Advertisements
Feeds:
Posts
Comments

Archive for the ‘Personalized and Precision Medicine & Genomic Research’ Category

Immunotherapy may help in glioblastoma survival


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. But, in a glimmer of hope, a recent study found that a drug designed to unleash the immune system helped some patients live longer. Glioblastoma powerfully suppresses the immune system, both at the site of the cancer and throughout the body, which has made it difficult to find effective treatments. Such tumors are complex and differ widely in their behavior and characteristics.

 

A small randomized, multi-institution clinical trial was conducted and led by researchers at the University of California at Los Angeles involved patients who had a recurrence of glioblastoma, the most common central nervous system cancer. The aim was to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab (checkpoint inhibitor) in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone.

 

Neoadjuvant PD-1 blockade was associated with upregulation of T cell– and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhanced both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.

 

Immunotherapy has not proved to be effective against glioblastoma. This small clinical trial explored the effect of PD-1 blockade on recurrent glioblastoma in relation to the timing of administration. A total of 35 patients undergoing resection of recurrent disease were randomized to either neoadjuvant or adjuvant pembrolizumab, and surgical specimens were compared between the two groups. Interestingly, the tumoral gene expression signature varied between the two groups, such that those who received neoadjuvant pembrolizumab displayed an INF-γ gene signature suggestive of T-cell activation as well as suppression of cell-cycle signaling, possibly consistent with growth arrest. Although the study was not powered for efficacy, the group found an increase in overall survival in patients receiving neoadjuvant pembrolizumab compared with adjuvant pembrolizumab of 13.7 months versus 7.5 months, respectively.

 

In this small pilot study, neoadjuvant PD-1 blockade followed by surgical resection was associated with intratumoral T-cell activation and inhibition of tumor growth as well as longer survival. How the drug works in glioblastoma has not been totally established. The researchers speculated that giving the drug before surgery prompted T-cells within the tumor, which had been impaired, to attack the cancer and extend lives. The drug didn’t spur such anti-cancer activity after the surgery because those T-cells were removed along with the tumor. The results are very important and very promising but would need to be validated in much larger trials.

 

References:

 

https://www.washingtonpost.com/health/2019/02/11/immunotherapy-may-help-patients-with-kind-cancer-that-killed-john-mccain/?noredirect=on&utm_term=.e1b2e6fffccc

 

https://www.ncbi.nlm.nih.gov/pubmed/30742122

 

https://www.practiceupdate.com/content/neoadjuvant-anti-pd-1-immunotherapy-promotes-immune-responses-in-recurrent-gbm/79742/37/12/1

 

https://www.esmo.org/Oncology-News/Neoadjuvant-PD-1-Blockade-in-Glioblastoma

 

https://neurosciencenews.com/immunotherapy-glioblastoma-cancer-10722/

 

Advertisements

Read Full Post »


Stem Cells Differentiated into Insulin-Producing Cells in Mice

Reported: Irina Robu, PhD

Dr. Douglas Melton team from Harvard University funded in part by NIH’s National Institute of Diabetes and Digestive and Kidney Diseases set out to transform stem cells into beta cells that have the potential to replace damaged beta cells. While scientists have been able to change stem cells into insulin-producing cells, these cells don’t have markers that indicate they are beta cells, and they aren’t responsive to glucose.

Since diabetes is a disorder of elevated blood sugars where the body does not harvest enough insulin to meet where the body does not harvest enough insulin to respond properly to the insulin being made. When blood glucose levels rise, beta cells in the pancreas normally make the hormone insulin. Insulin triggers cells throughout the body to take up sugar from the blood. In type 2 diabetes, the most common form, tissues in the body lose their sensitivity to insulin, and pancreatic beta cells can’t make enough insulin to keep glucose levels in check. In type 1 diabetes, the body’s own immune system attacks and destroys beta cells. High blood glucose levels can lead to heart disease, blindness, and other health problems over time.

One approach to treat diabetes is to replace destroyed beta cells. Transplanted human pancreatic cells from deceased donors have been successfully used to treat people with type 1 diabetes. But this method is restricted by the accessibility of donor cells and the side effects of immunosuppression. The other approach is to develop functioning beta cells from stem cells which have the potential to transform into many different cell types. These cells can grow indefinitely in the laboratory and can differentiate, into any cell type found in the body.
In this experiment, the researchers grew a human embryonic stem cell line and 2 human-induced pluripotent stem cell lines in a culture system that allowed them to produce large numbers of cells. The researchers tested more than 150 combinations of over 70 compounds to figure out a method to produce functional human beta cells from the cultured stem cells which when added in exact combinations over a period of several weeks, they transformed human pluripotent stem cells into beta cells that functioned similarly to normal adult beta cells.

The cultured beta cells had specific markers that were found on normal beta cells which displayed changes in calcium levels when exposed to glucose and packaged insulin into granules. However, when transplanted into mice these cells secreted insulin in response to glucose. However, when the cells were transplanted into diabetic mice, abnormally high blood glucose levels lowered. More work is needed to develop these cells for clinical use. However, at this point they can serve as a useful screening tool for diabetes drugs.

SOURCE
http://www.frontlinegenomics.com/news/26168/stem-cells-turned-into-insulin-producing-cells-in-mice/

 

 

Read Full Post »


 

THE 3RD STAT4ONC ANNUAL SYMPOSIUM APRIL 25-27, 2019, HILTON, HARTFORD, CONNECTICUT, 315 Trumbull St, Hartford, CT 06103

Reporter: Stephen J. Williams, Ph.D.

SYMPOSIUM OBJECTIVES

The three-day symposium aims to bring oncologists and statisticians together to share new research, discuss novel ideas, ask questions and provide solutions for cancer clinical trials. In the era of big data, precision medicine, and genomics and immune-based oncology, it is crucial to provide a platform for interdisciplinary dialogues among clinical and quantitative scientists. The Stat4Onc Annual Symposium serves as a venue for oncologists and statisticians to communicate their views on trial design and conduct, drug development, and translations to patient care. To be discussed includes big data and genomics for oncology clinical trials, novel dose-finding designs, drug combinations, immune oncology clinical trials, and umbrella/basket oncology trials. An important aspect of Stat4Onc is the participation of researchers across academia, industry, and regulatory agency.

Meeting Agenda will be announced coming soon. For Updated Agenda and Program Speakers please CLICK HERE

The registration of the symposium is via NESS Society PayPal. Click here to register.

Other  2019 Conference Announcement Posts on this Open Access Journal Include:

Read Full Post »


Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Stroke is a leading cause of death worldwide and the most common cause of long-term disability amongst adults, more particularly in patients with diabetes mellitus and arterial hypertension. Increasing evidence suggests that disordered physiological variables following acute ischaemic stroke, especially hyperglycaemia, adversely affect outcomes.

 

Post-stroke hyperglycaemia is common (up to 50% of patients) and may be rather prolonged, regardless of diabetes status. A substantial body of evidence has demonstrated that hyperglycaemia has a deleterious effect upon clinical and morphological stroke outcomes. Therefore, hyperglycaemia represents an attractive physiological target for acute stroke therapies.

 

However, whether intensive glycaemic manipulation positively influences the fate of ischaemic tissue remains unknown. One major adverse event of management of hyperglycaemia with insulin (either glucose-potassium-insulin infusions or intensive insulin therapy) is the occurrence of hypoglycaemia, which can also induce cerebral damage.

 

Doctors all over the world have debated whether intensive glucose management, which requires the use of IV insulin to bring blood sugar levels down to 80-130 mg/dL, or standard glucose control using insulin shots, which aims to get glucose below 180 mg/dL, lead to better outcomes after stroke.

 

A period of hyperglycemia is common, with elevated blood glucose in the periinfarct period consistently linked with poor outcome in patients with and without diabetes. The mechanisms that underlie this deleterious effect of dysglycemia on ischemic neuronal tissue remain to be established, although in vitro research, functional imaging, and animal work have provided clues.

 

While prompt correction of hyperglycemia can be achieved, trials of acute insulin administration in stroke and other critical care populations have been equivocal. Diabetes mellitus and hyperglycemia per se are associated with poor cerebrovascular health, both in terms of stroke risk and outcome thereafter.

 

Interventions to control blood sugar are available but evidence of cerebrovascular efficacy are lacking. In diabetes, glycemic control should be part of a global approach to vascular risk while in acute stroke, theoretical data suggest intervention to lower markedly elevated blood glucose may be of benefit, especially if thrombolysis is administered.

 

Both hypoglycaemia and hyperglycaemia may lead to further brain injury and clinical deterioration; that is the reason these conditions should be avoided after stroke. Yet, when correcting hyperglycaemia, great care should be taken not to switch the patient into hypoglycaemia, and subsequently aggressive insulin administration treatment should be avoided.

 

Early identification and prompt management of hyperglycaemia, especially in acute ischaemic stroke, is recommended. Although the appropriate level of blood glucose during acute stroke is still debated, a reasonable approach is to keep the patient in a mildly hyperglycaemic state, rather than risking hypoglycaemia, using continuous glucose monitoring.

 

The primary results from the Stroke Hyperglycemia Insulin Network Effort (SHINE) study, a large, multisite clinical study showed that intensive glucose management did not improve functional outcomes at 90 days after stroke compared to standard glucose therapy. In addition, intense glucose therapy increased the risk of very low blood glucose (hypoglycemia) and required a higher level of care such as increased supervision from nursing staff, compared to standard treatment.

 

References:

 

https://www.nih.gov/news-events/news-releases/nih-study-provides-answer-long-held-debate-blood-sugar-control-after-stroke

 

https://www.ncbi.nlm.nih.gov/pubmed/27873213

 

https://www.ncbi.nlm.nih.gov/pubmed/19342845

 

https://www.ncbi.nlm.nih.gov/pubmed/20491782

 

https://www.ncbi.nlm.nih.gov/pubmed/21211743

 

https://www.ncbi.nlm.nih.gov/pubmed/18690907

 

Read Full Post »


Record Innovations in Drug Discovery by Koch Institute @MIT Members and Affiliates

Reporter: Aviva Lev-Ari, PhD, RN

 

 

In Good Company

Trovagene announced a new patent for the use of the drug onvansertib in combination with other anti-androgen drugs for the treatment of prostate cancer. Last fall, Trovagene secured exclusive rights to develop combination therapies and clinical biomarkers for prostate cancer based in part on Bridge Project-funded research. Read more.

Lyndra Therapeutics, co-founded by KI member Bob Langer, raised $55 million in its Series B round, with new investors including the Bill and Melinda Gates Foundation and Gilead Sciences. Phase 2 trials for its ultra long-acting drug delivery capsule are expected to begin next year. Read more.

Dragonfly Therapeutics, co-founded by KI director Tyler Jacks, has committed $10 million to launch the first clinical studies of its TriNKETs (Tri-specific, NK cell Engager Therapies) platform for both solid tumor and hematological cancers. Read more.

Following its record-breaking IPO, Moderna Therapeutics (co-founded by KI member Bob Langer) published preclinical data in Science Translational Medicine demonstrating the promise of its mRNA-2752 program in several cancers. Read more.

Dewpoint Therapeutics launched with a $60 million Series A, aims to translate recent insights into biomolecular condensates from the laboratory of co-founder and KI member Rick Young to drug discovery. Read more.

KI member Bob Langer and collaborator Omid Farokhzad co-founded Seer— combining nanotechnology, protein chemistry, and machine learning—to develop liquid biopsy tests for the early detection of cancer and other diseases. Read more.

Epizyme, co-founded by KI member Bob Horvitz, is submitting a New Drug Application to gain accelerated approval of tazemetostat for patients with relapsed or refractory follicular lymphoma. Read more.

Ribon Therapeutics, founded by former KI member Paul Chang, launched with $65 million in a Series B funding round with Victoria Richon, a veteran of Sanofi and Epizyme, at the helm. Ribon focuses on developing PARP7 inhibitors for cancer treatment. Read more.

SOURCE

From: MIT Koch Institute for Integrative Cancer Research <cancersolutions=mit.edu@cmail19.com> on behalf of MIT Koch Institute for Integrative Cancer Research <cancersolutions@mit.edu>

Reply-To: <ki-communications@mit.edu>

Date: Wednesday, February 6, 2019 at 3:15 PM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: Lung Microbiome Corrupted in Cancer; Angelika Amon wins 2019 Vilcek Award; Lunch Lines of Inquiry

Read Full Post »


Cell Therapy Market to Grow Beyond Oncology As Big Pharma Expands Investments

Reporter: Irina Robu, PhD

Collaborations of Big Pharma with small to mid-segment companies are currently focusing R&D on precision medicine. The market is valued at $2.70 billion in 2017 and is expected to reach $8.21 billion in 2025. A varied therapeutic focus and implementation of advanced manufacturing technologies such as single-use bioreactors, will pave a way for unique cell-gene and stem cell – gene combination therapies.
Novartis and Gilead are the first companies to adopt pay for performance business for their CAR-T cell therapies. In addition to innovative pricing models, Pharma companies are also showing a preference for risk sharing and fast-to-market models in order to support the development of novel therapies. Moreover, developments in cell culturing techniques alongside the use of different stem cells such as adipose-derived stem cells, mesenchymal stem cells, and induced pluripotent stem cell will reinforce the market with superior treatment options for non-oncological conditions such as neurological, musculoskeletal, and dermatological conditions.

With the high request for cell therapies, numerous growth opportunities can occur such as:

  • With more than 959 ongoing regenerative medicine clinical trials, the market finds opportunity across both stem cell and non-stem cell-based therapies.
  • Curative combination therapies which help find application in identifying the right patient as well as predicting the immune response in cancer patients.
  • Implementation of IT solutions and single-use manufacturing techniques for optimizing small-volume, high-value manufacturing of novel cell therapies, thus dropping the time to market radically.
  • Emerging Business Models which aid market players focus on academic and research collaborations together with industry collaborations to support therapeutic and technological innovations.

Source

https://www.newswire.ca/news-releases/cell-therapy-market-to-grow-beyond-oncology-as-big-pharma-expands-investments-826628110.html

 

Read Full Post »


@Amazon.com @pharma_BI BUNDLES for $274 #Patients #Voices #Precision #Medicine #Physiology #Genomics #Therapeutics #3D #BioPrinting: Series E: Volumes 1,2,3,4 by Editors:

Larry H Bernstein @bernstein_h  

Gail Thornton @GailThornt 

Aviva Lev-Ari @AVIVA1950 

 

Series E: Patient-Centered Medicine – LINKS to e-Books & Cover Pages for Volumes 1,2,3,4

 

  • Volume 1: The VOICES of Patients, Hospitals CEOs, Health Care Providers, Caregivers and Families: Personal Experience with Critical Care and Invasive Medical Procedures. On Amazon.com  since 10/16/2017

https://www.amazon.com/dp/B076HGB6MZ

  • Volume 2: Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders. On Amazon.com since12/9/2017

https://www.amazon.com/dp/B078313281

 

 

  • Volume 3: Milestones in Physiology: Discoveries in Medicine, Genomics and Therapeutics. On Amazon.com since 12/27/2015

http://www.amazon.com/dp/B019VH97LU

  • Volume 4: Medical 3D BioPrinting – The Revolution in Medicine, Technologies for Patient-centered Medicine: From R&D in Biologics to New Medical Devices. On Amazon.com  since 12/30/2017

https://www.amazon.com/dp/B078QVDV2W

Read Full Post »

« Newer Posts - Older Posts »