Healthcare analytics, AI solutions for biological big data, providing an AI platform for the biotech, life sciences, medical and pharmaceutical industries, as well as for related technological approaches, i.e., curation and text analysis with machine learning and other activities related to AI applications to these industries.
Some Recent Challenging News from Gene Therapy Companies: Sarepta’s Gene Therapy Halted by FDA, Spark Therapeutics Program Gets a Realignment and Review from Roche
Curator: Stephen J.Williams, Ph.D.
Sarepta Therapeutics has received a order from the FDA to halt clinical trials on its Duchenne Muscular Dystrophy gene therapy Elevidys on July 18, 2025 following three deaths.
FDA Requests Sarepta Therapeutics Suspend Distribution of Elevidys and Places Clinical Trials on Hold for Multiple Gene Therapy Products Following 3 Deaths
For Immediate Release:
July 18, 2025
The U.S. Food and Drug Administration today announced it has placed Sarepta Therapeutics investigational gene therapy clinical trials for limb girdle muscular dystrophy on clinical hold following three deaths potentially related to these products and new safety concerns that the study participants are or would be exposed to an unreasonable and significant risk of illness or injury. The FDA has also revoked Sarepta’s platform technology designation.
The FDA leadership also met with Sarepta Therapeutics and requested it voluntarily stop all shipments of Elevidys today. The company refused to do so.
“Today, we’ve shown that this FDA takes swift action when patient safety is at risk.” said FDA Commissioner Marty Makary, M.D., M.P.H. “We believe in access to drugs for unmet medical needs but are not afraid to take immediate action when a serious safety signal emerges.”
The three deaths appear to have been a result of acute liver failure in individuals treated with Elevidys or investigational gene therapy using the same AAVrh74 serotype that is used in Elevidys. One of the fatalities occurred during a clinical trial conducted under an investigational new drug application for the treatment of Limb Girdle Muscular Dystrophy.
“Protecting patient safety is our highest priority, and the FDA will not allow products whose harms are greater than benefits. The FDA will halt any clinical trial of an investigational product if clinical trial participants would be exposed to an unreasonable and significant risk of illness or injury,” said Director of the FDA’s Center for Biologics Evaluation and Research Vinay Prasad, M.D., M.P.H.
Elevidys is an adeno-associated virus vector-based gene therapy using Sarepta Therapeutics, Inc.’s AAVrh74 Platform Technology for the treatment of Duchenne muscular dystrophy (DMD). It is designed to deliver into the body a gene that leads to production of Elevidys micro-dystrophin, a shortened protein (138 kDa, compared to the 427 kDa dystrophin protein of normal muscle cells) that contains selected domains of the dystrophin protein present in normal muscle cells. The product is administered as a single intravenous dose.
Duchenne muscular dystrophy is a rare and serious genetic condition which worsens over time, leading to weakness and wasting away of the body’s muscles. The disease occurs due to a defective gene that results in abnormalities in, or absence of, dystrophin, a protein that helps keep the body’s muscle cells intact.
Further, today, the FDA revoked the platform technology designation for Sarepta’s AAVrh74 Platform Technology because, among other things, given the new safety information, the preliminary evidence is insufficient to demonstrate that AAVrh74 Platform Technology has the potential to be incorporated in, or utilized by, more than one drug without an adverse effect on safety.
Elevidys received traditional approval for use in ambulatory DMD patients 4 years of age and older with a confirmed mutation in the DMD gene on June 20, 2024. It was approved for non-ambulatory patients on June 22, 2023 under the accelerated approval pathway. This pathway can allow earlier approval based on an effect on a surrogate endpoint or intermediate clinical endpoint that is reasonably likely to predict clinical benefit, while the company conducts confirmatory studies to verify the predicted clinical benefit. Continued approval for non-ambulatory patients is contingent upon verification and description of clinical benefit in a confirmatory trial. Given the new safety information, The FDA has notified the company that the indication should be restricted to use in ambulatory patients. The FDA is committed to further investigating the safety of the product in ambulatory patients and will take additional steps to protect patients as needed.
On July 18 Sarepta appeared to be disregarding the FDA release (according to the New York Times)
In a remarkable public dispute between drugmaker and regulator, the biotech company Sarepta Therapeutics is defying the Food and Drug Administration’s request that it halt distribution of its treatment for a deadly muscle-wasting disease.
In a news release on Friday evening, the agency said that it requested that the company voluntarily stop all shipments of the therapy, known as Elevidys, citing the deaths of three patients from liver failure who had taken the product or a similar therapy.
In its own news release later on Friday evening, Sarepta, which is based in Cambridge, Mass., said that it would continue to ship the treatment for patients who do not use wheelchairs. The company said its analysis showed no new safety problems in those patients and that it was committed to patient safety.
Dr. Marty Makary, the F.D.A. commissioner, said in the agency’s statement that its request to Sarepta demonstrated that the F.D.A. “takes swift action when patient safety is at risk.”
“We believe in access to drugs for unmet medical needs but are not afraid to take immediate action when a serious safety signal emerges,” he said.
In the past, the F.D.A. has sometimes asked companies to pause distribution of a drug until a new problem is better understood and mitigated. However, it can also press its case, and begin a process to revoke the drug’s license, which would begin with a formal notification and opportunity to respond and participate in a public hearing.
On July 21, 2025 Sarepta announces on their website in press release
Sarepta Therapeutics Announces Voluntary Pause of ELEVIDYS Shipments in the U.S.
07/21/25 7:40 PM EDT
CAMBRIDGE, Mass.–(BUSINESS WIRE)–Jul. 21, 2025– Sarepta Therapeutics, Inc. (NASDAQ:SRPT), the leader in precision genetic medicine for rare diseases, today issued the following statement:
Today, Sarepta Therapeutics notified the U.S. Food and Drug Administration (FDA) of its decision to voluntarily and temporarily pause all shipments of ELEVIDYS (delandistrogene moxeparvovec) for Duchenne muscular dystrophy in the United States, effective close of business Tuesday, July 22, 2025.
This proactive step will allow Sarepta the necessary time to respond toany requests for information and allow Sarepta and FDA to complete the ELEVIDYS safety labeling supplement process. The Company looks forward to a collaborative, science-driven review process and dialogue with the FDA.
“As a patient-centric organization, the decision to voluntarily and temporarily pause shipments of ELEVIDYS was a painful one, as individuals with Duchenne are losing muscle daily and in need of disease-modifying options,” said Doug Ingram, chief executive officer, Sarepta. “It is important for the patients we serve that Sarepta maintains a productive and positive working relationship with FDA, and it became obvious that maintaining that productive working relationship required this temporary suspension while we address any questions that FDA may have and complete the ELEVIDYS label supplement process.”
Sarepta remains committed to transparency and patient safety and will continue to provide timely updates to patients, families, healthcare providers, and the broader Duchenne community as additional information becomes available.
About ELEVIDYS (delandistrogene moxeparvovec-rokl) ELEVIDYS (delandistrogene moxeparvovec-rokl) is a single-dose, adeno-associated virus (AAV)-based gene transfer therapy for intravenous infusion designed to address the underlying genetic cause of Duchenne muscular dystrophy – mutations or changes in the DMD gene that result in the lack of dystrophin protein – through the delivery of a transgene that codes for the targeted production of ELEVIDYS micro-dystrophin in skeletal muscle.
ELEVIDYS is indicated for the treatment of Duchenne muscular dystrophy (DMD) in individuals at least 4 years of age.
For patients who are ambulatory and have a confirmed mutation in the DMD gene
For patients who are non-ambulatory and have a confirmed mutation in the DMD gene.
However this is not the first time Sarepta has been in the hot seat…
Read this interesting article from Derrick Lowe of Science. I will put it in its entirety as Derick Lowe really writes some great articles in his blog.
I really, really wish that I were not writing about Sarepta again. But here we are. Perhaps a quick review will explain my reluctance.
Back in 2013, the company was trying to get approval for an unusual “exon skipping” molecule (eteplirsen) as a therapy for Duchenne muscular dystropy. Nothing wrong with that – in fact, there’s a lot that’s right with that, since Duchenne is a perfect “unmet medical need” situation, and the exon-skipping idea was an innovative approach ten years ago (and it’s still not exactly a standard-issue therapy). Attacking very hard-to-treat diseases with new mechanisms of action is just what we’re supposed to be doing in this business.
The approval, though, was having trouble for some very good reasons. Sarepta’s trial was very, very small and the FDA later found that their trial design was very, very flawed. But in 2016 eteplirsen was suddenly approved, to the surprise of many observers (including me). A few years later, a follow-up drug (golodirsen) from the company (golodirsen) was also rejected by the FDA (with a Complete Response Letter) but then was later suddenly approved, although no new data had been presented. That was particularly mystifying since the eventually-published CRL detailed a number of real problems with eteplirsen since its approval, problems that looked to be possibly even greater with the follow-up drug. To the best of my knowledge, the confirmatory Phase III trial that was required at the time of golodirsen’s approval is still going on and is expected to read out next year. In 2021, another Sarepta exon-skipping drug (different exon this time) was approved (casimirsen) on the basis of biomarker levels that were expected to show eventual clinical benefit, and I believe that its confirmatory trial is part of the golodirsen one. That one at least did not go through the first-rejected-then-approved pathway.
More recently the company has been working on an outright gene therapy (elevidys) for Duchenne, and the initial results were quite promising. The company got accelerated FDA approval for that one last June for 4- and 5-year-old patients, even though actual clinical benefit had not yet been established. But gene therapy is a winding road, and last October the Phase III results for Elevidys were a complete miss in the primary endpoint. Arguing commenced, with the company saying that the results in the secondary endpoints showed that the drug was “modifying the trajectory” of the disease, and the CEO called the results a “massive win” and said that the company would use them to ask for a much wider label approval from the FDA. Apparently during the conference call, when he was asked about why he was so confident, he said that the FDA’s CBER head Peter Marks was “very supportive”. (It should be noted that since then another Duchenne gene therapy effort, this one from Pfizer, also failed its Phase III, so it’s not like this is a straightforward area).
Boy, was that the truth. The agency has just granted that use expansion, and it turns out that it was all due to Peter Marks, who completely overruled three review teams and two of his highest-level staffers (all of whom said that Sarepta had not proven its case). Honestly, I’m starting to wonder why any of us go to all this trouble. It appears that all you need is a friend high up in the agency and your clinical failures just aren’t an issue any more. Review committees aren’t convinced? Statisticians don’t buy your arguments? Who cares! Peter Marks is here to deliver hot, steaming takeout containers full of Hope.
Back in 2016, when eteplirsen first came up for its advisory committee vote, I wrote that there was a matrix of possible votes and interpretations, which I summed up this way:
(1) A negative vote, which is a rejection of the potential of the drug, the suffering of DMD patients, and their right to try a therapy which apparently does no harm, for a disease that has no other options.
(2) A negative vote, which is the only possible one, considering that the company’s trial data are far too sparse and unconvincing to allow a recommendation to approve the drug. If this gets recommended, what doesn’t? Why do we require new drugs to show efficacy at all?
(3) A positive vote, which is a victory for patient advocates everywhere, and in particular for the extremely ill boys who suffer from this disease, or. . .
(4) A positive vote, which marks an undeserved and potentially hazardous victory of emotional rhetoric and relentless patient advocacy over the scientific and medical evidence.
As I’ve said many times since, including just a few days ago, I believe that the FDA is tilting very, very noticeably towards #4 while proclaiming the wonderful new world of #3. And while I realize that this may make me sound like a heartless SOB, I think this is a huge mistake that we will be paying for for a long time.
Note that there has been reported deaths in 2024.
The following was from some data published in Nature in 2025 from Clinical Trial ClinicalTrials.gov: NCT05096221.
Mendell JR, Muntoni F, McDonald CM, Mercuri EM, Ciafaloni E, Komaki H, Leon-Astudillo C, Nascimento A, Proud C, Schara-Schmidt U, Veerapandiyan A, Zaidman CM, Guridi M, Murphy AP, Reid C, Wandel C, Asher DR, Darton E, Mason S, Potter RA, Singh T, Zhang W, Fontoura P, Elkins JS, Rodino-Klapac LR. AAV gene therapy for Duchenne muscular dystrophy: the EMBARK phase 3 randomized trial.Nat Med. 2025 Jan;31(1):332-341. doi: 10.1038/s41591-024-03304-z
Abstract
Duchenne muscular dystrophy (DMD) is a rare, X-linked neuromuscular disease caused by pathogenic variants in the DMD gene that result in the absence of functional dystrophin, beginning at birth and leading to progressive impaired motor function, loss of ambulation and life-threatening cardiorespiratory complications. Delandistrogene moxeparvovec, an adeno-associated rh74-viral vector-based gene therapy, addresses absent functional dystrophin in DMD. Here the phase 3 EMBARK study aimed to assess the efficacy and safety of delandistrogene moxeparvovec in patients with DMD. Ambulatory males with DMD, ≥4 years to <8 years of age, were randomized and stratified by age group and North Star Ambulatory Assessment (NSAA) score to single-administration intravenous delandistrogene moxeparvovec (1.33 × 1014 vector genomes per kilogram; n = 63) or placebo (n = 62). At week 52, the primary endpoint, change from baseline in NSAA score, was not met (least squares mean 2.57 (delandistrogene moxeparvovec) versus 1.92 (placebo) points; between-group difference, 0.65; 95% confidence interval (CI), -0.45, 1.74; P = 0.2441). Secondary efficacy endpoints included mean micro-dystrophin expression at week 12: 34.29% (treated) versus 0.00% (placebo). Other secondary efficacy endpoints at week 52 (between-group differences (95% CI)) included: Time to Rise (-0.64 (-1.06, -0.23)), 10-meter Walk/Run (-0.42 (-0.71, -0.13)), stride velocity 95th centile (0.10 (0.00, 0.19)), 100-meter Walk/Run (-3.29 (-8.28, 1.70)), time to ascend 4 steps (-0.36 (-0.71, -0.01)), PROMIS Mobility and Upper Extremity (0.05 (-0.08, 0.19); -0.04 (-0.24, 0.17)) and number of NSAA skills gained/improved (0.19 (-0.67, 1.06)). In total, 674 adverse events were recorded with delandistrogene moxeparvovec and 514 with placebo. There were no deaths, discontinuations or clinically significant complement-mediated adverse events; 7 patients (11.1%) experienced 10 treatment-related serious adverse events. Delandistrogene moxeparvovec did not lead to a significant improvement in NSAA score at week 52. Some of the secondary endpoints numerically favored treatment, although no statistical significance can be claimed. Safety was manageable and consistent with previous delandistrogene moxeparvovec trials.
As noted in the adobe abstract everything seemed to fine as reported in this trial.
However there was a report of an immunoloically related death in 2023:
For the first time, in June 2023, delandistrogene moxeparvovec (SRP-9001), a gene replacement therapy based on an adeno-associated virus (AAV) vector, was approved in the USA for children aged 4-5 years with DMD. Other promising gene therapies are in preclinical development or clinical trials, including CRISPR/Cas9-mediated strategies to restore dystrophin expression. Two deaths following DMD gene therapy with high-dose AAV vectors were attributed to AAV-mediated immune responses. The pre-existing disease underlying the therapy is most likely involved in the fatal AAV toxicity.
Now this may have been dose related as the patient was given a high dose.
DMD gene therapy death exposes risks of treating older patients
Cure Rare Disease plans to continue its programs with alternative vectors. (iStock / Getty Images Plus)
Cure Rare Disease has shared a deep dive into the death of the only participant in a gene therapy trial. The nonprofit and its collaborators tied the death of a patient with Duchenne muscular dystrophy (DMD) to an immune reaction to the viral vector, raising concerns about dosing older, more advanced people.
Commercial development of DMD gene therapies has focused on younger patients, with Sarepta Therapeutics limiting enrollment in its phase 3 trial to children aged 4 to 8 years old. The restrictive recruitment criteria have stopped many DMD patients from accessing gene therapies in clinical trials run by Sarepta and its rivals. The patient dosed in the Cure Rare Disease clinical trial was 27 years of age, and the therapy had been designed for him.
Last year, the nonprofit reported that the patient, who was the brother of its CEO, died after receiving the therapy. The death led to an investigation into what happened after the patient received the therapy, which was designed to use CRISPR transactivation to upregulate an alternate form of a key DMD protein.
Writing in preprint journal medRxiv (PDF), Cure Rare Disease described the findings of the investigation. A post-mortem showed injuries to the patient’s lungs, likely caused by a strong immune reaction to the high dose of the adeno-associated virus (AAV) vector that was given to try to ensure sufficient expression to achieve a therapeutic effect. There was minimal expression of the transgene in the liver.
At 1×1014 vg/kg, the studied dose was similar to that tested in other clinical trials but resulted in a higher vector genome load, a finding the researchers attributed to the patient’s lower lean muscle mass, 45%. The analysis suggests the patient had “a more severe innate immune reaction than others receiving similar or slightly higher doses of rAAV in microdystrophin gene therapy trials.”
Based on the finding, the researchers identified a need for more data on the characteristics that may predispose people to severe innate immune reactions and concluded “dose determination will remain a challenge for custom-designed AAV-mediated therapies, as by definition the precise therapeutic dose will not have been established.”
As for the application of CRISPR, the researchers said the toxicity and eventual death of the patient meant that an assessment of the safety and efficacy of the treatment was not possible.
AAV related clinical trials have been halted for drug-induced liver injury, predominantly due to severe immune reaction. In many cases it appears when high dose AAV therapy is used.
.10.015. Epub 2023 Oct 10. PMID: 37822079; PMCID: PMC10638066.
Abstract
High-dose systemic gene therapy with adeno-associated virus (AAV) is in clinical trials to treat various inherited diseases. Despite remarkable success in spinal muscular atrophy and promising results in other diseases, fatality has been observed due to liver, kidney, heart, or lung failure. Innate and adaptive immune responses to the vector play a critical role in the toxicity. Host factors also contribute to patient death. This mini-review summarizes clinical findings and calls for concerted efforts from all stakeholders to better understand the mechanisms underlying lethality in AAV gene therapy and to develop effective strategies to prevent/treat high-dose systemic AAV-gene-therapy-induced immunotoxicity.
Table 1.
Fatality cases following high-dose systemic AAV delivery
Roche Decides to Stop backing Sparks Therapeutics Hemophilia A Gene Therapy Program
In 2019, Roche acquired Children’s Hospital of Pennsylvania (CHOP) spinout Spark Therapeutics for $4.8 billion, one of the largest pharma acquisitions up to that time. It was reported on this site here
However as reported by Fierce Biotech (and updated above link) at https://www.fiercepharma.com/pharma/roche-overhauls-spark-gene-therapy-unit-recording-24b-full-impairment Roche will reorganize the company and deal, bringing in Spark into the corporate fold. However this meant massive layoffs and possibly either end of the gene therapy program in order to integrate it with Roche’s current programs. The Spark gene therapy has met with success so it will be interesting to see how Roche continues this program in the future.
However it has been a rough year for many gene therapies.
Other Articles in this Open Access Scientific Journol of Gene Therapy
Tailored Hope: Personalized Gene Therapy Makes History
Curator: Dr. Sudipta Saha, Ph. D.
A groundbreaking milestone in precision medicine has been achieved by researchers supported by the National Institutes of Health (NIH), USA where a personalized gene therapy was successfully administered to an infant diagnosed with a rare and fatal genetic disorder. This therapy was developed and delivered under the NIH’s Bespoke Gene Therapy Consortium (BGTC), which focuses on accelerating gene therapy solutions for ultra-rare conditions.
The child, who had been diagnosed with a previously untreatable condition caused by mutations in the TBCK gene, was treated with a customized adeno-associated viral (AAV) vector designed specifically to address the individual’s unique mutation. This approach was enabled by rapid sequencing, vector engineering, preclinical safety testing, and regulatory approvals—all expedited within a year of diagnosis.
The therapeutic gene was administered through a single intravenous infusion. Post-treatment observations indicated stabilization in disease progression and improvement in neurological function, though ongoing monitoring is being conducted to assess long-term outcomes.
This personalized treatment was made possible by the integration of genomic diagnostics, advanced vector design, and regulatory science, marking a transformative moment in paediatric precision medicine. Ethical considerations and close family collaboration were emphasized throughout the process.
The case has highlighted the promise of tailored gene therapies for diseases too rare to be addressed by conventional clinical trials. By establishing a streamlined pathway, the NIH aims to extend this model to more patients globally.
Named for ACGT co-founder, Edward Netter, the award recognizes a researcher who has made unparalleled and groundbreaking contributions to the field of cell and gene therapy for cancer. Dr. Mackall is a leader in advancing cell and gene therapies for the treatment of solid tumors, with a major focus on children’s cancers.
In addition to being an ACGT research fellow and a member of ACGT’s Scientific Advisory Council, Dr. Mackall is the Ernest and Amelia Gallo Family professor of Pediatrics and Medicine at Stanford University, the founding director of the Stanford Center for Cancer Cell Therapy, associate director of the Stanford Cancer Institute, leader of the Cancer Immunotherapy Program and director of the Parker Institute for Cancer Immunotherapy. She has led numerous groundbreaking clinical trials to treat children with sarcomas and brain cancers.
“There is exciting progress happening in the field of cancer cell and gene therapy,” said Kevin Honeycutt, CEO and president of ACGT. “We continue to see the FDA approve cell and gene therapy treatments for blood cancers, while research for solid tumors is now progressing to clinical trials. These successes are linked to the funding of ACGT, and Dr. Crystal Mackall is one of the best examples of a researcher who refused to accept the status-quo of standard cancer treatment and committed to developing novel cell and gene therapies for children with difficult-to-treat tumors. ACGT is proud that Dr. Mackall is an ACGT Research Fellow, a member of ACGT’s Scientific Advisory Council, and the newest recipient of the Edward Netter Leadership Award.”
The ACGT Awards Luncheon will celebrate the non-profit organization’s 20th anniversary and usher in a new decade as the only nonprofit dedicated exclusively to funding cancer cell and gene therapy research. ACGT funds innovative scientists and biotechnology companies working to harness the power of cell and gene therapy to transform how cancer is treated and to drive momentum toward a cure.
The Edward Netter Leadership Award will be presented to Dr. Mackall by Carl June, MD, of the University of Pennsylvania, who received the honor at ACGT’s 2019 Awards Gala. ACGT grant funding enabled Dr. June to research and develop cell and gene therapies that led to the first FDA approvals of CAR T-cell therapies for cancer.
For more than 20 years, Alliance for Cancer Gene Therapy has funded research that is bringing innovative treatment options to people living with deadly cancers – treatments that save lives and offer new hope to all cancer patients. Alliance for Cancer Gene Therapy funds researchers who are pioneering the potential of cancer cell and gene therapy – talented visionaries whose scientific advancements are driving the development of groundbreaking treatments for ovarian, prostate, sarcoma, glioblastoma, melanoma and pancreatic cancers. One hundred percent of all public funds raised by Alliance for Cancer Gene Therapy directly support research and programs. For more information, visit acgtfoundation.org, call (203) 358-5055, or join the Alliance for Cancer Gene Therapy community on Facebook, Twitter, LinkedIn, Instagram and YouTube @acgtfoundation.
# # #
Other Related Articles in this Open Access Scientific Journal Include
Tweets and Re-Tweets of Tweets by @pharma_BI@AVIVA1950 at 2021 Virtual World Medical Innovation Forum, Mass General Brigham, Gene and Cell Therapy, VIRTUAL May 19–21, 2021
REAL TIME EVENT COVERAGE as PRESS by invitation from 2021 Virtual World Medical Innovation Forumat #WMIF2021 @MGBInnovation:
for sharing this screen capture of the impressive lineup of #GCT “Disruptive Dozen” panelists at #WMIF2021
Quote Tweet
Aviva Lev-Ari
@AVIVA1950
· May 21
@MGBInnovation #WMIF Best Global event on Gene Cell Therapy covered in real time @AVIVA1950 @pharma_BI Disruptive Dozen technologies four are based on Gene Editing, AAV and non viral vector for drug delivery are included
PART 1: ALL THE TWEETS PRODUCED by @AVIVA1950 on May 21, 2021
Bob Carter, MD, PhD Chairman, Department of Neurosurgery, MGH William and Elizabeth Sweet, Professor of Neurosurgery, HMS Neurogeneration REVERSAL or slowing down?
Penelope Hallett, PhD NRL, McLean Assistant Professor Psychiatry, HMS efficacy Autologous cell therapy transplantation approach program T cells into dopamine genetating cells greater than Allogeneic cell transplantation
Roger Kitterman VP, Venture, Mass General Brigham Saturation reached or more investment is coming in CGT Multi OMICS and academia originated innovations are the most attractive areas
Peter Kolchinsky, PhD Founder and Managing Partner, RA Capital Management Future proof for new comers disruptors Ex Vivo gene therapy to improve funding products what tool kit belongs to
Chairman, Department of Neurosurgery, MGH, Professor of Neurosurgery, HMS Cell therapy for Parkinson to replace dopamine producing cells lost ability to produce dopamine skin cell to become autologous cells reprogramed
Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH Off-th-shelf one time treatment becoming cure Intact tissue in a dish is fragile to maintain metabolism to become like semiconductors
Ole Isacson, MD, PhD Director, Neuroregeneration Research Institute, McLean Professor, Neurology and Neuroscience, MGH, HMS Opportunities in the next generation of the tactical level Welcome the oprimism and energy level of all
Erin Kimbrel, PhD Executive Director, Regenerative Medicine, Astellas In the ocular space immunogenecity regulatory communication use gene editing for immunogenecity Cas1 and Cas2 autologous cells
Nabiha Saklayen, PhD CEO and Co-Founder, Cellino scale production of autologous cells foundry using semiconductor process in building cassettes by optic physicists
Joe Burns, PhD VP, Head of Biology, Decibel Therapeutics Ear inside the scall compartments and receptors responsible for hearing highly differentiated tall ask to identify cell for anticipated differentiation control by genomics
Kapil Bharti, PhD Senior Investigator, Ocular and Stem Cell Translational Research Section, NIH first drug required to establish the process for that innovations design of animal studies not done before
Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Manufacturing change is not a new clinical trial FDA need to be presented with new rethinking for big innovations Drug pricing cheaper requires systematization
David Berry, MD, PhD CEO, Valo Health GP, Flagship Pioneering Bring disruptive frontier platform reliable delivery CGT double knockout disease cure all change efficiency scope human centric vs mice centered right scale acceleration
Kush Parmar, MD, PhD Managing Partner, 5AM Ventures build it yourself, benefit for patients FIrst Look at MGB shows MEE innovation on inner ear worthy investment
Robert Nelsen Managing Director, Co-founder, ARCH Venture Partners Frustration with supply chain during the Pandemic, GMC anticipation in advance CGT rapidly prototype rethink and invest proactive investor .edu and Pharma
The # of US patients with Parkinson’s Disease is expected to double over next 30 years. Penelope Hallett PhD, Co-Director of the Neuroregeneration Research Inst
Marcela Maus, MD PhD, are working to expand the reach of this transformative technology. #WMIF2021
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· 3h
Disruptive Dozen: 12 Technologies that Will Reinvent GCT #9. Building the Next Wave of CAR-T-cell Therapies #WMIF2021 #GCT #GeneAndCellTherapy #CellTherapy #CarT #DisruptiveDozen
and global colleagues at #WMIF2021. On Thursday, May 20, my colleagues and I will discuss the advantages of RNA-targeted medicines and how they might shape the future of medicine for patients.
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· May 10
Are you part of the @MassGenBrigham network and interested in #GeneAndCellTherapy? Join us at the World Medical Innovation Forum on 5/19-5/21. Register today! https://worldmedicalinnovation.org/register/ #WMIF2021
Incredible opportunity to get up to speed with the most innovative technologies in medicine ! Gene and cell therapy are revolutionizing healthcare ! #WMIF2021#MedTwitter
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· May 11
#WMIF2021 is an opportunity for innovators from around the globe to meet, explore, challenge, and reflect on the issues influencing the adoption of novel technologies in #healthcare. Register now to join the conversation: https://worldmedicalinnovation.org/register/
Currently, the only cure for some common blood disorders is a bone marrow transplant, which can be risky. Now, gene therapies are also in the works, including a CRISPR-based #genetherapy being tested in clinical trials with encouraging early results. #WMIF2021
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· 3h
Disruptive Dozen: 12 Technologies that Will Reinvent GCT #2. A Genetic Fix for Two Common Blood Disorders #WMIF2021 #GCT #GeneAndCellTherapy #BloodDisorders #DisruptiveDozen
Researchers have pinpointed key genes involved in cholesterol and lipid metabolism that represent promising targets for new cholesterol-lowering treatments. #WMIF2021
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· 3h
Disruptive Dozen: 12 Technologies that Will Reinvent GCT #1. A New Generation of Cholesterol-Loweing Therapies #WMIF2021 #GCT #GeneAndCellTherapy #DisruptiveDozen
I really enjoyed this remarkable panel #WMIF2021. Thank you Meredith Fisher for moderating and thank you David, Bob and Kush for openly sharing your big picture view
Variability, delays, manufacturing as an afterthought make #GCT challenging from an investment POV — need to rethink the ecosystem and drive efficiency, invest in tech innovation says Bob Nelson ARCH Venture Partners
We need to change the scale and scope of how #GCT is advancing from discovery to development — systematization critical. Can’t have thousands of one-off therapies say early-stage investors. Major mis-match between where things are now and what could be.
Today I moderated a panel on Gene and Cell Therapy Delivery, Perfecting the Technology. We highlighted non-viral delivery technologies as key enablers of gene therapy and editing. Learn more: https://lnkd.in/d-Xqzqh#WMIF2021
Congratulations to the 2021 Innovation Discovery Grants winners: @lynchielydia, Peter Sage, @GrishchukL, Benjamin Kleinstiver, Petr Baranov, announced at the #WMIF2021. It’s exciting to see the range of breakthrough research in #geneticdisease at @MassGenBrigham…
for sharing this screen capture of the impressive lineup of #GCT “Disruptive Dozen” panelists at #WMIF2021
Quote Tweet
Aviva Lev-Ari
@AVIVA1950
· May 21
@MGBInnovation #WMIF Best Global event on Gene Cell Therapy covered in real time @AVIVA1950 @pharma_BI Disruptive Dozen technologies four are based on Gene Editing, AAV and non viral vector for drug delivery are included
PART 1: ALL THE TWEETS PRODUCED by @AVIVA1950 on May 20, 2021
Bob Brown, PhD CSO, EVP of R&D, Dicerna small molecule vs capacity of nanoparticles to deliver therapeutics quantity for more molecule is much larger CNS delivery most difficult
Jeannie Lee, MD, PhD Molecular Biologist, MGH Prof Genetics, HMS 200 disease X chromosome unlock for neurological genetic diseases: Rett Syndrome, autism spectrum disorders female model vs male mice model restore own protein
Suneet Varma Global President of Rare Disease, Pfizer review of protocols and CGT for Hemophilia Pfizer: You can’t buy Time With MIT Pfizer is developing a model for Hemophilia CGT treatment
Gallia Levy, MD, PhD CMO, Spark Therapeutics Hemophilia CGT is the highest potential for Global access logistics in underdev countries working with NGOs practicality of the Tx Roche reached 120 Counties great to be part of the Roche
Theresa Heggie CEO, Freeline Therapeutics Safety concerns, high burden of treatment CGT has record of safety and risk/benefit adoption of Tx functional cure CGT is potent Tx relative small quantity of protein needs be delivered
Suneet Varma Global President of Rare Disease, Pfizer Gene therapy at Pfizer small, large molecule and CGT – spectrum of choice allowing Hemophilia patients to marry 1/3 internal 1/3 partnership 1/3 acquisitions review of protocols
Ron Renaud CEO, Translate Bio What strain of Flu vaccine will come back in the future when people do not use masks. AAV vectors small transcript size fit reach cytoplasm more development coming
Melissa Moore Chief Scientific Officer, Moderna Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna
Lindsey Baden, MD Director, Clinical Research, Division of Infectious Diseases, BWH Associate Professor, HMS In vivo delivery process regulatory for new opportunities for same platform new indication using multi valence vaccines
Melissa Moore Chief Scientific Officer, Moderna Many years of mRNA pivoting for new diseases, DARPA, nucleic Acids global deployment of a manufacturing unit on site where the need arise Elan Musk funds new directions at Moderna
Ron Renaud CEO, Translate Bio 1.6 Billion doses produced rare disease monogenic correct mRNA like CF multiple mutation infection disease and oncology applications
Melissa Moore CSO, Moderna mRNA vaccine 98% efficacy for Pfizer and Moderna more then 10 years 2015 mRNA was ready (ZIKA, RSV), as the proteine is identify manufacturing temp less of downside in the future ability to store at Ref
Richard Wang, PhD CEO, Fosun Kite Biotechnology Co. Ltd Possibilities to be creative and capitalize the new technologies for new drug Support of the ecosystem by funding new companies Autologous in patients differences cost challenge
Tian Xu, PhD Vice President, Westlake University ICH Chinese FDA -r regulation similar to the US Difference is the population recruitment, in China patients are active participants Dev of transposome non-viral methods, price
Alvin Luk, PhD CEO, Neuropath Therapeutics Monogenic rare disease with clear genomic target Increase of 30% in patient enrollment Regulatory reform approval is 60 days no delay
We’re excited to attend this week’s #WMIF2021 to talk all things cell and genetic therapies. Join our Chief of VCGT Bastiano Sanna tomorrow at 9:50am EDT for a discussion on the promise of cell therapies for type 1 diabetes. Register now! https://bit.ly/3otngYd
John Fish, Board Chair, Brigham Health, Chairman & CEO, Suffolk on the Novartis Main Stage to introduce the “Collaboration is Key: GCT R&D of the Future” fireside chat with Jay Bradner, MD, President, NIBR
Thomas VanCott, PhD, Chief Technology & Strategy Officer, Catalent Cell & Gene Therapy, says that time, improvements and scaling up in manufacturing will lead to allogeneic cell therapies. He recognizes that upfront costs are high, but will decrease in the long term #WMIF2021
Today Lisa Michaels, Editas CMO, will participate in the panel “Gene Editing – Achieving Therapeutic Mainstream” at the World Medical Innovation Forum #WMIF2021 in Boston. For those attending, be sure to tune in!
, views GCT as the ultimate precision medicine. AI, machine learning, and data science comprise one of the big disruptive forces that will address misdiagnosis, smooth out workflow, reduce cost and enhance recovery. #WMIF2021
CSO Laura Sepp-Lorenzino, PhD, in our “GCT Delivery | Perfecting the Technology” panel this afternoon! #WMIF2021
Quote Tweet
Intellia Therapeutics
@intelliatweets
· 6h
Today, Intellia CSO, @LauraSeppLore will be participating in the World Medical Innovation Forum’s panel on Gene and Cell Therapy Delivery, Perfecting the Technology. #WMIF2021 @MGBInnovation. Click here to learn more: https://worldmedicalinnovation.org
is back with us this afternoon sharing a First Look at “Versatile Polymer-Based Nanocarriers for Targeted Therapy and Immunomodulation.” #WMIF2021#GCT#geneandcelltherapy
VP of Clinical Development, Manasi Jaiman, during the “Diabetes | Grand Challenge” panel today. #WMIF2021
Quote Tweet
ViaCyte
@ViaCyte
· 8h
Join us at #WMIF2021 today! Our own Manasi Jaiman, VP, Clinical Development, will participate in the Diabetes: Grand Challenge panel to discuss regenerative medicine approaches for T1D utilizing stem-cell derived islet cell replacement therapy.
, discusses how GCT is in the embryonic phase. Bayer is ready to treat its first Parkinson’s patient, and is exploring therapeutic technologies to treat diseases with single gene defects #WMIF2021
Today Lisa Michaels, Editas CMO, will participate in the panel “Gene Editing – Achieving Therapeutic Mainstream” at the World Medical Innovation Forum #WMIF2021 in Boston. For those attending, be sure to tune in! @MassGenBrigham https://bit.ly/3hx1XTV #geneediting #biotechnology
to discuss the current state of CAR-T and its future prospects. These conversations are important for the development of potential #CART therapies. #WMIF2021
‘s #WMIF2021 — Thanks to the MGB team for facilitating a great discussion!
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· 7h
Overview of our #mRNA Vaccines panel today, highlighting improved manufacturing capabilities & potential for #personalizedmedicine. Thank you to Lindsey Baden @bwh_id & panelists Kate Bingham, SV Health Investors, Melissa Moore @moderna_tx and Ron Renaud @TranslateBio #WMIF2021
investigators are ready to give you an early preview of their #GCT research in the First Look sessions at #WMIF2021. Exciting opportunities to dramatically change how disease is treated!
Our “Rare and Ultra Rare Diseases | GCT Breaks Through” panelists on the role of family organizations & patient advocacy groups in moving us forward on the regulatory side – “It’s absolutely essential” #WMIF2021
Congratulations! Lydia Lynch PhD, Brigham and Women’s Hospital receives an Innovation Discovery Grant for “Generating Superior ‘Killers’ for Adoptive Cell Therapy in Cancer” at #WMIF2021.
Looking forward to the Diabetes Grand Challenge and how #GCT could help millions of people. Read about what facing this disease and how cell therapies could lessen the burden from Manasi Jaiman, MD, VP, Clinical Development
Today is Day 2 of the World Medical Innovation Forum. Which panel you are most excited to see today? Reply and let us know! #WMIF2021 https://worldmedicalinnovation.org/agenda/
Cell and gene therapies hold promising potential for rare disease, blood cancers, and viral diseases. Register for #WMIF21 to hear about our work to pioneer cutting-edge science across our pipeline to advance breakthroughs that change patients’ lives: https://on.pfizer.com/3f3CGzj
Congratulations! Peter Sage PhD, Brigham and Women’s Hospital receives an Innovation Discovery Grant for “Novel Strategies to Enhance Tfr Treatment of Autoimmunity” at #WMIF2021
Congratulations! Yulia Grishchuk PhD, Massachusetts General Hospital, receives an Innovation Discovery Grant for “AAV-Based Gene Replacement Therapy Improves Targeting and Clinical Outcomes in a Childhood CNS Disorder” at #WMIF2021
Congratulations! Jinjun Shi, PhD, Brigham and Women’s Hospital, receives an Innovation Discovery Grant for “Long-Lasting mRNA Therapy for Genetic Disorders” at #WMIF2021
Final thoughts from “Benign Blood Disorders” panelists on academic/industry collaboration — the pace of #innovation is incredibly exciting, and I think it will be even faster together. #WMIF2021
Congratulations! Benjamin Kleinstiver PhD, Massachusetts General Hospital, receives an Innovation Discovery Grant for “Towards a Permanent Genetic Cure for Spinal Muscular Atrophy” at #WMIF2021
FDA’s Peter Marks, at #WMIF2021, notes # of INDs for gene therapies was flat in 2020 vs. 2019. But the fact IND submissions didn’t decline, he said, is a sign of how strong the gene therapy field is, given pandemic’s disruption.
Melissa Moore/Moderna- one advantage of mRNA is ability to do multivalent vaccines she said. She said they are already testing multivalent covid vaccines in clinical trials & testing flu vaccines. #wmif2021
Kate Bingham/SV Health & former head of UK Vaccine Taskforce: they haven’t seen escape variants in UK yet she said. mRNA is quickest platform to address escape variants probably. Needle delivery w/ supply cold chain has been the challenge. Deploying 3 vaccines in UK #WMIF2021
, notes that the science behind gene cell therapies is converging with technological development. How therapies are brought to market is still the question, as there is no roadmap when reimagining medicine #WMIF2021
Melissa Moore/Moderna: clear advantage of mRNA vaccine is how quickly we can manufacture the vaccines. Downsides- need 2store at low temperatures & limited shelflife 4storage in refrigerator. I know that both companies [Moderna, Pfizer/BioNTech] r working 2change this #wmif2021
We’re committed to addressing the unmet needs of people living with rare genetic diseases. Our SVP, External Innovation and Strategic Alliances, Leah Bloom, discusses the promise #genetherapy holds for communities impacted by rare diseases during #WMIF2021.
Speed of vaccination is critical to prevent escape variants says Kate Bingham, SV Health Investors, UK, at #WMIF2021, exploring what’s next for the technology w panel led by Lindsey Baden MD,
for sharing this screen capture of the impressive lineup of #GCT “Disruptive Dozen” panelists at #WMIF2021
Quote Tweet
Aviva Lev-Ari
@AVIVA1950
· May 21
@MGBInnovation #WMIF Best Global event on Gene Cell Therapy covered in real time @AVIVA1950 @pharma_BI Disruptive Dozen technologies four are based on Gene Editing, AAV and non viral vector for drug delivery are included
PART 1: ALL THE TWEETS PRODUCED by @AVIVA1950 on May 19, 2021
Thomas VanCott, PhD Global Head of Product Dev, Gene & Cell Therapy, Catalent 2/3 autologous 1/3 allogeneic CAR-T high doses scale up is not done today logistics issues centralized vs decentralized allogeneic are health donors
Ropa Pike, Director, Enterprise Science & Partnerships, Thermo FIsher Scientific Centralized biopharma industry is moving to decentralized models site specific license
Rahul Singhvi, ScD CEO and Co-Founder, National Resilience, Inc. Investment company in platforms to be shared by start ups in CGT. Production cost of allogeneic: cost of quality 30% reagents 30% cell 30% Test is very expensive
Oladapo Yeku, MD, PhD Clinical Assistant in Medicine, MGH Outstanding moderator and most gifted panel on solid tumor success window of opportunities studies
Knut Niss, PhD CTO, Mustang Bio tumor hot start in 12 month clinical trial solid tumors Combination therapy will be an experimental treatment long journey checkpoint inhibitors to be used in combination maintenance
Barbra Sasu, PhD CSO, Allogene T cell response at prostate cancer tumor specific cytokine tumor specific signals move from solid to metastatic cell type for easier infiltration
Jennifer Brogdon Executive Director, Head of Cell Therapy Research, Exploratory Immuno-Oncology, NIBR 2017 CAR-T first approval M&A and research collaborations TCR tumor specific antigens avoid tissue toxicity
Jay Short, PhD Chairman, CEO, Cofounder, BioAlta, Inc. Tumor type is not enough for R&D therapeutics other organs are involved in periphery difficult to penetrate solid tumors biologics activated in the tumor only, positive changes
Stefan Hendriks Global Head, Cell & Gene, Novartis Confirmation the effectiveness of CAR-T therapies, 1 year response to 5 years 26 months Patient not responding a lot to learn Patient after 8 months of chemo can be helped by CAR-T
Jeffrey Infante, MD , Oncology, Janssen R&D Direct effect with intra-tumor single injection with right payload Platform approach Prime with 1 and Boost with 2 – not yet experimented with Do not have the data at trial
Nino Chiocca, MD, PhD Neurosurgeon-in-Chief BWH, HMS Oncolytic therapy DID NOT WORK Pancreatic Cancer and Glioblastoma Intra-tumoral heterogeniety hinders success Oncolytic VIRUSES – “coldness” GADD-34 20,000 GBM 40,000 pancreatic
Loic Vincent, PhD Head of Oncology Drug Discovery Unit, Takeda Classification of Patients by prospective response type id UNKNOWN yet, population of patients require stratification
Loic Vincent, PhD Head of Oncology Drug Discovery Unit, Takeda R&D in collaboration with Academic Vaccine platform to explore different payload IV administration may not bring sufficient concentration to the tumor is administer IV
Nino Chiocca, MD, PhD Neurosurgeon-in-Chief and Chairman, Neurosurgery, BWH Harvey W. Cushing Professor of Neurosurgery, HMS Challenges of manufacturing at Amgen what are they?
David Reese, MD Executive Vice President, R&D , Amgen Inter lesion injection of agent vs systemic therapeutics cold tumors immune resistant render them immune susptible Oncolytic virus is a Mono therapy addressing the unknown
David Reese, MD Executive Vice President, Research and Development, Amgen Inter lesion injection of agent vs systemic therapeutics cold tumors immune resistant render them immune suseptible Oncolytic virus is a Mono therapy
Robert Coffin, PhD Chief R&D Officer, Replimune 2002 in UK promise in oncolytic therapy GNCSF Phase III melanoma 2015 M&A with Amgen oncolytic therapy remains non effecting on immune response data is key for commercialization
Ann Silk, MD Physician, Dana Farber-Brigham and Women’s Cancer Center, HMS Which person gets oncolytics virus if patient has immune supression due to other indications Safety of oncolytic virus greater than Systemic treatment
Marianne De Backer/Bayer on post M&A & company culture: They acquired AskBio & thought about how to preserve their freedom so they could continue to operate. Bayer decided to keep them independent & so they can operate at arm’s length. #wmif2021
Merit Cudkowicz, MD Chief of Neurology, MGH ALS – Man 1in 300, Women 1 in 400, next decade increase 7% 10% ALS is heredity 160 pharma in ALS space diagnosis is late 1/3 of people are not diagnosed active community for clinical trials @pharma_BI@AVIVA1950
Adam Koppel, MD, PhD Managing Director, Bain Capital Life Sciences What acquirers are looking for?? What is the next generation vs what is real where is the industry going?
Debby Baron, Worldwide Business Development, Pfizer Scalability and manufacturing regulatory conversations, clinical programs safety in parallel to planning getting drug to patients
Marianne De Backer, PhD Head of Strategy, BD & Licensing, Bayer Absolute Leadership: Gene editing, gene therapy, via acquisition and alliances Operating model of the acquired company discussed acquired continue independence
Sean Nolan Board Chairman, Encoded Therapeutics & Affinia Executive Chairman Jaguar Gene Therapy Istari Oncology As acquiree multiple M&A acquirer looks at integration and cultures companies Traditional integration vs acquisition
Debby Baron, Worldwide Business Development, Pfizer CGT is an important area Pfizer is active looking for innovators, advancing forward programs of innovation with the experience Pfizer has internally
Marianne De Backer, PhD Head of Strategy, Business Development & Licensing, and Member of the Executive Committee, Bayer Absolute Leadership in Gene editing, gene therapy, via acquisition and strategic alliance
Manny Simons, PhD CEO, Akouos Biology across species nerve ending in the cochlea engineer out of the caspid, lowest dose possible, get desired effect by vector use, 2022 new milestones
Mathew Pletcher, PhD SVP, Head of Gene Therapy Research and Technical Operations, Astellas Continue to explore large animal guinea pig not the mice, not primates (ethical issues) for understanding immunogenicity and immune response
Mathew Pletcher, PhD SVP, Head of Gene Therapy Research and Technical Operations, Astellas Work with diseases poorly understood, collaborations needs example of existing: DMD is a great example explain dystrophin share placedo data
Rick Modi CEO, Affinia Therapeutics Speed R&D Speed better gene construct get to clinic with better design vs ASAP Data sharing clinical experience patients selection, vector selection, mitigation, patient type specific
Dave Lennon, PhD President, Novartis Gene Therapies big pharma therapeutics not one drug across Tx areas: cell, gene iodine therapy collective learning infrastructure development Acquisitions growth # applications for scaling
Rick Modi CEO, Affinia Therapeutics Copy, paste EDIT from product A to B novel vectors variant of vector coder optimization choice of indication is critical exploration on larger populations Speed to R&D to better gene construct get
Louise Rodino-Klapac, PhD EVP, Chief Scientific Officer, Sarepta Therapeutics AV based platform 15 years in development 1 disease indication vs more than one indication stereotype, analytics as hurdle 1st was 10 years 2nd was 3 years
Katherine High, MD President, Therapeutics, AskBio Three drugs approved in Europe in the CGT Regulatory Infrastructure CGT drug approval – as new class of therapeutics Participants investigators, regulators, patients i.e., MDM
Peter Marks, MD, PhD Director, Center for Biologics Evaluation and Research, FDA Immune modulators Immunotherapy Genome editing can make use of viral vectors future technologies nanoparticles and liposome encapsulation 50% more staff
Peter Marks, MD, PhD Director, Center for Biologics Evaluation and Research, FDA Recover Work load for the pandemic Gene Therapies IND application remained flat Rare diseases urgency remains Guidance T-Cell therapy vs Regulation
Peter Marks, MD, PhD Director, Center for Biologics Evaluation and Research, FDA June 2020 belief that vaccine challenge manufacture scaling up FDA did not predicted the efficacy of mRNA vaccine vs other approaches expected to work
Jim Holland CEO, http://Backcountry.com Parkinson patient Constraints by regulatory on participation in clinical trial wish to take Information dissemination is critical
Patricia Musolino, MD, PhD Co-Director Pediatric Stroke and Cerebrovascular Program What is the Power of One – the impact that a patient can have on their own destiny connecting with other participants in same trial can be beneficial
Barbara Lavery Chief Program Officer, ACGT Foundation Patient has the knowledge of the symptoms and recording all input needed for diagnosis by multiple clinicians Early application for CGT
Jack Hogan Patient, MEE Constraints by regulatory on participation in #clinicaltrials advance stage is approved participation Patients to determine the level of #risk they wish to take
Barbara Lavery Chief Program Officer, ACGT Foundation Advocacy agency beginning of work Global Genes educational content and out reach to access the information
Dave Lennon, PhD President, Novartis Gene Therapies Modality one time intervention, long duration of impart, reimbursement, ecosystem FDA works by indications and risks involved, Standards manufacturing payments over time payers
Dave Lennon, PhD President, Novartis Gene Therapies Promise of CGT realized, what part? #FDA role and interaction in CGT #Manufacturing aspects which is critical
Julian Harris, MD Partner, Deerfield Hope that CGT emerging, how therapies work, #neuro, #muscular, #ocular, #genetic diseases of #liver and of #heart revolution for the industry 900 #IND application 25 approvals #Economic driver
Luk Vandenberghe, PhD Grousbeck Family Chair, Gene Therapy, MEE Associate Professor, Ophthalmology, HMS #Pharmacology#Gene-Drug, Interface academic centers and industry many CGT drugs emerged in Academic center
Ravi Thadhani, MD CAO, Mass General Brigham Professor, Medicine and Faculty Dean, HMS Role of #academia special to spear head the #Polygenic#therapy – multiple #genes involved, #plug-play #delivery
The field of #genetherapy is growing. New therapies will come to market for rare and chronic diseases, and new therapies will drive scientific innovation and economic growth. #WMIF2021 (2/6)
In our First Look sessions clinicians/researchers from Harvard-affiliated hospitals highlight the potential of their research & new technologies. Next we’ll hear from Khalid Shah PhD, Vice Chair of Research
Tomorrow is Day 1 of #WMIF2021! Hear from the world-renowned CEOs, investors, clinicians and scientists bringing game-changing discoveries and insights to #GCT. Register to attend today: https://worldmedicalinnovation.org/register/
‘s World Medical Innovation Forum this week, discussing the future of #genetherapy. Here are our five predictions for where the industry is headed. #WMIF2021 (1/6)
explains at #WMIF2021 why the first FDA-approved gene therapy for inherited disease was for an inherited retinal degeneration, and what lessons have been learned from the success of that treatment.
Together with @BayerPharma, we are pleased to be part of #WMIF2021, organized by @MassGenBrigham. This year’s event focuses on the transformative potential of #cellandgene therapy (#GCT).
“We are more committed to our mission than ever before – laser-focused on realizing the transformative potential of #genetherapy for patients.” – Dave Lennon, President, during #WMIF2021
Patricia Musolino, MD PhD, Co-Director Pediatric Stroke and Cerebrovascular Program at MGH, discusses her work developing #genetherapy treatments for cerebral genetic vasculopathies #GCT #geneandcelltherapy #WMIF2021
chair Dr. Joan Miller moderates a panel on AAV gene therapy featuring director of Inherited Retinal Disorders Service and Ocular Genomics Institute, Dr. Eric Pierce.
Quote Tweet
Mass General Brigham Innovation
@MGBInnovation
· 23h
Our “AAV Success Studies | Retinal Dystrophy | Spinal Muscular Atrophy” panelists have taken the stage. #WMIF2021 @MassEyeAndEar @REGENXBIO @spark_tx @NovartisGene
We are proud sponsors of the Virtual World Medical Innovation Forum (#WMIF2021). This year’s program will focus on the impact of gene and cell therapy as a way to potentially advance quality patient care, reduce cost and improve outcomes. Learn more:
Jonathan Kraft introducing #wmif2021 session with Pfizer CSO & president of R&D Mikael Dolsten and MGH oncologist & chair of MGH Cancer Center Daniel Haber.
president Dave Lennon & Deerfield partner Julian Harris having a “fireside chat.” Dave/Novartis: sees gene therapy as driver for economy generating need for highly skilled workers Incl manufacturing
Kite Pharma CEO (Gilead subsidiary) Christi Shaw said there are 120 biopharma companies working on CAR-T cell therapy & they are continuing to look for new partnerships. She also mentioned logistical challenges currently getting to Israel & helping patients there. #WMIF2021
FDA’s Dir of Center for Biologics Evaluation & Research Peter Marks interviewed by Vicki Sato- chairwoman of Vir Biotechnology, ex Vertex president & ex Biogen VP Research. Around June ’20, started 2c progress in covid vaccines w/ enough candidates moving forward #WMIF2021 1/n
“Once you work on cell and gene therapy, its really hard to go back and work on anything else” says moderator Marcela Maus, MD PhD in our “CAR-T | Lessons Learned | What’s Next” panel #WMIF2021#GCT#geneandcelltherapy
Ex Merck president R&D Roger Perlmutter is now Eikon Therapeutics CEO & is on #WMIF2021 oncolytic virus in cancer panel w/Amgen EVP R&D David Reese, ex BioVex CTO (T-VEC inventor
, join our leaders for panels and presentations discussing what’s next for #genetherapy and the key trends shaping the industry as it evolves. #WMIF2021https://bit.ly/3eYYls4
Dolsten/Pfizer discussed covid vaccines and real world evidence study in Israel. Was sole provider of vaccines in Israel. 95%-98% efficacy replicated in real world. Well above 90% efficacy in asymptomatic disease. #wmif2021
ICYMI: An illustration depicting the “AAV Delivery” panel discussion about advances in the area of #AAVGeneTherapy delivery. Thank you to the panelists from
Casey Maguire PhD, Associate Professor of Neurology, at the podium to present his work developing improved #genetherapy vectors. #WMIF2021 “First Look: Enhanced Gene Delivery and Immunoevasion of AAV Vectors without Capsid Modification”
Casey Maguire PhD, Associate Professor of Neurology, at the podium to present his work developing improved #genetherapy vectors. #WMIF2021 “First Look: Enhanced Gene Delivery and Immunoevasion of AAV Vectors without Capsid Modification”
Mikael Dolsten, MD PhD, CSO & President, Worldwide Research, Development and Medical @pfizer takes the stage for a Fireside Chat, moderated by @MGHCancerCenter Daniel Haber, MD, PhD. “Pfizer’s Future in Cell and Gene Therapy” #WMIF2021
Dave Lennon/Novartis: manufacturing has been a roadblock for many cell & gene therapy companies. Expects to see more investments earlier. Engineering advances will unlock scale & address bigger & bigger patient populations. Oppty to ID patients early #WMIF2021
Marianne De Backer/Bayer on post M&A & company culture: They acquired AskBio & thought about how to preserve their freedom so they could continue to operate. Bayer decided to keep them independent & so they can operate at arm’s length. #wmif2021
Ken Custer/Eli Lilly-said they’re relatively new in cell & gene therapy. They invested in 1 of Sean Nolan’s (ex AveXis CEO) new companies,Jaguar Gene Therapy. Lilly’s legacy in neuroscience is noted & bought Prevail last yr. Clinical trial w/ Parkinson’s w/GBA1 mutation #wmif2021
, was the first in the U.S. to be approved for FDA gene therapy surgery. In 2018 he underwent therapy to treat retinitis pigmentosa by having a synthetic gene inserted into his retina. With improved eyesight he can now play sports #WMIF2021
The acquisition market in #GCT: looking for breakthroughs for patients, technologies for intractable diseases, manufacturing expertise, pioneering companies with deep experience — all for “the modality of the future”. M&A panel at #WMIF2021
Christi Shaw/Kite Pharma: Only 4 out of 10 patients eligible for CAR-T are being referred for CAR-T cell therapy by oncologists. The other 6 out of 10, referred to palliative care only. Consistency of manufacturing is also very important. #wmif2021 1/n
Marianne De Backer/Bayer on post M&A & company culture: They acquired AskBio & thought about how to preserve their freedom so they could continue to operate. Bayer decided to keep them independent & so they can operate at arm’s length. #wmif2021
Novartis uses a ‘dimmer switch’ medication to fine-tune gene therapy candidates
Reporter: Amandeep Kaur, BSc., MSc.
Using viral vectors, lipid nanoparticles, and other technologies, significant progress has been achieved in refining the delivery of gene treatments. However, modifications to the cargo itself are still needed to increase safety and efficacy by better controlling gene expression.
To that end, researchers at Children’s Hospital of Philadelphia (CHOP) have created a “dimmer switch” system that employs Novartis’ investigational Huntington’s disease medicine branaplam (LMI070) as a regulator to fine-tune the quantity of proteins generated from a gene therapy.
The investigational medicine branaplam was shown to fine-tune the expression of an erythropoietin gene therapy in mice by scientists from Children’s Hospital of Philadelphia and Novartis. (Novartis)
According to a new study published in Nature, the Xon system altered quantities of erythropoietin—which is used to treat anaemia associated with chronic renal disease—delivered to mice using viral vectors. The method has previously been licenced by Novartis, the maker of the Zolgensma gene therapy for spinal muscular atrophy.
The Xon system depends on a process known as “alternative splicing,” in which RNA is spliced to include or exclude specific exons of a gene, allowing the gene to code for multiple proteins. The team used branaplam, a small-molecule RNA-splicing modulator, for this platform. The medication was created to improve SMN2 gene splicing in order to cure spinal muscular atrophy. Novartis shifted its research to try the medication against Huntington’s disease after a trial failure.
A gene therapy’s payload remains dormant until oral branaplam is given, according to Xon. The medicine activates the expression of the therapy’s functional gene by causing it to splice in the desired way. Scientists from CHOP and the Novartis Institutes for BioMedical Research put the dimmer switch to the exam in an Epo gene therapy carried through adeno-associated viral vectors. The usage of branaplam increased mice Epo levels in the blood and hematocrit levels (the proportion of red blood cells to whole blood) by 60% to 70%, according to the researchers. The researchers fed the rodents branaplam again as their hematocrit decreased to baseline levels. The therapy reinduced Epo to levels similar to those seen in the initial studies, according to the researchers.
The researchers also demonstrated that the Xon system could be used to regulate progranulin expression, which is utilised to treat PGRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis. The scientists emphasised that gene therapy requires a small treatment window to be both safe and effective.
In a statement, Beverly Davidson, Ph.D., the study’s senior author,said, “The dose of a medicine can define how high you want expression to be, and then the system can automatically ‘dim down’ at a pace corresponding to the half-life of the protein.”
“We may imagine scenarios in which a medication is used only once, such as to control the expression of foreign proteins required for gene editing, or only on a limited basis. Because the splicing modulators we examined are administered orally, compliance to control protein expression from viral vectors including Xon-based cassettes should be high.”
In gene-modifying medicines, scientists have tried a variety of approaches to alter gene expression. For example, methyl groups were utilised as a switch to turn on or off expression of genes in the gene-editing system CRISPR by a team of researchers from the Massachusetts Institute of Technology and the University of California, San Francisco.
Auxolytic, a biotech company founded by Stanford University academics, has described how knocking down a gene called UMPS could render T-cell therapies ineffective by depriving T cells of the nutrition uridine. Xon could also be tailored to work with cancer CAR-T cell therapy, according to the CHOP-Novartis researchers. The dimmer switch could help prevent cell depletion by halting CAR expression, according to the researchers. According to the researchers, such a tuneable switch could help CRISPR-based treatments by providing “a short burst” of production of CRISPR effector proteins to prevent undesirable off-target editing.
Gene Therapy could be a Boon to Alzheimer’s disease (AD): A first-in-human clinical trial proposed
Reporter: Dr. Premalata Pati, Ph.D., Postdoc
A recent research work performed by the Researchers at the University of California San Diego School of Medicine has shared their first-in-human Phase I clinical trial to assess the safety and viability of gene therapy to deliver a key protein into the brains of persons with Alzheimer’s Disease (AD) or Mild Cognitive Impairment (MCI), a condition that often precedes full-blown dementia.
Mark Tuszynski, M.D., Ph.D., Professor of Neuroscience and Director of the Translational Neuroscience Institute at UC San Diego and team predicted that Gene therapy could be a boon to potential treatments for the disorders like AD and MCI.
The study provides an insight into the genetic source of these mental diseases.
The roots of mental disorders have remained an enigma for so many years. Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. AD is a neurodegenerative condition. A buildup of plaques and tangles in the brain, along with cell death, causes memory loss and cognitive decline. In most people with the disease, those with the late-onset type – symptoms first appear in their mid-60s. Alzheimer’s disease is the mostly appearing type of dementia in patients.
Despite decades of effort and billions of dollars of research investment, there are just mere two symptomatic treatments for AD. There is no cure or approved way to slow or stop the progression of the neurological disorder that afflicts more than 5 million Americans and is the sixth leading cause of death in the United States.
Prof. Tuszynski said gene therapy has been tested on multiple diseases and conditions, represents a different approach to a disease that requires new ways of thinking about the disease and new attempts at treatments.
The research team found that delivering the BDNF to the part of the brain that is affected earliest in Alzheimer’s disease; the entorhinal cortex and hippocampus – was able to protect from ongoing cell degeneration by reversing the loss of connections. “These trials were observed in aged rats, amyloid mice, and aged monkeys.”
The protein, calledBrain-Derived Neurotrophic Factor or BDNF, a family of growth factors found in the Brain and Central Nervous System that support the survival of existing neurons and promote growth and differentiation of new neurons and synapses. BDNF is especially important in brain regions susceptible to degeneration in AD. It is normally produced throughout life in the entorhinal cortex, an important memory center in the brain and one of the first places where the effects of AD typically appear in the form of short-term memory loss. Persons with AD have diminished levels of BDNF.
However, BDNF is a large molecule and cannot pass through the Blood-Brain Barrier. As a solution, researchers will use gene therapy in which a harmless Adeno-Associated Virus (AAV2) is modified to carry the BDNF gene and injected directly into targeted regions of the brain, where researchers hope it will prompt the production of therapeutic BDNF in nearby cells.
Precautions were taken precisely in injecting the patient to avoid exposure to surrounding degenerating neurons since freely circulating BDNF can cause adverse effects, such as seizures or epileptic conditions.
The recent research and study speculate a safe and feasible assessment of the AAV2-BDNF pathway in humans. A previous gene therapy trial from 2001 to 2012 using AAV2 and a different protein called Nerve Growth Factor (NGF) was carried out by Prof. Tuszynski and team where they observed immense growth, axonal sprouting, and activation of functional markers in the brains of participants.
He also shared that “The BDNF gene therapy trial in AD represents an advancement over the earlier NGF trial, BDNF is a more potent growth factor than NGF for neural circuits that degenerate in AD. Besides, new methods for delivering BDNF will more effectively deliver and distribute it into the entorhinal cortex and hippocampus.”
The research team hopes that the three-year-long trial will recruit 12 participants with either diagnosed AD or MCI to receive AAV2-BDNF treatment, with another 12 persons serving as comparative controls over that period.
The researchers have plans to build on recent successes of gene therapy in other diseases, including a breakthrough success in the treatment of congenital weakness in infants(spinal muscular atrophy) and blindness (Leber Hereditary Optic Neuropathy, a form of retinitis pigmentosa).”
taking patient concerns and voices from anecdotal to data driven system
talked about patient accrual hearing patient voice not only in ease of access but reporting toxicities
at FDA he wants to remove barriers to trial access and accrual; also talk earlier to co’s on how they should conduct a trial
Digital tech
software as medical device
regulatory path is mixed like next gen sequencing
wearables are concern for FDA (they need to recruit scientists who know this tech
Opioids
must address the crisis but in a way that does not harm cancer pain patients
smaller pain packs “blister packs” would be good idea
Clinical trial modernization
for Alzheimers disease problem is science
for diabetes problem is regulatory
different diseases calls for different trial design
have regulatory problems with rare diseases as can’t form control or placebo group, inhumane. for example ras tumors trials for MEK inhibitors were narrowly focused on certain ras mutants
Lots of promise, timeline is progressing faster but we need more education on use of the gene therapy
Regulatory issues: Cell and directly delivered gene based therapies have been now approved. Some challenges will be the ultrarare disease trials and how we address manufacturing issues. Manufacturing is a big issue at CBER and scalability. If we want to have global impact of these products we need to address the manufacturing issues
of scalability.
Pfizer – clinical grade and scale is important.
Aventis – he knew manufacturing of biologics however gene therapy manufacturing has its separate issues and is more complicated especially for regulatory purposes for clinical grade as well as scalability. Strategic decision: focusing on the QC on manufacturing was so important. Had a major issue in manufacturing had to shut down and redesign the system.
Albert: Manufacturing is the most important topic even to the investors. Investors were really conservative especially seeing early problems but when academic centers figured out good efficacy then they investors felt better and market has exploded. Now you can see investment into preclinical and startups but still want mature companies to focus on manufacturing. About $10 billion investment in last 4 years.
Valuing early-stage opportunities is challenging. Modeling will often provide a false sense of accuracy but relying on comparable transactions is more art than science. With a long lead time to launch, even the most robust estimates can ultimately prove inaccurate. This interactive panel will feature venture capital investors and senior pharma and biotech executives who lead early-stage transactions as they discuss their approaches to valuing opportunities, and offer key learnings from both successful and not-so-successful experiences.
Dr. Schoenbeck, Pfizer:
global network of liaisons who are a dedicated team to research potential global startup partners or investments. Pfizer has a separate team to evaluate academic laboratories. In Most cases Pfizer does not initiate contact. It is important to initiate the first discussion with them in order to get noticed. Could be just a short chat or discussion on what their needs are for their portfolio.
Question: How early is too early?
Luc Marengere, TVM: His company has early stage focus, on 1st in class molecules. The sweet spot for their investment is a candidate selected compound, which should be 12-18 months from IND. They will want to bring to phase II in less than 4 years for $15-17 million. Their development model is bad for academic labs. During this process free to talk to other partners.
Dr. Chaudhary, Biogen: Never too early to initiate a conversation and sometimes that conversation has lasted 3+ years before a decision. They like build to buy models, will do convertible note deals, candidate compound selection should be entering in GLP/Tox phase (sweet spot)
Merck: have MRL Venture Fund for pre series A funding. Also reiterated it is never too early to have that initial discussion. It will not put you in a throw away bin. They will have suggestions and never like to throw out good ideas.
Michael Hostetler: Set expectations carefully ; data should be validated by a CRO. If have a platform, they will look at the team first to see if strong then will look at the platform to see how robust it is.
All noted that you should be completely honest at this phase. Do not overstate your results or data or overhype your compound(s). Show them everything and don’t have a bias toward compounds you think are the best in your portfolio. Sometimes the least developed are the ones they are interested in. Also one firm may reject you however you may fit in others portfolios better so have a broad range of conversations with multiple players.
Roche said certain activities will remain at the current Spark Therapeutics site in Philadelphia, while others will be consolidated into the broader pharmaceuticals division. (Roche/Spark Therapeutics)
Roche has recently launched a “fundamental reorganization” of Spark Therapeutics, the gene therapy unit the Swiss pharma bought for $4.3 billion in 2019.
Roche described the restructuring in its annual finance report (PDF) published in late January. The move is part of the company’s wider strategic change across its pharma division, a company spokesperson told Fierce Pharma.
The entire Spark team is subject to reshuffling, raising a question of whether the Spark brand itself will be preserved. Of the 647 employees that Spark employed as of April 17, 337 employees will be laid off, while the rest 310 will have their jobs integrated into the parent Roche, a Roche spokesperson told Fierce Pharma in an update.
Details of the plans, such as which functions those 310 people will assume at Roche, are still being finalized. In the January report, Roche said certain activities will remain at the current Spark site in Philadelphia, while others will be consolidated into the broader pharmaceuticals division.
“By fully integrating Spark into Roche, we more closely align,” the Roche spokesperson said.
Roche is currently working through the integration planning and expects to have details later this year, the spokesperson said.
In late 2021, Roche committed to a $575 million plan to build a new 500,000-square-foot gene therapy innovation center in Philadelphia. The multistory facility continues to be built, according to the spokesperson.
Quick update on this week’s news: The University City life sciences company’s acquisition by Swiss pharma giant Roche is the biggest acquisition ever of a VC-backed company within city limits, per PitchBook and PACT.
The eye-popping $4.8 billion sticker price on Spark Therapeutics’acquisition deal with Roche announced on Monday is shaping up to be the largest exit ever within city limits for a venture-backed company, according to data from financial data provider PitchBook and the Philadelphia Alliance for Capital and Technologies (PACT).
“Filtering down to just Philadelphia proper does reveal that Spark Therapeutics, once the deal closes, will be the biggest exit ever for Philly-based venture-backed exits,” the company said in an email, citing data from an upcoming report.
According to the Seattle-based company’s data, the current holder of the largest Philly-proper exit title goes to Avid Radiopharmaceuticals, which in 2010 announced its acquisition by Lilly in a deal valued at up to $800 million.
Founded in 2013, Spark is a publicly traded spinout of Children’s Hospital of Philadelphia (CHOP), which invested $33 million in the company. The Philadelphia Inquirer reports that CHOP stands to reap a total return of $430 million for its minority stake in Spark Therapeutics.
As part of the acquisition deal, the company will remain based out of 3711 Market St., and continue to do business as a standalone Roche company.
“This transaction demonstrates the enormous value that global biotech companies like Roche see in gene therapy, a field in which Philadelphia is the unquestioned leader,” said Saul Behar, senior VP of advancement and strategic initiatives at the University City Science Center, the West Philly research park where Spark began and grew its operations. “[This] further validates Greater Philadelphia’s status as a biotech hub with a very bright future.”
Spark CEO Jeff Marrazzo said the deep pool of resources from Roche, the company plans to “accelerate the development of more gene therapies for more patients for more diseases and further expedite our vision of a world where no life is limited by genetic disease.”
Other articles on Gene Therapy and Retinal Disease on this Open Access Online Journal include:
JP Morgan Healthcare Conference Update: Sage, Mersana, Shutdown Woes and Babies
Published: Jan 10, 2019By Alex Keown
With the J.P. Morgan Healthcare Conference winding down, companies remain busy striking deals and informing investors about pipeline advances. BioSpace snagged some of the interesting news bits to come out of the conference from Wednesday.
SAGE Therapeutics – Following a positive Phase III report that its postpartum depression treatment candidate SAGE-217 hit the mark in its late-stage clinical trial, Sage Therapeutics is eying the potential to have multiple treatment options available for patients. At the start of J.P. Morgan, Sage said that patients treated with SAGE-217 had a statistically significant improvement of 17.8 points in the Hamilton Rating Scale for Depression, compared to 13.6 for placebo. The company plans to seek approval for SAGE-2017, but before that, the FDA is expected to make a decision on Zulresso in March. Zulresso already passed muster from advisory committees in November, and if approved, would be the first drug specifically for postpartum depression. In an interview with the Business Journal, Chief Business Officer Mike Cloonan said the company believes there is room in the market for both medications, particularly since the medications address different patient populations.
Mersana Therapeutics – After a breakup with Takeda Pharmaceutical and the shelving of its lead product, Cambridge, Mass.-based Mersana is making a new path. Even though a partial clinical hold was lifted following the death of a patient the company opted to shelve development of XMT-1522. During a presentation at JPM, CEO Anna Protopapas noted that many other companies are developing therapies that target the HER2 protein, which led to the decision, according to the Boston Business Journal. Protopapas said the HER2 space is highly competitive and now the company will focus on its other asset, XMT-1536, an ADC targeting NaPi2b, an antigen highly expressed in the majority of non-squamous NSCLC and epithelial ovarian cancer. XMT-1536 is currently in Phase 1 clinical trials for NaPi2b-expressing cancers, including ovarian cancer, non-small cell lung cancer and other cancers. Data on XMT-1536 is expected in the first half of 2019.
Novavax – During a JPM presentation, Stan Erck, CEO of Novavax, pointed to the company’s RSV vaccine, which is in late-stage development. The vaccine is being developed for the mother, in order to protect an infant. The mother transfers the antibodies to the infant, which will provide the baby with protection from RSV in its first six months. Erck called the program historic. He said the Phase III program is in its fourth year and the company has vaccinated 4,636 women. He said they are tracking the women and the babies. Researchers call the mothers every week through the first six months of the baby’s life to acquire data. Erck said the company anticipates announcing trial data this quarter. If approved, Erck said the market for the vaccine could be a significant revenue driver.
“You have 3.9 million birth cohorts and we expect 80 percent to 90 percent of those mothers to be vaccinated as a pediatric vaccine and in the U.S. the market rate is somewhere between $750 million and a $1 billion and then double that for worldwide market. So it’s a large market and we will be first to market in this,” Erck said, according to a transcript of the presentation.
Denali Therapeutics – Denali forged a collaboration with Germany-based SIRION Biotech to develop gene therapies for central nervous disorders. The two companies plan to develop adeno-associated virus (AAV) vectors to enable therapeutics to cross the blood-brain barrier for clinical applications in neurodegenerative diseases including Parkinson’s, Alzheimer’s disease, ALS and certain other diseases of the CNS.
AstraZeneca – Pharma giant AstraZeneca reported that in 2019 net prices on average across the portfolio will decrease versus 2018. With a backdrop of intense public and government scrutiny over pricing, Market Access head Rick Suarez said the company is increasing its pricing transparency. Additionally, he said the company is looking at new ways to price drugs, such as value-based reimbursement agreements with payers, Pink Sheet reported.
Amarin Corporation – As the company eyes a potential label expansion approval for its cardiovascular disease treatment Vascepa, Amarin Corporation has been proactively hiring hundreds of sales reps. In the fourth quarter, the company hired 265 new sales reps, giving the company a sales team of more than 400, CEO John Thero said. Thero noted that is a label expansion is granted by the FDA, “revenues will increase at least 50 percent over what we did in the prior year, which would give us revenues of approximate $350 million in 2019.”
Government Woes – As the partial government shutdown in the United States continues into its third week, biotech leaders at JPM raised concern as the FDA’s carryover funds are dwindling. With no new funding coming in, reviews of New Drug Applications won’t be able to continue past February, Pink Sheet said. While reviews are currently ongoing, no New Drug Applications are being accepted by the FDA at this time. With the halt of NDA applications, that has also caused some companies to delay plans for an initial public offering. It’s hard to raise potential investor excitement without the regulatory support of a potential drug approval. During a panel discussion, Jonathan Leff, a partner at Deerfield Management, noted that the ongoing government shutdown is a reminder of how “overwhelmingly dependent the whole industry of biotech and drug development is on government,” Pink Sheet said.
Other posts on the JP Morgan 2019 Healthcare Conference on this Open Access Journal include: