Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘pharmacogenomics’


Genetic Testing incorporation in Medical Practice: Online Program aimed at Educating Physicians and other Health Care Professionals – Initiative by American Medical Association (AMA), in partnership with Scripps Translational Science Institute (Scripps) and The Jackson Laboratory (JAX)

Reporter: Aviva Lev-Ari, PhD, RN

JAX, AMA, Scripps Launch Genomic Education for Physicians

By Clinical Informatics News Staff

July 14, 2016 | The American Medical Association (AMA), in partnership with Scripps Translational Science Institute (Scripps) and The Jackson Laboratory (JAX), have announced a new online program aimed at educating physicians and other health care professionals on the benefits and limitations of genetic testing and when it is appropriate to incorporate it into their practices.

“For the very first time we’re moving into translational education—that is, we’re doing continuing medical education and doing it quite well,” Edison Liu, President and CEO of the Jackson Laboratory, told Clinical Informatics News. “What we have found is that there is an ever-widening gulf that is widening on a year by year basis between the practitioners of the art of medical medicine and the academic practitioners who use and experiment in genomics.”

The first educational module of the 12-part series, “Precision Medicine for Your Practice”, launched last week and focuses on expanded carrier screening. The module is designed to help physicians who provide prenatal care to understand the benefits and limitations of using expanded genetic screening panels to estimate whether expectant and prospective parents risk passing on to their children dozens of conditions.

Eleven additional modules, all carrying CME credit, will be released over the next year, and will focus on other applications of genetic testing, including targeted therapy in oncology, genomic sequencing, cardiogenomics, neurogenomics, pharmacogenomics, and ethics in precision medicine. In each module, clinicians will have the opportunity to practice applying genetic information to patient cases, assess the utility of genetic information, and learn about benefits and limitations of new genetic tests.

Liu said physicians will have the opportunity to combine online and experiential instruction. “Our fundamental belief… is that the most impactful education is combined, blended online and experiential. But it has to be blended in a way that accommodates the schedule of a busy physician,” he said.

JAX and its partners have been experimenting with online introductions to vocabulary and principles, and then day-long practicums at the JAX facility in Maine, “usually a Friday afternoon and Saturday morning,” Liu explained. JAX is also developing post-course communities, to connect physicians to resources, experts, and each other.

“Genomics is racing away in complexity; the technologies are just beyond belief,” Liu said. “We have found there’s really a growing misunderstanding by very smart practicing physicians on what genomics can or can’t deliver. What we are wanting to do is close that gap.”

SOURCE

http://www.clinicalinformaticsnews.com/2016/07/14/jax-ama-scripps-launch-genomic-education-physicians.aspx

Advertisements

Read Full Post »


Pharmacogenomic Biomarkers for Personalized Cancer Treatment

Curator: Larry H Bernstein, MD, FCAP

 

Pharmacogenomic Biomarkers for Personalized Cancer Treatment

Rodríguez-Antona C1Taron M.
J Intern Med. 2015 Feb; 277(2):201-17
http://dx.doi.org:/10.1111/joim.12321

Personalized medicine involves the selection of the safest and most effective pharmacological treatment based on the molecular characteristics of the patient. In the case of anticancer drugs, tumor cell alterations can have a great impact on drug activity and, in fact, most biomarkers predicting response originate from these cells. On the other hand, the risk of developing severe toxicity may be related to the genetic background of the patient. Thus, understanding the molecular characteristics of both the tumor and the patient, and establishing their relation with drug outcomes will be critical for the identification of predictive biomarkers and to provide the basis for individualized treatments. This is a complex scenario where multiple genes as well as pathophysiological and environmental factors are important; in addition, tumors exhibit large inter- and intraindividual variability in space and time. Against this background, the huge amounts of biological and genetic data generated by the high-throughput technologies will facilitate pharmacogenomic progress, suggest novel druggable molecules and support the design of future strategies aimed at disease control. Here, we will review the current challenges and opportunities for pharmacogenomic studies in oncology, as well as the clinically established biomarkers. Lung and renal cancer, two areas in which huge progress has been made in the last decade, will be used to illustrate advances in personalized cancer treatment; we will review EGFR mutation as the paradigm of targeted therapies in lung cancer, and discuss the dissection of lung cancer into clinically relevant molecular subsets and novel advances that suggest an important role of single nucleotide polymorphisms in the response to antiangiogenic agents, as well as the challenges that remain in these fields. Finally, we will present new approaches and future prospects for personalizing medicine in oncology.

Read Full Post »


Biomarker Guided Therapy

Writer and Curator: Larry H. Bernstein, MD, FCAP

Novel serum protein biomarker panel revealed by mass spectrometry and its prognostic value in breast cancer

Liping Chung, K Moore, L Phillips, FM Boyle, DJ Marsh and RC Baxter
Breast Cancer Research 2014, 16:R63
http://breast-cancer-research.com/content/16/3/R63

Introduction: Serum profiling using proteomic techniques has great potential to detect biomarkers that might improve diagnosis and predict outcome for breast cancer patients (BC). This study used surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS) to identify differentially expressed  proteins in sera from BC and healthy volunteers (HV), with the
goal  of developing a new prognostic biomarker panel.
Methods: Training set serum samples from 99 BC and 51 HV subjects were applied to four adsorptive chip surfaces (anion-exchange, cation-exchange, hydrophobic, and metal affinity) and analyzed by time-of-flight MS. For validation, 100 independent BC serum samples and 70 HV samples were analyzed similarly. Cluster analysis of protein spectra was performed to identify protein patterns related to BC and HV groups. Univariate and multivariate statistical analyses were used to develop a protein panel to distinguish breast cancer sera from healthy sera, and its prognostic potential was evaluated.
Results: From 51 protein peaks that were significantly up- or downregulated in BC patients by univariate analysis, binary logistic regression yielded five protein peaks that together classified BC and HV with a receiver operating characteristic (ROC) area-under-the-curve value of 0.961. Validation on an independent patient cohort confirmed the five-protein parameter (ROC value 0.939). The five-protein parameter showed positive association with large tumor size (P = 0.018) and lymph node involvement (P = 0.016). By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, immunoprecipitation and western blotting the proteins were identified as a fragment of apolipoprotein H (ApoH), ApoCI, complement C3a, transthyretin, and ApoAI. Kaplan-Meier analysis on 181 subjects after median follow-up of >5 years demonstrated that the panel significantly predicted disease-free survival (P = 0.005), its efficacy apparently greater in women with estrogen receptor (ER)-negative tumors (n = 50, P = 0.003) compared to ER-positive (n = 131, P = 0.161), although the influence of ER status needs to be confirmed after longer follow-up.
Conclusions: Protein mass profiling by MS has revealed five serum proteins which, in combination, can distinguish between serum from women with breast cancer and healthy control subjects with high sensitivity and specificity. The five-protein panel significantly predicts recurrence-free survival in women with ER-negative tumors and may have value in the management of these patients.

Variants of uncertain significance in BRCA: a harbinger of ethical and policy issues to come?

Jae Yeon Cheon, Jessica Mozersky and Robert Cook-Deegan
Genome Medicine 2014, 6:121
http://genomemedicine.com/content/6/12/121

After two decades of genetic testing and research, the BRCA1 and BRCA2 genes are two of the most well-characterized genes in the human genome. As a result, variants of uncertain significance (VUS; also called variants of unknown significance) are reported less frequently than for genes that have been less thoroughly studied. However, VUS continue to be uncovered, even for BRCA1/2. The increasing use of multi-gene panels and whole-genome and whole-exome sequencing will lead to higher rates of VUS detection because more genes are being tested, and most genomic loci have been far less intensively characterized than BRCA1/2. In this article, we draw attention to ethical and policy-related issues that will emerge. Experience garnered from BRCA1/2 testing is a useful introduction to the challenges of detecting VUS in other genetic testing contexts, while features unique to BRCA1/2 suggest key differences between the BRCA experience and the current challenges of multi-gene panels in clinical care. We propose lines of research and policy development, emphasizing the importance of pooling data into a centralized open-access database for the storage of gene variants to improve VUS interpretation. In addition, establishing ethical norms and regulated practices for sharing and curating data, analytical algorithms, interpretive frameworks and patient re-contact are important policy areas.

The Significance of Normal Pretreatment Levels of CA125 (<35 U/mL) in Epithelial Ovarian Carcinoma

Joseph Menczer,  Erez Ben-Shem,  Abraham Golan, and Tally Levy
Rambam Maimonides Med J 2015;6 (1):e0005. http://dx.doi.org:/10.5041/RMMJ.10180

Objective: To assess the association between normal CA125 levels at diagnosis of epithelial ovarian carcinoma (EOC) with prognostic factors and with outcome.
Methods: The study group consisted of histologically confirmed EOC patients with normal pretreatment CA125 levels, and the controls consisted of EOC patients with elevated (≥35 U/mL) pretreatment CA125 levels, diagnosed and treated between 1995 and 2112. Study and control group patients fulfilled the following criteria: 1) their pretreatment CA125 levels were assessed; 2) they had full standard primary treatment, i.e. cytoreductive surgery and cisplatin-based chemotherapy; and 3) they were followed every 2–4 months during the first two years and every 4–6 months thereafter.
Results: Of 114 EOC patients who fulfilled the inclusion criteria, 22 (19.3%) had normal pretreatment CA125 levels. The control group consisted of the remaining 92 patients with ≥35 U/mL serum CA125 levels pretreatment. The proportion of patients with early-stage and low-grade disease, with optimal cytoreduction, and with platin-sensitive tumors was significantly higher in the study group than in the control group. The progression-free survival (PFS) and overall survival (OS) were significantly higher in the study group than in the control group on univariate analysis but not on multivariate analysis.

Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia

Simone Ecker, Vera Pancaldi, Daniel Rico and Alfonso Valencia
Genome Medicine (2015) 7:8 http://dx.doi.org:/10.1186/s13073-014-0125-z

Background: Chronic lymphocytic leukemia (CLL) presents two subtypes which have drastically different clinical outcomes, IgVH mutated (M-CLL) and IgVH unmutated (U-CLL). So far, these two subtypes are not associated to clear differences in gene expression profiles. Interestingly, recent results have highlighted important roles for heterogeneity, both at the genetic and at the epigenetic level in CLL progression.
Methods: We analyzed gene expression data of two large cohorts of CLL patients and quantified expression variability across individuals to investigate differences between the two subtypes using different measures and statistical tests. Functional significance was explored by pathway enrichment and network analyses. Furthermore, we implemented a random forest approach based on expression variability to classify patients into disease subtypes.
Results: We found that U-CLL, the more aggressive type of the disease, shows significantly increased variability of gene expression across patients and that, overall, genes that show higher variability in the aggressive subtype are related to cell cycle, development and inter-cellular communication. These functions indicate a potential relation between gene expression variability and the faster progression of this CLL subtype. Finally, a classifier based on gene expression variability was able to correctly predict the disease subtype of CLL patients.
Conclusions: There are strong relations between gene expression variability and disease subtype linking significantly increased expression variability to phenotypes such as aggressiveness and resistance to therapy in CLL.

The Emerging Roles of Thyroglobulin

Yuqian Luo, Yuko Ishido, Naoki Hiroi, Norihisa Ishii, and Koichi Suzuki
Advances in Endocrinology 2014, Article ID 189194, 7 pages http://dx.doi.org/10.1155/2014/189194

Thyroglobulin (Tg), the most important and abundant protein in thyroid follicles, is well known for its essential role in thyroid hormone synthesis. In addition to its conventional role as the precursor of thyroid hormones, we have uncovered a novel function of Tg as an endogenous regulator of follicular function over the past decade. The newly discovered negative feedback effect of Tg on follicular function observed in the rat and human thyroid provides an alternative explanation for the observation of follicle heterogeneity. Given the essential role of the regulatory effects of Tg, we consider that dysregulation of normal Tg function is associated with multiple human thyroid diseases including autoimmune thyroid disease and thyroid cancer. Additionally, extrathyroid Tg may serve a regulatory function in other organs. Further exploration of Tg action, especially at the molecular level, is needed to obtain a better understanding of both the physiological and pathological roles of Tg.

The GUIDE-IT trial will help doctors find a new standard of care for heart failure.

Heart failure affects more than 25 million people worldwide, including 5.8 million in the United States and 6.9 million in Europe. About one to two percent of adults in developed countries have been diagnosed with heart failure; this increases to more than 10 percent in people over age 70. Moreover, heart failure accounts for more than 17 percent of Medicare spending and about 5 percent of total US healthcare spending. The cost to society in the US is about 30 billion dollars a year—and rising.

For people hospitalized due to heart failure, the outlook isn’t encouraging. Following discharge, one in four patients is likely to be back in the hospital in less than a month. With every acute heart failure event that requires readmission, the chances of dying from the disease increase.

Heart failure occurs when the heart is unable to fill with or pump sufficient blood to meet the needs of the body. Some heart failure symptoms—shortness of breath, fatigue and fluid buildup—which are present in other health problems. Heart failure may develop from coronary artery disease, high blood pressure, cardiomyopathy, heart valve disease, arrhythmias, viral or bacterial infections, and congenital heart defects. As a consequence, these patients often have additional diseases (comorbidities) and managing heart failure can be extremely challenging.

There have been no new drugs for heart failure in more than a decade. The last breakthrough was cardiac resynchronization therapy, a device and not a drug. The goals of therapy are to treat heart failure’s underlying causes, reduce symptoms, improve the patient’s quality of life and keep the disease from getting worse.

More than a pump

The heart isn’t just a muscle pumping blood through the body. It is also an endocrine gland that secretes peptides and hormones. When the heart is failing, its stressed cells release larger amounts of substances known as natriuretic peptides, including N-terminal prohormone brain natriuretic peptide, or NT-proBNP.

Roche’s NT-proBNP test measures the levels of this peptide and helps doctors to determine whether patients are suffering from heart failure and to assess their prognosis. Most recently, NT-proBNP has also been shown to help physicians guide and adjust the patient’s drug therapy. The objective of the pivotal GUIDE-IT trial is to demonstrate the efficacy and safety of NT-proBNP guided heart failure therapy.

Sponsored by the National Institutes of Health (NIH), the GUIDE-IT trial will help doctors answer important questions about NT-proBNP’s impact on medical care. About 1100 patients are enrolled in this robustly powered, randomized controlled trial comparing NT-proBNP guided therapy on top of standard care versus standard care alone in high-risk heart failure patients. Its primary endpoint is time to cardiovascular death or first heart failure hospitalization.

With the NT-proBNP biomarker, doctors can create personalized treatment plans for patients to substantially reduce mortality and morbidity. It can be viewed as a companion diagnostic that works with all the drugs recommended by the major guidelines.

Finding new answers

GUIDE-IT will last five years and involve approximately 45 trial sites in the United States. The first group of patients will be enrolled by the end of 2012.

“We need to take a more strategic approach if we are going to meet the AHA/ASA’s 2020 goal of reducing heart failure hospitalizations by 20 percent,” Dr. O’Connor, Chief of the Division of Cardiovascular Medicine at Duke Heart Center in Durham, North Carolina, said at a media briefing held in October at Roche Diagnostics International in Rotkreuz, Switzerland.
The relative and combined ability of: high-sensitivity cardiac troponin T, and N-terminal pro-B-type natriuretic Peptide – to predict cardiovascular events and death in patients with type 2 diabetes.

Hillis GS; Welsh P; Chalmers J; Perkovic V; Chow CK; Li Q; Jun M; Neal B; et al.
http://reference.medscape.com/medline/abstract/24089534?src=wnl_ref_prac_diab

OBJECTIVE Current methods of risk stratification in patients with type 2 diabetes are suboptimal. The current study assesses the ability of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin T (hs-cTnT) to improve the prediction of cardiovascular events and death in patients with type 2 diabetes.
RESEARCH DESIGN AND METHODS A nested case-cohort study was performed in 3,862 patients who participated in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. RESULTS Seven hundred nine (18%) patients experienced a major cardiovascular event (composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke) and 706 (18%) died during a median of 5 years of follow-up. In Cox regression models, adjusting for all established risk predictors, the hazard ratio for cardiovascular events for NT-proBNP was 1.95 per 1 SD increase (95% CI 1.72, 2.20) and the hazard ratio for hs-cTnT was 1.50 per 1 SD increase (95% CI 1.36, 1.65). The hazard ratios for death were 1.97 (95% CI 1.73, 2.24) and 1.52 (95% CI 1.37, 1.67), respectively. The addition of either marker improved 5-year risk classification for cardiovascular events (net reclassification index in continuous model, 39% for NT-proBNP and 46% for hs-cTnT). Likewise, both markers greatly improved the accuracy with which the 5-year risk of death was predicted. The combination of both markers provided optimal risk discrimination.
CONCLUSIONS NT-proBNP and hs-cTnT appear to greatly improve the accuracy with which the risk of cardiovascular events or death can be estimated in patients with type 2 diabetes.

Genetics and Heart Failure: A Concise Guide for the Clinician

Cécile Skrzynia, Jonathan S. Berg, Monte S. Willis and Brian C. Jensen
Current Cardiology Reviews, 2013; 9.

Abstract: The pathogenesis of heart failure involves a complex interaction between genetic and environmental factors. Genetic factors may influence the susceptibility to the underlying etiology of heart failure, the rapidity of disease progression, or the response to pharmacologic therapy. The genetic contribution to heart failure is relatively minor in most multifactorial cases, but more direct and profound in the case of familial dilated cardiomyopathy. Early studies of genetic risk for heart failure focused on polymorphisms in genes integral to the adrenergic and renin-angiotensin-aldosterone system. Some of these variants were found to increase the risk of developing heart failure, and others appeared to affect the therapeutic response to neurohormonal antagonists. Regardless, each variant individually confers a relatively modest increase in risk and likely requires complex interaction with other variants and the environment for heart failure to develop. Dilated cardiomyopathy frequently leads to heart failure, and a genetic etiology increasingly has been recognized in cases previously considered to be “idiopathic”. Up to 50% of dilated cardiomyopathy cases without other cause likely are due to a heritable genetic mutation. Such mutations typically are found in genes encoding sarcomeric proteins and are inherited in an autosomal dominant fashion. In recent years, rapid advances in sequencing technology have improved our ability to diagnose familial dilated cardiomyopathy and those diagnostic tests are available widely. Optimal care for the expanding population of patients with heritable heart failure involves counselors and physicians with specialized training in genetics, but numerous online genetics resources are available to practicing clinicians.

Cardiac Troponin Testing Is Overused after the Rule-In or Rule-Out of Myocardial Infarction

Olaia Rodriguez Fraga, Y Sandoval, SA Love, ZJ McKinney, MAM Murakami, SW Smith, FS Apple
Clinical Chemistry 2015; 61:2 http://dx.doi.org:/10.1373/clinchem.2014.232694

No good studies have systematically evaluated appropriate clinical utilization of cardiac troponin testing in the clinical setting of the rule-in and rule-out of myocardial infarction (MI). Our collective 100-plus years of clinical and laboratory experience suggested that provider test ordering and use of cardiac troponin has been excessive after a diagnosis of MI or no MI has been determined. There is no evidence that supports continuation of cardiac troponin testing after a diagnosis is made.

Number of cTnI results demonstrating excessive orders by diagnosis

Number of cTnI results demonstrating excessive orders by diagnosis

Time and Frequency Domain Analysis of Heart Rate Variability and their orrelations in Diabetes Mellitus
T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K
Intl J Biolog and Life Sciences 2008; 4(1)

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS
activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Power Spectral Density of the RR interval of a 55 year old healthy volunteer

Power Spectral Density of the RR interval of a 55 year old healthy volunteer

Power Spectral Density of the RR interval of a 55 year old healthy volunteer

Power Spectral Density of the RR interval of a 62 year old woman suffering

Power Spectral Density of the RR interval of a 62 year old woman suffering

Power Spectral Density of the RR interval of a 62 year old woman suffering
from diabetes for the last 15 years

HRV analysis has gained much importance in recent years, as a technique employed to explore the activity of ANS, and as an important early marker for identifying different pathological conditions. DM is a disease in which the cardiac autonomic activity is progressively compromised. Our investigation indicates that different time domain and frequency domain measures of HRV would be able to provide valuable information regarding the autonomic dysfunction to DM.

Time domain and frequency domain analysis of the RR interval variability of diabetic and normal subjects shows that there is significant difference in these measures for DM patients with respect to normal subjects. Variation of the HRV parameters indicates changes in ANS activity of DM patients. This can provide valid information regarding autonomic neuropathy in people with diabetes. It may be noted that these methods can detect changes before clinical signs appear. So we can expect that these measures enable early detection and treatment/subsequent management of patients and thus can avoid acute and chronic complications.

Multiparametric diagnostics of cardiomyopathies by microRNA signatures

Christine S. Siegismund & Maria Rohde & Uwe Kühl & Dirk Lassner
Microchim Acta 2014   http://dx.doi.org:/10.1007/s00604-014-1249-y

The diagnosis of cardiomyopathies by endomyocardial biopsy analysis is the gold standard for confirmation of causative reasons but is failing if a sample does not contain the area of interest due to focal pathology. Biopsies are revealing an extract of the current situation of the heart muscle only, and the need for global organ-specific or systemic markers is obvious in order to minimize sampling errors. Global markers like specific gene expression signatures in myocardial tissue may therefore reflect the focal situation or condition of the whole myocardium. Besides gene expression profiles, microRNAs (miRNAs) represent a new group of stable biomarkers that are detectable both in tissue and body fluids. Such miRNAs may serve as cardiological biomarkers to characterize inflammatory processes, to confirm viral infections, and to differentiate various forms of infection.
The predictive power of single miRNAs for diagnosis of complex diseases may be further increased if several distinctly deregulated candidates are combined to form a specific miRNA signature. Diagnostic systems that generate disease related miRNA profiles are based on microarrays, bead-based oligo sorbent assays, or on assays based on real-time polymerase chain reactions and placed on microfluidic cards or nanowell plates. Multiparametric diagnostic systems that can measure differentially expressed miRNAs may become the diagnostic tool of the future due to their predictive value with respect to clinical course, therapeutic decisions, and therapy monitoring. We discuss here specific merits, limitations and the potential of currently available analytical platforms for diagnostics of heart muscle diseases based on miRNA profiling.

Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction

Rudolf A. de Boer, DJA Lok, T Jaarsma, P van der Meer, AA Voors, et al.
Annals Med, 2011; 43: 60–68 http://dx.doi.org:/10.3109/07853890.2010.538080

We studied the prognostic value of base-line galectin-3 in a large HF cohort, with preserved and reduced left ventricular ejection fraction (LVEF), and compared this to other biomarkers.
Methods. We studied 592 HF patients who had been hospitalized for HF and were followed for 18 months. The primary end-point was a composite of all-cause mortality and HF hospitalization.
Results. A doubling of galectin-3 levels was associated with a hazard ratio (HR) of 1.97 (1.62–2.42) for the primary outcome (P= 0.001). After correction for age, gender, BNP, eGFR, and diabetes the HR was 1.38 (1.07–1.78; P= 0.015). Galectin-3 levels were correlated with higher IL -6 and CRP levels (P= 0.002). Changes of galectin-3 levels after 6 months did not add prognostic information to the base-line value (n= 291); however, combining plasma galectin-3 and BNP levels increased prognostic value over either biomarker alone (ROC analysis, P = 0.05). The predictive value of galectin-3 was stronger in patients with preserved LVEF (n= 114) compared to patients with reduced LVEF (P= 0.001).
Conclusions. Galectin-3 is an independent marker for outcome in HF and appears to be particularly useful in HF patients with preserved LVEF.

Criteria for the use of omics-based predictors in clinical trials

Lisa M. McShane, MM Cavenagh, TG Lively, DA Eberhard, et al.
Nature  17 Oct 2013; 502: 317-320. http://dx.doi.org:/10.1038/nature12564

The US National Cancer Institute (NCI), in collaboration with scientists representing multiple areas of expertise relevant to ‘omics’-based test development, has developed a checklist of criteria that can be used to determine the readiness of omics-based tests for guiding patient care in clinical trials. The checklist criteria cover issues relating to specimens, assays, mathematical modelling, clinical trial design, and ethical, legal and regulatory aspects. Funding bodies and journals are encouraged to consider the checklist, which they may find useful for assessing study quality and evidence strength. The checklist will be used to evaluate proposals for NCI-sponsored clinical
trials in which omics tests will be used to guide therapy.

M-Atrial Natriuretic Peptide and Nitroglycerin in a Canine Model of Experimental Acute Hypertensive Heart Failure: Differential Actions of 2 cGMP Activating Therapeutics.

Paul M McKie, Alessandro Cataliotti, Tomoko Ichiki, S Jeson Sangaralingham, Horng H Chen, John C Burnett
J Am Heart Assoc 01/2014; 3(1):e000206. http://dx.doi.org:/10.1161/JAHA.113.000206

Systemic hypertension is a common characteristic in acute heart failure (HF). This increasingly recognized phenotype is commonly associated with renal dysfunction and there is an unmet need for renal enhancing therapies. In a canine model of HF and acute vasoconstrictive hypertension we characterized and compared the cardiorenal actions of M-atrial natriuretic peptide (M-ANP), a novel particulate guanylyl cyclase (pGC) activator, and nitroglycerin, a soluble guanylyl cyclase (sGC) activator.
HF was induced by rapid RV pacing (180 beats per minute) for 10 days. On day 11, hypertension was induced by continuous angiotensin II infusion. We characterized the cardiorenal and humoral actions prior to, during, and following intravenous M-ANP (n=7), nitroglycerin (n=7), and vehicle (n=7) infusion. Mean arterial pressure (MAP) was reduced by M-ANP (139±4 to 118±3 mm Hg, P<0.05) and nitroglycerin (137±3 to 116±4 mm Hg, P<0.05); similar findings were recorded for pulmonary wedge pressure (PCWP) with M-ANP (12±2 to 6±2 mm Hg, P<0.05) and nitroglycerin (12±1 to 6±1 mm Hg, P<0.05). M-ANP enhanced renal function with significant increases (P<0.05) in glomerular filtration rate (38±4 to 53±5 mL/min), renal blood flow (132±18 to 236±23 mL/min), and natriuresis (11±4 to 689±37 mEq/min) and also inhibited aldosterone activation (32±3 to 23±2 ng/dL, P<0.05), whereas nitroglycerin had no significant (P>0.05) effects on these renal parameters or aldosterone activation.
Our results advance the differential cardiorenal actions of pGC (M-ANP) and sGC (nitroglycerin) mediated cGMP activation. These distinct renal and aldosterone modulating actions make M-ANP an attractive therapeutic for HF with concomitant hypertension, where renal protection is a key therapeutic goal.

Genome-Wide Association Study of a Heart Failure Related Metabolomic Profile Among African Americans in the Atherosclerosis Risk in Communities (ARIC) Study

Bing Yu, Y Zheng, D Alexander, TA Manolio, A Alonso, JA Nettleton, & E Boerwinkle
Genet Epidemiol 2013; 00:1–6, http://dx.doi.org:/10.1002/gepi.21752

Both the prevalence and incidence of heart failure (HF) are increasing, especially among African Americans, but no large-scale, genome-wide association study (GWAS) of HF-related metabolites has been reported. We sought to identify novel genetic variants that are associated with metabolites previously reported to relate to HF incidence. GWASs of three metabolites identified previously as risk factors for incident HF (pyroglutamine, dihydroxy docosatrienoic acid, and X-11787, being either hydroxy-leucine or hydroxy-isoleucine) were performed in 1,260 African Americans free of HF at the baseline examination of the Atherosclerosis Risk in Communities (ARIC) study. A significant association on chromosome 5q33 (rs10463316, MAF = 0.358, P-value = 1.92 × 10−10) was identified for pyroglutamine. One region on chromosome 2p13 contained a nonsynonymous substitution in N-acetyltransferase 8 (NAT8) was associated with X-11787 (rs13538, MAF = 0.481, P-value = 1.71 × 10−23). The smallest P-value for dihydroxy docosatrienoic acid was rs4006531 on chromosome 8q24 (MAF = 0.400, P-value = 6.98 × 10−7). None of the above SNPs were individually associated with incident HF, but a genetic risk score (GRS) created by summing the most significant risk alleles from each metabolite detected 11% greater risk of HF per allele. In summary, we identified three loci associated with previously reported HF-related metabolites. Further use of metabolomics technology will facilitate replication of these findings in independent samples.

Global Left Atrial Strain Correlates with CHADS2 Risk Score in Patients with Atrial Fibrillation

SK Saha, PL Anderson, G Caracciolo, A Kiotsekoglou, S Wilansky, S Govind, et al.
J Am Soc Echocardiogr 2011; 24(5): 506-512.
http://dx.doi.org:/10.1016/j.echo.2011.02.012

Background: The aim of this cross-sectional study was to explore the association between echocardiographic parameters and CHADS2 score in patients with nonvalvular atrial fibrillation (AF).
Methods: Seventy-seven subjects (36 patients with AF, 41 control subjects) underwent standard twodimensional, Doppler, and speckle-tracking echocardiography to compute regional and global left atrial (LA) strain.
Results: Global longitudinal LA strain was reduced in patients with AF compared with controls (P < .001) and was a predictor of high risk for thromboembolism (CHADS2 score $ 2; odds ratio, 0.86; P = .02). LA strain indexes showed good interobserver and intraobserver variability. In sequential Cox models, the prediction of hospitalization and/or death was improved by addition of global LA strain and indexed LA volume to CHADS2 score (P = .003).
Conclusions: LA strain is a reproducible marker of dynamic LA function and a predictor of stroke risk and cardiovascular outcomes in patients with AF.

Gene Expression and Genetic Variation in Human Atria

Honghuang Lin, EV Dolmatova, MP Morley, KL Lunetta, et al.
Heart Rhythm, HRTHM5533. PII: S1547-5271(13)01226-5
http://dx.doi.org/10.1016/j.hrthm.2013.10.051

Background— The human left and right atria have different susceptibilities to develop atrial fibrillation (AF). However, the molecular events related to structural and functional changes that enhance AF susceptibility are still poorly understood.
Objective— To characterize gene expression and genetic variation in human atria.
Methods— We studied the gene expression profiles and genetic variations in 53 left atrial and 52 right atrial tissue samples collected from the Myocardial Applied Genomics Network (MAGNet) repository. The tissues were collected from heart failure patients undergoing transplantation and from unused organ donor hearts with normal ventricular function. Gene expression was profiled using the Affymetrix GeneChip Human Genome U133A Array. Genetic variation was profiled using the Affymetrix Genome-Wide Human SNP Array 6.0.
Results— We found that 109 genes were differentially expressed between left and right atrial tissues. A total of 187 and 259 significant cis-associations between transcript levels and genetic variants were identified in left and right atrial tissues, respectively. We also found that a SNP at a known AF locus, rs3740293, was associated with the expression of MYOZ1 in both left and right atrial tissues. Conclusion— We found a distinct transcriptional profile between the right and left atrium, and extensive cis-associations between atrial transcripts and common genetic variants. Our results implicate MYOZ1 as the causative gene at the chromosome 10q22 locus for AF.

Atrial Natriuretic Peptide Single Nucleotide Polymorphisms in Patients with Nonfamilial Structural Atrial Fibrillation

Pietro Francia, A Ricotta, A Frattari, R Stanzione, A Modestino, et al.
Clinical Medicine Insights: Cardiology 2013:7 153–159
http://dx.doi.org:/10.4137/CMC.S12239

Background: Atrial natriuretic peptide (ANP) has antihypertrophic and antifibrotic properties that are relevant to AF substrates. The −G664C and rs5065 ANP single nucleotide polymorphisms (SNP) have been described in association with clinical phenotypes, including hypertension and left ventricular hypertrophy. A recent study assessed the association of early AF and rs5065 SNPs in low-risk subjects. In a Caucasian population with moderate-to-high cardiovascular risk profile and structural AF, we conducted a case-control study to assess whether the ANP −G664C and rs5065 SNP associate with nonfamilial structural AF.
Methods: 168 patients with nonfamilial structural AF and 168 age- and sex-matched controls were recruited. The rs5065 and −G664C ANP SNPs were genotyped.
Results: The study population had a moderate-to-high cardiovascular risk profile with 86% having hypertension, 23% diabetes, 26% previous myocardial infarction, and 23% left ventricular systolic dysfunction. Patients with AF had greater left atrial diameter (44 ± 7
vs. 39 ± 5 mm; P , 0.001) and higher plasma NTproANP levels (6240 ± 5317 vs. 3649 ± 2946 pmol/mL; P , 0.01). Odds ratios (ORs)
for rs5065 and −G664C gene variants were 1.1 (95% confidence interval [CI], 0.7–1.8; P = 0.71) and 1.2 (95% CI, 0.3–3.2; P = 0.79), respectively, indicating no association with AF. There were no differences in baseline clinical characteristics among carriers and noncarriers of the −664C and rs5065 minor allele variants.
Conclusions: We report lack of association between the rs5065 and −G664C ANP gene SNPs and AF in a Caucasian population of patients with structural AF. Further studies will clarify whether these or other ANP gene variants affect the risk of different subphenotypes of AF driven by distinct pathophysiological mechanisms.

N-terminal proBNP and mortality in hospitalized patients with heart failure and preserved vs. reduced systolic function: data from the prospective Copenhagen Hospital Heart Failure Study (CHHF)

Kirk, M. Bay, J. Parnerc, K. Krogsgaard, T.M. Herzog, S. Boesgaard, et al.
Eur Journal Heart Failure 6 (2004) 335–341
http://dx.doi.org:/10.1016/j.ejheart.2004.01.002

Preserved systolic function among heart failure patients is a common finding, a fact that has only recently been fully appreciated. The aim of the present study was to examine the value of NT-proBNP to predict mortality in relation to established risk factors among consecutively hospitalised heart failure patients and secondly to characterise patients in relation to preserved and reduced systolic function. Material: At the time of admission 2230 consecutively hospitalised patients had their cardiac status evaluated through determinations of NT-proBNP, echocardiography, clinical examination and medical history. Follow-up was performed 1 year later in all patients. Results: 161 patients fulfilled strict diagnostic criteria for heart failure (HF). In this subgroup of patients 1-year mortality was approximately 30% and significantly higher as compared to the remaining non-heart failure population (approx. 16%). Using univariate analysis left ventricular ejection fraction (LVEF), New York Heart Association classification (NYHA) and plasma levels of NT-proBNP all predicted mortality independently. However, regardless of systolic function, age and NYHA class, risk-stratification was provided by measurements of NT-proBNP. Having measured plasma levels of NT-proBNP, LVEF did not provide any additional prognostic information on mortality among heart failure patients (multivariate analysis).
Conclusion: The results show that independent of LVEF, measurements of NT-proBNP add additional prognostic information. It is concluded that NT-proBNP is a strong predictor of 1-year mortality in consecutively hospitalised patients with heart failure with preserved as well as reduced systolic function.

N-terminal pro-B-type natriuretic peptide and the prediction of primary cardiovascular events: results from 15-year follow-up of WOSCOPS

Paul Welsh, Orla Doolin, Peter Willeit, Chris Packard, Peter Macfarlane, et al.
Eur Heart Journal 2014. http://eurheartj.oxfordjournals.org/

Aims: To test whether N-terminal pro-B-type natriuretic peptide (NT-proBNP) was independently associated with, and improved the prediction of, cardiovascular disease (CVD) in a primary prevention cohort.
Methods and results:  In the West of Scotland Coronary Prevention Study (WOSCOPS), a cohort of middle-aged men with hypercholesterolemia at a moderate risk of CVD, we related the baseline NT-proBNP (geometric mean 28 pg/mL) in 4801 men to the risk of CVD over 15 years during which 1690 experienced CVD events. Taking into account the competing risk of non-CVD death, NT-proBNP was associated with an increased risk of all CVD [HR: 1.17 (95% CI: 1.11–1.23) per standard deviation increase in log NT-proBNP] after adjustment for classical and clinical cardiovascular risk factors plus C-reactive protein. N-terminal pro-B-type natriuretic peptide was more strongly related to the risk of fatal [HR: 1.34 (95% CI: 1.19–1.52)] than non-fatal CVD [HR: 1.17 (95% CI: 1.10–1.24)] (P ¼ 0.022). The addition of NT-proBNP to traditional risk factors improved the C-index (+0.013; P , 0.001). The continuous net reclassification index improved with the addition of NT-proBNP by 19.8% (95% CI: 13.6–25.9%) compared with 9.8% (95% CI: 4.2–15.6%) with the addition of C-reactive protein. N-terminal pro-B-type natriuretic peptide correctly reclassified 14.7% of events, whereas C-reactive protein correctly reclassified 3.4% of events. Results were similar in the 4128 men without evidence of angina, nitrate prescription, minor ECG abnormalities, or prior cerebrovascular disease.
Conclusion: N-terminal pro-B-type natriuretic peptide predicts CVD events in men without clinical evidence of CHD, angina, or history of stroke, and appears related more strongly to the risk for fatal events. N-terminal pro-B-type natriuretic peptide also provides moderate risk discrimination, in excess of that provided by the measurement of C-reactive protein.

Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis

Richard W. Troughton, Christopher M. Frampton, Hans-Peter Brunner-La Rocca,
Matthias Pfisterer, Luc W.M. Eurlings, Hans Erntell, Hans Persson, et al.
Eur Heart J 2014; 35: 1559–1567 http://dx.doi.org:/10.1093/eurheartj/ehu090

Aims Natriuretic peptide-guided (NP-guided) treatment of heart failure has been tested against standard clinically guided care in multiple studies, but findings have been limited by study size. We sought to perform an individual patient data metaanalysis to evaluate the effect of NP-guided treatment of heart failure on all-cause mortality.
Methods and results
Eligible randomized clinical trials were identified from searches of Medline andEMBASEdatabases and the Cochrane Clinical
Trials Register. The primary pre-specified outcome, all-cause mortality was tested using a Cox proportional hazards regression model that included study of origin, age (< 75 or ≥75 years), and left ventricular ejection fraction (LVEF, ≤45 or .45%) as covariates. Secondary endpoints included heart failure or cardiovascular hospitalization. Of 11 eligible studies, 9 provided individual patient data and 2 aggregate data. For the primary endpoint individual data from 2000 patients were included, 994 randomized to clinically guided care and 1006 to NP-guided care. All-cause mortality was significantly reduced by NP-guided treatment [hazard ratio = 0.62 (0.45–0.86);
P = 0.004] with no heterogeneity between studies or interaction with LVEF. The survival benefit from NP-guided therapy was seen in younger ( <75 years) patients [0.62 (0.45–0.85); P = 0.004] but not older (≥75 years) patients [0.98 (0.75–1.27); P = 0.96]. Hospitalization due to heart failure [0.80 (0.67–0.94); P = 0.009] or cardiovascular disease [0.82 (0.67–0.99); P = 0.048]was significantly lower in NP-guided patients with no heterogeneity between studies and no interaction with age or LVEF.
Conclusion: Natriuretic peptide-guided treatment of heart failure reduces all-cause mortality in patients aged < 75 years and overall reduces heart failure and cardiovascular hospitalization.

Diagnostic and prognostic evaluation of left ventricular systolic heart failure by plasma N-terminal pro-brain natriuretic peptide concentrations in a large sample of the general population

B A Groenning, I Raymond, P R Hildebrandt, J C Nilsson, M Baumann, F Pedersen
Heart 2004;90:297–303. http://dx.doi.org:/10.1136/hrt.2003.026021

Objective: To evaluate N-terminal pro-brain natriuretic peptide (NT-proBNP) as a diagnostic and prognostic marker for systolic heart failure in the general population.
Design: Study participants, randomly selected to be representative of the background population, filled in a heart failure questionnaire and underwent pulse and blood pressure measurements, electrocardiography, echocardiography, and blood sampling and were followed up for a median (range) period of 805 (6021171) days.
Setting: Participants were recruited from four randomly selected general practitioners and were examined in a Copenhagen university hospital.
Patients: 382 women and 290 men in four age groups (50259 (n = 174); 60269 (n = 204); 70279 (n = 174); > 80 years (n = 120)).
Main outcome measures: Value of NT-proBNP in evaluating patients with symptoms of heart failure and impaired left ventricular (LV) systolic function; prognostic value of NT-proBNP for mortality and hospital admissions.
Results: In 38 (5.6%) participants LV ejection fraction (LVEF) was (40%. NT-proBNP identified patients with symptoms of heart failure and LVEF (40% with a sensitivity of 0.92, a specificity of 0.86, positive and negative predictive values of 0.11 and 1.00, and area under the curve of 0.94. NT-proBNP was the strongest independent predictor of mortality (hazard ratio (HR) = 5.70, p = 0.0001), hospital admissions for heart failure (HR = 13.83, p = 0.0001), and other cardiac admissions (HR = 3.69, p = 0.0001). Mortality (26 v 6, p = 0.0003), heart failure admissions (18 v 2, p = 0.0002), and admissions for other cardiac causes (44 v 13, p = 0.0001) were significantly higher in patients with NTproBNP above the study median (32.5 pmol/l). Conclusions: Measurement of NT-proBNP may be useful as a screening tool for systolic heart failure in the general population.

Copeptin—Marker of Acute Myocardial Infarction

Martin Möckel & Julia Searle
Curr Atheroscler Rep 2014; 16:421 http://dx.doi.org:/10.1007/s11883-014-0421-5

The concentration of copeptin, the C-terminal part of pro-arginine vasopressin, has been shown to increase early after acute and severe events. Owing to complementary pathophysiology and kinetics, the unspecific marker copeptin, in combination with highly cardio-specific troponin, has been evaluated as an early-rule-out strategy for acute myocardial infarction in patients presenting with signs and symptoms of acute coronary syndrome. Overall, most studies have reported a negative predictive value between 97 and 100 % for the diagnosis of acute myocardial infarction in low- to intermediate-risk patients with suspected acute coronary syndrome. Additionally, a recent multicenter, randomized process study, where patients who tested negative for copeptin and troponin were discharged from the emergency department, showed that the safety of the new process was comparable to that of the current standard process. Further interventional trials and data from registries are needed to ensure the effectiveness and patient benefit of the new strategy.

The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department

Christian H Nickel1, Roland Bingisser and Nils G Morgenthaler
BMC Medicine 2012, 10:7 http://www.biomedcentral.com/1741-7015/10/7

The hypothalamic-pituitary-adrenal axis is activated in response to stress. One of the activated hypothalamic hormones is arginine vasopressin, a hormone involved in hemodynamics and osmoregulation. Copeptin, the C-terminal part of the arginine vasopressin precursor peptide, is a sensitive and stable surrogate marker for arginine vasopressin release. Measurement of copeptin levels has been shown to be useful in a variety of clinical scenarios, particularly as a prognostic marker in patients with acute diseases such as lower respiratory tract infection, heart disease and stroke. The measurement of copeptin levels may provide crucial information for risk stratification in a variety of clinical situations. As such, the emergency department appears to be the ideal setting for its potential use. This review summarizes the recent progress towards determining the prognostic and diagnostic value of copeptin in the emergency department.

Variability of the Transferrin Receptor 2 Gene in AMD

Daniel Wysokinski, Janusz Blasiak, Mariola Dorecka, Marta Kowalska, et al.
Disease Markers 2014, Article ID 507356, 8 pages http://dx.doi.org/10.1155/2014/507356

Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between  polymorphisms of the TFR2 gene and AMD. A total of 493AMDpatients and 171matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674) and c.−258+123T>C (rs4434553). We also assessed the modulation of some AMD risk factors by these polymorphisms.The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMI < 26. The TT genotype and the T allele of this polymorphism decreased AMD occurrence in subjects above 72 years, whereas the TC genotype and the C allele increased occurrence of AMD in this group.The c.1892C>T and c.−258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors.

Urinary N-Acetyl-beta-D-glucosaminidase as an Early Marker for Acute Kidney Injury in Full-Term Newborns with Neonatal Hyperbilirubinemia

Bangning Cheng, Y Jin, G Liu, Z Chen, H Dai, and M Liu
Disease Markers 2014, Article ID 315843, 6 pages http://dx.doi.org/10.1155/2014/315843

Purpose. To investigate renal function estimated by markers in full-term newborns with hyperbilirubinemia.
Methods. A total of 332 full-term newborns with hyperbilirubinemia and 60 healthy full-term newborns were enrolled. Total serum bilirubin, serum creatinine (Cr), serum blood urea nitrogen (BUN), serum cystatin C (Cys-C), urinary beta-2-microglobulin (𝛽2MG) index, and urinary N-acetyl-beta-D-glucosaminidase (NAG) index were measured before and after treatment. All newborns were divided into three groups according to total serum bilirubin levels: group 1 (221-256), group 2 (256-342), and group 3 (>342). Results. The control group and group 1 did not differ significantly in regard to serum Cr, serum BUN, serum Cys-C, urinary 𝛽2MG index, and urinary NAG index. Urinary NAG index in group 2 was significantly higher than that in control group (𝑃 < 0.001). Between control group and group 3, serum Cys-C, urinary 𝛽2MG index, and urinary NAG index differed significantly. The significant positive correlation between total serum bilirubin and urinary NAG index was found in newborns when total serum bilirubin level was more than 272 𝜇mol/L.
Conclusions. High unconjugated bilirubin could result in acute kidney injury in full-term newborns. Urinary NAG might be the suitable marker for predicting acute kidney injury in full-term newborns with hyperbilirubinemia.

Urinary C-peptide creatinine ratio detects absolute insulin deficiency in Type 2 diabetes.

S V Hope, A G Jones, E Goodchild, M Shepherd, R E J Besser, B Shields, T McDonald, B A Knight, A Hattersley

Department of Geriatrics, Royal Devon and Exeter NHS Foundation Trust; NIHR Exeter Clinical Research Facility, University of Exeter.

Diabetic Medicine (impact factor: 2.9). 05/2013; http://dx.doi.org:/10.1111/dme.12222

Source: PubMed

ABSTRACT AIMS: To determine the prevalence and clinical characteristics of absolute insulin deficiency in long-standing Type 2 diabetes, using a strategy based on home urinary C-peptide creatinine ratio measurement.
METHODS: We assessed the urinary C-peptide creatinine ratios, from urine samples taken at home 2 h after the largest meal of the day, in 191 insulin-treated subjects with Type 2 diabetes (diagnosis age ≥45 years, no insulin in the first year). If the initial urinary C-peptide creatinine ratio was ≤0.2 nmol/mmol (representing absolute insulin deficiency), the assessment was repeated. A standardized mixed-meal tolerance test with 90-min stimulated serum C-peptide measurement was performed in nine subjects with a urinary C-peptide creatinine ratio ≤ 0.2 nmol/mmol (and in nine controls with a urinary C-peptide creatinine ratio >0.2 nmol/mmol) to confirm absolute insulin deficiency.
RESULTS: A total of 2.7% of participants had absolute insulin deficiency confirmed by a mixed-meal tolerance test. They were identified initially using urinary C-peptide creatinine ratio: 11/191 subjects (5.8%) had two consistent urinary C-peptide creatinine ratios ≤ 0.2 nmol/mmol; 9/11 subjects completed a mixed-meal tolerance test and had a median stimulated serum C-peptide of 0.18nmol/l. Five out of nine subjects had stimulated serum C-peptide <0.2 nmol/l and 9/9 subjects with urinary C-peptide creatinine ratio >0.2 had endogenous insulin secretion confirmed by the mixed-meal tolerance test. Compared with subjects with a urinary C-peptide creatinine ratio >0.2 nmol/mmol, those with confirmed absolute insulin deficiency had a shorter time to insulin treatment (median 2.5 vs. 6 years, P=0.005) and lower BMI (25.1 vs. 29.1kg/m(2) , P=0.04). Two out of five patients were glutamic acid decarboxylase autoantibody-positive.
CONCLUSIONS: Absolute insulin deficiency may occur in long-standing Type 2 diabetes, and cannot be reliably predicted by clinical features or autoantibodies. Its recognition should help guide treatment, education and management. The urinary C-peptide creatinine ratio is a practical non-invasive method to aid detection of absolute insulin deficiency, with a urinary C-peptide creatinine ratio > 0.2 nmol/mmol being a reliable indicator of retained endogenous insulin secretion.

Unlocking Biomarkers’ Full Potential

David Daniels, Ph.D.     genengnews  Feb 1, 2013 (Vol. 33, No. 3)

http://www.genengnews.com/gen-articles/unlocking-biomarkers-full-potential/4700/

Biomarker research and development has evolved over the past years from looking for a single marker (e.g., PSA) linked to a disease state to looking for a panel of markers that can capture the heterogeneity inherent in both the disease and the impacted patient population.

That is one of the key messages to be delivered at GTC’s “Biomarkers Summit” next month. Across the board, resources are being focused on the delivery of more precise, quantifiable biomarkers with predictive value in therapeutic decisions and for the prognosis of illness.

“Our focus on biomarker development is the recognition that the new products need to provide cost savings for the already strapped healthcare systems rather than just be cost effective,” shares Paul Billings, M.D., Ph.D., CMO at Life Technologies.

“We have built a new medical sciences group to address the needs of the multiple delivery systems in the world—from the sophisticated medical clinics in the developed world to the nurse-run shanty clinic in the third world. Providing tools for equitable access to quality diagnosis, on assay platforms that can provide care for all patients, is our goal.”

Life Tech’s medical sciences division has been built by acquisition of Pinpoint Genomics, Navigenics, and Compendia, and collaborations with partners such as Ingenuity Systems and CollabRx. The division is focused on taking the tools that have been used in the life science laboratories and providing molecular diagnostic data to the clinic. The intent is to deliver data in a valuable format that can be used by the molecular pathologist or the treating physician.

The division is developing the Pervenio™ Lung RS assay, a 14-gene expression profile that serves as a risk stratifier that uses a weighted algorithm for the expressed biomarkers within the tumor biopsy, a first-of-its-kind prognostic test for lung cancer, the firm reports.

Initially, tests will be offered as a service through Life Tech’s CLIA laboratory. Then, from the performance lessons learned, Life Tech’s will develop a simpler assay platform, with FDA approval, that can be dispersed globally without reduction of the essential content in the biomarker panel. The focus is on the workflow—screening for known mutations using established easy-to-use assay platforms, like RT-PCR. Should the screen not produce useful results, clinicians can search for new mutations via discovery platforms like next-gen sequencing (NGS).

http://www.genengnews.com/Media/images/Article/thumb_Sequenom_LungCartaPanel1722631391.jpg

Sequenom’s LungCarta panel of 214 somatic mutations in 26 tumor suppressors and oncogenes covers highly mutated pathways in lung adenocarcinomas.

At Sequenom, the company provides both the tools (DNA mass spectrometry and reagents) for confirmatory biomarker development as well as serving on the front lines as a diagnostic service provider (CLIA lab). The beauty of DNA mass spec is that it can process multiplexed PCR samples (10–60 loci) in a method that is quantitative when used for profiling tumor biopsies that are either archival or fresh tissue.

Given a tumor sample with multiple somatic mutations, the instrument enables the determination of the homogeneity of the cells, in which case the mutations will have the same allele frequency. Accuracy, as measured by coefficient of variance, is less than 2%. Despite this level of sensitivity, the mass spec can only be used as a confirmatory tool looking for known mutations. Discovery is best done using DNA sequencing. DNA mass spec can also be used to study methylation in tumor samples.

“In the not-too-distant future, we will be looking for mutations in plasma samples rather than biopsies,” predicts Charles Cantor, Ph.D., CSO at Sequenom.

“The key is to look noninvasively for mutations within plasma samples such that we can potentially catch the disease state earlier, rather than after tumor formation. Regardless of the tumor type, this approach will enable us to monitor therapeutic response and metastatic potential noninvasively. DNA mass spec is an ultrasensitive detection product that can detect somatic mutations at levels of 1 per 1,000. This level of sensitivity is critical for the future of plasma screening. NGS technology is not that sensitive.”

Sequenom’s CLIA lab is using automated DNA mass spec to provide three different test protocols: (1) carrier screening for cystic fibrosis looking at more than 100 different mutations, (2) adult macular degeneration progression using an SNP test with 13 loci, and (3) a noninvasive test for Rh compatibility between a mother and her unborn fetus.

http://www.genengnews.com/Media/images/Article/thumb_Illumina_HiSeq_Scientist2141841107.jpg

Scientists are using Illumina’s HiSeq system to discover molecular biomarkers that may provide opportunities for early detection of a range of diseases.

Sequenom has also set up an NGS facility within a CLIA lab in San Diego using Illumina’s HiSEQ platform. The NGS platform has been set up for noninvasive aneuploidy detection of maternal plasma (10 cc sample) looking at chromosomes 13, 18, and 21. The lab says it has analyzed more than 40,000 samples this year and is planning to increase that volume up to 100,000 samples per year. Most of these samples come from the U.S., but given the development of a new blood collection tube that allows for 72-hour ambient shipping, the lab is looking to increase the number of samples from outside the U.S.

Drug Development

During drug development, biomarkers function as pharmacodynamic markers to help assess the mechanism of action of a drug candidate, to define the downstream biological pathway, and to determine whether the drug is engaging the target with the anticipated biological effect. Later, biomarkers help determine whether a drug is effective using the tested regime (route of delivery, dosage level, and length of exposure time).

Following early development, the second stage is to use biomarkers to help segment patients for clinical trials. Part of the consideration here is how heterogeneous the disease is; are there homogeneous subsets of patients that will respond differentially to the drug based on different mechanisms of the disease?

“Biomarker research is focused on on- target effects,” says Nick Dracopoli, Ph.D., vp, head of oncology biomarkers at Janssen Research and Development, a J&J company.

“We look at indications and at patients with those indications that are most likely to respond to the drug candidates we’re developing. For oncology biomarkers, germ-line effects are weaker indicators than somatic changes in the tumor. As a consequence, SNP-based, genome-wide association studies are not very useful. It is better to focus on molecular changes within the tumor and define gene expression profiles and epigenetic modifications that correlate with the tumor phenotype. We are increasingly tracking patient immune response, particularly as more immuno-oncology products are moving into the drug development pipeline.”

The number of biomarkers being developed varies from project to project. But it is very clear that to be successful in the clinic, the biomarkers and the assays need to be of low complexity. Of the 10 to 12 companion diagnostics that have been approved by the FDA to date, all measure the status of the drug target (on-target markers). For example, EGFR measures the level of receptor expression; Braf and Kras markers measure the presence of the mutation and translocation in the ALK gene measures gene knockout.

It is important to realize that molecular profiles for first-in-class drugs are not optimal because they are based on only a few patients. Consequently they have weak predictive value overall.

“Aside from that rule of thumb, if you have a greater than 50% response rate for your drug, it is unlikely that you need a biomarker to predict response. Biomarker utility is best for drugs that would have a difficult road to approval, where it is critical to enrich for the subpopulation of responders. For example, Pfizer’s crizontinib was approved for non-small-cell lung patients but is only effective for 5% of all patients. If Pfizer was unable to demonstrate the relationship between activation of the ALK gene and disease, this inhibitor would not have been approved,” says Dr. Dracopoli.

“Drugs that are more broadly active can come to market without a companion diagnostic test. There is always a balance between the predictive values of the biomarker test and the response rates to treatment. That is, we should not treat if the chance of response is only 3–5%, rather than if it were 50% where the patient would want to take the chance if the drug were safe.”

An important take-home message is that mutations are not unique to an indication. So if you find a driver mutation in indications for which the drug has not been approved, you could discover new indications for the drug.

“At the end of the day, this is what cancer is—heterogeneous,” says Dr. Dracopoli. “We’d all love to treat one cancer with one drug and at one dose, but the story is more complex. The future of oncology is around understanding the molecular heterogeneity or underlying molecular pathology of the disease and the diversity of it, and then treat each patient accordingly.”

Clinical Considerations

“Given the complexity of biology,” says Achim Plum, Ph.D., principal consultant, Siemens, “whether is it cancer, metabolic disease, or any other disease state, we have been forced to move away from the idea that a single biomarker can capture the entire ‘story’ or mechanistic view of any disease. Hence newly developed biomarkers will be made up of a panel of markers that serve as a profile. In addition, with the sheer volume of DNA and protein analytics data, the clinic will need to employ software tools and algorithms to help the decision making.”

The task of getting broad profiling technologies that are analytical into a clinical setting and making them routine is difficult but not insurmontable. This will take a collaborative effort, something that Siemens among others are looking to develop. The key is to avoid technology hype and to establish good reliable software to process the data for decision making. “Data is not knowledge, and knowledge is not automatically decision making.”

As an academic, Daniel Chan, Ph.D., has a view of the whole value chain for biomarkers from discovery to development to use in the clinic. Dr. Chan holds the titles of professor in pathology, oncology, radiology, and urology, and is the director of the clinical chemistry division lab at Johns Hopkins Hospital.

Given his perspective from discovery to clinical use, Dr. Chan indicated that from the clinical point of view, “we need more markers.” He oversees the discovery of new biomarkers in his research lab, their validation in his translational research lab, and finally their utility in practice in his clinical chemistry lab. He is a strong advocate for collaboration of biomarker development from discovery to verification and validation to incorporation within the clinical practice.

Beyond the use of biomarkers for patient stratification and correlation between marker and therapeutic choice, as is the focus of the biopharma industry, for the clinic the use of biomarkers is for prevention and early detection. The earlier the detection, the better the outcome. That is, provide the “cure” before you need to initiate treatment.

To be successful in the future of biomarkers, we need to look beyond the biopharma focus and expand the horizon for early detection and monitor therapy later, says Dr. Chan. He describes a roadmap of developing bridges (to bridge the knowledge gaps), gates (decision gates for go/no go decisions as to whether a development path is viable), and partnerships (to collaborate with different points of view) for efficient new biomarker development.

According to Dr. Chan, we must define the intended use of the biomarker, which identifies the specific application and sets up the clinical study and study population to meet the clinical needs. We need to define specific assays to monitor biomarkers that will work within a clinical setting, not a research lab setting that uses disease models (tissue culture cells or small animals) and not real patient samples.

“The days when single markers are sufficient (PSA for prostate cancer or troponin for cardiovascular disease) are behind us. We need to develop a panel of markers or a profile pattern to address patient population heterogeneity and disease complexity that will guide our decision-making process,” remarks Dr. Chan. “Molecular biomarkers are giving way to protein biomarkers,” he adds.

Prevention and early detection will require the use of whole-body scans, so the sampling technology and analytical tools to be developed are critical to realize this goal. Assay ease of use, automation, and analytical performance that is suitable for the clinical lab are fundamental.

“An important future goal for biomarkers,” says Dr. Billings, “is to sample circulating tumor cells or circulating DNA in blood or plasma samples as a noninvasive measure of patient status. A decline in tumor biomarkers during chemotherapy, for example, could reflect the efficacy of the therapy. In contrast, an increase in tumor biomarkers, in a patient who had previously undergone surgery and therapy, might indicate disease recurrence, and is likely to do so before a tumor mass is detectable by imaging methods.”

STAT4 Gene Polymorphisms Are Associated with Susceptibility and ANA Status in Primary Biliary Cirrhosis

Satoru Joshita, T Umemura, M Nakamura, Y Katsuyama, S Shibata, et al.
Disease Markers  2014, Article ID 727393, 8 pages http://dx.doi.org/10.1155/2014/727393

Recent genome-wide association studies suggest that genetic factors contribute to primary biliary cirrhosis (PBC) susceptibility. Although several reports have demonstrated that the interleukin (IL) 12 signaling pathway is involved in PBC pathogenesis, its precise genetic factors have not been fully clarified. Here, we performed an association analysis between IL12A, IL12RB, and signal transducer and activator of transcription 4 (STAT4) genetic variations and susceptibility to PBC. Single nucleotide polymorphisms (SNPs) were genotyped in 395 PBC patients and 458 healthy subjects of Japanese ethnicity and evaluated for associations with PBC susceptibility, anti-nuclear antibody (ANA) status, and anti-mitochondrial antibody (AMA) status. We detected significant associations with PBC susceptibility for several STAT4 SNPs (rs10168266; p = 9.4 × 10−3, rs11889341; p = 1.2 × 10−3, rs7574865; p = 4.0 × 10−4, rs8179673; p = 2.0 × 10−4, and rs10181656; p = 4.2 × 10−5). Three risk alleles (rs7574865; p = 0.040, rs8179673; p = 0.032, and rs10181656; p = 0.031) were associated with ANA status, but not with AMA positivity. Our findings confirm that STAT4 is involved in PBC susceptibility and may play a role in ANA status in the Japanese population.

Serum Omentin-1 as a Disease Activity Marker for Crohn’s Disease

Yan Lu, Li Zhou, L Liu, Yan Feng, Li Lu, X Ren, X Dong, & W Sang
Disease Markers  2014, Article ID 162517, 5 pages   http://dx.doi.org/10.1155/2014/162517

Background and Aim. It remains challenging to determine the inflammatory activity in Crohn’s disease (CD) for lack of specific laboratory markers. Recent studies suggest that serum omentin-1 is associated with inflammatory response. We aimed to assess the potential of serum omentin-1 as a marker of disease activity in CD patients.
Methods. Serum omentin-1 concentrations were determined by enzyme-linked immunosorbent assay (ELISA) in patients with CD (n = 240), functional gastrointestinal disorders (FGDs, n = 120), and healthy controls (HC, n = 60) and evaluated for correlation with disease activity. Expression of omentin-1 in colonic tissues from patients with CD was also analyzed by real-time PCR and Western blotting. Serum omentin-1 levels as an activity index were evaluated using a receiver operating characteristic (ROC) curve.
Results. Serum omentin-1 concentrations were significantly decreased in active CD patients compared with patients in remission, FGDs, and HC (all p < 0.001). Expression of omentin-1 was decreased at mRNA and protein levels in inflamed colonic tissues in active CD than that in noninflamed colonic tissues. Serum omentin-1 levels were negatively correlated with disease activity in CD, better than C-reactive protein (CRP).
Conclusion. Our results indicate that serum and colonic omentin-1 expressions are decreased in active CD patients. The correlation of serum omentin-1 with disease activity in CD is superior to that of CRP. Serum omentin-1 is a potential marker for CD disease activity.
Serum Levels of Resistin, Adiponectin, and Apelin in Gastroesophageal Cancer Patients

Dorota Diakowska, K Markocka-Mdczka, P Szelachowski, and K Grabowski
Disease Markers 2014, Article ID 619649, 8 pages   http://dx.doi.org/10.1155/2014/619649

The aim of the study was the investigation of relationship between cachexia syndrome and serum resistin, adiponectin, and apelin in patients with gastroesophageal cancer (GEC).
Material and Methods. Adipocytokines concentrations were measured in sera of 85 GEC patients and 60 healthy controls. They were also evaluated in tumor tissue and appropriate normal mucosa of 38 operated cancer patients.
Results. Resistin and apelin concentrations were significantly higher in GEC patients than in the controls. The highest resistin levels were found in cachectic patients and in patients with distant metastasis. Serum adiponectin significantly decreased in GEC patients with regional and distant metastasis. Serum apelin was significantly higher in cachectic patients than in the controls. Apelin was positively correlated with hsCRP level. Resistin and apelin levels increased significantly in tumor tissues. Weak positive correlations between adipocytokines levels in serum and in tumor tissue were observed.
Conclusions. Resistin is associated with cachexia and metastasis processes of GEC. Reduction of serum adiponectin reflects adipose tissue wasting in relation to GEC progression. Correlation of apelin with hsCRP can reflect a presumable role of apelin in systemic inflammatory response in esophageal and gastric cancer.

Serum Level of HER-2 Extracellular Domain in Iranian Patients with Breast Cancer: A Follow-up Study

Mehrnoosh Doroudchi, Abdolrasoul Talei, Helmout Modjtahedi, et al.
IJI 2005; 2(4): 191-200

Background: A soluble form of HER-2/neu extracellular domain (sHER-2) is reported to be released in the sera of metastatic breast cancer patients.
Objective: To measure the level of sHER-2 in sera of 115 breast cancer patients. Methods: Serial samples of 27 patients with metastasis, 18 non-metastatic patients, 15 patients in stage 0/I and 14 patients with accompanying benign breast disease were also included in this study.
Results: No significant difference was observed between sHER-2 level in the pre-operative sera of breast cancer patients and that of healthy individuals. Only 8 out of 27 patients whom later developed metastasis showed elevated levels of sHER-2 in their first serum sample. However, a trend of increase in the level of sHER-2 was observed in 14 (51.8%) of 27 metastatic sera before clinical diagnosis of the metastasis. A significant association between sHER-2 positive status and vascular invasion of the tumor was observed (P = 0.02). In addition, significant correlation of sHER-2 level with CEA (highest r = 0.74) and CA 15.3 (highest r = 0.74) tumor marker levels in the serial sera were observed. The mean time from sHER-2 positivity to tumor metastasis was calculated to be 98 days (range = 29-174).  Conclusion: Our results indicate that a relatively high percentage of Iranian patients with breast cancer show an elevated level of sHER-2 in their sera before clinical diagnosis of the tumor metastasis. Therefore, measuring the level of this oncoprotein, not only helps physicians in monitoring the patients during HERCEPTIN therapy, but also can be helpful in choosing more aggressive treatments at the early satges of tumor metastasis.
B-type natriuretic peptide is a biomarker for pulmonary hypertension in preterm infants with bronchopulmonary dysplasia

Alain Cuna, Jegen Kandasamy, Naomi Fineberg, Brian Sims
Research and Reports in Neonatology 2013:3 33–36
http://dx.doi.org/10.2147/RRN.S42236

Background: B-type natriuretic peptide (BNP) is a cardiac biomarker useful in screening for pulmonary hypertension (PH) in adults. It is possible that BNP may also be useful in detecting PH among preterm infants with bronchopulmonary dysplasia (BPD).
Objective: To determine the utility of BNP for identification of PH among preterm infants with BPD.
Methods: We retrospectively identified preterm infants with BPD who underwent screening echocardiography for suspected PH and had serum BNP levels measured within 10 days before or after echocardiography. Eligible infants were classified based on echocardiographic diagnosis of either PH or no PH. Median and interquartile ranges (IQR) of BNP values were compared, and area under the curve (AUC) of receiver operator characteristic (ROC) analysis was used to determine the optimum threshold value for detection of PH.
Results: Twenty-five preterm infants with BPD (mean gestational age 26.5 ± 1.7 weeks, mean birth weight 747 ± 248 g) were identified. The median difference in days between echocardiography and BNP measurement was 1 day (IQR 0–3, range 0–10 days). Based on echocardiography, 16 were diagnosed with PH and nine without PH. No significant difference in terms of gestational age, birth weight, sex, race, or respiratory support was found between the two groups. Median (IQR) BNP values of those with PH were higher than those without PH (413 [212–1178] pg/mL versus 55 [21–84] pg/mL, P , 0.001). AUC of ROC analysis showed that a BNP value of 117 pg/mL had 93.8% sensitivity and 100% specificity for detecting PH.
Conclusion: BNP estimation may be useful for screening of PH in infants with BPD.

Read Full Post »


8:50AM 11/12/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of this Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

8:50 a.m. – Keynote Speaker – CEO, American Medical Association

The American Medical Association (AMA) has the largest number of practicing physicians of all specialties as its members and the organization plays a very important role in health care policy and education of medical professionals.  AMA has been quite active in assessing the role of personalized medicine in the future of healthcare in all of its facets.  Dr. Madara will talk about the status of AMA’s thinking about personalized medicine and his vision of how it might be able to transform medical care.

Keynote Speaker

James Madara, M.D. @AmerMedicalAssn


Executive Vice President and CEO, American Medical Association

AMA Strategy the context for PM  – Outside looking in View applied

Mission statement: Promote Medicine 167 years since it was established. Societies of MDs – all population of American MDs, are members.

AMA developed:

  • CPT Curation – Billing of Procedures
  • Standard Procedure for Katrina and Emergency Medicine
  • Strategic Plan 110 active Projects to be compressed into three big ideas
  1. Connect clinics with community – OUTCOMES, cooperation with CDC i.e., Diabetes, HTN (KaiserPermanente)
  2. Medical education bring t to 21th century: Competence vs Time-in-Chair, 141 Medical Schools, teaching methods: Gaming/mobile, the lecture Hall in Medicine is poor form for education, Simulation methods, Clinical Research and Basic Research – blend across disciplines, platforms in Silicon Valley to create new TEACHING of MDs, Genomics must be incorporated, shifting from Inpatient to Outpatient to HOME, all training is for Inpatient – Nothing for HOME delivery of Care. 85% of all Medical School responded they need change in Teaching — 11 Excellence Medical Schools selected: Vanderbilt, MI, UCSF, UC Davis…
  3. Make practice of medicine joyous again – installation in MDs Offices, optimize the efficiency of MDs reporting now emphasis on USABILITY

Doing through Partnership: PM in Nutrition is everywhere — it is a HYPE, Gartner Group Hype Cycle was used by the Speaker for an analogy with Personalized Medicine (PM)

SHAKE out for a steady state in PM mitigation the hype

  • Mixed perceptions of Cost effectiveness of Healthcare delivery – Growth of Health Spending by Component:
  • Center on Outcomes and Values: PM redefined: away from behavioral toward procedural (actions): i.e, CV death risk predicted by waist size –

Cost/Behavior: sweet-spots are the following

  • Pharmaconeconomics: Is cost effective and it does not involve behavior
  • Cancer
  • Laboratory Developed Tests (LDTs)

– need be approved by FDA – New challenge in PM

– AMA View: Medical services not Medical Devices, CLIA ensure the quality and Standards, it requires more than guidance, currently FDA has ONLY guidance

 

 

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

 

@HarvardPMConf

#PMConf

@SachsAssociates

Read Full Post »


8:20AM 11/12/2014 – 10th Annual Personalized Medicine Conference at the Harvard Medical School, Boston

REAL TIME Coverage of the Conference by Dr. Aviva Lev-Ari, PhD, RN – Director and Founder of LEADERS in PHARMACEUTICAL BUSINESS INTELLIGENCE, Boston http://pharmaceuticalintelligence.com

 

8:20 a.m. Special Guest Keynote Speaker – The Future of Personalized Medicine

The Future of Personalized Medicine

Special Guest Speaker

Margaret Hamburg, M.D.
Commissioner of Food and Drugs Administration

[Her Father was President of IOM said at the introduction to the Keynote]

How to ask the right question is what HMS taught me best 

Increasing the knowledge of Biology, response to disease, preventive strategies.

2004 — Monumental year — One year after completion of sequencing the Genome

2008/9 – Breast Cancer – pharmacotherapy approved, a protein involved in triggering the disease.Target therapy – risk of disease identified

WHAT FDA is doing on Genetics Information as PARTNERS in Medicine

25% of drugs approved are Targeted therapies

LABELING drugs on genetic information

diagnostics test — identify good respondents

Companion Diagnostics – should be used in Targeted therapies. IGF1, HER2 expression and amplification

PM more important in ONCOLOGY , HepB, Cystic Fibrosis, differential response, CVD – expansion, more to be done

In 2002 — a Program to discuss Genetic information VSDS – New Genomics Program, National Center for Toxicology Research a participants

Translational Scientist are added.

Completion Genome sequencing — push to PM 2011 – Genomics evaluation Team for Safety.

Challenge – Drug, Biologics – interaction need coordination by Agency to discuss challenges and collaboration with out side Group.

Developers of Targeted therapies: Orphan Drugs, Biomarkers – expedited review to promote innovations, fast track breakthrough therapies. Opportunities of Scientist to engage discussion with FDA

 – ALL hands on Deck Approach at FDA – making products available, i.e. SCLC (small cell lung cancer)

Since 2005 – 25 Guidance Reports, i.e., Orphan Drugs and on Companion Diagnostics to be developed in tandem with drug development.

Companion Diagnostics – 3 month review, enforcement and direction – in the framework

FDA — needs to keep up with development in the Diagnostics and in the disease ares.

Illumina – Assays using SNIPS – FDA assesses a shared curated DB on mutation, reduce the review time significantly

FDA – NGS – reference libraries, Genomics Reference and Storage of genomics data

Tools and Capabilities  – support regulatory and science, statistical methods of analysis — implemented for Breast Cancer — signaled the way of new Partnerships and New Clinical Trials formats and methods in its development.

New diagnostics – AMP Program Alzheimer’s Disease, rheumatoid arthritis (RA), inflammatory bowel syndrome (IBS)

What Science is needed for the Regulators to effectively HELP spar innovation.

Pharmacogenomics, Pharmacogenetics — MAPPING the Human Genome and all other areas of “OMICS” – moving from Lab to bedside — requires expertise in Disease prevention, Difference in patients life, Standard medical practice

  • Biology and Pathways
  • Biomarkers
  • New diagnostics
  • Increased communication Universities, new paradigms models and continual effort of SHARING and coordination of shared resources

 

– See more at: http://personalizedmedicine.partners.org/Education/Personalized-Medicine-Conference/Program.aspx#sthash.qGbGZXXf.dpuf

 

@HarvardPMConf

#PMConf

@SachsAssociates

Read Full Post »


The Future of Translational Medicine with Smart Diagnostics and Therapies: PharmacoGenomics

Curator: Demet Sag, PhD

Since Human Genome project is completed we saw several projects to understand function and how they relate to personal health.  These advancements hope to improve diagnostics in preventive medicine. The future of medicine may involve a personal wireless unit to detect the vital records with genomics changes and compare the assumed “healthy” state to “unhealthy” to suggest options to treat in a palm of hand.

Pharmacogenomics is the study of how genes affect a person’s response to drugs. This relatively new field combines pharmacology (the science of drugs) and genomics (the study of genes and their functions) to develop effective, safe medications and doses that will be tailored to a person’s genetic makeup.

The American Medical Association and  Critical Path Institute and the Arizona Center for Education and Research on Therapeutics developed a brochure for health care providers on pharmacogenomics. The man purpose is to help physicians to ue this information correctly by case based approach.   View an electronic version of the brochure.

Like always, there are debates and controversies but the positives outweighs the negatives in this case such as some patients with the same gene abnormality may not benefit due to his or her deficiency or polymorphisms in another connected gene so it is a system approach including origin of pathways during development. There is nothing simply white or black but like Goethe said “there are shades of gray”. This shade is light compared to one size fits all drug making.

The main idea is create safer, effective and perfect dose medication to gain health for a quality life with less expense but more beneficial outcomes.

At the same token these developments decreases the cost of making drugs since they are specific to a small population or group so there are less clinical trial time, less time for approval, less adverse affects.

Functional genomics suggests how piece of information utilized in body in a nut shell. However, use of these knowledge to develop new drugs created a new area called Pharmacogenomics. Thus, FDA included the terminology for drug labeling that contain biomarkers along with several other factors containing variation of clinical response to drug exposure, possible side or adverse effects, genotype-specific dosing, drug action mechanism,  polymorphic drug target and disposition genes.

What can be on the label: Age, Sex, Origin/Ethinicity (Asian, Caucasian, African, South Asian), gene of interest, possible SNPs, variation/polymorphisms warnings, dose etc.

Here are the FDA-approved drugs with pharmacogenomic information in their labeling:

Pharmacogenomic Biomarkers in Drug Labeling

Drug Therapeutic Area HUGO Symbol Referenced Subgroup Labeling Sections
Abacavir Infectious Diseases HLA-B HLA-B*5701 allele carriers Boxed Warning, Contraindications, Warnings and Precautions, Patient Counseling Information
Ado-Trastuzumab Emtansine Oncology ERBB2 HER2 protein overexpression or gene amplification positive Indications and Usage, Warnings and Precautions, Adverse Reactions, Clinical Pharmacology, Clinical Studies
Afatinib Oncology EGFR EGFR exon 19 deletion or exon 21 substitution (L858R) mutation positive Indications and Usage, Dosage and Administration, Adverse Reactions, Clinical Pharmacology, Clinical Studies, Patient Counseling Information
Amitriptyline Psychiatry CYP2D6 CYP2D6 poor metabolizers Precautions
Anastrozole Oncology ESR1, PGR Hormone receptor positive Indications and Usage, Clinical Pharmacology, Clinical Studies
Aripiprazole Psychiatry CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Dosage and Administration
Arsenic Trioxide Oncology PML/RARA PML/RARα (t(15;17)) gene expression positive Boxed Warning, Clinical Pharmacology, Indications and Usage, Warnings
Atomoxetine Psychiatry CYP2D6 CYP2D6 poor metabolizers Dosage and Administration, Warnings and Precautions, Drug Interactions, Clinical Pharmacology
Atorvastatin Endocrinology LDLR Homozygous familial hypercholesterolemia Indications and Usage, Dosage and Administration, Warnings and Precautions, Clinical Pharmacology, Clinical Studies
Azathioprine Rheumatology TPMT TPMT intermediate or poor metabolizers Dosage and Administration, Warnings and Precautions, Drug Interactions, Adverse Reactions, Clinical Pharmacology
Belimumab Autoimmune Diseases BAFF/TNFSF13B CD257 positive Clinical Pharmacology, Clinical Studies
Boceprevir Infectious Diseases IFNL3 IL28B rs12979860 T allele carriers Clinical Pharmacology
Bosutinib Oncology BCR/ABL1 Philadelphia chromosome (t(9;22)) positive Indications and Usage, Adverse Reactions, Clinical Studies
Brentuximab Vedotin Oncology TNFRSF8 CD30 positive Indications and Usage, Description, Clinical Pharmacology
Busulfan Oncology Ph Chromosome Ph Chromosome negative Clinical Studies
Capecitabine Oncology DPYD DPD deficient Contraindications, Warnings and Precautions, Patient Information
Carbamazepine (1) Neurology HLA-B HLA-B*1502 allele carriers Boxed Warning, Warnings and Precautions
Carbamazepine (2) Neurology HLA-A HLA-A*3101 allele carriers Boxed Warning, Warnings and Precautions
Carglumic Acid Metabolic Disorders NAGS N-acetylglutamate synthase deficiency Indications and Usage, Warnings and Precautions, Special Populations, Clinical Pharmacology, Clinical Studies
Carisoprodol Rheumatology CYP2C19 CYP2C19 poor metabolizers Clinical Pharmacology, Special Populations
Carvedilol Cardiology CYP2D6 CYP2D6 poor metabolizers Drug Interactions, Clinical Pharmacology
Celecoxib Rheumatology CYP2C9 CYP2C9 poor metabolizers Dosage and Administration, Drug Interactions, Use in Specific Populations, Clinical Pharmacology
Cetuximab (1) Oncology EGFR EGFR protein expression positive Indications and Usage, Warnings and Precautions, Description, Clinical Pharmacology, Clinical Studies
Cetuximab (2) Oncology KRAS KRAS codon 12 and 13 mutation negative Indications and Usage, Dosage and Administration, Warnings and Precautions, Adverse Reactions, Clinical Pharmacology, Clinical Studies
Cevimeline Dermatology CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Chloroquine Infectious Diseases G6PD G6PD deficient Precautions
Chlorpropamide Endocrinology G6PD G6PD deficient Precautions
Cisplatin Oncology TPMT TPMT intermediate or poor metabolizers Clinical Pharmacology, Warnings, Precautions
Citalopram (1) Psychiatry CYP2C19 CYP2C19 poor metabolizers Drug Interactions, Warnings
Citalopram (2) Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Clobazam Neurology CYP2C19 CYP2C19 poor metabolizers Clinical Pharmacology, Dosage and Administration, Use in Specific Populations
Clomipramine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Clopidogrel Cardiology CYP2C19 CYP2C19 intermediate or poor metabolizers Boxed Warning, Dosage and Administration, Warnings and Precautions, Drug Interactions, Clinical Pharmacology
Clozapine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions, Clinical Pharmacology
Codeine Anesthesiology CYP2D6 CYP2D6 poor metabolizers Warnings and Precautions, Use in Specific Populations, Clinical Pharmacology
Crizotinib Oncology ALK ALK gene rearrangement positive Indications and Usage, Dosage and Administration, Drug Interactions, Warnings and Precautions, Adverse Reactions, Clinical Pharmacology, Clinical Studies
Dabrafenib (1) Oncology BRAF BRAF V600E mutation positive Indications and Usage, Dosage and Administration, Warnings and Precautions, Clinical Pharmacology, Clinical Studies, Patient Counseling Information
Dabrafenib (2) Oncology G6PD G6PD deficient Warnings and Precautions, Adverse Reactions, Patient Counseling Information
Dapsone (1) Dermatology G6PD G6PD deficient Indications and Usage, Precautions, Adverse Reactions, Patient Counseling Information
Dapsone (2) Infectious Diseases G6PD G6PD deficient Precautions, Adverse Reactions, Overdosage
Dasatinib Oncology BCR/ABL1 Philadelphia chromosome (t(9;22)) positive; T315I mutation-positive Indications and Usage, Clinical Studies, Patient Counseling Information
Denileukin Diftitox Oncology IL2RA CD25 antigen positive Indications and Usage, Warnings and Precautions, Clinical Studies
Desipramine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Dexlansoprazole (1) Gastroenterology CYP2C19 CYP2C19 poor metabolizers Clinical Pharmacology, Drug Interactions
Dexlansoprazole (2) Gastroenterology CYP1A2 CYP1A2 genotypes Clinical Pharmacology
Dextromethorphan and Quinidine Neurology CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Warnings and Precautions, Drug Interactions
Diazepam Psychiatry CYP2C19 CYP2C19 poor metabolizers Drug Interactions, Clinical Pharmacology
Doxepin Psychiatry CYP2D6 CYP2D6 poor metabolizers Precautions
Drospirenone and Ethinyl Estradiol Neurology CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Warnings and Precautions, Drug Interactions
Eltrombopag (1) Hematology F5 Factor V Leiden carriers Warnings and Precautions
Eltrombopag (2) Hematology SERPINC1 Antithrombin III deficient Warnings and Precautions
Erlotinib (1) Oncology EGFR EGFR protein expression positive Clinical Pharmacology
Erlotinib (2) Oncology EGFR EGFR exon 19 deletion or exon 21 substitution (L858R) positive Indications and Usage, Dosage and Administration, Clinical Pharmacology, Clinical Studies
Esomeprazole Gastroenterology CYP2C19 CYP2C19 poor metabolizers Drug Interactions, Clinical Pharmacology
Everolimus (1) Oncology ERBB2 HER2 protein overexpression negative Indications and Usage, Boxed Warning, Adverse Reactions, Use in Specific Populations, Clinical Pharmacology, Clinical Studies
Everolimus (2) Oncology ESR1 Estrogen receptor positive Clinical Pharmacology, Clinical Studies
Exemestane Oncology ESR1 Estrogen receptor positive Indications and Usage, Dosage and Administration, Clinical Studies, Clinical Pharmacology
Fluorouracil (1) Dermatology DPYD DPD deficient Contraindications, Warnings, Patient Information
Fluorouracil (2) Oncology DPYD DPD deficient Warnings
Fluoxetine Psychiatry CYP2D6 CYP2D6 poor metabolizers Warnings, Precautions, Clinical Pharmacology
Flurbiprofen Rheumatology CYP2C9 CYP2C9 poor metabolizers Clinical Pharmacology, Special Populations
Fluvoxamine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Fulvestrant Oncology ESR1 Estrogen receptor positive Indications and Usage, Clinical Pharmacology, Clinical Studies, Patient Counseling Information
Galantamine Neurology CYP2D6 CYP2D6 poor metabolizers Special Populations
Glimepiride Endocrinology G6PD G6PD deficient Warning and Precautions
Glipizide Endocrinology G6PD G6PD deficient Precautions
Glyburide Endocrinology G6PD G6PD deficient Precautions
Ibritumomab Tiuxetan Oncology MS4A1 CD20 positive Indications and Usage, Clinical Pharmacology, Description
Iloperidone Psychiatry CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Dosage and Administration, Drug Interactions, Specific Populations, Warnings and Precautions
Imatinib (1) Oncology KIT c-KIT D816V mutation negative Indications and Usage, Dosage and Administration Clinical Pharmacology, Clinical Studies
Imatinib (2) Oncology BCR/ABL1 Philadelphia chromosome (t(9;22)) positive Indications and Usage, Dosage and Administration, Clinical Pharmacology, Clinical Studies
Imatinib (3) Oncology PDGFRB PDGFR gene rearrangement positive Indications and Usage, Dosage and Administration, Clincal Studies
Imatinib (4) Oncology FIP1L1/PDGFRA FIP1L1/PDGFRα fusion kinase (or CHIC2 deletion) positive Indications and Usage, Dosage and Administration, Clinical Studies
Imipramine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Indacaterol Pulmonary UGT1A1 UGT1A1 *28 allele homozygotes Clinical Pharmacology
Irinotecan Oncology UGT1A1 UGT1A1*28 allele carriers Dosage and Administration, Warnings, Clinical Pharmacology
Isosorbide and Hydralazine Cardiology NAT1-2 Slow acetylators Clinical Pharmacology
Ivacaftor Pulmonary CFTR CFTR G551D carriers Indications and Usage, Adverse Reactions, Use in Specific Populations, Clinical Pharmacology, Clinical Studies
Lansoprazole Gastroenterology CYP2C19 CYP2C19 poor metabolizer Drug Interactions, Clinical Pharmacology
Lapatinib Oncology ERBB2 HER2 protein overexpression positive Indications and Usage, Clinical Pharmacology, Patient Counseling Information
Lenalidomide Hematology del (5q) Chromosome 5q deletion Boxed Warning, Indications and Usage, Clinical Studies, Patient Counseling
Letrozole Oncology ESR1, PGR Hormone receptor positive Indications and Usage, Adverse Reactions, Clinical Studies, Clinical Pharmacology
Lomitapide Endocrinology LDLR Homozygous familial hypercholesterolemia and LDL receptor mutation deficient Indication and Usage, Adverse Reactions, Clinical Studies
Mafenide Infectious Diseases G6PD G6PD deficient Warnings, Adverse Reactions
Maraviroc Infectious Diseases CCR5 CCR5 positive Indications and Usage, Warnings and Precautions, Clinical Pharmacology, Clinical Studies, Patient Counseling Information
Mercaptopurine Oncology TPMT TPMT intermediate or poor metabolizers Dosage and Administration, Contraindications, Precautions, Adverse Reactions, Clinical Pharmacology
Methylene Blue Hematology G6PD G6PD deficient Precautions
Metoclopramide Gastroentrology CYB5R1-4 NADH cytochrome b5 reductase deficient Precautions
Metoprolol Cardiology CYP2D6 CYP2D6 poor metabolizers Precautions, Clinical Pharmacology
Mipomersen Endocrinology LDLR Homozygous familial hypercholesterolemia and LDL receptor mutation deficient Indication and Usage, Clinical Studies, Use in Specific Populations
Modafinil Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Mycophenolic Acid Transplantation HPRT1 HGPRT deficient Precautions
Nalidixic Acid Infectious Diseases G6PD G6PD deficient Precautions, Adverse Reactions
Nefazodone Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Nilotinib (1) Oncology BCR/ABL1 Philadelphia chromosome (t(9 :22)) positive Indications and Usage, Patient Counseling Information
Nilotinib (2) Oncology UGT1A1 UGT1A1*28 allele homozygotes Warnings and Precautions, Clinical Pharmacology
Nitrofurantoin Infectious Diseases G6PD G6PD deficient Warnings, Adverse Reactions
Nortriptyline Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Ofatumumab Oncology MS4A1 CD20 positive Indications and Usage, Clinical Pharmacology
Omacetaxine Oncology BCR/ABL1 BCR-ABL T315I Clinical Pharmacology
Omeprazole Gastroenterology CYP2C19 CYP2C19 poor metabolizers Dosage and Administration, Warnings and Precautions, Drug Interactions
Panitumumab (1) Oncology EGFR EGFR protein expression positive Indications and Usage, Warnings and Precautions, Clinical Pharmacology, Clinical Studies
Panitumumab (2) Oncology KRAS KRAS codon 12 and 13 mutation negative Indications and Usage, Clinical Pharmacology, Clinical Studies
Pantoprazole Gastroenterology CYP2C19 CYP2C19 poor metabolizers Clinical Pharmacology, Drug Interactions, Special Populations
Paroxetine Psychiatry CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Drug Interactions
Pazopanib Oncology UGT1A1 (TA)7/(TA)7 genotype (UGT1A1*28/*28) Clinical Pharmacology, Warnings and Precautions
PEG-3350, Sodium Sulfate, Sodium Chloride, Potassium Chloride, Sodium Ascorbate, and Ascorbic Acid Gastroenterology G6PD G6PD deficient Warnings and Precautions
Peginterferon alfa-2b Infectious Diseases IFNL3 IL28B rs12979860 T allele carriers Clinical Pharmacology
Pegloticase Rheumatology G6PD G6PD deficient Contraindications, Patient Counseling Information
Perphenazine Psychiatry CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Drug Interactions
Pertuzumab Oncology ERBB2 HER2 protein overexpression positive Indications and Usage, Warnings and Precautions, Adverse Reactions, Clinical Studies, Clinical Pharmacology
Phenytoin Neurology HLA-B HLA-B*1502 allele carriers Warnings
Pimozide Psychiatry CYP2D6 CYP2D6 poor metabolizers Warnings, Precautions, Contraindications, Dosage and Administration
Ponatinib Oncology BCR/ABL1 Philadelphia chromosome (t(9;22)) positive, BCR –ABL T315I mutation Indications and Usage, Warnings and Precautions, Adverse Reactions, Use in Specific Populations, Clinical Pharmacology, Clinical Studies
Prasugrel Cardiology CYP2C19 CYP2C19 poor metabolizers Use in Specific Populations, Clinical Pharmacology, Clinical Studies
Pravastatin Endocrinology LDLR Homozygous familial hypercholesterolemia and LDL receptor deficient Clinical Studies, Use in Specific Populations
Primaquine Infectious Diseases G6PD G6PD deficient Warnings and Precautions, Adverse Reactions
Propafenone Cardiology CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology
Propranolol Cardiology CYP2D6 CYP2D6 poor metabolizers Precautions, Drug Interactions, Clinical Pharmacology
Protriptyline Psychiatry CYP2D6 CYP2D6 poor metabolizers Precautions
Quinidine Cardiology CYP2D6 CYP2D6 poor metabolizers Precautions
Quinine Sulfate Infectious Diseases G6PD G6PD deficient Contraindications, Patient Counseling Information
Rabeprazole Gastroenterology CYP2C19 CYP2C19 poor metabolizers Drug Interactions, Clinical Pharmacology
Rasburicase Oncology G6PD G6PD deficient Boxed Warning, Contraindications
Rifampin, Isoniazid, and Pyrazinamide Infectious Diseases NAT1-2 Slow inactivators Adverse Reactions, Clinical Pharmacology
Risperidone Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions, Clinical Pharmacology
Rituximab Oncology MS4A1 CD20 positive Indication and Usage, Clinical Pharmacology, Description, Precautions
Rosuvastatin Endocrinology LDLR Homozygous and Heterozygous familial hypercholesterolemia Indications and Usage, Dosage and Administration, Clinical Pharmacology, Clinical Studies
Sodium Nitrite Antidotal Therapy G6PD G6PD deficient Warnings and Precautions
Succimer Hematology G6PD G6PD deficient Clinical Pharmacology
Sulfamethoxazole and Trimethoprim Infectious Diseases G6PD G6PD deficient Precautions
Tamoxifen (1) Oncology ESR1, PGR Hormone receptor positive Indications and Usage, Precautions, Medication Guide
Tamoxifen (2) Oncology F5 Factor V Leiden carriers Warnings
Tamoxifen (3) Oncology F2 Prothrombin mutation G20210A Warnings
Telaprevir Infectious Diseases IFNL3 IL28B rs12979860 T allele carriers Clinical Pharmacology
Terbinafine Infectious Diseases CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Tetrabenazine Neurology CYP2D6 CYP2D6 poor metabolizers Dosage and Administration, Warnings, Clinical Pharmacology
Thioguanine Oncology TPMT TPMT poor metabolizer Dosage and Administration, Precautions, Warnings
Thioridazine Psychiatry CYP2D6 CYP2D6 poor metabolizers Precautions, Warnings, Contraindications
Ticagrelor Cardiology CYP2C19 CYP2C19 poor metabolizers Clinical Studies
Tolterodine Urology CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology, Drug Interactions, Warnings and Precautions
Tositumomab Oncology MS4A1 CD20 antigen positive Indications and Usage, Clinical Pharmacology
Tramadol Analgesic CYP2D6 CYP2D6 poor metabolizers Clinical Pharmacology
Trametinib Oncology BRAF BRAF V600E/K mutation positive Indications and Usage, Dosage and Administration, Adverse Reactions, Clinical Pharmacology, Clinical Studies, Patient Counseling Information
Trastuzumab Oncology ERBB2 HER2 protein overexpression positive Indications and Usage, Warnings and Precautions, Clinical Pharmacology, Clinical Studies
Tretinoin Oncology PML/RARA PML/RARα (t(15;17)) gene expression positive Clinical Studies, Indications and Usage, Warnings
Trimipramine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Valproic Acid (1) Neurology POLG POLG mutation positive Boxed Warning, Contraindications, Warnings and Precautions
Valproic Acid (2) Neurology NAGS, CPS1, ASS1, OTC, ASL, ABL2 Urea cycle enzyme deficient Contraindications, Warnings and Precautions, Adverse Reactions, Medication Guide
Velaglucerase Alfa Metabolic Disorders GBA Lysosomal glucocerebrosidase enzyme Indication and Usage, Description, Clinical Pharmacology, Clinical Studies
Vemurafenib Oncology BRAF BRAF V600E mutation positive Indications and Usage, Warning and Precautions, Clinical Pharmacology, Clinical Studies, Patient Counseling Information
Venlafaxine Psychiatry CYP2D6 CYP2D6 poor metabolizers Drug Interactions
Voriconazole Infectious Diseases CYP2C19 CYP219 intermediate or poor metabolizers Clinical Pharmacology, Drug Interactions
Warfarin (1) Cardiology or Hematology CYP2C9 CYP2C9 intermediate or poor metabolizers Dosage and Administration, Drug Interactions, Clinical Pharmacology
Warfarin (2) Cardiology or Hematology VKORC1 VKORC1 rs9923231 A allele carriers Dosage and Administration, Clinical Pharmacology

References and Further Readings:

 

There are several practical applications pharmacogenomics in cancer, depression, cardiovascular disease and drug metabolism that is used today.  Some of these included in the following references:

JAMA 2004; 291(23) 2821-2827.

Useful Links:

Read Full Post »

Genomics and Medicine: The Physician’s View


Genomics and Medicine: The Physician’s View

Author and Curator: Larry H. Bernstein, MD, FCAP

 

Genomics has had a rapid growth of research into variability of human genetics in both healthy populations in the study of population migration, and in the study of genetic sequence alterations that may increase the risk of expressed human disease.  This is the case for cardiology, cancer, inflammtory conditions, and gastrointestinal diseases. For the most part, genomics research in the last decade has shed light on potential therapeutic targets, but the identification of drug toxicities in late phase trials has been associated with a 70 percent failure rate in bringing new drugs to the market.   Despite good technologies for investigative studies, initial work is carried out on animals and then the transferrability of the work from a “model” to man has to be assured.  That is the first issue of concern.

Secondly, there is a well considered reluctance on the part of experienced and well prepared physicians to be “early” adopters to newly introduced drugs, with the apprehension that unidentified clinical problems can be expected to be unmasked.  It is, however, easier to consider when a new drug belongs to an established class of medications, and it has removed known adverse effects.  In this case, the adverse effects are known side effects, but not necessarily serious drug reactions that would preclude use.

A third consideration is the cost of drug development, and the cost of development is passed on to the healthcare organization in the purchasing cost. We can rest assured that the Pharmacy and Therapeutics Review Committee will not cease meeting on a regular schedule anytime soon.  Further, how do the drug failures become embedded in the cost of the pharmaceutical budget passed on to the recipient.  Historically, insurance is an actuarial discipline.  But in the lifetime of an individual, they are bound to see a physician for acute or chronic medical attention.  Only the timing cannot be predicted.  As a result, dealing with the valid introduction of new medications is a big concern for both the public and the private insurer.

How does this compute for the physician provider.  The practice of medicine is not quickly adaptive, as the physician’s primary concern is to do no harm.   Genomics testing is not widely available, and it is for the most part not definitive for diagnostic purposes as things stand today.  It may provide assessment of risk, or of survival expectation.  The physician uses a step by step assessment, using the patient and family history, a focused physical exam, laboratory and radiology, proceeding to other more specialized exams.  Much of the laboratory testing is based on the appearance in the circulation of changes in blood chemistry of the nature of electrolytes, circulating cells in the blood and of the blood forming organ, proteins, urea and uric acid.  They are not exquisitely sensitive, but they might be sufficient for their abnormal concentrations appearing at the time the patient presents with a complaint. What tests are ordered is determioned by a need for relevant information to make a medical decision.

The relevant questions are:

1. acuity of symptoms and signs.
2. actions to be taken.
3. tests that are needed to clarify the examination findings.

once a provisional diagnosis is obtained, referrals, additional testing, and medication orders are provided based on the assessment.

Where does genetic testing fit into this? At this point, it will only be used

  1. to confirm a restricted list of diagnoses that have a high association with the condition, and
  2. only with the participation of a medical geneticist, when
  3. profiling the patient and other members of the family is required.

10d0de1 Vitruvian Man by Leonardo da Vinci

Read Full Post »

Older Posts »