Archive for the ‘Regulated Clinical Trials: Design, Methods, Components and IRB related issues’ Category

Familial transthyretin amyloid polyneuropathy

Curator: Larry H. Bernstein, MD, FCAP



First-Ever Evidence that Patisiran Reduces Pathogenic, Misfolded TTR Monomers and Oligomers in FAP Patients

We reported data from our ongoing Phase 2 open-label extension (OLE) study of patisiran, an investigational RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR amyloidosis) patients with familial amyloidotic polyneuropathy (FAP). Alnylam scientists and collaborators from The Scripps Research Institute and Misfolding Diagnostics, Inc. were able to measure the effects of patisiran on pathogenic, misfolded TTR monomers and oligomers in FAP patients. Results showed a rapid and sustained reduction in serum non-native conformations of TTR (NNTTR) of approximately 90%. Since NNTTR is pathogenic in ATTR amyloidosis and the level of NNTTR reduction correlated with total TTR knockdown, these results provide direct mechanistic evidence supporting the therapeutic hypothesis that TTR knockdown has the potential to result in clinical benefit. Furthermore, complete 12-month data from all 27 patients that enrolled in the patisiran Phase 2 OLE study showed sustained mean maximum reductions in total serum TTR of 91% for over 18 months and a mean 3.1-point decrease in mNIS+7 at 12 months, which compares favorably to an estimated increase in mNIS+7 of 13 to 18 points at 12 months based upon analysis of historical data sets in untreated FAP patients with similar baseline characteristics. Importantly, patisiran administration continues to be generally well tolerated out to 21 months of treatment.

Read our press release

View the non-native TTR poster (480 KB PDF)

View the complete 12-month patisiran Phase 2 OLE data presentation (620 KB PDF)

We are encouraged by these new data that provide continued support for our hypothesis that patisiran has the potential to halt neuropathy progression in patients with FAP. If these results are replicated in a randomized, double-blind, placebo-controlled study, we believe that patisiran could emerge as an important treatment option for patients suffering from this debilitating, progressive and life-threatening disease.


Hereditary ATTR Amyloidosis with Polyneuropathy (hATTR-PN)

ATTR amyloidosis is a progressive, life-threatening disease caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in multiple organs, but primarily in the peripheral nerves and heart. ATTR amyloidosis can lead to significant morbidity, disability, and mortality. The TTR protein is produced primarily in the liver and is normally a carrier for retinol binding protein – one of the vehicles used to transport vitamin A around the body.  Mutations in the TTR gene cause misfolding of the protein and the formation of amyloid fibrils that typically contain both mutant and wild-type TTR that deposit in tissues such as the peripheral nerves and heart, resulting in intractable peripheral sensory neuropathy, autonomic neuropathy, and/or cardiomyopathy.

Click to Enlarge


ATTR represents a major unmet medical need with significant morbidity and mortality. There are over 100 reported TTR mutations; the particular TTR mutation and the site of amyloid deposition determine the clinical manifestations of the disease whether it is predominantly symptoms of neuropathy or cardiomyopathy.

Specifically, hereditary ATTR amyloidosis with polyneuropathy (hATTR-PN), also known as familial amyloidotic polyneuropathy (FAP), is an inherited, progressive disease leading to death within 5 to 15 years. It is due to a mutation in the transthyretin (TTR) gene, which causes misfolded TTR proteins to accumulate as amyloid fibrils predominantly in peripheral nerves and other organs. hATTR-PN can cause sensory, motor, and autonomic dysfunction, resulting in significant disability and death.

It is estimated that hATTR-PN, also known as FAP, affects approximately 10,000 people worldwide.  Patients have a life expectancy of 5 to 15 years from symptom onset, and the only treatment options for early stage disease are liver transplantation and TTR stabilizers such as tafamidis (approved in Europe) and diflunisal.  Unfortunately liver transplantation has limitations, including limited organ availability as well as substantial morbidity and mortality. Furthermore, transplantation eliminates the production of mutant TTR but does not affect wild-type TTR, which can further deposit after transplantation, leading to cardiomyopathy and worsening of neuropathy. There is a significant need for novel therapeutics to treat patients who have inherited mutations in the TTR gene.

Our ATTR program is the lead effort in our Genetic Medicine Strategic Therapeutic Area (STAr) product development and commercialization strategy, which is focused on advancing innovative RNAi therapeutics toward genetically defined targets for the treatment of rare diseases with high unmet medical need.  We are developing patisiran (ALN-TTR02), an intravenously administered RNAi therapeutic, to treat the hATTR-PN form of the disease.

Patisiran for the Treatment hATTR-PN

APOLLO Phase 3 Trial

In 2012, Alnylam entered into an exclusive alliance with Genzyme, a Sanofi company, to develop and commercialize RNAi therapeutics, including patisiran and revusiran, for the treatment of ATTR amyloidosis in Japan and the broader Asian-Pacific region. In early 2014, this relationship was extended as a significantly broader alliance to advance RNAi therapeutics as genetic medicines. Under this new agreement, Alnylam will lead development and commercialization of patisiran in North America and Europe while Genzyme will develop and commercialize the product in the rest of world.


Hereditary ATTR Amyloidosis with Cardiomyopathy (hATTR-CM)

ATTR amyloidosis is a progressive, life-threatening disease caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in multiple organs, but primarily in the peripheral nerves and heart. ATTR amyloidosis can lead to significant morbidity, disability, and mortality. The TTR protein is produced primarily in the liver and is normally a carrier for retinol binding protein – one of the vehicles used to transport vitamin A around the body.  Mutations in the TTR gene cause misfolding of the protein and the formation of amyloid fibrils that typically contain both mutant and wild-type TTR that deposit in tissues such as the peripheral nerves and heart, resulting in intractable peripheral sensory neuropathy, autonomic neuropathy, and/or cardiomyopathy.

Click to Enlarge                  

ATTR represents a major unmet medical need with significant morbidity and mortality. There are over 100 reported TTR mutations; the particular TTR mutation and the site of amyloid deposition determine the clinical manifestations of the disease, whether it is predominantly symptoms of neuropathy or cardiomyopathy.

Specifically, hereditary ATTR amyloidosis with cardiomyopathy (hATTR-CM), also known as familial amyloidotic cardiomyopathy (FAC), is an inherited, progressive disease leading to death within 2 to 5 years. It is due to a mutation in the transthyretin (TTR) gene, which causes misfolded TTR proteins to accumulate as amyloid fibrils primarily in the heart. Hereditary ATTR amyloidosis with cardiomyopathy can result in heart failure and death.

While the exact numbers are not known, it is estimated hATTR-CM, also known as FAC affects at least 40,000 people worldwide.  hATTR-CM is fatal within 2 to 5 years of diagnosis and treatment is currently limited to supportive care.  Wild-type ATTR amyloidosis (wtATTR amyloidosis), also known as senile systemic amyloidosis, is a nonhereditary, progressive disease leading to death within 2 to 5 years. It is caused by misfolded transthyretin (TTR) proteins that accumulate as amyloid fibrils in the heart. Wild-type ATTR amyloidosis can cause cardiomyopathy and result in heart failure and death. There are no approved therapies for the treatment of hATTR-CM or SSA; hence there is a significant unmet need for novel therapeutics to treat these patients.

Our ATTR program is the lead effort in our Genetic Medicine Strategic Therapeutic Area (STAr) product development and commercialization strategy, which is focused on advancing innovative RNAi therapeutics toward genetically defined targets for the treatment of rare diseases with high unmet medical need.  We are developing revusiran (ALN-TTRsc), a subcutaneously administered RNAi therapeutic for the treatment of hATTR-CM.

Revusiran for the Treatment of hATTR-CM

ENDEAVOUR Phase 3 Trial

In 2012, Alnylam entered into an exclusive alliance with Genzyme, a Sanofi company, to develop and commercialize RNAi therapeutics, including patisiran and revusiran, for the treatment of ATTR amyloidosis in Japan and the broader Asian-Pacific region. In early 2014, this relationship was extended as a broader alliance to advance RNAi therapeutics as genetic medicines. Under this new agreement, Alnylam and Genzyme have agreed to co-develop and co-commercialize revusiran in North America and Europe, with Genzyme developing and commercializing the product in the rest of world. This broadened relationship on revusiran is aimed at expanding and accelerating the product’s global value.

Pre-Clinical Data and Advancement of ALN-TTRsc02 for Transthyretin-Mediated Amyloidosis

We presented pre-clinical data with ALN-TTRsc02, an investigational RNAi therapeutic targeting transthyretin (TTR) for the treatment of TTR-mediated amyloidosis (ATTR amyloidosis).  In pre-clinical studies, including those in non-human primates (NHPs), ALN-TTRsc02 achieved potent and highly durable knockdown of serum TTR of up to 99% with multi-month durability achieved after just a single dose, supportive of a potentially once quarterly dose regimen. Results from studies comparing TTR knockdown activity of ALN-TTRsc02 to that of revusiran showed that ALN-TTRsc02 has a markedly superior TTR knockdown profile.  Further, in initial rat toxicology studies, ALN-TTRsc02 was found to be generally well tolerated with no significant adverse events at doses as high as 100 mg/kg.

Read our press release

View the presentation


Emerging Therapies for Transthyretin Cardiac Amyloidosis Could Herald a New Era for the Treatment of HFPEF

Oct 14, 2015   |  Adam Castano, MDDavid Narotsky, MDMathew S. Maurer, MD, FACC

Heart failure with a preserved ejection fraction (HFPEF) is a clinical syndrome that has no pharmacologic therapies approved for this use to date. In light of failed medicines, cardiologists have refocused treatment strategies based on the theory that HFPEF is a heterogeneous clinical syndrome with different etiologies. Classification of HFPEF according to etiologic subtype may, therefore, identify cohorts with treatable pathophysiologic mechanisms and may ultimately pave the way forward for developing meaningful HFPEF therapies.1

A wealth of data now indicates that amyloid infiltration is an important mechanism underlying HFPEF. Inherited mutations in transthyretin cardiac amyloidosis (ATTRm) or the aging process in wild-type disease (ATTRwt) cause destabilization of the transthyretin (TTR) protein into monomers or oligomers, which aggregate into amyloid fibrils. These insoluble fibrils accumulate in the myocardium and result in diastolic dysfunction, restrictive cardiomyopathy, and eventual congestive heart failure (Figure 1). In an autopsy study of HFPEF patients, almost 20% without antemortem suspicion of amyloid had left ventricular (LV) TTR amyloid deposition.2 Even more resounding evidence for the contribution of TTR amyloid to HFPEF was a study in which 120 hospitalized HFPEF patients with LV wall thickness ≥12 mm underwent technetium-99m 3,3-diphosphono-1,2-propranodicarboxylic acid (99mTc-DPD) cardiac imaging,3,4 a bone isotope known to have high sensitivity and specificity for diagnosing TTR cardiac amyloidosis.5,6 Moderate-to-severe myocardial uptake indicative of TTR cardiac amyloid deposition was detected in 13.3% of HFPEF patients who did not have TTR gene mutations. Therefore, TTR cardiac amyloid deposition, especially in older adults, is not rare, can be easily identified, and may contribute to the underlying pathophysiology of HFPEF.

Figure 1

As no U.S. Food and Drug Administration-approved drugs are currently available for the treatment of HFPEF or TTR cardiac amyloidosis, the development of medications that attenuate or prevent TTR-mediated organ toxicity has emerged as an important therapeutic goal. Over the past decade, a host of therapies and therapeutic drug classes have emerged in clinical trials (Table 1), and these may herald a new direction for treating HFPEF secondary to TTR amyloid.

Table 1

TTR Silencers (siRNA and Antisense Oligonucleotides)


Ribonucleic acid interference (RNAi) has surfaced as an endogenous cellular mechanism for controlling gene expression. Small interfering RNAs (siRNAs) delivered into cells can disrupt the production of target proteins.7,8 A formulation of lipid nanoparticle and triantennary N-acetylgalactosamine (GalNAc) conjugate that delivers siRNAs to hepatocytes is currently in clinical trials.9 Prior research demonstrated these GalNAc-siRNA conjugates result in robust and durable knockdown of a variety of hepatocyte targets across multiple species and appear to be well suited for suppression of TTR gene expression and subsequent TTR protein production.

The TTR siRNA conjugated to GalNAc, ALN-TTRSc, is now under active investigation as a subcutaneous injection in phase 3 clinical trials in patients with TTR cardiac amyloidosis.10 Prior phase 2 results demonstrated that ALN-TTRSc was generally well tolerated in patients with significant TTR disease burden and that it reduced both wild-type and mutant TTR gene expression by a mean of 87%. Harnessing RNAi technology appears to hold great promise for treating patients with TTR cardiac amyloidosis. The ability of ALN-TTRSc to lower both wild-type and mutant proteins may provide a major advantage over liver transplantation, which affects the production of only mutant protein and is further limited by donor shortage, cost, and need for immunosuppression.

Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are under clinical investigation for their ability to inhibit hepatic expression of amyloidogenic TTR protein. Currently, the ASO compound, ISIS-TTRRx, is under investigation in a phase 3 multicenter, randomized, double-blind, placebo-controlled clinical trial in patients with familial amyloid polyneuropathy (FAP).11 The primary objective is to evaluate its efficacy as measured by change in neuropathy from baseline relative to placebo. Secondary measures will evaluate quality of life (QOL), modified body mass index (mBMI) by albumin, and pharmacodynamic effects on retinol binding protein. Exploratory objectives in a subset of patients with LV wall thickness ≥13 mm without a history of persistent hypertension will examine echocardiographic parameters, N-terminal pro–B-type natriuretic peptide (NT-proBNP), and polyneuropathy disability score relative to placebo. These data will facilitate analysis of the effect of antisense oligonucleotide-mediated TTR suppression on the TTR cardiac phenotype with a phase 3 trial anticipated to begin enrollment in 2016.

TTR Stabilizers (Diflunisal, Tafamidis)


Several TTR-stabilizing agents are in various stages of clinical trials. Diflunisal, a traditionally used and generically available nonsteroidal anti-inflammatory drug (NSAID), binds and stabilizes familial TTR variants against acid-mediated fibril formation in vitro and is now in human clinical trials.12,13 The use of diflunisal in patients with TTR cardiac amyloidosis is controversial given complication of chronic inhibition of cyclooxygenase (COX) enzymes, including gastrointestinal bleeding, renal dysfunction, fluid retention, and hypertension that may precipitate or exacerbate heart failure in vulnerable individuals.14-17 In TTR cardiac amyloidosis, an open-label cohort study suggested that low-dose diflunisal with careful monitoring along with a prophylactic proton pump inhibitor could be safely administered to compensated patients.18 An association was observed, however, between chronic diflunisal use and adverse changes in renal function suggesting that advanced kidney disease may be prohibitive in diflunisal therapy.In FAP patients with peripheral or autonomic neuropathy randomized to diflunisal or placebo, diflunisal slowed progression of neurologic impairment and preserved QOL over two years of follow-up.19 Echocardiography demonstrated cardiac involvement in approximately 50% of patients.20 Longer-term safety and efficacy data over an average 38 ± 31 months in 40 Japanese patients with hereditary ATTR amyloidosis who were not candidates for liver transplantation showed that diflunisal was mostly well tolerated.12 The authors cautioned the need for attentive monitoring of renal function and blood cell counts. Larger multicenter collaborations are needed to determine diflunisal’s true efficacy in HFPEF patients with TTR cardiac amyloidosis.


Tafamidis is under active investigation as a novel compound that binds to the thyroxine-binding sites of the TTR tetramer, inhibiting its dissociation into monomers and blocking the rate-limiting step in the TTR amyloidogenesis cascade.21 The TTR compound was shown in an 18-month double-blind, placebo-controlled trial to slow progression of neurologic symptoms in patients with early-stage ATTRm due to the V30M mutation.22 When focusing on cardiomyopathy in a phase 2, open-label trial, tafamidis also appeared to effectively stabilize TTR tetramers in non-V30M variants, wild-type and V122I, as well as biochemical and echocardiographic parameters.23,24 Preliminary data suggests that clinically stabilized patients had shorter disease duration, lower cardiac biomarkers, less myocardial thickening, and higher EF than those who were not stabilized, suggesting early institution of therapy may be beneficial. A phase 3 trial has completed enrollment and will evaluate the efficacy, safety, and tolerability of tafamidis 20 or 80 mg orally vs. placebo.25 This will contribute to long-term safety and efficacy data needed to determine the therapeutic effects of tafamidis among ATTRm variants.

Amyloid Degraders (Doxycycline/TUDCA and Anti-SAP Antibodies)


While silencer and stabilizer drugs are aimed at lowering amyloidogenic precursor protein production, they cannot remove already deposited fibrils in an infiltrated heart. Removal of already deposited fibrils by amyloid degraders would be an important therapeutic strategy, particularly in older adults with heavily infiltrated hearts reflected by thick walls, HFPEF, systolic heart failure, and restrictive cardiomyopathy. Combined doxycycline and tauroursodeoxycholic acid (TUDCA) disrupt TTR amyloid fibrils and appeared to have an acceptable safety profile in a small phase 2 open-label study among 20 TTR patients. No serious adverse reactions or clinical progression of cardiac or neuropathic involvement was observed over one year.26 An active phase 2, single-center, open-label, 12-month study will assess primary outcome measures including mBMI, neurologic impairment score, and NT-proBNP.27 Another phase 2 study is examining the tolerability and efficacy of doxycycline/TUDCA over an 18-month period in patients with TTR amyloid cardiomyopathy.28 Additionally, a study in patients with TTR amyloidosis is ongoing to determine the effect of doxycycline alone on neurologic function, cardiac biomarkers, echocardiographic parameters, modified body mass index, and autonomic neuropathy.29

Anti-SAP Antibodies

In order to safely clear established amyloid deposits, the role of the normal, nonfibrillar plasma glycoprotein present in all human amyloid deposits, serum amyloid P component (SAP), needs to be more clearly understood.30 In mice with amyloid AA type deposits, administration of antihuman SAP antibody triggered a potent giant cell reaction that removed massive visceral amyloid deposits without adverse effects.31 In humans with TTR cardiac amyloidosis, anti-SAP antibody treatments could be feasible because the bis-D proline compound, CPHPC, is capable of clearing circulating human SAP, which allow anti-SAP antibodies to reach residual deposited SAP. In a small, open-label, single-dose-escalation, phase 1 trial involving 15 patients with systemic amyloidosis, none of whom had clinical evidence of cardiac amyloidosis, were treated with CPHPC followed by human monoclonal IgG1 anti-SAP antibody.32 No serious adverse events were reported and amyloid deposits were cleared from the liver, kidney, and lymph node. Anti-SAP antibodies hold promise as a potential amyloid therapy because of their potential to target all forms of amyloid deposits across multiple tissue types.

Mutant or wild-type TTR cardiac amyloidoses are increasingly recognized as a cause of HFPEF. Clinicians need to be aware of this important HFPEF etiology because the diverse array of emerging disease-modifying agents for TTR cardiac amyloidosis in human clinical trials has the potential to herald a new era for the treatment of HFPEF.


  1. Maurer MS, Mancini D. HFpEF: is splitting into distinct phenotypes by comorbidities the pathway forward? J Am Coll Cardiol 2014;64:550-2.
  2. Mohammed SF, Mirzoyev SA, Edwards WD, et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail 2014;2:113-22.
  3. González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015.
  4. Castano A, Bokhari S, Maurer MS. Unveiling wild-type transthyretin cardiac amyloidosis as a significant and potentially modifiable cause of heart failure with preserved ejection fraction. Eur Heart J 2015 Jul 28. [Epub ahead of print]
  5. Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 2009;120:1203-12.
  6. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.
  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
  8. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8.
  9. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nature Mater 2013;12:967-77.
  10. U.S. National Institutes of Health. Phase 2 Study to Evaluate ALN-TTRSC in Patients With Transthyretin (TTR) Cardiac Amyloidosis ( website). 2014. Available at: Accessed 8/19/2015.
  11. U.S. National Institutes of Health. Efficacy and Safety of ISIS-TTRRx in Familial Amyloid Polyneuropathy (Clinical Website. 2013. Available at: Accessed 8/19/2015.
  12. Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006;13:236-49.
  13. Tojo K, Sekijima Y, Kelly JW, Ikeda S. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res 2006;56:441-9.
  14. Epstein M. Non-steroidal anti-inflammatory drugs and the continuum of renal dysfunction. J Hypertens Suppl 2002;20:S17-23.
  15. Wallace JL. Pathogenesis of NSAID-induced gastroduodenal mucosal injury. Best Pract Res Clin Gastroenterol 2001;15:691-703.
  16. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001;286:954-9.
  17. Page J, Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an underrecognized public health problem. Arch Intern Med 2000;160:777-84.
  18. Castano A, Helmke S, Alvarez J, Delisle S, Maurer MS. Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail 2012;18:315-9.
  19. Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 2013;310:2658-67.
  20. Quarta CCF, Solomon RH Suhr SD, et al. The prevalence of cardiac amyloidosis in familial amyloidotic polyneuropathy with predominant neuropathy: The Diflunisal Trial. International Symposium on Amyloidosis 2014:88-9.
  21. Hammarstrom P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: A major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A 2002;99 Suppl 4:16427-32.
  22. Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 2012;79:785-92.
  23. Merlini G, Plante-Bordeneuve V, Judge DP, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res 2013;6:1011-20.
  24. Maurer MS, Grogan DR, Judge DP, et al. Tafamidis in transthyretin amyloid cardiomyopathy: effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail 2015;8:519-26.
  25. U.S. National Institutes of Health. Safety and Efficacy of Tafamidis in Patients With Transthyretin Cardiomyopathy (ATTR-ACT) ( website). 2014. Available at: Accessed 8/19/2015.
  26. Obici L, Cortese A, Lozza A, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid 2012;19 Suppl 1:34-6.
  27. U.S. National Institutes of Health. Safety, Efficacy and Pharmacokinetics of Doxycycline Plus Tauroursodeoxycholic Acid in Transthyretin Amyloidosis ( website). 2011. Available at: Accessed 8/19/2015.
  28. U.S. National Institutes of Health. Tolerability and Efficacy of a Combination of Doxycycline and TUDCA in Patients With Transthyretin Amyloid Cardiomyopathy ( website). 2013. Available at: Accessed 8/19/2015.
  29. U.S. National Institutes of Health. Safety and Effect of Doxycycline in Patients With Amyloidosis ( website).2015. Available at: Accessed 8/19/2015.
  30. Pepys MB, Dash AC. Isolation of amyloid P component (protein AP) from normal serum as a calcium-dependent binding protein. Lancet 1977;1:1029-31.
  31. Bodin K, Ellmerich S, Kahan MC, et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature 2010;468:93-7.
  32. Richards DB, Cookson LM, Berges AC, et al. Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component. N Engl J Med 2015;373:1106-14.


The Acid-Mediated Denaturation Pathway of Transthyretin Yields a Conformational Intermediate That Can Self-Assemble into Amyloid

Zhihong Lai , Wilfredo Colón , and Jeffery W. Kelly *
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255
Biochemistry199635 (20), pp 6470–6482
Publication Date (Web): May 21, 1996  Copyright © 1996 American Chemical Society

Transthyretin (TTR) amyloid fibril formation is observed during partial acid denaturation and while refolding acid-denatured TTR, implying that amyloid fibril formation results from the self-assembly of a conformational intermediate. The acid denaturation pathway of TTR has been studied in detail herein employing a variety of biophysical methods to characterize the intermediate(s) capable of amyloid fibril formation. At physiological concentrations, tetrameric TTR remains associated from pH 7 to pH 5 and is incapable of amyloid fibril formation. Tetrameric TTR dissociates to a monomer in a process that is dependent on both pH and protein concentration below pH 5. The extent of amyloid fibril formation correlates with the concentration of the TTR monomer having an altered, but defined, tertiary structure over the pH range of 5.0−3.9. The inherent Trp fluorescence-monitored denaturation curve of TTR exhibits a plateau over the pH range where amyloid fibril formation is observed (albeit at a higher concentration), implying that a steady-state concentration of the amyloidogenic intermediate with an altered tertiary structure is being detected. Interestingly, 1-anilino-8-naphthalenesulfonate fluorescence is at a minimum at the pH associated with maximal amyloid fibril formation (pH 4.4), implying that the amyloidogenic intermediate does not have a high extent of hydrophobic surface area exposed, consistent with a defined tertiary structure. Transthyretin has two Trp residues in its primary structure, Trp-41 and Trp-79, which are conveniently located far apart in the tertiary structure of TTR. Replacement of each Trp with Phe affords two single Trp containing variants which were used to probe local pH-dependent tertiary structural changes proximal to these chromophores. The pH-dependent fluorescence behavior of the Trp-79-Phe mutant strongly suggests that Trp-41 is located near the site of the tertiary structural rearrangement that occurs in the formation of the monomeric amyloidogenic intermediate, likely involving the C-strand−loop−D-strand region. Upon further acidification of TTR (below pH 4.4), the structurally defined monomeric amyloidogenic intermediate begins to adopt alternative conformations that are not amyloidogenic, ultimately forming an A-state conformation below pH 3 which is also not amyloidogenic. In summary, analytical equilibrium ultracentrifugation, SDS−PAGE, far- and near-UV CD, fluorescence, and light scattering studies suggest that the amyloidogenic intermediate is a monomeric predominantly β-sheet structure having a well-defined tertiary structure.


Prevention of Transthyretin Amyloid Disease by Changing Protein Misfolding Energetics

Per Hammarström*, R. Luke Wiseman*, Evan T. Powers, Jeffery W. Kelly   + Author Affiliations

Science  31 Jan 2003; 299(5607):713-716

Genetic evidence suggests that inhibition of amyloid fibril formation by small molecules should be effective against amyloid diseases. Known amyloid inhibitors appear to function by shifting the aggregation equilibrium away from the amyloid state. Here, we describe a series of transthyretin amyloidosis inhibitors that functioned by increasing the kinetic barrier associated with misfolding, preventing amyloidogenesis by stabilizing the native state. The trans-suppressor mutation, threonine 119 → methionine 119, which is known to ameliorate familial amyloid disease, also functioned through kinetic stabilization, implying that this small-molecule strategy should be effective in treating amyloid diseases.


Rational design of potent human transthyretin amyloid disease inhibitors

Thomas Klabunde1,2, H. Michael Petrassi3, Vibha B. Oza3, Prakash Raman3, Jeffery W. Kelly3 & James C. Sacchettini1

Nature Structural & Molecular Biology 2000; 7: 312 – 321.      

The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein–drug complexes have been determined to allow detailed analyses of the protein–drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4,6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.


First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy

Adams, Davida; Suhr, Ole B.b; Hund, Ernstc; Obici, Laurad; Tournev, Ivailoe,f; Campistol, Josep M.g; Slama, Michel S.h; Hazenberg, Bouke P.i; Coelho, Teresaj; from the European Network for TTR-FAP (ATTReuNET)

Current Opin Neurol: Feb 2016; 29 – Issue – p S14–S26

Purpose of review: Early and accurate diagnosis of transthyretin familial amyloid polyneuropathy (TTR-FAP) represents one of the major challenges faced by physicians when caring for patients with idiopathic progressive neuropathy. There is little consensus in diagnostic and management approaches across Europe.

Recent findings: The low prevalence of TTR-FAP across Europe and the high variation in both genotype and phenotypic expression of the disease means that recognizing symptoms can be difficult outside of a specialized diagnostic environment. The resulting delay in diagnosis and the possibility of misdiagnosis can misguide clinical decision-making and negatively impact subsequent treatment approaches and outcomes.

Summary: This review summarizes the findings from two meetings of the European Network for TTR-FAP (ATTReuNET). This is an emerging group comprising representatives from 10 European countries with expertise in the diagnosis and management of TTR-FAP, including nine National Reference Centres. The current review presents management strategies and a consensus on the gold standard for diagnosis of TTR-FAP as well as a structured approach to ongoing multidisciplinary care for the patient. Greater communication, not just between members of an individual patient’s treatment team, but also between regional and national centres of expertise, is the key to the effective management of TTR-FAP.

Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a highly debilitating and irreversible neurological disorder presenting symptoms of progressive sensorimotor and autonomic neuropathy [1▪,2▪,3]. TTR-FAP is caused by misfolding of the transthyretin (TTR) protein leading to protein aggregation and the formation of amyloid fibrils and, ultimately, to amyloidosis (commonly in the peripheral and autonomic nervous system and the heart) [4,5]. TTR-FAP usually proves fatal within 7–12 years from the onset of symptoms, most often due to cardiac dysfunction, infection, or cachexia [6,7▪▪].

The prevalence and disease presentation of TTR-FAP vary widely within Europe. In endemic regions (northern Portugal, Sweden, Cyprus, and Majorca), patients tend to present with a distinct genotype in large concentrations, predominantly a Val30Met substitution in the TTR gene [8–10]. In other areas of Europe, the genetic footprint of TTR-FAP is more varied, with less typical phenotypic expression [6,11]. For these sporadic or scattered cases, a lack of awareness among physicians of variable clinical features and limited access to diagnostic tools (i.e., pathological studies and genetic screening) can contribute to high rates of misdiagnosis and poorer patient outcomes [1▪,11]. In general, early and late-onset variants of TTR-FAP, found within endemic and nonendemic regions, present several additional diagnostic challenges [11,12,13▪,14].

Delay in the time to diagnosis is a major obstacle to the optimal management of TTR-FAP. With the exception of those with a clearly diagnosed familial history of FAP, patients still invariably wait several years between the emergence of first clinical signs and accurate diagnosis [6,11,14]. The timely initiation of appropriate treatment is particularly pertinent, given the rapidity and irreversibility with which TTR-FAP can progress if left unchecked, as well as the limited effectiveness of available treatments during the later stages of the disease [14]. This review aims to consolidate the existing literature and present an update of the best practices in the management of TTR-FAP in Europe. A summary of the methods used to achieve a TTR-FAP diagnosis is presented, as well as a review of available treatments and recommendations for treatment according to disease status.

Patients with TTR-FAP can present with a range of symptoms [11], and care should be taken to acquire a thorough clinical history of the patient as well as a family history of genetic disease. Delay in diagnosis is most pronounced in areas where TTR-FAP is not endemic or when there is no positive family history [1▪]. TTR-FAP and TTR-familial amyloid cardiomyopathy (TTR-FAC) are the two prototypic clinical disease manifestations of a broader disease spectrum caused by an underlying hereditary ATTR amyloidosis [19]. In TTR-FAP, the disease manifestation of neuropathy is most prominent and definitive for diagnosis, whereas cardiomyopathy often suggests TTR-FAC. However, this distinction is often superficial because cardiomyopathy, autonomic neuropathy, vitreous opacities, kidney disease, and meningeal involvement all may be present with varying severity for each patient with TTR-FAP.

Among early onset TTR-FAP with usually positive family history, symptoms of polyneuropathy present early in the disease process and usually predominate throughout the progression of the disease, making neurological testing an important diagnostic aid [14]. Careful clinical examination (e.g., electromyography with nerve conduction studies and sympathetic skin response, quantitative sensation test, quantitative autonomic test) can be used to detect, characterize, and scale the severity of neuropathic abnormalities involving small and large nerve fibres [10]. Although a patient cannot be diagnosed definitively with TTR-FAP on the basis of clinical presentation alone, symptoms suggesting the early signs of peripheral neuropathy, autonomic dysfunction, and cardiac conduction disorders or infiltrative cardiomyopathy are all indicators that further TTR-FAP diagnostic investigation is warranted. Late-onset TTR-FAP often presents as sporadic cases with distinct clinical features (e.g., milder autonomic dysfunction) and can be more difficult to diagnose than early-onset TTR-FAP (Table 2) [1▪,11,12,13▪,14,20].

Genetic testing is carried out to allow detection of specific amyloidogenic TTR mutations (Table 1), using varied techniques depending on the expertise and facilities available in each country (Table S2, A targeted approach to detect a specific mutation can be used for cases belonging to families with previous diagnosis. In index cases of either endemic and nonendemic regions that do not have a family history of disease, are difficult to confirm, and have atypical symptoms, TTR gene sequencing is required for the detection of both predicted and new amyloidogenic mutations [26,27].

Following diagnosis, the neuropathy stage and systemic extension of the disease should be determined in order to guide the next course of treatment (Table 4) [3,30,31]. The three stages of TTR-FAP severity are graded according to a patient’s walking disability and degree of assistance required [30]. Systemic assessment, especially of the heart, eyes, and kidney, is also essential to ensure all aspects of potential impact of the disease can be detected [10].

Table 4

Image Tools

The goals of cardiac investigations are to detect serious conduction disorders with the risk of sudden death and infiltrative cardiomyopathy. Electrocardiograms (ECG), Holter-ECG, and intracardiac electrophysiology study are helpful to detect conduction disorders. Echocardiograms, cardiac magnetic resonance imaging, scintigraphy with bone tracers, and biomarkers (e.g., brain natriuretic peptide, troponin) can all help to diagnose infiltrative cardiomyopathy[10]. An early detection of cardiac abnormalities has obvious benefits to the patient, given that the prophylactic implantation of pacemakers was found to prevent 25% of major cardiac events in TTR-FAP patients followed up over an average of 4 years [32▪▪]. Assessment of cardiac denervation with 123-iodine meta-iodobenzylguanidine is a powerful prognostic marker in patients diagnosed with FAP [33].



Tafamidis is a first-in-class therapy that slows the progression of TTR amyloidogenesis by stabilizing the mutant TTR tetramer, thereby preventing its dissociation into monomers and amyloidogenic and toxic intermediates [55,56]. Tafamidis is currently indicated in Europe for the treatment of TTR amyloidosis in adult patients with stage I symptomatic polyneuropathy to delay peripheral neurological impairment [57].

In an 18-month, double-blind, placebo-controlled study of patients with early-onset Val30Met TTR-FAP, tafamidis was associated with a 52% lower reduction in neurological deterioration (P = 0.027), a preservation of nerve function, and TTR stabilization versus placebo [58▪▪]. However, only numerical differences were found for the coprimary endpoints of neuropathy impairment [neuropathy impairment score in the lower limb (NIS-LL) responder rates of 45.3% tafamidis vs 29.5% placebo; P = 0.068] and quality of life scores [58▪▪]. A 12-month, open-label extension study showed that the reduced rates of neurological deterioration associated with tafamidis were sustained over 30 months, with earlier initiation of tafamidis linking to better patient outcomes (P = 0.0435) [59▪]. The disease-slowing effects of tafamidis may be dependent on the early initiation of treatment. In an open-label study with Val30Met TTR-FAP patients with late-onset and advanced disease (NIS-LL score >10, mean age 56.4 years), NIS-LL and disability scores showed disease progression despite 12 months of treatment with tafamidis, marked by a worsening of neuropathy stage in 20% and the onset of orthostatic hypotension in 22% of patients at follow-up [60▪].

Tafamidis is not only effective in patients exhibiting the Val30Met mutation; it also has proven efficacy, in terms of TTR stabilization, in non-Val30Met patients over 12 months [61]. Although tafamidis has demonstrated safe use in patients with TTR-FAP, care should be exercised when prescribing to those with existing digestive problems (e.g., diarrhoea, faecal incontinence) [60▪].

Back to Top | Article Outline


Diflunisal is a nonsteroidal anti-inflammatory drug (NSAID) that, similar to tafamidis, slows the rate of amyloidogenesis by preventing the dissociation, misfolding, and misassembly of the mutated TTR tetramer [62,63]. Off-label use has been reported for patients with stage I and II disease, although diflunisal is not currently licensed for the treatment of TTR-FAP.

Evidence for the clinical effectiveness of diflunisal in TTR-FAP derives from a placebo-controlled, double-blind, 24-month study in 130 patients with clinically detectable peripheral or autonomic neuropathy[64▪]. The deterioration in NIS scores was significantly more pronounced in patients receiving placebo compared with those taking diflunisal (P = 0.001), and physical quality of life measures showed significant improvement among diflunisal-treated patients (P = 0.001). Notable during this study was the high rate of attrition in the placebo group, with 50% more placebo-treated patients dropping out of this 2-year study as a result of disease progression, advanced stage of the disease, and varied mutations.

One retrospective analysis of off-label use of diflunisal in patients with TTR-FAP reported treatment discontinuation in 57% of patients because of adverse events that were largely gastrointestinal [65]. Conclusions on the safety of diflunisal in TTR-FAP will depend on further investigations on the impact of known cardiovascular and renal side-effects associated with the NSAID drug class [66,67].






Read Full Post »

Problem of Science Doctorate Programs

Larry H. Bernstein, MD, FCAP, Curator




The Problem in Biomedical Education

Henry Bourne (UCSF)

Dr. Henry Bourne has trained graduate students and postdocs at UCSF for over 40 years. In his iBiology talk, he discusses the imminent need for change in graduate education. With time to degrees getting longer, the biomedical community needs to create experimental graduate programs to find more effective and low cost ways to train future scientists and run successful laboratories. If we don’t start looking for solutions, the future of the biomedical enterprise will grow increasingly unstable.

Watch Henry Bourne’s iBioMagazine: The Problem in Biomedical Education

Henry Bourne is Professor Emeritus and former chair of the Department of Pharmacology at the University of California – San Francisco. His research focused on trimeric G-proteins, G-protein coupled receptors, and the cellular signals responsible for polarity and direction-finding of human leukocytes. He is the author of several books including a memoir, Ambition and Delight, and has written extensively about graduate training and biomedical workforce issues. Now Dr. Bourne’s research focuses on the organization and founding of US biomedical research in the early 20th century.

Related Talks

Read Full Post »

The late Cambridge Mayor Alfred Vellucci welcomed Life Sciences Labs to Cambridge, MA – June 1976

Reporter: Aviva Lev-Ari, PhD, RN

How Cambridge became the Life Sciences Capital

Worth watching is the video below, which captures the initial Cambridge City Council hearing on recombinant DNA research from June 1976. The first speaker is the late Cambridge mayor Alfred Vellucci.

Vellucci hoped to pass a two-year moratorium on gene splicing in Cambridge. Instead, the council passed a three-month moratorium, and created a board of nine Cambridge citizens — including a nun and a nurse — to explore whether the work should be allowed, and if so, what safeguards would be necessary. A few days after the board was created, the pro and con tables showed up at the Kendall Square marketplace.

At the time, says Phillip Sharp, an MIT professor, Cambridge felt like a manufacturing town that had seen better days. He recalls being surrounded by candy, textile, and leather factories. Sharp hosted the citizens review committee at MIT, explaining what the research scientists there planned to do. “I think we built a relationship,” he says.

By early 1977, the citizens committee had proposed a framework to ensure that any DNA-related experiments were done under fairly stringent safety controls, and Cambridge became the first city in the world to regulate research using genetic material.



How Cambridge became the life sciences capital

Scott Kirsner can be reached at Follow him on Twitter@ScottKirsner and on


How Cambridge became the life sciences capital

Read Full Post »

Rapid regression of HER2 breast cancer

Larry H. Bernstein, MD, FCAP, Curator



Anti-HER2 Combo Shrunk Breast Tumors in Under 2 Weeks

Translating genetic drivers into new targeted therapies for breast cancer
Speaker: D. Tripathy (USA)
Key Objectives

Translating Genetic Drivers into New Targeted Therapies for Breast Cancer

Key Objectives

Objective 1: To review critical genomic drivers of breast carcinogenesis

Objective 2: To describe resistance drivers and evolutionary changes that develop under treatment pressure

Objective 3: To understand the rationale, early results, and future clinical applications of targeted biological therapies for breast cancer


The role of tumour typing and grading
Speaker: M.P. Foschini (Italy)
Key Objectives

1) Explain the importance of histotyping, with special focus on low grade tumours and on triple negative low grade tumours.
2) Explain the prognostic importance of correct grading on surgical specimens.
3) Explain the value and limits of grading and histotyping on pre-operative biopsies.


“This has groundbreaking potential because it allows us to identify a group of patients who, within 11 days, have had their tumors disappear with anti-HER2 therapy alone and who potentially may not require subsequent chemotherapy,” said researcher Nigel Bundred, MD, professor of surgical oncology at the University of Manchester in the United Kingdom, in a statement. “This offers the opportunity to tailor treatment for each individual woman.”

Following initial news reports of the EPHOS-B trial, the authors earlier today issued a statement urging caution in interpreting the results: “While we do not wish to downplay the significance of the findings,” they wrote, “we wish to emphasize that our research has shown this treatment to be suitable for a group of women with a particular type of breast cancer. We have no evidence that it would be effective for anything other than patients with newly diagnosed, HER2-positive breast tumors.”

The trial was split into two parts and included 257 newly diagnosed, operable, HER2-positive breast cancer patients.

In the first part of the trial, 130 patients were randomized to a control group that received no pre-operative treatment, or to one of three treatment arms that received therapy for 11 days prior to surgery: trastuzumab alone, lapatinib alone, or the combination of trastuzumab and lapatinib. All patients were treated with standard of care after surgery.

In the second part of the trial, 127 patients were randomized to receive trastuzumab alone (n = 32), the combination of trastuzumab and lapatinib (n = 66), or a control group that received no pre-operative treatment (n = 29). Results from this part of the trial showed that in patients who received the combination treatment, 11% had a pathologic complete response (pCR) and 17% had minimal residual disease (MRD). In patients who received trastuzumab alone, none had a pCR and only 3% had MRD. No patient in the control group had either a pCR or MRD. Patients in the combination treatment arm also had a reduction in Ki67, a marker of apoptosis.

Median age of patients in the trial was 52 years, 48% of women had tumors greater than 2 cm, and 51% were grade 3 as assessed by biopsy.

“These results show that we can get an early indication of pathologic response within 11 days, in the absence of chemotherapy, in these patients on combination treatment. Most previous trials have only looked at the pathologic response after several months of treatment,” said Judith Bliss, MD, of the Institute of Cancer Research in London and Vice-Chair of the UK Breast Intergroup, who took part in the clinical trial, at a press conference.

The study researchers emphasized that these results need to be confirmed in larger trials.

“This study proposes a simple way to identify those patients very early on, which could help spare them unnecessary chemotherapy. What is now indispensable is to confirm if these early responses translate into better or equal long-term survival,” said Fatima Cardoso, MD, chair of EBCC-10 and director of the breast unit at the Champalimaud Clinical Centre in Lisbon, in a statement.

The EPHOS-B trial was funded by Cancer Research UK and GlaxoSmithKline.


Breast Cancer Drug Combination Could Shrink Tumors in Days

Seth Augenstein, Digital Reporter

A combination of breast cancer drugs administered before surgery could drastically shrink particular tumors within days – and potentially eliminate the need for chemotherapy in some patients, according to British researchers.

Herceptin (trastuzumab) in concert with lapatinib on tumors that are HER-2 positive can shrink or even destroy tumors within just 11 days before surgery, according to The Institute of Cancer Research in London.

Some 20 percent of all breast cancers are HER-2 positive, according to analysis by the Mayo Clinic.

The theory was the two drugs would work as a one-two punch: the Herceptin would block the HER-2 proteins on which the tumors rely, and then the lapatinib would inhibit other enzymes that may potentially remain unaffected by the other drug.

The study observed the tumor size in 257 women in the days-long window between diagnosis and removal of the tumors.

The participants were initially split up into three groups – one each getting one of the drugs, and a third getting no treatment for the 11 days before the surgery, according to the scientists.

However, other trials had indicated the drug combination could have a dramatic effect, so additional women were put in the lapatinib group and also given the Herceptin.

Roughly a quarter of the 66 women who got both drugs had tumors that were too small for the second measurement before surgery, they found.

“Our trial set out to try to use the window between diagnosis and surgery to find clues that combined treatment with (Herceptin) and lapatinib was having a biological effect on HER-2 positive tumors,” said Judith Bliss, director of the Cancer Research Clinical Trials and Statistics Unit at the Institute of Cancer Research. “So it was unexpected to see quite such dramatic responses to the (Herceptin) and lapatinib within 11 days.”

The results were presented at the European Breast Cancer Conference on Thursday.

“These results are very promising if they stand up in the long run and could be the starting step of finding a new way to treat HER-2 positive breast cancers,” said Arnie Purushotham, senior clinical adviser at Cancer Research UK.


Breast cancer cells stained for DNA (red), NFkB (green), and a reactive oxygen species probe (blue). Julia Sero the ICR, 2011

Breast cancer cells stained for DNA (red), NFkB (green), and a reactive oxygen species probe (blue) (photo: Julia Sero/the ICR)


A drug combination – of lapatinib and trastuzumab (Herceptin) – before surgery shrinks and may even destroy tumours in women with HER2 positive disease within 11 days, according to new research.

The EPHOS B trial, led by researchers at The Institute of Cancer Research, London, the University of Manchester and University Hospital of South Manchester NHS Foundation Trust, studied 257 women with HER2 positive breast cancer in the short gap between initial diagnosis and surgery to remove their tumours.

The research may lead to fewer women needing chemotherapy.

The results, from a Cancer Research UK-funded trial, are being presented at the 10th European Breast Cancer Conference (EBCC10) today (Thursday).

In the trial, women were split into three groups and treated for 11 days before their surgery. Initially, women were randomised to receive either trastuzamab, or lapatinib or no treatment – but halfway through the trial, after evidence emerged from other trials of the effectiveness of the combination, the design was altered so that additional women allocated to the lapatinib group were also prescribed trastuzumab.

Official 10th European Breast Cancer Conference (EBCC-10)

Statement on EPHOS-B (lapatinib/trastuzumab combination) trialLead researchers: Prof. Judith Bliss, Prof. Nigel  Bundred, Prof. David Cameron

We wish to emphasise that our research has shown this treatment to be suitable for a group of women with a particular type of breast cancer. We have no evidence that it would be effective for anything other than patients with newly-diagnosed, HER2 positive breast tumours. In addition, we do not yet know what effect the treatment will have on long-term survival.  While we do not wish to downplay the significance of the findings, we also urge caution in their interpretation.  Further trials will be needed before we can confirm these results, even in HER2 positive patients.


Breast Cancer Vaccines and Checkpoint-Inhibitor Immunotherapy

Q&A | March 15, 2016 | MBCC 2016, Breast Cancer
By Elizabeth A. Mittendorf, MD, PhD

Elizabeth A. Mittendorf, MD, PhD
As part of our coverage of the 33rd Annual Miami Breast Cancer Conference, held March 10-13 in Miami Beach, Florida, we spoke with Elizabeth A. Mittendorf, MD, PhD, associate professor at the department of breast surgical oncology at the University of Texas MD Anderson Cancer Center in Houston, Texas, who presented at the meeting on cancer vaccines and checkpoint inhibitors.
Cancer Network: How has being both a surgeon and immunologist, shaped your views of the potential clinical roles of cancer vaccines?

Dr. Mittendorf: As a surgeon, I see and treat patients with early-stage breast cancer that is potentially curable. Unfortunately, despite our best treatment—surgery, chemotherapy when indicated, radiation if required—we still see recurrences in up to 20% of these patients. I think it is not unreasonable to hypothesize that this recurrence is in part attributable to a failure of the immune response against the cancer—hence my enthusiasm for vaccines that could potentially augment that antitumor immunity, thereby decreasing the risk of recurrence.

Cancer Network: In what settings do breast cancer vaccines show the most promise?

Dr. Mittendorf: Secondary prevention. There is currently one vaccine that is being investigated in a phase III trial—NeuVax—which is made up of an immunogenic peptide combined with an immunoadjuvant. The trial is vaccinating patients in the adjuvant setting with the goal being to determine if vaccination can decrease the risk of recurrence.

Cancer Network: Is there reason for optimism that cancer vaccines might prove useful against advanced breast cancers?

Dr. Mittendorf: In my opinion, vaccines as monotherapy are not likely to be successful in advanced breast cancer. With that said, it is possible that vaccines could be administered as part of a combination strategy with other drugs that could augment the immune response such as certain chemotherapy regimens, trastuzumab, or other immunomodulatory drugs such as the checkpoint blockade agents.

Cancer Network: What insights do epidemiologic studies, such as those regarding childhood infections and cancer risk, offer for cancer immunotherapy?

Dr. Mittendorf: There is epidemiologic data to suggest that individuals who have had childhood infections (ie, chicken pox, pertussis, and other febrile illnesses) have a decreased risk of developing cancer. It is likely that these individuals develop adaptive immune responses against epithelial antigens. These responses could be augmented in the setting of a premalignant condition (ie, a colonic adenoma, or ductal carcinoma in situ), thereby tipping the scales back in favor of the immune response, leading to elimination of the threat of malignancy.

Cancer Network: Are the KEYNOTE trial reports to date reason for optimism about immune checkpoint blockade’s potential against breast cancer?

Dr. Mittendorf: Absolutely. These trials have confirmed that pembrolizumab (anti-PD-1 antibody) is fairly well tolerated by breast cancer patients and suggest some clinical activity. Through the portfolio of KEYNOTE trials, which have enrolled the different subtypes of breast cancer, we’re likely to learn more about which subtypes of breast cancer are most likely to respond to pembrolizumab as monotherapy, which in turn would suggest which subtypes might need additional immune stimulation (ie, a combination strategy) in order for the checkpoint blockade agent to be effective.

Cancer Network: What is the significance of PD-L1 expression in tumor cells vs the tumor microenvironment?

Dr. Mittendorf: Whether PD-L1 expression on the tumor cells is required for response to anti-PD-1 or anti-PD-L1 therapy remains a subject of much discussion. Data from the JAVELIN trial presented at the San Antonio Breast Cancer Symposium in December suggested that PD-L1 expression on the tumor was less important than PD-L1 expression on immune cells in the microenvironment—what they referred to as “immune hotspots.”

Cancer Network: Do you anticipate clinical roles for checkpoint blockade in secondary prevention? Breast cancer treatment in combination with other agents, like trastuzumab? (Are there other promising combinations? Do you anticipate immunotherapy combinations that exploit different immune system pathways?)

Dr. Mittendorf: I see a potential role for checkpoint blockade in the adjuvant setting (effectively secondary prevention) in high-risk patients in whom the risk/benefit ratio favors using these agents, which do have some toxicity associated with them. As an example, the SWOG cooperative group is developing a trial that will evaluate pembrolizumab in patients with triple-negative breast cancer who have at least 1 cm of tumor or positive lymph nodes after neoadjuvant chemotherapy. With respect to using in combination with other agents—yes; in fact the PANACEA trial currently accruing in Europe is combining pembrolizumab with trastuzumab in patients with HER2-positive metastatic breast cancer.



Prognostic DCIS Score: ‘Ready for Prime Time’

News | March 14, 2016 | MBCC 2016, Breast Cancer
By Bryant Furlow
Not all ductal carcinoma in situ (DCIS) is dangerous, and the prognostic genomic Oncotype DX DCIS Score allows for routine risk stratification of patients to avoid unnecessary treatment, reported Patrick I. Borgen, MD, chair of the department of surgery at Maimonides Medical Center in Brooklyn, New York. Dr. Borgen spoke at the 33rd Annual Miami Breast Cancer Conference, held March 10–13 in Miami Beach, Florida.
Recent jumps in DCIS diagnoses have been driven by overdetection. “There’s a reservoir of DCIS in the female breast that was never going to become invasive—or would do so, so slowly that it was never going to threaten our patient,” Dr. Borgen noted.

Graphing the utilization of mammography over time, one sees that it “completely parallels the increase in DCIS diagnoses,” Dr. Borgen said. “There’s a similar slope of percent-change over time for DCIS and mammography screening. That either means the mammograms are causing DCIS, or, much more likely, that some of this [DCIS] was not going to become clinically relevant.”

When more sensitive digital mammography became more widely used, DCIS rates jumped again, he added. “Better imaging, more DCIS.”

The prevalence of occult DCIS in autopsy studies is “about an order of magnitude higher” than what we see in screening studies, Dr. Borgen noted, as further evidence for subclinical DCIS.

Thanks to landmark prospective randomized studies like the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-17 study, the standard of care for DCIS is lumpectomy and radiation. Those studies did not identify subsets of patients who failed to benefit from radiation, but they did find that 80% of patients would do well with surgery alone. “We focus on the 10% who do better with radiotherapy, but 10% recur despite radiotherapy. The challenge is, how do we find the 80% of patients who, much later—15, 20, 25 years later—are going to be well?”

Nomograms “leave significant room for improvement,” he noted. “It is possible that clinical parameters alone are insufficient to predict outcome. We have moved away from morphology—from looking down a microscope to determine whether it’s a bad lesion.”

Instead, the field has turned to prognostic analyses of DCIS genomics.

“The Oncotype DX DCIS Score isn’t a mathematical model and doesn’t require bootstrapping,” he said. “It looks at DCIS genomics in the patient in front of you—a subset of the 21-gene assay that we use routinely.”

It has been validated in the Eastern Cooperative Oncology Group (ECOG) E5194 and Ontario DCIS Cohort studies for recurrence prognostication and risk stratification of women with DCIS who underwent breast-conserving surgery and had negative margins.

“I would argue that it’s ready for prime time” in routine clinical use, Dr. Borgen told attendees.

The DCIS Score divides patients into low, intermediate, and high-risk DCIS categories, with 65% of patients falling into the low-risk group, meaning that at 10 years, they face a 4% chance of developing invasive breast cancer.

Dr. Borgen noted that the addition of radiation doesn’t diminish the DCIS Score’s predictability. “The DCIS Score is associated with the risk of local recurrence in a population of patients with pure DCIS treated with breast-conserving surgery, with or without radiation. It’s almost certain there’s a very high-risk cohort of the disease, as well, and those patients may benefit from an entirely different treatment.”

Read Full Post »

Success in Psoriasis Treatment

Larry H. Bernstein, MD, FCAP, Curator




Anti-IL17A Tx Clears Most Cases of Psoriasis

Durable long-term responses with ixekizumab, secukinumab

  • Note that these studies were published as abstracts and presented at a conference.
  • These data and conclusions should be considered to be preliminary until published in a peer-reviewed journal.
  • More than half of patients with moderate-to-severe plaque psoriasis remained clear of lesions after a year of treatment with the interleukin-17A inhibitor ixekizumab.
  • Note that in another study, comparing two monoclonal antibodies for secukinumab (Cosentyx) or ustekinumab (Stelara) in patients with moderate to severe plaque psoriasis. showed sustained superiority for secukinumab (Cosentyx) over ustekinumab (Stelara).

More than half of patients with moderate-to-severe plaque psoriasis remained clear of lesions after a year of treatment with the interleukin-17A inhibitor ixekzumab, according to data reported here.

The 60-week follow-up data showed that 54% of patients treated with either of two doses of ixekizumab had 100% improvement in the Psoriasis Area and Severity Index (PASI 100). More than 70% achieved PASI 90, and more than 80% met criteria for PASI 75 response.

In general, the monoclonal antibody demonstrated good tolerability, associated with a discontinuation rate of about 5%, Andrew Blauvelt, MD, of Oregon Medical Research Center in Portland, reported at the American Academy of Dermatology meeting.

“Izekizumab treatment led to high clinical response rates and sustained efficacy in a majority of patients,” Blauvelt said. “More than half of ixekizumab-treated patients achieved complete resolution of psoriatic plaques at week 60. The safety profile for ixekizumab was similar to what was observed during the 12-week induction period.”

Ixekizumab is a specific inhibitor of the IL-17A receptor. The antibody was compared against placebo and etanercept (Enbrel) in two phase III trials that evaluated two ixekizumab dosing schedules (administration every 2 or 4 weeks). More than 1,200 patients were randomized 1:2:2:2 to placebo, etanercept (Enbrel) or one of the ixekizumab schedules.

As previously reported, the antibody demonstrated superior efficacy after a 12-week induction period. PASI 75 response rates were 7.3% with placebo, 53.4% with etanercept, and 84.2% and 87.3% with the two ixekizumab regimens. PASI 90 rates were 3.1%, 25.7%, 65.3%, and 68.1%. PASI 100 responses were attained by 0%, 73%, 35%, and 37.7%.

Upon completion of the induction phase, all patients transitioned to open-label ixekizumab, administered every 4 weeks. Blauvelt reported findings for patients who received only ixekizumab for the entire 60-week follow-up period.

The data showed that response rates attained at 12 weeks with ixekizumab held up through the 60-week follow-up period. The intention-to-treat analysis (n=771) showed response rates of 82%, 72%, and 54% for PASI 75, PASI 90, and PASI 100. A per-protocol analysis (n=722) showed a PASI 75 response rate of 87%, PASI 90 response rate of 77%, and PASI 100 response rate of 57%.

Cosentyx Versus Stelara

In another study reported here, long-term follow-up from a randomized trial comparing two other biologic drugs showed sustained superiority for secukinumab (Cosentyx) over ustekinumab (Stelara) in patients with moderate to severe plaque psoriasis.

The randomized comparison of secukinumab (Cosentyx) and ustekinumab involved almost 700 patients who had a baseline mean PASI score ≥12, an investigator global assessment score ≥3, and body surface area involvement ≥10%. They were randomized to the monclonal antibodies, and the primary endpoint was PASO 90 response at 16 weeks. As reported last year, secukinumab resulted in a PASI 90 rate of 80.1% versus 59.0% for ustekinumab (P<0.0001). PASI 100 rates were 45% and 29.2% (P<0.0001).

Follow-up in both groups continued to week 52, during which time patients treated with secukinumab continued to have better psoriasis clearance rates compared with those treated with ustekinumab, said Diamant Thaci, MD, of the University of Lubeck in Germany. The secukinumab group had a PASI 90 rate of 76.2% compared with 60.6% for the ustekinumab group (P<0.0001). PASI 100 rates (a secondary endpoint) were 45.9% and 35.8% with secukinumab and ustekinumab, respectively (P<0.05).

Investigators in the trial collected quality of life data by means of the Dermatology Qualty of Life Index (DLQI). A secondary endpoint was the proportion of patients with a DLQI score of 0 or 1 at week 52 (responder). Response rates were 71.6% with secukinumab and 59.2% with ustekinumab (P=0.0008). A significant between-group difference emerged at 4 weeks and persisted throughout the 52-week follow-up period, Thaci said.

Secukinumab and ustekinumab had similar and favorable safety profiles. No new or unexpected adverse events or toxicities occurred in either group. No patient developed tuberculosis, Crohn’s disease, or ulcerative colitis. The only notable difference was a higher incidence of candida infection with secukinumab (6.4% versus 1.6%). Thaci said none of the infections were serious.


The ixekizumab trial was supported by Eli Lilly.

Blauvelt disclosed relevant relationships with AbbVie, Amgen, Boehringer Ingelheim, Celgene, Dermira, Genentech, Janssen Ortho Biotech, Eli Lilly, Merck, Novartis, Pfizer, Regeneron, and Sandoz.

The secukinumab trial was supported by Novartis.

Thaci disclosed relevant relationships with AbbVie, Almiral, Amgen, Astellas, Biogen-Idec, Boehringer Ingelheim, Celgene, Dignity, Eli Lilly, Forward Pharma, GlaxoSmithKline, LEO Pharma, Janssen-Cilag, Maruho, Merck Sharp & Dohme, Mitsubishi Pharema, Novartis, Pfizer, Roche, Sandoz, Galapagos, Xenoport, Roche, and Mundipharma.



Lancet. 2015 Aug 8;386(9993):541-51. Epub 2015 Jun 10.
Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials.


Ixekizumab is a humanised monoclonal antibody against the proinflammatory cytokine interleukin 17A. We report two studies of ixekizumab compared with placebo or etanercept to assess the safety and efficacy of specifically targeting interleukin 17A in patients with widespread moderate-to-severe psoriasis.


In two prospective, double-blind, multicentre, phase 3 studies (UNCOVER-2 and UNCOVER-3), eligible patients were aged 18 years or older, had a confirmed diagnosis of chronic plaque psoriasis at least 6 months before baseline (randomisation), 10% or greater body-surface area involvement at both screening and baseline visits, at least a moderate clinical severity as measured by a static physician global assessment (sPGA) score of 3 or more, and a psoriasis area and severity index (PASI) score of 12. Participants were randomly assigned (1:2:2:2) by computer-generated random sequence with an interactive voice response system to receive subcutaneous placebo, etanercept (50 mg twice weekly), or one injection of 80 mg ixekizumab every 2 weeks, or every 4 weeks after a 160 mg starting dose. Blinding was maintained with a double-dummy design. Coprimary efficacy endpoints were proportions of patients achieving sPGA score 0 or 1 and 75% or greater improvement in PASI at week 12. Analysis was by intention to treat. These trials are registered with, numbers NCT01597245 and NCT01646177.


Between May 30, 2012, and Dec 30, 2013, 1224 patients in UNCOVER-2 were randomly assigned to receive subcutaneous placebo (n=168), etanercept (n=358), or ixekizumab every 2 weeks (n=351) or every 4 weeks (n=347); between Aug 11, 2012, and Feb 27, 2014, 1346 patients in UNCOVER-3 were randomly assigned to receive placebo (n=193), etanercept (n=382), ixekizumab every 2 weeks (n=385), or ixekizumab every 4 weeks (n=386). At week 12, both primary endpoints were met in both studies. For UNCOVER-2 and UNCOVER-3 respectively, in the ixekizumab every 2 weeks group, PASI 75 was achieved by 315 (response rate 89·7%; [effect size 87·4% (97·5% CI 82·9-91·8) vs placebo; 48·1% (41·2-55·0) vs etanercept]) and 336 (87·3%; [80·0% (74·4-85·7) vs placebo; 33·9% (27·0-40·7) vs etanercept]) patients; in the ixekizumab every 4 weeks group, by 269 (77·5%; [75·1% (69·5-80·8) vs placebo; 35·9% (28·2-43·6) vs etanercept]) and 325 (84·2%; [76·9% (71·0-82·8) vs placebo; 30·8% (23·7-37·9) vs etanercept]) patients; in the placebo group, by four (2·4%) and 14 (7·3%) patients; and in the etanercept group by 149 (41·6%) and 204 (53·4%) patients (all p<0·0001 vs placebo or etanercept). In the ixekizumab every 2 weeks group, sPGA 0/1 was achieved by 292 (response rate 83·2%; [effect size 80·8% (97·5% CI 75·6-86·0) vs placebo; 47·2% (39·9-54·4) vs etanercept]) and 310 (80·5%; [73·8% (67·7-79·9) vs placebo; 38·9% (31·7-46·1) vs etanercept]) patients; in the ixekizumab every 4 weeks group by 253 (72·9%; [70·5% (64·6-76·5) vs placebo; 36·9% (29·1-44·7) vs etanercept]) and 291 (75·4%; [68·7% (62·3-75·0) vs placebo; 33·8% (26·3-41·3) vs etanercept]) patients; in the placebo group by four (2·4%) and 13 (6·7%) patients; and in the etanercept group by 129 (36·0%) and 159 (41·6%) patients (all p<0·0001 vs placebo or etanercept). In combined studies, serious adverse events were reported in 14 (1·9%) of 734 patients given ixekizumab every 2 weeks, 14 (1·9%) of 729 given ixekizumab every 4 weeks, seven (1·9%) of 360 given placebo, and 14 (1·9%) of 739 given etanercept; no deaths were noted.


Both ixekizumab dose regimens had greater efficacy than placebo and etanercept over 12 weeks in two independent studies. These studies show that selectively neutralising interleukin 17A with a high affinity antibody potentially gives patients with psoriasis a new and effective biological therapy option.


Eli Lilly and Co.

Copyright © 2015 Elsevier Ltd. All rights reserved.

Read Full Post »

Treatments for macular degenaration

Larry H. Bernstein, MD, FCAP, Curator




Eylea outperforms Avastin for diabetic macular edema with moderate or worse vision loss

NIH-funded clinical trial shows Eylea, Avastin, and Lucentis perform similarly when vision loss is mild.

image of a patient having an eye exam

A two-year clinical trial that compared three drugs for diabetic macular edema (DME) found that gains in vision were greater for participants receiving the drug Eylea (aflibercept) than for those receiving Avastin (bevacizumab), but only among participants starting treatment with 20/50 or worse vision.  Gains after two years were about the same for Eylea and Lucentis (ranibizumab), contrary to year-one results from the study, which showed Eylea with a clear advantage. The three drugs yielded similar gains in vision for patients with 20/32 or 20/40 vision at the start of treatment. The clinical trial was conducted by the Diabetic Retinopathy Clinical Research Network (, which is funded by the National Eye Institute, part of the National Institutes of Health.

“This rigorous trial confirms that Eylea, Avastin, and Lucentis are all effective treatments for diabetic macular edema,” said NEI Director Paul A. Sieving, M.D., Ph.D. “Eye care providers and patients can have confidence in all three drugs.”

Eylea, Avastin, and Lucentis are all widely used to treat DME, a consequence of diabetes that can cause blurring of central vision due to the leakage of fluid from abnormal blood vessels in the retina. The macula is the area of the retina used when looking straight ahead. The drugs are injected into the eye and work by inhibiting vascular endothelial growth factor (VEGF), a substance that can promote abnormal blood vessel growth and leakage. Although the drugs have a similar mode of action, they differ significantly in cost. Based on Medicare allowable charges, the per-injection costs of each drug at the doses used in this study were about $1850 for Eylea, about $60 for Avastin, and about $1200 for Lucentis. investigators enrolled 660 people with DME at 89 clinical trial sites across the United States. When the study began, participants on average were 61 years old with 17 years of type 1 or type 2 diabetes. Only people with a visual acuity of 20/32 or worse were eligible to participate (to see clearly, a person with 20/32 vision would have to be 20 feet away from an object that a person with normal vision could see clearly at 32 feet). At enrollment, about half the participants had 20/32 to 20/40 vision. The other half had 20/50 or worse vision. In many states, a corrected visual acuity of 20/40 or better in at least one eye is required for a driver’s license that allows both day- and nighttime driving.

Each participant was assigned randomly to receive Eylea (2.0 milligrams/0.05 milliliter), Avastin (1.25 mg/0.05 mL), or Lucentis (0.3 mg/0.05 mL). Participants were evaluated monthly during the first year and every 4-16 weeks during the second year. Most participants received monthly injections during the first six months. Thereafter, participants received additional injections of assigned study drug until DME resolved or stabilized with no further vision improvement.  Subsequently, injections were resumed if DME worsened. Additionally, laser treatment was given if DME persisted without continual improvement after six months of injections. Laser treatment alone was the standard treatment for DME until widespread adoption of anti-VEGF drugs a few years ago.

Among participants with 20/40 or better vision at the trial’s start, all three drugs improved vision similarly on an eye chart. On average, participants’ vision improved from 20/40 vision to 20/25.

Among participants with 20/50 or worse vision at the trial’s start, visual acuity on average improved substantially in all three groups. At two years, Eylea participants were able to read about 3.5 additional lines on an eye chart; Lucentis participants were able to read about three additional lines, and Avastin participants improved about 2.5 lines, compared with visual acuity before treatment. Eylea outperformed Avastin at the one- and two-year time points. While Eylea outperformed Lucentis at the one-year time point, by the two-year time point gains in visual acuity were statistically no different. At the end of the trial, average visual acuity was 20/32 to 20/40 among participants in all three groups.

“The results of the DRCR Network’s comparison of Eylea, Avastin, and Lucentis will help doctors and their patients with diabetic macular edema choose the most appropriate therapy,” said John A. Wells, M.D., the lead author of the study and a retinal specialist at the Palmetto Retina Center, Columbia, South Carolina. “The study suggests there is little advantage of choosing Eylea or Lucentis over Avastin when a patient’s loss of visual acuity from macular edema is mild, meaning a visual acuity of 20/40 or better. However, patients with 20/50 or worse vision loss may benefit from Eylea, which over the course of the two-year study outperformed Lucentis and Avastin.”

The number of injections participants needed was about the same for all three treatment groups. Eylea, Avastin, and Lucentis participants on average required nine injections in the first year of the study and five in the second year.

The need for laser treatment varied among the three treatment groups. By two years, 41 percent of participants in the Eylea group received laser treatment to treat their macular edema, compared with 64 percent of participants in the Avastin group and 52 percent in the Lucentis group.

The risk of heart attack, stroke, or death from a cardiovascular condition or an unknown cause by end of the trial was higher among participants in the Lucentis group. Twelve percent of Lucentis participants had at least one event, compared with five percent of participants in the Eylea group and eight percent of participants in the Avastin group. This difference in cardiovascular rates has not been seen across all other studies, and therefore may be due to chance. Continued assessment of these serious cardiovascular events and their association with these drugs is important in future studies. Cardiovascular events such as heart attack and stroke are common complications of diabetes. The occurrence of eye complications, such as eye infections and inflammation, was similar for all three drugs.

Results of the study were published online today in Ophthalmology, the journal of the American Academy of Ophthalmology. Eylea and Lucentis were provided by drug manufacturers Regeneron and Genentech, respectively. Additional research funding for this study was provided by the National Institute of Diabetes and Digestive and Kidney Diseases, also a part of NIH.

“This important study would not have happened without funding from the National Institutes of Health and the cooperation of two competing companies,” said Adam R. Glassman, M.S., principal investigator of the DRCR.Net Coordinating Center at the Jaeb Center for Health Research.

The is dedicated to facilitating multicenter clinical research of diabetic eye disease. The Network formed in 2002 and comprises more than 350 physicians practicing at more than 140 clinical sites across the country. For more information, visit the website at is external).

The study was funded by grants EY14231, EY14229, and EY18817.

The study is registered as NCT01627249 at

Macular edema can arise during any stage of diabetic retinopathy and is the most common cause of diabetes-related vision loss. About 7.7 million Americans have diabetic retinopathy. Of these, about 750,000 have DME. The NEI provides information about diabetic eye disease at View an NEI video about how diabetic retinopathy can be detected through a comprehensive dilated eye exam at is external).

NEI leads the federal government’s research on the visual system and eye diseases. NEI supports basic and clinical science programs that result in the development of sight-saving treatments. For more information, visit



Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF

Angela M. Duffy, David J. Bouchier-Hayes, and Judith H. Harmey.

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor and was first described as an essential growth factor for vascular endothelial cells. VEGF is up-regulated in many tumors and its contribution to tumor angiogenesis is well defined. In addition to endothelial cells, VEGF and VEGF receptors are expressed on numerous non-endothelial cells including tumor cells. This review examines the relevance of VEGF signalling in non-endothelial cells and explores the probable mechanisms involved.

Vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF), was originally described as an endothelial cell-specific mitogen.1 VEGF is produced by many cell types including tumor cells,2,3 macrophages,4 platelets,5 keratinocytes,6 and renal mesangial cells.7 The activities of VEGF are not limited to the vascular system; VEGF plays a role in normal physiological functions such as bone formation,8 hematopoiesis,9wound healing,10 and development.11

Anti-VEGF strategies to treat cancers were designed to target the pro-angiogenic function of VEGF and thereby inhibit neovascularization. However, anti-VEGF therapies may have a dual effect since evidence is accumulating to support the existence of both paracrine and autocrine VEGF loops within tumors. It has been suggested that direct stimulation of tumor cells by VEGF may protect the cells from apoptosis and increase their resistance to conventional chemotherapy and radiotherapy.12 Chemotherapy and radiotherapy have been shown to increase VEGF within tumors,13 and this increased VEGF may in fact protect tumor cells from these interventions. Anti-VEGF therapies are therefore likely to target both the pro-angiogenic activity of VEGF and the anti-apoptotic/pro-survival functions of VEGF.

VEGF and the Central Nervous System (CNS)      

In the central nervous system (CNS) both positive (pro-migratory) and negative (anti-migratory) regulatory factors are essential for axonal guidance.17 Following prolonged exposure, Sema3A, a member of the semaphorin family, acts as an inhibitor of neuronal migration and induces neuronal cell death18 through the neuropilin-1 receptor (NP-1).19However, in addition to Sema3A binding, NP-1 also acts as an additional receptor for VEGF165 isoform.20 The relationship between Sema3A and VEGF was explored in Dev cells,21 undifferentiated cells derived from a cerebellar medullablastoma that behave as pluripotential neural progenitor cells.22 NP-1 mRNA expression was detected in Dev cells by RT-PCR and in situ hybridization. Western blotting and immunohistochemical analysis confirmed that NP-1 was expressed on the cell surface. VEGF165 or anti-NP-1 antibody blocked the effect of Sema3A on these cells, suggesting that VEGF165 binds competitively to NP-1 to block Sema3A signalling.

Dev cells also expressed VEGFR-1 and blockade of VEGFR-1 reduced the inhibition of neuronal cell migration by Sema3A.21 It appears that both NP-1 and VEGFR-1 are required for Sema3A activity in these neuronal cells. NP-1 binds with high affinity to VEGFR-1.24NP-1 has a very short intracellular domain and appears to require a coreceptor to transduce a signal20 thus, VEGFR-1 may serve as a coreceptor for NP-1 in the modulation of Sema3A signalling. Both VEGF121 and VEGF165 inhibited Sema3A-induced apoptosis, and at higher concentrations reduced apoptosis below basal levels indicating an additional neuroprotective effect.

VEGF is induced in many CNS pathologies where it may have a neuroprotective role. VEGF has a neurotrophic effect and enhances survival of Schwann cells,25 and protects hippocampal neurons from ischemic injury.26 Impaired VEGF induction in the spinal cord results in motor neuron degeneration.27 In addition, when cerebellar granule neurons (CGNs) were exposed to 5% hypoxia for 9 hours VEGF, VEGFR-1 and VEGFR-2 expression increased, and a neutralizing antibody to VEGF, DC 101, inhibited hypoxic preconditioning.28 Thus, VEGF autocrine or paracrine mechanisms appear to play a role in CGN cell survival following hypoxic preconditioning. In CGNs Akt (also known as Protein Kinase B/ PKB) was phosphorylated in response to VEGF and other studies have shown that VEGF stimulation in neurons is linked to PI3-K (Phosphatidylinositol 3′-kinase) and Akt activation and neuronal protection.29


Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. IsoformVEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.

GO:1902336 positive regulation of retinal ganglion cell axon guidance  

ID GO:1902336
Name positive regulation of retinal ganglion cell axon guidance
Ontology Biological Process
Definition Any process that activates or increases the frequency, rate or extent of retinal ganglion cell axon guidance.
GONUTS GO:1902336 Wiki Page
Acknowledgements This term was created by the GO Consortium


up-regulation of retinal ganglion pathfinding

cell axon pathfinding

up regulation of retinal ganglion cell axon pathfinding

activation of retinal ganglion cell axon pathfinding

activation of retinal ganglion cell axon guidance

upregulation of retinal ganglion cell axon pathfinding

up regulation of retinal ganglion cell axon guidance

up-regulation of retinal ganglion cell axon guidance

upregulation of retinal ganglion cell axon guidance

positive regulation of retinal ganglion cell axon pathfinding


What Is Age-Related Macular Degeneration?
Macular degeneration is the leading cause of severe vision loss in people over age 60. It occurs when the small central portion of the retina, known as the macula, deteriorates. The retina is the light-sensing nerve tissue at the back of the eye. Because the disease develops as a person ages, it is often referred to as age-related macular degeneration (AMD). Although macular degeneration is almost never a totally blinding condition, it can be a source of significant visual disability.

There are two main types of age-related macular degeneration:

Dry form. The “dry” form of macular degeneration is characterized by the presence of yellow deposits, called drusen, in the macula. A few small drusen may not cause changes in vision; however, as they grow in size and increase in number, they may lead to a dimming or distortion of vision that people find most noticeable when they read. In more advanced stages of dry macular degeneration, there is also a thinning of the light-sensitive layer of cells in the macula leading to atrophy, or tissue death. In the atrophic form of dry macular degeneration, patients may have blind spots in the center of their vision. In the advanced stages, patients lose central vision.
Wet form. The “wet” form of macular degeneration is characterized by the growth of abnormal blood vessels from the choroid underneath the macula. This is called choroidal neovascularization. These blood vessels leak blood and fluid into the retina, causing distortion of vision that makes straight lines look wavy, as well as blind spots and loss of central vision. These abnormal blood vessels and their bleeding eventually form a scar, leading to permanent loss of central vision.
Most patients with macular degeneration have the dry form of the disease and can lose some form of central vision. However, the dry form of macular degeneration can lead to the wet form. Although only about 10% of people with macular degeneration develop the wet form, they make up the majority of those who experience serious vision loss from the disease.



Read Full Post »

Human Factor Engineering: New Regulations Impact Drug Delivery, Device Design And Human Interaction

Curator: Stephen J. Williams, Ph.D.

Institute of Medicine report brought medical errors to the forefront of healthcare and the American public (Kohn, Corrigan, & Donaldson, 1999) and  estimated that between

44,000 and 98,000 Americans die each year as a result of medical errors

An obstetric nurse connects a bag of pain medication intended for an epidural catheter to the mother’s intravenous (IV) line, resulting in a fatal cardiac arrest. Newborns in a neonatal intensive care unit are given full-dose heparin instead of low-dose flushes, leading to threedeaths from intracranial bleeding. An elderly man experiences cardiac arrest while hospitalized, but when the code blue team arrives, they are unable to administer a potentially life-saving shock because the defibrillator pads and the defibrillator itself cannot be physically connected.

Human factors engineering is the discipline that attempts to identify and address these issues. It is the discipline that takes into account human strengths and limitations in the design of interactive systems that involve people, tools and technology, and work environments to ensure safety, effectiveness, and ease of use.


FDA says drug delivery devices need human factors validation testing

Several drug delivery devices are on a draft list of med tech that will be subject to a final guidance calling for the application of human factors and usability engineering to medical devices. The guidance calls called for validation testing of devices, to be collected through interviews, observation, knowledge testing, and in some cases, usability testing of a device under actual conditions of use. The drug delivery devices on the list include anesthesia machines, autoinjectors, dialysis systems, infusion pumps (including implanted ones), hemodialysis systems, insulin pumps and negative pressure wound therapy devices intended for home use. Studieshave consistently shown that patients struggle to properly use drug delivery devices such as autoinjectors, which are becoming increasingly prevalent due to the rise of self-administered injectable biologics. The trend toward home healthcare is another driver of usability issues on the patient side, while professionals sometimes struggle with unclear interfaces or instructions for use.


Humanfactors engineering, also called ergonomics, or human engineering, science dealing with the application of information on physical and psychological characteristics to the design of devices and systems for human use. ( for more detail see source@

The term human-factors engineering is used to designate equally a body of knowledge, a process, and a profession. As a body of knowledge, human-factors engineering is a collection of data and principles about human characteristics, capabilities, and limitations in relation to machines, jobs, and environments. As a process, it refers to the design of machines, machine systems, work methods, and environments to take into account the safety, comfort, and productiveness of human users and operators. As a profession, human-factors engineering includes a range of scientists and engineers from several disciplines that are concerned with individuals and small groups at work.

The terms human-factors engineering and human engineering are used interchangeably on the North American continent. In Europe, Japan, and most of the rest of the world the prevalent term is ergonomics, a word made up of the Greek words, ergon, meaning “work,” and nomos, meaning “law.” Despite minor differences in emphasis, the terms human-factors engineering and ergonomics may be considered synonymous. Human factors and human engineering were used in the 1920s and ’30s to refer to problems of human relations in industry, an older connotation that has gradually dropped out of use. Some small specialized groups prefer such labels as bioastronautics, biodynamics, bioengineering, and manned-systems technology; these represent special emphases whose differences are much smaller than the similarities in their aims and goals.

The data and principles of human-factors engineering are concerned with human performance, behaviour, and training in man-machine systems; the design and development of man-machine systems; and systems-related biological or medical research. Because of its broad scope, human-factors engineering draws upon parts of such social or physiological sciences as anatomy, anthropometry, applied physiology, environmental medicine, psychology, sociology, and toxicology, as well as parts of engineering, industrial design, and operations research.


The human-factors approach to design

Two general premises characterize the approach of the human-factors engineer in practical design work. The first is that the engineer must solve the problems of integrating humans into machine systems by rigorous scientific methods and not rely on logic, intuition, or common sense. In the past the typical engineer tended either to ignore the complex and unpredictable nature of human behaviour or to deal with it summarily with educated guesses. Human-factors engineers have tried to show that with appropriate techniques it is possible to identify man-machine mismatches and that it is usually possible to find workable solutions to these mismatches through the use of methods developed in the behavioral sciences.

The second important premise of the human-factors approach is that, typically, design decisions cannot be made without a great deal of trial and error. There are only a few thousand human-factors engineers out of the thousands of thousands of engineers in the world who are designing novel machines, machine systems, and environments much faster than behavioral scientists can accumulate data on how humans will respond to them. More problems, therefore, are created than there are ready answers for them, and the human-factors specialist is almost invariably forced to resort to trying things out with various degrees of rigour to find solutions. Thus, while human-factors engineering aims at substituting scientific method for guesswork, its specific techniques are usually empirical rather than theoretical.













The Man-Machine Model: Human-factors engineers regard humans as an element in systems

The simple man-machine model provides a convenient way for organizing some of the major concerns of human engineering: the selection and design of machine displays and controls; the layout and design of workplaces; design for maintainability; and the work environment.

Components of the Man-Machine Model

  1. human operator first has to sense what is referred to as a machine display, a signal that tells him something about the condition or the functioning of the machine
  2. Having sensed the display, the operator interprets it, perhaps performs some computation, and reaches a decision. In so doing, the worker may use a number of human abilities, Psychologists commonly refer to these activities as higher mental functions; human-factors engineers generally refer to them as information processing.
  3. Having reached a decision, the human operator normally takes some action. This action is usually exercised on some kind of a control—a pushbutton, lever, crank, pedal, switch, or handle.
  4. action upon one or more of these controls exerts an influence on the machine and on its output, which in turn changes the display, so that the cycle is continuously repeated


Driving an automobile is a familiar example of a simple man-machine system. In driving, the operator receives inputs from outside the vehicle (sounds and visual cues from traffic, obstructions, and signals) and from displays inside the vehicle (such as the speedometer, fuel indicator, and temperature gauge). The driver continually evaluates this information, decides on courses of action, and translates those decisions into actions upon the vehicle’s controls—principally the accelerator, steering wheel, and brake. Finally, the driver is influenced by such environmental factors as noise, fumes, and temperature.



How BD Uses Human Factors to Design Drug-Delivery Systems

Posted in Design Services by Jamie Hartford on August 30, 2013

 Human factors testing has been vital to the success of the company’s BD Physioject Disposable Autoinjector.

Improving the administration and compliance of drug delivery is a common lifecycle strategy employed to enhance short- and long-term product adoption in the biotechnology and pharmaceutical industries. With increased competition in the industry and heightened regulatory requirements for end-user safety, significant advances in product improvements have been achieved in the injectable market, for both healthcare professionals and patients. Injection devices that facilitate preparation, ease administration, and ensure safety are increasingly prevalent in the marketplace.

Traditionally, human factors engineering addresses individualized aspects of development for each self-injection device, including the following:

  • Task analysis and design.
  • Device evaluation and usability.
  • Patient acceptance, compliance, and concurrence.
  • Anticipated training and education requirements.
  • System resilience and failure.

To achieve this, human factors scientists and engineers study the disease, patient, and desired outcome across multiple domains, including cognitive and organizational psychology, industrial and systems engineering, human performance, and economic theory—including formative usability testing that starts with the exploratory stage of the device and continues through all stages of conceptual design. Validation testing performed with real users is conducted as the final stage of the process.

To design the BD Physioject Disposable Autoinjector System , BD conducted multiple human factors studies and clinical studies to assess all aspects of performance safety, efficiency, patient acceptance, and ease of use, including pain perception compared with prefilled syringes.5 The studies provided essential insights regarding the overall user-product interface and highlighted that patients had a strong and positive response to both the product design and the user experience.

As a result of human factors testing, the BD Physioject Disposable Autoinjector System provides multiple features designed to aide in patient safety and ease of use, allowing the patient to control the start of the injection once the autoinjector is placed on the skin and the cap is removed. Specific design features included in the BD Physioject Disposable Autoinjector System include the following:

  • Ergonomic design that is easy to handle and use, especially in patients with limited dexterity.
  • A 360° view of the drug and injection process, allowing the patient to confirm full dose delivery.
  • A simple, one-touch injection button for activation.
  • A hidden needle before and during injection to reduce needle-stick anxiety.
  • A protected needle before and after injection to reduce the risk of needle stick injury.


YouTube VIDEO: Integrating Human Factors Engineering (HFE) into Drug Delivery





The following is a slideshare presentation on Parental Drug Delivery Issues in the Future

 The Dangers of Medical Devices

The FDA receives on average 100,000 medical device incident reports per year, and more than a third involve user error.

In an FDA recall study, 44% of medical device recalls are due to design problems, and user error is often linked to the poor design of a product.

Drug developers need to take safe drug dosage into consideration, and this consideration requires the application of thorough processes for Risk Management and Human Factors Engineering (HFE).

Although unintended, medical devices can sometimes harm patients or the people administering the healthcare. The potential harm arises from two main sources:

  1. failure of the device and
  2. actions of the user or user-related errors. A number of factors can lead to these user-induced errors, including medical devices are often used under stressful conditions and users may think differently than the device designer.

Human Factors: Identifying the Root Causes of Use Errors

Instead of blaming test participants for use errors, look more carefully at your device’s design.

Great posting on reasons typical design flaws creep up in medical devices and where a company should integrate fixes in product design.
Posted in Design Services by Jamie Hartford on July 8, 2013



YouTube VIDEO: Integrating Human Factors Engineering into Medical Devices





 Regulatory Considerations

  • Unlike other medication dosage forms, combination products require user interaction
  •  Combination products are unique in that their safety profile and product efficacy depends on user interaction
Human Factors Review: FDA Outlines Highest Priority Devices

Posted 02 February 2016By Zachary Brennan on 

The US Food and Drug Administration (FDA) on Tuesday released new draft guidance to inform medical device manufacturers which device types should have human factors data included in premarket submissions, as well final guidance from 2011 on applying human factors and usability engineering to medical devices.

FDA said it believes these device types have “clear potential for serious harm resulting from use error and that review of human factors data in premarket submissions will help FDA evaluate the safety and effectiveness and substantial equivalence of these devices.”

Manufacturers should provide FDA with a report that summarizes the human factors or usability engineering processes they have followed, including any preliminary analyses and evaluations and human factors validation testing, results and conclusions, FDA says.

The list was based on knowledge obtained through Medical Device Reporting (MDRs) and recall data, and includes:

  • Ablation generators (associated with ablation systems, e.g., LPB, OAD, OAE, OCM, OCL)
  • Anesthesia machines (e.g., BSZ)
  • Artificial pancreas systems (e.g., OZO, OZP, OZQ)
  • Auto injectors (when CDRH is lead Center; e.g., KZE, KZH, NSC )
  • Automated external defibrillators
  • Duodenoscopes (on the reprocessing; e.g., FDT) with elevator channels
  • Gastroenterology-urology endoscopic ultrasound systems (on the reprocessing; e.g., ODG) with elevator channels
  • Hemodialysis and peritoneal dialysis systems (e.g., FKP, FKT, FKX, KDI, KPF ODX, ONW)
  • Implanted infusion pumps (e.g., LKK, MDY)
  • Infusion pumps (e.g., FRN, LZH, MEA, MRZ )
  • Insulin delivery systems (e.g., LZG, OPP)
  • Negative-pressure wound therapy (e.g., OKO, OMP) intended for home use
  • Robotic catheter manipulation systems (e.g., DXX)
  • Robotic surgery devices (e.g., NAY)
  • Ventilators (e.g., CBK, NOU, ONZ)
  • Ventricular assist devices (e.g., DSQ, PCK)

Final Guidance

In addition to the draft list, FDA finalized guidance from 2011 on applying human factors and usability engineering to medical devices.

The agency said it received over 600 comments on the draft guidance, which deals mostly with design and user interface, “which were generally supportive of the draft guidance document, but requested clarification in a number of areas. The most frequent types of comments requested revisions to the language or structure of the document, or clarification on risk mitigation and human factors testing methods, user populations for testing, training of test participants, determining the appropriate sample size in human factors testing, reporting of testing results in premarket submissions, and collecting human factors data as part of a clinical study.”

In response to these comments, FDA said it revised the guidance, which supersedes guidance from 2000 entitled “Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management,” to clarify “the points identified and restructured the information for better readability and comprehension.”


The goal of the guidance, according to FDA, is to ensure that the device user interface has been designed such that use errors that occur during use of the device that could cause harm or degrade medical treatment are either eliminated or reduced to the extent possible.

FDA said the most effective strategies to employ during device design to reduce or eliminate use-related hazards involve modifications to the device user interface, which should be logical and intuitive.

In its conclusion, FDA also outlined the ways that device manufacturers were able to save money through the use of human factors engineering (HFE) and usability engineering (UE).

– See more at:


Please see an FDA PowerPoint on Human Factors Regulatory Issues for Combination Drug/Device Products here: MFStory_RAPS 2011 – HF of ComboProds_v4





Read Full Post »

« Newer Posts - Older Posts »