Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Diabetes’


Merck Might End DPP-4 Drug Development Program Due to Serious Adverse Events

Stephen J. Williams, PhD.: Reporter/Curator

As Reported From FiercePharma

Advertisements

Read Full Post »


Breakthrough Research on Encapsulated pancreatic cells offer possible new diabetes treatment.

Reporter: Eveline B. Cohn, PhD

No more insulin injections?

Encapsulated pancreatic cells offer possible new diabetes treatment.

It is known that in patients with Type 1 diabetes the immune system attacks the pancreas, and the monitoring of blood sugar becomes really difficult. Lately the research showed a possibility of replacing the pancreatic islets cells with healthy cells to take over glucose monitoring and insulin release. However the immune system attacked the transplanted cells, patients being obliged to take immunosuppressant drugs for the rest of their life.
Now , a new advance in this type of research by Boston Children’s Hospital designed a material that was used to encapsulate human islet before transplanted them. In animal testing it was showed that the encapsulated human cells could cure diabetes for up to six months without provoking an immune response.
This approach “has the potential to provide diabetics with a new pancreas that is protected from the immune system, which allow them to control their blood sugar without taking drugs. That’s the dream” says Daniel Anderson, The Samuel A Goldblith Associate Professor in MIT’s Department of Chemical Engineering, A member of MIT’s Koch Institute for integrative Cancer research and Institute for Medical Engineering and Science (IMES), and a research fellow in the department of Anesthesiology at Boston Children’s Hospital
The JDRF director Julia Greenstein, Anderson, Langer and colleagues explored a chemical derivative originally isolated from brown algae to encapsulate the cells without harming them, allowing sugar and proteins to go through, thus permitted to test the glucose level after transplantation of the encapsulated cells. The research was published in Nature Medicine and Nature Biotechnology. Researchers from Harvard University, University of Illinois at Chicago and Joslin Diabetes Center and University of Massachusetts Medical school also contributed to this research.
Previous research has shown that when alginate capsules are implanted in primates and humans, scar tissue builds up around the capsules, making the device ineffective. MIT/Children Hospital try to modify alginate make it less likely to provoke this kind of immune response.

A stealth material surface, shown here, has been engineered to provide an “invisibility cloak” against the body’s immune system cells. In this electron microscopy image, you can see the material's surface topography.

With The Courtesy of The Researchers

“We decided to take an approach where you cast a very wide net and see what you can catch,” says Arturo Vegas, a former MIT and Boston Children’s Hospital postdoc who is now an assistant professor at Boston University. Vegas is the first author of the Nature Biotechnology paper and co-first author of the Nature Medicine paper. “We made all these derivatives of alginate by attaching different small molecules to the polymer chain, in hopes that these small molecule modifications would somehow give it the ability to prevent recognition by the immune system.”
800 alginate derivatives were screened . Further, the known triazole thiomorpholine dioxide (TMTD) have been chosen to be tested in diabetic mice. They chose a strain of mice with a strong immune system and implanted human islet cells encapsulated in TMTD into a region of the abdominal cavity known as the intraperitoneal space.
The pancreatic islet cells used in this study were generated from human stem cells using a technique recently developed by Douglas Melton, a professor at Harvard University who is an author of the Nature Medicine paper.
Following implantation, the cells immediately began producing insulin in response to blood sugar levels and were able to keep blood sugar under control for the length of the study, 174 days.
“The really exciting part of this was being able to show, in an immune-competent mouse, that when encapsulated these cells do survive for a long period of time, at least six months,” says Omid Veiseh, a senior postdoc at the Koch Institute and Boston Children’s hospital, co-first author of the Nature Medicine paper, and an author of the Nature Biotechnology paper. “The cells can sense glucose and secrete insulin in a controlled manner, alleviating the mice’s need for injected insulin.”
The researchers also found that 1.5-millimeter diameter capsules made from their best materials (but not carrying islet cells) could be implanted into the intraperitoneal space of nonhuman primates for at least six months without scar tissue building up.
“The combined results from these two papers suggests that these capsules have real potential to protect transplanted cells in human patients,” says Robert Langer, the David H. Koch Institute Professor at MIT, a senior research associate at Boston’s Children Hospital, and co-author on both papers. “We are so pleased to see this research in cell transplantation reach these important milestones.”
Cherie Stabler, an associate professor of biomedical engineering at the University of Florida, says this approach is impressive because it tackles all aspects of the problem of islet cell delivery, including finding a source of cells, preventing an immune response, and developing a suitable delivery material.
“It’s such a complex, multipronged problem that it’s important to get people from different disciplines to address it,” says Stabler, who was not involved in the research. “This is a great first step towards a clinically relevant, cell-based therapy for Type I diabetes.”

VIEW VIDEO

VIDEO SOURCE

https://www.youtube.com/watch?v=cw3EbB8DAq8

At this point the researchers are thinking of using their new material in non human primates and eventually performing clinical trials in diabetic patients. “Our goal is to continue to work hard to translate these promising results into a therapy that can help people,” Anderson says.
“Being insulin-independent is the goal,” Vegas says. “This would be a state-of-the-art way of doing that, better than any other technology could. Cells are able to detect glucose and release insulin far better than any piece of technology we’ve been able to develop.”
In their research they found out that the new material works best with molecules containing triazole group- a ring containing two atoms of Carbon and three of N. However, they suspect that in this particular case it may interfere with the immune system’s ability to recognize the material as foreign.

The work was supported, in part, by the JDRF, the Leona M. and Harry B. Helmsley Charitable Trust, the National Institutes of Health, and the Tayebati Family Foundation.
Other authors of the papers include MIT postdoc Joshua Doloff; former MIT postdocs Minglin Ma and Kaitlin Bratlie; MIT graduate students Hok Hei Tam and Andrew Bader; Jeffrey Millman, an associate professor at Washington University School of Medicine; Mads Gürtler, a former Harvard graduate student; Matt Bochenek, a graduate student at the University of Illinois at Chicago; Dale Greiner, a professor of medicine at the University of Massachusetts Medical School; Jose Oberholzer, an associate professor at the University of Illinois at Chicago; and Gordon Weir, a professor of medicine at the Joslin Diabetes Center.

SOURCE

http://news.mit.edu/2016/pancreatic-cells-diabetes-treatment-insulin-injections-0125?elq=6d9b90a822f04183bd0b059d36eb2b7a&elqCampaignId=9&elqaid=14548&elqat=1&elqTrackId=d91b7d01a9d14b199e41b4deb2c10ac6

Read Full Post »


Reinforced disordered cell expression

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Diabetes, Alzheimer’s Share Molecular Pathways, Part of Same Vicious Cycle

http://www.genengnews.com/gen-news-highlights/diabetes-alzheimer-s-share-molecular-pathways-part-of-same-vicious-cycle/81252206/

http://www.genengnews.com/Media/images/GENHighlight/thumb_Jan8_2016_Fotolia_30836005_JigsawPuzzleBrainAndHead1904910113.jpg

A molecular-level link has been found that helps explain the poorly understood association between diabetes and Alzheimer’s disease. Both disorders can drive and be driven by the same pathological process, the disruption of a particular kind of post-translational modification called S-nitrosylation. Thus, the disorders can reinforce each other. [© freshidea/Fotolia]

 

Though they appear to be distinct, diabetes and Alzheimer’s disease have much in common at the molecular level. In fact, recent findings indicate that either disease can worsen the other by disrupting the same chemical process—S-nitrosylation, a form of post-translational modification that is necessary for the proper functioning of multiple enzymes.

S-nitrosylation, it turns out, can be disrupted by excess sugar or β-amyloid protein, either of which can wreak havoc by increasing the levels of nitric oxide and other free radical species. Once S-nitrosylation is disturbed and poorly functioning enzymes are produced, the downstream effects include abnormal increases in both insulin and β-amyloid protein.

Thus, diabetes and Alzheimer’s can drive, and be driven by, the same vicious cycle. Furthermore, either can contribute to the other’s progress. These results emerged from a study completed by researchers based at the Sanford Burnham Prebys Medical Discovery Institute and the Scintillon Institute. The research team was led by Stuart A. Lipton, M.D., Ph.D., a physician-scientist affiliated with both institutions.

“This work points to a new common pathway to attack both type 2 diabetes, along with its harbinger, metabolic syndrome, and Alzheimer’s disease,” stated Dr. Lipton.

The researchers published their work January 8 in the journal Nature Communications in an article entitled, “Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation.” This article describes how the scientists used a so-called “disease-in-a-dish” model to discover molecular pathways that are in common in both diabetes and Alzheimer’s.

Specifically, the scientists genetically reprogrammed the skin of human patients to make induced pluripotent stem cells, which were then used to derive nerve cells. They also used mouse models of each disease to analyze the combined effects of high blood sugar and β-amyloid protein in living animals.

“[We] report in human and rodent tissues that elevated glucose, as found in [metabolic syndrome and type 2 diabetes] and oligomeric β-amyloid (Aβ) peptide, thought to be a key mediator of [Alzheimer’s disease], coordinately increase neuronal Ca2+ and nitric oxide (NO) in an NMDA receptor-dependent manner,” wrote the authors of the Nature Communications article. “The increase in NO results in S-nitrosylation of insulin-degrading enzyme (IDE) and dynamin-related protein 1 (Drp1), thus inhibiting insulin and Aβ catabolism as well as hyperactivating mitochondrial fission machinery.”

The scientists also found that the changes in enzyme activity led to damage of synapses, the region where nerve cells communicate with one another in the brain. The combination of high sugar and β-amyloid protein caused the greatest loss of synapses. Since loss of synapses correlates with cognitive decline in Alzheimer’s, high sugar and β-amyloid coordinately contribute to memory loss.

“The NMDA receptor antagonist memantine attenuates these effects,” the authors continued. “Our studies show that redox-mediated posttranslational modification of brain proteins link Aβ and hyperglyaemia to cognitive dysfunction in [metabolic syndrome/type 2 diabetes] and [Alzheimer’s disease].”

“[Our work] means that we now know these diseases are related on a molecular basis, and hence, they can be treated with new drugs on a common basis,” stated Dr. Ambasudhan, a senior author of the study and an assistant professor at Scintillon.

Read Full Post »


Artificial Pancreas

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Artificial Pancreas Therapy Performs Well in Pilot Study

Fri, 11/20/2015 – by Wiley

http://www.mdtmag.com/news/2015/11/artificial-pancreas-therapy-performs-well-pilot-study

 

Researchers are reporting a breakthrough toward developing an artificial pancreas as a treatment for diabetes and other conditions by combining mechanical artificial pancreas technology with transplantation of islet cells, which produce insulin.

In a study of 14 patients with pancreatitis who underwent standard surgery and auto-islet transplantation treatments, a closed-loop insulin pump, which relies on a continuous cycle of feedback information related to blood measurements, was better than multiple daily insulin injections for maintaining normal blood glucose levels.

“Use of the mechanical artificial pancreas in patients after islet transplantation may help the transplanted cells to survive longer and produce more insulin for longer,” said Dr. Gregory Forlenza, lead author of the American Journal of Transplantation study. “It is our hope that combining these technologies will aid a wide spectrum of patients, including patients with diabetes, in the future.”

 

Artificial Pancreas Works for Length of Entire School Term

Daniel Walls, a 12-year-old with type 1 diabetes who has taken part in the trial.

An artificial pancreas given to children and adults with type 1 diabetes going about their daily lives has been proven to work for 12 weeks – meaning the technology, developed at the University of Cambridge, can now offer a whole school term of extra freedom for children with the condition.

Artificial pancreas trials for people at home, work and school have previously been limited to short periods of time. But a study, published today in the New England Journal of Medicine, saw the technology safely provide three whole months of use, bringing us closer to the day when the wearable, smartphone-like device can be made available to patients.

The lives of the 400,000 UK people with type 1 diabetes currently involves a relentless balancing act of controlling their blood glucose levels by finger-prick blood tests and taking insulin via injections or a pump. But the artificial pancreas sees tight blood glucose control achieved automatically.

This latest Cambridge study showed the artificial pancreas significantly improved control of blood glucose levels among participants – lessening their risk of hypoglycemia. Known as ‘having a hypo,’ hypoglycemia is a drop in blood glucose levels that can be highly dangerous and is what people with type 1 diabetes hate most.

Susan Walls is mother to Daniel Walls, a 12-year-old with type 1 diabetes who has taken part in the trial. She said: “Daniel goes back to school this month after the summer holidays – so it’s a perfect time to hear this wonderful news that the artificial pancreas is proving reliable, offering a whole school term of support.

“The artificial pancreas could change my son’s life, and the lives of so many others. Daniel has absolutely no hypoglycaemia awareness at night. His blood glucose levels could be very low and he wouldn’t wake up. The artificial pancreas could give me the peace of mind that I’ve been missing.”

“The data clearly demonstrate the benefits of the artificial pancreas when used over several months,” said Dr. Roman Hovorka, Director of Research at the University’s Metabolic Research Laboratories, who developed the artificial pancreas. “We have seen improved glucose control and reduced risk of unwanted low glucose levels.”

The Cambridge study is being funded by JDRF, the type 1 diabetes charity. Karen Addington, Chief Executive of JDRF, said: “JDRF launched its goal of perfecting the artificial pancreas in 2006. These results today show that we are thrillingly close to what will be a breakthrough in medical science.”

 

Highly Sensitive Biosensor Measures Glucose in Saliva

The glucose biosensor fabricated with flexible substrates can perform in a variety of curved and moving surfaces, including human skin, smart textile and medical bandage.

Diabetic patients have to monitor blood glucose regularly and frequently, but conventional method of taking blood sample for measuring glucose level is painful. It is therefore important to develop high performance biological sensors for monitoring the glucose level at a reasonable cost.

The challenge to develop biosensor to test glucose in saliva is that the amount of glucose in saliva is too small for detection, and it requires a super sensitive biosensor to perform the job. The biosensor developed by PolyU researchers is fabricated with a glucose oxidase enzyme (GOx) layer, which is sensitive to glucose alone and nothing else. By detecting the electrical current, the glucose level can be known. However, there can be interference with current from other possible biological elements in saliva, such as dopamine, uric acid and ascorbic acid. To block such interference, researchers have coated Polyaniline (PANI) / Nafion-graphene bilayer films between the top enzyme layer and gate electrode. The strong adhesion of this top layer to the GOx layer enables the latter to stabilize and perform well in glucose detection.

Our novel biosensor is selectively sensitive to glucose, accurate, flexible and low in cost. The highly sensitive biosensor shows a detection lower limit of 10-5 mmol/L, which is nearly 1000 times sensitive than the conventional device for measuring blood glucose. This means with this biosensor, as little as 5 gram of glucose in a standard swimming pool of 50 m x 25 m x 2 m can be detected. Between the wide range of glucose level from 10-5 mmol/L up to 10 mmol/L (equivalent to 5 g – 5000 Kg of glucose in a standard swimming pool), the biosensor demonstrates linear response, which is good enough for measuring the possible range of glucose in the human body. Accuracy of the biosensor has been ascertained through laboratory experiments with repeatable results using glucose solutions of known glucose levels.

The glucose biosensor fabricated with flexible substrates can perform in a variety of curved and moving surfaces, including human skin, smart textile and medical bandage. Thus, it has great potential for development into wearable electronic applications, such as wearable biosensor for analysis of glucose level in sweat during exercise. It can also be mass produced at a low cost of HK$ 3 to 5 per test chip, which is comparable or even cheaper than the currently available commercialized products. In addition, this newly invented transistor-based biosensor platform is highly versatile. By changing to suitable enzymes, the platform can be used to measure the level of uric acid and other materials in saliva. For instance, if the biosensor is fabricated with enzyme uricase (UOx) and Polyaniline (PANI) / Nafion-graphene bilayer films, the platform can specifically be sensitive to uric acid only and other interference signals can be blocked.

 

Read Full Post »


Empagliflozin

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Empagliflozin Benefits in EMPA-REG Explored in Diabetics Initially With or Without Heart Failure

Marlene Busko

http://www.medscape.com/viewarticle/854542

 

ORLANDO, FL — Patients with type 2 diabetes and established CVD who received the antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin (Jardiance, Lilly/Boehringer Ingelheim), as opposed to placebo, had a reduced risk of being hospitalized for heart failure or dying from CVD during a median follow-up of 3.1 years. The finding was strongest in patients without heart failure at baseline[1]. The finding is noteworthy in part because associated heart failure has been a concern, justified or not, with some other diabetes medications.

In these high-risk patients, empagliflozin resulted in a “consistent benefit” in these outcomes, Dr Silvio E Inzucchi (Yale University School of Medicine, New Haven, CT) said, presenting these findings from a prespecified secondary analysis of the EMPA-REG OUTCOME trial at theAmerican Heart Association (AHA) 2015 Scientific Sessions.

Unlike the gasps and applause that greeted him when he presented the trial’s primary outcome results at the European Association for the Study of Diabetes (EASD) 2015 Meeting in Stockholm in mid-September, the audience reaction this time was more measured. The trial had also been published at about the time of its EASD presentation [2].

The principal findings showed that compared with patients who took placebo, those who were randomized to empagliflozin had a 38% (P<0.001) reduced risk of CV death and a 35% P=0.002) reduced risk of hospitalization for HF, at a median follow-up of 3.1 years.

In the current secondary analysis, the 90% of patients who were free of heart failure at study entry showed a steep and significant drop in HF hospitalizations during the trial. There was also a drop in HF hospitalizations with active therapy in the minority who had HF at baseline, but it failed to reach significance.

“I think metformin is likely to remain our first-line oral therapy for patients with type 2 diabetes,” Dr Donald M Lloyd-Jones (Northwestern University Feinberg School of Medicine, Chicago, IL), cochair at an AHA press briefing, told heartwire from Medscape. “There is an alphabet soup of diabetes medications,” with multiple agents that effectively lower blood glucose and reduce patients’ risk of retinopathy, nephropathy, and neuropathy.

However, “it was . . . unexpected that [empagliflozin], as reported recently [at the EASD meeting and] in the New England Journal of Medicine [has an] effect on CV death and other CV events.” This is still an early stage of research, he cautioned, and it is not known how the drug exerts its CV effects and whether there is a class effect. “But [this] could be a game changer, because we would love to have [antidiabetic] medications that not only control blood sugar but also reduce death and [other] hard events,” he said.

 

First CV Outcomes Trial in this Drug Class

Until now, none of the antiglycemic medications has also been shown to improve HF outcomes, Inzucchi explained. “We’ve actually been searching decades for a diabetes medicine that will not only lower blood glucose but also reduce cardiovascular complications,” he said in a press briefing. “And I would remind you that based on the 2008 FDA guidance to industry, all new diabetes medications need to be tested for cardiovascular safety before being allowed on the market,” he added.

EMPA-REG OUTCOME is the first published, large CV-outcome trial of an SGLT-2 inhibitor.

As previously described, the trial randomized 7028 adult patients who had type 2 diabetes and established CVD to receive 10 mg/day or 25 mg/day empagliflozin or placebo. The CVD included prior MI (46.6%), CABG (24.8%), stroke (23.3%), and peripheral artery disease (PAD) (20.8%).

The patients were also required to have an HbA1c level between 7% and 10%, body-mass index (BMI) <45, and, because the drug exerts its effects via the kidney, estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2.

“Importantly, study medication was given upon a backdrop of standard care—antihyperglycemia therapy, as well as other evidence-based cardiovascular therapies such as statins, ACE inhibitors, and aspirin,” Inzucchi stressed.

 

Spotlight on HF Outcomes

The current analysis dove deeper into the heart-failure outcomes in the trial.

The risk of hospitalization for HF or CV death was consistently significantly lower in patients who received empagliflozin vs placebo, in subgroup analyses related to age, kidney function, and medication use (ACE inhibitors/angiotensin receptor blockers [ARBs], diuretics, beta-blockers, or mineralocorticoid-receptor antagonists).

Overall, the patients who received empagliflozin had a 34% reduced risk of being hospitalized for HF or dying from CV causes and a 39% reduced risk of being hospitalized for or dying from HF.

Risk of Hospitalization or Death, Empagliflozin vs Placebo

Outcome HR (95% CI) P
Hospitalization for HF or CV death 0.66 (0.55–0.79) <0.00001
Hospitalization for or death from HF 0.61 (0.47–0.79) <0.00001

Most patients (90%) did not have HF at baseline.

In the patients without HF at baseline, “as you might expect, [HF] hospitalizations were relatively small in number” (1.8% of patients on the study drug and 3.1% of patients on placebo), said Inzucchi. There was a statistically significant 41% reduced risk of HF hospitalization in patients without HF at baseline on the study drug vs placebo (HR 0.59, 95% CI 0.43–0.82).

In the smaller number of patients who did have HF at baseline, the rate of hospitalizations for HF was much higher (10.4% of patients on the study drug and 12.3% of patients on placebo). But in this case, the difference between patients on the study drug vs placebo was not statistically significant (HR 0.75, 95% CI 0.48–1.19).

The results were similar when the analysis was repeated for the combined outcome of hospitalization for HF or CV death.

“Not surprisingly,” adverse events were more common in sicker patients with baseline HF; genital infections, a well-known adverse event in drugs that increase glucose in the urine, were three times more common in those patients, said Inzucchi.

“I think these are very compelling data, but early days,” said Lloyd-Jones.

Inzucchi receives research grants from Genzyme and honoraria from Boehringer Ingelheim, Merck Sharp & Dome, Sanofi, Amgen, and Genzyme, and he is a consultant on advisory boards for Boehringer Ingelheim, Sanofi, and Amgen. Disclosures for the coauthors are listed in the abstract. Lloyd-Jones has no relevant financial relationships.

Read Full Post »


reducing obesity-related inflammation

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

NIH researchers find potential target for reducing obesity-related inflammation

Study sheds light on preventing or reversing certain obesity-associated diseases.

http://www.nih.gov/news-events/news-releases/nih-researchers-find-potential-target-reducing-obesity-related-inflammation

Scientists at the National Institutes of Health have identified a potential molecular target for reducing obesity-related inflammation. Researchers have known that overeating (that is, excess calorie consumption) by individuals with obesity often triggers inflammation, which has been linked to such diseases as asthma and Type 2 diabetes. In their study, published recently in The Journal of Clinical Investigation (Nov. 3, 2015, online version(link is external)), the investigators found that a protein called SIRT3 provides resistance to this inflammatory response and could potentially prevent or reverse obesity-associated diseases of inflammation.

Lead researcher Michael N. Sack, M.D., Ph.D., a senior investigator at NIH’s National Heart, Lung, and Blood Institute, explained that he and his team identified the role of SIRT3 through an investigation involving 19 healthy volunteers who fasted for a 24-hour period.

“Previous research has shown that intermittent fasting or intermittent calorie restriction — by way of eating fewer calories for a few days a month — reduces inflammation,” said Dr. Sack. “We found through our study that this effect is mediated, in part, on a molecular level when SIRT3 blocks the activity of another molecule known as the NLRP3 inflammasome.” He explained that NLRP3 inflammasomes are components of an intracelluar immune response triggered when mitochondria undergo stress, such as from excess calorie intake.

By using cultured cells from a group of eight volunteers who did not fast, Dr. Sack and his team found evidence suggesting that SIRT3 can be activated not only through fasting, but also through the use of nicotinamide riboside, a vitamin B derivative. “Taken together, these early results point to a potential mechanism for addressing obesity-related inflammation, and thus diseases linked to this type of inflammation, such as asthma, Type 2 diabetes, rheumatoid arthritis, and atherosclerosis — conditions associated with a reduced quality of life and/or premature death,” Dr. Sack said.

Obesity remains a substantial health problem for the nation, affecting more than a third of adults and 17 percent of children, according to the Centers for Disease Control and Prevention. Efforts to manage weight, however, can be hindered by the effects of obesity-related diseases. “It is a vicious cycle,” said Dr. Sack. “Take asthma for example. An increase in obesity incidence has been associated with an increase in asthma incidence, but asthma makes it difficult for some to be physically active enough to lose weight.”

Dr. Sack and colleagues — who include researchers from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and Weill Cornell Medical College — are conducting a follow-up study at the NIH Clinical Center to determine whether the vitamin B derivative nicotinamide riboside can specifically reduce bronchial inflammation in individuals with asthma. If the results of the study are promising, Dr. Sack and colleagues will aim to conduct larger clinical trials to validate the findings and potentially inform treatment of obesity-related inflammation in asthma.

The National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at www.nhlbi.nih.gov.

Read Full Post »


Diabetic Nephropathy

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

EV-077

by DR ANTHONY MELVIN CRASTO Ph.D

SER150 (formerly EV-077)

Also known as: formerly EV-077-3201

EV-077-3201-2TBS

CAS 1384128-29-3

Evolva INNOVATOR

Oral thromboxane receptor antagonist and thromboxane synthase inhibitor

EV-077 is a small compound being developed for the treatment of complications of diabetes. In Phase 2. Outlicensed to Serodus in 2013.

In 2013, Serodus licensed the product candidate for the treatment of diabetic nephropathy and it is conducting phase II clinical trials on this research.

EV-077 is an oral, small molecule compound, belonging to a new structural class. Preclinical and early clinical studies indicate EV-077 has potential in reducing vascular inflammation by inhibiting the activity of prostanoids and isoprostanes – in particular in diabetes. Towards the end of 2011, the Russian Patent Office granted patent protection for EV-077 in the treatment of complications of diabetes for a term extending to 2026. Evolva has outlicenced EV-077 to Serodus in 2013. Serodus aims to bring EV-077 further through clinical development and at a future time point decide whether Serodus or a partner will conduct the final clinical trials.

EV-077 is in development as a potential pharmaceutical for the treatment of  diabetic nephropathy and other diabetic complications. It is in Phase II clinical studies.

In 2013, Evolva out-licensed EV-077 to Serodus (Oslo, Norway). Serodus aims to bring EV-077 through Phase II and then decide whether or not to partner for the final clinical trials and commercialisation. Evolva is entitled to clinical and regulatory milestones as well as a single-digit royalty on sales. If Serodus sublicenses EV-077 then Evolva will receive up to 30% of Serodus’ total licensing income.

As of Q2 2015 Serodus continues active development of EV-077.

– See more at: http://www.evolva.com/ev-077/#sthash.4mgJ3E0f.dpuf

 

Patients with diabetes mellitus (DM) have increased propensity to generate thromboxane A2 (TXA2) and other eicosanoids which can contribute to their heightened platelet reactivity. EV-077 is a potent thromboxane receptor antagonist and thromboxane synthase inhibitor and thus represents an attractive therapy in patients with DM. However, the effects of EV-077 on pharmacodynamic (PD) profiles in patients with DM and coronary artery disease (CAD) while on antiplatelet therapy is poorly explored and represented the aim of this in vitro pilot investigation. Patients with DM and stable CAD (n = 10) on low-dose aspirin (81 mg/day) were enrolled and then switched to clopidogrel (75 mg/day) monotherapy for 7-10 days. PD assessments were conducted while on aspirin and on clopidogrel using light transmittance aggregometry following stimuli with U-46619 [TXA2 stable analogue (7 μM)], arachidonic acid [AA (1 mM)], collagen (3 μg/mL) and adenosine diphosphate [ADP (5 μM and 20 μM)] with and without in vitro EV-077. EV-077 completely inhibited U-46619-stimulated platelet aggregation (p = 0.005 for both aspirin and clopidogrel) and also showed a significant reduction of collagen-induced aggregation (aspirin p = 0.008; clopidogrel p = 0.005). EV-077 significantly reduced AA-induced platelet aggregation in clopidogrel (p = 0.009), but not aspirin (p = 0.667) treated patients. Ultimately, EV-077 significantly reduced ADP-mediated platelet aggregation in both aspirin (ADP 5 μM p = 0.012; ADP 20 μM p = 0.032) and clopidogrel (ADP 5 μM p = 0.007; ADP 20 μM p = 0.008) treated patients. In conclusion, in DM patients with CAD on aspirin or clopidogrel monotherapy, in vitro EV-077 exerts potent platelet inhibitory effects on multiple platelet signaling pathways. These data support that EV-077 has only additive platelet inhibiting effects on top of standard antiplatelet therapies. These findings warrant further investigation in ex vivo settings.

 

Description

EV-077 is a small compound being developed for the treatment of complications of diabetes. In Phase 2. Outlicensed to Serodus in 2013.

Situation Overview

Diabetes and its complications are major global health care problems. Based on estimates by the International Diabetes Federation (IDF), there were 366 million diabetics worldwide in 2011, a number which is expected to increase to 552 million by 2030. IDF estimates the number of deaths in 2011 at 4.6 million and total spending on diabetic health care at USD 465 billion.

EV-077 is an oral, small molecule compound, belonging to a new structural class. EV-077 is being developed for the reduction of vascular inflammation by inhibiting the activity of prostanoids and isoprostanes – in particular in diabetes. Towards the end of 2011, the Russian Patent Office granted patent protection for EV-077 in the treatment of complications of diabetes for a term extending to 2026. Additional patent applications are pending in all major territories. Evolva has outlicenced EV-077 to Serodus in 2013.

Mechanism of Action

Preclinical and early clinical studies indicate EV-077 has potential in reducing vascular inflammation by inhibiting the activity of prostanoids and isoprostanes in particular in diabetes. The mechanism of action of EV-077 means that it can potentially ameliorate or prevent a range of diabetic complications (including loss of kidney function, reduced peripheral blood flow and increased risk of thrombosis) that derive from the following chain of events:

  • Diabetic patients have a reduced sensitivity to insulin which increases overall glucose levels in the body;
  • This increase in glucose increases oxidative stress;
  • The oxidative stress generates a high level of isoprostanes and prostanoids;
  • The isoprostanes and prostanoids chronically activate thromboxane prostanoid receptors, that are located on the walls of blood vessels (endothelial cells and smooth muscle cells) and the surface of platelets;
  • Activation of the thromboxane prostanoid receptors causes vascular inflammation and increased platelet reactivity;
  • An increased number of vascular events and a progressive deterioration of circulatory and renal function.

Clinical Trials

In November 2011, Evolva received regulatory clearance to progress EV-077 into Phase IIa clinical studies for the treatment of complications of diabetes. It is a single-centre study, conducted in Germany. The study was a randomized, double-blind, and placebo-controlled, and investigated the efficacy and safety of EV-077 in type 2 diabetics with a heightened risk of diabetic vascular complications. Measurements included blood flow and platelet reactivity, biomarkers for oxidative stress and vascular inflammation as well as markers of the function of organs that are often impaired in diabetes (e.g. kidney).

In May 2012, the study was terminated. Interim results for the first 32 patients enrolled in the Phase IIa study show promising efficacy data, indicating that 300mg EV-077 given orally twice daily to patients with type 2 diabetes provided anti-platelet activity, reduced exercise-induced proteinuria and increased forearm blood flow. This was achieved with only a slight increase in bleeding time. The analysis also indicated that EV-077 was generally well tolerated, with adverse events mostly limited to increases in liver enzymes, which were transient or resolved after discontinuation.

In parallel with the Phase IIa study, Evolva is conducting epidemiological studies to identify high risk diabetic patient subgroups that can potentially derive particular benefit from the administration of EV-077. Given success, this is expected to expedite both further clinical development (by reducing the size and duration of late stage clinical trials) and the eventual approval process.

Partners by Region

Evolva has outlicensed EV-077 to Serodus in 2013. Serodus aims to bring EV-077 further through clinical development and at a future time point decide whether Serodus or a partner will conduct the final clinical trials.

WO 2014011273

http://www.google.com/patents/WO2014011273A2?cl=en

Journal of Thrombosis and Haemostasis (2011), 9(10), 2109-2111

Thrombosis Research (2012), 130(5), 746-752

Read Full Post »

« Newer Posts - Older Posts »