentication protocol comprises two processes, including registration and login.
Figure 3
Registration
In the registration process of a suggested authentication protocol, we first initialize a user’s public key as their identity key (UserName). Then, we upload this identity key on a blockchain, in which transactions can be verified later by other users. Finally, the user generates an identity transaction.
Login
After registration, a user logs in to the system. The login process is described as follows:
1. The user commits identity information and imports their secret key into the service application to log in.
2. A user who needs to log in sends a login request to the network’s service provider.
3. The service provider analyzes the login request, extracts the hash, queries the blockchain, and obtains identity information from an identity list (identity transactions).
4. The service provider responds with an authentication request when the above process is completed. A timestamp (to avoid a replay attack), the user’s UserName, and a signature are all included in the authentication request.
5. The user creates a signature with five parameters: timestamp, UserName, and PK, as well as the UserName and PK of the service provider. The user authentication credential is used as the signature.
6. The service provider verifies the received information, and if the received information is valid, the authentication succeeds; otherwise, the authentication fails, and the user’s login is denied.
The World Intellectual Property Organization (WIPO) and multiple target patent offices in various nations or regions should assess a patent application, resulting in inefficiency, high costs, and uncertainty. This study presented a conceptual NFT-based patent framework for issuing, validating, and sharing patent certificates. The platform aims to support counterfeit protection as well as secure access and management of certificates according to the needs of learners, companies, education institutions, and certification authorities.
Here, the certification authority (CA) is used to authenticate patent offices. The procedure will first validate a patent if it is provided with a digital certificate that meets the X.509 standard. Certificate authorities are introduced into the system to authenticate both the nodes and clients connected to the blockchain network.
Verification layer
In permissioned blockchains, just identified nodes can read and write in the distributed ledger. Nodes can act in different roles and have various permissions. Therefore, a distributed system can be designed to be the identified nodes for patent granting offices. Here the system is described conceptually at a high level. Figure 4 illustrates the sequence diagram of this layer. This layer includes four levels as below:
Figure 4
Digitalization
For a patent to publish as an NFT in the blockchain, it must have a digitalized format. This level is the “filling step” in traditional patent registering. An application could be designed in the application layer to allow users to enter different patent information online.
Recording
Patents provide valuable information and would bring financial benefits for their owner. If they are publicly published in a blockchain network, miners may refuse the patent and take the innovation for themselves. At least it can weaken consensus reliability and encourage miners to misbehave. The inventor should record his innovation privately first using proof of existence to prevent this. The inventor generates the hash of the patent document and records it in the blockchain. As soon as it is recorded in the blockchain, the timestamp and the hash are available for others publicly. Then, the inventor can prove the existence of the patent document whenever it is needed.
Furthermore, using methods like Decision Thinking36, an inventor can record each phase of patent development separately. In each stage, a user generates the hash of the finished part and publishes the hash regarding the last part’s hash. Finally, they have a coupled series of hashes that indicate patent development, and they can prove the existence of each phase using the original related documents. This level should be done to prevent others from abusing the patent and taking it for themselves. The inventor can make sure that their patent document is recorded confidentially and immutably37.
Different hash algorithms exist with different architecture, time complexity, and security considerations. Hash functions should satisfy two main requirements: Pre-Image Resistance: This means that it should be computationally hard to find the input of a hash function while the output and the hash algorithm are known publicly. Collision Resistance: This means that it is computationally hard to find two arbitrary inputs, x, and y, that have the same hash output. These requirements are vital for recording patents. First, the hash function should be Pre-Image Resistance to make it impossible for others to calculate the patent documentation. Otherwise, everybody can read the patent, even before its official publication. Second, the hash function should satisfy Collision Resistance to preclude users from changing their document after recording. Otherwise, users can upload another document, and after a while, they can replace it with another one.
There are various hash algorithms, and MD and SHA families are the most useful algorithms. According to38, Collisions have been found for MD2, MD4, MD5, SHA-0, and SHA-1 hash functions. Hence, they cannot be a good choice for recording patents. SHA2 hash algorithm is secure, and no collision has been found. Although SHA2 is noticeably slower than prior hash algorithms, the recording phase is not highly time-sensitive. So, it is a better choice and provides excellent security for users.
Validating
In this phase, the inventors first create NFT for their patents and publish it to the miners/validators. Miners are some identified nodes that validate NFTs to record in the blockchain. Due to the specialization of the patent validation, miners cannot be inexpert public persons. In addition, patent offices are not too many to make the network fully decentralized. Therefore, the miners can be related specialist persons that are certified by the patent offices. They should receive a digital certificate from patent offices that show their eligibility to referee a patent.
Digital certificate
Digital certificates are digital credentials used to verify networked entities’ online identities. They usually include a public key as well as the owner’s identification. They are issued by Certification Authorities (CAs), who must verify the certificate holder’s identity. Certificates contain cryptographic keys for signing, encryption, and decryption. X.509 is a standard that defines the format of public-key certificates and is signed by a certificate authority. X.509 standard has multiple fields, and its structure is shown in Fig. 5. Version: This field indicated the version of the X.509 standard. X.509 contains multiple versions, and each version has a different structure. According to the CA, validators can choose their desired version. Serial Number: It is used to distinguish a certificate from other certificates. Thus, each certificate has a unique serial number. Signature Algorithm Identifier: This field indicates the cryptographic encryption algorithm used by a certificate authority. Issuer Name: This field indicates the issuer’s name, which is generally certificate authority. Validity Period: Each certificate is valid for a defined period, defined as the Validity Period. This limited period partly protects certificates against exposing CA’s private key. Subject Name: Name of the requester. In our proposed framework, it is the validator’s name. Subject Public Key Info: Shows the CA’s or organization’s public key that issued the certificate. These fields are identical among all versions of the X.509 standard39.
Figure 5
Certificate authority
A Certificate Authority (CA) issues digital certificates. CAs encrypt the certificate with their private key, which is not public, and others can decrypt the certificates containing the CA’s public key.
Here, the patent office creates a certificate for requested patent referees. The patent office writes the information of the validator in their certificate and encrypts it with the patent offices’ private key. The validator can use the certificate to assure others about their eligibility. Other nodes can check the requesting node’s information by decrypting the certificate using the public key of the patent office. Therefore, persons can join the network’s miners/validators using their credentials. In this phase, miners perform Formal Examinations, Prior Art Research, and Substantive Examinations and vote to grant or refuse the patent.
Miners perform a consensus about the patent and record the patent in the blockchain. After that, the NFT is recorded in the blockchain with corresponding comments in granting or needing reformations. If the miners detect the NFT as a malicious request, they do not record it in the blockchain.
Blockchain layer
This layer plays as a middleware between the Verification Layer and Application Layer in the patents as NFTs architecture. The main purpose of the blockchain layer in the proposed architecture is to provide IP management. We find that transitioning to a blockchain-based patent as a NFTs records system enables many previously suggested improvements to current patent systems in a flexible, scalable, and transparent manner.
On the other hand, we can use multiple blockchain platforms, including Ethereum, EOS, Flow, and Tezos. Blockchain Systems can be mainly classified into two major types: Permissionless (public) and Permissioned (private) Blockchains based on their consensus mechanism. In a public blockchain, any node can participate in the peer-to-peer network, where the blockchain is fully decentralized. A node can leave the network without any consent from the other nodes in the network.
Bitcoin is one of the most popular examples that fall under the public and permissionless blockchain. Proof of Work (POW), Proof-of-Stake (POS), and directed acyclic graph (DAG) are some examples of consensus algorithms in permissionless blockchains. Bitcoin and Ethereum, two famous and trustable blockchain networks, use the PoW consensus mechanism. Blockchain platforms like Cardano and EOS adopt the PoS consensus40.
Nodes require specific access or permission to get network authentication in a private blockchain. Hyperledger is among the most popular private blockchains, which allow only permissioned members to join the network after authentication. This provides security to a group of entities that do not completely trust one another but wants to achieve a common objective such as exchanging information. All entities of a permissioned blockchain network can use Byzantine-fault-tolerant (BFT) consensus. The Fabric has a membership identity service that manages user IDs and verifies network participants.
Therefore, members are aware of each other’s identity while maintaining privacy and secrecy because they are unaware of each other’s activities41. Due to their more secure nature, private blockchains have sparked a large interest in banking and financial organizations, believing that these platforms can disrupt current centralized systems. Hyperledger, Quorum, Corda, EOS are some examples of permissioned blockchains42.
Reaching consensus in a distributed environment is a challenge. Blockchain is a decentralized network with no central node to observe and check all transactions. Thus, there is a need to design protocols that indicate all transactions are valid. So, the consensus algorithms are considered as the core of each blockchain43. In distributed systems, the consensus has become a problem in which all network members (nodes) agree on accept or reject of a block. When all network members accept the new block, it can append to the previous block.
As mentioned, the main concern in the blockchains is how to reach consensus among network members. A wide range of consensus algorithms has been designed in which each of them has its own pros and cons42. Blockchain consensus algorithms are mainly classified into three groups shown in Table 2. As the first group, proof-based consensus algorithms require the nodes joining the verifying network to demonstrate their qualification to do the appending task. The second group is voting-based consensus that requires validators in the network to share their results of validating a new block or transaction before making the final decision. The third group is DAG-based consensus, a new class of consensus algorithms. These algorithms allow several different blocks to be published and recorded simultaneously on the network.Table 2 Consensus algorithms in blockchain networks.
The proposed patent as the NFTs platform that builds blockchain intellectual property empowers the entire patent ecosystem. It is a solution that removes barriers by addressing fundamental issues within the traditional patent ecosystem. Blockchain can efficiently handle patents and trademarks by effectively reducing approval wait time and other required resources. The user entities involved in Intellectual Property management are Creators, Patent Consumers, and Copyright Managing Entities. Users with ownership of the original data are the patent creators, e.g., inventors, writers, and researchers. Patent Consumers are the users who are willing to consume the content and support the creator’s work. On the other hand, Users responsible for protecting the creators’ Intellectual Property are the copyright management entities, e.g., lawyers. The patents as NFTs solution for IP management in blockchain layer works by implementing the following steps62:
Creators sign up to the platform
Creators need to sign up on the blockchain platform to patent their creative work. The identity information will be required while signing up.
Creators upload IP on the blockchain network
Now, add an intellectual property for which the patent application is required. The creator will upload the information related to IP and the data on the blockchain network. Blockchain ensures traceability and auditability to prevent data from duplicity and manipulation. The patent becomes visible to all network members once it is uploaded to the blockchain.
Consumers generate request to use the content
Consumers who want to access the content must first register on the blockchain network. After Signing up, consumers can ask creators to grant access to the patented content. Before the patent owner authorizes the request, a Smart Contract is created to allow customers to access information such as the owner’s data. Furthermore, consumers are required to pay fees in either fiat money or unique tokens in order to use the creator’s original information. When the creator approves the request, an NDA (Non-Disclosure Agreement) is produced and signed by both parties. Blockchain manages the agreement and guarantees that all parties agree to the terms and conditions filed.
Patent management entities leverage blockchain to protect copyrights and solve related disputes
Blockchain assists the patent management entities in resolving a variety of disputes that may include: sharing confidential information, establishing proof of authorship, transferring IP rights, and making defensive publications, etc. Suppose a person used an Invention from a patent for his company without the inventor’s consent. The inventor can report it to the patent office and claim that he is the owner of that invention.
Application layer
The patent Platform Global Marketplace technology would allow many enterprises, governments, universities, and Small and medium-sized enterprises (SMEs) worldwide to tokenize patents as NFTs to create an infrastructure for storing patent records on a blockchain-based network and developing a decentralized marketplace in which patent holders would easily sell or otherwise monetize their patents. The NFTs-based patent can use smart contracts to determine a set price for a license or purchase.
Any buyer satisfied with the conditions can pay and immediately unlock the rights to the patent without either party ever having to interact directly. While patents are currently regulated jurisdictionally around the world, a blockchain-based patent marketplace using NFTs can reduce the geographical barriers between patent systems using as simple a tool as a search query. The ease of access to patents globally can help aspiring inventors accelerate the innovative process by building upon others’ patented inventions through licenses. There are a wide variety of use cases for patent NFTs such as SMEs, Patent Organization, Grant & Funding, and fundraising/transferring information relating to patents. These applications keep growing as time progresses, and we are constantly finding new ways to utilize these tokens. Some of the most commonly used applications can be seen as follows.
SMEs
The aim is to move intellectual property assets onto a digital, centralized, and secure blockchain network, enabling easier commercialization of patents, especially for small or medium enterprises (SMEs). Smart contracts can be attached to NFTs so terms of use and ownership can be outlined and agreed upon without incurring as many legal fees as traditional IP transfers. This is believed to help SMEs secure funding, as they could more easily leverage the previously undisclosed value of their patent portfolios63.
Transfer ownership of patents
NFTs can be used to transfer ownership of patents. The blockchain can be used to keep track of patent owners, and tokens would include self-executing contracts that transfer the legal rights associated with patents when the tokens are transferred. A partnership between IBM and IPwe has spearheaded the use of NFTs to secure patent ownership. These two companies have teamed together to build the infrastructure for an NFT-based patent marketplace.
Discussion
There are exciting proposals in the legal and economic literature that suggest seemingly straightforward solutions to many of the issues plaguing current patent systems. However, most solutions would constitute major administrative disruptions and place significant and continuous financial burdens on patent offices or their users. An NFT-based patents system not only makes many of these ideas administratively feasible but can also be examined in a step-wise, scalable, and very public manner.
Furthermore, NFT-based patents may facilitate reliable information sharing among offices and patentees worldwide, reducing the burden on examiners and perhaps even accelerating harmonization efforts. NFT-based patents also have additional transparency and archival attributes baked in. A patent should be a privilege bestowed on those who take resource-intensive risks to explore the frontier of technological capabilities. As a reward for their achievements, full transparency of these rewards is much public interest. It is a society that pays for administrative and economic inefficiencies that exist in today’s systems. NFT-based patents can enhance this transparency. From an organizational perspective, an NFT-based patent can remove current bottlenecks in patent processes by making these processes more efficient, rapid, and convenient for applicants without compromising the quality of granted patents.
The proposed framework encounters some challenges that should be solved to reach a developed patent verification platform. First, technical problems are discussed. The consensus method that is used in the verification layer is not addressed in detail. Due to the permissioned structure of miners in the NFT-based patents, consensus algorithms like PBFT, Federated Consensus, and Round Robin Consensus are designed for permissioned blockchains can be applied. Also, miners/validators spend some time validating the patents; hence a protocol should be designed to profit them. Some challenges like proving the miners’ time and effort, the price that inventors should pay to miners, and other economic trade-offs should be considered.
Different NFT standards were discussed. If various patent services use NFT standards, there will be some cross-platform problems. For instance, transferring an NFT from Ethereum blockchain (ERC-721 token) to EOS blockchain is not a forward and straight work and needs some considerations. Also, people usually trade NFTs in marketplaces such as Rarible and OpenSea. These marketplaces are centralized and may prompt some challenges because of their centralized nature. Besides, there exist some other types of challenges. For example, the novelty of NFT-based patents and blockchain services.
Blockchain-based patent service has not been tested before. The patent registration procedure and concepts of the Patent as NFT system may be ambiguous for people who still prefer conventional centralized patent systems over decentralized ones. It should be noted that there are some problems in the mining part. Miners should receive certificates from the accepted organizations. Determining these organizations and how they accept referees as validators need more consideration. Some types of inventions in some countries are prohibited, and inventors cannot register them. In NFT-based patents, inventors can register their patents publicly, and maybe some collisions occur between inventors and the government. There exist some misunderstandings about NFT’s ownership rights. It is not clear that when a person buys an NFT, which rights are given to them exactly; for instance, they have property rights or have moral rights, too.
Conclusion
Blockchain technology provides strong timestamping, the potential for smart contracts, proof-of-existence. It enables creating a transparent, distributed, cost-effective, and resilient environment that is open to all and where each transaction is auditable. On the other hand, blockchain is a definite boon to the IP industry, benefitting patent owners. When blockchain technology’s intrinsic characteristics are applied to the IP domain, it helps copyrights. This paper provided a conceptual framework for presenting an NFT-based patent with a comprehensive discussion of many aspects: background, model components, token standards to application areas, and research challenges. The proposed framework includes five main layers: Storage Layer, Authentication Layer, Verification Layer, Blockchain Layer, and Application. The primary purpose of this patent framework was to provide an NFT-based concept that could be used to patent a decentralized, anti-tamper, and reliable network for trade and exchange around the world. Finally, we addressed several open challenges to NFT-based inventions.
References
Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decent. Bus. Rev. 21260, https://bitcoin.org/bitcoin.pdf (2008).
Buterin, V. A next-generation smart contract and decentralized application platform. White Pap.3 (2014).
Nofer, M., Gomber, P., Hinz, O. & Schiereck, D. Business & infomation system engineering. Blockchain59, 183–187 (2017).Google Scholar
Entriken, W., Shirley, D., Evans, J. & Sachs, N. EIP 721: ERC-721 non-fungible token standard. Ethereum Improv. Propos.. https://eips.ethereum.org/EIPS/eip-721 (2018).
Radomski, W. et al. Eip 1155: Erc-1155 multi token standard. In Ethereum, Standard (2018).
Fairfield, J. Tokenized: The law of non-fungible tokens and unique digital property. Indiana Law J. forthcoming (2021).
Chevet, S. Blockchain technology and non-fungible tokens: Reshaping value chains in creative industries. Available at SSRN 3212662 (2018).
Bal, M. & Ner, C. NFTracer: a Non-Fungible token tracking proof-of-concept using Hyperledger Fabric. arXiv preprint arXiv:1905.04795 (2019).
Wang, Q., Li, R., Wang, Q. & Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv preprint arXiv:2105.07447 (2021).
Qu, Q., Nurgaliev, I., Muzammal, M., Jensen, C. S. & Fan, J. On spatio-temporal blockchain query processing. Future Gener. Comput. Syst.98: 208–218 (2019).ArticleGoogle Scholar
Rosenfeld, M. Overview of colored coins. White paper, bitcoil. co. il41, 94 (2012).
Benisi, N. Z., Aminian, M. & Javadi, B. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Appl.162, 102656 (2020).ArticleGoogle Scholar
NFTReview. On-chain vs. Off-chain Metadata (2021).
Nizamuddin, N., Salah, K., Azad, M. A., Arshad, J. & Rehman, M. Decentralized document version control using ethereum blockchain and IPFS. Comput. Electr. Eng.76, 183–197 (2019).ArticleGoogle Scholar
Tut, K. Who Is Responsible for NFT Data? (2020).
nft.storage. Free Storage for NFTs, Retrieved 16 May, 2021, from https://nft.storage/. (2021).
Psaras, Y. & Dias, D. in 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). 80–80 (IEEE).
Tanner, J. & Roelofs, C. NFTs and the need for Self-Sovereign Identity (2021).
Martens, D., Tuyll van Serooskerken, A. V. & Steenhagen, M. Exploring the potential of blockchain for KYC. J. Digit. Bank.2, 123–131 (2017).Google Scholar
Hammi, M. T., Bellot, P. & Serhrouchni, A. In 2018 IEEE Wireless Communications and Networking Conference (WCNC). 1–6 (IEEE).
Khalid, U. et al. A decentralized lightweight blockchain-based authentication mechanism for IoT systems. Cluster Comput. 1–21 (2020).
Zhong, Y. et al. Distributed blockchain-based authentication and authorization protocol for smart grid. Wirel. Commun. Mobile Comput. (2021).
Schönhals, A., Hepp, T. & Gipp, B. In Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems. 105–110.
Verma, S. & Prajapati, G. A Survey of Cryptographic Hash Algorithms and Issues. International Journal of Computer Security & Source Code Analysis (IJCSSCA) 1, 17–20, (2015).
Verma, S. & Prajapati, G. A survey of cryptographic hash algorithms and issues. Int. J. Comput. Secur. Source Code Anal. (IJCSSCA)1 (2015).
SDK, I. X.509 Certificates (1996).
Helliar, C. V., Crawford, L., Rocca, L., Teodori, C. & Veneziani, M. Permissionless and permissioned blockchain diffusion. Int. J. Inf. Manag.54, 102136 (2020).ArticleGoogle Scholar
Frizzo-Barker, J. et al. Blockchain as a disruptive technology for business: A systematic review. Int. J. Inf. Manag.51, 102029 (2020).ArticleGoogle Scholar
Bamakan, S. M. H., Motavali, A. & Bondarti, A. B. A survey of blockchain consensus algorithms performance evaluation criteria. Expert Syst. Appl.154, 113385 (2020).ArticleGoogle Scholar
Bamakan, S. M. H., Bondarti, A. B., Bondarti, P. B. & Qu, Q. Blockchain technology forecasting by patent analytics and text mining. Blockchain Res. Appl. 100019 (2021).
Castro, M. & Liskov, B. Practical Byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. (TOCS)20, 398–461 (2002).ArticleGoogle Scholar
Muratov, F., Lebedev, A., Iushkevich, N., Nasrulin, B. & Takemiya, M. YAC: BFT consensus algorithm for blockchain. arXiv preprint arXiv:1809.00554 (2018).
Bessani, A., Sousa, J. & Alchieri, E. E. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 355–362 (IEEE).
Todd, P. Ripple protocol consensus algorithm review. May 11th (2015).
Ongaro, D. & Ousterhout, J. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). 305–319.
Dziembowski, S., Faust, S., Kolmogorov, V. & Pietrzak, K. In Annual Cryptology Conference. 585–605 (Springer).
Bentov, I., Lee, C., Mizrahi, A. & Rosenfeld, M. Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake. IACR Cryptology ePrint Archive2014, 452 (2014).Google Scholar
Bramas, Q. The Stability and the Security of the Tangle (2018).
Baird, L. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance. In Swirlds Tech Reports SWIRLDS-TR-2016–01, Tech. Rep (2016).
LeMahieu, C. Nano: A feeless distributed cryptocurrency network. Nano [Online resource].https://nano.org/en/whitepaper (date of access: 24.03. 2018) 16, 17 (2018).
Casino, F., Dasaklis, T. K. & Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics Inform.36, 55–81 (2019).ArticleGoogle Scholar
bigredawesomedodo. Helping Small Businesses Survive and Grow With Marketing, Retrieved 3 June, 2021, from https://bigredawesomedodo.com/nft/. (2020).
This work has been partially supported by CAS President’s International Fellowship Initiative, China [grant number 2021VTB0002, 2021] and National Natural Science Foundation of China (No. 61902385).
Author information
Affiliations
Department of Industrial Management, Yazd University, Yazd City, IranSeyed Mojtaba Hosseini Bamakan
Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan City, IranNasim Nezhadsistani
School of Electrical and Computer Engineering, University of Tehran, Tehran City, IranOmid Bodaghi
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, ChinaSeyed Mojtaba Hosseini Bamakan & Qiang Qu
#TUBiol5227: Biomarkers & Biotargets: Genetic Testing and Bioethics
Curator: Stephen J. Williams, Ph.D.
The advent of direct to consumer (DTC) genetic testing and the resultant rapid increase in its popularity as well as companies offering such services has created some urgent and unique bioethical challenges surrounding this niche in the marketplace. At first, most DTC companies like 23andMe and Ancestry.com offered non-clinical or non-FDA approved genetic testing as a way for consumers to draw casual inferences from their DNA sequence and existence of known genes that are linked to disease risk, or to get a glimpse of their familial background. However, many issues arose, including legal, privacy, medical, and bioethical issues. Below are some articles which will explain and discuss many of these problems associated with the DTC genetic testing market as well as some alternatives which may exist.
As you can see,this market segment appears to want to expand into the nutritional consulting business as well as targeted biomarkers for specific diseases.
Rising incidence of genetic disorders across the globe will augment the market growth
Increasing prevalence of genetic disorders will propel the demand for direct-to-consumer genetic testing and will augment industry growth over the projected timeline. Increasing cases of genetic diseases such as breast cancer, achondroplasia, colorectal cancer and other diseases have elevated the need for cost-effective and efficient genetic testing avenues in the healthcare market.
For instance, according to the World Cancer Research Fund (WCRF), in 2018, over 2 million new cases of cancer were diagnosed across the globe. Also, breast cancer is stated as the second most commonly occurring cancer. Availability of superior quality and advanced direct-to-consumer genetic testing has drastically reduced the mortality rates in people suffering from cancer by providing vigilant surveillance data even before the onset of the disease. Hence, the aforementioned factors will propel the direct-to-consumer genetic testing market overt the forecast timeline.
Nutrigenomic Testing will provide robust market growth
The nutrigenomic testing segment was valued over USD 220 million market value in 2019 and its market will witness a tremendous growth over 2020-2028. The growth of the market segment is attributed to increasing research activities related to nutritional aspects. Moreover, obesity is another major factor that will boost the demand for direct-to-consumer genetic testing market.
Nutrigenomics testing enables professionals to recommend nutritional guidance and personalized diet to obese people and help them to keep their weight under control while maintaining a healthy lifestyle. Hence, above mentioned factors are anticipated to augment the demand and adoption rate of direct-to-consumer genetic testing through 2028.
Browse key industry insights spread across 161 pages with 126 market data tables & 10 figures & charts from the report, “Direct-To-Consumer Genetic Testing Market Size By Test Type (Carrier Testing, Predictive Testing, Ancestry & Relationship Testing, Nutrigenomics Testing), By Distribution Channel (Online Platforms, Over-the-Counter), By Technology (Targeted Analysis, Single Nucleotide Polymorphism (SNP) Chips, Whole Genome Sequencing (WGS)), Industry Analysis Report, Regional Outlook, Application Potential, Price Trends, Competitive Market Share & Forecast, 2020 – 2028” in detail along with the table of contents: https://www.gminsights.com/industry-analysis/direct-to-consumer-dtc-genetic-testing-market
Targeted analysis techniques will drive the market growth over the foreseeable future
Based on technology, the DTC genetic testing market is segmented into whole genome sequencing (WGS), targeted analysis, and single nucleotide polymorphism (SNP) chips. The targeted analysis market segment is projected to witness around 12% CAGR over the forecast period. The segmental growth is attributed to the recent advancements in genetic testing methods that has revolutionized the detection and characterization of genetic codes.
Targeted analysis is mainly utilized to determine any defects in genes that are responsible for a disorder or a disease. Also, growing demand for personalized medicine amongst the population suffering from genetic diseases will boost the demand for targeted analysis technology. As the technology is relatively cheaper, it is highly preferred method used in direct-to-consumer genetic testing procedures. These advantages of targeted analysis are expected to enhance the market growth over the foreseeable future.
Over-the-counter segment will experience a notable growth over the forecast period
The over-the-counter distribution channel is projected to witness around 11% CAGR through 2028. The segmental growth is attributed to the ease in purchasing a test kit for the consumers living in rural areas of developing countries. Consumers prefer over-the-counter distribution channel as they are directly examined by regulatory agencies making it safer to use, thereby driving the market growth over the forecast timeline.
Favorable regulations provide lucrative growth opportunities for direct-to-consumer genetic testing
Europe direct-to-consumer genetic testing market held around 26% share in 2019 and was valued at around USD 290 million. The regional growth is due to elevated government spending on healthcare to provide easy access to genetic testing avenues. Furthermore, European regulatory bodies are working on improving the regulations set on the direct-to-consumer genetic testing methods. Hence, the above-mentioned factors will play significant role in the market growth.
Focus of market players on introducing innovative direct-to-consumer genetic testing devices will offer several growth opportunities
Few of the eminent players operating in direct-to-consumer genetic testing market share include Ancestry, Color Genomics, Living DNA, Mapmygenome, Easy DNA, FamilytreeDNA (Gene By Gene), Full Genome Corporation, Helix OpCo LLC, Identigene, Karmagenes, MyHeritage, Pathway genomics, Genesis Healthcare, and 23andMe. These market players have undertaken various business strategies to enhance their financial stability and help them evolve as leading companies in the direct-to-consumer genetic testing industry.
For example, in November 2018, Helix launched a new genetic testing product, DNA discovery kit, that allows customer to delve into their ancestry. This development expanded the firm’s product portfolio, thereby propelling industry growth in the market.
The following posts discuss bioethical issues related to genetic testing and personalized medicine from a clinicians and scientisit’s perspective
Question:Each of these articles discusses certain bioethical issues although focuses on personalized medicine and treatment. Given your understanding of the robust process involved in validating clinical biomarkers and the current state of the DTC market, how could DTC testing results misinform patients and create mistrust in the physician-patient relationship?
Question: If you are developing a targeted treatment with a companion diagnostic, what bioethical concerns would you address during the drug development process to ensure fair, equitable and ethical treatment of all patients, in trials as well as post market?
Articles on Genetic Testing, Companion Diagnostics and Regulatory Mechanisms
Question: What type of regulatory concerns should one have during the drug development process in regards to use of biomarker testing?From the last article on Protecting Your IP how important is it, as a drug developer, to involve all payers during the drug development process?
Harvard Alumni Entrepreneurs: Podcast by Denise Silber spoke with Moderna CEO and Harvard alumnus Stéphane Bancel: The race to find a vaccine – what it takes to develop a vaccine during a pandemic, Leadership in managing a science-based company
Reporter: Aviva Lev- Ari, PhD, RN
Article ID #280: Harvard Alumni Entrepreneurs: Podcast by Denise Silber spoke with Moderna CEO and Harvard alumnus Stéphane Bancel: The race to find a vaccine – what it takes to develop a vaccine during a pandemic, Leadership in managing a science-based company. Published on 7/15/2020
WordCloud Image Produced by Adam Tubman
WHEN A HARVARD ALUM IS THE CEO OF MODERNA THERAPEUTICS, IN THE RACE FOR THE COVID-19 VACCINE
In this episode, Denise Silber, host of HAE Invites, interviews the CEO of Moderna Therapeutics (MRNA), one of the most strategic and observed life science companies of the COVID crisis. In December 2018, Moderna became the largest biotech IPO in history. Now in 2020, they are called upon to do what has never been done before, to accelerate the development of a vaccine for a new disease. Join Denise as she speaks with Stéphane Bancel, the founding CEO of this Cambridge, MA research-based firm, whose pioneering messenger RNA (mRNA) technology platform, includes a leading COVID-19 vaccine candidate.
SUBSCRIBE NOW FOR FREE:
HERE’S A GLIMPSE OF WHAT YOU’LL LEARN:
Where Moderna Therapeutics is in the process of bringing the vaccine to market and who their competitors are
How the population could be segmented for the distribution of the vaccine
Current thinking on the need of a booster to prolong immunity
How Messenger RNA technology can be a platform for producing vaccines and medicines in an accelerated time frame
The importance of asking “what if”, making decisions with incomplete information, and being transparent when managing in a science-based company
How to empower a team to do what has never been done before, through boldness, curiosity, and collaboration
How to share and communicate common values as the company grows
Why scientific failure is such a valuable experience
How the Case Method at HBS helps us overcome our blind spots
Stéphane Bancel has served as CEO of Moderna Therapeutics since October 2011 and as a member of Moderna’s board of directors since March 2011. Before joining the Company, he served for five years as Chief Executive Officer of the French diagnostics company bioMérieux SA. From July 2000 to March 2006, Stéphane Bancel served in various roles at Eli Lilly and Company, including as Managing Director, Belgium and as Executive Director, Global Manufacturing Strategy and Supply Chain. Prior to Lilly, he served as Asia-Pacific Sales and Marketing Director for bioMérieux.
Stéphane Bancel currently serves on the board of directors of Qiagen N.V. and previously served on the board of directors of BG Medicine, Inc. and Syros Pharmaceuticals, Inc. (Nasdaq: SYRS). He is currently a Venture Partner at Flagship Pioneering and a trustee of the Museum of Science in Boston. Stéphane Bancel holds a Master of Engineering degree from École Centrale Paris (ECP), a Master of Science in chemical engineering from the University of Minnesota, and an M.B.A. from Harvard Business School.
MIT Technology Review announced list of “Innovators Under 35, 2020”
Reporter: Aviva Lev-Ari, PhD, RN
Innovators Under 35, 2020
In chaotic times it can be reassuring to see so many people working toward a better world. That’s true for medical professionals fighting a pandemic and for ordinary citizens fighting for social justice. And it’s true for those among us striving to employ technology to address those problems and many others.
The 35 young innovators in these pages aren’t all working to fight a pandemic, though some are: see Omar Abudayyeh and Andreas Puschnik. And they’re not all looking to remedy social injustices though some are: see Inioluwa Deborah Raji and Mohamed Dhaouafi. But even those who aren’t tackling those specific problems are seeking ways to use technology to help people. They’re trying to solve our climate crisis, find a cure for Parkinson’s, or make drinking water available to those who are desperate for it.
We’ve been presenting our list of innovators under 35 for the past 20 years. We do it to highlight the things young innovators are working on, to show at least some of the possible directions that technology will take in the coming decade. This contest generates more than 500 nominations each year. The editors then face the task of picking 100 semifinalists to put in front of our 25 judges, who have expertise in artificial intelligence, biotechnology, software, energy, materials, and so on. With the invaluable help of these rankings, the editors pick the final list of 35.
Inventors
Their innovations point toward a future with new types of batteries, solar panels, and microchips.
Omar Abudayyeh
He’s working to use CRISPR as a covid-19 test that you could take at home.
Christina Boville
She modifies enzymes to enable production of new compounds for industry.
Manuel Le Gallo
He uses novel computer designs to make AI less power hungry.
Nadya Peek
She builds novel modular machines that can do just about anything you can imagine.
Leila Pirhaji
She developed an AI-based system that can identify more small molecules in a patient’s body, faster than ever before.
Randall Jeffrey Platt
His recording tool provides a video of genes turning on or off.
Rebecca Saive
She found a way to make solar panels cheaper and more efficient.
Venkat Viswanathan
His work on a new type of battery could make EVs much cheaper.
Anastasia Volkova
Her platform uses remote sensing and other techniques to monitor crop health—helping farmers focus their efforts where they’re most needed.
Sihong Wang
His stretchable microchips promise to make all sorts of new devices possible.
Entrepreneurs
Their technological innovations bust up the status quo and lead to new ways of doing business.
Jiwei Li
In the last few months, Google and Facebook have both released new chatbots. Jiwei Li’s techniques are at the heart of both.
Atima Lui
She’s using technology to correct the cosmetics industry’s bias toward light skin.
Tony Pan
His company revamps an old device to allow you to generate electricity in your own home.
Visionaries
Their innovations are leading to breakthroughs in AI, quantum computing, and medical implants.
Leilani Battle
Her program sifts through data faster so scientists can focus more on science.
Morgan Beller
She was a key player behind the idea of a Facebook cryptocurrency.
Eimear Dolan
Medical implants are often thwarted as the body grows tissue to defend itself. She may have found a drug-free fix for the problem.
Rose Faghih
Her sensor-laden wristwatch would monitor your brain states.
Bo Li
By devising new ways to fool AI, she is making it safer.
Zlatko Minev
His discovery could reduce errors in quantum computing.
Miguel Modestino
He is reducing the chemical industry’s carbon footprint by using AI to optimize reactions with electricity instead of heat.
Inioluwa Deborah Raji
Her research on racial bias in data used to train facial recognition systems is forcing companies to change their ways.
Adriana Schulz
Her tools let anyone design products without having to understand materials science or engineering.
Dongjin Seo
He is designing computer chips to seamlessly connect human brains and machines.
Humanitarians
They’re using technology to cure diseases and make water, housing, and prosthetics available to all.
Mohamed Dhaouafi
His company’s artificial limbs are not only high-functioning but cheap enough for people in low-income countries.
Alex Le Roux
A massive 3D-printing project in Mexico could point the way to the future of affordable housing.
Katharina Volz
A loved one’s diagnosis led her to employ machine learning in the search for a Parkinson’s cure.
David Warsinger
His system could alleviate the drawbacks of existing desalination plants.
Pioneers
Their innovations lead the way to biodegradable plastics, textiles that keep you cool, and cars that “see.”
Ghena Alhanaee
Heavy dependence on infrastructure like oil rigs, nuclear reactors, and desalination plants can be catastrophic in a crisis. Her data-driven framework could help nations prepare.
Avinash Manjula Basavanna
His biodegradable plastic protects against extreme chemicals, but heals itself using water.
Lili Cai
She created energy-efficient textiles to break our air-conditioning habit.
Gregory Ekchian
He invented a way to make radiation therapy for cancer safer and more effective.
Jennifer Glick
If quantum computers work, what can we use them for? She’s working to figure that out.
Andrej Karpathy
He’s employing neural networks to allow automated cars to “see.”
Siddharth Krishnan
A tiny, powerful sensor for making disease diagnosis cheaper, faster, and easier.
Andreas Puschnik
Seeking a universal treatment for viral diseases, he might leave us much better prepared for the next pandemic.