Posts Tagged ‘CaMKII-insulin induced p-Akt’

CaKMII Inhibition in Obese, Diabetic Mice leads to Lower Blood Glucose Levels

Reporter: Larry H Bernstein, MD, FCAP

This recent publication was reported in MedPage today. It is different than, but highly suggestive of our recent report about the Univesity of Iowa discovery of “Oxidized CaKMII inhibition” as a therapeutic target for atrial arrhythmia.

Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation
Author: Larry H. Bernstein, MD, FCAP, and Curator: Aviva Lev-Ari, PhD, RN
This is a review of a recent work from the laboratory of Mark E. Anderson and associates at the University of Iowa.  We have covered the role of CaMKII in calcium signaling and myocardiocyte contraction, as well as signaling in smooth muscle, skeletal muscle, and nerve transmission.  There are tissue specific modus operandi, partly related to the ryanogen receptor, and also related to tissue specific isoenzymes of CaMKII.  There is much ground that has been traversed in exploring these mechanisms, most recently, the discoverey of hormone triggering by the release from vesicles at the nerve muscle junction, and much remains open to investigation.  The recently published work by Mark E. Anderson and associates in Mannheim and Heidelberg, Germany, clarifies the relationship between the oxidized form of CaMKII and the triggering of atrial fibrillation. The following studies show:
  • Ang II infusion increased the susceptibility of mice to AF induction by rapid right atrial pacing and established a framework for us to test the hypothesized role of ox-CaMKII in promoting AF. ox-CaMKII is critical for AF.
    • Established a critical role of ox-CaMKII in promoting AF
  • Ang II induced increases in ROS production seen in WT atria were absent in atria from MsrA TG mice suggesting that MsrA sensitive targets represent an important component of Ang II mediated atrial oxidation.
    • The protection from AF in MsrA TG mice appeared to be independent of pressor effects that are critical for the proarrhythmic actions.
  • These findings suggest that NADPH oxidase dependent ROS and elevated ox-CaMKII
    • drive Ang II -pacing-induced AF and that
  • targeted antioxidant therapy, by MsrA over-expression,
    • can reduce or prevent AF in Ang -II-infused mice.
Atrial myocytes from Ang II treated WT mice showed a significant (p<0.05) increase in spontaneous Ca2+ sparks compared to atrial myocytes from saline treated control mice
In contrast to findings in WT mice, the atrial myocytes isolated from Ang II treated MM-VV mice did not show an increase in Ca2+ sparks compared to saline treated MM-VV mice
These data to suggest that  in ox–the proarrhythmic effects of Ang II infusion depend upon an increaseCaMKII, sarcoplasmic reticulum Ca2+ leak and DADs.
Enhanced CaMKII-mediated phosphorylation of serine 2814 on RyR2
  • is associated with an increased susceptibility to acquired arrhythmias, including AF
Proarrhythmic actions of ox-CaMKII
  • require access to RyR2 serine 2814.
Mutant S2814A knock-in mice (lacking serine 2814) were highly resistant to Ang II mediated AF
AC3-I mice with transgenic myocardial expression of a CaMKII inhibitory peptide were also resistant to the proarrhythmic effects of Ang II infusion on pacing-induced AF
S2814A, AC3-I and WT mice, all developed similar BP increases and cardiac hypertrophy in response to Ang II, indicating that
  • these mice were not resistant to the hemodynamic effects of Ang II, but were nevertheless protected from AF.
selectively targeted antioxidant therapies could be effective in preventing or reducing AF
half of patients enrolled in the Mode Selection Trial (MOST) with sinus node dysfunction had a history of AF
Ang II and diabetes-induced CaMKII oxidation caused sinus node dysfunction by increased pacemaker cell death and fibrosis
 ox-CaMKII increases susceptibility for AF via increased diastolic sarcoplasmic reticulum Ca2+ release
clinical association between sinus node dysfunction and AF might have a mechanistic basis because
  • sinus node dysfunction and AF are downstream consequences of elevated ox-CaMKII.
We refer the reader to the following related articles published in pharmaceutical Intelligence:
  1. Contributions to cardiomyocyte interactions and signaling
    Author and Curator: Larry H Bernstein, MD, FCAP  and Curator: Aviva Lev-Ari, PhD, RN
  2. Cardiac Contractility & Myocardium Performance: Therapeutic Implications for Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses
    Editor: Justin Pearlman, MD, PhD, FACC, Author and Curator: Larry H Bernstein, MD, FCAP, and Article Curator: Aviva Lev-Ari, PhD, RN
  3. Part I. Identification of Biomarkers that are Related to the Actin Cytoskeleton
    Curator and Writer: Larry H Bernstein, MD, FCAP
  4. Part II: Role of Calcium, the Actin Skeleton, and Lipid Structures in Signaling and Cell Motility
    Larry H. Bernstein, MD, FCAP, Stephen Williams, PhD and Aviva Lev-Ari, PhD, RN
  5. Part IV: The Centrality of Ca(2+) Signaling and Cytoskeleton Involving Calmodulin Kinases and Ryanodine Receptors in Cardiac Failure, Arterial Smooth Muscle, Post-ischemic Arrhythmia, Similarities and Differences, and Pharmaceutical Targets
    Larry H Bernstein, MD, FCAP, Justin Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN
  6. Part VI: Calcium Cycling (ATPase Pump) in Cardiac Gene Therapy: Inhalable Gene Therapy for Pulmonary Arterial Hypertension and Percutaneous Intra-coronary Artery Infusion for Heart Failure: Contributions by Roger J. Hajjar, MD
    Aviva Lev-Ari, PhD, RN
  7. Part VII: Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmias and Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses
    Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
  8. Part VIII: Disruption of Calcium Homeostasis: Cardiomyocytes and Vascular Smooth Muscle Cells: The Cardiac and Cardiovascular Calcium Signaling Mechanism
    Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
  9. Part IX: Calcium-Channel Blockers, Calcium Release-related Contractile Dysfunction (Ryanopathy) and Calcium as Neurotransmitter Sensor
    Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
  10. Part X: Synaptotagmin functions as a Calcium Sensor: How Calcium Ions Regulate the fusion of vesicles with cell membranes during Neurotransmission
    Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
  11. Genetic Analysis of Atrial Fibrillation
    Author and Curator: Larry H Bernstein, MD, FCAP ,  and Curator: Aviva-Lev Ari, PhD, RN
This article is a followup of the wonderful study of the effect of oxidation of a methionine residue in calcium dependent-calmodulin kinase Ox-CaMKII on stabilizing the atrial cardiomyocyte, giving protection from atrial fibrillation.  It is also not so distant from the work reviewed, mostly on the ventricular myocyte and the calcium signaling by initiation of the ryanodyne receptor (RyR2) in calcium sparks and the CaMKIId isoenzyme.

Diabetes: Mouse Studies Point to Kinase as Treatment Target

Published: Nov 24, 2013
By Kristina Fiore, Staff Writer, MedPage Today
Targeting a pathway that plays a major role in both hepatic glucose production and insulin sensitivity may eventually help treat type 2 diabetes, researchers reported.
In a series of experiments in mice, researchers found that inhibition of the kinase CaKMII — or even some of its downstream components — lowered blood glucose and insulin levels, Ira Tabas, MD, PhD, of Columbia University Medical Center in New York City, and colleagues reported online in Cell Metabolism.
The pathway is activated by glucagon signaling in the liver, and appears to have roles in both insulin resistance as well as hepatic glucose production in the liver.
In an earlier study, Tabas and colleagues showed that inhibiting the CaKMII pathway lowered hepatic glucose production by suppressing p38-mediated FoxO1 nuclear localization.
In the current study, they found CaKMII inhibition suppresses levels of the pseudo-kinase TRB3 to improve Akt-phosphorylation, thereby improving insulin sensitivity.
Thus this single pathway targets “two cardinal features of type 2 diabetes — hyperglycemia and defective insulin signaling,” the researchers wrote.
“When we realized we had one common pathway that was responsible for these two disparate processes that, in essence, comprises all of type 2 diabetes, we though it would be an ideal target for new drug therapy,” Tabas told MedPage Today.
Tabas and colleagues conducted several experiments to evaluate the CaKMII pathway.
In one experiment in obese mice, they found that no matter how CaKMII was knocked out, it led to lower blood glucose levels and lower fasting plasma insulin levels in response to a glucose challenge.
The improvements also occurred when they
  • knocked out downstream processes, including p38 and MAPK-activating protein kinase 2 (MK2).
“Thus liver p38 and MK2, like CaKMII, play an important role in the development of hyperglycemia and hyperinsulinemia in obese mice,” they wrote.
In further analyses, the researchers discovered deleting or inhibiting any of these three elements ultimately
  • improved insulin-induced Akt-phosphorylation in obese mice —
  • an important part of improving insulin sensitivity.
And unlike the effects on hepatic glucose production,
  • these changes didn’t occur through effects on FoxO1.
Instead, inhibiting the CaKMII pathway suppressed levels of the pseudo-kinase TRB3, which likely occurred because of
  • suppression of ATF4 — all of which led to an
  • increase in Akt-phosphorylation and insulin sensitivity.
Indeed, when mice were made to overexpress TRB3, the improvement in phosphorylation disappeared, “indicating that
  • the suppression of TRB3 by CaKMII deficiency is
  • causally important in the improvement in insulin signaling,
As a result, there “appear to be two separate CaKMII pathways”,
  1. one involved in CaKMII-p38-FoxO1 dependent hepatic glucose production, and
  2. the other involved in defective insulin-induced p-Akt,
The findings suggest the possibility of a drug that can target
  • both hyperglycemia and insulin resistance in type 2 diabetes
The authors have started developing such an agent. Although kinases can act very generally, Tabas said he and colleagues are working on
  • an allosteric version that will more specifically target MK2
  • by binding to a site that is unique to this enzyme.
He said this should help to avoid problems with drugs that targeted p38 but ultimately failed, with little efficacy and too many side effects.
The reason for this is now known at a very detailed level –
  • when you inhibit p38 by that mechanism, mainly by inhibiting MK2,
  • you avoid the adverse effects,
“When we realized all of this and had to make a choice [for further development], the obvious choice was MK2.”
  • CaKMII inhibitors are in development for heart failure and
  • MK2 inhibitors are being looked at as an alternative to p38 inhibitors for inflammatory diseases.
Tabas also said the drug may be valuable in treating prediabetes, since early data have suggested that
  • CaKMII is generally overactive in obese patients
  • who have not yet progressed to full blown diabetes, but is not overactive in lean people.
“One of the areas we’re most excited about in potential clinical use is in obese people before they get diabetic,” Tabas told MedPage Today. “There are hundreds of millions of people who are obese but not yet diabetic even though
  • they have the hallmarks that they’re going to get diabetes.”
This recent publication was reported in MedPage Today. [CaKMII overactivity in obesity]  Tabas noted that his group’s early human data “suggest that our pathway is turned on in prediabetes. If we can block that pathway before people get diabetes, it would even be better.”
The study was supported by the NIH, the American Heart Association, the German Center for Cardiovascular Research, the German Ministry of Education and Research, and the European Union.
Tabas and a co-author are among the founders of  Tabomedex Biosciences, which is developing MK2 inhibitors.
Primary source: Cell Metabolism
Source reference: Ozcan L, et al. “Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling” Cell Metab 2013.

Read Full Post »

%d bloggers like this: