Feeds:
Posts
Comments

Posts Tagged ‘NADH’

Irreconciliable Dissonance in Physical Space and Cellular Metabolic Conception

Irreconciliable Dissonance in Physical Space and Cellular Metabolic Conception

Curator: Larry H. Bernstein, MD, FCAP

Pasteur Effect – Warburg Effect – What its history can teach us today. 

José Eduardo de Salles Roselino

The Warburg effect, in reality the “Pasteur-effect” was the first example of metabolic regulation described. A decrease in the carbon flux originated at the sugar molecule towards the end of the catabolic pathway, with ethanol and carbon dioxide observed when yeast cells were transferred from an anaerobic environmental condition to an aerobic one. In Pasteur´s studies, sugar metabolism was measured mainly by the decrease of sugar concentration in the yeast growth media observed after a measured period of time. The decrease of the sugar concentration in the media occurs at great speed in yeast grown in anaerobiosis (oxygen deficient) and its speed was greatly reduced by the transfer of the yeast culture to an aerobic condition. This finding was very important for the wine industry of France in Pasteur’s time, since most of the undesirable outcomes in the industrial use of yeast were perceived when yeasts cells took a very long time to create, a rather selective anaerobic condition. This selective culture media was characterized by the higher carbon dioxide levels produced by fast growing yeast cells and by a higher alcohol content in the yeast culture media.

However, in biochemical terms, this finding was required to understand Lavoisier’s results indicating that chemical and biological oxidation of sugars produced the same calorimetric (heat generation) results. This observation requires a control mechanism (metabolic regulation) to avoid burning living cells by fast heat released by the sugar biological oxidative processes (metabolism). In addition, Lavoisier´s results were the first indications that both processes happened inside similar thermodynamics limits. In much resumed form, these observations indicate the major reasons that led Warburg to test failure in control mechanisms in cancer cells in comparison with the ones observed in normal cells.

[It might be added that the availability of O2 and CO2 and climatic conditions over 750 million years that included volcanic activity, tectonic movements of the earth crust, and glaciation, and more recently the use of carbon fuels and the extensive deforestation of our land masses have had a large role in determining the biological speciation over time, in sea and on land. O2 is generated by plants utilizing energy from the sun and conversion of CO2. Remove the plants and we tip the balance. A large source of CO2 is from beneath the earth’s surface.]

Biology inside classical thermodynamics places some challenges to scientists. For instance, all classical thermodynamics must be measured in reversible thermodynamic conditions. In an isolated system, increase in P (pressure) leads to increase in V (volume), all this occurring in a condition in which infinitesimal changes in one affects in the same way the other, a continuum response. Not even a quantic amount of energy will stand beyond those parameters.

In a reversible system, a decrease in V, under same condition, will led to an increase in P. In biochemistry, reversible usually indicates a reaction that easily goes either from A to B or B to A. For instance, when it was required to search for an anti-ischemic effect of Chlorpromazine in an extra hepatic obstructed liver, it was necessary to use an adequate system of increased biliary system pressure in a reversible manner to exclude a direct effect of this drug over the biological system pressure inducer (bile secretion) in Braz. J. Med. Biol. Res 1989; 22: 889-893. Frequently, these details are jumped over by those who read biology in ATGC letters.

Very important observations can be made in this regard, when neutral mutations are taken into consideration since, after several mutations (not affecting previous activity and function), a last mutant may provide a new transcript RNA for a protein and elicit a new function. For an example, consider a Prion C from lamb getting similar to bovine Prion C while preserving  its normal role in the lamb when its ability to change Human Prion C is considered (Stanley Prusiner).

This observation is good enough, to confirm one of the most important contributions of Erwin Schrodinger in his What is Life:

“This little book arose from a course of public lectures, delivered by a theoretical physicist to an audience of about four hundred which did not substantially dwindle, though warned at the outset that the subject matter was a difficult one and that the lectures could not be termed popular, even though the physicist’s most dreaded weapon, mathematical deduction, would hardly be utilized. The reason for this was not that the subject was simple enough to be explained without mathematics, but rather that it was much too involved to be fully accessible to mathematics.”

After Hans Krebs, description of the cyclic nature of the citrate metabolism and after its followers described its requirement for aerobic catabolism two major lines of research started the search for the understanding of the mechanism of energy transfer that explains how ADP is converted into ATP. One followed the organic chemistry line of reasoning and therefore, searched for a mechanism that could explain how the breakdown of carbon-carbon link could have its energy transferred to ATP synthesis. One of the major leaders of this research line was Britton Chance. He took into account that relatively earlier in the series of Krebs cycle reactions, two carbon atoms of acetyl were released as carbon dioxide ( In fact, not the real acetyl carbons but those on the opposite side of citrate molecule). In stoichiometric terms, it was not important whether the released carbons were or were not exactly those originated from glucose carbons. His research aimed at to find out an intermediate proteinaceous intermediary that could act as an energy reservoir. The intermediary could store in a phosphorylated amino acid the energy of carbon-carbon bond breakdown. This activated amino acid could transfer its phosphate group to ADP producing ATP. A key intermediate involved in the transfer was identified by Kaplan and Lipmann at John Hopkins as acetyl coenzyme A, for which Fritz Lipmann received a Nobel Prize.

Alternatively, under possible influence of the excellent results of Hodgkin and Huxley a second line of research appears. The work of Hodgkin & Huxley indicated that the storage of electrical potential energy in transmembrane ionic asymmetries and presented the explanation for the change from resting to action potential in excitable cells. This second line of research, under the leadership of Peter Mitchell postulated a mechanism for the transfer of oxide/reductive power of organic molecules oxidation through electron transfer as the key for the energetic transfer mechanism required for ATP synthesis.
This diverted the attention from high energy (~P) phosphate bond to the transfer of electrons. During most of the time the harsh period of the two confronting points of view, Paul Boyer and followers attempted to act as a conciliatory third party, without getting good results, according to personal accounts (in L. A. or Latin America) heard from those few of our scientists who were able to follow the major scientific events held in USA, and who could present to us later. Paul  Boyer could present how the energy was transduced by a molecular machine that changes in conformation in a series of 3 steps while rotating in one direction in order to produce ATP and in opposite direction in order to produce ADP plus Pi from ATP (reversibility).

However, earlier, a victorious Peter Mitchell obtained the result in the conceptual dispute, over the Britton Chance point of view, after he used E. Coli mutants to show H+ gradients in the cell membrane and its use as energy source, for which he received a Nobel Prize. Somehow, this outcome represents such a blow to Chance’s previous work that somehow it seems to have cast a shadow over very important findings obtained during his earlier career that should not be affected by one or another form of energy transfer mechanism.  For instance, Britton Chance got the simple and rapid polarographic assay method of oxidative phosphorylation and the idea of control of energy metabolism that brings us back to Pasteur.

This metabolic alternative result seems to have been neglected in the recent years of obesity epidemics, which led to a search for a single molecular mechanism required for the understanding of the accumulation of chemical (adipose tissue) reserve in our body. It does not mean that here the role of central nervous system is neglected. In short, in respiring mitochondria the rate of electron transport linked to the rate of ATP production is determined primarily by the relative concentrations of ADP, ATP and phosphate in the external media (cytosol) and not by the concentration of respiratory substrate as pyruvate. Therefore, when the yield of ATP is high as it is in aerobiosis and the cellular use of ATP is not changed, the oxidation of pyruvate and therefore of glycolysis is quickly (without change in gene expression), throttled down to the resting state. The dependence of respiratory rate on ADP concentration is also seen in intact cells. A muscle at rest and using no ATP has a very low respiratory rate.   [When skeletal muscle is stressed by high exertion, lactic acid produced is released into the circulation and is metabolized aerobically by the heart at the end of the activity].

This respiratory control of metabolism will lead to preservation of body carbon reserves and in case of high caloric intake in a diet, also shows increase in fat reserves essential for our biological ancestors survival (Today for our obesity epidemics). No matter how important this observation is, it is only one focal point of metabolic control. We cannot reduce the problem of obesity to the existence of metabolic control. There are numerous other factors but on the other hand, we cannot neglect or remove this vital process in order to correct obesity. However, we cannot explain obesity ignoring this metabolic control. This topic is so neglected in modern times that we cannot follow major research lines of the past that were interrupted by the emerging molecular biology techniques and the vain belief that a dogmatic vision of biology could replace all previous knowledge by a new one based upon ATGC readings. For instance, in order to display bad consequences derived from the ignorance of these old scientific facts, we can take into account, for instance, how ion movements across membranes affects membrane protein conformation and therefore contradicts the wrong central dogma of molecular biology. This change in protein conformation (with unchanged amino acid sequence) and/or the lack of change in protein conformation is linked to the factors that affect vital processes as the heart beats. This modern ignorance could also explain some major pitfalls seen in new drugs clinical trials and in a small scale on bad medical practices.

The work of Britton Chance and of Peter Mitchell have deep and sound scientific roots that were made with excellent scientific techniques, supported by excellent scientific reasoning and that were produced in a large series of very important intermediary scientific results. Their sole difference was to aim at very different scientific explanations as their goals (They have different Teleology in their minds made by their previous experiences). When, with the use of mutants obtained in microorganisms P Mitchell´s goal was found to survive and B Chance to succumb to the experimental evidence, all those excellent findings of B Chance and followers were directed to the dustbin of scientific history as an example of lack of scientific consideration.  [On the one hand, the Mitchell model used a unicellular organism; on the other, Chance’s work was with eukaryotic cells, quite relevant to the discussion.]

We can resume the challenge faced by these two great scientists in the following form: The first conceptual unification in bioenergetics, achieved in the 1940s, is inextricably bound up with the name of Fritz Lipmann. Its central feature was the recognition that adenosine triphosphate, ATP, serves as a universal energy  “currency” much as money serves as economic currency. In a nutshell, the purpose of metabolism is to support the synthesis of ATP. In microorganisms, this is perfect! In humans or mammals, or vertebrates, by the same reason that we cannot consider that gene expression is equivalent to protein function (an acceptable error in the case of microorganisms) this oversimplifies the metabolic requirement with a huge error. However, in case our concern is ATP chemistry only, the metabolism produces ATP and the hydrolysis of ATP pays for the performance of almost, all kinds of works. It is possible to presume that to find out how the flow of metabolism (carbon flow) led to ATP production must be considered a major focal point of research of the two contenders. Consequently, what could be a minor fall of one of the contenders, in case we take into account all that was found during their entire life of research, the real failure in B Chance’s final goal was amplified far beyond what may be considered by reason!

Another aspect that must be taken into account: Both contenders have in the scientific past a very sound root. Metabolism may produce two forms of energy currency (I personally don´t like this expression*) and I use it here because it was used by both groups in order to express their findings. Together with simplistic thermodynamics, this expression conveys wrong ideas): The second kind of energy currency is the current of ions passing from one side of a membrane to the other. The P. Mitchell scientific root undoubtedly have the work of Hodgkin & Huxley, Huxley &  Huxley, Huxley & Simmons

*ATP is produced under the guidance of cell needs and not by its yield. When glucose yields only 2 ATPs per molecule it is oxidized at very high speed (anaerobiosis) as is required to match cellular needs. On the other hand, when it may yield (thermodynamic terms) 38 ATP the same molecule is oxidized at low speed. It would be similar to an investor choice its least money yield form for its investment (1940s to 1972) as a solid support. B. Chance had the enzymologists involved in clarifying how ATP could be produced directly from NADH + H+ oxidative reductive metabolic reactions or from the hydrolysis of an enolpyruvate intermediary. Both competitors had their work supported by different but, sound scientific roots and have produced very important scientific results while trying to present their hypothetical point of view.

Before the winning results of P. Mitchell were displayed, one line of defense used by B. Chance followers was to create a conflict between what would be expected by a restrictive role of proteins through its specificity ionic interactions and the general ability of ionic asymmetries that could be associated with mitochondrial ATP production. Chemical catalyzed protein activities do not have perfect specificity but an outstanding degree of selective interaction was presented by the lock and key model of enzyme interaction. A large group of outstanding “mitochondriologists” were able to show ATP synthesis associated with Na+, K+, Ca2+… asymmetries on mitochondrial membranes and any time they did this, P. Mitchell have to display the existence of antiporters that exchange X for hydrogen as the final common source of chemiosmotic energy used by mitochondria for ATP synthesis.

This conceptual battle has generated an enormous knowledge that was laid to rest, somehow discontinued in the form of scientific research, when the final E. Coli mutant studies presented the convincing final evidence in favor of P. Mitchell point of view.

Not surprisingly, a “wise anonymous” later, pointed out: “No matter what you are doing, you will always be better off in case you have a mutant”

(Principles of Medical Genetics T D Gelehrter & F.S. Collins chapter 7, 1990).

However, let’s take the example of a mechanical wristwatch. It clearly indicates when the watch is working in an acceptable way, that its normal functioning condition is not the result of one of its isolated components – or something that can be shown by a reductionist molecular view.  Usually it will be considered that it is working in an acceptable way, in case it is found that its accuracy falls inside a normal functional range, for instance, one or two standard deviations bellow or above the mean value for normal function, what depends upon the rigor wisely adopted. While, only when it has a faulty component (a genetic inborn error) we can indicate a single isolated piece as the cause of its failure (a reductionist molecular view).

We need to teach in medicine, first the major reasons why the watch works fine (not saying it is “automatic”). The functions may cross the reversible to irreversible regulatory limit change, faster than what we can imagine. Latter, when these ideas about normal are held very clear in the mind set of medical doctors (not medical technicians) we may address the inborn errors and what we may have learn from it. A modern medical technician may cause admiration when he uses an “innocent” virus to correct for a faulty gene (a rather impressive technological advance). However, in case the virus, later shows signals that indicate that it was not so innocent, a real medical doctor will be called upon to put things in correct place again.

Among the missing parts of normal evolution in biochemistry a lot about ion fluxes can be found. Even those oscillatory changes in Ca2+ that were shown to affect gene expression (C. De Duve) were laid to rest since, they clearly indicate a source of biological information that despite the fact that it does not change nucleotides order in the DNA, it shows an opposing flux of biological information against the dogma (DNA to RNA to proteins). Another, line has shown a hierarchy, on the use of mitochondrial membrane potential: First the potential is used for Ca2+ uptake and only afterwards, the potential is used for ADP conversion into ATP (A. L. Lehninger). In fact, the real idea of A. L. Lehninger was by far, more complex since according to him, mitochondria works like a buffer for intracellular calcium releasing it to outside in case of a deep decrease in cytosol levels or capturing it from cytosol when facing transient increase in Ca2+ load. As some of Krebs cycle dehydrogenases were activated by Ca2+, this finding was used to propose a new control factor in addition to the one of ADP (B. Chance). All this was discontinued with the wrong use of calculus (today we could indicate bioinformatics in a similar role) in biochemistry that has established less importance to a mitochondrial role after comparative kinetics that today are seen as faulty.

It is important to combat dogmatic reasoning and restore sound scientific foundations in basic medical courses that must urgently reverse the faulty trend that tries to impose a view that goes from the detail towards generalization instead of the correct form that goes from the general finding well understood towards its molecular details. The view that led to curious subjects as bioinformatics in medical courses as training in sequence finding activities can only be explained by its commercial value. The usual form of scientific thinking respects the limits of our ability to grasp new knowledge and relies on reproducibility of scientific results as a form to surpass lack of mathematical equation that defines relationship of variables and the determination of its functional domains. It also uses old scientific roots, as its sound support never replaces existing knowledge by dogmatic and/or wishful thinking. When the sequence of DNA was found as a technical advance to find amino acid sequence in proteins it was just a technical advance. This technical advance by no means could be considered a scientific result presented as an indication that DNA sequences alone have replaced the need to study protein chemistry, its responses to microenvironmental changes in order to understand its multiple conformations, changes in activities and function. As E. Schrodinger correctly describes the chemical structure responsible for the coded form stored of genetic information must have minimal interaction with its microenvironment in order to endure hundreds and hundreds years as seen in Hapsburg’s lips. Only magical reasoning assumes that it is possible to find out in non-reactive chemical structures the properties of the reactive ones.

For instance, knowledge of the reactions of the Krebs cycle clearly indicate a role for solvent that no longer could be considered to be an inert bath for catalytic activity of the enzymes when the transfer of energy include a role for hydrogen transport. The great increase in understanding this change on chemical reaction arrived from conformational energy.

Again, even a rather simplistic view of this atomic property (Conformational energy) is enough to confirm once more, one of the most important contribution of E. Schrodinger in his What is Life:

“This little book arose from a course of public lectures, delivered by a theoretical physicist to an audience of about four hundred which did not substantially dwindle, though warned at the outset that the subject matter was a difficult one and that the lectures could not be termed popular, even though the physicist’s most dreaded weapon, mathematical deduction, would hardly be utilized. The reason for this was not that the subject was simple enough to be explained without mathematics, but rather that it was much too involved to be fully accessible to mathematics.”

In a very simplistic view, while energy manifests itself by the ability to perform work conformational energy as a property derived from our atomic structure can be neutral, positive or negative (no effect, increased or decreased reactivity upon any chemistry reactivity measured as work)

Also:

“I mean the fact that we, whose total being is entirely based on a marvelous interplay of this very kind, yet if all possess the power of acquiring considerable knowledge about it. I think it possible that this knowledge may advance to little just a short of a complete understanding -of the first marvel. The second may well be beyond human understanding.”

In fact, scientific knowledge allows us to understand how biological evolution may have occurred or have not occurred and yet does not present a proof about how it would have being occurred. It will be always be an indication of possible against highly unlike and never a scientific proven fact about the real form of its occurrence.

As was the case of B. Chance in its bioenergetics findings, we may get very important findings that indicates wrong directions in the future as was his case, or directed toward our past.

The Skeleton of Physical Time – Quantum Energies in Relative Space of S-labs

By Radoslav S. Bozov  Independent Researcher

WSEAS, Biology and BioSystems of Biomedicine

Space does not equate to distance, displacement of an object by classically defined forces – electromagnetic, gravity or inertia. In perceiving quantum open systems, a quanta, a package of energy, displaces properties of wave interference and statistical outcomes of sums of paths of particles detected by a design of S-labs.

The notion of S-labs, space labs, deals with inherent problems of operational module, R(i+1), where an imagination number ‘struggles’ to work under roots of a negative sign, a reflection of an observable set of sums reaching out of the limits of the human being organ, an eye or other foundational signal processing system.

While heavenly bodies, planets, star systems, and other exotic forms of light reflecting and/or emitting objects, observable via naked eye have been deduced to operate under numerical systems that calculate a periodic displacement of one relative to another, atomic clocks of nanospace open our eyes to ever expanding energy spaces, where matrices of interactive variables point to the problem of infinity of variations in scalar spaces, however, defining properties of minute universes as a mirror image of an astronomical system. The first and furthermost problem is essentially the same as those mathematical methodologies deduced by Isaac Newton and Albert Einstein for processing a surface. I will introduce you to a surface interference method by describing undetermined objective space in terms of determined subjective time.

Therefore, the moment will be an outcome of statistical sums of a numerical system extending from near zero to near one. Three strings hold down a dual system entangled via interference of two waves, where a single wave is a product of three particles (today named accordingly to either weak or strong interactions) momentum.

The above described system emerges from duality into trinity the objective space value of physical realities. The triangle of physical observables – charge, gravity and electromagnetism, is an outcome of interference of particles, strings and waves, where particles are not particles, or are strings strings, or  are waves waves of an infinite character in an open system which we attempt to define to predict outcomes of tomorrow’s parameters, either dependent or independent as well as both subjective to time simulations.

We now know that aging of a biological organism cannot be defined within singularity. Thereafter, clocks are subjective to apparatuses measuring oscillation of defined parameters which enable us to calculate both amplitude and a period, which we know to be dependent on phase transitions.

The problem of phase was solved by the applicability of carbon relative systems. A piece of diamond does not get wet, yet it holds water’s light entangled property. Water is the dark force of light. To formulate such statement, we have been searching truth by examining cooling objects where the Maxwell demon is translated into information, a data complex system.

Modern perspectives in computing quantum based matrices, 0+1 =1 and/or 0+0=1, and/or 1+1 =0, will be reduced by applying a conceptual frame of Aladdin’s flying anti-gravity carpet, unwrapping both past and future by sending a photon to both, placing present always near zero. Thus, each parallel quantum computation of a natural system approaching the limit of a vibration of a string defining 0 does not equal 0, and 1 does not equal 1. In any case, if our method 1+1 = 1, yet, 1 is not 1 at time i+1. This will set the fundamentals of an operational module, called labris operator or in simplicity S-labs. Note, that 1 as a result is an event predictable to future, while interacting parameters of addition 1+1 may be both, 1 as an observable past, and 1 as an imaginary system, or 1+1 displaced interactive parameters of past observable events. This is the foundation of Future Quantum Relative Systems Interference (QRSI), taking analytical technologies of future as a result of data matrices compressing principle relative to carbon as a reference matter rational to water based properties.

Goedel’s concept of loops exist therefore only upon discrete relative space uniting to parallel absolute continuity of time ‘lags’. ( Goedel, Escher and Bach: An Eternal Golden Braid. A Metaphorical Fugue on Minds and Machines in the Spirit of Lewis Carroll. D Hofstadter.  Chapter XX: Strange Loops, Or Tangled Hierarchies. A grand windup of many of the ideas about hierarchical systems and self-reference. It is concerned with the snarls which arise when systems turn back on themselves-for example, science probing science, government investigating governmental wrongdoing, art violating the rules of art, and finally, humans thinking about their own brains and minds. Does Gödel’s Theorem have anything to say about this last “snarl”? Are free will and the sensation of consciousness connected to Gödel’s Theorem? The Chapter ends by tying Gödel, Escher, and Bach together once again.)  The fight struggle in-between time creates dark spaces within which strings manage to obey light properties – entangled bozons of information carrying future outcomes of a systems processing consciousness. Therefore, Albert Einstein was correct in his quantum time realities by rejecting a resolving cube of sugar within a cup of tea (Henri Bergson 19th century philosopher. Bergson’s concept of multiplicity attempts to unify in a consistent way two contradictory features: heterogeneity and continuity. Many philosophers today think that this concept of multiplicity, despite its difficulty, is revolutionary.) However, the unity of time and space could not be achieved by deducing time to charge, gravity and electromagnetic properties of energy and mass.

Charge is further deduced to interference of particles/strings/waves, contrary to the Hawking idea of irreducibility of chemical energy carrying ‘units’, and gravity is accounted for by intrinsic properties of   anti-gravity carbon systems processing light, an electromagnetic force, that I have deduced towards ever expanding discrete energy space-energies rational to compressing mass/time. The role of loops seems to operate to control formalities where boundaries of space fluctuate as a result of what we called above – dark time-spaces.

Indeed, the concept of horizon is a constant due to ever expanding observables. Thus, it fails to acquire a rational approach towards space-time issues.

Richard Feynman has touched on issues of touching of space, sums of paths of particle traveling through time. In a way he has resolved an important paradigm, storing information and possibly studying it by opening a black box. Schroedinger’s cat is alive again, but incapable of climbing a tree when chased by a dog. Every time a cat climbs a garden tree, a fruit falls on hedgehogs carried away parallel to living wormholes whose purpose of generating information lies upon carbon units resolving light.

In order to deal with such a paradigm, we will introduce i+1 under square root in relativity, therefore taking negative one ( -1 = sqrt (i+1), an operational module R dealing with Wheelers foam squeezed by light, releasing water – dark spaces. Thousand words down!

What is a number? Is that a name or some kind of language or both? Is the issue of number theory possibly accountable to the value of the concept of entropic timing? Light penetrating a pyramid holding bean seeds on a piece of paper and a piece of slice of bread, a triple set, where a church mouse has taken a drop of tear, but a blood drop. What an amazing physics! The magic of biology lies above egoism, above pride, and below Saints.

We will set up the twelve parameters seen through 3+1 in classic realities:

–              discrete absolute energies/forces – no contradiction for now between Newtonian and Albert Einstein mechanics

–              mass absolute continuity – conservational law of physics in accordance to weak and strong forces

–              quantum relative spaces – issuing a paradox of Albert Einstein’s space-time resolved by the uncertainty principle

–              parallel continuity of multiple time/universes – resolving uncertainty of united space and energy through evolving statistical concepts of scalar relative space expansion and vector quantum energies by compressing relative continuity of matter in it, ever compressing flat surfaces – finding the inverse link between deterministic mechanics of displacement and imaginary space, where spheres fit within surface of triangles as time unwraps past by pulling strings from future.

To us, common human beings, with an extra curiosity overloaded by real dreams, value happens to play in the intricate foundation of life – the garden of love, its carbon management in mind, collecting pieces of squeezed cooling time.

The infinite interference of each operational module to another composing ever emerging time constrains unified by the Solar system, objective to humanity, perhaps answers that a drop of blood and a drop of tear is united by a droplet of a substance separating negative entropy to time courses of a physical realities as defined by an open algorithm where chasing power subdue to space becomes an issue of time.

Jose Eduardo de Salles Roselino

Some small errors: For intance an increase i P leads to a decrease in V ( not an increase in V)..

 

Radoslav S. Bozov  Independent Researcher

If we were to use a preventative measures of medical science, instruments of medical science must predict future outcomes based on observable parameters of history….. There are several key issues arising: 1. Despite pinning a difference on genomic scale , say pieces of information, we do not know how to have changed that – that is shift methylome occupying genome surfaces , in a precise manner.. 2. Living systems operational quo DO NOT work as by vector gravity physics of ‘building blocks. That is projecting a delusional concept of a masonry trick, who has not worked by corner stones and ever shifting momenta … Assuming genomic assembling worked, that is dealing with inferences through data mining and annotation, we are not in a position to read future in real time, and we will never be, because of the rtPCR technology self restriction into data -time processing .. We know of existing post translational modalities… 3. We don’t know what we don’t know, and that foundational to future medicine – that is dealing with biological clocks, behavior, and various daily life inputs ranging from radiation to water systems, food quality, drugs…

Read Full Post »

Mitochondrial Pyridine Nucleotides and Electron Transport Chain

Larry H Bernstein, MD, FCAP, writer and curator

http://pharmaceuticalinnovation.com/2015/04/03/larryhbern/Mitochondrial_Pyridine_Nucleotides_and_Electron_Transport_Chain

2.1.5 Mitochondrial Pyridine Nucleotides and Electron Transport Chain

2.1.5.1 Mitochondrial function in vivo evaluated by NADH fluorescence

Mayevsky A1, Rogatsky GG.
Am J Physiol Cell Physiol. 2007 Feb; 292(2):C615-40
http://dx.doi.org:/10.1152/ajpcell.00249.2006

Normal mitochondrial function is a critical factor in maintaining cellular homeostasis in various organs of the body. Due to the involvement of mitochondrial dysfunction in many pathological states, the real-time in vivo monitoring of the mitochondrial metabolic state is crucially important. This type of monitoring in animal models as well as in patients provides real-time data that can help interpret experimental results or optimize patient treatment. The goals of the present review are the following: 1) to provide an historical overview of NADH fluorescence monitoring and its physiological significance; 2) to present the solid scientific ground underlying NADH fluorescence measurements based on published materials; 3) to provide the reader with basic information on the methodologies used in the past and the current state of the art fluorometers; and 4) to clarify the various factors affecting monitored signals, including artifacts. The large numbers of publications by different groups testify to the valuable information gathered in various experimental conditions. The monitoring of NADH levels in the tissue provides the most important information on the metabolic state of the mitochondria in terms of energy production and intracellular oxygen levels. Although NADH signals are not calibrated in absolute units, their trend monitoring is important for the interpretation of physiological or pathological situations. To understand tissue function better, the multiparametric approach has been developed where NADH serves as the key parameter. The development of new light sources in UV and visible spectra has led to the development of small compact units applicable in clinical conditions for better diagnosis of patients.

UNDERSTANDING THE MITOCHONDRIAL function has been a challenge for many investigators, including cytologists, biochemists, and physiologists, since its discovery more than 120 years ago. In addition to many books regarding the mitochondria, Ernster and Schatz (79) reviewed the history of mitochondrial structure and function studies. In the past two decades, several studies have reported mitochondrial involvement in pathological processes such as stroke (225) or cytoprotection (77). Most of the information on the mitochondrial function has been accumulated from in vitro studies. A relatively small portion of published papers dealt with the monitoring of mitochondrial function in vivo and in real time. Presently, examination of the involvement of the mitochondrial function in many pathological states, such as sepsis, requires monitoring of patients treated in intensive care units. Unfortunately, real-time monitoring of the mitochondrial function in patients has rarely been performed. The current study presents a review of this issue. To evaluate the activity of the respiratory chain in vivo, it is possible to monitor the mitochondrial NADH, FAD, or the cytochrome oxidase oxidation-reduction state. The interference of blood with the monitoring of FAD and cytochrome oxidase is much higher than with NADH (48); therefore, we invest our effort into the monitoring of the mitochondrial NADH redox state. We do not know of any publication showing clearly that Fp fluorescence could be monitored in vivo in blood-perfused organs. In our preliminary report, we showed that in specific brain areas, one can see the fluorescence of Fp but we were not sure how to validate the results. During the past 33 years, we have published >140 papers in this very significant area, including the largest number of studies using NADH redox state monitoring in patients.

Since the discovery of pyridine nucleotides by Harden and Young (94), >1,000 papers have been published on the use of NADH (Fig. 1A) as a marker for mitochondrial function. In 2000, Schleffler et al. (217) reviewed mitochondrial research methods over the past century. A major aspect of mitochondrial function, namely monitoring the energy state of tissues in vivo, was not discussed in that review. Therefore, the present review will summarize 50 years of research, started in 1955 by Chance and Williams (5657), by defining the mitochondrial metabolic state in vitro. To understand mitochondrial function in vivo and under various pathophysiological conditions, it is important to monitor the redox state of the respiratory chain in real time. The present review will discuss the monitoring principles for one of the electron carriers, namely, nicotinamide adenine dinucleotide (NADH). It is well known that mitochondrial dysfunction is involved in many diseases, such as ischemia, hypoxemia, Parkinson’s disease, Alzheimer’s disease, and in the apoptotic process. Therefore, the possibility of monitoring the mitochondrial NADH redox state in experimental animals and patients is of great importance.

inter-conversion of NAD+ and NADH & difference in the absorption spectra of NAD+ and NADH

inter-conversion of NAD+ and NADH & difference in the absorption spectra of NAD+ and NADH

http://dtch1d7nhw92g.cloudfront.net/content/292/2/C615/F1.medium.gif

Fig. 1. A: molecular structure of NAD+ and the inter-conversion of NAD+ and NADH. B: difference in the absorption spectra of NAD+ and NADH. C: emission spectra of brain NADH excited by 366 nm light (A1, A2, B1, B2, C1) or 324 nm laser light (C2). C1 and C2 show measurements from a dead brain, for comparison of NADH spectra using two different light sources.

To assess the energy demand, it is necessary to measure different organ-specific parameters. In the brain, the energy demand can be evaluated by measuring the extracellular levels of K+ that reflect the activity of the major ATP consumer: Na+-K+-ATPase (152161). In the heart, most of the energy is consumed by the muscle contraction activity. On the other hand, the energy supply mechanism is the same in all tissues: oxygenated blood reaching the capillary bed releases O2that diffuses into the cells. Therefore, it is possible to evaluate tissue energy supply by monitoring the same four different parameters in all tissues.

The main function of the mitochondria is to convert the potential energy stored in various substrates (e.g., glucose) into ATP. The inner membrane of the mitochondria contains 5 complexes of integral membrane proteins, including NADH dehydrogenase (complex 1). Three of those proteins are involved in the respiratory chain activity. The main function of the respiratory chain is to gradually transfer electrons from NADH and FADH2 (originating from the TCA cycle) to O2. With the addition of protons (H+), H2O is generated in complex 4. NADH (Fig. 1Aright side) is a substrate or a coenzyme for the enzymatic activity of dehydrogenases that form part of the respiratory chain and reside in the inner membrane of the mitochondria.

Spectroscopic Monitoring of NADH: An Historical Overview

The discovery of the optical properties of reduced nicotinamide adenine dinucleotide (NADH; previously known as diphosphopyridine nucleotide or pyridine nucleotide) has led to a very intensive research since the early 1950s. The reduced form of this molecule, NADH, absorbs light at 320–380 nm (Fig. 1B) and emits fluorescent light at the 420–480 nm range (Fig. 1C).

Because the oxidized form NAD+ does not absorb light in this range, it was possible to evaluate the redox state of the mitochondria by monitoring the UV absorbance (see Monitoring UV absorbance by NADH) or blue fluorescence of NADH (see Monitoring NADH fluorescence).

Undoubtedly, the pioneering work of Britton Chance of the Johnson Research Foundation at the University of Pennsylvania in Philadelphia led to the establishment and development of the unique measurement technology and theoretical conceptualization of the mitochondrial function based on NADH redox state monitoring in vitro as well as in vivo.

The foundations for future NADH monitoring in vitro and in vivo were established mainly in the 1950s; thus this period will be discussed in this section.

Monitoring of NADH UV absorbance

In 1951, Theorell and Bonnichsen found a shift in the absorption spectrum of DPNH upon addition of alcohol dehydrogenase (238). In the same year, Theorell and Chance described a new spectrophotometric technique for measuring the formation and disappearance of the compound of alcohol dehydrogenase and NADH (239). In 1952, Chance showed the applicability of this new technique to the measurements of pyridine nucleotide enzymes of muscle homogenate or intact cells (25). In 1954, Chance and Williams briefly described new sensitive differential spectrophotometric methods applied to the study of reduced NADH in isolated rat liver mitochondria and the same approach was used by Connelly and Chance (61) in monitoring NADH in stimulated frog nerve and muscle preparations. The oxidation of NADH in the muscle was similar to its oxidation in isolated mitochondria upon addition of ADP. In a comprehensive paper, “Enzyme mechanisms in living cells,” Chance described in detail the measurements of the respiratory enzymes, including NADH (26).

A major milestone in NADH monitoring was the technique presented in 1954 by Chance (27) using a double beam spectrophotometer to determine the appropriate wavelengths in measurements of respiratory enzymes.

The detailed descriptions of the respiratory chain and oxidative phosphorylation in the mitochondria (published in 1955 by Chance and Williams) established our basic knowledge of the mitochondrial function (57). Chance and Williams defined, for the first time, the metabolic states of isolated mitochondria in vitro, depending on the substrate, oxygen, and ADP levels. In addition, they correlated those metabolic states to the oxidation-reduction levels of the respiratory enzymes. The physiological significance of those metabolic states was discussed in 1956 by Chance and Williams (58).

Monitoring NADH fluorescence

The fact that NADH was monitored by the difference in the absorption spectrum of its reduced form, limited the use of that technique to the study of mitochondria in vitro, and in very thin tissue samples (e.g., muscle) or in cell suspension. To provide a method more specific than absorption spectroscopy, fluorescence spectrophotometry in the near-ultraviolet range was applied for NADH measurement. The initial model of fluorescence recorder was described by Theorell and Nygaard in 1954 (240). The first detailed study using fluorescence spectrophotometry of NADH in intact Baker’s yeast cells and algae cells was published in 1957 by Duysens and Amesz (75).

In the next 5 years (1958–1962), the monitoring of NADH fluorescence was significantly expanded, led by Chance and collaborators. In a first preliminary study, Chance et al. (37) performed simultaneous fluorometric and spectrophotometric measurements of the reaction kinetics of bound pyridine nucleotides (PN) in the mitochondria. In the same year (1958), Chance and Baltscheffsky presented preliminary results of measuring the fluorescence of intramitochondrial PN (34). In this study, they proved the connection between the mitochondrial metabolic state and the redox state of NADH as measured by spectral fluorometry in mitochondria isolated from rat liver (57). The correlation between the enzymatic assay of PN and sensitive spectrophotometry was investigated by Klingeberger et al. (120) by using the rat liver, heart, kidney, and brain.

In 1959, Chance and collaborators were able to expand the use of NADH fluorometry to various experimental models, from isolated mitochondria to intact tissue. To monitor NADH localization in intact cells, Chance and Legallais (42) developed a unique differential microfluorimeter with a very high spatial resolution. This approach was used in various cells to identify the intracellular localization of NADH fluorescence signals (54201). The next step was to apply the fluorometric technique to the higher organization level of animal tissues. Together with Jobsis, Chance measured in vitro changes in muscle NADH fluorescence following stimulation (41). In another paper published by Chance and Theorell (55) the authors came to the very significant conclusion that “The oxidation and reduction state of mitochondrial pyridine nucleotide without a measurable change of cytoplasmic fluorescence suggest that compartmentalization of mitochondrial and cytoplasmic pyridine nucleotide occurs in vivo, at least in the grasshopper spermatid.”

An intensive use of the in vivo NADH monitoring approach started in 1962. The “classic” paper on in vivo monitoring of NADH was published in 1962 by Chance et al. (36). They were able to simultaneously monitor the brain and kidney of anesthetized rats using two microfluorometers. In 1962, Chance and collaborators elaborated on this kind of in vivo monitoring and used it in other rat organs (4350).

Scientific Background And Technological Aspects

The absorption and fluorescence spectra of NADH (the reduced form) have been well characterized at different levels of organization, i.e., in solution, mitochondria and cell suspensions, tissue slices, and organs in vitro and in vivo. NADH has an optical absorption band at about 300 to 380 nm and a fluorescence emission band at 420 to 480 nm (Fig. 1B and C). The spectra are considered the same, although there are small differences in the shape and maxima of the spectra for different environments and measurement conditions. However, there is a universal agreement that the intensity of the fluorescence band, independent of the organization level of the environment, is proportional to the concentration of mitochondrial NADH (the reduced form), particularly when measured in vivo from a tissue.

The biochemical and physiological significance of these spectral qualities is also universally accepted, that is, an increase in the fluorescence intensity indicates a more reduced state of NADH and of the rest of the mitochondrial electron transfer chain. Under various circumstances, changes in the redox state of the electron transport chain can be associated with various conditions.

To monitor NADH fluorescence, it is possible to use one of the two principles available. At the early stage, it was necessary to measure and identify the fluorescence spectrum of NADH. Fluorescence spectra were compared in different in vitro and in vivo preparations. In parallel, the second approach was adopted, namely, measuring the total fluorescence signal accumulated and integrated into a single intensity using appropriate filters. This approach was necessary to measure NADH fluorescence continuously. The following parts of this section describe the fluorescence spectra of NADH measured in various in vitro and in vivo models by different investigators. We present this review of the reported spectra to describe the foundations for the second monitoring approach, namely, the continuous monitoring of integrated spectra.

Fluorescence Emission Spectra of NADH

NADH in solution.

Several investigators have measured NADH fluorescence in solution. Very recently, Alfano’s group (62) performed a calibration test of pure β-NADH in solution, compared it to porcine myocutaneous flap, and found a very significant correlation. The NADH solution spectrum and mitochondrial spectrum were also compared by Chance and Baltscheffsky (34).

Similar spectra of NADH in solution were recorded by Schomacker et al. (219) using 337-nm excitation light for colonic tissue diagnosis.

NADH spectra in isolated mitochondria.

The excitation and emission spectra of NADH (PN) and flavoprotein were measured in frozen samples of pigeon heart mitochondria (52). Using rat liver mitochondria, Chance and Baltscheffsky (34) measured the fluorescence spectra in the three metabolic states defined by Chance and Williams (58). The 330-nm light excitation resulted in a fluorescence peak at 440–450 nm. The same kind of spectra was obtained by other investigators using different fluorometers or mitochondria isolated from various organs. Galeotti et al. (87) measured similar spectra from rat liver mitochondria. Using Rhodamine B as an internal standard for system calibration, Koretsky and Balaban (125) found the same spectra emitted from isolated rat liver mitochondria. Koretsky et al. (126) compared the emitted spectrum from heart homogenates (similar to isolated mitochondria) with that of dissolved heart homogenates (126).

Intact cells.

The use of microfluorimetry to study intact cell metabolism was described in several publications by Kohen and collaborators (see, for example, Ref. 123).

The typical NADH fluorescence spectrum was measured in suspension of ascite tumor cells (87). This study demonstrated that the spectrum of intact cells was similar to that of NADH solution.

Using isolated myocytes, Eng et al. (78) compared the spectra measured under various conditions of the mitochondria. They found that cyanide induced an increase in the spectrum difference, whereas FCCP, used as a typical uncoupler of oxidative phosphorylation, produced a marked decrease in the spectrum.

….

Principles of NADH monitoring.

As described in the introductory section, NADH can be measured by utilizing its absorption spectrum in the UV range, as well as by the blue fluorescence spectrum under UV illumination. In the early stages, NADH monitoring was based on the difference in the absorption of NADH and NAD+. At the range of 320 to 380 nm, only the reduced form; NADH absorbs light, while NAD+does not (Fig. 1B). Therefore, when a mixture of NADH and NAD+ is illuminated in a cuvette by 320–380 nm, only NADH will affect the absorption spectrum peak at 340 nm. This property of NADH was used in the early 1950s by several investigators, as reviewed in Spectroscopic Monitoring of NADH–Historical Overview. Chance and collaborators utilized this technique to measure NADH in muscle homogenates or intact cells (25) and published many papers concerning the unique absorption spectrum of NADH.

The absorption approach is not practical for measuring NADH in a thick tissue; hence, another property of NADH was used. Since the early 1950s, fluorescence spectrophotometry of NADH has been employed in various in vitro and in vivo models. The emission of NADH fluorescence, under illumination at 320–380 nm, has a very wide spectrum (420–480) with a peak at 450–460 nm (Fig. 1C). NADH fluorescence has been identified by Chance and his collaborators as a good indicator of the intramitochondrial oxidation-reduction state (48).

The review article on in vivo NADH fluorescence monitoring, published in 1992 by Ince et al. (102) included many other technical aspects of the methodology. Nevertheless, here we will elaborate on the historical development of the various models of NADH fluorometers. We recently (155) reported on a new type of NADH fluorometer based on a very small and stable UV light source: a 375-nm light-emitting diode.

….

In 1959, Chance and Legallais (42) described a differential fluorometer that heralded a new era in monitoring NADH fluorescence in vivo as an indicator of mitochondrial function. They used a microscope, serving as the fluorometer basis, with two light sources: tungsten and mercury lamps with appropriate filters. In 1959, Chance and Jobsis (41) proved that mechanical muscle activity is associated with NADH oxidation measured in excised muscle. This study was the bridge from the subcellular (mitochondria) and cellular (intact cell) monitoring approaches toward actual in vivo applications.

The first in vivo NADH monitoring device was presented in the early 1960s. At that stage, the effects of scattered light and tissue absorption due to blood were not taken into consideration when monitoring NADH fluorescence. The first detailed results of in vivo NADH fluorescence measurements were published in 1962 (36).

These classic papers described two microfluorometers that were modifications of previous designs (4254). This microfluorimeter type employed Leitz “Ultrapack” illumination, which had been used for many years by various groups until the appearance of UV transmitting optical fibers. To avoid movement artifacts, rats were anesthetized deeply and their heads were fixated in a special holder attached to the operation table. Numerous studies utilized the principles of the “Ultrapack” illumination system. The same instrumentation was used in other in vivo studies, including those of Chance’s group (38434459), Dora and Kovach’s group (7192), Rievich’s group (93), Jobsis and collaborators (108110111213), Gosalvez et al. (89), and Anderson and Sundt (5232). This is only a partial list.

Monitoring NADH fluorescence and reflectance.

The effect of blood on NADH fluorescence was discussed early by Chance et al. (36). To monitor NADH in vivo, Chance’s group had to avoid areas containing large blood vessels, which interfere with the emission and excitation light. The monitoring of a second channel in tissue fluorometry in vivo was reported by Chance and Legallais in 1963 (44). They showed that “changes due to the deoxygenation of oxyhemaglobin do not interfere with measurement of the time course of fluorescence changes in the tissue studies.”

The addition of a second monitoring signal, namely, tissue reflectance at the excitation wavelength was reported in 1968 by Jobsis and Stansby (112). It was based on a previous model described by Jobsis et al. in 1966 (107). In two more papers by Jobsis and collaborators (110,111), the measurement of 366-nm reflectance was used for the correction of the NADH fluorescence signal from the brain. The reflectance signal was subtracted from the fluorescence signal. The same type of instrumentation was used by various groups for the measurement of NADH in single cells (124) or in vitro preparations (1319).

Fiber optic fluorometer/reflectometer.

To enable the monitoring of NADH fluorescence in unanesthetized animals or other in vivo preparations, a flexible means was needed to connect the fluorometer with the tested organ, for example the brain. This was achieved in 1972, when UV transmitting quartz fibers became available (Schott Jena Glass). We have used the light guide-based fluorometer for in vivo monitoring of the brain (48157) subjected to anoxia or cortical spreading depression. The historical development of light guide-based fluorometery-reflectometry is shown in Fig. 2. The original device functioned on the time-sharing principle (Fig. 2A), where four filters were placed in front of a two-arms light guide. Filters 1 and 3 enabled the measurement of NADH fluorescence, while filters 2 and 4 were used to measure tissue reflectance at the excitation wavelength. The reflectance trace was used to correct the NADH signal for hemodynamic artifacts, and to indicate changes in the blood volume of the sampled tissue.

Fig. 2. The three stages in the development of the fiber optic fluorometer/reflectometer (started in the early 1970s).

 

development of the fiber optic fluorometer_reflectometer

development of the fiber optic fluorometer_reflectometer

http://dtch1d7nhw92g.cloudfront.net/content/292/2/C615/F2.medium.gif

Factors Affecting NADH Fluorescence and Reflectance Signals

The excitation and emission spectra of NADH are affected by the redox state of this fluorochrome and by other factors, leading to artifacts in the fluorescence measurements. This section will discuss various NADH-unrelated factors, affecting the measured signal. Since most fluorometers involve the measurement of the total backscattered light at the excitation wavelength (i.e., 366 nm), the discussion will concern changes in NADH fluorescence as well as in tissue reflectance.

The following factors may affect the two measured signals, 366-nm reflectance and 450-nm fluorescence: 1) tissue movement due to mechanical or intracranial pressure changes; 2) extracellular space events, such as volume changes or ion shifts between intra- and extracellular space; 3) vascular and intravascular events, for example, oxy-deoxy Hb changes, and blood volume changes due to autoregulatory vasoconstriction under pathological conditions; and 4) intracellular space factors, such as O2 level, ATP turnover rate, substrate availability, and mitochondrial redox state.

Fig. 3. Comparison between the mitochondrial metabolic state, defined by Chance and Williams (56, 57) and responses of the in vivo brain to changes in O2 supply and brain activation.

mitochondrial metabolic state, defined by Chance and Williams (56, 57) and responses of the in vivo brain to changes in O2 supply

mitochondrial metabolic state, defined by Chance and Williams (56, 57) and responses of the in vivo brain to changes in O2 supply

http://dtch1d7nhw92g.cloudfront.net/content/292/2/C615/F3.medium.gif

Changes in mitochondrial NADH and tissue metabolic state

The pioneering work of Chance and Williams in the 1950s, led to the definition of the metabolic state of isolated mitochondria in vitro. The foundations for the use of NADH fluorescence as a marker of mitochondrial activity have been posited in detail by Chance and Williams (5657). The left portion of Fig. 6 is a modification of a published table, while the right hand segment demonstrates the responses of NADH fluorescence measured in the brain in vivo under various perturbations. The “resting state” of the mitochondria in vitro was defined as state 4, where NADH was 99% in the reduced form, and ADP was the rate limiting substance. If ADP is added to a suspension of mitochondria, ATP synthesis will be stimulated, O2 consumption will increase, and the rate limit will be determined by the activity of the respiratory chain. During this state 3, or the “active state,” the NADH redox state will decrease or become more oxidized (∼50%). When the resting mitochondria are deprived of O2, the activity of the mitochondria will stop and NADH will reach its maximum redox state (state 5).

A definitive description of the mitochondrial metabolic state has never been given for in vivo conditions. Therefore, we described the in vivo mitochondria conditions as recorded by NADH fluorescence in a representative tissue or organ; e.g., the brain. While the range between minimal NADH (∼0) and its maximal level was determined in vitro, it is almost impossible to determine in the intact brain or other organs in vivo. For example, state 2, with a substrate free medium, could not be achieved in vivo since the tissue would die. On the other hand, the maximal level of NADH (state 5) could be monitored in vivo under complete deprivation of O2 by anoxia or complete ischemia.

We used changes in NADH levels monitored in vivo to create a new scale ranging from a maximal definite point to the minimal level recorded in vivo. Details of this approach have been published (152). As shown in Fig. 3, the maximal NADH level is achieved under complete O2 deprivation that can be induced both under in vitro and in vivo conditions. This signifies that this definitive point can be used to determine state 5 in vivo as well. The problem is to determine the metabolic state of a tissue in an in vivo situation. If we adopt the in vitro value of a resting state (state 4), this would signify that the increase in NADH during state 5, induced by anoxia (0% O2), would be only 1%. According to all in vivo studies, this is not the case, and during anoxia the increase in NADH is lager than the decrease under state 4 to 3 transition. Figure 3right, illustrates that the observed level of NADH increase is indeed larger than the decrease. Therefore, we concluded that, under in vivo conditions, the “resting” metabolic state of the brain is found between states 4 and 3 rather than in state 4 as defined in vitro (152). To determine the maximal and minimal levels of NADH in vivo it is almost impossible to use cyanide or uncoupler (FCCP). Nevertheless, we were able to determine the maximal level by anoxia and the “minimal” level by nonfluorescing uncoupler. We injected the uncoupler pentachlorophenol into the ventricles of the rat’s brain while monitoring the NADH responses to anoxia and spreading depression (146). To perform a reliable study with cyanide, the animal would have to die and the results will not be helpful; therefore, we used the anoxia response to measure the maximal level of NADH. Using fiber optic fluorometry, we were able to monitor both anesthetized and awake rats. This figure will be discussed later on in this review. It is important to note that most of the published data on NADH monitoring, have been accumulated in brain studies. Therefore, we will present our data mainly relating to the brain, though results on other organs will be presented as well. Table 1 lists studies published by various investigators as well as our publications. The papers are classified according to the organ monitored and the type of perturbation used. This table does not include rarely studied types of organs or perturbations. Such studies are cited individually in the text.

Table 1. Effect of O2 delivery and consumption on NADH redox state measured in various intact organs by various investigators

Table 2. Historical milestones in monitoring NADH fluorescence in vivo

….

Anoxia and Hypoxia.

The responses to hypoxia and anoxia are very similar; therefore, they will be discussed together. According to the definition of Chance and Williams (5657), a shift toward state 5 involves an increase in NADH proportional to a decrease in O2 supply.

It is assumed that the response of NADH fluorescence to hypoxia or anoxia, induced in vivo, should be very similar to the response of isolated mitochondria. As shown in Fig. 4B, when the blood-free brain was exposed to N2, the fluorescence showed a clear increase-decrease cycle depending on the availability of O2. The reflectance trace was not affected at all. In autoregulated blood-perfused organs, it is expected that the lack of O2 will trigger compensation mechanisms that may lead to an increase in the blood flow and volume, or a decrease in thereflectancesignal. We tested, in the same rats, the response to anoxia of the normoxic blood-perfused brain. The results are shown in Fig. 4A. Indeed, reflectance exhibited a large decrease due to the increase in blood volume (vasodilatation of brain vessels). Figure 4C and D, presents the responses to anoxia measured via 2 mm and 1 mm light guides. A small variation can be seen in the reflectance response between the two light guides.

Ischemia, Or Decreased Blood Flow.

Under partial or complete ischemia, blood flow to the monitored organ is decreased and, as a result, O2 delivery is limited or even abolished. The use of ischemia in animal models provides information relevant to critical clinical situations such as brain stroke or heart attack. The primary factor starting the pathological state is the decrease in O2 supply, making the tissue energy balance negative, and preventing the tissue from performing its function. Figure 7 illustrates the effects of ischemia and anoxia on the NADH level in the brain of an anesthetized gerbil. The measurements of NADH in the cerebral hemispheres were correlated to the brain electrical activity (ECoG; electrocorticogram). To test and compare the measurements done in the two hemispheres, we exposed the gerbil to short-term anoxia. As shown, the two responses are very similar and correlate to the depression of the ECoG signal measured in the two hemispheres.

….

After the introduction of the light guide-based fluorometry, we were able to expose the awake brain to hyperbaric conditions. A clear decrease in NADH (oxidation) was recorded during the shift from 21% to 100% O2, as well as during compression of up to 10 atmospheres 100% O2 (150,152153167177). A similar oxidation was found upon CO2 addition to the gas mixture (94–99% O2) (149). We also found a correlation between the elevated brain PO2 and the oxidation of NADH in awake rats (151). The oxidation of NADH was also recorded under normobaric hyperoxia (113). Furthermore, we tested the effects of hyperbaric oxygenation on carbon monoxide intoxication (212) or cyanide exposure (235).

….

Responses to energy consumption changes

As shown by Chance and Williams (57, 58), the activation of the mitochondria by increased ADP is coupled with oxidation of NADH (decreased NADH levels) and is known as the state 4 to state 3 transition in isolated mitochondria. Most of the investigations in this field of tissue activation were made on neuronal tissue in vivo. However, studies of other organs, such as the heart or skeletal muscle, were conducted as well. The demand for energy (ATP) by various tissues is dependent on the specific tasks of each organ or tissue. Nevertheless, the stimulation of mitochondrial function is common in all tissues in the body. We will describe the effects of tissue activation on NADH fluorescence under normoxic conditions as well as during limitation of O2 supply in the tissue (hypoxia, ischemia).

….

Responses to energy consumption changes

As shown by Chance and Williams (5758), the activation of the mitochondria by increased ADP is coupled with oxidation of NADH (decreased NADH levels) and is known as the state 4 to state 3 transition in isolated mitochondria. Most of the investigations in this field of tissue activation were made on neuronal tissue in vivo. However, studies of other organs, such as the heart or skeletal muscle, were conducted as well. The demand for energy (ATP) by various tissues is dependent on the specific tasks of each organ or tissue. Nevertheless, the stimulation of mitochondrial function is common in all tissues in the body. We will describe the effects of tissue activation on NADH fluorescence under normoxic conditions as well as during limitation of O2 supply in the tissue (hypoxia, ischemia).

….

The effects of pharmacological agents on NADH redox state in various organs were published as well. Kedem et al. researched the influence of various inotropic agents (1) as well as nitroprusside (2), nitroglycerin (76), and propranolol (86).

Osbakken and collaborators (194195) also monitored NADH under various drug exposures. Baron et al. (17) described the effects of lidocaine on NADH, during ischemia in the dog heart. The effects of blood substitute emulsion on NADH in the kidney were reported (260). The influence of radioprotective chemicals on NADH in rat tissue was described in the 1960s (103). The action of various drugs (e.g., the uncoupler Amytal) was studied in the liver exposed to hyperbaric oxygenation (3140).

Monitoring Human Body Organs

The first attempt to apply NADH fluorometry to human tissues in vivo was made in 1971 by Jobsis et al. (111). Using NADH fluorescence microfluorometry, they monitored the exposed brain of neurosurgical patients undergoing treatments for focal cerebral seizures. They correlated the electrocorticographic data to the NADH redox state under direct cortical stimulation of the monitored area. The clear decrease in the NADH signal was interpreted as a change in oxidation. The recorded changes were very similar to those obtained in analogous procedures in the cat brain (213). A few years later, the collaboration between Austin and Chance (8) led to the recording of NADH in the brain of patients subjected to microanastomosis of the superficial temporal artery to the middle cerebral artery. The same group found an improvement of cerebral oxidative metabolism after the anastomosis, which was correlated to the elevated blood flow and increased tissue PO2 (9).

The next step was taken by Barlow et al. (16), who expanded this technique to monitor the heart and the brain. Using a different type of fluorometer, Van Buren et al. showed a decrease in NADH (oxidation) due to cortical stimulation in epileptic patients (251). In 1979, Fein and Jobsis (81) studied the changes in brain energetics in patients undergoing superficial temporal arterial-middle cerebral artery microanastomosis. Fein and Olinger (8283) monitored patients after transient ischemic attacks. The brain of these patients, who had undergone an extracranial-intracranial bypass, was stimulated, and changes in NADH were recorded.

….

The laser-based fluorimeter developed by Renault (207) was used to monitor NADH redox state in the heart muscle during pharmacological treatments (207), as well as in skeletal muscle (91). Attempts to apply NADH fluorometry in clinical practice (reported in a dozen short publications) did not lead to the development of a proper medical device applicable on a daily basis.

In 1990, our team started developing a unique multiparametric monitoring system that included the measurement of NADH fluorescence, using a light guide-based device. This system was initially applied to monitor neurosurgical patients undergoing brain surgery or those treated in the intensive care unit. In the first paper on the subject (published in 1991), we showed the feasibility of our approach. After a transient short occlusion of one common carotid artery, the increase in NADH was correlated to a decrease in cerebral blood flow (164). It took another 5 years to restart organized clinical testing of our monitoring system.

Monitoring Nadh And The Multiparametric Approach

The need for multiparametric monitoring of other parameters, additional to NADH, results from the basic understanding that NADH is affected by two major factors. The redox state of NADH reflects not only the availability of O2 inside the mitochondria but also the turnover rate of the ATP-ADP cycling activity (state 4 to state 3 transition). The interaction between these two factors affects the nature of NADH response to various conditions. For example, an increase in energy consumption (e.g., cortical spreading depression) under O2 restriction will be manifested as an increase in NADH rather than a decrease (oxidation) measured in normal well-oxygenated tissue. According to Chance and Williams, an increase in ATP production is always recorded as a decrease in NADH (5758). Therefore, the “reduction cycle” measured by the NADH signal in response to CSD can be interpreted as an artifact of some kind. This phenomenon and the fact that the mitochondrial NADH signal cannot yet be calibrated in absolute values prompted us to develop a multiparametric monitoring approach and a probe that could be used in various tissues exposed to different pathophysiological conditions. By this approach, two major advantages were gained. First, it provided the possibility of a better interpretation of the recorded results; second, nonphysiological responses could also be more easily detected. To elaborate on these points, we will consider the following typical example. In the early stage of NADH monitoring using a time sharing fluorometer, we found that a few minutes after complete ischemia was induced by decapitation in a rat model, a large increase in the reflectance signal was recorded in parallel to a clear NADH decrease in the dead monitored brain, apparently indicative of NADH oxidation. We termed this event “the Secondary Reflectance Increase-SRI” (147). It was clear to us that this late “oxidation” of NADH in the dead animal was an artifact of the monitoring system. The same response was recorded also when partial ischemia was induced in a gerbil’s brain. The “oxidation” of NADH in a dead or partially ischemic brain did not have any physiological or biochemical interpretation, so we suspected that this “oxidation” is due to the large increase in the reflectance signal, and to a failure of the fluorescence signal’s correction method. We speculated that the large increase in the reflectance trace (SRI) after ischemia or brain death, resulted from a spasm of blood vessels. Such spasms are known to occur in this type of conditions, namely during cortex depolarization. Only when monitoring other parameters, in addition to NADH, such as extracellular K+ and DC steady potential, were we able to give a substantial explanation for the SRI event (85). On the basis of these experiments, we concluded that the SRI phenomenon is always associated with a negative shift in the DC potential and a large increase in extracellular potassium when energy is not available.

….

NADH and electrical activity

The first attempt to combine NADH and electrical measurements was made by Chance and Schoener in 1962 (50). They showed the time relationship between the increase in NADH due to anoxia or hypoxia, and the disappearance of electrical activity (ECoG) in rat cerebral cortex. The same type of correlation was reported later by Jobsis et al. (110) for epileptic activity, and by Rosenthal and Somjen (163) and Mayevsky and Chance (157) for CSD. The accumulated results have made it clear that under limited energy or O2 supply, NADH becomes elevated in the brain, while the spontaneous ECoG activity is depressed. The ECoG begins to decelerate when NADH reaches 70%-80% of its maximal increase upon death (157159) or decapitation (160259). The recovery of ECoG after anoxia is completed much later than NADH oxidation, suggesting that energy availability is a prerequisite condition but not the only condition needed for a complete ECoG recovery. Depression of the ECoG is also recorded when the brain is exposed to depolarization due to CSD; however, it is not caused by a lack of O2. Similar correlations between NADH and ECoG were described in cat cerebral cortex exposed to seizures and hemorrhagic hypotension (100).

NADH and respiratory chain components

Since the activities of various respiratory chain components are strongly coupled, the tissue respiratory rate can be better evaluated by monitoring several such components. Very few attempts have been made to correlate NADH responses in vivo, with other components of the respiratory chain. The main reason for this was the stronger interference of blood with Fp or cytochrome oxidase measurements, compared with NADH. The effects of hypotension and anoxia on NADH and cytochrome aa3, were measured in the brain in vivo (99). LaManna et al. showed the effects of Ethanol on brain NADH and cytochrome aa3 in rats and cats (137). Therefore, almost all correlations between Fp and NADH were studied in blood-free organs (49). In 1976, we presented preliminary results indicating that in certain morphological areas of the brain, containing less blood vessels, a good correlation is recorded between NADH and Fp responses to anoxia in vivo (146). The only practical way to measure these two signals together was to freeze the tissue and then analyze the two parameters in the frozen state (168183). Another approach to correlating NADH and Fp redox state was suggested by Paddle et al. (198). They used a NADH/Fp scanning fluorometer to monitor the muscle (198) or rat diaphragm (197). A few papers have been published on the use of flying spot fluorometer to monitor the two fluorescent signals in the brain and other organs (35). Most of the data published in this field have been acquired in vitro (3349) or in blood-free organs such as the liver (218).

In this review, we tried to summarize the scientific background and technological aspects of in vivo NADH fluometry approach for the monitoring of mitochondrial functions. This technology still has some limitations including the need for better correction technique for hemodynamic artefacts as well as a new approach for quantitative calibration of the signals. During the past decade, the preliminary application of the NADH fluorometry to clinical environment was very promising. This stimulates us to improve the technology to provide a practical medical device that will be used by many clinicians after approval by the regulatory agencies around the world.

2.1.5.2 A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors

Colin Phipps, Hamid Molavian, Mohammad Kohandel
J Theoret Biol 2015; 366: 103-114
http://dx.doi.org/10.1016/j.jtbi.2014.11.016

Cancer cells are notorious for their metabolic adaptations to hypoxic and acidic conditions, and especially for highly elevated glycolytic rates in tumor tissues. An end product of glycolysis is lactate, a molecule that cells can utilize instead of glucose to fuel respiration in the presence of oxygen. This could be beneficial to those cells that do not have sufficient oxygen as it conserves glucose for glycolysis. To better quantify this phenomenon we develop a diffusion-reaction mathematical model for nutrient concentrations in cancerous tissue surrounding a single cylindrical microvessel. We use our model to analyze the interdependence between cell populations’ metabolic behaviors on a microscopic scale, specifically the emerging paradigm of metabolic symbiosis that exists between aerobic and glycolytic cells. The ATP turnover rates are calculated as a function of distance from the blood vessel, which exhibit a lactate-consuming population at intermediate distances from the vessel. We also consider the ramifications of the Warburg effect where cells utilize aerobic glycolysis along with this lactate consuming respiration. We also investigate the effect of inhibiting metabolic pathways on cancer cells since insufficient ATP can trigger cell apoptosis. Effects that could be induced by metabolic inhibitors are analyzed by calculating the total ATP turnover in a unit tissue annulus in various parameter regimes that correspond to treatment conditions where specific metabolic pathways are knocked out. We conclude that therapies that target glycolysis, e.g. lactate dehydrogenase inhibitors or glycolytic enzyme inhibition, are the keys to successful metabolic repression.

The extensive metabolic requirements for cancer cell proliferation coupled with the harsh microenvironment in solid tumors culminate in a highly adaptive and complex network for cellular energy production. The genetically altered metabolic behavior of cancer cells has led to a number of emerging metabolic paradigms, in addition to those that are universally exhibited in both cancerous and normal cells. We will investigate this complex metabolic behavior by formulating a minimal mathematical model that includes the essential metabolites of glucose, lactate and oxygen in the tissue surrounding a microvessel. The cylindrical geometry used here has been used in a similar context to consider interactions between metabolites and tumor cells with treatment effects in a simplified setting (e.g. Bertuzzi et al., 2000, 2007a). The model presented here will enable the quantification of various behaviors, such as the symbiotic relationship that exists between lactate producing glycolytic cells and lactate-consuming respiratory cells, and the analysis of metabolic dependence on various physiological conditions such as hypoxia and induced metabolic inhibition. Metabolic inhibition including glycolytic inhibitors among many others targets could be very important for cancer treatment since an ATP deficit can induce apoptosis (Izyumov et al., 2004). The key consideration for addressing this problem with mathematics is the formulation of nutrient consumption rates that encompass the various primary facets of cancer cell metabolism and their corresponding ATP yields. In normal well-oxygenated tissues the primary source of ATP is the process of cellular respiration. The complete conversion of glucose to carbon dioxide and water has an ideal yield of about 29 ATP, although realistically the yield is substantially lower (Brand, 2005). The preliminary stage of cellular respiration is glycolysis, the conversion of glucose to pyruvate; this process directly produces 2 ATP. In hypoxic conditions this pyruvate is preferentially converted into lactate via the enzyme lactate dehydrogenase (LDH) to regenerate the essential cofactor NAD+. In oxygenated conditions this pyruvate is transported across the inner mitochondrial matrix where it is decarboxylated and enters the citric acid cycle; the citric acid cycle directly generates 2 more ATP per glucose. The primary energy payoff is a result of cofactor oxidization that enables the electron transport chain to establish a proton gradient across the inner mitochondrial matrix. ATP synthase utilizes this electrochemical gradient to drive the phosphorylation of approximately 25 additional ATP per glucose molecule.

The aforementioned universal traits that cancer cells and normal cells share include cellular responses to various levels of oxygen, lactate or glucose. Examples include a Crabtree-like effect and a Pasteur-like effect (Casciari et al., 1992a). The Crabtree-like effect is when oxygen consumption decreases as glucose concentration increases. This can be explained by an increasing reliance on glycolysis for ATP when hyperglycemic conditions are encountered. The Pasteur-like effect is decreased glucose consumption as oxygen increases. This is due primarily to the inhibition of various metabolic steps by the presence of elevated ATP and other intermediaries. However, cancer cells are unique in that they preferentially utilize glycolysis, even in the presence of oxygen, coined aerobic glycolysis. This phenomenon is generally referred to as the Warburg effect whereby cells rely primarily on glycolysis even in the presence of sufficient oxygen to perform respiration (Warburg, 1956). There is a perceived inefficiency of this metabolic strategy, namely the dramatically reduced ATP yield, just 2 per glucose instead of 29, however, it has the benefits of faster ATP production and it is likely that much of this glucose is being consumed for proliferative (Vander Heiden et al., 2009) (e.g. by the pentose phosphate pathway) purposes. In addition to the typical glycolytic phenotype exhibited in many cancers, there is also a developing story of a co-operative relationship existing between aerobic and anaerobic  cancer cells. The lactate necessarily produced by glycolytic cells is being pushed back into the respiratory cycle by being converted into pyruvate (summarized in Feron, 2009; Nakajima and Van Houten, 2012); this spatial relationship is shown in Fig. 1. Lactate consumption has been observed in vitro in various models (Bouzier et al.,1998; Katz et al., 1974) as well as in vivo as early as the early 1980s (Sauer et al., 1982). However, a renewed interest in the topic was piqued when Sonveaux et al. (2008) showed that reducing lactate uptake by cancer cells led to hypoxic cell death, a particularly difficult subpopulation to target using traditional methods.

Metabolic phenomena have been studied in great detail by mathematical models, but models of tumor metabolism rarely include the interaction of the transport mechanisms of microvessels with the localized metabolic behavior of cells (with one recent exception McGillen et al., 2013). In the section to follow, we will develop a mathematical model that describes the concentrations of molecules that are important to cellular metabolism in the tissue around a single three-dimensional vessel that exhibits diffusion dominated interstitial transport. We will then use this model to demonstrate how the properties of the tumor cell population, such as glucose, lactate and oxygen consumption rates, affect tumor hypoxia and ATP production around a single vessel. The effects of metabolic inhibitors will be investigated by parameter changes that could be elicited by the application of glycolysis inhibitors, lactate dehydrogenase (LDH) inhibitors or respiratory inhibitors. We are interested in those metabolic inhibitors that could cripple the cells’ ability to produce ATP.

Fig.1. The spatial relationship between the cell populations in the model indicating dominant metabolism as we move away from the vessel. When the glucose and oxygen concentrations are highest near the vessel wall, the cells preferentially utilize glucose-fuelled respiration. When the oxygen supply is depleted far from the vessel, the cells rely on glycolysis. The glycolytic cells produce large quantities of lactate which are consumed by cells at intermediary distances and hypoxic oxygen concentrations. These cells are participating in a behavior that we will refer to as metabolic symbiosis.

A model to describe the concentrations of the major players in the metabolic pathways of respiration and glycolysis, will be outlined here. Its origins lie in a metabolic model developed by Casciari et al. (1992b) that was subsequently applied on the microscale by Molavian et al. (2009). The functional forms for the production rates are similar to those proposed by MendozaJuez et al. (2012) and subsequently extended to a spatial model by McGillen et al. (2013). In hypoxic and anoxic conditions, cells must partially or exclusively rely on metabolic pathways, such as glycolysis, that do not require oxygen for ATP production. In glycolysis, the preliminary stage of respiration, a single glucose molecule (C6H12O6) yields 2 ATP, which we will denote under the reaction arrow with a boxed ATP yield number, with the byproducts of lactate and a proton. Denoting glucose by G and lactate by L C3H5O3, the net reaction is G kG> 2L + 2H+; [2]

where kG (mM/s) is the rate of glucose consumption by glycolysis that results in lactate formation. The accumulation of these hydrogen ions in a solid tumor is a primary contributor to tumor acidosis. In the presence of oxygen (O2), glycolysis is typically followed by the rest of the respiratory process with an ideal energy yield of approximately 29 ATP molecules with carbon dioxide (CO2) and water (H2O) as the only byproducts. The simplified summary reaction is given by G kO à 6O2 6CO2 + 6H2O; [29]

where kO is the rate of glucose consumption that results in cellular respiration. To represent the metabolic symbiosis between cells primarily producing energy via glycolysis and those consuming lactate in well-oxygenated areas, we will link the above two reactions with the lactate-consuming net reaction: L+ H+ + 3O2 kLà  3CO2 + 3H2O; [13.5]

where kL is the rate of lactate consumption. This summarizes the re-entry of lactate, via conversion to pyruvate, into aerobic respiration that yields 13.5 ATP per lactate molecule. The relationships between the summary reactions included in the model are given in Fig. 2.

Fig. 2. The summary reactions included in the metabolism model. Glycolysis proceeds at rate kG and produces 2 ATP from the conversion of glucose to pyruvate. Glucose-fuelled respiration occurs at rate kO in the presence of oxygen, while lactate-fuelled respiration occurs at rate kL (2 kL is present in the diagram to remain consistent with the glycolytic yield of 2 lactate molecules).

Fig. 3. Solution to base case boundary value problem. Nondimensional oxygen o and glucose g concentrations decrease due to metabolic consumption. Lactate  ℓ  increases to almost double its vessel concentration since it is produced by glycolysis at a higher rate than it is consumed by respiration due to a limiting oxygen concentration. This image has been spatially truncated to 300 μm since the concentrations are approximately constant after this point.

Fig. 4. Consumption rates of oxygen, lactate and glucose (QO, QL and QG for the concentrations given in Fig. 3). The glucose and oxygen consumption rates are strictly positive while the consumption rate of lactate is predominantly negative. This indicates that even in regions where lactate is being consumed, it is being produced at a higher rate by glycolysis.

Fig. 5. The base case for ATP turnover (consumption/production) rates corresponding to consumption rates given in Fig. 4. The contributions of the pathways are bounded by the total ATP turnover rate  PATP . Glycolysis dominates in hypoxic/ anoxic regions while glucose-fuelled respiration occurs sparingly near the blood vessel. Lactate-fuelled cells are consuming the byproduct of the glycolytic cells where there is oxygen present.

Warburg effect

In the base case considered above glycolysis is inhibited until the oxygen consumption drops to values that prevent the production of sufficient ATP to maintain cell survival. However, cancer cells will commonly utilize glycolysis as a primary energy source even when there is enough oxygen to ensure cell survival. In the model we characterize the cell’s ability to hold off on utilizing glycolysis in oxygenated areas by the parameter ΛO. Reducing it 400-fold from the base case above (from 4000 to 100) results in spatial ATP turnover rate as given in Fig. 6. Cells near the vessel greedily consume the available resources leaving cells further from the vessel to die from insufficient ATP supply. The ATP production breakdown corresponds to the second bar in Fig. 8 and is slightly higher than the whole tissue considered in the base case above.

Fig. 6. ATP turnover (consumption/production) rates for cells exhibiting the Warburg effect (differs from base case because ΛO = 100 instead of 4000). The contributions of the pathways are bounded by the total ATP turnover rate PATP. Glycolysis is dominant in all regions of the tumor, however, glucose and lactate fueled respiration occur sparingly near the blood vessel where there is oxygen present.

Fig. 7. The optimal metabolic behavior on the microscale given an ATP turnover maximum of X mM=s. This shows glucose-fuelled respiration near the vessel, glycolysis far from the vessel and a lactate-consuming population in between these two

Instead of fixing all of the parameters to the values given in Table 1, we could leave some of the parameters free and optimize the amount of ATP generated from the given metabolites by imposing a maximum constraint on ATP production. For instance, setting all of the parameters initially to those given in Table 1, and then minimizing some function of Z¼PATP θ where θ is the maximum allowed ATP turnover rate would theoretically ensure that the available resources were not being selfishly consumed by oxidative cells near the vessel. Allowing cells to alter their glycolytic parameters: βg, δ and κg along with their lactate–glucose switch parameter λ yields the results shown in Fig. 7. While there was still enough constraint that the system still exhibited a non-constant ATP turnover where it could, this reinforces the suggested optimal strategy of glucose-fuelled respiration near the vessel, glycolysis far from the vessel and a lactate-consuming population in between these two. This optimization procedure most notably resulted in a reduced δ enabling the switch to glycolysis to happen closer to the vessel and a lower κg enabling a later and more drastic shut off of glycolysis; the parameter results of this simulation are presented in Table C1.

The mathematical model presented here can give insight into the effects of blocking various metabolic pathways. The three metabolic pathways that we have considered, namely (i) glucosefuelled respiration, (ii) lactate-fuelled respiration and (iii) glycolysis, could be inhibited by various agents, and the effects on local ATP production will be outlined below. For illustrative purposes we will consider complete inhibition of these pathways, but this will be followed by consideration of the more realistic scenario where these pathways are only partially inhibited. Entirely knocking out lactate metabolism could be achieved by inhibiting lactate dehydrogenase (LDH) which is responsible for the reentry of lactate into respiratory pathways by converting lactate into pyruvate. Successful inhibition would concurrently prevent the conversion of pyruvate to lactate as well, a crucial step for regenerating NAD+ in glycolytic cells. This has been shown to reduce ATP levels and consequently induce cell death in tumors (Le et al., 2010). The complete inhibition of lactate dehydrogenase would eliminate two of the three pathways considered here: lactate-fuelled respiration and glycolysis. Complete inhibition can be reflected in the model by setting BL¼0 and BG¼0, leaving only glucose-fuelled respiration to produce ATP, a physiologically normal condition. However, the hypoxic and hypoglycaemic conditions considered here do not leave enough fuel for cell survival. This scenario corresponds to the third bar in Fig. 8. We could also target glucose transport into the cell, an intermediary of glycolysis or one of the critical enzymes responsible for converting glucose to pyruvate. This is distinct from the strategy noted above of inhibiting LDH which prevents the conversion of lactate to pyruvate and vice versa. This has also been noted as a prime target for cancer therapy (Pelicano et al., 2006; Gatenby and Gillies, 2007) and there are currently many potential targets (Granchi and Minutolo, 2012). Here we will consider the shutdown of glycolysis as preventing both glucose-fuelled respiration and glycolysis since both of these require glucose to be converted into pyruvate. However, it leaves the lactate-fuelled respiratory pathway intact. This could be considered in the model by taking BO¼0 and BG¼0.Similar tothe caseof LDH inhibition this leads to a significant decrease in ATP production as shown in the fourth bar of Fig. 8. The final scenario that we consider corresponds to full inhibition of respiration somewhere along the chain between pyruvate transport into the mitochondria and the electron transport chain. There are numerous potential targets in the mitochondria (Costantini et al., 2000) and we will consider the complete shutdown of respiration by setting BL¼0 and BO¼0. This would result in negligible oxygen consumption and with our base case of ΛO 100-4000 this would lead to repressed glycolysis in the tissue.

Fig. 9. The effects of metabolic repression on total ATP production in a unit annulus of tumor tissue ðΦÞ. Cell metabolism is fully functioning when the relative rate is 1, while the cell metabolism is fully inhibited when the relative rateis 0. Intermediary values correspond to partial inhibition of both affected metabolic rates, e.g. for LDH half-inhibition: BG and BL are half the base case value, and BO remains at its base case value. The legend abbreviations are the same as those used in bars 3–6 in Fig. 8: LDH inhibition (LDH), glycolytic inhibition (Glyc), respiratory inhibition (Resp), and respiratory inhibition with Warburg effect (R-W). The total ATP production begins to significantly decrease for LDH and glycolytic inhibition only once more than half inhibition is reached. For respiratory inhibition, significant decreases are not detected until metabolic rates drop to one-tenth of the base case value.

The functional form for glycolysis given in (8) is similar to that used in McGillen et al. (2013), except where our form uses oxygen as the inhibitory molecule, they use lactate. McGillen et al. (2013) do not include glucose-fuelled respiration at all (as it was deemed to occur at negligible rates), and they use a similar lactate-fuelled respiratory term as used here, that was originally formulated by Mendoza-Juez et al. (2012). Instead of including a Michaelis– Menten oxygen dependence, they introduce a switch parameter that turns oxygen-fuelled metabolism on and off at a threshold oxygen concentration. However, they did enable the cells to use combinations of respiration and glycolysis as opposed to the strict switching between these two pathways modelled by Mendoza Juez et al. (2012). The novel aspects of our model include the introduction of a glycolytic inhibition parameter that can prevent or enable the Warburg effect, an explicit and smoothly defined oxygen dependence for the respiratory pathways, and the inclusion of an accurate ATP yield formula. While our results focus on the energetic consequences of metabolic inhibition, McGillen et al. (2013) focus on the interaction between metabolite consumption and tumor growth.

Conclusions

The mathematical model formulated and analyzed above can give insight into the metabolic behaviors of cancer cells on the microscale. The tumor microenvironment characterized by hypoxia and nutrient deprivation leads to the utilization of highly unregulated glycolytic pathways and the consumption by respiring cells of the lactate produced by these cells. These metabolic scenarios are encompassed by the functional forms proposed for glucose, lactate and oxygen consumption. To consider the effect of altering parameters in the model to the efficiency of energy production we must also consider the rate of ATP turnover in the tissue. To this end a detailed biochemical summary was performed in order to calculate estimates for ATP yields. These energetic landscapes were considered in tissues that utilize anaerobic glycolysis, thus keeping more cells alive, and those that experience the Warburg effect, performing glycolysis in oxygenated areas. The analysis shows that the latter does confer a proliferative advantage by producing more ATP. The effects of metabolic inhibition were taken into account by knocking out the pathways considered in our model. Glycolytic inhibition blocked glycolysis and glucose-fuelled respiration, LDH inhibition blocked glycolysis and lactate-fuelled respiration while respiration inhibition blocked both forms of respiration. Both strategies that block glycolysis lead to appreciable decreases in total ATP production, while those that block respiration are only effective in the base case where the cells are unable to elevate glycolytic rates due to the repressive effect of oxygen in the model. However, when considering a more realistic scenario where cells can adapt to blocked respiratory pathways by upregulating glycolysis via the Warburg effect, we observe that this treatment strategy allows sufficient ATP for cell survival. The work presented here should lead to a reconsideration of the importance of the spatial relationships between cells performing under specific metabolic regimes and provides a minimally parameterized and straightforward basis for future phenomenological metabolite consumption models.

2.1.5.3 Localization and Kinetics of Reduced Pyridine Nucleotide in Living Cells by Microfluorometry J. Biol. Chem.-1959-Chance-3044-50

Britton Chance and Bo Thorell

J Biological Chemistry Nov 1959; 234(11)
On the basis of early studies of the blue fluorescence of living cells and tissues before chemical treatment, l Sjiistrand (1) suggested its association with the mitochondrial bodies. Microspectroscopic observations of prepared tissue sections revealed emission bands of the fluorescent material of axons (1) and acid treated groups of kidney cells; (2) critical evaluations of available spectrograms of purified materials lead to the identification of thiamin and riboflavin, respectively. Although some of the  of the kidney sections, before acid treatment, showed fluorescence bands in the spectrograms that are now regarded as suggestive of reduced pyridine nucleotide, the fluorescence of which was first observed by Warburg (2), insufficient data were available at that time to consider reduced pyridine nucleotide as a possible cause of the tissue fluorescence. Recent studies by Boyer and Theorell (3) and Duysens and Kronenberg (4) on alcohol dehydrogenase show clearly the great enhancement of DPNH fluorescence that is caused by a binding of the coenzyme to the enzyme surface. Furthermore, Duysens and Amesz (5) demonstrate that the intact yeast cell shows a fluorescence characteristic of bound reduced pyridine nucleotide. In more recent experiments, it has been found that intramitochondrial reduced pyridine nucleotide also exhibits the same characteristic fluorescence, calling attention to the possibility of a close relationship between this effect and the blue fluorescence of living cells and tissues (6). The fluorometric result agrees with the spectrophotometrically determined large RPN3 content of mitochondria (7). Furthermore, its binding to a mitochondrial component has been suggested by kinetic studies (7). More recent data show that the fluorescence of intact muscle diminishes upon electrically induced contraction, in agreement with the spectrophotometrically observed oxidation of RPN (8). Thus, there is good evidence that a considerable amount of tissue fluorescence is due to this component. To study the fluorescence of mitochondrial RPN independently of that of the cytoplasm, it has been desirable to develop a microfluorometric method, which, in conjunction with suitable biological materials showing isolation of the mitochondrial bodies, could be used to investigate cytoplasmic-mitochondrial interactions and also to permit the assay of RPN localized in different
1 The term “autofluorescence” is used by Sjostrand and other workers to indicate the fluorescence of a tissue before its treatment with stains, acids, and so forth.
2 F. S. Sjiistrand, unpublished experiments.
* The abbreviation used is: RPN, reduced pyridine nucleotide.

This paper describes such an instrument and its application to the observation of mitochondrial RPN, particularly in highly localized mitochondrial bodies such as the nebenkern4 of the grasshopper spermatid (11). It is now possible to investigate in viva the independent changes of mitochondrial and cytoplasmic pyridine nucleotide in the aerobic-anaerobic transition. In other cells, where mitochondrial localization is not sufficient for independent characterization of cytoplasmic and mitochondrial components of the fluorescence, assays of the oxidation-reduction state of the total pyridine nucleotide in individual cells in different states of metabolism and growth are possible. The combination of this differential fluorometer with the spectrophotometer described elsewhere (12, 13) for the localization of activities of respiratory and glycolytic enzymes in cells affords a new approach to the dynamic aspects of metabolic reactions.

The closure of the switch contacts and the wave form of the photocurrent and light intensity for an AC-operated light source (see below) are indicated in Fig. 1. The fluctuations of the light intensity (~100 per cent modulation) indicated on the top line cause synchronous variations which result in an asymmetrical wave form for the photocurrent, provided the fluorescent object coincides with the extremes of the excursions of the vibrating diaphragm. To measure the fluorescence intensity of the object (M) and that of a nearby “free space” (R), the switch circuit is adjusted so that it closes for a brief interval at the peaks of the photocurrent wave form (Fig. 1). The portions of the photocurrent selected by this switch are used to charge a condenser so that its potential represents the difference of the photocurrents at the two times. This potential is amplified by a “Millivac,” type 17C, and by an Esterline-Angus l-ma. recorder.

FIQ. 1. Wave forms of light intensity and photocurrent relative to the times of switch closure (alternating current operated by lamp). The vibrating diaphragm operates synchronously with the fluctuations in light intensity so that the extremes of its vibration correspond to maxima of light intensity

Fig. 2. Relative fluorescence maxima for suspensions of diploid bakers’ yeast, pentaploid yeast, and ascites tumor cells. These fluorescence emission spectra are obtained with excitation of the cell suspensions by the 366-rnr mercury line passed through the same filter used in the microfluorometer. The energy obtained through the Wratten 2A filter is analyzed by means of a grating monochromator and is plotted as a function of wave length. Significant features of the record are that no measurable energy at 366, 436, or 546 mp is received by the photocell. The cell suspensions are relatively concentrated (60 mg. per cc. for the yeast cell suspensions). The close correspondence of the amplitudes of the peaks is a consequence of adjusting the photocell dynode voltage appropriately (928).

Studies of mitochondria treated with ADP to cause the disappearance of RPN fluorescence show that a relatively small contribution of the flavoprotein of the respiratory chain remains and that flavoprotein fluorescence does not measurably change with its oxidation-reduction state. Thus, it is felt justified in these preliminary studies to attribute the major portion of the fluorescence observed to RPN. Evidence in favor of this view is indicated below, where chemical transitions affecting the oxidation-reduction state and hence the fluorescence of reduced pyridine nucleotide show that most of the fluorescence localized in the mitochondria is affected by this transition and hence is not a “fixed” background fluorescence.

Relative Intensities of Signals-A survey of various biological materials has been made to determine the relative intensities of the signals obtained and to demonstrate the feasibility of studies of their fluorescence. This study is largely incomplete, but the preliminary results summarized in Table I are rather encouraging. These fluorescence intensities range from a small value for the aerobic nebenkern of the grasshopper spermatid to a large value for the anaerobic pentaploid yeast cell. The larger currents give a signal-to-noise ratio of such magnitude that delicate indications are given, not only of the magnitude of the fluorescence, but also of changes that may occur in different metabolic states or in different parts of the cells. At higher currents, accuracies > 100 : 1 are possible. Localization of Fluorescence-The inadequate resolution of the optical microscope and the uniform distribution of the mitochondria throughout the cytoplasm of such cells as bakers’ or pentaploid yeast or ascites tumor cells offer little possibility for localizing the mitochondrial fluorescence as opposed to the cytoplasmic fluorescence.

Table I Summary of fluorescence intensities for various cell types and metabolic states

FIG. 7. Time course of the fluorescence changes of the nebenkern and of the cytoplasm in the aerobic-anaerobic transition. A, the ratio of nebenkern to cytoplasmic fluorescence, plotted as determined by records similar to those of Fig. 6. The numbers in the diagram refer to the cell studied. The abrupt upward discontinuity of the record at approximately 45 minutes occurs when anaerobiosis is expected. B, the individual measurements of the cytoplasmic (0-O) and nebenkern (0-C) fluorescence. The number of the cell used for measurement is also indicated along the scale of the abscissa (922a, b).

A fluorescence with spectral characteristics that are similar to those of reduced pyridine nucleotide of isolated mitochondria has been demonstrated to be localized in three cell configurations which cytologically show mitochondrial aggregation. The oxidation and reduction of mitochondrial pyridine nucleotide without a measurable change of cytoplasmic fluorescence suggest that compartmentalization of mitochondrial and cytoplasmic pyridine nucleotide occurs in viva, at least in the grasshopper spermatid. Studies of other material, particularly pentaploid yeast cells and ascites tumor cells, indicate that similar changes of fluorescence of the single cell are observed in the aerobic-anaerobic transition. In such cells, optical resolution does not permit localization of mitochondrial bodies. Nevertheless, the state of pyridine nucleotide in the individual cell can be investigated.

Discussion:

Radoslav S. Bozov (@Radobozov)

Your interpretations approximates wrong conclusions: 1. Oxygen is processed via mitochondrial Cu2+/3+ metalloproteins , H2O2 (King’s water) electro-negativity processing). 2. Lactate formation is an effect of cancerogenesis, a Lewis base., you lack fundamental understanding pKa issues in science and more accurately in moderns science. Such thing as protons have never been observed directly, that is a concept for explaining pH. All organic acids in bio systems are deprotonated carboxyl functional groups entering resonance state , which allows interpretation of spectra: There i s no way in real chemical science to have measured pH of a compartment and especially nano space! The physiological charge is -1: http://www.hmdb.ca/metabolites/HMDB00190
Biophysical concepts might be applied in a wrong direction! which is the case of perceiving NADH/Pyruavte/Lactate triangle , you lack conceptual frames of systems applicability in expanded biological space/energies – proteins, nucleotides, and meta states! Pyridines have nothing to do with energy states, pyridines are nitrogen capacitors , they have nothing to do with origin and implications of mutation/evolution, regulation! You lack fundamental understanding of physical implications today!
Lactate is a compensatory mechanism of the genome for copying with disregulated supply of pyruvate for synthesizing negative methyl groups, energy processed in biospaces via compression/decompressing bio systems! Remember, quantum chemistry and implications of quantum physics is not one and the same! General Relativity is applied only towards statistical cloud delocalization, that implicates induction vs deductive reasoning! Classic mechanics of optics is a neat way to do math, nothing more than that of accepting reality of none observable parameters! Lactic acid was considered an end product of metabolism and physiological fatigue for a long time! Now, we know that is not true! To contrary lactic acid is used to have healthy pluripotecy differentiation of bone marrow derived cell lines. LDH proteins demonstrate high similarity motif selection with a range of transcriprion factors via blast studies. In general DATA IS MESSED UP and likely WRONGLY INTERPRETED!

Larry H Bernstein,

I am quite sure that what I presented is the best that science has produced.  Whether there is a theoretical issue in physical interpretation is another matter.  Two key papers are by Mayekovsky and by Britton Chance.  Britton Chance only died recently at nearly 100, but he was a giant in biochemistry, and my final exam question in freshman biochemistry was – should B Chance get the Nobel Prize.  His conception was then controversial, and the ETC won out.  Nevertheless, his contributions went far beyond the explanation for the H+ transfer role in ETC.  When I was a resident in pathology, my mentor (who identified the difference between myokinase and liver AK) commented that  the only reason that Chance had not been awarded was because his work was so technologically focused. I had studied the malate dehydrogenase reaction in Nate Kaplan’s lab, and I carried out stop-flow studies of the inhibition of the mitochondrial isoenzyme by oxaloacetate.  When I went to Washington, DC at the end of the Vietnam War and the time of Watergate, I had the good fortune to be introduced to Chance in a visit to Philadelphia.  I think that I do understand acidemia, cationic and anionic balance, which is not a simple matter – after some 35 years in pathology, with a main focus on clinical pathology.   If you could step back and give a point by point elucidation of where the experimental interpretation is in error, and a point by point highlight of your explanation, it would be very helpful. I know that I am quite knowledgable about the mechanism of reactions of the pyridine nucleotide linked dehydrogenases, and the isoenzymes, and the abortive ternary complexes.  I also published in the Brit J Cancer in the 1970’s on an abnormality in the cytoplasmic MDH in fast growing murine hepatomas, and in human cancer.  I spent many months purifying the heart mitochondrial MDH to purity, and established that there was no histidine residue at the active site.

Read Full Post »

Larry H. Bernstein, MD, FCAP, Author and Curator

Isozymes

An example of an isozyme is glucokinase, a variant of hexokinase which is not
inhibited by glucose 6-phosphate.  Its different regulatory features and lower
affinity for glucose (compared to other hexokinases), allows it to serve different
functions in cells of specific organs, such as

  • control of insulinrelease by the beta cells of the pancreas, or
  • initiation ofglycogen synthesis by liver
  • Both of these processes must only occur when glucose is abundant,or
    problems occur.

Isozymes or Isoenzymes are proteins with different structure which catalyze
the same reaction. Frequently they are oligomers made with different
polypeptide chains, so they usually differ in regulatory mechanisms and in
kinetic characteristics.

From the physiological point of view, isozymes allow the existence of similar
enzymes with different characteristics, “customized” to specific tissue
requirements or metabolic conditions.

One example of the advantages of having isoenzymes for adjusting the
metabolism to different conditions and/ or in different organs is the following:

Glucokinase and Hexokinase are typical examples of isoenzymes. In fact,
there are four Hexokinases: I, II, III and IV. Hexokinase I is present in all
mammalian tissues, and Hexokinase IV, aka Glucokinase, is found mainly
in liver, pancreas  and brain.

Both enzymes catalyze the phosphorylation of Glucose:

Glucose + ATP —–à Glucose 6 (P) + ADP

Hexokinase I has a low Km and is inhibited by glucose 6 (P).  Glucokinase
is not inhibited by Glucose 6 (P) and his Km is high. These two facts
indicate that the activity of glucokinase depends on the availability
of substrate and not on the demand of the product.

Since Glucokinase is not inhibited by glucose 6 phosphate, in
conditions of high concentrations of glucose this enzyme
continues phosphorylating glucose, which can be used for
glycogen synthesis in liver. Additionally, since Glucokinase
has a high Km, its activity does not compromise the supply
of glucose to other organs; in other words, if Glucokinase
had a low Km, and since it is not inhibited by its product, it
would continue converting glucose to glucose 6 phosphate
in the liver,  making glucose unavailable for other organs
(remember that after meals, glucose arrives first to the liver
through the portal system).

The enzyme Lactate Dehydrogenase is made of two (H-
and M-)  sub units, combined in different Permutations
and 
Combinations  depending on the tissue in which it
is present as shown in table,

Type Composition Location
LDH1 HHHH Heart and Erythrocyte
LDH2 HHHM Heart and Erythrocyte
LDH3 HHMM Brain and Kidney
LDH4 HMMM Skeletal Muscle and Liver
LDH5 MMMM Skeletal Muscle and Liver
  • While isozymes may be almost identical in function
    (defined by Michaelis constant, KM)
  • they differ in amino acidsubstitutions that change the
    electric charge of the enzyme (such as replacing
    aspartic acid with glutamic acid)
  • The sum of zwitterion charges result in identifyjng
    difference inmigratiion toward the anode by gel
    electrophoresis
    , and this forms the basis for the use
    of isozymes as molecular markers.
  • To identify isozymes, a crude protein extract is made by
    grinding animal or plant tissue with an extraction buffer,
    and the components of extract are separated according
    to their charge by gel electrophoresis.
  • They were classically purified by ion-exchange column
    chromatography after first precipitation with ammonium
    sulfate, followed by dialysis.

The cytochrome P450 isozymes play important roles in
metabolism and steroidogenesis. The multiple forms of
phosphodiesterase also play major roles in various
biological processes.

These isoforms of the enzyme are unequally distributed
in the various cells of an organism.

Further the main isoenzymes may have closely grouped
“isoforms” having unclear significance.

There are many examples of isoenzymes in cell
metabolism that distinguish cells:

  • Adenylate kinase (AL in liver, and myokinase) – that
    are distinguished by reactivity with sulfhydryl reagents
  • Pyruvate kinase
  • AMPK, and Calmodulin kinase
  • Malate, isocitrate, alcohol, and aldehyde dehydrogenase
  • Nitric oxide synthase (i, e, and n)…

References[edit]

Hunter, R. L. and C.L. Markert. (1957) Histochemical
demonstration of enzymes separated by zone electrophoresis
in starch gels. Science 125: 1294-1295

Uzunov, P. and Weiss, B.(1972) “Separation of multiple
molecular forms of cyclic adenosine 3′,5′-monophosphate
phosphodiesterase in rat cerebellum by polyacrylamide
gel electrophoresis.”  Biochim. Biophys. Acta 284:220-226.

Uzunov, P., Shein, H.M. and Weiss, B.(1974) “Multiple
forms of cyclic 3′,5′-AMP phosphodiesterase
of rat cerebrum and cloned astrocytoma and
neuroblastoma cells.” Neuropharmacology 13:377-391.

Weiss, B., Fertel, R., Figlin, R. and Uzunov, P. (1974)
“Selective alteration of the activity of the multiple forms
of adenosine 3′,5′-monophosphate phosphodiesterase
of rat cerebrum.” Mol. Pharmacol.10:615-625.

Lactate dehydrogenase

In cells, the immediate energy sources involve glucose oxidation. In anaerobic metabolism, the donor of the phosphate group is adenosine triphosphate (ATP), and the reaction is catalyzed via the hexokinase or glucokinase: Glucose +ATP-Mg²+ = Glucose-6-phosphate (ΔGo = – 3.4 kcal/mol with hexokinase as the co-enzyme for the reaction.).
In the following step, the conversion of G-6-phosphate into F-1-6-bisphosphate is mediated by the enzyme phosphofructokinase with the co-factor ATP-Mg²+. This reaction has a large negative free energy difference and is irreversible under normal cellular conditions. In the second step of glycolysis, phosphoenolpyruvic acid in the presence of Mg²+ and K+ is transformed into pyruvic acid. In cancer cells or in the absence of oxygen, the transformation of pyruvic acid into lactic acid alters the process of glycolysis.
The energetic sum of anaerobic glycolysis is ΔGo = -34.64 kcal/mol. However a glucose molecule contains 686kcal/mol and, the energy difference (654.51 kcal) allows the potential for un-controlled reactions during carcinogenesis. The transfer of electrons from NADPH in each place of the conserved unit of energy transmits conformational exchanges in the mitochondrial ATPase. The reaction ADP³+ P²¯ + H²–à ATP + H2O is reversible. The terminal oxygen from ADP binds the P2¯ by forming an intermediate pentacovalent complex, resulting in the formation of ATP and H2O. This reaction requires Mg²+ and an ATP-synthetase, which is known as the H+-ATPase or the Fo-F1-ATPase complex. Intracellular calcium induces mitochondrial swelling and aging. [12].
The known marker of monitoring of treatment in cancer diseases, lactate dehydrogenase (LDH) is an enzyme that is localized to the cytosol of human cells and catalyzes the reversible reduction of pyruvate to lactate via using hydrogenated nicotinamide deaminase (NADH) as co-enzyme.
The causes of high LDH and high Mg levels in the serum include neoplastic states that promote the high production of intracellular LDH and the increased use of Mg²+ during molecular synthesis in processes pf carcinogenesis (Pyruvate acid>> LDH/NADH >>Lactate acid + NAD), [13].
LDH is released from tissues in patients with physiological or pathological conditions and is present in the serum as a tetramer that is composed of the two monomers LDH-A and LDH-B, which can be combined into 5 isoenzymes: LDH-1 (B4), LDH-2 (B3-A1), LDH-3 (B2-A2), LDH-4 (B1-A3) and LDH-5 (A4). The LDH-A gene is located on chromosome 11, whereas the LDH-B gene is located on chromosome 12. The monomers differ based on their sensitivity to allosteric modulators. They facilitate adaptive metabolism in various tissues. The LDH-4 isoform predominates in the myocardium, is inhibited by pyruvate and is guided by the anaerobic conversion to lactate.
Total LDH, which is derived from hemolytic processes, is used as a marker for monitoring the response to chemotherapy in patients with advanced neoplasm with or without metastasis. LDH levels in patients with malignant disease are increased as the result of high levels of the isoenzyme LDH-3 in patients with hematological malignant diseases and of the high level of the isoenzymes LDH-4 and LDH-5, which are increased in patients with other malignant diseases of tissues such as the liver, muscle, lungs, and conjunctive tissues. High concentrations of serum LDH damage the cell membrane [11, 31].

Relation between LDH and Mg as Factors of Interest in the Monitoring and Prognoses of Cancer

Aurelian Udristioiu, Emergency County Hospital Targu Jiu Romania, Clinical Laboratory Medical Analyses, E-mail: aurelianu2007@yahoo.com

Lactate Dehydrogenase (LDH) is ubiquitous in animals and
man, and  it occurs in different organs of the body, each
region having a unique conformation of the subunits, but
the significance was once disputed. Perhaps the experiments
of Jakob and Monod on the lac 1 operon put to rest any
notions that isoenzymes and their conformational forms are
something of no real significance.  This concept does not
necessarily apply in all cases of isoenzyme differences, by
which I mean that there may be a difference in reactivity at
the active site.

For that matter, Jakob and Monod discovered and elucidated
allosterism.

300px-Enzyme_Model  allosterism
In biochemistryallosteric regulation is the regulation of a
protein by binding an effector molecule at a site other than
the protein’s active site.

The site the effector binds to is termed the allosteric site.
Allosteric sites allow effectors to bind to the protein, often
resulting in a conformational change. Effectors that enhance
the protein’s activity are referred to as allosteric activators,
whereas  those that decrease the protein’s activity are called
allosteric inhibitors.

Allosteric regulations are a natural example of control loops,
such as feedback from downstream products or feedforward
 from upstream substrates. Long-range allostery is especially
important in cell signaling. Allosteric regulation
is also particularly important in the cell’s ability to adjust
enzyme activity.

The term allostery comes from the Greek allos (ἄλλος), “other,”
and stereos (στερεὀς), “solid (object).” This is in reference
to the fact that the regulatory site of an allosteric protein is
physically distinct from its active site.

Jacob and Monod model of transcriptional regulation of the lac operon by lac repressor

Jacob and Monod model of  lac repressor

Most allosteric effects can be explained by the concerted
MWC model put forth by Monod, Wyman, and Changeux[2]
or by the sequential model described by Koshland, Nemethy,
and Filmer.[3] Both postulate that enzyme subunits exist in
one of two conformations, tensed (T) or relaxed (R), and
that relaxed subunits bind substrate more readily than
those in the tense state. The two models differ most in
their assumptions about subunit interaction and the pre-
existence of both states.

Allosteric_Regulation Model

Allosteric_Regulation Model

  1.  Monod, J. Wyman, J.P. Changeux. (1965). On the nature of
    allosteric transitions:A plausible model. J. Mol. Biol.;12:88-118.
  2. E. Jr Koshland, G. Némethy, D. Filmer (1966). Comparison of
    experimental binding data and theoretical models in proteins
    containing subunits. Biochemistry. Jan;5(1):365-8

The sequential model (2) of allosteric regulation holds that subunits
are not connected in such a way  that a  conformational change in
one induces a similar change in the others. Thus, all enzyme
subunits do not necessitate the  same conformation. Moreover,
the sequential model dictates that molecules of substrate
bind via an
 induced fit  protocol. In general, when a subunit
randomly collides with a molecule of substrate, the active site,
in essence, forms a  glove around its substrate.

While such an induced fit converts a subunit from the tensed
state to relaxed state, it does not propagate the conformational
change to adjacent subunits. Instead, substrate-binding at
one subunit  only slightly  alters the structure of other
subunits so that their binding sites are more receptive to
substrate.
To summarize:

  • subunits need not exist in the same conformation
  • molecules of substrate bind via induced-fit protocol
  • conformational changes are not propagated to all
    subunits

The discovery of morpheeins has revealed a previously
unforeseen mechanism to target universally essential
enzymes for species-specific drug design and discovery.
A morpheein-based inhibitor would function by  binding
to and stabilizing  the inactive morpheein form of the
enzyme, thereby shifting the equilibrium to favor that form (3).

  1. K. Jaffe, S.H. Lawrence (2008). “Expanding the
    concepts in protein structure-function relationships
    and  enzyme kinetics: Teaching using morpheeins”
    .
    Biochemistry and Molecular Biology  Education36 (4)
    : 274–283. http://dx.doi.org:/10.1002/bmb.20211.
    PMC 2575429PMID 19578473

Important related points are:

Non-regulatory allostery

A non-regulatory allosteric site refers to any non-regulatory
component of an enzyme (or any protein), that is not  itself
an amino acid. For instance, many enzymes require sodium
binding to ensure proper function. However, the sodium
does not necessarily act as a regulatory subunit; the sodium
is always present and there are no known biological processes
to add/remove sodium to regulate enzyme activity. Non-
regulatory allostery could comprise any other  ions besides
sodium (calcium, magnesium, zinc), as well as other chemicals
and possibly vitamins.

Lactate and malate dehydrogenases

LDH is a key enzyme in glycolysis. Anaerobic glycolysis is the
conversion of pyruvate into lactate acid in the absence
of oxygen. This pathway is important to glycolysis in two main
ways. The first is that

  • if pyruvate were to build up glycoysis
  • the generation of ATP would slow.

The second is anaerobic respiration

  • allows for the regeneration of NAD+ from NADH.

NAD+ is required when glyceraldehyde-3-phosphate
dehydrogenase oxidizes glyceraldehyde-3-phosphate in
glycolysis, which generates NADH. Lactate dehydrogenase
is responsible for the anaerobic conversion of NADH to
NAD+. Click here to see the residues which form
inter
actions with pyruvate in the Lactate Dehydrogenase
from Cryptosporidium  parvum (2fm3). (Wikipedia)

Glycolysis ends with the synthesis of pyruvate.  But, to be
self-functioning, it must end with lactate.  Why?  Anaerobic
means “without oxygen”.  This is tantamount to saying
“without mitochondria”.

  1. The mitochondria are especially adept at oxidizing
    NADH to NAD+. NAD+ is needed to keep the glyceraldehyde-
    3-PO4 dehydrogenase reaction functioning.
  2. If glycolysis is to continue when no oxygen is present or in
    short supply (as in a working muscle), an alternative means
    of oxidizing NADH must occur.

Pyruvate has 2 metabolic fates:

  • it can either be converted into lactate or to acetyl-CoA .
    Note that in animals and plants the electrons in  NADH
    are transferred  to pyruvate which reduces the carbonyl
    carbon in the pyruvate molecule to an alcohol. The
    reaction is catalyzed by the enzyme lactate dehydrogenase.
    Lactate (or L-lactate to be more precise)  is thus  a
    “waste product”, since it has no metabolic fate other
    than to be converted back into pyruvate in a reverse of
    the  forward reaction.
  • More importantly, the NAD+ feeds back to the glyceraldehyde-
    3-PO4 dehydrogenase reaction, which  allows glycolysis
    to continue.  Were it not for lactate formation, glycolysis
    as a self-functioning pathway could not exist.

In yeast a slightly different end of glycolysis becomes apparent.
Yeast do not synthesize lactate.  They do, however, oxidize
NADH back to NAD+ anaerobically.  How do they do this?  The
answer is they make ethanol.  In the reaction the pyruvate is
converted into acetaldehyde.  The reaction is catalyzed by a
lyase enzyme, pyruvate decarboxylase, which removes the
carboxyl group as a CO2.  Acetaldehyde is formed because
the electron pair that bonds the –COO group is not removed
by the decarboxylation.  A proton is plucked from the
environment giving the final product, acetaldehyde.
Acetaldehyde is now the substrate that will oxidize NADH to
NAD+ and in the process ethanol is formed.

There is another advantage to the pyruvate-lactate interchange.
The lactate formed by lactate  dehydrogenase  can  be
reconverted. This allows a cell to synthesize glucose from lactate.
Converting lactate to glucose is a major feature of gluconeogenesis,
an anabolic pathway that synthesizes glucose from smaller
precursors such as lactate. This is important because acetyl-CoA
cannot be converted back to pyruvate and hence cannot be a
source of carbons  for glucose biosynthesis.

ADP.  ADP is required in the 3-phosphoglycerate kinase reaction
and in the pyruvate kinase reaction.  It is formed from ATP in the
hexokinase reaction and the phosphofructokinase-I reaction.

NADH, ADP and PO4.   NADH oxidation is important in glycolysis.
NADH is converted into NAD+ in the mitochondria.  That
reaction is promoted by O2 ; NAD+ stays in the mitochondria.
Also in the mitochondria, ATP is formed by condensing ADP
with PO4.  Thus, O2 allows mitochondria to out-compete the
cytosol for ADP,  NADH and PO4, all limiting  substrates or
coenzymes.

In vertebrates, gluconeogenesis takes place mainly in the liver
and, to a lesser extent, in the cortex of kidneys. In many
animals, the process occurs during periods of fasting,
starvationlow-carbohydrate diets, or intense exercise.
The process is highly endergonic until it is coupled to the
hydrolysis of ATP or GTP, effectively making the process
exergonic. For example, the pathway leading from pyruvate
to glucose-6-phosphate requires 4 molecules of  ATP and
2 molecules of GTP to proceed spontaneously. Gluco-
neogenesis is a target of therapy for type II diabetes,
such as metformin, which inhibits glucose formation
and stimulates glucose uptake by cells.

Lactate is formed at the endstage of glycolysis with insufficient
oxygen is transported to the liver where it is converted into
pyruvate by the Cori cycle using the enzyme lactate
dehydrogenase
. In this reaction lactate loses two electrons
(becomes oxidized) and is converted to pyruvate. NAD+
gains two electrons (is reduced) and is converted to NADH.

Both lactate and NAD+ bind to the active site of the enzyme
lactate dehydrogenase and both lactate and NAD+ participate
in the catalysis reaction. In fact, catalysis could not occur
unless the coenzyme NAD+ bound to the active site.

lactat-pyr.LDH

lactat-pyr.LDH

http://academic.brooklyn.cuny.edu/biology/bio4fv/page/couple.gif

What is not shown:

  1. The liver LDH is composed of predominantly M-type subunits.
  2. The forward reaction is regulated in the H-type LDH, but not
    the M-type   enzyme by the formation of a ternary complex
    of LDH-ox. NAD-lactate
  3. The formation and breakup of the ternary complex is
    dependent on the pyruvate in the forward reaction in a
    concentration dependent manner.
  4. The M-type LDH doesn’t have this tight binding of the LDH –
    NAD+ – lactate  (see catalysis below)
  5. As lactate concentration builds in the circulation from heavy
    muscle production (M-type), or from circulatory insufficiency,
    the circulating lactic acid reaches the liver.
  6. The lactic acid is taken up by the liver, and the high
    concentration of lactic acid drives the backward reaction,
    unrestricted.

Pyruvate, the first designated substrate of the gluconeogenic
pathway, can then be used to generate glucose. Transamination
or deamination of amino acids facilitates entering of their
carbon skeleton into the cycle directly  (as pyruvate or
oxaloacetate), or indirectly via the citric acid cycle.  It is
known that odd-chain fatty acids can be  oxidized to yield
propionyl-CoA, a precursor for succinyl-CoA, which can
be converted to  pyruvate and  enter  into gluconeogenesis.

gluconeogenesis

gluconeogenesis

http://upload.wikimedia.org/wikipedia/commons/thumb/6/63/Amino_acid_catabolism.svg/300px-Amino_acid_catabolism.svg.png

Catalysis

Studies have shown that the reaction mechanism of LDH follows an ordered sequence.

mechanism of LDH reaction

mechanism of LDH reaction

In the forward reaction

  1. NADH must bind to the enzyme  Several residues are
    involved in the binding of NADH
    . Once the NADH is
    bound to the enzyme,
  2. pyruvatebinds (substrate oxamate is shown; the CH3
    group is replaced by NH2 to form oxamate). (see the
    direction of the arrow)
  3. binds to the enzyme between the nicotinamide ring
    and several LDH residues.-
  4. transfer of a hydride ion then happens quickly
  5. in either direction giving a mixture of the two ternary
    complexes,
  6. enzyme-NAD+-lactate and enzyme-NADH-pyruvate .
  7. finally L-lactate dissociates from the enzyme followed
    by NAD+[2].

What is not shown is:

  1. The dissocation of NAD+ and lactate from the H-type LDHs
    is  dependent on the pyruvate  in the forward reaction in a
    concentration dependent manner
  2. This results in inhibition of the reaction as it proceeds as
    a result of the abortive ternary complex that forms in about
    500 msec carried out in the Aminco-Morrow stop flow analyzer.
  3. The regulatory effect of the tighter binding of the LDH (H)-
    NAD+-lactate is not seen with the M-type LDH.
  4. The result of this is that the H-type LDH is regulated by the
    formation of oxidized coenzyme  bound with reduced substrate.

Genetics and Mutagenesis of Fish 1973, pp 243-276.
Developmental and Biochemical Genetics of Lactate
Dehydrogenase Isozymes in Fishes
.
G. S. WhittE. T. MillerJ. B. Shaklee
 http://link.springer.com/article/10.1007%2F978-3-642-
65700-9_23/lookinside/000.png

In the teleost there are only three of the isoenzymes.  LDH-1,
3, and 5 (H4, H2M2, M4).

 teleost

Lactic dehydrogenase isozymes in lens and cornea 
Larry BernsteinMichael KerriganHarry Maisel
Experimental Eye Research Oct 1966; 5, (4): Pp 309–314, IN23–IN28
http://dx.doi.org:/10.1016/S0014-4835(66)80041-6

Lactic dehydrogenase isozymes of bovine and rabbit lens and
cornea were analyzed by starch gel electrophoresis.
Although there was a progressive loss of enzyme activity in
the lenses of both species with increasing age, the loss of
isozymes was more clearly evident in the bovine lens. In
the adult bovine lens, 

  • lactic dehydrogenase isozyme Iwas predominant,
  • while in the adult rabbit lens, isozymes 3–5were mainly present.

The mobility of lens isozymes was identical to that of isozymes
in other tissues. Furthermore, the isozymes were not  localized
to any major specific lens crystallin.

Lactate Dehydrogenase Isozyme Patterns of Human
Platelets and Bovine Lens Fibers

Elliot S. Vesell
Science 24 Dec 1965; 150(3704): pp.1735-1737   
http://dx.doi.org:/10.1126/science

Since the platelets and lens fibers, like mature human erythrocytes,
lack a nucleus, the results strengthen the case for a

  • previously developed association between LDH-5 and the
    cell nucleus.

These three cell types are mainly anaerobic, and therefore

  • their isozyme patterns are incompatible with the theory
    that anaerobic `  tissues exhibit predominantly LDH-5
    and aerobic tissues mainly LDH-1.

Lactate dehydrogenase isozymes and their relationship
to lens cell differentiation 

James A. StewartJohn Papaconstantinou
Biochimica et Biophysica Acta (BBA) – General Subjects
26 May 1966; 121,(1): Pp 69–78
http://dx.doi.org:/10.1016/0304-4165(66)90349-7

Changes in the activity of lactate dehydrogenase (LDH) (l-lactate:
NAD+ oxidoreductase EC 1.1.1.27) isozymes are associated with
the growth and differentiation of bovine lens cells. Calf and adult
lens epithelial cells contain all 5 isozymes. The cathodal forms are
most active in the calf-epithelial cells; the anodal forms are most
active in the fiber cells
. This transition from cathodal to anodal
forms of lactate dehydrogenase in the epithelial cells is associated
with cellular aging.

During the differentiation of an epithelial cell to a fiber cell, in calf
and adult lenses there is an enhancement of 

  • the transition from cathodal forms to anodal forms. 

The regulation of lactate dehydrogenase subunit synthesis may
be associated, therefore, with

  • the replicative activity of these cells.

In cells having the greatest replicative activity (calf epithelial
cells) the cathodal isozymes are most active; in cells having a
decreased mitotic activity (adult epithelial cells) the anodal
isozymes are most active. The non-replicative

  • fiber cell of calf and adult shows a transition toward the
    anodal forms.

Although lens fiber cells have a low rate of oxidative metabolism
lactate dehydrogenase-I is the most active isozyme in these
cells. Kinetically,

  • lactate dehydrogenase-I factors other than, or in addition
    to, the regulation of carbohydrate metabolism
  • are involved in regulating the synthesis of lactate dehydrogenase subunits.

Abbreviations   LDH; lactate dehydrogenase

What is not examined to resolve the discrepancy (see the next item):

The Vessell paper was a challenge to the work in Nathan
Kaplan’s lab.  However, there is sufficient complexity revealed
in these works that there is no conceptual foundation.

  1. The analogy is to the loss of cell nuclei in crystallin lens
    fiber formation with the LDH-H type subunits (aerobic?)
  2. The findings are reproduced in several laboratories.
  3. In the lens, glucose is catabolized primarily to lactic
    acid, and is not appreciably combusted to CO2
    (J Kinoshita. Glucose metabolism of Lens)
  4. However, synthetic processes, including nuclear DNA and
    cell replication requires TPNH. This is produced by means
    of the Pentose Shunt.
  5. The most favorable conditions for the lens are achieved
    by incubating in a medium containing glucose in the
    presence of oxygen. Under these conditions of
    incubation (Kinoshita)
  • the lens remains completely transparent,
  • it maintains normal levels of high energy phosphate
    bonds and cations, and
  • it shows a high rate of arginine incorporationinto protein.

incubation in the absence of glucose, but in the presence of oxygen

  • a haze is found in the lens,
  • a drop in high energy phosphate level is observed, and
  • Changes in cation levels are apparent.
  • A 50 percent decrease in the incorporation of arginine
    into lens protein is also observed.

the most unfavorable condition for the lens is an anaerobic
incubation in a medium without glucose

Pirie2 observed that a-glycerophosphate is one of the end products
of lens metabolism. Its oxidation with DPN as the cofactor could
channel its electrons directly into the ETC to produce energy without
involving the Krebs cycle. a-Glycerophosphate is formed from intermediates of the glycolytic scheme by reduction of dihydroxy-
acetone phosphate, one of the triose phosphates produced in
glycolysis.

the dehydrogenase of the mitochondria catalyzes the transfer
of elections to form DPNH by the following reactions:

a-glycerophosphate + DPN+ ± dihydroxyacetone ……..

phosphate + DPNH.

The DPNH is channeled into the oxidative phosphorylation
mechanism to form ATP. The dihydroxyacetone phosphate
then diffuses out into the soluble cytoplasm, interacts with
the glycolytic intermediates by the reversal of the above reaction,

  • and the cyclic mechanism is begunover again.

That this type of electron transport system functions in the
lens was proposed by Pirie.
http://www.iovs.org/content/4/4/619.full.pdf

Lactate dehydrogenase activity and its isoenzymes in
concentric layers of adult bovine and calf lenses.
  
Sempol DOsinaga EZigman SKorc IKorc BSans ARadi R, et al.
Curr Eye Res. 1987 Apr;6(4):555-60.

The activity of lactate dehydrogenase (LDH) and its isoenzyme
pattern were studied in four concentric layers of adult
bovine and calf lenses. In both groups the specific activity of
the total LDH diminished progressively toward the internal
nuclear layer; the decrease was greater in the adult lenses.
The enzyme activities in the cortical layers of the calf lens
were lower than in the adult lens, but in the inner nuclear layers,
the opposite was found. All of the 5 LDH isoenzymes were found
in each layer. In both groups of animals the LDH1 isoenzyme
prevailed, followed by LDH2. No differences were found in the
percentage of each isoenzyme in the different lens layers.
The differences in the activitie(s) of LDH found may be due

  • to post-translational or post-synthetic modifications which
    may occur during the aging process.

Structural basis for altered activity of M- and H-isozyme
forms of human lactate dehydrogenase.

Read JA1, Winter VJEszes CMSessions RBBrady RL.
Author information  Proteins. 2001 May 1;43(2):175-85

Lactate dehydrogenase (LDH) interconverts pyruvate and
lactate with concomitant interconversion of NADH and NAD(+).
Although crystal structures of a variety of LDH have previously
been described, a notable absence has been any of the
three known human forms of this glycolytic enzyme. We have
now determined the crystal structures of two isoforms of
human LDH-the M form, predominantly found in muscle; and
the H form, found mainly in cardiac muscle. Both structures
have been crystallized as ternary complexes in the presence
of the NADH cofactor and oxamate, a substrate-like inhibitor.

Although each of these isoforms has different kinetic properties,
the domain structure, subunit association, and active-site regions
are indistinguishable between the two structures.

The pK(a) that governs the K(M) for pyruvate for the two isozymes
is found to differ by about 0.94 pH units, consistent with variation in
pK(a) of the active-site histidine.

The close similarity of these crystal structures suggests the distinctive
activity of these enzyme isoforms is likely to result

  • directly from variation of charged surface residues peripheral to the active site,
  • a hypothesis supported by electrostatic calculations based on each structure.

Proteins 2001;43:175-185.

Mechanistic aspects of biological redox reactions involving NADH.
Part 4. Possible mechanisms and corresponding intermediates for
the catalytic reaction in L-lactate dehydrogenase

J Molec Structure: THEOCHEM,25 Feb 1993; 279, Pp 99-125
Kathryn E. Norris, Jill E. Gready

The catalytic step in the conversion of pyruvate to L-lactate in the
enzyme L-lactate dehydrogenase involves the transfer of both a
proton and a hydride ion (A.R. Clarke, T. Atkinson and J.J. Holbrook,
TIBS, 14 (1989) 101.) However, it is not known whether the
reaction is concerted or, if a multistep process, the order in
which the transfers of the proton and the hydride ions take
place. Four possible non-concerted mechanisms can be
proposed, which differ in the order of the transfers of the
proton and hydride ion and the protonation state of the substrate
carboxylate group during the transfers. The energies and
optimized geometries of the corresponding intermediates,
protonated pyruvate, protonated pyruvic acid, deprotonated
L-lactate and deprotonated L-lactic acid, are computed using
the semiempirical AM 1 and ab initio SCF/3–21 G – methods.
These calculations are complementary to the study of
the substrates for the enzyme discussed in a previous paper
(K.E. Norris and J.E. Gready, J. Mol. Struct. (Theochem),
258 (1992) 109.) The structures and energetics of protonated
pyruvate and deprotonated L-lactate provide some
important insights into the requirements for enzymic reaction
and the characteristics of the transition state.

Pyruvate production by Enterococcus casseliflavus A-12
from gluconate in an alkaline medium

J Fermentation and Bioengineering, 1992; 73(4):287-291
H Yanase, N Mori, M Masuda, K Kita, M Shimao, N Kato

A newly isolated lactic acid bacterium, Enterococcus casseliflavus
A-12, produced pyruvic acid (16 g/l) during aerobic culture in
an alkaline medium containing sodium gluconate (50 g/l) as
the carbon source. The production was dependent on the pH
of the culture, the optimum initial pH being 10.0. With static
culture, the organism produced lactic acid (2.7 g/l) from both
gluconate and glucose. Pyruvate did not accumulate in growing
cultures on glucose, but resting cells obtained from a culture
on gluconate produced pyruvate from glucose as well as
gluconate. The enzyme profiles of the organism, which
grew on gluconate and glucose, suggested that gluconate
was metabolized via the Entner-Doudoroff and Embdem-
Meyerhof-Parnas pathways in aerobic culture, and that glucose
was oxidized mainly via the latter pathway under both aerobic
and anaerobic conditions. Gluconokinase, a key enzyme in
the aerobic metabolism of gluconate, was partially purified
from this strain and characterized.

A specific, highly active malate dehydrogenase by redesign
of a lactate dehydrogenase framework

HM WilksKW HartR FeeneyCR DunnH MuirheadWN Chiaet al.

Department of Biochemistry, University of Bristol, United Kingdom.
Science 16 Dec1988: 242(4885),  pp. 1541-1544
http://dx.doi.org:/10.1126/science.3201242

 Three variations to the structure of the nicotinamide adenine
dinucleotide (NAD)-dependent L-lactate dehydrogenase
from Bacillus stearothermophilus were made to try to
change the substrate specificity from lactate to malate:
Asp197—-Asn, Thr246—-Gly, and Gln102—-Arg).

Each modification shifts the specificity from lactate to malate, although

  • only the last (Gln102—-Arg) provides an effective and
    highly specific catalyst for the new substrate.

This synthetic enzyme has a ratio of catalytic rate (kcat) to
Michaelis constant (Km) for oxaloacetate of 4.2 x 10(6)M-1 s-1,

  • equal to that of native lactate dehydrogenase for its natural
    substrate, pyruvate, and a maximum velocity (250 s-1),
    which is double that reported for a natural malate from B.
    stearothermophilus.

Malate dehydrogenase: distribution, function and properties.

Musrati RA1, Kollárová MMernik NMikulásová D.
Author information
Gen Physiol Biophys. 1998 Sep;17; (3):193-210.

Malate dehydrogenase (MDH) (EC 1.1.1.37) catalyzes the
conversion of oxaloacetate and malate. This reaction is
important in cellular metabolism, and it is coupled with
easily detectable cofactor oxidation/reduction. It is a
rather ubiquitous enzyme, for which several isoforms
have been identified, differing in their subcellular
localization and their specificity for the cofactor NAD
or NADP. The nucleotide binding characteristics can
be altered by a single amino acid change. Multiple
amino acid sequence alignments of MDH show there is a

  • low degree of primary structural similarity, apart from
    several positions crucial for catalysis, cofactor binding
    and the subunit interface.
  • Despite the low amino acids sequence identity their
    3-dimensional structures are very similar.
  • MDH is a group of multimeric enzymes consisting of
    identical subunits usually organized as either dimer
    or tetramers with subunit molecular weights of 30-35 kDa.

Malate dehydrogenase, mitochondrial (MDH2)

UniProt Number: P40926
Alternate Names: Malate DH

Structure and Function:
Malate dehydrogenase (MDH2) is an enzyme in the citric
acid cycle that catalyzes the conversion of malate into
oxaloacetate (using NAD+) and vice versa (this is a
reversible reaction). Malate dehydrogenase is also
involved in gluconeogenesis, the synthesis of glucose
from smaller molecules.Pyruvate in the mitochondria is acted upon by pyruvate
carboxylase  to form oxaloacetate, a citric acid cycle
intermediate.In order to get the oxaloacetate out of the mitochondria,
malate dehydrogenase reduces it to malate, and it then
traverses the inner mitochondrial membrane.Once in the cytosol, the malate is oxidized back to
oxaloacetate by cytosolic malate dehydrogenase.

Finally, phosphoenol-pyruvate carboxy kinase (PEPCK)
converts oxaloacetate to phosphoenol pyruvate.

Malate Dehydrogenase (MDH)(PDB entry 2x0i) is most known
for its role in the metabolic pathway of the tricarboxylic acid cycle,
critical to cellular respiration; The enzyme has other metabolic roles in –

  •  glyoxylate bypass,
  • amino acid synthesis,
  • glucogenesis, and
  • oxidation/reduction balance .

An oxidoreductase, MDH has been extensively studied due to its
isozymes The enzyme exists in two places inside a cell:

  • the mitochondria and cytoplasm.
  • In the mitochondria, the enzyme catalyzes the reaction of
    malate to oxaloacetate;
  • in the cytoplasm, the enzyme catalyzes oxaloacetate to
    malate to allow transport.

The enzyme malate dehydrogenase is composed of either
a dimer or tetramer depending on the location of the enzyme
and the organism it is located in. During catalysis, the enzyme
subunits are

  • non-cooperative between active sites.

The mitochondrial MDH is complexly,

  • allosterically controlled by citrate, but no other known
    metabolic regulation mechanisms have been discovered.
  • the exact mechanism of regulation has yet to be discovered.

Kinetically, the pH of optimization is 7.6 for oxaloacetate
conversion and 9.6 for malate conversion. The reported
K(m) value for malate conversion is 215 uM and the V(max)
value is 87.8 uM/min.

Comment:

The mMDH and the cMDH both form ternary complex
of MDH-NAD+-OAA formed during the forward reaction,
like the LDH H-type isozyme LDH-NAD+-PYR (mot the M-type).
However, the binding of the Enz-coenzyme-substrate is not
as strong as for the H-type LDH.  .The regulatory role has
not been established.

References

  1. Minarik P, Tomaskova N, Kollarova M, Antalik M. Malate
    dehydrogenases–structure and function. Gen Physiol Biophys.
    2002 Sep;21(3):257-65. PMID:12537350
  2. Musrati RA, Kollarova M, Mernik N, Mikulasova D.
    Malate dehydrogenase: distribution, function and properties.
    Gen Physiol Biophys. 1998 Sep;17(3):193-210. PMID:9834842
  3. Boernke WE, Millard CS, Stevens PW, Kakar SN, Stevens FJ,
    Donnelly MI. Stringency of substrate specificity of
    Escherichia coli malate dehydrogenase. Arch Biochem
    Biophys. 1995 Sep 10;322(1):43-52. PMID:7574693
    doi:http://dx.doi.org/10.1006/abbi.1995.1434
  4. Goward CR, Nicholls DJ. Malate dehydrogenase: a model
    for structure, evolution, and catalysis. Protein Sci. 1994
    Oct;3(10):1883-8. PMID:7849603
    doi:http://dx.doi.org/10.1002/pro.5560031027

Kinetic determination of malate dehydrogenase isozymes.

L H Bernstein, M B Grisham

Journal of Molecular and Cellular Cardiology (Impact Factor: 5.15).
11/1978; 10(10):931-44. http://dx.doi.org/10.1016/0022-2828(78)90339-5

Source: PubMed

ABSTRACT These studies determine the levels of malate
dehydrogenase isoenzymes in cardiac muscle by a steady
state kinetic method which depends on the differential inhibition
of these isoenzyme forms by high concentrations of oxaloacetate.
This inhibition is similar to that exhibited by lactate dehydrogenase
in the presence of high concentrations of pyruvate. The results
obtained by this method are comparable in resolution to those
obtained by CM-Sephadex fractionation and by differential
centrifugation for the analyses of mitochondrial malate
dehydrogenase and cytoplasmic malate dehydrogenase in
tissues. The use of standard curves of percent inhibition of
malate dehydrogenase activity plotted against the ratio of
mitochondrial MDH activity to the total of mMDH and cMDH
activities [ malate dehydrogenase ratio] (percent m-type) is
introduced for studies of comparative mitochondrial
function in heart muscle of different species or in different
tissues of the same species.

Calmodulin and Protein Kinase C Increase Ca21-stimulated
Secretion by Modulating Membrane-attached Exocytic Machinery

YA Chen, V Duvvuri, H Schulmani, and RH Scheller
Hughes Medical Institute, Department of Molecular and Cellular
Physiology, and the iDepartment of Neurobiology, Stanford
University School of Medicine, Stanford, California 94305-5135
JBC Sep 10, 1999; 274( 37): 26469–26476

Using a reconstituted [3H]norepinephrine
release assay in permeabilized PC12 cells, we
found that essential proteins that support the triggering
stage of Ca21-stimulated exocytosis are enriched in an
EGTA extract of brain membranes. Fractionation of this
extract allowed purification of two factors that stimulate
secretion in the absence of any other cytosolic proteins.
These are calmodulin and protein kinase Ca
(PKCa). Their effects on secretion were confirmed using
commercial and recombinant proteins. Calmodulin enhances
secretion in the absence of ATP, whereas PKC
requires ATP to increase secretion, suggesting that
phosphorylation is involved in PKC- but not calmodulin
mediated stimulation. Both proteins modulate release
events that occur in the triggering stage of exocytosis.

Endothelial nitric oxide synthase (eNOS) variants in
cardiovascular disease: pharmacogenomic implications  

Indian J Med Res  May 2011;  133:  464-466

Commentary

Manjula Bhanoori

Department of Biochemistry, University College of Science,
Osmania University, Hyderabad 500 007, India

 

The maintenance of regular vascular tone substantially
depends on the bioavailability of endothelium-derived
nitric oxide (NO) synthesized by eNOS. The essential
role of NO, as the elusive endothelium-derived relaxing
factor (EDRF), was the topic of research that won the
1998 Nobel Prize in Physiology or Medicine. The eNOS
gene, as a candidate gene in the investigations on
hypertension genetics, has attracted the attention of
several researchers because of the established role
of NO in vascular homeostasis. The eNOS variants
located in the 7q35-q36 region have been investigated
for their association with CVD, particularly hypertension.
Three variants, viz., (i) G894T substitution in exon 7
resulting in a Glu to Asp substitution at codon 298 (rs1799983),
(ii) an insertion-deletion in intron 4 (4a/b) consisting of two
alleles (the a*-deletion which has four tandem 27-bp repeats
and the b*-insertion having five repeats), and (iii) a T786C
substitution in the promoter region (rs2070744), have been
extensively studied20-22. Individual SNPs often cause only
a modest change in the resulting gene expression or function.
It is, therefore, the concurrent presence of a number of SNPs
or haplotypes within a defined region of the chromosome that
determines susceptibility to disease development and progression,
particularly in case of polygenic diseases.

Shankarishan et al24 analysed for the first time the prevalence
of eNOS exon 7 Glu298Asp polymorphism in tea garden community
of North Eastern India, who are a high risk group for CVD. This study
also included indigenous Assamese population and found no
significant difference between the distribution patterns of eNOS
exon 7 Glu298Asp variants between the communities. They have
rightly mentioned that for developing public health policies and
programmes it is necessary to know the prevalence and distribution
of the candidate genes in the population, as well as trends in
different population groups. They have also observed that the
eNOS exon 7 homozygous GG wild genotype (75.8%) was
predominant in the study population followed by heterozygous
GT genotype (21.5%) and homozygous TT genotype (2.7%).
The frequency distribution of the homozygous GG, heterozygous
GT and homozygous mutant TT genotypes were comparable to
that of the north Indian and south Indian population.

Polymorphisms in the endothelial nitric oxide synthase gene have
been associated inconsistently with cardiovascular diseases.
Varying distribution of eNOS variants among ethnic groups may
explain inter-ethnic differences in nitric oxide mediated vasodilation
and response to drugs28. Different population studies showed
association of eNOS polymorphisms with variations in NO
formation and response to drugs. Cardiovascular drugs including
statins increase eNOS expression and upregulate NO formation
and this effect may be responsible for protective, pleiotropic
effects produced by statins31. With respect to hypertension,
studies have reported interactions between diuretics and
polymorphisms in eNOS gene. Particularly, the Glu298Asp
polymorphism made a statistically significant contribution to
predicting blood pressure response to diuretics.

Neuronal Nitric Oxide Synthase and Its Interaction
With Soluble Guanylate Cyclase Is a Key Factor for
the Vascular Dysfunction of Experimental Sepsis

GM. Nardi, K Scheschowitsch, D Ammar, SK de
Oliveira, TB. Arruda; J Assreuy

Vascular dysfunction plays a central role in sepsis, and it is
characterized by hypotension and hyporesponsiveness to
vasoconstrictors. Nitric oxide is regarded as a central element
of sepsis vascular dysfunction. The high amounts of nitric
oxide produced during sepsis are mainly derived from the
inducible isoform of nitric oxide synthase 2.
We have previously shown that nitric oxide synthase 2 levels
decrease in later stages of sepsis, whereas levels and activity
of soluble guanylate cyclase increase. Therefore, we studied
the putative role of other relevant nitric oxide sources, namely,

  • the neuronal (nitric oxide synthase 1) isoform, in sepsis
  • and its relationship with soluble guanylate cyclase.

We also studied the consequences of

  • nitric oxide synthase 1 blockade in the hyporesponsiveness
    to vasoconstrictors.

1) Both nitric oxide synthase 1 and soluble guanylate cyclase
are expressed in higher levels in vascular tissues during sepsis;

2) both proteins physically interact and nitric oxide synthase 1
blockade inhibits cyclic guanosine monophosphate production;

3) pharmacological blockade of nitric oxide synthase 1 using
7-nitroindazole or S-methyl-l-thiocitrulline reverts the hypo
responsiveness to phenylephrine and increases the vaso
constrictor effect of norepinephrine and phenylephrine.

Sepsis induces increased expression and physical association
of nitric oxide synthase 1/soluble guanylate cyclase and a higher
production of cyclic guanosine monophosphate that together
may help explain sepsis-induced vascular dysfunction.

In addition, selective inhibition of nitric oxide synthase 1
restores the responsiveness to vasoconstrictors.

Therefore, inhibition of nitric oxide synthase 1 (and possibly
soluble guanylate cyclase) may represent a valuable
alternative to restore the effectiveness of vasopressor
agents during late sepsis.  (Crit Care Med 2014; XX:00–00)

Nitric Oxide Synthase Inhibitors That Interact with Both Heme
Propionate and Tetrahydrobiopterin Show High Isoform Selectivity

S Kang, W Tang, H Li, G Chreifi, P Martásek, LJ. Roman,
TL. Poulos, and RB. Silverman

†Department of Chemistry, Department of Molecular Biosciences,
Chemistry of Life Processes Institute, Center for Molecular Innovation
and Drug Discovery, Northwestern University, Evanston, Illinois
‡Departments of Molecular Biology and Biochemistry, Pharmaceutical
Sciences, and Chemistry, University of California, Irvine, California,
Department of Biochemistry, University of Texas Health Science Center,
San Antonio, Texas

Overproduction of NO by nNOS is implicated in the pathogenesis of
diverse neuronal disorders. Since NO signaling is involved in
diverse physiological functions, selective inhibition of nNOS
over other isoforms is essential to minimize side effects. A series of
α-amino functionalized aminopyridine derivatives (3−8) were
designed to probe the structure−activity relationship between ligand,
heme propionate, and H4B. Compound 8R was identified as the
most potent and selective molecule of this study, exhibiting a Ki of
24 nM for nNOS, with 273-fold and 2822-fold selectivity against
iNOS and eNOS, respectively.Although crystal structures of 8R
complexed with nNOS and eNOS revealed a similar binding mode,
the selectivity stems from the distinct electrostatic environments in
two isoforms that result in much lower inhibitor binding free energy
in nNOS than in eNOS. These findings provide a basis for further
development of simple, but even more selective and potent, nNOS
inhibitors

  • Aurelian Udristioiu

    Aurelian

    Aurelian Udristioiu

    Lab Director at Emergency County Hospital Targu Jiu

    In cells, the immediate energy sources involve glucose oxidation. In anaerobic metabolism, the donor of the phosphate group is adenosine triphosphate (ATP), and the reaction is catalyzed via the hexokinase or glucokinase: Glucose +ATP-Mg²+ = Glucose-6-phosphate (ΔGo = – 3.4 kcal/mol with hexokinase as the co-enzyme for the reaction.).
    In the following step, the conversion of G-6-phosphate into F-1-6-bisphosphate is mediated by the enzyme phosphofructokinase with the co-factor ATP-Mg²+. This reaction has a large negative free energy difference and is irreversible under normal cellular conditions. In the second step of glycolysis, phosphoenolpyruvic acid in the presence of Mg²+ and K+ is transformed into pyruvic acid. In cancer cells or in the absence of oxygen, the transformation of pyruvic acid into lactic acid alters the process of glycolysis.
    The energetic sum of anaerobic glycolysis is ΔGo = -34.64 kcal/mol. However a glucose molecule contains 686kcal/mol and, the energy difference (654.51 kcal) allows the potential for un-controlled reactions during carcinogenesis. The transfer of electrons from NADPH in each place of the conserved unit of energy transmits conformational exchanges in the mitochondrial ATPase. The reaction ADP³+ P²¯ + H²–à ATP + H2O is reversible. The terminal oxygen from ADP binds the P2¯ by forming an intermediate pentacovalent complex, resulting in the formation of ATP and H2O. This reaction requires Mg²+ and an ATP-synthetase, which is known as the H+-ATPase or the Fo-F1-ATPase complex. Intracellular calcium induces mitochondrial swelling and aging. [12].
    The known marker of monitoring of treatment in cancer diseases, lactate dehydrogenase (LDH) is an enzyme that is localized to the cytosol of human cells and catalyzes the reversible reduction of pyruvate to lactate via using hydrogenated nicotinamide deaminase (NADH) as co-enzyme.
    The causes of high LDH and high Mg levels in the serum include neoplastic states that promote the high production of intracellular LDH and the increased use of Mg²+ during molecular synthesis in processes pf carcinogenesis (Pyruvate acid>> LDH/NADH >>Lactate acid + NAD), [13].
    LDH is released from tissues in patients with physiological or pathological conditions and is present in the serum as a tetramer that is composed of the two monomers LDH-A and LDH-B, which can be combined into 5 isoenzymes: LDH-1 (B4), LDH-2 (B3-A1), LDH-3 (B2-A2), LDH-4 (B1-A3) and LDH-5 (A4). The LDH-A gene is located on chromosome 11, whereas the LDH-B gene is located on chromosome 12. The monomers differ based on their sensitivity to allosteric modulators. They facilitate adaptive metabolism in various tissues. The LDH-4 isoform predominates in the myocardium, is inhibited by pyruvate and is guided by the anaerobic conversion to lactate.
    Total LDH, which is derived from hemolytic processes, is used as a marker for monitoring the response to chemotherapy in patients with advanced neoplasm with or without metastasis. LDH levels in patients with malignant disease are increased as the result of high levels of the isoenzyme LDH-3 in patients with hematological malignant diseases and of the high level of the isoenzymes LDH-4 and LDH-5, which are increased in patients with other malignant diseases of tissues such as the liver, muscle, lungs, and conjunctive tissues. High concentrations of serum LDH damage the cell membrane [11, 31].

    Relation between LDH and Mg as Factors of Interest in the Monitoring and Prognoses of Cancer

    Aurelian Udristioiu, Emergency County Hospital Targu Jiu Romania, Clinical Laboratory Medical Analyses, E-mail: aurelianu2007@yahoo.com

    Larry Bernstein likes this

  • Larry Bernstein

    Larry Bernstein

    CEO/CSO at Triplex Consulting

    The inhibition be pyruvate is related by a ternary complex formed by NAD+ formed in the catalytic forward reaction Pyruvate + NADH –> Lactate + NAD(+). The reaction can be followed in an Aminco-Morrow stop-flow analyzer and occurs in ~ 500 msec. The reaction does not occur with the muscle type LDH, and it is regulatory in function. I did not know about the role of intracellular Mg(2+) in the catalysis, as my own work was in Nate Kaplan’s lab in 1970-73.

    This difference in the behavior of the isoenzyme types was considered to be important then in elucidating functional roles, but it was challenged by Vessell earlier. The isoenzymes were first described by Clement Markert at Yale. I think, but don’t know, that the Mg++ would have a role in driving the forward reaction, but I can’t conceptualize how it might have any role in the difference between muscle and heart.

    I didn’t quite know why oncologists used it specifically. Cancer cells exhibit the reliance on the anaerobic (muscle) type enzyme, which is also typical of liver, but with respect to the adenylate kinases – the liver AK and muscle AK (myokinase) are different. That difference was discovered by Masahiro Chiga, and differences in the reaction with sulfhydryl reagents were identified by Percy Russell.

    Oddly enough, Vessell had a point. The RBC has the heart type predominance, not the M-type. He thought that it was related to the loss of nuclei from the reticulocyte. I did not buy that, and I had worked on the lens of the eye at the time.

  • Aurelian Udristioiu

    Aurelian

    Aurelian Udristioiu

    Lab Director at Emergency County Hospital Targu Jiu

    Very interesting scientific comments. Thanks. !

  • Aurelian Udristioiu

    Aurelian

    Aurelian Udristioiu

    Lab Director at Emergency County Hospital Targu Jiu

    The IDH1 and IDH2 genes are mutated in > 75% of different malignant diseases. Two distinct alterations are caused by tumor-derived mutations in IDH1 or IDH2,
    IDH1 and IDH2 mutations have been observed in myeloid malignancies, including de novo and secondary AML (15%–30%), and in pre-leukemic clone malignancies, including myelodysplastic syndrome and myeloproliferative neoplasm (85% of the chronic phase and 20% of transformed cases in acute leukemia.
    Aurelian Udristioiu, M.D
    City Targu Jiu, Romania
    AACC, NACB, Member, USA.

Read Full Post »

Compilation of References in Leaders in Pharmaceutical Intelligence about proteomics, metabolomics, signaling pathways, and cell regulation

Compilation of References in Leaders in Pharmaceutical Intelligence about
proteomics, metabolomics, signaling pathways, and cell regulation

Curator: Larry H. Bernstein, MD, FCAP

 

Proteomics

  1. The Human Proteome Map Completed
    Reporter and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/28/the-human-proteome-map-completed/
  1. Proteomics – The Pathway to Understanding and Decision-making in Medicine
    Author and Curator, Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/06/24/proteomics-the-pathway-to-understanding-and-decision-making-in-medicine/
  1. Advances in Separations Technology for the “OMICs” and Clarification of Therapeutic Targets
    Author and Curator, Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/10/22/advances-in-separations-technology-for-the-omics-and-clarification-of-therapeutic-targets/
  1. Expanding the Genetic Alphabet and Linking the Genome to the Metabolome
    Author and Curator, Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/09/24/expanding-the-genetic-alphabet-and-linking-the-genome-to-the-metabolome/
  1. Synthesizing Synthetic Biology: PLOS Collections
    Reporter: Aviva Lev-Ari
    http://pharmaceuticalintelligence.com/2012/08/17/synthesizing-synthetic-biology-plos-collections/

 

Metabolomics

  1. Extracellular evaluation of intracellular flux in yeast cells
    Larry H. Bernstein, MD, FCAP, Reviewer and Curator
    http://pharmaceuticalintelligence.com/2014/08/25/extracellular-evaluation-of-intracellular-flux-in-yeast-cells/ 
  2. Metabolomic analysis of two leukemia cell lines. I.
    Larry H. Bernstein, MD, FCAP, Reviewer and Curator
    http://pharmaceuticalintelligence.com/2014/08/23/metabolomic-analysis-of-two-leukemia-cell-lines-_i/ 
  3. Metabolomic analysis of two leukemia cell lines. II.
    Larry H. Bernstein, MD, FCAP, Reviewer and Curator
    http://pharmaceuticalintelligence.com/2014/08/24/metabolomic-analysis-of-two-leukemia-cell-lines-ii/ 
  4. Metabolomics, Metabonomics and Functional Nutrition: the next step in nutritional metabolism and biotherapeutics
    Reviewer and Curator, Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/22/metabolomics-metabonomics-and-functional-nutrition-the-next-step-in-nutritional-metabolism-and-biotherapeutics/ 
  5. Buffering of genetic modules involved in tricarboxylic acid cycle metabolism provides homeomeostatic regulation
    Larry H. Bernstein, MD, FCAP, Reviewer and curator
    http://pharmaceuticalintelligence.com/2014/08/27/buffering-of-genetic-modules-involved-in-tricarboxylic-acid-cycle-metabolism-provides-homeomeostatic-regulation/

 

Metabolic Pathways

  1. Pentose Shunt, Electron Transfer, Galactose, more Lipids in brief
    Reviewer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/21/pentose-shunt-electron-transfer-galactose-more-lipids-in-brief/
  2. Mitochondria: More than just the “powerhouse of the cell”
    Reviewer and Curator: Ritu Saxena
    http://pharmaceuticalintelligence.com/2012/07/09/mitochondria-more-than-just-the-powerhouse-of-the-cell/
  3. Mitochondrial fission and fusion: potential therapeutic targets?
    Reviewer and Curator: Ritu saxena
    http://pharmaceuticalintelligence.com/2012/10/31/mitochondrial-fission-and-fusion-potential-therapeutic-target/ 
  4. Mitochondrial mutation analysis might be “1-step” away
    Reviewer and Curator: Ritu Saxena
    http://pharmaceuticalintelligence.com/2012/08/14/mitochondrial-mutation-analysis-might-be-1-step-away/
  5. Selected References to Signaling and Metabolic Pathways in PharmaceuticalIntelligence.com
    Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/14/selected-references-to-signaling-and-metabolic-pathways-in-leaders-in-pharmaceutical-intelligence/
  6. Metabolic drivers in aggressive brain tumors
    Prabodh Kandal, PhD
    http://pharmaceuticalintelligence.com/2012/11/11/metabolic-drivers-in-aggressive-brain-tumors/ 
  7. Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes
    Author and Curator: Aviva Lev-Ari, PhD, RD
    http://pharmaceuticalintelligence.com/2012/10/22/metabolite-identification-combining-genetic-and-metabolic-information-genetic-association-links-unknown-metabolites-to-functionally-related-genes/
  8. Mitochondria: Origin from oxygen free environment, role in aerobic glycolysis, metabolic adaptation
    Author and curator:Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/09/26/mitochondria-origin-from-oxygen-free-environment-role-in-aerobic-glycolysis-metabolic-adaptation/
  9. Therapeutic Targets for Diabetes and Related Metabolic Disorders
    Reporter, Aviva Lev-Ari, PhD, RD
    http://pharmaceuticalintelligence.com/2012/08/20/therapeutic-targets-for-diabetes-and-related-metabolic-disorders/
  10. Buffering of genetic modules involved in tricarboxylic acid cycle metabolism provides homeomeostatic regulation
    Larry H. Bernstein, MD, FCAP, Reviewer and curator
    http://pharmaceuticalintelligence.com/2014/08/27/buffering-of-genetic-modules-involved-in-tricarboxylic-acid-cycle-metabolism-provides-homeomeostatic-regulation/
  11. The multi-step transfer of phosphate bond and hydrogen exchange energy
    Curator:Larry H. Bernstein, MD, FCAP,
    http://pharmaceuticalintelligence.com/2014/08/19/the-multi-step-transfer-of-phosphate-bond-and-hydrogen-exchange-energy/
  12. Studies of Respiration Lead to Acetyl CoA
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/18/studies-of-respiration-lead-to-acetyl-coa/
  13. Lipid Metabolism
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/15/lipid-metabolism/
  14. Carbohydrate Metabolism
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/13/carbohydrate-metabolism/
  15. Prologue to Cancer – e-book Volume One – Where are we in this journey?
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/04/13/prologue-to-cancer-ebook-4-where-are-we-in-this-journey/
  16. Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/04/04/introduction-the-evolution-of-cancer-therapy-and-cancer-research-how-we-got-here/
  17. Inhibition of the Cardiomyocyte-Specific Kinase TNNI3K
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/11/01/inhibition-of-the-cardiomyocyte-specific-kinase-tnni3k/
  18. The Binding of Oligonucleotides in DNA and 3-D Lattice Structures
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/05/15/the-binding-of-oligonucleotides-in-dna-and-3-d-lattice-structures/
  19. Mitochondrial Metabolism and Cardiac Function
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/04/14/mitochondrial-metabolism-and-cardiac-function/
  20. How Methionine Imbalance with Sulfur-Insufficiency Leads to Hyperhomocysteinemia
    Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/04/04/sulfur-deficiency-leads_to_hyperhomocysteinemia/
  21. AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo
    Author and Curator: SJ. Williams
    http://pharmaceuticalintelligence.com/2013/03/12/ampk-is-a-negative-regulator-of-the-warburg-effect-and-suppresses-tumor-growth-in-vivo/
  22. A Second Look at the Transthyretin Nutrition Inflammatory Conundrum
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/12/03/a-second-look-at-the-transthyretin-nutrition-inflammatory-conundrum/
  23. Overview of Posttranslational Modification (PTM)
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/07/29/overview-of-posttranslational-modification-ptm/
  24. Malnutrition in India, high newborn death rate and stunting of children age under five years
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/07/15/malnutrition-in-india-high-newborn-death-rate-and-stunting-of-children-age-under-five-years/
  25. Update on mitochondrial function, respiration, and associated disorders
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/07/08/update-on-mitochondrial-function-respiration-and-associated-disorders/
  26. Omega-3 fatty acids, depleting the source, and protein insufficiency in renal disease
    Larry H. Bernstein, MD, FCAP, Curator
    http://pharmaceuticalintelligence.com/2014/07/06/omega-3-fatty-acids-depleting-the-source-and-protein-insufficiency-in-renal-disease/ 
  27. Late Onset of Alzheimer’s Disease and One-carbon Metabolism
    Reporter and Curator: Dr. Sudipta Saha, Ph.D.
    http://pharmaceuticalintelligence.com/2013/05/06/alzheimers-disease-and-one-carbon-metabolism/
  28. Problems of vegetarianism
    Reporter and Curator: Dr. Sudipta Saha, Ph.D.
    http://pharmaceuticalintelligence.com/2013/04/22/problems-of-vegetarianism/

 

Signaling Pathways

  1. Introduction to e-Series A: Cardiovascular Diseases, Volume Four Part 2: Regenerative Medicine
    Larry H. Bernstein, MD, FCAP, writer, and Aviva Lev- Ari, PhD, RN  http://pharmaceuticalintelligence.com/2014/04/27/larryhbernintroduction_to_cardiovascular_diseases-translational_medicine-part_2/
  2. Epilogue: Envisioning New Insights in Cancer Translational Biology
    Series C: e-Books on Cancer & Oncology
    Author & Curator: Larry H. Bernstein, MD, FCAP, Series C Content Consultant
    http://pharmaceuticalintelligence.com/2014/03/29/epilogue-envisioning-new-insights/
  3. Ca2+-Stimulated Exocytosis:  The Role of Calmodulin and Protein Kinase C in Ca2+ Regulation of Hormone and Neurotransmitter  Writer and Curator: Larry H Bernstein, MD, FCAP and Curator and Content Editor: Aviva Lev-Ari, PhD, RN
    http://pharmaceuticalintelligence.com/2013/12/23/calmodulin-and-protein-kinase-c-drive-the-ca2-regulation-of-hormone-and-neurotransmitter-release-that-triggers-ca2-stimulated-exocy
  4. Cardiac Contractility & Myocardial Performance: Therapeutic Implications of Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses
    Author, and Content Consultant to e-SERIES A: Cardiovascular Diseases: Justin Pearlman, MD, PhD, FACC
    Author and Curator: Larry H Bernstein, MD, FCAP and Article Curator: Aviva Lev-Ari, PhD, RN
    http://pharmaceuticalintelligence.com/2013/08/28/cardiac-contractility-myocardium-performance-ventricular-arrhythmias-and-non-ischemic-heart-failure-therapeutic-implications-for-cardiomyocyte-ryanopathy-calcium-release-related-contractile/
  5. Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility
    Author and Curator: Larry H Bernstein, MD, FCAP Author: Stephen Williams, PhD, and Curator: Aviva Lev-Ari, PhD, RN
    http://pharmaceuticalintelligence.com/2013/08/26/role-of-calcium-the-actin-skeleton-and-lipid-structures-in-signaling-and-cell-motility/
  6. Identification of Biomarkers that are Related to the Actin Cytoskeleton
    Larry H Bernstein, MD, FCAP, Author and Curator
    http://pharmaceuticalintelligence.com/2012/12/10/identification-of-biomarkers-that-are-related-to-the-actin-cytoskeleton/
  7. Advanced Topics in Sepsis and the Cardiovascular System at its End Stage
    Author and Curator: Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-Sepsis-and-the-Cardiovascular-System-at-its-End-Stage/
  8. The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology
    Demet Sag, PhD, Author and Curator
    http://pharmaceuticalintelligence.com/2013/08/04/the-delicate-connection-ido-indolamine-2-3-dehydrogenase-and-immunology/
  9. IDO for Commitment of a Life Time: The Origins and Mechanisms of IDO, indolamine 2, 3-dioxygenase
    Demet Sag, PhD, Author and Curator
    http://pharmaceuticalintelligence.com/2013/08/04/ido-for-commitment-of-a-life-time-the-origins-and-mechanisms-of-ido-indolamine-2-3-dioxygenase/
  10. Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Homeostasis of Immune Responses for Good and Bad
    Author and Curator: Demet Sag, PhD, CRA, GCP
    http://pharmaceuticalintelligence.com/2013/07/31/confined-indolamine-2-3-dehydrogenase-controls-the-hemostasis-of-immune-responses-for-good-and-bad/
  11. Signaling Pathway that Makes Young Neurons Connect was discovered @ Scripps Research Institute
    Reporter: Aviva Lev-Ari, PhD, RN
    http://pharmaceuticalintelligence.com/2013/06/26/signaling-pathway-that-makes-young-neurons-connect-was-discovered-scripps-research-institute/
  12. Naked Mole Rats Cancer-Free
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/06/20/naked-mole-rats-cancer-free/
  13. Amyloidosis with Cardiomyopathy
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/03/31/amyloidosis-with-cardiomyopathy/
  14. Liver endoplasmic reticulum stress and hepatosteatosis
    Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2013/03/10/liver-endoplasmic-reticulum-stress-and-hepatosteatosis/
  15. The Molecular Biology of Renal Disorders: Nitric Oxide – Part III
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/11/26/the-molecular-biology-of-renal-disorders/
  16. Nitric Oxide Function in Coagulation – Part II
    Curator and Author: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-function-in-coagulation/
  17. Nitric Oxide, Platelets, Endothelium and Hemostasis
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/11/08/nitric-oxide-platelets-endothelium-and-hemostasis/
  18. Interaction of Nitric Oxide and Prostacyclin in Vascular Endothelium
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/09/14/interaction-of-nitric-oxide-and-prostacyclin-in-vascular-endothelium/
  19. Nitric Oxide and Immune Responses: Part 1
    Curator and Author:  Aviral Vatsa PhD, MBBS
    http://pharmaceuticalintelligence.com/2012/10/18/nitric-oxide-and-immune-responses-part-1/
  20. Nitric Oxide and Immune Responses: Part 2
    Curator and Author:  Aviral Vatsa PhD, MBBS
    http://pharmaceuticalintelligence.com/2012/10/28/nitric-oxide-and-immune-responses-part-2/
  21. Nitric Oxide and iNOS have Key Roles in Kidney Diseases – Part II
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-and-inos-have-key-roles-in-kidney-diseases/
  22. New Insights on Nitric Oxide donors – Part IV
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/11/26/new-insights-on-no-donors/
  23. Crucial role of Nitric Oxide in Cancer
    Curator and Author: Ritu Saxena, Ph.D.
    http://pharmaceuticalintelligence.com/2012/10/16/crucial-role-of-nitric-oxide-in-cancer/
  24. Nitric Oxide has a ubiquitous role in the regulation of glycolysis -with a concomitant influence on mitochondrial function
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/09/16/nitric-oxide-has-a-ubiquitous-role-in-the-regulation-of-glycolysis-with-a-concomitant-influence-on-mitochondrial-function/
  25. Nitric Oxide and Immune Responses: Part 2
    Author and Curator: Aviral Vatsa, PhD, MBBS
    http://pharmaceuticalintelligence.com/2012/10/28/nitric-oxide-and-immune-responses-part-2/
  26. Mitochondrial Damage and Repair under Oxidative Stress
    Author and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/10/28/mitochondrial-damage-and-repair-under-oxidative-stress/
  27. Is the Warburg Effect the cause or the effect of cancer: A 21st Century View?
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/10/17/is-the-warburg-effect-the-cause-or-the-effect-of-cancer-a-21st-century-view/
  28. Targeting Mitochondrial-bound Hexokinase for Cancer Therapy
    Curator and Author: Ziv Raviv, PhD, RN 04/06/2013
    http://pharmaceuticalintelligence.com/2013/04/06/targeting-mitochondrial-bound-hexokinase-for-cancer-therapy/
  29. Ubiquinin-Proteosome pathway, autophagy, the mitochondrion, proteolysis and cell apoptosis
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/10/30/ubiquinin-proteosome-pathway-autophagy-the-mitochondrion-proteolysis-and-cell-apoptosis/
  30. Ubiquitin-Proteosome pathway, Autophagy, the Mitochondrion, Proteolysis and Cell Apoptosis: Part III
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2013/02/14/ubiquinin-proteosome-pathway-autophagy-the-mitochondrion-proteolysis-and-cell-apoptosis-reconsidered/
  31. Biochemistry of the Coagulation Cascade and Platelet Aggregation – Part I
    Curator and Author: Larry H Bernstein, MD, FACP
    http://pharmaceuticalintelligence.com/2012/11/26/biochemistry-of-the-coagulation-cascade-and-platelet-aggregation/

 

Genomics, Transcriptomics, and Epigenetics

  1. What is the meaning of so many RNAs?
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/06/what-is-the-meaning-of-so-many-rnas/
  2. RNA and the transcription the genetic code
    Larry H. Bernstein, MD, FCAP, Writer and Curator
    http://pharmaceuticalintelligence.com/2014/08/02/rna-and-the-transcription-of-the-genetic-code/
  3. A Primer on DNA and DNA Replication
    Writer and Curator: Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/07/29/a_primer_on_dna_and_dna_replication/
  4. Pathology Emergence in the 21st Century
    Author and Curator: Larry Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/03/pathology-emergence-in-the-21st-century/
  5. RNA and the transcription the genetic code
    Writer and Curator, Larry H. Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/02/rna-and-the-transcription-of-the-genetic-code/
  6. Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease: Views by Larry H Bernstein, MD, FCAP
    Author: Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/07/16/commentary-on-biomarkers-for-genetics-and-genomics-of-cardiovascular-disease-views-by-larry-h-bernstein-md-fcap/
  7. Observations on Finding the Genetic Links in Common Disease: Whole Genomic Sequencing Studies
    Author an Curator: Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2013/05/18/observations-on-finding-the-genetic-links/
  8. Silencing Cancers with Synthetic siRNAs
    Larry H. Bernstein, MD, FCAP, Reviewer and Curator
    http://pharmaceuticalintelligence.com/2013/12/09/silencing-cancers-with-synthetic-sirnas/
  9. Cardiometabolic Syndrome and the Genetics of Hypertension: The Neuroendocrine Transcriptome Control Points
    Reporter: Aviva Lev-Ari, PhD, RN
    http://pharmaceuticalintelligence.com/2013/12/12/cardiometabolic-syndrome-and-the-genetics-of-hypertension-the-neuroendocrine-transcriptome-control-points/
  10. Developments in the Genomics and Proteomics of Type 2 Diabetes Mellitus and Treatment Targets
    Larry H. Bernstein, MD, FCAP, Reviewer and Curator
    http://pharmaceuticalintelligence.com/2013/12/08/developments-in-the-genomics-and-proteomics-of-type-2-diabetes-mellitus-and-treatment-targets/
  11. CT Angiography & TrueVision™ Metabolomics (Genomic Phenotyping) for new Therapeutic Targets to Atherosclerosis
    Reporter: Aviva Lev-Ari, PhD, RN
    http://pharmaceuticalintelligence.com/2013/11/15/ct-angiography-truevision-metabolomics-genomic-phenotyping-for-new-therapeutic-targets-to-atherosclerosis/
  12. CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics
    Genomics Curator, Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/08/30/cracking-the-code-of-human-life-the-birth-of-bioinformatics-computational-genomics/
  13. Big Data in Genomic Medicine
    Author and Curator, Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2012/12/17/big-data-in-genomic-medicine/
  14.  From Genomics of Microorganisms to Translational Medicine
    Author and Curator: Demet Sag, PhD
    http://pharmaceuticalintelligence.com/2014/03/20/without-the-past-no-future-but-learn-and-move-genomics-of-microorganisms-to-translational-medicine/
  15.  Summary of Genomics and Medicine: Role in Cardiovascular Diseases
    Author and Curator, Larry H Bernstein, MD, FCAP
    http://pharmaceuticalintelligence.com/2014/01/06/summary-of-genomics-and-medicine-role-in-cardiovascular-diseases/

Read Full Post »

The multi-step transfer of phosphate bond and hydrogen exchange energy

Curator: Larry H. Bernstein, MD, FCAP, Leaders in Pharmaceutical Intelligence

In this subtext of the series we expand on a tie between respiration and glycolysis, and the functioning of the mitochondrion to discover the key role played by oxidative phosphorylation, “acetyl coenzyme A, and electron transport.  This was crucial to understanding cellular energetics, which explains the high energy of fatty acid catabolism from stored adipose tissue, and the criticality of the multi-step sequence of reactions in energy transfer.

This portion considerably provides a response to the TWO points made by Jose EDS Rosallis:

  1. Just at the beginning, when phosphorylation of proteins is presented, I assume you must mention that some proteins are activated by phosphorylation. This is fundamental in order to present self –organization reflex upon fast regulatory mechanisms. This poiny needs further clarification, but he makes important observations here.
  • Even from an historical point of view. The first observation arrived from a sample due to be studied on the following day of glycogen synthetase. It was unintended left overnight out of the refrigerator. The result was it had changed from active form of the previous day to a non-active form.

The story could have being finished here, if the researcher did not decide to spent this day increasing substrate levels (it could be a simple case of denaturation of proteins that changes its conformation despite the same order of amino acids). He kept on trying and found restoration of maximal activity.

  • This assay was repeated with glycogen phosphorylase and the result was the opposite it increases its activity.

This led to the discovery of cAMP activated protein kinase and the assembly of a very complex system in the glycogen granule that is not a simple carbohydrate polymer. Instead

  • it has several proteins assembled and preserves the capacity to receive from a single event (rise in cAMP) two opposing signals with maximal efficiency,
  • stops glycogen synthesis, as long as levels of glucose 6 phosphate are low and
  • increases glycogen phosphorylation as long as AMP levels are high).

I did everything I was able to do by the end of 1970 in order to repeat these assays with

  • PK I, PKII and PKIII of M. Rouxii and Sutherland route to cAMP failed in this case.

I ask Leloir to suggest to my chief (SP) the idea of AA, AB, BB subunits as was observed in lactic dehydrogenase (tetramer)
(Nathan O. Kaplan discovery) indicating this as his idea. The reason was my “chief” (SP) more than once,  said to me: “Leave these great ideas for the Houssay, Leloir etc…We must do our career with small things. ” However, as she also had a faulty ability for recollection she also used to arrive some time later, with the very same idea but in that case, as her idea.

[This reminds me of when I was studying the emergence of lactic dehysrogenase isoenzyme patterns in the developing eye lens of cattle, I raised reservations about Elliott Vessells challenge to Nathan Kaplan, but that not being my primary problem, my brilliant mentor (H.M.), a very young full professor of anatomy said – leave that to NOK.}

Leloir, said to me: I will not offer your interpretation to her as mine. I think it is not phosphorylation, however I think it is

  • glycosylation that explains the changes in the isoenzymes with the same molecular weight preserved.

This dialogue explains why during the Schroedinger’s “What is life?” reading with him he asked me if from biochemist in exile, to biochemist I expressed all of my thoughts to him. Since I had considered that Schrödinger did not confront Darlington & Haldane for being in exile. This may explain why Leloir could have answered a bad telephone call from P. Boyer, Editor of The Enzymes in a way that suggests the the pattern could be of covalent changes over a protein. Our FEBS and Eur J. Biochemistry papers on pyruvate kinase of M. Rouxii is wrongly quoted in this way on his review about pyruvate kinase of
that year(1971).

  1. show in detail with different colors what carbons belongs to CoA a huge molecule, in comparison with the single two carbons of acetate that will produce the enormous jump in energy yield in comparison with anaerobic glycolysis. The idea is how much must have being spent in DNA sequences to build that molecule in order to use only two atoms of carbon. Very limited aspects of biology could be explained in this way. In case we follow an alternative way of thinking, it becomes clearer that proteins were made more stable by interaction with other molecules (great and small). Afterwards, it rather easy to understand how the stability of protein-RNA complexes where transmitted to RNA (vibrational +solvational reactivity stability pair of conformational energy). Latter, millions of years, or as soon as, the information of interaction leading to activity and regulation could be found in RNA, proteins like reverse transcriptase move this information to a more stable form (DNA). In this way it is easier to understand the use of CoA to make two carbon molecules more reactive.

The outline of what I am presenting in series is as follows:

  1. Signaling and Signaling Pathways
    http://pharmaceuticalintelligence.com/2014/08/12/signaling-and-signaling-pathways/
  1. Signaling transduction tutorial.
    http://pharmaceuticalintelligence.com/2014/08/12/signaling-transduction-tutorial/
  1. Carbohydrate metabolism
    http://pharmaceuticalintelligence.com/2014/08/13/carbohydrate-metabolism/

3.1  Selected References to Signaling and Metabolic Pathways in Leaders in Pharmaceutical Intelligence

http://pharmaceuticalintelligence.com/2014/08/14/selected-references-to-signaling-and-metabolic-pathways-in-leaders-in-pharmaceutical-intelligence/

  1. Lipid metabolism

4.1  Studies of respiration lead to Acetyl CoA

http://pharmaceuticalintelligence.com/2014/08/18/studies-of-respiration-lead-to-acetyl-coa/

4.2 The multi-step transfer of phosphate bond and hydrogen exchange energy

  1. Protein synthesis and degradation
  2. Subcellular structure
  3. Impairments in pathological states: endocrine disorders; stress hypermetabolism; cancer.

Oxidation-Reduction Reactions

Rachel Casiday, Carolyn Herman, and Regina Frey
Department of Chemistry, Washington University
St. Louis, MO 63130

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/cytochromes.html

 

OX-Phos steps

OX-Phos steps

http://s1.hubimg.com/u/6583902_f496.jpg

 

Key Concepts:

  • ATP as Free-Energy Currency in the Body
  • Coupled Reactions
    • Standard Free-Energy Change for Coupled Reactions
    • ATP Dephosphorylation Coupled to Nonspontaneous Reactions
    • Coupled Reactions to Generate ATP
  • Structure and Function of the Mitochondria
  • Oxidation-Reduction Reactions in the Electron-Transport Chain
    • Electron-Carrier Proteins (NOTE: This section includes a separate link and an animation.)
    • Relationship Between Reduction Potentials and Free Energy
  • Proton Gradient as Means of Coupling Oxidative and Phosphorylation Components of Oxidative Phosphorylation
  • ATP Synthetase Uses Energy From Proton Gradient to Generate ATP

Every day, we build bones, move muscles, eat food, think, and perform many other activities with our bodies. All of these activities are based upon chemical reactions. However, most of these reactions are not spontaneous (i.e., they are accompanied by a positive change in free energy, DG>0) and do not occur without some other source of free energy. Hence, the body needs some sort of “free-energy currency,” (Figure 1) a molecule that can store and release free energy when it is needed to power a given biochemical reaction.

The four questions:

  1. How does the body “spend” free-energy currency to make a nonspontaneous reaction spontaneous? The answer, which is based on thermodynamics, is to use coupled reactions.
  2. How is food used to produce the reducing agents (NADH and FADH2) that can regenerate the free-energy currency? The answer, from biology, is found in glycolysis and the citric-acid cycle.
  3. How are the reducing agents (NADH and FADH2) able to generate the free-energy currency molecule (ATP)? Once again, coupled reactions are key.
  4. What mechanism does the body use to couple the reducing agent reactions and the generation of ATP? ATP is synthesized primarily by a two-step process consisting of an electron-transport chain and a proton gradient.  This process is based on electrochemistry and equilibrium, as well as thermodynamics.

The free-energy change (DG) for the net reaction is given by the sum of the free-energy changes for the individual reactions.  The phospholipids that form cell membranes are formed from glycerol with a phosphate group and two fatty-acid chains attached.This step actually consists of two reactions:

(1) the phosphorylation of glycerol, and

(2) the dephosphorylation of ATP (the free-energy-currency molecule). The reactions may be added as shown in Equations 2-4, below:

      Glycerol + HPO42- –>  (Glycerol-3-Phosphate)2- + H2O DGo= +9.2 kJ
(nonspontaneous)
(2)
+      ATP4- + H2O –>       ADP3- + HPO42- + H+ DGo30.5 kJ
(spontaneous)
(3)
     Glycerol + ATP4- –> (Glycerol-3-Phosphate)2- +ADP3- + H+ DGo21.3 kJ
(spontaneous)
(4)
   

ATP is the most important “free-energy-currency” molecule in living organisms (see Figure 2, below). Adenosine triphosphate (ATP) is a useful free-energy currency because the dephosphorylation reaction is very spontaneous; i.e., it releases a large amount of free energy (30.5 kJ/mol). Thus, the dephosphorylation reaction of ATP to ADP and inorganic phosphate (Equation 3) is often coupled with nonspontaneous reactions (e.g., Equation 2) to drive them forward. The body’s use of ATP as a free-energy currency is a very effective strategy to cause vital nonspontaneous reactions to occur.

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/ATP.jpg

structure of ATP

structure of ATP

This is the two-dimensional (ChemDraw) structure of ATP, adenosine triphosphate. The removal of one phosphate group (green) from ATP requires the breaking of a bond (blue) and results in a large release of free energy. Removal of this phosphate group (green) results in ADP, adenosine diphosphate.

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/ATP.jpg

flowchart of food energy

flowchart of food energy

This flowchart shows that the energy used by the body for its many activities ultimately comes from the chemical energy in our food. The chemical energy in our food is converted to reducing agents (NADH and FADH2). These reducing agents are then used to make ATP. ATP stores chemical energy, so that it is available to the body in a readily accessible form.

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/flowchart1.jpg

Glycolysis   Glucose + 2 HPO42- + 2 ADP3- + 2 NAD+ –>
2 Pyruvate + 2 ATP4- + 2 NADH + 2 H+ + 2 H2O
(5)
Intermediate Step   2(Pyruvate + Coenzyme A + NAD+ –>
Acetyl CoA + CO2 + NADH)
(6)
Citric-Acid Cycle 2(Acetyl CoA + 3 NAD++ FAD + GDP3-
+ HPO42- + 2H2O –> 2 CO2 + 3 NADH + FADH2
+ GTP4- + 2H+ + Coenzyme A)
(7)

The structures of the important molecules in Equations 5-7 are shown in Table 1, below.

How is Food Used to Make the Reducing Agents Needed for the Production of ATP?

To make ATP, energy must be absorbed. This energy is supplied by the food we eat, and then used to synthsize two reducing agents, NADH and FADH2 that are needed to produce ATP. One of the principal energy-yielding nutrients in our diet is glucose (see structure in Table 1 in the blue box below), a simple six-carbon sugar that can be broken down by the body. When the chemical bonds in glucose are broken, free energy is released. The complete breakdown of glucose into CO2 occurs in two processes: glycolysis and the citric-acid cycle. The reactions for these two processes are shown in the blue box below.

pyruvate

pyruvate

  Pyruvate

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/pyruvate.jpg

acetylCoA

acetylCoA

Acetyl CoA

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/acetylCoA.jpg

NADH

NADH

NADH

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/acetylCoA.jpg

 

FADH2

FADH2

FADH2

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/FADH2.jpg

two-dimensional representations of several important molecules in Equations 5-7.

As seen in Equations 5-7 in the blue box, glycolysis and the citric-acid cycle produce a net total of only four ATP or GTP molecules (GTP is an energy-currency molecule similar to ATP) per glucose molecule. This yield isfar below the amount needed by the body for normal functioning, and in fact is far below the actual ATP yield for glucose in aerobic organisms (organisms that use molecular oxygen). For each glucose molecule the body processes, the body actually gains approximately 30 ATP molecules! (See Figure 4, below.)  So, how does the body generate ATP?

The process that accounts for the high ATP yield is known as oxidative phosphorylation. A quick examination of Equations 5-7 shows that glycolysis and the citric-acid cycle generate other products besides ATP and GTP, namely NADH and FADH2 (blue). These products are molecules that are oxidized (i.e., give up electrons) spontaneously. The body uses these reducing agents (NADH and FADH2) in an oxidation-reduction reaction .  As you will see later in this tutorial, it is the free energy from these redox reactions that is used to drive the production of ATP.

flowchart - making of ATP

flowchart – making of ATP

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/flowchart2.jpg

This flowchart shows the major steps involved in breaking down glucose from the diet and converting its chemical energy to the chemical energy in the phosphate bonds of ATP, in aerobic (oxygen-using) organisms. Note: In this flowchart, red denotes a source of carbon atoms (originally from glucose),green denotes energy-currency molecules, and blue denotes the reducing agents that can be oxidized spontaneously.

In the discussion above, we see that glucose by itself generates only a tiny amount of ATP. However, during the breakdown of glucose, a large amount of NADH and FADHis produced; it is these reducing agents that dramatically increase the amount of ATP produced. How does this work?

How are the reducing agents (NADH and FADH2) able to generate the free-energy currency molecule (ATP)?

As discussed in an earlier section about coupling reactions, ATP is used as free-energy currency by coupling its (spontaneous) dephosphorylation (Equation 3) with a (nonspontaneous) biochemical reaction to give a net release of free energy (i.e., a net spontaneous reaction). Coupled reactions are also used to generate ATP by phosphorylating ADP. The nonspontaneous reaction of joining ADP to inorganic phosphate to make ATP (Equation 8, below, and Figure 2, above) is coupled to the oxidation reaction of NADH or FADH(Equation 9, below). (Recall, NADH and FADH2 are produced in glycolysis and the citric-acid cycle as described in the blue box). For simplicity, we shall henceforth discuss only the oxidation of NADH; FADH2 follows a very similar oxidation pathway.

The oxidation reaction for NADH has a larger, but negative, DG than the positive DG required for the formation of ATP from ADP and phosphate. This set of coupled reactions is so important that it has been given a special name: oxidative phosphorylation. This name emphasizes the fact that an oxidation (of NADH) reaction (Equation 9 and Figure 5, below) is being coupled to a phosphorylation (of ADP) reaction (Equation 8, below, and Figure 2, above). In addition, we must consider the reduction reaction (gaining of electrons) that accompanies the oxidation of NADH. (Oxidation reactions are always accompanied by reduction reactions, because an electron given up by one group must be accepted by another group.) In this case, molecular oxygen (O2) is the electron acceptor, and the oxygen is reduced to water (Equation 10, below) .

The individual reactions of interest for oxidative phosphorylation are:

Phosphorylation

ADP3- + HPO42- + H+ –>
ATP4- + H2O

DGo= +30.5 kJ
(nonspontaneous)
(8)
oxidation

NADH –> NAD+ + H+ +  2e

DGo158.2 Kj
(spontaneous)
(9)
reduction

1/2 O2 + 2H+ + 2e –> H2O

DGo61.9 kJ
(spontaneous)

                                                                       (10)                                    

The net reaction is obtained by summing the coupled reactions, as shown in Equation 11, below.

ADP3- + HPO42- + NADH + 1/2 O2 + 2H+ –>
ATP4- + NAD+ + 2 H2O
DGo= -189.6 kJ
(spontaneous)
(11)

The molecular changes that occur upon oxidation of NADH are shown:

NAD+_NADH

NAD+_NADH

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/NAD+_NADH.jpg

This is a two-dimensional (ChemDraw) representation showing the change that occurs when NADH is oxidized to NAD+. “R” represents the part of the structure that is shown in black in the drawing of NADH in Table 1, and does not change during the oxidation half-reaction. The molecular changes that occur upon oxidation are shown in red.

In this tutorial, we have seen that nonspontaneous reactions in the body occur by coupling them with a very spontaneous reaction (usually the ATP reaction shown in Equation 3). We have just seen that ATP is produced by coupling the phosphorylation reaction with NADH oxidation (a very spontaneous reaction). But we have not yet answered the question: by what mechanism are these reactions coupled?

Coupling Reactions in Biological Systems

Every day your body carries out many nonspontaneous reactions. As discussed earlier, if a nonspontaneous reaction is coupled to a spontaneous reaction, as long as the sum of the free energies for the two reactions is negative, the coupled reactions will occur spontaneously. How is this coupling achieved in the body? Living systems couple reactions in several ways, but the most common method of coupling reactions is to carry out both reactions on the same enzyme. Consider again the phosphorylation of glycerol (Equations 2-4). Glycerol is phosphorylated by the enzyme glycerol kinase, which is found in your liver. The product of glycerol phosporylation, glycerol-3-phosphate (Equation 2), is used in the synthesis of phospholipids.

Glycerol kinase is a large protein comprised of about 500 amino acids. X-ray crystallography of the protein shows us that there is a deep groove or cleft in the protein where glycerol and ATP attach (see Figure 6, below). Because the enzyme holds the ATP and the glycerol in place, the phosphate can be transferred directly from the ATP to glycerol. Instead of two separate reactions where ATP loses a phosphate (Equation 3) and glycerol picks up a phosphate (Equation 2), the enzyme allows the phosphate to move directly from ATP to glycerol (Equation 4).

The coupling in oxidative phosphorylation uses a more complicated (and amazing!) mechanism, but the end result is the same: the reactions are linked together, the net free energy for the linked reactions is negative, and, therefore, the linked reactions are spontaneous.

glyckin

glyckin

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/glyckin.jpg

This is a schematic representation of ATP and glycerol bound (attached) to glycerol kinase. The enzyme glycerol kinase is a dimer (consists of two identical subuits). There is a deep cleft between the subunits where ATP and glycerol bind. Since the ATP and phosphate are physically so close together when they are bound to the enzyme, the phosphate can be transferred directly from ATP to glycerol. Hence, the processes of ATP losing a phosphate (spontaneous) and glycerol gaining a phosphate (nonspontaneous) are linked together as one spontaneous process

Questions on ATP: The Body’s Free-Energy Currency (How Free-Energy Currency Works)

  • Biological systems involve many molecules containing phosphate groups, such as ATP. Although ATP is the most commonly used free-energy currency, any of these phosphorylated molecules could, in theory, be used as free-energy currency. The standard free-energy change (DGo) for the dephosphorylation (removal of a phosphate group) of several biological compounds is given below:
Acetyl phosphate DGo = -47.3 kJ/mol
Adenosine triphosphate (ATP) DGo = -30.5 kJ/mol
Glucose-6-phosphate DGo = -13.8 kJ/mol
Phosphoenolpyruvate (PEP) DGo = -61.9 kJ/mol
Phosphocreatine DGo = -43.1 kJ/mol

Neglecting any differences in difficulty synthesizing or accessing these molecules by biological systems, rank the molecules in order of their efficiency as a free-energy currency (i.e., the amount of nonspontaneous reactions enabled per phosphate removed from a molecule of free-energy currency) from the most efficient to the least efficient.

  • What, if any, changes are there in the shape of the ring as NADH is oxidized to NAD+(see Figure 5)? (Hint: Consider which atoms lie in the same plane in each structure.)

Mechanism of Coupling the Oxidative-Phosphorylation Reactions

In order to couple the redox and phosphorylation reactions needed for ATP synthesis in the body, there must be some mechanism linking the reactions together. In cells, this is accomplished through an elegant proton-pumping system that occurs inside special double-membrane-bound organelles (specialized cellular components) known as mitochondria. A number of proteins are required to maintain this proton-pumping system and catalyze the oxidative and phosphorylation reactions.

Synthesis of ATP (Equation 8) is coupled with the oxidation of NADH (Equation 9) and the reduction of O2 (Equation 10). There are three key steps in this process:

  1. Electrons are transferred from NADH, through a series of electron carriers, to O2. The electron carriers are proteins embedded in the inner mitochondrial membrane. (More detail about the structure of the mitochondria is presented in the next section.) (See Figure 7a.)
  2. Transfer of electrons by these carriers generates a proton (H+) gradient across the inner mitochondrial membrane. (See Figure 7b.)
  3. When Hspontaneously diffuses back across the inner mitochondrial membrane, ATP is synthesized. The large positive free energy of ATP synthesis is overcome by the even larger negative free energy associated with proton flow down the concentration gradient. (See Figure 7c.)

These steps are outlined below.

  1. Electron Transport (Oxidation-Reduction Reactions) Through a Series of Proteins in the Inner Membrane of the Mitochondria
e_transfer

e_transfer

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/e_transfer.jpg

Generation of H+(Proton) Concentration Gradient Across the Inner Mitochondrial Membrane During the Electron-Transport Process (via a Proton Pump)

. Generation of H+ (Proton) Concentration Gradient Across the Inner Mitochondrial Membrane

. Generation of H+ (Proton) Concentration Gradient Across the Inner Mitochondrial Membrane

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/gradient.jpg

Synthesis of ATP Using Free Energy Released From Spontaneous Diffusion of H+Back to the Matrix Inside the Inner Mitochondrial Membrane

. Synthesis of ATP Using Free Energy Released From Spontaneous Diffusion of H+

. Synthesis of ATP Using Free Energy Released From Spontaneous Diffusion of H+

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/ATP_produced.jpg

The three major steps in oxidative phosphorylation are

(a) oxidation-reduction reactions involving electron transfers between specialized proteins embedded in the inner mitochondrial membrane; 

(b) the generation of a proton (H+) gradient across the inner mitochondrial membrane (which occurs simultaneously with step (a)); and 

(c) the synthesis of ATP using energy from the spontaneous diffusion of electrons down the proton gradient generated in step (b).

Note: Steps (a) and (b) show cytochrome oxidase, the final electron-carrier protein in the electron-transport chain described above. When this protein accepts an electron (green) from another protein in the electron-transport chain, an Fe(III) ion in the center of a heme group (purple) embedded in the protein is reduced to Fe(II). The coordinates for the protein were determined using x-ray crystallography, and the image was rendered using SwissPDB Viewer and POV-Ray (see References).

Cells use a proton-pumping system made up of proteins inside the mitochondria to generate ATP. Before we examine the details of ATP synthesis, we shall step back and look at the big picture by exploring the structure and function of the mitochondria, where oxidative phosphorylation occurs.

Structure and Function of the Mitochondria

mitochondria

mitochondria

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/mitochondria.jpg

This is a schematic diagram showing the membranes of the mitochondrion. The purple shapes on the inner membrane represent proteins, which are described in the section below. An enlargement of the boxed portion of the inner membrane in this figure is shown in Figure.

The mitochondrial membranes are crucial for this organelle’s role in oxidative phosphorylation. As shown in Figure 8, mitochondria have two membranes, an inner and an outer membrane. The outer membrane ispermeable to most small molecules and ions, because it contains large protein channels called porins. The inner membrane is impermeable to most ions and polar molecules. The inner membrane is the site of oxidative phosphorylation. Although the membrane is mostly impermeable, it contains special H+ (proton) channels and pumps that enable the coupling of the redox reaction involving NADH and O2 (Equations 9-10) to the phosphorylation reaction of ADP (Equation 8), as described below (“Oxidation-Reduction Reactions and Proton Pumping in Oxidative Phosphorylation”). (Recall the discussion of protein channels in the “Maintaining the Body’s Chemistry: Dialysis in the Kidneys” Tutorial .)

As shown in Figure 8, inside the inner membrane is a space known as the matrix; the space between the two membranes is known as the intermembrane space. The matrix side of the inner membrane has a negative electrical charge relative to the intermembrane space due to an H+ gradient set up by the redox reaction (Equations 9 and 10). This charge difference is used to provide free energy (G) for the phosphorylation reaction (Equation 8).

Oxidation-Reduction Reactions and Proton Pumping in Oxidative Phosphorylation

Phosphorylation of ADP (Equation 8) is coupled to the oxidation-reduction reaction of NADH and O2 (Equations 9 and 10). Electrons are not transferred directly from NADH to O2, but rather pass through a series of intermediate electron carriers in the inner membrane of the mitochondrion. Why? This allows something very important to occur: the pumping of protons across the inner membrane of the mitochondrion. As we shall see, it is this proton pumping that is ultimately responsible for coupling the oxidation-reduction reaction to ATP synthesis.

Two major types of mitochondrial proteins (see Figure 9, below) are required for oxidative phosphorylation to occur. Both classes of proteins are located in the inner mitochondrial membrane.

  1. The electron carriers (NADH-Q reductase, ubiquinone (Q), cytochrome reductase, cytochrome c, and cytochrome oxidase shown in shades of purple in Figure 9 below) transport electrons in a stepwise fashion from NADH to O2.  Three of these carriers (NADH-Q reductase, cytochrome reductase, and cytochrome oxidase) are also proton pumps, and simultaneously pump H+ ions (protons) from the matrix to the intermembrane space. (Proton movement from one side of the membrane to the other is shown as blue arrows in Figure 9, below.) The protons that are pumped across the membrane complete the redox reaction (Equations 9 and 10). The creation of a proton gradient across the membrane is one way of storing free energy.
  2. ATP synthetase (shown in red in Figure 9 below) allows H+ ions to diffuse back into the matrix and uses the free energy released to synthesize ATP from ADP and HPO42-. The ATP synthetase is essential for the phosphorylation to occur (Equation 8). (Proton movement from one side of the membrane to the other is shown as blue arrows in Figure 9, below.)

The electron carriers can be divided into three protein complexes (NADH-Q reductase (1), cytochrome reductase (3), and cytochrome oxidase (5)) that pump protons from the matrix to the intermembrane space, and two mobile carriers (ubiquinone (2) and cytochrome c (4)) that transfer electrons between the three proton-pumping complexes. (Gold numbers refer to the labels on each protein in Figure 9, below.) Because electrons move from one carrier to another until they are finally transferred to O2, the electron carriers (shown in Figure 9,below) are said to form an electron-transport chain.

Figure  below, is a schematic representation of the proteins involved in oxidative phosphorylation. To see an animation of oxidative phosphorylation, click on “View the Movie.”

Proteins of inner space

Proteins of inner space

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/Proteins.jpg

This is a schematic diagram illustrating the transfer of electrons from NADH, through the electron carriers in the electron transport chain, to molecular oxygen. Please click on the pink button below to view a QuickTime animation of the functions of the proteins embedded in the inner mitochondrial membrane that are necessary for oxidative phosphorylation. Click the blue button below to download QuickTime 4.0 to view the movie.

NADH-Q reductase (1), cytochrome reductase (3) , and cytochrome oxidase (5) are electron carriers as well as proton pumps, using the energy gained from each electron-transfer step to move protons (H+) against a concentration gradient, from the matrix to the intermembrane space.Ubiquinone (Q) (2) and cytochrome c (Cyt C) (4) are mobile electron carriers. (Ubiquinone is not actually a protein.) All of the electron carriers are shown in purple, with lighter shades representing increasingly higher reduction potentials. Together, these electron carriers form a “chain” to transport electrons from NADH to O2. The path of the electrons is shown with the green dotted line.

ATP synthetase (red) has two components: a proton channel (allowing diffusion of protons down a concentration gradient, from the intermembrane space to the matrix), and a catalytic component to catalyze the formation of ATP.

For a more complete description of each step in oxidative phosphorylation (indicated by the gold numbers), click here.

view movie

view movie

http://www.apple.com/quicktime/

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/movie.jpg

http://www.chemistry.wustl.edu/~edudev/LabTutorials/Cytochromes/images/QuickTime.jpg

Click here for a brief description of each of the electron carriers in the electron-transport chain. It is important to note that, although NADH donates two electrons and O2 ultimately accepts four electrons, each of the carriers can only transfer one electron at a time. Hence, there are several points along the chain where electrons can be collected and dispersed. For the sake of simplicity, these points are not described in this tutorial.

In the section above, we see that the oxidation-reduction process is a series of electron transfers that occurs spontaneously and produces a proton gradient. Why are the electron tranfers from one electron carrier to the next spontaneous?

What causes electrons to be transferred down the electron-transport chain?

As seen in Table 2, below, and Figure 7a, in these carriers, the species being oxidized or reduced is Fe, which is found either in a iron-sulfur (Fe-S) group or in a heme group. (Recall the heme group from the Chem 151 tutorial “Hemoglobin and the Heme Group: Metal Complexes in the Blood“.) The iron in these groups is alternately oxidized and reduced between Fe(II) (reduced) or Fe(III) (oxidized) states.

Table 2 shows that the electrons are transferred through the electron-transport chain because of the difference in the reduction potential of the electron carriers. As explained in the green box below, the higher the electrical potential (e) of a reduction half reaction is, the greater the tendency is for the species to accept an electron. Hence, in the electron-transport chain, electrons are transferred spontaneously from carriers whose reduction results in a small electrical potential change to carriers whose reduction results in an increasingly larger electrical potential change.

Reduction Potentials and Relationship to Free Energy

An oxidation-reduction reaction consists of an oxidation half reaction and a reduction half reaction. Every half reaction has an electrical potential (e). By convention, all half reactions are written as reductions, and the electrical potential for an oxidation half-reaction is equal in magnitude, but opposite in sign, to the electrical potential for the corresponding reduction (i.e., the opposite reaction). The electrical potential for an oxidation-reduction reaction is calculated by

erxn = eoxidation + ereduction (12)

For example, for the overall reaction of the oxidation of NADH paired with the reduction of O2, the potential can be calculated as shown below.

Reduction Potentials ereduction
NAD+ + 2H+ + 2e –> NADH + H+ -0.32 V
(1/2) O2 + 2H+ + 2e –> H2O +0.82 V

The overall reaction is

NADH + H–> NAD+ + 2H+ + 2e eoxidation = 0.32 V
(1/2) O2 + 2H+ + 2e –> H2O ereduction = 0.82 V
net: NADH + (1/2)O2 + H+ –>
H2O + NAD+
erxn = 1.14 V

The electrical potential (erxn) is related to the free energy (DG) by the following equation:

DG= -nFerxn (13)

where n is the number of electrons transferred (in moles, from the balanced equation), and F is the Faraday constant (96,485 Coulombs/mole). (Using this equation, DG is given in Joules; one Joule = 1 Volt x 1 Coulomb.)

Hence the overall reaction for the oxidation of NADH paired with the reduction of O2 has a negative change in free energy (DG =-220 kJ); i.e., it is spontaneous. Thus, the higher the electrical potential of a reduction half reaction, the greater the tendency for the species to accept an electron.

Just as in the box above, the electrical potential for the overall reaction (electron transfer) between two electron carriers is the sum of the potentials for the two half reactions. As long as the potential for the overall reaction is positive the reaction is spontaneous. Hence, from Table 2 below, we see that cytochrome c1 (part of the cytochrome reductase complex, #3 in Figure 9) can spontaneously transfer an electron to cytochrome c (#4 in Figure 9). The net reaction is given by Equation 16, below.

reduced cytochrome c–> oxidized cytochrome c+ e eoxidation = – .220 V (14)
oxidized cytochrome c + e –> reduced cytochrome c ereduction = .250 V (15)
NET: reduced cyt c1 + oxidized cyt c –>
oxidized cyt c+ reduced cyt c
erxn = 0.030 V (16) Spontaneous

We can also see from Table 2 that cytochrome c1 cannot spontaneously transfer an electron to cytochrome b (Equation 19):

reduced cyt c–> oxidized cyt c+ e eoxidation = – .220 V (17)
oxidized cyt b + e –> reduced cyt b ereduction = – 0.34 V (18)
NET: reduced cyt c1 + oxidized cyt c –>
oxidized cyt c+ reduced cyt c
erxn = – 0.56 V (19) NOT Spontaneous

Table 2 lists the reduction potentials for each of the cytochrome proteins (i.e., the last three steps in the electron-transport chain before the electrons are accepted by O2) involved in the electron-transport chain. Note that each electron transfer is to a cytochrome with a higher reduction potential than the previous cytochrome. As described in the box above and seen in Equations 14-19, an increase in potential leads to a decrease in DG (Equation 13), and thus the transfer of electrons through the chain is spontaneous.

Complex Name Half Reaction Reduction Potential
Cytochrome reductase

(also known as cytochrome b-c1 complex)

(3 in Figure 9)

Cytochrome b (Fe(III) center)
+ e –>
Cytochrome b (Fe(II) center)
-0.34 V
(at pH 7, T=30oC)
Cytochrome c1 (Fe(III) center)
+ e– –>
Cytochrome c1 (Fe(II) center)
+0.220 V
(at pH 7, T=30oC)
Cytochrome c

(4 in Figure 9)

Cytochrome c (Fe(III) center)
+ e– –>
Cytochrome c (Fe(II) center)
+0.250 V
(at pH 7, T=30oC)
Cytochrome oxidase

(5 in Figure 9)

Cytochrome oxidase
( Fe(III) center) + e– –>
Cytochrome oxidase
(Fe(II) center)
+0.285 V
(at pH 7.4, T=25oC)
Table 2

To view the cytochrome molecules interactively using RASMOL, please click on the name of the complex to download the pdb file.

Hence, the electron-transport chain (which works because of the difference in reduction potentials) leads to a large concentration gradient for H+. As we shall see below, this huge concentration gradient leads to the production of ATP.

Questions on Electron Carriers: Steps in the Electron-Transport Chain; Reduction Potentials and Relationship to Free Energy

  • Briefly, explain why electrons travel from NADH-Q reductase, to ubiquinone (Q), to cytochrome reductase, rather than in the opposite direction.
  • One result of the transfer of electrons from NADH-Q reductase down the electron transport chain is that the concentration of protons (H+ ions) in the intermembrane space is increased.  Could cells move protons (H+ ions) from the matrix to the intermembrane space without transporting electrons?  Why or why not?

 ATP Synthetase: Production of ATP

We have seen that the electron-transport chain generates a large proton gradient across the inner mitochondrial membrane. But recall that the ultimate goal of oxidative phosphorylation is to generate ATP to supply readily-available free energy for the body. How does this occur? In addition to the electron-carrier proteins embedded in the inner mitochondrial membrane, a special protein called ATP synthetase (Figure 9, the red-colored protein) is also embedded in this membrane. ATP synthetase uses the proton gradient created by the electron-transport chain to drive the phosphorylation reaction that generates ATP (Figure 7c).

ATP synthetase is a protein consisting of two important segments: a transmembrane proton channel, and a catalytic component located inside the matrix. The proton-channel segment allows H+ ions to diffuse from the intermembrane space, where the concentration is high, to the matrix, where the concentration is low. Recall from the Kidney Dialysis tutorial that particles spontaneously diffuse from areas of high concentration to areas of low concentration. Thus, since the diffusion of protons through the channel component of ATP synthetase is spontaneous, this process is accompanied by a negative change in free energy (i.e., free energy is released). The catalytic component of ATP synthetase has a site where ADP can enter. Then, using the free energy released by the spontaneous diffusion of protons through the channel segment, a bond is formed between the ADP and a free phosphate group, creating an ATP molecule. The ATP is then released from the reaction site, and a new ADP molecule can enter in order to be phosphorylated.

Questions on ATP Synthetase: Production of ATP

  • A scientist has created a phospholipid-bilayer membrane containing ATP-synthetase proteins. Instead of a proton gradient, this scientist has created a large Cs+ gradient (many Cs+ ions on the side of the membrane without the catalytic unit, and few Cs+ ions on the side of the membrane with the catalytic unit). Would you expect the ATP-synthetase proteins in this membrane to be able to generate ATP, given an abundant supply of ADP and phosphate? Briefly, explain your answer. (HINT: Draw on your knowledge of the structure of protein channels to predict what effect replacing H+ ions with Cs+ ions would have.)
  • Certain toxins allow H+ ions to move freely across the inner mitochondrial membrane (i.e., without needing to pass through the channel in ATP synthetase). What effect do you expect these toxins to have on the production of ATP? Briefly, explain your answer.

Summary

In this tutorial, we have learned that the ability of the body to perform daily activities is dependent on thermodynamic, equilibrium, and electrochemical concepts.   These activities, which are typically based on nonspontaneous chemical reactions, are performed by using free-energy currency. The common free-energy currency is ATP, which is a molecule that easily dephosphorylates (loses a phosphate group) and releases a large amount of free energy. In the body, the nonspontaneous reactions are coupled to this very spontaneous dephosphorylation reaction, thereby making the overall reaction spontaneous (DG < 0). As the coupled reactions occur (i.e., as the body performs daily activities), ATP is consumed and the body regenerates ATP by using energy from the food we eat (Figure 3). As seen in Figure 4, the breakdown of glucose (glycolysis) obtained from the food we eat cannot by itself generate the large amount of ATP that is needed for metabolic energy by the body. However, glycolysis and the subsequent step, the citric-acid cycle, produce two easily oxidized molecules: NADH and FADH2. These redox molecules are used in an oxidative-phosphorylation process to produce the majority of the ATP that the body uses. This oxidative-phosphorylation process consists of two steps: the oxidation of NADH (or FADH2) and the phosphorylation reaction which regenerates ATP. Oxidative phosphorylation occurs in the mitochondria, and the two reactions (oxidation of NADH or FADHand phosphorylation to generate ATP) are coupled by a proton gradient across the inner membrane of the mitochondria (Figure 9). As seen in Figures 7 and 9, the oxidation of NADH occurs by electron transport through a series of protein complexes located in the inner membrane of the mitochondria. This electron transport is very spontaneous and creates the proton gradient that is necessary to then drive the phosphorylation reaction that generates the ATP. Hence, oxidative-phosphorylation demonstrates that free energy can be easily transferred by proton gradients. Oxidative-phosphorylation is the primary means of generating free-energy currency for aerobic organisms, and as such is one of the most important subjects in the study of bioenergetics (the study of energy and its chemical changes in the biological world).

Additional Link:

  • This fun description of oxidative phosphorylation by Dr. E.J.Oakeley contains step-by-step animated illustrations of the redox reactions involved, as well as a quiz to test your understanding of the material.

References:

Alberts, B. et al. In Molecular Biology of the Cell, 3rd ed., Garland Publishing, Inc.: New York, 1994, pp. 653-684.

Becker, W.M. and Deamer, D.W. In The World of the Cell, 2nd ed., The Benjamin/Cummings Publishing Co., Inc.: Redwood City, CA, 1991, pp. 291-307.

Fasman, G.D. In Handbook of Biochemistry and Molecular Biology, 3rd ed., CRC Press, Inc.: Cleveland, OH, 1976, Vol. I (Physical and Chemical Data), pp. 132-137.

Guex, N. and Peitsch, M.C. Electrophoresis, 1997, 18, 2714-2723. (SwissPDB Viewer) URL: http://www.expasy.ch/spdbv/mainpage.htm.

Moa, C., Ozer, Z., Zhou, M. and Uckun, F. X-Ray Structure of Glycerol Kinase Complexed with an ATP Analog Implies a Novel Mechanism for the ATP-Dependent Gylcerol Phosphorylation by Glycerol Kinase.Biochemical and Biophysical Reaearch Communications. 1999, 259, 640-644.

Persistence of Vision Ray Tracer (POV-Ray). URL: http://www.povray.org.

Stryer, L. In Biochemistry, 4th. ed., W.H. Freeman and Co.: New York, 1995, pp. 490, 509, 513, 529-557.

Zubay, G. Biochemistry, 3rd. ed., Wm. C. Brown Publishers: Dubuque, IA, 1983, p. 42.

Acknowledgements:

The authors thank Dewey Holten (Washington University in St. Louis) for many helpful suggestions in the writing of this tutorial.

The development of this tutorial was supported by a grant from the Howard Hughes Medical Institute, through the Undergraduate Biological Sciences Education program, Grant HHMI# 71199-502008 to Washington University.

Copyright 1999, Washington University, All Rights Reserved.

 

 

 

Read Full Post »

%d bloggers like this: