Feeds:
Posts
Comments

Archive for the ‘TP53 – Germline mutations’ Category

Real Time Conference Coverage: Advancing Precision Medicine Conference, Late Morning Session Track 1 October 4 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

SESSION 3

Advances in Precision Oncology:
From Genomics to Targeted Therapies

11:10-11:55

Breaking the Glass Ceiling: Targeting KRAS in Pancreatic Cancer

Razelle Kurzrock, MD
Razelle Kurzrock, MD

11:55-12:15

Charting the Future of Cancer Care: Precision Oncology and the Power of Genomics

Razelle Kurzrock, MD

12:15-12:35

Molecular Pathology as a Driver of Precision in Urological Cancers

Razelle Kurzrock, MD

12:30-12:40

Non – CME – dSTRIDE™-HR: A Functional Biomarker for In Situ, ‘real-time’ Detection and Quantification of Homologous Recombination Activity.

Magda Kordon-Kiszala, PhD

Magda Kordon-Kiszala, PhDCEO and co-founder, intoDNA

12:35-12:55

Epigenetic Plasticity and Tumor Evolution: Mechanisms of Resistance in Precision Oncology

Johnathan R. Whetstine, PhD

Johnathan R. Whetstine, PhDDirector, Cancer Epigenetics Institute, Director, Geonomics Resource, Fox Chase Cancer Center

  • Title: Epigenetic plasticity a gatekeeper to generating extrachromosomal DNA amplification and rearrangements
  • genetic events in cancer are actually controlled not random as he says
  • Fox Chase Cancer Center Epigenetics Institute; 5th year goal to understand epigenetic mechanisms to understand resistance and biomarker development; bring others and break down silos;  they are expanding and hiring and bringing into a network; March 5 2026 5th Annual Symposium Philadelphia Franklin Institute
  • DNA amplification is also chromosomal: integrated same locus or different regions or chromosomal duplication
  • KDM4A epigenetic demethylase controls transiet site specific DNA re-replication; can have focal control of DNA regions
  • you can control regional control of like EGFR amplification
  • can use Cy3 to find local regions
  • KDM3B inhibitor promotes transiet copy gains in KMT2A/MLL
  • EHMT2 is lysine demethylase is a driver of this copy amplification
  • this demethylase can change expression locally in one hour.. very fast
  • demethylases are very specific for their gene locus they control and so this demethylase only controls MLL gene
  • doxorubicin topoisomerase inhibitor can cause LOH in MLL locus and methylase inhibitor can reverse this
  • over twenty combinatorial regulators so this field is just budding

11:30-12:30

Companion Diagnostics in Hereditary and Chronic Diseases – Development, Regulatory Approval, and Commercialization – Non-CME Discussion

Huw Ricketts

Huw Ricketts PhDSenior Director, CLIA Business Development, QIAGEN

Tricia Carrigan

Tricia Carrigan, PhDBC Biosolutions

Arushi Agarwal

Arushi Agarwal, MS,  Partner, Health Advances

Melissa Reuter

Melissa Reuter, MS, MBADirector, Precision Medicine Program Strategy, GSK

  • This is a session panel Discussion on the current state of companion diagnostic development, not just in oncology.  Regulatory aspects will be discussed
  • Arushi: There are alot of opportunities in non-oncology areas for companion diagnostics, and time to development may be an obstacle
  • Huw Rickets:  From a development standpoint most people are not looking at the diagnostic side but more on the therapeutic side.
  • Tricia:  There needs to be a shift in oncology drug development world, and pharma sees developing diagnostic is too expensive.
  • Meliisa: They try to engage early with the agencies to understand the regulatory landscape; GSK is very strong in their oncology platform but there are gaps in diagnostics and non-oncology programs
  • Arushi: seems in Pharma oncology and non-oncology programs seems siloed
  • for non-oncology many of the biomarkers may be rare… well under 25% of population
  • Huw: Qiagen trying to develop diagnostics for Parkinson’s but those rare genetic diseases are easier to develop
  • Arushi: neurodegenerative, NASH, and immuno diseases are big areas where companies are looking to make companion diagnostics
  • Huw: kidney  disease is a big focus to develop companion diagnostics for

 

12:30-12:40

Non – CME – dSTRIDE™-HR: A Functional Biomarker for In Situ, ‘real-time’ Detection and Quantification of Homologous Recombination Activity.

Magda Kordon-Kiszala, PhD

Magda Kordon-Kiszala, PhDCEO and co-founder, intoDNA

Read Full Post »

Real Time Conference Coverage: Advancing Precision Medicine Conference, Early Morning Session Track 1 October 4 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

 

8:55 – 10:35

SESSION 1

Precision For All:

Global Access, Real Cases, and Implementation Science

 

8:55-9:15

Results and Future Direction from WIN’s Data Science Paper

Razelle Kurzrock, MD

9:15-9:55

When Precision Gets Personal: WIN Consortium International Molecular Tumor Board Live

Andrea Ferreira-Gonzalez
Razelle Kurzrock, MD

Razelle Kurzrock, MD, FACP, Chief Medical Officer, WIN Consortium; Professor of Medicine, Associate Director, Clinical Research, Linda T. and John A. Mellowes Endowed Chair of Precision Oncology, MCW Cancer Center and Linda T. & John A. Mellowes Center for Genomic Sciences and Precision Medicine

Notes from Live Tumor Board from Live Tweets

Tumor board Live… Molecular profiling great for identifying synthetic lethal combinations work very well… Many oncologist not accepting recommendations of molec tumor board

Tumor board Live . Oncologists don’t always accept tumor board recommendations based on molecular profiling… Dr Baptiste at first felt constrained to use single agent but WINTER combo trial with molec profiling better

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Tumor board Live… Oncologist may give pushback when molecular therapeutic targets identified.. like when methylomics give a result and tumor board suggest temazolamide

Pemetrexemed not always working but MTAP inhibitions may work

Tumor board Live… Discussion of ovarian cancer case women first presented with CRC BRCA mut but failed PARP inhibitor board is looking at immunotherapy NGS IHC performed

#WINconsortium

Fusions being detected by RNAseq at rate of 100 per month

Tumor board Live…. Theranostics are becoming part of molec tumor board … Radio labeled dual diagnostic therapeutic antibodies

Tumor board Live… Molecular profiling great for identifying synthetic lethal combinations work very well… Many oncologist not accepting recommendations of molec tumor board

SESSION 2

Expanding the Precision Frontier

9:55-10:25

Precision Oncology in the Immunotherapy Era: Biomarkers and Clinical Trial Innovation

Razelle Kurzrock, MD

Lillian Siu, MD, President, AACR 2025-2026; Director, Phase I Clinical Trials Program; Co-Director, Robert and Maggie Bras and Family Drug Development Program Clinical Lead, Tumor Immunotherapy Program; BMO Chair, Precision Cancer Genomics, Princess Margaret Cancer Centre Professor of Medicine, University of Toronto

  • Princess Margaret CC went to Merck got pembrolizumab from them but built a team platform of clinicians and scientists to work on INSPIRE trial
  • $11 million of grants, 13 major papers, great team science
  • did ctDNA from liquid biopsy and also looked at methylation patterns in cfDNA
  • looked at IFN stimulation and outcome to pembrolizumab
  • retro transposable elements found in INSPIRE program, maybe a predictor of immune sensitivity
  • they were able to correlate some of their findings with spatial omics
  • using spatial data they could look at hot versus cold head and neck cancer
  •  factors for response to immunotherapy: TMB, t cell infiltrate,  PDL1 etc
  • using AI with IHC slides as well as NGS data sets
  • as clinical trials become multiomics and AI with multiomics platforms data sharing will be critical for success

10:25 – 10:35

The Microbiome and Its Role in Cancer Development and Treatment Response

Razelle Kurzrock, MD

Sabine Hazan, MD, CEO, Ventura Clinical Trials; CEO, Progenabiome

  • microbiome research at the infancy so we don’t know much when comes to oncology
  • we need to compare microbiome between persons using NGS and other omics
  • we all have different microbiome even though microbiome ‘healthy’
  • lots of factors affect microbiome including surgery
  • families are similar in their microbiome but when looking at Alzheimers there are differences
  • first lab to find whole COVID in the stools
  • virus was different in different people, difference spike proteins. Virus mutates from lung to stool (gut)
  • in intrafamily patients had different microbiome upon COVID infection
  • bifodobacteria was found as a major part of microbiome altered in COVID but also lots of other diseases
  • lots of examples of host microbial symbiosis
  • they had an instance with throat tumor treated with microbiome and tumor receded without chemo
  • in a glioblastoma microbiome adjustment helped but changed positive response to immunotherapy

Read Full Post »

Accelerating PROTAC drug discovery: Establishing a relationship between ubiquitination and target protein degradation

Curator: Stephen J. Williams, Ph.D.

PROTACs have been explored in multiple disease fields with focus on only few ligases like cereblon (CRBN), Von Hippel-Lindau (VHL), IAP and MDM2. Cancer targets like androgen receptor, estrogen receptor, BTK, BCL2, CDK8 and c-MET [[6], [7], [8], [9], [10], [11]] have been successfully targeted using PROTACs. A variety of BET family (BRD2, BRD3, and BRD4)- PROTACs were designed using multiple ligases; MDM2-based BRD4 PROTAC [12], CRBN based dBET1 [13] and BETd-24-6 [14] for triple-negative breast cancer, enhanced membrane permeable dBET6 [15], and dBET57 PROTAC [16]. PROTACs for Hepatitis c virus (HCV) protease, IRAK4 and Tau [[17], [18], [19]] have been explored for viral, immune and neurodegenerative diseases, respectively. Currently, the PROTAC field expansion to vast undruggable proteome is hindered due to narrow focus on select E3 ligases. Lack of reliable tools to rapidly evaluate PROTACs based on new ligases is hindering the progress. Screening platforms designed must be physiologically relevant and represent true PROTAC cellular function, i.e., PROTAC-mediated target ubiquitination and degradation.

In the current study, we employ TUBEs as affinity capture reagents to monitor PROTAC-induced poly-ubiquitination and degradation as a measure of potency. We established and validated proof-of-concept cell-based assays in a 96-well format using PROTACS for three therapeutic targets BET family proteins, kinases, and KRAS. To our knowledge, the proposed PROTAC assays are first of its kind that can simultaneously 1) detect ubiquitination of endogenous, native protein targets, 2) evaluate the potency of PROTACs, and 3) establish a link between the UPS and protein degradation. Using these TUBE assays, we established rank order potencies between four BET family PROTACs dBET1, dBET6, BETd246 and dBET57 based on peak ubiquitination signals (“UbMax”) of the target protein. TUBE assay was successful in demonstrating promiscuous kinase PROTACs efficiency to degrade Aurora Kinase A at sub-nanomolar concentrations within 1 h. A comparative study to identify changes in the ubiquitination and degradation profile of KRAS G12C PROTACs recruiting two E3 ligases (CRBN and VHL). All of the ubiquitination and degradation profiles obtained from TUBE based assays correlate well with traditional low throughput immunoblotting. Significant correlation between DC50 obtained from protein degradation in western blotting and UbMax values demonstrates our proposed assays can aid in high-throughput screening and drastically eliminate artifacts to overcome bottlenecks in PROTAC drug discovery.

To successfully set up HTS screening with novel PROTACs without pre-existing knowledge, we recommend the following steps. 1. Identify a model PROTAC that can potentially demonstrate activity based on knowledge in PROTAC design or in vitro binding studies. 2. Perform a time course study with 2–3 doses of the model PROTAC based on affinities of the ligands selected. 3. Monitor ubiquitination and degradation profiles using plate-based assay and identify time point that demonstrates UbMax. 4. Perform a dose response at selected time point with a library of PROTACs to establish rank order potency.

INTRODUCTION

Ubiquitination is a major regulatory mechanism to maintain cellular protein homeostasis by marking proteins for proteasomal-mediated degradation [1]. Given ubiquitin’s role in a variety of pathologies, the idea of targeting the Ubiquitin Proteasome System (UPS) is at the forefront of drug discovery [2]. “Event-driven” protein degradation using the cell’s own UPS is a promising technology for addressing the “undruggable” proteome [3]. Targeted protein degradation (TPD) has emerged as a new paradigm and promising therapeutic option to selectively attack previously intractable drug targets using PROteolytic TArgeting Chimeras (PROTACs) [4]. PROTACs are heterobifunctional molecules with a distinct ligand that targets a specific E3 ligase which is tethered to another ligand specific for the target protein using an optimized chemical linker. A functional PROTAC induces a ternary E3-PROTAC-target complex, resulting in poly-ubiquitination and subsequent controlled protein degradation [5]. Ability to function at sub-stoichiometric levels for efficient degradation, a significant advantage over traditional small molecules.

PROTACs have been explored in multiple disease fields with focus on only few ligases like cereblon (CRBN), Von Hippel-Lindau (VHL), IAP and MDM2. Cancer targets like androgen receptorestrogen receptor, BTK, BCL2, CDK8 and c-MET [[6][7][8][9][10][11]] have been successfully targeted using PROTACs. A variety of BET family (BRD2, BRD3, and BRD4)- PROTACs were designed using multiple ligases; MDM2-based BRD4 PROTAC [12], CRBN based dBET1 [13] and BETd-24-6 [14] for triple-negative breast cancer, enhanced membrane permeable dBET6 [15], and dBET57 PROTAC [16]. PROTACs for Hepatitis c virus (HCV) proteaseIRAK4 and Tau [[17][18][19]] have been explored for viral, immune and neurodegenerative diseases, respectively. Currently, the PROTAC field expansion to vast undruggable proteome is hindered due to narrow focus on select E3 ligases. Lack of reliable tools to rapidly evaluate PROTACs based on new ligases is hindering the progress. Screening platforms designed must be physiologically relevant and represent true PROTAC cellular function, i.e., PROTAC-mediated target ubiquitination and degradation.

Cellular PROTAC screening is traditionally performed using cell lines harboring reporter genes and/or Western blotting. While Western blotting is easy to perform, they are low throughput, semi-quantitative and lack sensitivity. While reporter gene assays address some of the issues, they are challenged by reporter tags having internal lysines leading to artifacts. Currently, no approaches are available that can identify true PROTAC effects such as target ubiquitination and proteasome-mediated degradation simultaneously. High affinity ubiquitin capture reagents like TUBEs [20] (tandem ubiquitin binding entities), are engineered ubiquitin binding domains (UBDs) that allow for detection of ultralow levels of polyubiquitinated proteins under native conditions with affinities as low as 1 nM. The versatility and selectivity of TUBEs makes them superior to antibodies, and they also offer chain-selectivity (-K48, -K63, or linear) [21]. High throughput assays that can report the efficacy of multiple PROTACs simultaneously by monitoring PROTAC mediated ubiquitination can help establish rank order potency and guide chemists in developing meaningful structure activity relationships (SAR) rapidly.

In the current study, we employ TUBEs as affinity capture reagents to monitor PROTAC-induced poly-ubiquitination and degradation as a measure of potency. We established and validated proof-of-concept cell-based assays in a 96-well format using PROTACS for three therapeutic targets BET family proteins, kinases, and KRAS. To our knowledge, the proposed PROTAC assays are first of its kind that can simultaneously 1) detect ubiquitination of endogenous, native protein targets, 2) evaluate the potency of PROTACs, and 3) establish a link between the UPS and protein degradation. Using these TUBE assays, we established rank order potencies between four BET family PROTACs dBET1, dBET6, BETd246 and dBET57 based on peak ubiquitination signals (“UbMax”) of the target protein. TUBE assay was successful in demonstrating promiscuous kinase PROTACs efficiency to degrade Aurora Kinase A at sub-nanomolar concentrations within 1 h. A comparative study to identify changes in the ubiquitination and degradation profile of KRAS G12C PROTACs recruiting two E3 ligases (CRBN and VHL). All of the ubiquitination and degradation profiles obtained from TUBE based assays correlate well with traditional low throughput immunoblotting. Significant correlation between DC50 obtained from protein degradation in western blotting and UbMax values demonstrates our proposed assays can aid in high-throughput screening and drastically eliminate artifacts to overcome bottlenecks in PROTAC drug discovery.

Fig. 1. Schematic representation of TUBE assay to monitor PROTAC mediated cellular ubiquitination of target proteins.
Fig. 2. TUBE based assay screening of PROTACs: Jurkat cell lysates were treated with BRD3-specific PROTACs A) dBET1, B) dBET6, C) BETd24-6, and D) dBET57. Polyubiquitination profiles and Ubmax of BRD3 for each PROTAC were represented as relative CL intensity. Relative CL intensities were calculated by dividing raw CL signals from a given PROTAC dose over DMSO treated samples. Error bars represent standard deviations, n = 3.
Fig. 3. PROTAC mediated degradation of bromodomain proteins analyzed by anti-BRD3 western blotting. Dose response of PROTACs dBET1, dBET6, Betd-24-6 and dBET57 at 45 min in Jurkat cells demonstrates degradation of BRD3, Acting as loading control.

 

 

 

 

 

 

 

 

 

Fig. 4. PROTAC mediated ubiquitination and degradation of AURKA in K562 cells. (A) Time course study to evaluate intracellular ubiquitination and degradation. (B) Western blot analysis of time course study: degradation kinetics (C) A dose response study to evaluate DC50 of the promiscuous kinase PROTAC in K562 cells. (D) Western blot analysis of dose response study to monitor degradation, GAPDH as loading control. Error bars represent standard deviation, n = 3.

SOURCE

https://www.sciencedirect.com/science/article/abs/pii/S0006291X22011792

Other articles of PROTACs in this Open Access Journal Include

The Vibrant Philly Biotech Scene: Proteovant Therapeutics Using Artificial Intelligence and Machine Learning to Develop PROTACs

The Map of human proteins drawn by artificial intelligence and PROTAC (proteolysis targeting chimeras) Technology for Drug Discovery

Live Conference Coverage AACR 2020 in Real Time: Monday June 22, 2020 Late Day Sessions

From High-Throughput Assay to Systems Biology: New Tools for Drug Discovery

 

Read Full Post »

New studies link cell cycle proteins to immunosurveillance of premalignant cells

Curator: Stephen J. Williams, Ph.D.

The following is from a Perspectives article in the journal Science by Virinder Reen and Jesus Gil called “Clearing Stressed Cells: Cell cycle arrest produces a p21-dependent secretome that initaites immunosurveillance of premalignant cells”. This is a synopsis of the Sturmlechener et al. research article in the same issue (2).

Complex organisms repair stress-induced damage to limit the replication of faulty cells that could drive cancer. When repair is not possible, tissue homeostasis is maintained by the activation of stress response programs such as apoptosis, which eliminates the cells, or senescence, which arrests them (1). Cellular senescence causes the arrest of damaged cells through the induction of cyclin-dependent kinase inhibitors (CDKIs) such as p16 and p21 (2). Senescent cells also produce a bioactive secretome (the senescence-associated secretory phenotype, SASP) that places cells under immunosurveillance, which is key to avoiding the detrimental inflammatory effects caused by lingering senescent cells on surrounding tissues. On page 577 of this issue, Sturmlechner et al. (3) report that induction of p21 not only contributes to the arrest of senescent cells, but is also an early signal that primes stressed cells for immunosurveillance.Senescence is a complex program that is tightly regulated at the epigenetic and transcriptional levels. For example, exit from the cell cycle is controlled by the induction of p16 and p21, which inhibit phosphorylation of the retinoblastoma protein (RB), a transcriptional regulator and tumor suppressor. Hypophosphorylated RB represses transcription of E2F target genes, which are necessary for cell cycle progression. Conversely, production of the SASP is regulated by a complex program that involves super-enhancer (SE) remodeling and activation of transcriptional regulators such as nuclear factor κB (NF-κB) or CCAAT enhancer binding protein–β (C/EBPβ) (4).

Senescence is a complex program that is tightly regulated at the epigenetic and transcriptional levels. For example, exit from the cell cycle is controlled by the induction of p16 and p21, which inhibit phosphorylation of the retinoblastoma protein (RB), a transcriptional regulator and tumor suppressor. Hypophosphorylated RB represses transcription of E2F target genes, which are necessary for cell cycle progression. Conversely, production of the SASP is regulated by a complex program that involves super-enhancer (SE) remodeling and activation of transcriptional regulators such as nuclear factor κB (NF-κB) or CCAAT enhancer binding protein–β (C/EBPβ) (4).

Sturmlechner et al. found that activation of p21 following stress rapidly halted cell cycle progression and triggered an internal biological timer (of ∼4 days in hepatocytes), allowing time to repair and resolve damage (see the figure). In parallel, C-X-C motif chemokine 14 (CXCL14), a component of the PASP, attracted macrophages to surround and closely surveil these damaged cells. Stressed cells that recovered and normalized p21 expression suspended PASP production and circumvented immunosurveillance. However, if the p21-induced stress was unmanageable, the repair timer expired, and the immune cells transitioned from surveillance to clearance mode. Adjacent macrophages mounted a cytotoxic T lymphocyte response that destroyed damaged cells. Notably, the overexpression of p21 alone was sufficient to orchestrate immune killing of stressed cells, without the need of a senescence phenotype. Overexpression of other CDKIs, such as p16 and p27, did not trigger immunosurveillance, likely because they do not induce CXCL14 expression.In the context of cancer, senescent cell clearance was first observed following reactivation of the tumor suppressor p53 in liver cancer cells. Restoring p53 signaling induced senescence and triggered the elimination of senescent cells by the innate immune system, prompting tumor regression (5). Subsequent work has revealed that the SASP alerts the immune system to target preneoplastic senescent cells. Hepatocytes expressing the oncogenic mutant NRASG12V (Gly12→Val) become senescent and secrete chemokines and cytokines that trigger CD4+ T cell–mediated clearance (6). Despite the relevance for tumor suppression, relatively little is known about how immunosurveillance of oncogene-induced senescent cells is initiated and controlled.

Source of image: Reen, V. and Gil, J. Clearing Stressed Cells. Science Perspectives 2021;Vol 374(6567) p 534-535.

References

2. Sturmlechner I, Zhang C, Sine CC, van Deursen EJ, Jeganathan KB, Hamada N, Grasic J, Friedman D, Stutchman JT, Can I, Hamada M, Lim DY, Lee JH, Ordog T, Laberge RM, Shapiro V, Baker DJ, Li H, van Deursen JM. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 2021 Oct 29;374(6567):eabb3420. doi: 10.1126/science.abb3420. Epub 2021 Oct 29. PMID: 34709885.

More Articles on Cancer, Senescence and the Immune System in this Open Access Online Scientific Journal Include

Bispecific and Trispecific Engagers: NK-T Cells and Cancer Therapy

Natural Killer Cell Response: Treatment of Cancer

Issues Need to be Resolved With ImmunoModulatory Therapies: NK cells, mAbs, and adoptive T cells

New insights in cancer, cancer immunogenesis and circulating cancer cells

Insight on Cell Senescence

Immune System Stimulants: Articles of Note @pharmaceuticalintelligence.com

Read Full Post »

Personalized Medicine, Omics, and Health Disparities in Cancer:  Can Personalized Medicine Help Reduce the Disparity Problem?

Curator: Stephen J. Williams, PhD

In a Science Perspectives article by Timothy Rebbeck, health disparities, specifically cancer disparities existing in the sub-Saharan African (SSA) nations, highlighting the cancer incidence disparities which exist compared with cancer incidence in high income areas of the world [1].  The sub-Saharan African nations display a much higher incidence of prostate, breast, and cervix cancer and these cancers are predicted to double within the next twenty years, according to IARC[2].  Most importantly,

 the histopathologic and demographic features of these tumors differ from those in high-income countries

meaning that the differences seen in incidence may reflect a true health disparity as increases rates in these cancers are not seen in high income countries (HIC).

Most frequent male cancers in SSA include prostate, lung, liver, leukemia, non-Hodgkin’s lymphoma, and Kaposi’s sarcoma (a cancer frequently seen in HIV infected patients [3]).  In SSA women, breast and cervical cancer are the most common and these display higher rates than seen in high income countries.  In fact, liver cancer is seen in SSA females at twice the rate, and in SSA males almost three times the rate as in high income countries.

 

 

 

 

 

 

Reasons for cancer disparity in SSA

Patients with cancer are often diagnosed at a late stage in SSA countries.  This contrasts with patients from high income countries, which have their cancers usually diagnosed at an earlier stage, and with many cancers, like breast[4], ovarian[5, 6], and colon, detecting the tumor in the early stages is critical for a favorable outcome and prognosis[7-10].  In addition, late diagnosis also limits many therapeutic options for the cancer patient and diseases at later stages are much harder to manage, especially with respect to unresponsiveness and/or resistance of many therapies.  In addition, treatments have to be performed in low-resource settings in SSA, and availability of clinical lab work and imaging technologies may be limited.

Molecular differences in SSA versus HIC cancers which may account for disparities

Emerging evidence suggests that there are distinct molecular signatures with SSA tumors with respect to histotype and pathology.  For example Dr. Rebbeck mentions that Nigerian breast cancers were defined by increased mutational signatures associated with deficiency of the homologous recombination DNA repair pathway, pervasive mutations in the tumor suppressor gene TP53, mutations in GATA binding protein 3 (GATA3), and greater mutational burden, compared with breast tumors from African Americans or Caucasians[11].  However more research will be required to understand the etiology and causal factors related to this molecular distinction in mutational spectra.

It is believed that there is a higher rate of hereditary cancers in SSA. And many SSA cancers exhibit the more aggressive phenotype than in other parts of the world.  For example breast tumors in SSA black cases are twice as likely than SSA Caucasian cases to be of the triple negative phenotype, which is generally more aggressive and tougher to detect and treat, as triple negative cancers are HER2 negative and therefore are not a candidate for Herceptin.  Also BRCA1/2 mutations are more frequent in black SSA cases than in Caucasian SSA cases [12, 13].

Initiatives to Combat Health Disparities in SSA

Multiple initiatives are being proposed or in action to bring personalized medicine to the sub-Saharan African nations.  These include:

H3Africa empowers African researchers to be competitive in genomic sciences, establishes and nurtures effective collaborations among African researchers on the African continent, and generates unique data that could be used to improve both African and global health.

There is currently a global effort to apply genomic science and associated technologies to further the understanding of health and disease in diverse populations. These efforts work to identify individuals and populations who are at risk for developing specific diseases, and to better understand underlying genetic and environmental contributions to that risk. Given the large amount of genetic diversity on the African continent, there exists an enormous opportunity to utilize such approaches to benefit African populations and to inform global health.

The Human Heredity and Health in Africa (H3Africa) consortium facilitates fundamental research into diseases on the African continent while also developing infrastructure, resources, training, and ethical guidelines to support a sustainable African research enterprise – led by African scientists, for the African people. The initiative consists of 51 African projects that include population-based genomic studies of common, non-communicable disorders such as heart and renal disease, as well as communicable diseases such as tuberculosis. These studies are led by African scientists and use genetic, clinical, and epidemiologic methods to identify hereditary and environmental contributions to health and disease. To establish a foundation for African scientists to continue this essential work into the future work, the consortium also supports many crucial capacity building elements, such as: ethical, legal, and social implications research; training and capacity building for bioinformatics; capacity for biobanking; and coordination and networking.

The World Economic Forum’s Leapfrogging with Precision Medicine project 

This project is part of the World Economic Forum’s Shaping the Future of Health and Healthcare Platform

The Challenge

Advancing precision medicine in a way that is equitable and beneficial to society means ensuring that healthcare systems can adopt the most scientifically and technologically appropriate approaches to a more targeted and personalized way of diagnosing and treating disease. In certain instances, countries or institutions may be able to bypass, or “leapfrog”, legacy systems or approaches that prevail in developed country contexts.

The World Economic Forum’s Leapfrogging with Precision Medicine project will develop a set of tools and case studies demonstrating how a precision medicine approach in countries with greenfield policy spaces can potentially transform their healthcare delivery and outcomes. Policies and governance mechanisms that enable leapfrogging will be iterated and scaled up to other projects.

Successes in personalized genomic research in SSA

As Dr. Rebbeck states:

 Because of the underlying genetic and genomic relationships between Africans and members of the African diaspora (primarily in North America and Europe), knowledge gained from research in SSA can be used to address health disparities that are prevalent in members of the African diaspora.

For example members of the West African heritage and genomic ancestry has been reported to confer the highest genomic risk for prostate cancer in any worldwide population [14].

 

PERSPECTIVEGLOBAL HEALTH

Cancer in sub-Saharan Africa

  1. Timothy R. Rebbeck

See all authors and affiliations

Science  03 Jan 2020:
Vol. 367, Issue 6473, pp. 27-28
DOI: 10.1126/science.aay474

Summary/Abstract

Cancer is an increasing global public health burden. This is especially the case in sub-Saharan Africa (SSA); high rates of cancer—particularly of the prostate, breast, and cervix—characterize cancer in most countries in SSA. The number of these cancers in SSA is predicted to more than double in the next 20 years (1). Both the explanations for these increasing rates and the solutions to address this cancer epidemic require SSA-specific data and approaches. The histopathologic and demographic features of these tumors differ from those in high-income countries (HICs). Basic knowledge of the epidemiology, clinical features, and molecular characteristics of cancers in SSA is needed to build prevention and treatment tools that will address the future cancer burden. The distinct distribution and determinants of cancer in SSA provide an opportunity to generate knowledge about cancer risk factors, genomics, and opportunities for prevention and treatment globally, not only in Africa.

 

References

  1. Rebbeck TR: Cancer in sub-Saharan Africa. Science 2020, 367(6473):27-28.
  2. Parkin DM, Ferlay J, Jemal A, Borok M, Manraj S, N’Da G, Ogunbiyi F, Liu B, Bray F: Cancer in Sub-Saharan Africa: International Agency for Research on Cancer; 2018.
  3. Chinula L, Moses A, Gopal S: HIV-associated malignancies in sub-Saharan Africa: progress, challenges, and opportunities. Current opinion in HIV and AIDS 2017, 12(1):89-95.
  4. Colditz GA: Epidemiology of breast cancer. Findings from the nurses’ health study. Cancer 1993, 71(4 Suppl):1480-1489.
  5. Hamilton TC, Penault-Llorca F, Dauplat J: [Natural history of ovarian adenocarcinomas: from epidemiology to experimentation]. Contracept Fertil Sex 1998, 26(11):800-804.
  6. Garner EI: Advances in the early detection of ovarian carcinoma. J Reprod Med 2005, 50(6):447-453.
  7. Brockbank EC, Harry V, Kolomainen D, Mukhopadhyay D, Sohaib A, Bridges JE, Nobbenhuis MA, Shepherd JH, Ind TE, Barton DP: Laparoscopic staging for apparent early stage ovarian or fallopian tube cancer. First case series from a UK cancer centre and systematic literature review. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2013, 39(8):912-917.
  8. Kolligs FT: Diagnostics and Epidemiology of Colorectal Cancer. Visceral medicine 2016, 32(3):158-164.
  9. Rocken C, Neumann U, Ebert MP: [New approaches to early detection, estimation of prognosis and therapy for malignant tumours of the gastrointestinal tract]. Zeitschrift fur Gastroenterologie 2008, 46(2):216-222.
  10. Srivastava S, Verma M, Henson DE: Biomarkers for early detection of colon cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001, 7(5):1118-1126.
  11. Pitt JJ, Riester M, Zheng Y, Yoshimatsu TF, Sanni A, Oluwasola O, Veloso A, Labrot E, Wang S, Odetunde A et al: Characterization of Nigerian breast cancer reveals prevalent homologous recombination deficiency and aggressive molecular features. Nature communications 2018, 9(1):4181.
  12. Zheng Y, Walsh T, Gulsuner S, Casadei S, Lee MK, Ogundiran TO, Ademola A, Falusi AG, Adebamowo CA, Oluwasola AO et al: Inherited Breast Cancer in Nigerian Women. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2018, 36(28):2820-2825.
  13. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, Olah E, Olopade OI, Solano AR, Teo SH et al: Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Human mutation 2018, 39(5):593-620.
  14. Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR: Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer research 2018, 78(9):2432-2443.

Other articles on Cancer Health Disparities and Genomics on this Online Open Access Journal Include:

Gender affects the prevalence of the cancer type
The Rutgers Global Health Institute, part of Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, New Jersey – A New Venture Designed to Improve Health and Wellness Globally
Breast Cancer Disparities to be Sponsored by NIH: NIH Launches Largest-ever Study of Breast Cancer Genetics in Black Women
War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Ethical Concerns in Personalized Medicine: BRCA1/2 Testing in Minors and Communication of Breast Cancer Risk
Ethics Behind Genetic Testing in Breast Cancer: A Webinar by Laura Carfang of survivingbreastcancer.org
Live Notes from @HarvardMed Bioethics: Authors Jerome Groopman, MD & Pamela Hartzband, MD, discuss Your Medical Mind
Testing for Multiple Genetic Mutations via NGS for Patients: Very Strong Family History of Breast & Ovarian Cancer, Diagnosed at Young Ages, & Negative on BRCA Test
Study Finds that Both Women and their Primary Care Physicians Confusion over Ovarian Cancer Symptoms May Lead to Misdiagnosis

 

Read Full Post »

Live 12:00 – 1:00 P.M  Mediterranean Diet and Lifestyle: A Symposium on Diet and Human Health : October 19, 2018

Reporter: Stephen J. Williams, Ph.D.

12.00 The Italian Mediterranean Diet as a Model of Identity of a People with a Universal Good to Safeguard Health?

Prof. Antonino De Lorenzo, MD, PhD.

Director of the School of Specialization in Clinical Nutrition, University of Rome “Tor Vergata”

It is important to determine how our bodies interacts with the environment, such as absorption of nutrients.

Studies shown here show decrease in life expectancy of a high sugar diet, but the quality of the diet, not just the type of diet is important, especially the role of natural probiotics and phenolic compounds found in the Mediterranean diet.

The WHO report in 2005 discusses the unsustainability of nutrition deficiencies and suggest a proactive personalized and preventative/predictive approach of diet and health.

Most of the noncommunicable diseases like CV (46%) cancer 21% and 11% respiratory and 4% diabetes could be prevented and or cured with proper dietary approaches

Italy vs. the US diseases: in Italy most disease due to environmental contamination while US diet plays a major role

The issue we are facing in less than 10% of the Italian population (fruit, fibers, oils) are not getting the proper foods, diet and contributing to as we suggest 46% of the disease

The Food Paradox: 1.5 billion are obese; we notice we are eating less products of quality and most quality produce is going to waste;

  •  growing BMI and junk food: our studies are correlating the junk food (pre-prepared) and global BMI
  • modern diet and impact of human health (junk food high in additives, salt) has impact on microflora
  • Western Diet and Addiction: We show a link (using brain scans) showing correlation of junk food, sugar cravings, and other addictive behaviors by affecting the dopamine signaling in the substantia nigra
  • developed a junk food calculator and a Mediterranean diet calculator
  • the intersection of culture, food is embedded in the Mediterranean diet; this is supported by dietary studies of two distinct rural Italian populations (one of these in the US) show decrease in diet
  • Impact of diet: have model in Germany how this diet can increase health and life expectancy
  • from 1950 to present day 2.7 unit increase in the diet index can increase life expectancy by 26%
  • so there is an inverse relationship with our index and breast cancer

Environment and metal contamination and glyphosate: contribution to disease and impact of maintaining the healthy diet

  • huge problem with use of pesticides and increase in celiac disease

12:30 Environment and Health

Dr. Iris Maria Forte, PhD.

National Cancer Institute “Pascale” Foundation | IRCCS · Department of Research, Naples, Italy

Cancer as a disease of the environment.  Weinberg’s hallmarks of Cancer reveal how environment and epigenetics can impact any of these hallmarks.

Epigenetic effects

  • gene gatekeepers (Rb and P53)
  • DNA repair and damage stabilization

Heavy Metals and Dioxins:( alterations of the immune system as well as epigenetic regulations)

Asbestos and Mesothelioma:  they have demonstrated that p53 can be involved in development of mesothelioma as reactivating p53 may be a suitable strategy for therapy

Diet, Tomato and Cancer

  • looked at tomato extract on p53 function in gastric cancer: tomato extract had a growth reduction effect and altered cell cycle regulation and results in apoptosis
  • RBL2 levels are increased in extract amount dependent manner so data shows effect of certain tomato extracts of the southern italian tomato (     )

Antonio Giordano: we tested whole extracts of almost 30 different varieties of tomato.  The tomato variety  with highest activity was near Ravela however black tomatoes have shown high antitumor activity.  We have done a followup studies showing that these varieties, if grow elsewhere lose their antitumor activity after two or three generations of breeding, even though there genetics are similar.  We are also studying the effects of different styles of cooking of these tomatoes and if it reduces antitumor effect

please see post https://news.temple.edu/news/2017-08-28/muse-cancer-fighting-tomatoes-study-italian-food

 

To follow or Tweet on Twitter please use the following handles (@) and hashtags (#):

@ handles


@S_H_R_O 

@SbarroHealth

@Pharma_BI 

@ItalyinPhilly

@WHO_Europe

@nutritionorg

# hashtags


#healthydiet

#MediterraneanDiet

#health

#nutrition

Please see related articles on Live Coverage of Previous Meetings on this Open Access Journal

Real Time Conference Coverage for Scientific and Business Media: Unique Twitter Hashtags and Handles per Conference Presentation/Session

LIVE – Real Time – 16th Annual Cancer Research Symposium, Koch Institute, Friday, June 16, 9AM – 5PM, Kresge Auditorium, MIT

Real Time Coverage and eProceedings of Presentations on 11/16 – 11/17, 2016, The 12th Annual Personalized Medicine Conference, HARVARD MEDICAL SCHOOL, Joseph B. Martin Conference Center, 77 Avenue Louis Pasteur, Boston

Tweets Impression Analytics, Re-Tweets, Tweets and Likes by @AVIVA1950 and @pharma_BI for 2018 BioIT, Boston, 5/15 – 5/17, 2018

BIO 2018! June 4-7, 2018 at Boston Convention & Exhibition Center

LIVE 2018 The 21st Gabay Award to LORENZ STUDER, Memorial Sloan Kettering Cancer Center, contributions in stem cell biology and patient-specific, cell-based therapy

HUBweek 2018, October 8-14, 2018, Greater Boston – “We The Future” – coming together, of breaking down barriers, of convening across disciplinary lines to shape our future

Read Full Post »

Li -Fraumeni Syndrome and Pancreatic Cancer

Curator: Marzan Khan, B.Sc.

Li-Fraumeni syndrome (LFS) is a condition that makes individuals prone to developing a wide variety of cancers that occur early on in life, the most common types being- soft tissue sarcoma, osteosarcoma, breast cancer, brain tumors, adrenocortical carcinoma (ACC), and leukemia. (1) Pancreatic cancer is minimally associated with the condition. (2) A survey found the presence of pancreatic cancer in only 1% of 475 tumor samples collected from 91 families who were carriers of p53 mutations, with half of them having LFS. The incidence of breast cancer amongst them was the highest -24%. (2) Pancreatic carcinoma in LFS patients usually occurs in the later stages of life. (3)

The underlying cause of LFS is germline mutations in TP53 gene on chromosome 17p, that encodes the transcription factor p53, crucial in cell cycle regulation and the repair of damaged and/or abnormal cells. (4) In the majority of cases, this mutation is obtained by inheritance. (5) De-novo germline mutations in p53 occur in 7%-20% of the cases. (5)

A person showing symptoms of any type of cancer at an early age or having first or second-degree relatives with cancer are at risk of developing LFS. (5) That is why tracing family history is an important part of diagnosis in LFS patients. Genetic testing can confirm mutations present in the gene, however, there are controversial ethical issues regarding their use, particularly in children and fetuses.

In patients with LFS, it is important to control the manifestations of the disease. They should be monitored closely so that any new cancers that arise are diagnosed and treated during the early stages. (6) Patients are also at risk of developing radiation-induced second and third primary tumors. (6) Therefore, radiation and alkylating agents should be used minimally (6) People at risk can be cautioned to avoid exposure to carcinogens such as sunlight, cigarette smoke, and alcohol consumption. (5) Therapeutic approaches that are aimed at restoring wild-type p53 by gene therapy as well as reactivating non-functional p53 by the use of small-molecule drugs are currently being investigated in many cancers. (7) Unlike radiation therapy, these small-molecule drugs are non-toxic to healthy cells, thus eliminating the risk of forming new tumors.

So far, PRIMA-1 has proven to be quite effective at correcting non-functional p53. (8) PRIMA-1 is changed to its methylated form, PRIMA-1MET   that forms covalent adducts to thiol groups in the mutated protein and modifies them. (8) As a result, p53 regains its ability to destroy malignant cells. (8) A research study also found that PRIMA-1 induces apoptosis and increases the sensitivity of pancreatic cancer cells to various chemotherapeutic agents. (9)

  1. Magali Olivier, David E. Goldgar, Nayanta Sodha, Hiroko Ohgaki, Paul Kleihues, Pierre Hainaut and Rosalind A. Eeles. Li-Fraumeni and Related Syndromes. Cancer Res October 15 2003 63 (20) 6643-6650 http://cancerres.aacrjournals.org/content/63/20/6643.abstract
  2. Kleihues P, Schauble B, zur Hausen H, et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 1997; 150:1-13 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1858532/
  3. John P. Neoptolemos, Raul Urrutia, James L. Abbruzzese, Markus W. Buchler. Pancreatic Cancer. 2010.1st ed, pp-6, 2010, Springer, Verlag, New York
  4. Mishra B and Patel RR. Gene Therapy for Treatment of Pancreatic Cancer. Austin Therapeutics. 2014;1(1): 10. https://books.google.ca/books?id=NmBB5ZoKkk4C&pg=PA6&lpg=PA6&dq=connection+between+li+fraumeni+and+Pancreatic+cancer&source=bl&ots=H0iCeaPP0N&sig=pqJT1tPMR6C-NIig3S_NkFKFsD0&hl=en&sa=X&ved=0ahUKEwi4nLrgzuPQAhUUIWMKHS3wBoc4ChDoAQhNMAg#v=onepage&q=connection%20between%20li%20fraumeni%20and%20Pancreatic%20cancer&f=false
  5. Schneider K, Zelley K, Nichols KE, et al. Li-Fraumeni Syndrome. 1999 Jan 19 [Updated 2013 Apr 11]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2016. https://www.ncbi.nlm.nih.gov/pubmed/20301488
  6. Elisa Becze BA, ELS, 2011 Mar 1. An introduction to Li-Fraumeni Syndrome, Five-Minute-In-Service. http://connect.ons.org/columns/five-minute-in-service/an-introduction-to-li-fraumeni-syndrome
  7. Sorrell, A. D., Espenschied, C. R., Culver, J. O., & Weitzel, J. N. (2013).TP53Testing and Li-Fraumeni Syndrome: Current Status of Clinical Applications and Future Directions. Molecular Diagnosis & Therapy17(1), 31–47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627545/
  8. Emily J. Lewis. PRIMA-1 as a cancer therapy restoring mutant p53: a reviewBioscience Horizons (2015) 8: hzv006 http://biohorizons.oxfordjournals.org/content/8/hzv006.full
  9. Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94. https://www.ncbi.nlm.nih.gov/pubmed/24838627

Izetti, Patricia, Agnes Hautefeuille, Ana Lucia Abujamra, Caroline Brunetto de Farias, Juliana Giacomazzi, Bárbara Alemar, Guido Lenz, et al. ‘PRIMA-1, a Mutant p53 Reactivator, Induces Apoptosis and Enhances Chemotherapeutic Cytotoxicity in Pancreatic Cancer Cell Lines’. Investigational New Drugs 32, no. 5 (October 2014): 783–94

Other related articles published in this Online Scientific Journal include the following:

p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/01/p53-mutation-li-fraumeni-syndrome-likelihood-of-genetic-or-hereditary-conditions-playing-a-role-in-intergenerational-incidence-of-cancer/

Pancreatic Cancer: Articles of Note @PharmaceuticalIntelligence.com

Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/05/26/pancreatic-cancer-articles-of-note-pharmaceuticalintelligence-com/

Read Full Post »

The Human Proteome Map Completed

Reporter and Curator: Larry H. Bernstein, MD, FCAP

UPDATED 6/02/2024

The genetic, pharmacogenomic, and immune landscapes associated with protein expression across human cancers.

Source: Chen C, Liu Y, Li Q, Zhang Z, Luo M, Liu Y, Han L. The Genetic, Pharmacogenomic, and Immune Landscapes Associated with Protein Expression across Human Cancers. Cancer Res. 2023 Nov 15;83(22):3673-3680. doi: 10.1158/0008-5472.CAN-23-0758. PMID: 37548539; PMCID: PMC10843800.

Abstract

Proteomics is a powerful approach that can rapidly enhance our understanding of cancer development. Detailed characterization of the genetic, pharmacogenomic, and immune landscape in relation to protein expression in cancer patients could provide new insights into the functional roles of proteins in cancer. By taking advantage of the genotype data from The Cancer Genome Atlas (TCGA) and protein expression data from The Cancer Proteome Atlas (TCPA), we characterized the effects of genetic variants on protein expression across 31 cancer types and identified approximately 100,000 protein quantitative trait loci (pQTL). Among these, over 8000 pQTL were associated with patient overall survival. Furthermore, characterization of the impact of protein expression on more than 350 imputed anticancer drug responses in patients revealed nearly 230,000 significant associations. In addition, approximately 21,000 significant associations were identified between protein expression and immune cell abundance. Finally, a user-friendly data portal, GPIP (https://hanlaboratory.com/GPIP), was developed featuring multiple modules that enable researchers to explore, visualize, and browse multidimensional data. This detailed analysis reveals the associations between the proteomic landscape and genetic variation, patient outcome, the immune microenvironment, and drug response across cancer types, providing a resource that may offer valuable clinical insights and encourage further functional investigations of proteins in cancer.

Introduction

Functional proteomics is a powerful approach that helps us understand cancer pathophysiology and identify potential therapeutic strategies (). Functional protein analysis using reverse-phase protein arrays (RPPA) has already proven highly effective in studying large numbers of TCGA samples, especially when integrated with genomic, transcriptomic, and clinical information (). Previous works demonstrated that a QTL mapping approach is effective to understand the genetic basis of multiple molecular features in human diseases (). Identifying the sequence determinants of protein levels (pQTLs) may guide the search for causal genes and facilitate understanding the underlying mechanisms of human diseases. However, it remains challenging to further understand the functional roles of protein expression in cancers. For example, it is unclear whether proteins are associated with drug response and/or immune features in patients. In this study, we systematically investigated the effects of genetic variants on protein expression and characterized the impact of protein expression on imputed drug responses and immune cell abundances from different sources (Fig. 1). To facilitate broad access of these data for the biomedical research community, we developed a user-friendly database, GPIP (https://hanlaboratory.com/GPIP). We expect this study to have a significant clinical impact on the future development of protein-based targeted therapies.

An external file that holds a picture, illustration, etc.
Object name is nihms-1924390-f0001.jpg
Impact of genetic variants on protein expression.

A Workflow of GPIP to identify pQTLs and survival-associated pQTLs. B The number of pQTLs identified for each cancer type. C Association between CYCLINB1 protein expression level and rs12576855 in LUAD patients. D Association between CYCLINB1 protein expression level and rs2722796 in LGG patients. E The number of survival-associated pQTLs identified for each cancer type. F Kaplan–Meier plot showing the association between rs10918659 (pQTL of HER2_pY1248) genotypes and overall survival times of STAD patients. G Kaplan–Meier plot showing the association between rs13158796 (pQTL of HER2_pY1248) genotypes and overall survival times of STAD patients.

Identification of protein–drug associations

To investigate potential associations between protein expression and drug response, we calculated the Spearman rank correlation between protein expression data and drug response from DrVAEN and cancerRxTissue. These two datasets employed distinct predictive models that integrated omics data from CCLE and drug response data from GDSC to predict drug response in TCGA samples (Fig. 2A) (,). Association with |Rs| > 0.3 and FDR < 0.05 were considered as significant associations in each cancer type.

An external file that holds a picture, illustration, etc.
Object name is nihms-1924390-f0002.jpg
Exploring the pharmacogenomics of protein in human cancer.

A Workflow of GPIP to identify Drug-associated proteins. B The number of protein-drug response pairs identified from DrVAEN (left) and cancerRxTissue (right) for each cancer type. C Visualization of the associations between proteins and drugs (DrVAEN) within and across different cancer signaling pathways. Blue links represent associations within a single pathway, while orange links represent associations cross pathways. D Enrichment analysis of drug target pathways among significant protein-drug response pairs. The color represents the log2 (odds ratio) of Fisher’s exact test. The size represents the FDR value.

Identification of protein–immune cell associations

To examine the relationship between protein expression and immune cell abundance, we utilized Spearman rank correlation coefficient to calculate the associations between protein expression data and immune cell abundance data from TIMER, CIBERSORT, ImmuneCellAI, and ImmuneCellGSVA (Fig. 3). These datasets utilized different methods to evaluate immune cell abundance by leveraging immune gene signatures as a proxy (). We considered correlations with |Rs| > 0.3 and FDR < 0.05 as significant associations.

An external file that holds a picture, illustration, etc.
Object name is nihms-1924390-f0003.jpg
Exploring the immune landscapes of protein in human cancer.

A Workflow of GPIP to identify Immune cell-associated proteins. B The number of protein-drug response pairs identified from ImmuneCellsGSVA (purple), ImmuCellAI (yellow), TIMER (red) and CIBERSORT (green) for each cancer type. C The top 10 proteins with the highest number of significantly associated immune cell types in HNSC. The color represents the Rs between protein expression and immune cell abundance (ImmuneCellGSVA). The size represents the FDR value. D Association between PREX1expression and impute MDSC abundance in HNSC patients.

Database construction

GPIP was developed using Python Flask-RESTful API frameworks (https://flask-restful.readthedocs.io/), AngularJS (https://angularjs.org), and Bootstrap (https://getbootstrap.com/). The database for GPIP was implemented using the NoSQL database program MongoDB (https://www.mongodb.com/). The user-friendly interface of the GPIP web application was served through the Apache HTTP Server, allowing users to access the database and perform queries and analysis through a web browser.

Data availability

All results generated in this study can be found in GPIP database, (https://hanlaboratory.com/GPIP). Publicly available data generated by others were used by the authors in this study: The genotype data and clinical data were obtained from The Cancer Genome Atlas (TCGA) data portal at https://tcga-data.nci.nih.gov/tcga/. The reverse-phase protein array (RPPA) protein expression data was obtained from The Cancer Proteome Atlas (TCPA) data portal at https://www.tcpaportal.org/. The imputed pharmacogenomic data were obtained from DrVAEN at https://bioinfo.uth.edu/drvaen/ and cancerRxTissue at https://manticore.niehs.nih.gov/cancerRxTissue/. The immune-cell infiltration data were obtained from Tumor Immune Estimation Resource (TIMER) at http://timer.cistrome.org/, Immune Cell Abundance Identifier (ImmuCellAI) at http://bioinfo.life.hust.edu.cn/ImmuCellAI/, and CIBERSORT at https://cibersort.stanford.edu/.

A comprehensive data portal

We developed a user-friendly data portal, GPIP (https://hanlaboratory.com/GPIP), to facilitate visualizing, searching, and browsing of our results by the biomedical research community (Fig. 4A). GPIP contains four main modules: Protein-QTLs, Surivial-QTLs, Drug Response, and Immune Infiltration (Fig. 4B). Querying can be easily performed by selecting cancer type, protein, drug, immune cell abundance, or entering the SNP ID of interest (Fig. 4C). For example, in the Protein-QTLs and Survival-QTLs modules, users can search for pQTLs by selecting a cancer type (e.g., LUAD) and entering a protein name (e.g., CYCLINB1) or an SNP ID (e.g., rs12576855). In the Drug Response module, users can search for protein-drug response associations by selecting a data source for imputed drug response (e.g., DrVAEN) and selecting an anticancer drug (e.g., Talazoparib) or a protein (e.g., PARP1). In the Immune Infiltration module, users can search for protein-immune infiltration pairs by selecting a data source for imputed immune cell abundance (e.g., ImmuneCellsGSVA), and selecting an immune cell type (e.g., Activated B cell) or a protein (e.g., PDL1). In addition, on the bottom of the main page, we developed a cancer type module where users can click on a specific cancer type (e.g., BLCA) to search for related information across all 4 modules (Fig. 4D). The search results for each module included a table to list related information accordingly (Fig. 4E). A “Details” button for each result item was clicked for generating a box plot in protein-QTLs module (Fig. 4F), a Kaplan–Meier plot in Survival-QTLs module (Fig. 4G) and a scatter plot in Drug Response and Immune Infiltration modules, respectively (Fig. 4H,I).I). Our database provides a valuable resource for cancer research and will be of great interest to the research community.

An external file that holds a picture, illustration, etc.
Object name is nihms-1924390-f0004.jpg
Content and interface of GPIP.

A GPIP homepage and browser bar. B The four main modules of GPIP. C Search boxes in the pQTLs module. D Search boxes in the cancer type-specific search module. E An example of resulting list in the pQTL module. F An example of boxplot for the pQTLs module result. G An example of Kaplan–Meier plot for the Survival protein-QTLs module result. H An example of scatter plot for the Drug Response module result. I An example of scatter plot for the Immune Infiltration module result.

Discussion

Proteomics plays a crucial role in identifying potential therapeutic strategies and understanding cancer pathophysiology (). In this study, we investigated the effects of genetic variants on protein expression and characterized the impact of protein expression on imputed drug responses and immune cell abundances across human cancers. We also developed the user-friendly data portal, GPIP, to provide access to these results. Our study provides a comprehensive analysis of protein expression in different cancer types and their association with drug response and immune cell abundance.

Identifying genetic variants associated with cancer has revolutionized our understanding of the disease and holds promise for improved diagnosis and treatment. In GPIP, we identified ~100,000 pQTLs across 31 cancer types and 8.8% of them were found to be associated with patient survival (Fig. 1). These genetic variants hold significant promise for unraveling the underlying biological mechanisms of disease progression and response to treatments. For example, a survival-associated pQTL may help to identify a genetic variant that controls the expression of a protein crucial for tumor growth or immune response, thus impacting patient survival. Our results suggest that pQTLs have the potential to serve as prognostic biomarkers and aid in the development of precision medicine.

Despite the promising implications, it is crucial to consider potential limitations of pQTL identification. One limitation is the small number of tumor samples in rare cancers, which limits statistical power and the detection of significant pQTLs. For example, only 8 proteins with pQTLs were found in CHOL, likely due to the small sample size (Table S1). Additionally, we observed that some cancer types with large sample sizes identified only a small number of pQTLs (e.g., BRAC), possibly due to the data quality of protein abundance. Tumors originating from different tissues may have variations in protein extraction quality or protein measurement accuracy (). Furthermore, cancer type heterogeneity can impact pQTL identification, as tumors from different tissues exhibit distinct protein expression profiles and genetic landscapes. Addressing these limitations is necessary to ensure valid and reliable results.

Protein expression levels in tumors can impact response of cancer cells to therapeutic drugs due to their role as targets of drug action, with alterations in expression potentially modifying drug sensitivity or resistance. In GPIP, we utilized the imputed drug response and protein expression data in TCGA patients to identify the potential associations between protein expression and drug response (Fig. 2). Our results revealed that certain proteins were significantly associated with drug sensitivity or resistance, suggesting that protein expression levels could potentially be used as biomarkers to predict drug response in cancer patients. Recent studies have shown that the impact of genetic variants on drug response can be mediated through protein-protein interaction (PPI) networks (,). Integrating genetic variants and PPI to further understand the associations between protein expression and drug response may provide further insights.

The protein expression level in tumors is crucial in the context of tumor immune microenvironment and immunotherapy, as it might impact immune cell abundance and response, and potentially improve the efficacy of immunotherapy. In GPIP, we examined the association between protein expression levels and imputed immune cell abundance across multiple cancer types. Our study identified ~21,000 significant correlations between proteins and immune cell types, highlighting the potential role of protein expression levels in shaping the tumor immune microenvironment (Fig. 3). Our results offer a promising avenue for future research to understand the interplay between protein expression and the tumor immune microenvironment, leading to personalized immunotherapy strategies and better treatment outcomes for cancer patients.

In summary, GPIP is a comprehensive and multifaceted data platform designed to aid functional and clinical research on protein in cancer patients. As more relevant datasets become available, we will continually update GPIP to ensure its relevance and usefulness to the research community.

Significance:

Comprehensive characterization of the relationship between protein expression and the genetic, pharmacogenomic, and immune landscape of tumors across cancer types provides a foundation for investigating the role of protein expression in cancer development and treatment.

Researchers Produce First Map of Human Proteome, and Reveal New
Significance in The Human Proteome

HAHNE, TECHNISCHE UNIVERSITÄT MÜNCHENTwo international teams have
independently produced the first drafts of the human proteome. These curated
catalogs of the proteins expressed in most non-diseased human tissues and
organs can be used as a baseline to better understand changes that occur in
disease states. Their findings were published today (May 29) in Nature.

Both teams uncovered new complexities of the human genome, identifying novel
proteins from regions of the genome previously thought to be non-coding.

“the real breakthrough with these two projects is the comprehensive coverage of
more than 80 percent of the expected human proteome” said Hanno Steen, director
of proteomics at Boston Children’s Hospital, who was not involved in the work.

The human proteome map provides a catalog of proteins expressed in nondiseased tissues and organs to use as baseline in understanding changes that occur in disease

Given the growing importance of proteins in medical laboratory testing,

Experts are comparing this to the first complete map of the human genome

  • and this information provides for rapid advances
  • in understanding transcriptomics and metabolomics

Map of Human Proteome Expected to Advance Medical Science

“Housekeeping genes” that are expressed in all tissues and cell types

  • have been thought to be involved in basic cellular functions.

Two teams developing a Human Proteome Map

  • detected proteins encoded by 2,350 genes
  • across all human cells and tissues.

The corresponding housekeeping proteins comprised
about 75% of total protein mass.

  •  histones,
  • ribosomal proteins,
  • metabolic enzymes, and
  • cytoskeletal proteins

The two international teams produced

  • the first drafts of the human protoeome,
  • a catalog of proteins expressed in most
  • nondiseased human issues and organs.

The evidence suggests there is translation from DNA regions

  • that were not thought to be translated—including
  • more than 400 translated long, intergenic non-coding RNAs (lincRNAs)—
    found by the Küster team—and
  • 193 new proteins—uncovered by the Pandey team.

This proteome map can be used as a baseline to understand

  • changes that occur in the disease state

These studies are part of the Human Proteome Project,

  1. an international effort by the Human Proteome Organization
  2. to revolutionize our understanding of the human proteome
  3. by coordinating research at laboratories around the world directed
  4. at mapping the entire human proteome.

This new information about the human proteome

  • is expected to trigger rapid advances in medical science
  • and a better understanding of the underlying causes of human diseases.

One Study Team Was at Johns Hopkins University

  • In one study, which was headed by Ahilesh Pandey, M.D.,
    at Johns Hopkins University in Baltimore,
  • and colleague Harsha Gowda, Ph.D.,
    of the Institute of Bioinformatics in Bangalore, India,
  • the research team used an advanced form of mass spectrometry to analyze proteins
  • to create the human proteome map,

according to a report published in NIH Research Matters.

The research team examined

  1. 30 normal human tissue and cell types:
  2. 17 adult tissues,
  3. 7 fetal tissue and
  4. 6 blood cell types.

Samples from three people per tissue type

  • were processed through several steps.

The protein fragments, or peptides, were analyzed on

The amino acid sequences were

  • then compared to known sequences.

Their results were published in the May 28, 2014, issue of Nature.

The resulting draft map of the human proteome map includes

  • proteins encoded by more than 17,000 genes,
  • noted the Research Matters article.

Among these are hundreds of proteins from regions

  • previously thought to be non-coding.

This study also provided a new understanding of

  • how genes are expressed.

For example, almost 200 genes begin in locations

  • other than those predicted based on genetic sequence.

“The fact that 193 of the proteins came from DNA sequences

  • predicted to be non-coding means that
  • we don’t fully understand how cells read DNA,
  • since the sequences code for proteins

This study also produced the Human Proteome Map,

  • an interactive online portal.

This can be accessed at this link.

The study data will soon be accessible through

German’s ProteomicsDB Analyzed a Mix of Available and New Tissue Data

The other study was conducted by a team lead by  Bernhard Küster
of the Technische Universität München in Germany.

Küster and his colleagues created a

This database contains 92% of the

  • estimated 19,629 human proteins,

noted The Scientist article.

Küster’s team also used mass spectrometry

  • to analyze human tissue samples.

This team’s approach differed from Johns Hopkins’ in that

  • it compiled about 60% of the information
  • in the ProteomicsDB database
  1. by using existing raw mass spec (MS) data
  2. from databases and colleagues’ contributions.

To fill data gaps, the Küster lab generated its own
MS data after analyzing

  1. 60 human tissues,
  2. 13 body fluids, and
  3. 147 cancer cell lines.

High-resolution public data

  • was selected and computationally processed
  • for strict quality

The database for ProteomicsDB is

  • public and searchable.

It can be accessed at this link.

German Study Added New Insights to Transcription Process

Comparing the ratio of protein to mRNA levels for every protein globally,

  • the Küster lab found that the translation rate
  • is a constant feature of each mRNA transcript. 

The proteomics community has viewed

  • transcriptome and proteome data as two sides of a coin.

But this analysis shows that at least, at steady state,

  • once the ratio for an mRNA/protein pair has been calculated,
  1. protein levels can be determined
  2. just from specific mRNA levels.

Proteomics researchers in Toronto maintaining ionic balance and in Boston commented on the
importance of the findings, even a “new paradigm” because of

  • the fixed ratio of protein to mRNA

This is quite in keeping with what we have been learning

  • with respect to homeostasis.

In 2003, the Human Genome Project created a

  • draft map of the human genome—
  • all the genes in the human body.

Genomics has since driven many advances in medical science.

This was a progress from the classic discovery of Watson and Crick –

  • the classical dogma holds that
  • DNA makes RNA makes protein.
  • no constraints are place on this

But the cell is functioning in contact with other cells,

  • immersed in interstitial fluid
  • maintaining cationic and anionic balance
  • and mitochondrial energy balance and ubiquitin systems interact
  • and protein interacts with the chromatin and transcriptional RNA

So the restriction that has been discovered has credence,

  • the classical diagram has to be redrawn

Deeper Knowledge of Proteome to Improve Diagnostics and Therapeutics

In the two projects is:

  • the comprehensive coverage of more than 80% of
  • the expected human proteome,

These studies indicate that to get to

  • a deep level of proteome coverage,
  • many different tissue types must be probed.

the  studies are  complimentary.

  1. The Hopkins group provided a survey of human proteins from a single source, which allows for easy comparisons within their data.
  2. The ProteomeDB effort connected new information with existing data

A deeper knowledge of the human proteome could help

  • fill the gap between genomes and phenotypes.

As this occurs, it has the potential to transform

  • the way diagnostics and therapeutics are developed,
  •  enhancing overall biomedical research and healthcare,

it was noted in a report presented to scientific leaders at a NIH workshop

  • on advances in proteomics and its applications.

Having completed a draft map of the human proteome—
the set of all proteins in the human body

  • It opens another window to cell function.

It has been ASSUMED –

  • genes control the most basic functions of the cell,
  • including what proteins to make and when.
  • but we have assumed for too much in assigning
    full control to the genome

Researchers have identified more than 20,000 protein- coding genes.

However, scientific understanding of the proteome has

  • lagged behind that of the genome,
  • partly because of the proteome’s complexities.

The relationship between genes and proteins isn’t a simple matter of

  • one gene coding for one protein.

Stretches of DNA can be read and translated

  • into proteins in different ways.

Proteins are also more difficult to sequence than genes.

The importance of these latest studies to pathologists and Ph.D.s working

  • in molecular diagnostics laboratories is that
  • this information will expedite further research into the human proteome.

Such research is expected to lead to

  • novel methods of diagnosis and complex
  • “multi-analyte” clinical laboratory tests that
  • look for multiple proteins in a single assay.

“The prevalent view was that information transfer was from genome to transcriptome to proteome.
What these efforts show is that it’s a two-way road— proteomics can be used to annotate the genome.
The importance is that, using these datasets, we can improve the annotation of the genome and the
algorithms that predict transcription and translation,” said Steen. “The genomics field can now hugely
benefit from proteomics data.”

Wilhelm et al., “Mass-spectrometry- based draft of the human proteome,”
Nature,  http://dx.doi.doi:/10.1038/nature13319, 2014

M.S. Kim et al. “A draft map of the human proteome,”
Nature,  http://dx.doi.org:/10.1038/nature13302, 2014.

Tags

proteomicsnoncoding RNAhuman researchhuman proteome projecthuman genetics and genomics

http://www.the-scientist.com/?articles.view/articleNo/40083/title/Human-Proteome-Mapped/

 

__Patricia Kirk

__by Harrison Wein, Ph.D.

__by Anna Azvolinsky

Related Information:

Revealing The Human Proteome

Human Proteome Mapped

The human proteome – a scientific opportunity for transforming diagnostics, therapeutics, and healthcare

Reference: A draft map of the human proteome.
Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Donahue CA, Gowda H, Pandey A.
Nature. 2014 May 29;509(7502):575-81. http://dx.doi.org:/10.1038/nature13302. PMID: 24870542

Funding: NIH’s National Institute of General Medical Sciences (NIGMS), National Cancer Institute (NCI),
and National Heart, Lung, and Blood Institute (NHLBI); the Sol Goldman Pancreatic Cancer Research Center;
India’s Council of Scientific and Industrial Research; and Wellcome Trust/DBT India Alliance.

http://nihprod.cit.nih.gov/researchmatters/june2014/06092014proteome.htm

 

 

 

 

 

 

 

 

 

Read Full Post »