Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘atheromatous plaque’


Vaccine for Heart Disease

Writer and Curator: Larry, MD, FCAP 

 

 

Introduction

Research investigators at Wayne State University in collaboration with La Jolla Institute for Allergy and Immunology (LJAI) are developing a T-cell peptide-based vaccine for cardiovascular disease, specifically, to reduce immune-based inflammatory plaques in arteries.  The scientists published their findings in the December 2013 issue of Frontiers in Immunology, titled “Atheroprotective vaccination with MCH-II restricted peptides from Apo B-100.”  These experiments show proof of concept for the development of an autoantigen-specific vaccine for reducing the amount of atherosclerotic plaques in mice.
The published work was done in the laboratory of Klaus Ley, M.D., a prominent vascular biolist of LIAI based on the discovery by Harley Tse, Ph.D., Professor of immunology and microbiology at Wayne Stae University School of Medicine, and Wayne State’s Cardiovascular Research Institute with Michael Shae, Ph.D., adjunct assistant professor of immunology and microbiology.Shaw and Tse are the first to demonstrate that two T-cell epitopes of the autoantigen apoB100 are deeply involved in the development of the disease. The discovery is reported in J Immunol Clin Res Apr-Jun, 2014; 2: “Identification of two immunogenic T cell epitopes of ApoB100 and their Autoimmune Implications.”

 

Atheroprotective Vaccination with MHC-II Restricted Peptides from ApoB-100.

Tse K, Gonen A, Sidney J, Ouyang H, Witztum JL, Sette A, Tse H, Ley K
Front Immunol. 2013 Dec 27; 4:493.
http://dx.doi.org:/10.3389/fimmu.2013.00493 eCollection 2013.

BACKGROUND:  Subsets of CD4(+) T-cells have been proposed to serve differential roles in the development of atherosclerosis. Some T-cell types are atherogenic (T-helper type 1), while others are thought to be protective (regulatory T-cells). Lineage commitment toward one type of helper T-cell versus another is strongly influenced by the inflammatory context in which antigens are recognized. Immunization of atherosclerosis-prone mice with low-density lipoprotein (LDL) or its oxidized derivative (ox-LDL) is known to be atheroprotective. However, the antigen specificity of the T-cells induced by vaccination and the mechanism of protection are not known.

METHODS: Identification of two peptide fragments (ApoB3501-3516 and ApoB978-993) from murine ApoB-100 was facilitated using I-Ab prediction models, and their binding to I-Ab determined. Utilizing a vaccination scheme based on complete and incomplete Freund’s adjuvant (CFA and IFA) [1 × CFA + 4 × IFA], we immunized Apoe(-/-)mice with ApoB3501-3516 or ApoB978-993 emulsified in CFA once and subsequently boosted in IFA four times over 15 weeks. Spleens, lymph nodes, and aortas were harvested and evaluated by flow cytometry and real time RT-PCR. Total atherosclerotic plaque burden was determined by aortic pinning and by aortic root histology.

RESULTS:  Mice immunized with ApoB3501-3516 or ApoB978-993 demonstrated 40% reduction in overall plaque burden when compared to adjuvant-only control mice. Aortic root frozen sections from ApoB3501-3516 immunized mice showed a >60% reduction in aortic sinus plaque development. Aortas from both ApoB3501-3516 and ApoB978-993 immunized mice contained significantly more mRNA for IL-10. Both antigen-specific IgG1 and IgG2c titers were elevated in ApoB3501-3516 or ApoB978-993 immunized mice, suggesting helper T-cell immune activity after immunization.

CONCLUSION: Our data show that MHC Class II restricted ApoB-100 peptides can be atheroprotective, potentially through a mechanism involving elevated IL-10.

Atherosclerosis is decreased in ApoB3501–3516 and ApoB978–993

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873602/bin/fimmu-04-00493-g001.jpg

Atherosclerosis is decreased in ApoB3501–3516 and ApoB978–993-treated mice compared to controls. (A) Vaccination schedule: 8-week-old female Apoe−/− mice were immunized once with either PBS or peptide in CFA, then boosted four more times with PBS or peptide in IFA. WD was maintained for 13 weeks. Mice were sacrificed and organs harvested at 23 weeks of age. (B,C) Results of aortic pinning analysis after Sudan IV staining are shown with representative photographs. N = 12–15 in each group, *p < 0.05 when compared to 1× CFA + 4× IFA group. (D) Representative aortic root staining sections after ORO staining, counter-stained with hematoxylin. (E) Plaque area from aortic roots stained from each group. Lesion sizes from 30 to 40 μm distal to start of the aortic valve were averaged per group. N = 5 in each group, *p < 0.05 when compared to 1× CFA + 1× IFA control group.

 

Inhibition of T cell response to native low density lipoprotein reduces atherosclerosis

Andreas Hermansson, DFJ Ketelhuth, D Strodthoff, M Wurm, E. Hansson, et al.
J. Exp. Med. Mar 2015; 207(5): 1081-1093
http://www.jem.org/cgi/doi/10.1084/jem.20092243

Atherosclerosis is a chronic inflammatory disease in which lipoproteins accumulate, eliciting an inflammatory response in the arterial wall. Adaptive immune responses that engage clonally expanded T cell populations contribute to this process, as do innate immune responses that are mounted by macrophages and other cells. Several studies have suggested that components of low-density lipoprotein (LDL) particles trigger vascular inflammation (Tabas et al., 2007; Hartvigsen et al., 2009).

As a consequence of oxidation, the double bonds of fatty acid residues in phospholipids, cholesteryl esters, and triglycerides are cleaved, thus generating reactive aldehydes and truncated lipids (Esterbauer et al., 1990). Among the latter, modified phospholipids, such as lysophosphatidylcholine and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (ox-PAPC), induce endothelial cells, macrophages, and B1-type B cells to initiate innate immune responses, effecting adhesion molecule expression, chemokine production, and secretion of natural antibodies containing germline IgM sequences (Leitinger et al., 1997; Binder et al., 2004; Gharavi et al., 2007).

Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100tg) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100.

However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4+ T cell hybridomas were MHC class II–restricted and expressed a single T cell receptor (TCR) variable (V)  chain, TRBV31, with different V chains. Immunization of huB100tgxLdlr/ mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4+ T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis.

 

Impact of multiple antigenic epitopes from ApoB100, hHSP60 and Chlamydophila pneumoniae on atherosclerotic lesion development in Apobtm2SgyLdlrtm1HerJ mice

Xinjie Lu, Min Xia, V Endresz, I Faludi, A Szabo, et al.
Atherosclerosis Nov 2012; 225(1): 56–68
http://www.sciencedirect.com.scopeesprx.elsevier.com/science/article/pii/S0021915012004935
http://dx.doi.org:/10.1016/j.atherosclerosis.2012.07.021

Highlights

► We produced 5 constructs using dendroaspin as a scaffold for immunization study. ► All constructs have the effect on lesion reduction. ► Modulation in atherosclerosis-related autoimmunity appears by Tregs.

Atherosclerosis is increasingly recognized as a complex chronic inflammatory disease of the arterial walls [1], [2] and [3], as evidenced by the presence of inflammatory cells, activated immune cells and cytokines in lesions, all of which indicate involvement of the immune system. Atherosclerotic plaques are known to contain macrophage-derived foam cells in which macrophages interact with T-cells to produce a wide array of cytokines that can exert both pro- and anti-inflammatory effects.

 

Antibodies against aldehyde-modified ApoB100, a major constituent of low-density lipoprotein, reduce atherosclerosis in mice expressing human ApoB100, suggesting an immunogenic role of ApoB100. Antibodies against epitopes of the human heat shock protein 60 (hHSP60) molecule (hHSP60153–163: AELKKQSKPVT and hHSP60303-312: PGFGDNRKNQ) are present in atherosclerotic patients and share considerable homology with human cytomegalovirus (HCMV)-derived protein (immediate early protein UL122) and Porphyromonas gingivalis microbial HSP60. Sequence homology between microbial HSP60 and hHSP60 has been suggested to result in immunological cross-reactivity, which may play a role in atherogenesis. Titers of Cpn antibodies are not always positively associated with the Cpn organism in atheroma; however, these antibodies might exert cross-reactivity to non-Cpn antigens.

Immunization of mice with a single construct containing multiple epitopes derived from ApoB100, hHSP60 and Cpn was more effective in reducing early atherosclerotic lesions through the induction of a specific Treg-cell response than was the construct containing either mono- or bi-epitopes. This approach offers attractive opportunities for the design of protein-based, multivalent vaccines against atherosclerosis.

 

Immunization with a combination of ApoB and HSP60 epitopes significantly reduces early atherosclerotic lesion in Apobtm2SgyLdlrtm1Her/J mice

Xinjie Lu, Daxin Chen, Valeria Endreszb, Min Xia, Ildiko Faludi, et. al.
Atherosclerosis 212 (2010) 472–480
http://dx.doi.org:/10.1016/j.atherosclerosis.2010.06.007

Objective: HSP60 is emerging as an immune-dominant target of autoantibodies in atherosclerosis and recent studies have revealed oxLDL as a key antigen in the development of atherosclerosis. In this study, we assay whether immunizing Apobtm2SgyLdlrtm1Her/J mice with a combination of ApoB and human HSP60 peptides has an additive effect on athero-protection compared to ApoB or HSP60 peptides applied alone by following atherosclerotic lesion development. Methods and results: In this study, 2 weeks after the first immunization, Apobtm2SgyLdlrtm1Her/J mice were placed on a high-fat diet for 8 weeks followed by 2 weeks on a normal diet allowing the mice to adapt to the environment before sacrifice. High levels of ApoB and HSP60 antibodies were detectable in week 2 and week 12 following the first immunization with KLH-conjugated ApoB and HSP60 peptides either individually or in combination. Histological analyses demonstrated that mice immunized with both, ApoB and HSP60 peptides, showed the most significant reduction in atherosclerotic lesions (41.3%; p < 0.001) compared to a reduction of 14.7% (p < 0.05) and 21.1% (p < 0.01) in mice immunized with ApoB or HSP60 peptides, respectively; control mice were immunized with either PBS or adjuvant alone. These results

were further supported by significant differences in the cellular and humoral immune responses between test animals. Conclusions: Immunization with a combination of ApoB and HSP60 peptide antigens significantly reduced early atherosclerotic lesions in the Apobtm2SgyLdlrtm1Her/J mouse model of atherosclerosis. This approach offers promise as a novel strategy for developing anti-atherosclerotic agents.

 

Chlamydophila (Chlamydia) pneumoniae infection promotes vascular smooth muscle cell adhesion and migration through IQ domain GTPase-activating protein 1

Lijun Zhang, Xiankui Li, Lijun Zhang, Beibei Wang, Tengteng Zhang, Jing Ye
Microb Pathogen 2012; 53(5–6): 207–213
http://dx.doi.org:/10.1016/j.micpath.2012.07.005

Highlights

► C. pneumoniae infection increases the adhesion of vascular smooth muscle cells. ► C. pneumoniae infection promotes the migration of vascular smooth muscle cells. ► IQGAP1 expression was increased in the infected vascular smooth muscle cells. ► Depletion of IQGAP1 inhibits the infection-induced cell adhesion and migration.

The mechanisms for Chlamydophila (Chlamydia) pneumoniae (C. pneumoniae) infection-induced atherosclerosis are still unclear. Cell adhesion has important roles in vascular smooth muscle cell (VSMC) migration required in the development of atherosclerosis. However, it is still unknown whether IQ domain GTPase-activating protein 1 (IQGAP1) plays pivotal roles in C. pneumoniae infection-induced the adhesion and migration of rat primary VSMCs. Accordingly, in this study, we demonstrated that rat primary VSMC adhesion (P < 0.001) and migration (P < 0.01) measured by cell adhesion assay and Transwell assay, respectively, were significantly enhanced after C. pneumoniae infection. Reverse transcription-polymerase chain reaction analysis revealed that the mRNA expression levels of IQGAP1 in the infected rat primary VSMCs were found to increase gradually to reach a peak and then decrease gradually to a level similar to the control. We further showed that the increases in rat primary VSMC adhesion to Matrigel (P < 0.001) and migration (P < 0.01) caused by C. pneumoniae infection were markedly inhibited after IQGAP1 knockdown by a pool of four short hairpin RNAs. Taken together, our results suggest that C. pneumoniae infection may promote the adhesion and migration of VSMCs possibly by upregulating the IQGAP1 expression.

 

Rosiglitazone negatively regulates c-Jun N-terminal kinase and toll-like receptor 4 proinflammatory signalling during initiation of experimental aortic aneurysms

Grisha Pirianov, Evelyn Torsney, Franklyn Howe, Gillian W. Cockerill
Atherosclerosis 2012; 225(1): 69–75
http://dx.doi.org:/10.1016/j.atherosclerosis.2012.07.034

Highlights

► Rosiglitazone has a marked effect on both aneurysm rupture and development. ► Rosiglitazone modulates inflammation by blocking TLR4/JNK signalling. ► Specific antagonists of JNK and TLR4 may be therapeutic for aneurysms.

Development and rupture of aortic aneurysms (AA) is a complex process involving inflammation, cell death, tissue and matrix remodelling. The thiazolidinediones (TZDs) including Rosiglitazone (RGZ) are a family of drugs which act as agonists of the nuclear peroxisome proliferator-activated receptors and have a broad spectrum of effects on a number of biological processes in the cardiovascular system. In our previous study we have demonstrated that RGZ has a marked effect on both aneurysm rupture and development, however, the precise mechanism of this is unknown.

Methods and results  In the present study, we examined possible targets of RGZ action in the early stages of Angiotensin II-induced AA in apolipoprotein E-deficient mice. For this purpose we employed immunoblotting, ELISA and antibody array approaches. We found that RGZ significantly inhibited c-Jun N-terminal kinase (JNK) phosphorylation and down-regulated toll-like receptor 4 (TLR4) expression at the site of lesion formation in response to Angiotensin II infusion in the initiation stage (6–72 h) of experimental AA development. Importantly, this effect was also associated with a decrease of CD4 antigen and reduction in production of TLR4/JNK-dependant proinflammatory chemokines MCP-1 and MIP-1α.  Conclusion These data suggest that RGZ can modulate inflammatory processes by blocking TLR4/JNK signalling in initiation stages of AA development.

 

Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine.

Gonen A, Hansen LF, Turner WW, Montano EN, Que X,…, Hartvigsen K.
J Lipid Res. 2014 Oct;55(10):2137-55.
http://dx.doi.org:/10.1194/jlr.M053256.  Epub 2014 Aug 20.

Immunization with homologous malondialdehyde (MDA)-modified LDL (MDA-LDL) leads to atheroprotection in experimental models supporting the concept that a vaccine to oxidation-specific epitopes (OSEs) of oxidized LDL could limit atherogenesis. However, modification of human LDL with OSE to use as an immunogen would be impractical for generalized use. Furthermore, when MDA is used to modify LDL, a wide variety of related MDA adducts are formed, both simple and more complex. To define the relevant epitopes that would reproduce the atheroprotective effects of immunization with MDA-LDL, we sought to determine the responsible immunodominant and atheroprotective adducts. We now demonstrate that fluorescent adducts of MDA involving the condensation of two or more MDA molecules with lysine to form malondialdehyde-acetaldehyde (MAA)-type adducts generate immunodominant epitopes that lead to atheroprotective responses. We further demonstrate that a T helper (Th) 2-biased hapten-specific humoral and cellular response is sufficient, and thus, MAA-modified homologous albumin is an equally effective immunogen. We further show that such Th2-biased humoral responses per se are not atheroprotective if they do not target relevant antigens. These data demonstrate the feasibility of development of a small-molecule immunogen that could stimulate MAA-specific immune responses, which could be used to develop a vaccine approach to retard or prevent atherogenesis.

 

Low density lipoprotein oxidation and atherogenesis: from experimental models to clinical studies.

Napoli C
G Ital Cardiol. 1997 Dec; 27(12):1302-14.

Oxidative modifications of low-density lipoproteins (LDL) (“oxidation hypothesis”) appears to be the pathophysiologic mechanism implicated in early atherogenesis. Oxidized LDL (ox-LDL) may also induce several pro-atherogenic mechanisms, such as the regulation of vascular tone, by interfering with nitric oxide, the stimulation of cytokines and chemotactic factors (MCP-1, M-CSF, VCAM-1, etc.) and transcription factors (AP1 and NFk beta). These phenomena complicate the spectrum of direct and indirect actions of ox-LDL. The immunogenicity of ox-LDL was used to generate monoclonal antibodies against many epitopes of ox-LDL, such as malondialdehyde-lysine (MDA-2) or 4-hydroxynonenal-lysine (NA59). These antibodies showed the occurrence of ox-LDL in vivo. Another issue is the role of the humoral and cellular immune system in atherogenesis, in particular whether the immune response to ox-LDL enhances or reduces early atherogenesis. Moreover, the induction of autoantibodies against ox-LDL and the recognition by “natural” antibodies, and the use of the antigens to screen human sera may serve as a marker of atherosclerosis. In this review, we have stressed the importance of methodologic approach in the assessment of LDL-oxidation and the fact that lipoprotein (a) may also undergo oxidative modifications. Several clinical conditions are associated with increased rate of LDL-oxidation. Recently, we have observed the presence of LDL oxidation-specific epitopes in human fetal aortas. Antioxidants studies in primary prevention of atherosclerosis have produced contradictory results. This may be explained in part by the selection of patients who had advanced lesions and were often smokers. New trails suggest that antioxidants be administered early in children. Lastly, antioxidant studies in the secondary prevention of coronary heart disease (CHAOS, WACS, and HOPE) show clear evidence of the benefits of antioxidants in reducing new cardiovascular events.

 

Summary:

Atheroprotective Vaccine

Tech ID: 19640 / UC Case 2006-250-0
http://www.ucop.edu//ncd/12343.html

Atherosclerosis is a chronic inflammatory disease and immunological mechanisms are of central importance. It is known that oxidized LDL and its oxidized moieties were a major class of immunodominant epitopes within the atherosclerotic plaque. Oxidation of LDL leads to the generation of a variety of oxidized lipids and oxidized lipid-apo-B adducts.

Technology Description

UC San Deigo researchers proposed that an immunization strategy could be used to inhibit the progression of atherosclerosis by showing that immunization of rabbits and/or mice (and ultimately humans) with MDA-LDL could inhibit atherosclerosis. To develop a safe vaccine for human use would require the identification of the specific immunogenic oxidation-specific epitope(s) that provides the atheroprotective immunity. Until now, the mechanism of the protection, that is, the immunodominant epitope(s) has not yet been determined.

UC San Diego researchers have been able to identify a small group of MDA-derived adducts which are immunodominant and atheroprotective in mice following immunization. The invention described here has the potential to provide an antigen to formulate a wholly synthetic vaccine to inhibit  the development of atherosclerosis in man. Furthermore, in vivo levels of the adducts, and the autoantibodies recognizing them, may be used as diagnostic tools in patients with cardiovascular and other inflammatory diseases.

State Of Development

Mice have been immunized with the adducts resulting in atheroprotection. Techniques are currently being developed for a totally synthetic immunogen suitable for human clinical studies. Assays are also being developed.

Intellectual Property Info

A patent application has been filed on this technology.

Advertisements

Read Full Post »


Diet and Cholesterol

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

We are all familiar with the conundrum of diet and cholesterol.  As previously described, cholesterol is made by the liver. It is the backbone for the synthesis of sex hormones, corticosteroids, bile, and vitamin D. It is also under regulatory control, and that is not fully worked out, but it has health consequences. The liver is a synthetic organ that is involved with glycolysis, gluconeogenesis, cholesterol synthesis, and unlike the heart and skeletal muscles – which are energy transducers – the liver is anabolic, largely dependent on NADPH.  The mitochondria, which are associated with aerobic metabolism, respiration, are also rich in the liver.  The other part of this story is the utilization of lipids synthesized by the liver in the vascular endothelium.  The vascular endothelium takes up and utilizes/transforms cholesterol, which is involved in the degenerative development of pathogenic plaque.  Plaque is associated with vascular rigidity, rupture and hemorrhage, essential in myocardial inmfarction. What about steroid hormones?  There is some evidence that sex hormone differences may be a factor in coronary vascular disease and cardiac dysfunction.  The evidence that exercise is beneficial is well established, but acute coronary events can occur during exercise.  WE need food, and food is at the center of the discussion – diet and cholesterol.  The utilization of food varies regionally, and is dependent on habitat.  But it is also strongly influence by culture.  We explore this further in what follows.

A high fat, high cholesterol diet leads to changes in metabolite patterns in pigs – A metabolomic study

Jianghao Sun, Maria Monagas, Saebyeol Jang, Aleksey Molokin, et al.
Food Chemistry 173 (2015) 171–178
http://dx.doi.org/10.1016/j.foodchem.2014.09.161

Non-targeted metabolite profiling can identify biological markers of dietary exposure that lead to a better understanding of interactions between diet and health. In this study, pigs were used as an animal model to discover changes in metabolic profiles between regular basal and high fat/high cholesterol diets. Extracts of plasma, fecal and urine samples from pigs fed high fat or basal regular diets for 11 weeks were analysed using ultra-high performance liquid chromatography with high-resolution mass spectrometry (UHPLC–HRMS) and chemometric analysis. Cloud plots from XCMS online were used for class separation of the most discriminatory metabolites. The major metabolites contributing to the discrimination were identified as bile acids (BAs), lipid metabolites, fatty acids, amino acids and phosphatidic acid (PAs), phosphatidylglycerol (PGs), glycerophospholipids (PI), phosphatidylcholines (PCs) and tripeptides. These results suggest the developed approach can be used to identify biomarkers associated with specific feeding diets and possible metabolic disorders related to diet.

Nutritional metabolomics is a rapidly developing sub-branch of metabolomics, used to profile small-molecules to support integration of diet and nutrition in complex bio-systems research. Recently, the concept of ‘‘food metabolome’’ was introduced and defined as all metabolites derived from food products. Chemical components in foods are absorbed either directly or after digestion, undergo extensive metabolic modification in the gastrointestinal tract and liver and then appear in the urine and feces as final metabolic products. It is well known that diet has a close relationship with the long-term health and well-being of individuals. Hence, investigation of the ‘‘food metabolome’’ in biological samples, after feeding specific diets, has the potential to give objective information about the short- and long-term dietary intake of individuals, and to identify potential biomarkers of certain dietary patterns. Previous studies have identified potential biomarkers after consumption of specific fruits, vegetables, cocoa, and juices. More metabolites were revealed by using metabolomic approaches compared with the detection of pre-defined chemicals found in those foods.

Eating a high-fat and high cholesterol diet is strongly associated with conditions of obesity, diabetes and metabolic syndrome, that are increasingly recognized as worldwide health concerns. For example, a high fat diet is a major risk factor for childhood obesity, cardiovascular diseases and hyperlipidemia. Little is known on the extent to which changes in nutrient content of the human diet elicit changes in metabolic profiles. There are several reports of metabolomic profiling studies on plasma, serum, urine and liver from high fat-diet induced obese mice, rats and humans. Several potential biomarkers of obesity and related diseases, including lysophosphatidylcholines (lysoPCs), fatty acids and branched-amino acids (BCAAs) have been reported.

To model the metabolite response to diet in humans, pigs were fed a high fat diet for 11 weeks and the metabolite profiles in plasma, urine and feces were analyzed. Non-targeted ultra high performance liquid chromatography tandem with high resolution mass spectrometry (UHPLC–MS) was utilized for metabolomics profiling. Bile acids (BAs), lipid metabolites, fatty acids, amino acids and phosphatidic acid (PAs), phosphatidylglycerol (PGs), glycerophospholipids (PI), phosphatidylcholines (PCs), tripeptides and isoflavone conjugates were found to be the final dietary metabolites that differentiated pigs fed a high-fat and high cholesterol diet versus a basal diet. The results of this study illustrate the capacity of this metabolomic profiling approach to identify new metabolites and to recognize different metabolic patterns associated with diet.

Body weight, cholesterol and triglycerides were measured for all the pigs studied. There was no significant body weight gain between pigs fed diet A and diet B after 11 weeks of treatment. The serum cholesterol and triglyceride levels were significantly higher in pigs fed with diet B compared with the control group at the end of experiment.

Plasma, urine and fecal samples were analyzed in both positive and negative ionization mode. To obtain reliable and high-quality metabolomic data, a pooled sample was used as a quality control (QC) sample to monitor the run. The QC sample (a composite of equal volume from 10 real samples) was processed as real samples and placed in the sample queue to monitor the stability of the system. All the samples were submitted in random for analysis. The quantitative variation of the ion features across the QC samples was less than 15%. The ion features from each possible metabolite were annotated by XCMS online to confirm the possible fragment ions, isotopic ions and possible adduct ions. The reproducibility of the chromatography was determined by the retention time variation profiles that were generated by XCMS. The retention time deviation was less than 0.3 min for plasma samples, less than 0.3 min for fecal samples, and less than 0.2 min for urine samples, respectively. On the basis of these results of data quality assessment, the differences between the test samples from different pigs proved more likely to reflect varied metabolite profiles rather than analytical variation. The multivariate analysis results from the QC sample showed the deviation of the analytical system was acceptable.
Good separation can be observed between pigs on the two diets, which is also reflected in the goodness of prediction (Q2), of 0.64 using data from the positive ionization mode. For negative ionization mode data, better separation appears with a Q2of 0.73.

Cloud plot is a new multidimensional data visualization method for global metabolomic data (Patti et al., 2013). Data characteristics, such as the p-value, fold change, retention time, mass-to-charge ratio and signal intensity of features, can be presented simultaneously using the cloud plot. In this study, the cloud plot was used to illustrate the ion features causing the group separation. In Fig. 2 and 82 features with p < 0.05 and fold change >2, including visualisation of the p-value, the directional fold change, the retention time and the mass to charge ratio of features, are shown. Also, the total ion chromato-grams for each sample were shown. The upper panel in (2A) shows the chromatograms of plasma samples from pigs fed the high fat diet, while the lower panel shows the chromatograms of samples from pigs fed the regular diet. Features whose intensity is increased are shown in green, whereas features whose intensity is decreased are shown in pink (2A). The size of each bubble corresponds to the log fold change of the feature: the larger the bubble, the larger the fold changes. The statistical significance of the fold change, as calculated by a Welch t-test with unequal variances, is represented by the intensity of the feature’s color where features with low p-values are brighter compared to features with high p-values. The Y coordinate for each feature corresponds to the mass-to-charge ratio of the compound, as determined by mass spectrometry. Each feature is also color coded, such as features that are shown with a black outline have database hits in METLIN, whereas features shown without a black outline do not have any database hits.

From the cloud plot (Fig. 2A), 82 discriminating ion features from positive data and 48 discriminating ions features from negative data were considered as of great importance for class separation. After filtering out the fragment ions, isotope annotations, and adduct ions, thirty-one metabolites were tentatively assigned using a Metlin library search (Table S4).

Among the assigned metabolites detected, five of the highest abundant metabolites were identified as bile acid and bile acid conjugates (Fig. 2B). This series of compounds shared the following characteristics; the unconjugated bile acids showed [M-H] ion as base peak in the negative mode.

The characteristic consistent with bile acid hyodeoxycholic acid (HDCA) was confirmed with a reference standard. For the conjugated bile acids (usually with glycine and taurine), the [M-H] and [M+H]+ are always observed as the base peaks. For example, the ion feature m/z 448.3065 at 21.18 min was identified as chenodeoxycholic acid glycine conjugate. The neutral loss of 62 amu (H2O + CO2) was considered as a characteristic fragmentation pathway for bile acid glycine conjugates. This above mentioned characteristic can easily identify a series of bile acids compounds. The five metabolite ions detected in plasma were significantly different between pigs fed the high fat diet (Fig. 2B, red bars) and regular diet (Fig. 2B, blue bars) for 11 weeks, and were identified as chenodeoxycholic acid glycine conjugate, tauroursodeoxycholic acid, hyodeoxycholic acid, deoxycholic acid glycine conjugate and glycocholic acid; chenodeoxycholic acid glycine and hyodeoxycholic acid.

Figures 1-4 , not shown.
Fig 1. The PCA score plot of plasma (A) (+)ESI data with all the ion features; (B) (+)ESI data with selected ion features; (C) (-)ESI data with all ion features; (D) (-)ESI data with selected ion features. Samples were taken from pigs fed diet A (BS, blue) and diet B (HF, red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig 2. Cloud plot showing 82 discriminatory ion features (negative ion data) in plasma, and (B) box-plot of data set of the five most abundant bile acids identified in plasma (negative ion data) samples.

Fig. 3. PCA score plot of fecal samples from pigs fed diet A (BS, blue) and diet B (HF, red) (A) week 0, (B) week 2, (C) week 4 (D) week 6, (E) week 11 for distal samples (F) week 11 for proximal colon samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. PCA and PLS-DA score plot of urine samples from (+)ESI-data (A and C) and (-)ESI-data (B and D) taken at the end of the study (week 11) from pigs fed diet A (BS, blue) and diet B (HF, red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Plasma, fecal and urine metabolites from pigs fed either a high fat or regular diet were investigated using a UHPLC–HRMS based metabolomic approach. Their metabolic profiles were compared by multivariate statistical analysis.
Diet is logically believed to have a close relationship with metabolic profiles. Feeding a high fat and high cholesterol diet to pigs for 11 weeks resulted in
an increase in bile acids and their derivatives in plasma, fecal and urine samples, though at this stage, there was no significant weight gain observed.

In a previous study, a significantly higher level of muricholic acid, but not cholic acid, was found in pigs fed a high fat diet. The gut microbiota of these pigs were altered by diet and considered to regulate bile acid metabolism by reducing the levels of tauro-beta-muricholic acid. In our study, the unconjugated bile acids, hyodeoxycholic acid and deoxycholic acid were found to be significantly higher in the fecal samples of pigs fed a high-fat diet.

Chenodeoxycholic acid glycine was 8.6 times higher in pigs fed a high fat and high cholesterol diet compared to those fed a regular diet. These results confirm that feeding a high fat and high cholesterol diet leads to a changing metabolomic pattern over time, represented by excretion of certain bile acids in the feces. We also found that several metabolites associated with lipid metabolism were increased in the feces of pigs fed the high-fat diet. Feeding the high fat diet to pigs for 11 weeks did not induce any overt expression of disease, except for significantly higher levels of circulating cholesterol and triglycerides in the blood. It is likely, however, that longer periods of feeding would increase expression of metabolic syndrome disorders and features of cardiovascular disease in pigs, as have been previously demonstrated. Products of lipid metabolism that changed early in the dietary treatment could be useful as biomarkers. This may be important because the composition of the fats in the diet, used in this study, was complex and from multiple sources including lard, soybean oil and coconut oil.

In summary, a number of metabolite differences were detected in the plasma, urine and feces of pigs fed a high fat and high cholesterol diet versus a regular diet that significantly increased over time. PCA showed a clear separation of metabolites in all biological samples tested from pigs fed the different diets. This methodology could be used to associate metabolic profiles with early markers of disease expression or the responsiveness of metabolic profiles to alterations in the diet. The ability to identify metabolites from bio-fluids, feces, and tissues that change with alterations in the diet has the potential to identify new biomarkers and to better understand mechanisms related to diet and health.

Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo

Chung-Hsi Chou, Cheng-Wei Liu, Deng-Jye Yang, Yi-Hsieng S Wuf, Yi-Chen Chen
Food Chemistry 168 (2015) 63–69
http://dx.doi.org/10.1016/j.foodchem.2014.07.035

Black vinegar (BV) contains abundant essential and hydrophobic amino acids, and polyphenolic contents, especially catechin and chlorogenic acid via chemical analyses. K and Mg are the major minerals in BV, and Ca, Fe, Mn, and Se are also measured. After a 9-week experiment, high-fat/cholesterol-diet (HFCD) fed hamsters had higher (p < 0.05) weight gains, relative visceral-fat sizes, serum/liver lipids, and serum cardiac indices than low-fat/cholesterol diet (LFCD) fed ones, but BV supplementation decreased (p < 0.05) them which may resulted from the higher (p < 0.05) fecal TAG and TC contents. Serum ALT value, and hepatic thiobarbituric acid reactive substances (TBARS), and hepatic TNF-α and IL-1β contents in HFCD-fed hamsters were reduced (p < 0.05) by supplementing BV due to increased (p < 0.05) hepatic glutathione (GSH) and trolox equivalent antioxidant capacity (TEAC) levels, and catalase (CAT) and glutathione peroxidase (GPx) activities. Taken together, the component profiles of BV contributed the lipid lowering and antioxidant effects on HFCD fed hamsters.

World Health Organization (WHO) reported that more than 1.4 billion adults were overweight (WHO, 2013). As we know, imbalanced fat or excess energy intake is one of the most important environmental factors resulted in not only increased serum/liver lipids but also oxidative stress, further leading cardiovascular disorders and inflammatory responses. Food scientists strive to improve serum lipid profile and increase serum antioxidant capacity via  medical foods or functional supplementation.

Vinegar is not only used as an acidic seasoning but also is shown to have some beneficial effects, such as digestive, appetite stimulation, antioxidant, exhaustion recovering effects, lipid lowering effects, and regulations of blood pressure. Polyphenols exist in several food categories, such as vegetable, fruits, tea, wine, juice, and vinegar that have effects against lipid peroxidation, hypertension, hyperlipidemia, inflammation, DNA damage, and. Black vinegar (BV) (Kurosu) is produced from unpolished rice with rice germ and bran through a stationary surface fermentation and contains higher amounts of amino acids and organic acids than other vinegars. Black vinegar is also characterised as a health food rather than only an acidic seasoning because it was reported to own a DPPH radical scavenging ability and decrease the adipocyte size in rat models. Moreover, the extract of BV shows the highest radical scavenging activity in a DPPH radical system than rice, grain, apple, and wine vinegars. The extract suppresses increased lipid peroxidation in mouse skin treated with 12-o-tetradecanoylphorbol-13-acetate.

This study focused on the nutritional compositions in BV, and the in-vivo lipid lowering and antioxidant effects. First, the amino acid, mineral, and polyphenolic profile of BV were identified. Hypolipidemic hamsters induced by a high-fat/cholesterol diet (HFCD) were orally administered with different doses of BV. Serum lipid profile and liver damage indices liver and fecal lipid contents, as well as hepatic antioxidant capacities [thiobarbituric acid reactive substances (TBARS), glutathione (GSH), trolox equivalent antioxidant capacity (TEAC), and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)] and hepatic cytokine levels were assayed to demonstrated physiological functions of BV.

Higher serum AST, ALT, and free fatty acids, as well as hepatic cholesterol, triacylglycerol, MDA, hydroperoxide, and cytokine (IL-1β and TNF-α) levels were easily observed in a high-fat-consumption rodent. Several reports indicated some amino acids antioxidant activities in vitro and in vivo. Acidic amino acids, such as Asp and Glu and hydrophobic amino acids, such as Ile, Leu, and Val display high antioxidant properties. Recently, an in vivo study indicated that a pepsin hydrolyzation significantly enhanced Asp, Glu, Leu, and Val contents in chicken livers; meanwhile, chicken-liver hydrolysates showed an antioxidant capacity in brain and liver of D-galactose treated mice. In addition, it was also reported that Mg and Se play important roles in SOD and GPx activities, respectively. Uzun and Kalender (2013) used chlorpyrifos, an organophosphorus insecticide, to induce hepatotoxic and hematologic changes in rats, but they observed that catechin can attenuate the chlorpyrifos-induced hepatotoxicity by increasing GPx and glutathione-S-transferase activities and decreasing MDA contents. Meanwhile, chlorogenic acid elevated SOD, CAT, and GPx activities with concomitantly decreased lipid peroxidation of liver and kidney in streptozotocin-nicotinamide induced type-2 diabetic rats. Hence, it is reasonable to assume that increased antioxidant capacities and decreased damage in livers of HFCD fed hamsters supplemented with BV should be highly related to the components, i.e. amino acid profile, mineral profile, and polyphenol contents, as well as the lowered liver lipid accumulations.

In analyses of amino acids, minerals and polyphenols, BV contained abundant essential amino acids and hydrophobic amino acids. Mg, K, Ca, Fe, Mn, and Se were measured in BV where K and Mg were major. Gallic acid, catechin, chlorogenic acid, p-hydroxybezoic acid, p-cumeric acid, ferulic acid, and sinapic acid were also identified in BV where catechin and chlorogenic acid were the majorities. Meanwhile, the lipid-lowering and antioxidant effects of BV were also investigated via a hamster model. BV supplementation apparently decreased weight gain (g and %), relative size of visceral fat, serum/liver TC levels, serum cardiac index, and hepatic TBARS values and damage indices (serum ALT and hepatic TNF-α and IL-1β) but increased fecal lipid contents and hepatic antioxidant capacities (GSH level, TEAC level, CAT activity, and GPx activity) in HFCD fed hamsters. To sum up, those benefits could be attributed to a synergetic effect of compounds in BV.

Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction – Effect of ripening stage on phytosterols and phytostanols composition

Intidhar Bouali, Hajer Trabelsi, Wahid Herchi, Lucy Martine, et al.
Food Chemistry 164 (2014) 309–316
http://dx.doi.org/10.1016/j.foodchem.2014.05.029

Changes in 4-desmethylsterol, 4-monomethylsterol, 4,4-dimethylsterol and phytostanol composition were quantitatively and qualitatively investigated during the ripening of three varieties of Tunisian grown pecan nuts. These components have many health benefits, especially in lowering LDL-cholesterol and preventing heart disease. The phytosterol composition of whole pecan kernel was quantified by Gas Chromatography–Flame Ionization Detection (GC–FID) and identified by Gas Chromatography–Mass Spectrometry (GC–MS). Fifteen phytosterols and one phytostanol were quantified. The greatest amount of phytosterols (2852.5 mg/100 g of oil) was detected in Mahan variety at 20 weeks after the flowering date (WAFD). Moore had the highest level of phytostanols (7.3 mg/100 g of oil) at 20 WAFD. Phytosterol and phytostanol contents showed a steep decrease during pecan nut development. Results from the quantitative characterization of pecan nut oils revealed that β-sitosterol, D5-avenasterol, and campesterol were the most abundant phytosterol compounds at all ripening stages.

Association between HMW adiponectin, HMW-total adiponectin ratio and early-onset coronary artery disease in Chinese population

Ying Wang, Aihua Zheng, Yunsheng Yan, Fei Song, et al.
Atherosclerosis 235 (2014) 392-397
http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.910

Objective: Adiponectin is an adipose-secreting protein that shows atheroprotective property and has inverse relation with coronary artery disease (CAD). High-molecular weight (HMW) adiponectin is reported as the active form of adiponectin. In the present study, we aimed to investigate the association between total adiponectin, HMW adiponectin, HMW-total adiponectin ratio and the severity of coronary atherosclerosis, and to compare their evaluative power for the risk of CAD. Methods: Serum levels of total and HMW adiponectin were measured in 382 early-onset CAD (EOCAD) patients and 305 matched controls undergoing coronary angiography by enzyme-linked immunosorbent assay (ELISA). Gensini score was used to evaluate the severity of coronary atherosclerosis. Results: CAD onset age was positively correlated with HMW adiponectin (r = 0.383, P < 0.001) and HMW-total adiponectin ratio (r = 0.429, P < 0.001) in EOCAD patients. Total and HMW adiponectin and HMW-total adiponectin ratio were all inversely correlated with Gensini score (r=0.417, r=0.637, r=0.578, respectively; all P < 0.001). Multivariate binary logistic regression analysis demonstrated that HMW adiponectin and HMW-total adiponectin ratio were both inversely correlated with the risk of CAD (P < 0.05). ROC analysis indicated that areas under the ROC curves of HMW adiponectin and HMW-total adiponectin ratio were larger than that of total adiponectin (P < 0.05). Conclusions: Adiponectin is cardioprotective against coronary atherosclerosis onset in EOCAD patients. HMW adiponectin and HMW-total adiponectin ratio show stronger negative associations with the severity of coronary atherosclerosis than total adiponectin does. HMW adiponectin and HMW-total adiponectin ratio are effective biomarkers for the risk of CAD in Chinese population.

Gender and age were well matched between patients and controls. EOCAD patients were tended to have a history of diabetes or hypertension, more current smoking, and more use of lipid lowering drugs. Levels of total cholesterol, LDL-c, FPG, HbA1c and triglycerides were significantly higher in the patients than in controls, while HDL-cholesterol, total adiponectin, HMW adiponectin, and HMW-total adiponectin ratio were significantly lower in the patients. EOCAD patients developed different degrees of coronary atherosclerosis, and had significantly higher levels of high-sensitivity CRP and larger circumferences of waist and hip than controls.

Spearman correlation coefficients between selected cardiovascular risk factors, Gensini score and adiponectin were significant. Total and HMW adiponectin and HMW-total adiponectin ratio were all inversely correlated with Gensini score, BMI and pack years of cigarette smoking. Total and HMW adiponectin were negatively associated with triglycerides and circumference of waist and hip. LDL-cholesterol and high-sensitivity CRP were inversely correlated with HMW adiponectin and HMW-total adiponectin ratio, while HDL-cholesterol and age were positively correlated with them. FPG was only inversely associated with HMW-total adiponectin ratio.

All participants were divided into four groups according to their Gensini score, group A (control, n = 305), group B (<20, n = 154), group C (20-40, n = 121) and group D (>40, n = 105). With the increasing of Gensini score, a stepwise downward trend was observed in levels of total and HMW adiponectin and HMW-total adiponectin ratio (P < 0.001). Specifically, total adiponectin of four groups were 1.58 (0.61-4.36) mg/ml, 1.21 (0.70-2.83) mg/ml, 1.00 (0.73-1.88) mg/ml, and 0.76 (0.37-1.19) mg/ml, respectively. Except group A with B and group B with C, the differences of pairwise comparisons among all the other groups were statistically significant (all P < 0.05). HMW adiponectin of four groups were 0.91 (0.39-3.26) mg/ml, 0.55 (0.32-1.49) mg/ml, 0.46 (0.21-0.876) mg/ml, and 0.23 (0.14-0.39) mg/ml, respectively. The differences of pairwise comparisons among all the other groups were statistically significant (all P < 0.05) except group B with C. HMW-total adiponectin ratio of four groups were 0.58 (0.31-0.81), 0.47 (0.26-0.69), 0.41 (0.24-0.57), and 0.36 (0.21-0.42), respectively. The differences of pairwise comparisons among all the other groups were statistically significant (all P < 0.05) except group B with C. In the model of multivariate binary logistic regression analysis, after adjustment for conventional cardiovascular risk factors, HMW adiponectin (OR = 0.234, P < 0.011) and HMW-total adiponectin ratio (OR = 0.138, P < 0.005) remained inversely correlated with the risk of CAD, while no significant association was observed between total adiponectin and CAD

Areas under the ROC curves were compared pairwise to identify the diagnostic power for CAD among total adiponectin, HMW adiponectin, and HMW-total adiponectin ratio. HMW adiponectin and HMW-total adiponectin ratio showed greater capability for identifying CAD than total adiponectin did (0.797 vs. 0.674, 0.806 vs. 0.674; respectively, all P < 0.05); however, no significant difference was observed between HMW and HMW-total ratio (P > 0.05).

Associations between total adiponectin, HMW adiponectin, HMW-total adiponectin ratio and the severity of coronary atherosclerosis

Associations between total adiponectin, HMW adiponectin, HMW-total adiponectin ratio and the severity of coronary atherosclerosis in EOCAD patients (evaluated by Gensini score). *P < 0.05; **P < 0.001; ***P < 0.005 by Mann-Whitney U test.

Compares diagnostic power

Compares diagnostic power

Fig. Compares diagnostic power among total adiponectin, HMW adiponectin and HMW-total adiponectin ratio for CAD by ROC curves. Diagnostic power for CAD was based on discriminating patients with or without coronary atherosclerosis. The area under the curve for HMW-total adiponectin ratio (dotted black line) was larger than that for total adiponectin (fine black line) (0.806 [95%CI 0.708-0.903] vs. 0.674 [95%CI 0.552-0.797], P < 0.05) and HMW adiponectin (bold black line) (0.806 [95%CI 0.708-0.903] vs. 0.797 [95%CI 0.706-0.888], no statistically difference). Sensitivity, specificity and optimal cut off value for them were total adiponectin (57.38%, 75.86%, 1.11 mg/ml), HMW (55.74%, 93.1%, 0.49 mg/ml) and H/T (78.69%, 75.86%, 0.52), respectively.

There are two strengths in our study. One is the precise Gensini scoring system to carefully evaluate stenosis of coronary artery or branches > 0% diameter as coronary lesion, another is the specific study subjects of EOCAD in a Chinese Han population that is particularly genetically determined and not influenced by racial/ethnic disparities. The limitations of our study lie in the interference of medications such as the effect of lipid lowering drugs on the levels of adiponectin, and cardiovascular risk factors. Smoking is a conventional cardiovascular risk factor, whose interaction with HMW adiponectin level is rarely investigated, but it has been revealed to be associated with HMW adiponectin level in men according to the study from Kawamoto R et al. We did not adjust the result for the pack/year variable in the multivariate logistic regression analysis for the limitation of small sample size of male subjects in our study. The relatively small study sample also restrained our conclusion generalizable to all populations. Future researches in larger study samples and different populations are in need to validate our findings, and to explore the association of smoking with adiponectin in male subgroup analysis, and to investigate the potential mechanisms by which adiponectin affects the progression of coronary atherosclerosis.

In summary, the present study has demonstrated that adiponectin is protective against coronary atherosclerosis onset in EOCAD patients. HMW adiponectin and HMW-total adiponectin ratio show stronger negative associations with the severity of coronary atherosclerosis than total adiponectin does. HMW adiponectin and HMW-total adiponectin ratio are more effective biomarkers for the risk of CAD than total adiponectin.

Berberis aristata combined with Silybum marianum on lipid profile in patients not tolerating statins at high doses

Giuseppe Derosa, Davide Romano, Angela D’Angelo, Pamela Maffioli
Atherosclerosis 239 (2015) 87-92
http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.043

Aim: To evaluate the effects of Berberis aristata combined with Silybum marianum in dyslipidemic patients intolerant to statins at high doses.
Methods: 137 euglycemic, dyslipidemic subjects, with previous adverse events to statins at high doses, were enrolled. Statins were stopped for 1 month (run-in), then they were re-introduced at the half of the previously taken dose. At randomization, patients tolerating the half dose of statin, were assigned to
add placebo or B. aristata/S. marianum 588/105 mg, 1 tablet during the lunch and 1 tablet during the dinner, for six months. We evaluated lipid profile and safety parameters variation at randomization, and after 3, and 6 months.
Results: B. aristata/S. marianum reduced fasting plasma glucose (-9 mg/dl), insulin (-0.7 mU/ml), and HOMA-index (-0.35) levels compared to baseline and also to placebo. Lipid profile did not significantly change after 6 months since the reduction of statin dosage and the introduction of B. aristata/S. marianum, while it worsened in the placebo group both compared to placebo and with active treatment (+23.4 mg/dl for total cholesterol, +19.6 mg/dl for LDL-cholesterol, +23.1 mg/dl for triglycerides with placebo compared to B. aristata/S. marianum). We did not record any variations of safety parameters
in either group. Conclusions: B. aristata/S. marianum can be considered as addition to statins in patients not tolerating high dose of these drugs.

Statins, also known as 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, are effective medications for reducing the risk of death and future cardiovascular disease. In the latest years, however, statin intolerance (including adverse effects related to quality of life, leading to decisions to decrease or stop the use of an otherwise-beneficial drug) has come to the forefront of clinical concern, whereas the safety of statins has come to be regarded as largely favorable. Statin intolerance is defined as any adverse symptoms, signs, or laboratory abnormalities attributed by the patient or physician to the statin and in most cases perceived by the patient to interfere unacceptably with activities of daily living, leading to a decision to stop or reduce statin therapy. The physician might also decide to stop or reduce statin therapy on the basis of clinical/laboratory assessment [abnormal liver function tests, creatine phosphokinase values (CPK)] suggesting undue risk. Adverse events are more common at higher doses of statins, and often contribute to patients low adherence to treatment. For this reason, researchers are testing alternative strategies for lipid treatment when statin intolerance is recognized. One strategy to reduce the risk of statin-induced adverse events includes using a low-dose of statin combined with nonstatin drugs in order to achieve the goals of therapy. Nonstatin drugs include nutraceuticals; in the latest years relatively large number of dietary supplements and nutraceuticals have been studied for their supposed or demonstrated ability to reduce cholesterolemia in humans, in particular Berberis Aristata, has been studied in randomized clinical trials and proved to be effective in improving lipid profile. In particular, B. aristata acts up-regulating LDL-receptor (LDL-R) expression independent of sterol regulatory element binding proteins, but dependent on extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) activation leading to total cholesterol (TC) and LDL-C reduction of about 30 and 25%, respectively. Hwever, B. aristata is a problem in terms of oral bioavailability, affected by a P-glycoprotein (P-gp) mediated gut extrusion process. P-gp seems to reduce by about 90% the amount of B. aristata able to cross the enterocytes, but the use of a potential P-gp inhibitor could ameliorate its oral poor bioavailability improving its effectiveness. Among the potential Pgp inhibitors, silymarin from S. marianum, an herbal drug used as liver protectant, could be considered a good candidate due to its high safety profile.

Analyzing the results of our study, it can appear, at a first glance, that B. aristata/S. marianum has a neutral effect of lipid profile that did not change during the study after the addition of the nutraceutical combination. This lack of effect, however, is only apparent, because, when we analyzed what happens in placebo group, we observed a worsening of lipid profile after statin dose reduction. In other words, the addition of B. aristata/S. marianum neutralized the worsening of lipid profile observed with placebo after statins dose reduction. These results are in line with what was reported by Kong et al., who evaluated the effects of a combination of berberine and simvastatin in sixty-three outpatients diagnosed with hypercholesterolemia. As compared with monotherapies, the combination showed an improved lipid lowering effect with 31.8% reduction of serum LDL-C, and similar efficacies were observed in the reduction of TC as well as Tg in patients. Considering the results of this study, B. aristata/S. marianum can be considered as addition to statins in patients not tolerating high dose of these drugs.

CETP inhibitors downregulate hepatic LDL receptor and PCSK9 expression in vitro and in vivo through a SREBP2 dependent mechanism

Bin Dong, Amar Bahadur Singh, Chin Fung, Kelvin Kan, Jingwen Liu
Atherosclerosis 235 (2014) 449-462
http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.931

Background: CETP inhibitors block the transfer of cholesteryl ester from HDL-C to VLDL-C and LDL-C, thereby raising HDL-C and lowering LDL-C. In this study, we explored the effect of CETP inhibitors on hepatic LDL receptor (LDLR) and PCSK9 expression and further elucidated the underlying regulatory mechanism. Results: We first examined the effect of anacetrapib (ANA) and dalcetrapib (DAL) on LDLR and PCSK9 expression in hepatic cells in vitro. ANA exhibited a dose-dependent inhibition on both LDLR and PCSK9 expression in CETP-positive HepG2 cells and human primary hepatocytes as well as CETP-negative mouse primary hepatocytes (MPH). Moreover, the induction of LDLR protein expression by rosuvastatin in MPH was blunted by cotreatment with ANA. In both HepG2 and MPH ANA treatment reduced the amount of mature form of SREBP2 (SREBP2-M). In vivo, oral administration of ANA to dyslipidemic C57BL/6J mice at a daily dose of 50 mg/kg for 1 week elevated serum total cholesterol by approximately 24.5% (p < 0.05%) and VLDL-C by 70% (p < 0.05%) with concomitant reductions of serum PCSK9 and liver LDLR/SREBP2-M protein. Finally, we examined the in vitro effect of two other strong CETP inhibitors evacetrapib and torcetrapib on LDLR/PCSK9 expression and observed a similar inhibitory effect as ANA in a concentration range of 1-10 µM. Conclusion: Our study revealed an unexpected off-target effect of CETP inhibitors that reduce the mature form of SREBP2, leading to attenuated transcription of hepatic LDLR and PCSK9. This negative regulation of SREBP pathway by ANA manifested in mice where CETP activity was absent and affected serum cholesterol metabolism.

Effect of Eclipta prostrata on lipid metabolism in hyperlipidemic animals

Yun Zhao, Lu Peng, Wei Lu, Yiqing Wang, Xuefeng Huang, et al.
Experimental Gerontology 62 (2015) 37–44
http://dx.doi.org/10.1016/j.exger.2014.12.017

Eclipta prostrata (Linn.) Linn. is a traditional Chinese medicine and has previously been reported to have hypolipidemic effects. However, its mechanism of action is not well understood. This study was conducted to identify the active fraction of Eclipta, its toxicity, its effect on hyperlipidemia, and its mechanism of action. The ethanol extract (EP) of Eclipta and fractions EPF1–EPF4, obtained by eluting with different concentrations of ethanol from a HPD-450 macroporous resin column chromatography of the EP, were screened in hyperlipidemic mice for lipid lowering activity, and EPF3 was the most active fraction. The LD50 of EPF3 was undetectable because no mice died with administration of EPF3 at 10.4 g/kg. Then, 48 male hamsters were used and randomly assigned to normal chow diet, high-fat diet, high-fat diet with Xuezhikang (positive control) or EPF3 (75, 150 and 250 mg/kg) groups. We evaluated the effects of EPF3 on body weight gain, liver weight gain, serum lipid concentration, antioxidant enzyme activity, and the expression of genes involved in lipid metabolism in hyperlipidemic hamsters. The results showed that EPF3 significantly decreased body-weight gain and liver-weight gain and reduced the serum lipid levels in hyperlipidemic hamsters. EPF3 also increased the activities of antioxidant enzymes; upregulated the mRNA expression of peroxisome proliferator-activated receptor α (PPARα), low density lipoprotein receptor (LDLR), lecithin-cholesterol transferase (LCAT) and scavenger receptor class B type Ι receptor (SR-BI); and down-regulated the mRNA expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) in the liver. These results indicate that EPF3 ameliorates hyperlipidemia, in part, by reducing oxidative stress and modulating the transcription of genes involved in lipid metabolism.

Although Eclipta has long been used as a food additive, no studies or reports have clearly shown any liver or kidney toxicity from its use. Therefore, E. prostrata is safe and beneficial for preventing hyperlipidemia in experimental animals and can be used as an alternative medicine for the regulation of dyslipidemia.

Effect of high fiber products on blood lipids and lipoproteins in hamsters

HE Martinez-Floresa, Y Kil Chang, F Martinez-Bustosc, V Sgarbieri
Nutrition Research 24 (2004) 85–93
http://dx.doi.org:/10.1016/S0271-5317(03)00206-9

Serum and liver lipidemic responses in hamsters fed diets containing 2% cholesterol and different dietary fiber sources were studied. The following diets were made from: a) the control diet made from extruded cassava starch (CSH) contained 9.3% cellulose, b) cassava starch extruded with 9.7% resistant starch (CS-RS), c) cassava starch extruded with 9.9% oat fiber (CS-OF), d) the reference diet contained 9.5% cellulose, and no cholesterol was added. Total cholesterol, LDLVLDL-cholesterol and triglycerides were significantly lower (P < 0.05) in serum of hamsters fed on the CS-RS (17.87%, 62.92% and 9.17%, respectively) and CS-OF (15.12%, 67.41% and 18.35%, respectively) diets, as compared to hamster fed with the CSH diet. Similar results were found in the livers of hamsters fed on the CS-RS and CS-OF diets, as compared to hamsters fed with the CSH diet. The diets containing these fibers could be used as active ingredients in human diets to improve the human health.

A new piece in the puzzling effect of n-3 fatty acids on atherosclerosis?

Wilfried Le Goff
Atherosclerosis 235 (2014) 358-362
http://dx.doi.org/10.1016/j.atherosclerosis.2014.03.038

Omega-3 fatty acids (ω-3) FA are reported to be protective against cardiovascular disease (CVD), notably through their beneficial action on atherosclerosis development. In this context dietary intake of long chain marine eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended and randomised trials largely support that EPA and DHA intake is associated with a reduction of CVD. However, mechanisms governing the atheroprotective action of ω-3 FA are still unclear and numerous studies using mouse models conducted so far do not allow to reach a precise view of the cellular and molecular effects of ω-3 FA on atherosclerosis. In the current issue of Atherosclerosis, Chang et al. provide important new information on the anti-atherogenic properties of ω-3 FA by analyzing the incremental replacement of saturated FA by pure fish oil as a source of EPA and DHA in Ldlr -/- mice fed a high fat/high cholesterol diet.

Cardiovascular disease (CVD) is the leading causes of death in the world and is frequently associated with atherosclerosis, a pathology characterized by the accumulation of lipids, mainly cholesterol in the arterial wall. Among major risk factors for CVD, circulating levels of lipids and more especially those originating from diets are closely linked to development of atherosclerosis. In this context, not only cholesterol, but also dietary fatty acids (FA) may appear particularly deleterious in regards to atherosclerosis and associated CVD. However, although saturated fats are proatherogenic, omega-3 fatty acids (ω-3 FA), and more especially long-chain marine eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exert atheroprotective properties through several potential underlying mechanisms. Therefore, the intake of EPA and DHA is recommended around the world and randomised trials with ω-3 FA confirmed that EPA and DHA intake reduced risk for CVD events. However benefits of ω-3 FA intake were challenged by recent clinical trials that failed to replicate protective effects of EPA + DHA on CVD, raising the controversy on the healthy side of marine ω-3 FA.

Animal models are commonly employed in order to decipher mechanisms by which ω-3 FA exert their beneficial actions regarding lipid metabolism and atherosclerosis. Since the last past 20 years, mouse models, and more especially genetically modified mouse models, became the reference model to evaluate the effects of dietary fatty acids, especially ω-3 FA, on atherosclerosis development [7-20]. However, the use of different mouse models of atherosclerosis (Apoe-/-, Ldlr-/-, double Apoe-/- x Ldlr-/- , Ldlr-/- x hApoB mice), as well as diet composition (chow, high cholesterol, high fat, high cholesterol/high fat), source of ω-3 FA supplementation (fish oil, perilla seed oil, flaxseed, pure ALA, EPA or DHA), duration of the diet (from 4 to 32 weeks), size of atherosclerotic lesions in control animals (from 51 to 700.103 mm2) in

those studies led to heterogeneous results and therefore to a partial understanding of the effects of ω-3 FA on atherosclerosis.

Contrary to what observed in Apoe-/- mice, dietary supplementation of Ldlr-/- mice with ω-3 FA led to a reproducible reduction of aortic atherosclerosis, although to various degrees, confirming that Ldlr-/- mice constitute the most appropriate model for studying the atheroprotective effects of ω-3 FA. When evaluated, the decrease of atherosclerosis upon ω-3 FA-rich diet was accompanied by a reduction in the macrophage content as well as inflammation in aortic lesions highlighting the major impact of ω-3 FA on monocyte recruitment and subsequent macrophage accumulation in the arterial wall. However, although supplementation with ω-3 FA allows an efficacious lowering of plasma lipid levels in humans, studies in mouse models suggest that the antiatherogenic action of ω-3 FA is independent of any effects on plasma cholesterol or triglyceride levels. However, that must be asserted with caution as lipid metabolism is quite different in mouse in comparison to humans, highlighting the need to study in the future the effects of ω-3 FA on atherosclerosis in a mouse model exhibiting a more “humanized” lipid metabolism as achieved in hApoB/CETP mice.

In a previous issue of Atherosclerosis, Chang et al. reevaluate the impact of fish oil ω-3 FA on atherosclerosis development by operating an incremental replacement of saturated fats (SAT) by ω-3 FA (pure fish oil, EPA- and DHA-rich) in Ldlr-/- mice fed a high-fat (21%, w/w)/high-cholesterol (0.2%, w/w) diet for a 12-week period. This experimental approach is quite pertinent as dietary fat intake in developed countries, as in United States, derived mostly from saturated FA and is poor in ω-3 FA. Then, using this strategy the authors were able to evaluate the potential beneficial effects of a supplementation with fish oil ω-3 FA in a dietary context for which ω-3 FA intake is relevant.

Here, Chang et al. demonstrated that the progressive increase of dietary intake of fish oil ω-3 FA (EPA and DHA) abrogated the deleterious effects of a SAT diet, thereby suggesting that a dietary ω-3 FA intake on a SAT background is potentially efficient to decrease CVD in humans. Indeed, replacement of SAT by fish oil ω-3 FA markedly reduced plasma cholesterol and triglycerides levels and abolished diet-induced atherosclerosis mediated by SAT in Ldlr-/-mice. To note that in the present study, Ldlr-/- mice only developed small atherosclerosic lesions (~100.103 mm2) after 12 weeks of diet with SAT.

As previously reported, decreased atherosclerotic lesions were accompanied by a reduced content of aortic macrophages and inflammation. Based on their previous works, the authors proposed that the reduction of atherosclerosis upon ω-3 FA resulted from an impairment of cholesterol uptake by arterial macrophages consecutive to the decrease of Lipoprotein Lipase (LPL) expression in those cells. Indeed, beyond its lipolysis action on triglycerides, LPL was reported to promote lipid accumulation, in particular in macrophages, by binding to lipoproteins and cell surface proteoglycans and then acting as a bridging molecule that facilitates cellular lipid uptake. Coherent with this mechanism, macrophage LPL expression was reported to promote foam cell formation and atherosclerosis. In the present study, replacement of SAT by ω-3 FA both decreased expression and altered distribution of arterial LPL. Such a mechanism for ω-3 FA (EPA and DHA) was proposed by this group in earlier studies to favor reduction of arterial LDL-cholesterol. It is noteworthy that lipid rafts alter distribution of LPL at the cell surface and subsequently the LPL dependent accumulation of lipids in macrophages and foam cell formation. As incorporation of ω-3 FA, such as DHA, into cell membrane phospholipids disrupts lipid rafts organization, it cannot be exclude that reduction of lipid accumulation in arterial macrophages upon addition of ω-3 FA results in part from an impairment of the localization and of the anchoring function of LPL at the cell surface of macrophages. Indeed Chang et al. observed that progressive replacement of SAT by ω-3 FA affected aortic FA composition leading to a pronounced increase of arterial EPA and DHA, then suggesting that content of ω-3 FA in macrophage membrane may be equally altered. However, the implication of LPL in the atheroprotective effects of ω-3 FA need to be validated using an appropriate mouse model for which LPL expression may be controlled.

Among the various mechanisms by which ω-3 FA exert anti-inflammatory properties, EPA and DHA repressed inflammation by shutting down NF-kB activation in macrophages. Since expression of TLR-4 and NF-kB target genes, IL-6 and TNFα, in aorta from mice fed diets containing ω-3 FA were decreased when compared to SAT, those results strongly support the contention that ω-3 FA repress inflammation by inhibiting the TLR4/NF-kB signaling cascade likely through the macrophage ω-3 FA receptor GPR120.

Although further studies are needed to explore the complete spectrum of actions of ω-3 FA on atherosclerosis development and CVD, this study provides important information that supports that ω-3 FA intake is a pertinent strategy to reduce risk of CVD.

Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters

Li-Tao Tong, Kui Zhong, Liya Liu, Xianrong Zhou, Ju Qiu, Sumei Zhou
Food Chemistry 169 (2015) 344–349
http://dx.doi.org/10.1016/j.foodchem.2014.07.157

The aim of the present study is to investigate the hypocholesterolemic effects of dietary hull-less barley β-glucan (HBG) on cholesterol metabolism in hamsters which were fed a hypercholesterolemic diet. The hamsters were divided into 3 groups and fed experimental diets, containing 5‰ HBG or 5‰ oat β-glucan (OG), for 30 days. The HBG, as well as OG, lowered the concentration of plasma LDL-cholesterol significantly. The excretion of total lipids and cholesterol in feces were increased in HBG and OG groups compared with the control group. The activity of 3-hydroxy-3-methyl glutaryl-coenzyme A (HMG-CoA) reductase in liver was reduced significantly in the HBG group compared with the control and OG groups. The activity of cholesterol 7-α hydroxylase (CYP7A1) in the liver, in the HBG and OG groups, was significantly increased compared with the control group. The concentrations of acetate, propionate and total short chain fatty acids (SCFAs) were not significantly different between the HBG and control groups. These results indicate that dietary HBG reduces the concentration of plasma LDL cholesterol by promoting the excretion of fecal lipids, and regulating the activities of HMG-CoA reductase and CYP7A1 in hypercholesterolemic hamsters.

Effects of dietary wheat bran arabinoxylans on cholesterolmetabolism of hypercholesterolemic hamsters

Li-Tao Tong, Kui Zhong, Liya Liu, Ju Qiu, Lina Guo, et al.
Carbohydrate Polymers 112 (2014) 1–5
http://dx.doi.org/10.1016/j.carbpol.2014.05.061

The aim of the present study is to investigate the effects of dietary wheat bran arabinoxylans (AXs) on cholesterol metabolism in hypercholesterolemic hamsters. The hamsters were divided into 3 groups and fed the experimental diets containing AXs or oat β-glucan at a dose of 5 g/kg for 30 days. As the results,the AXs lowered plasma total cholesterol and LDL-cholesterol concentrations, and increased excretions of total lipids, cholesterol and bile acids, as well as oat β-glucan. The AXs reduced the activity of 3-hydroxy-3-methyl glutaryl-coenzyme A (HMG-CoA) reductase, and increased the activity of cholesterol 7-α hydroxylase (CYP7A1) in liver. Moreover, the AXs increased propionate and the total short-chain fatty acids (SCFAs) concentrations. These results indicated that dietary AXs reduced the plasma total cholesterol and LDL-cholesterol concentrations by promoting the excretion of fecal lipids, regulating the activities of HMG-CoA reductase and CYP7A1, and increasing colonic SCFAs in hamsters.

High-fructose feeding promotes accelerated degradation of hepatic LDL receptor and hypercholesterolemia in hamsters via elevated circulating PCSK9 levels

Bin Dong, Amar Bahadur Singh, Salman Azhar, Nabil G. Seidah, Jingwen Liu
Atherosclerosis 239 (2015) 364-374
http://dx.doi.org/10.1016/j.atherosclerosis.2015.01.013

Background: High fructose diet (HFD) induces dyslipidemia and insulin resistance in experimental animals and humans with incomplete mechanistic understanding. By utilizing mice and hamsters as in vivo models, we investigated whether high fructose consumption affects serum PCSK9 and liver LDL receptor (LDLR) protein levels. Results: Feeding mice with an HFD increased serum cholesterol and reduced serum PCSK9 levels as compared with the mice fed a normal chow diet (NCD). In contrast to the inverse relationship in mice, serum PCSK9 and cholesterol levels were co-elevated in HFD-fed hamsters. Liver tissue analysis revealed that PCSK9 mRNA and protein levels were both reduced in mice and hamsters by HFD feeding, however, liver LDLR protein levels were markedly reduced by HFD in hamsters but not in mice. We further showed that circulating PCSK9 clearance rates were significantly lower in hamsters fed an HFD as compared with the hamsters fed NCD, providing additional evidence for the reduced hepatic LDLR function by HFD consumption. The majority of PCSK9 in hamster serum was detected as a 53 kDa N-terminus cleaved protein. By conducting in vitro studies, we demonstrate that this 53 kDa truncated hamster PCSK9 is functionally active in promoting hepatic LDLR degradation. Conclusion: Our studies for the first time demonstrate that high fructose consumption increases serum PCSK9 concentrations and reduces liver LDLR protein levels in hyper-lipidemic hamsters. The positive correlation between circulating cholesterol and PCSK9 and the reduction of liver LDLR protein in HFD-fed hamsters suggest that hamster is a better animal model than mouse to study the modulation of PCSK9/LDLR pathway by atherogenic diets.

High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans

Peter J.H. Jones, Dylan S. MacKay, Vijitha K. Senanayake, Shuaihua Pu, et al.
Atherosclerosis 238 (2015) 231-238
http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.010

Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, crossover trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p < 0.0005 and p < 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p < 0.0243) and DHA-enriched high oleic canola oil (p < 0.0249), although high-oleic canola oil had the lowest binding at baseline (p < 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding.

Read Full Post »

Summary of Genomics and Medicine: Role in Cardiovascular Diseases


Summary of Genomics and Medicine: Role in Cardiovascular Diseases

Author: Larry H. Bernstein, MD, FCAP

The articles within Chapters and Subchapters you have just read have been organized into four interconnected parts.
  1. Genomics and Medicine
  2. Epigenetics – Modifyable Factors Causing CVD
  3. Determinants of CVD – Genetics, Heredity and Genomics Discoveries
  4. Individualized Medicine Guided by Genetics and Genomics Discoveries
The first part established the
  • rapidly evolving science of genomics
  • aided by analytical and computational tools for the identification of nucleotide substitutions, or combinations of them
that have a significant association with the development of
  • cardiovascular diseases,
  • hypercoagulable state,
  • atherosclerosis,
  • microvascular disease,
  • endothelial disruption, and
  • type-2DM, to name a few.
These may well be associated with increased risk for stroke and/or peripheral vascular disease in some cases,
  • essentially because the involvement of the circulation is systemic in nature.

Part 1

establishes an important connection between RNA and disease expression.  This development has led to
  • the necessity of a patient-centric approach to patient-care.
When I entered medical school, it was eight years after Watson and Crick proposed the double helix.  It was also
  • the height of a series of discoveries elucidating key metabolic pathways.
In the period since then there have been treatments for some of the important well established metabolic diseases of
  • carbohydrate,
  • protein, and
  • lipid metabolism,
such as –  glycogen storage disease, and some are immense challenges, such as
  • Tay Sachs, or
  • Transthyretin-Associated amyloidosis.
But we have crossed a line delineating classical Mendelian genetics to
  • multifactorial non-linear traits of great complexity and
involving combinatorial program analyses to resolve.
The Human Genome Project was completed in 2001, and it has opened the floodgates of genomic discovery.  This resulted in the identification of
genomic alterations in
  • cardiovascular disease,
  • cancer,
  • microbial,
  • plant,
  • prion, and
  • metabolic diseases.
This has also led to
  • the identification of genomic targets
  • that are either involved in transcription or
  • are involved with cellular control mechanisms for targeted pharmaceutical development.
In addition, there is great pressure on the science of laboratory analytics to
  • codevelop with new drugs,
  • biomarkers that are indicators of toxicity or
  • of drug effectiveness.
I have not mentioned the dark matter of the genome. It has been substantially reduced, and has been termed dark because
  • this portion of the genome is not identified in transcription of proteins.
However, it has become a lightning rod to ongoing genomic investigation because of
  • an essential role in the regulation of nuclear and cytoplasmic activities.
Changes in the three dimensional structure of these genes due to
  • changes in Van der Waal forces and internucleotide distances lead to
  • conformational changes that could have an effect on cell activity.

Part 2

is an exploration of epigenetics in cardiovascular diseases.  Epigenetics is
  • the post-genomic modification of genetic expression
  • by the substitution of nucleotides or by the attachment of carbohydrate residues, or
  • by alterations in the hydrophobic forces between sequences that weaken or strengthen their expression.
This could operate in a manner similar to the conformational changes just described.  These changes
  • may be modifiable, and they
  • may be highly influenced by environmental factors, such as
    1. smoking and environmental toxins,
    2. diet,
    3. physical activity, and
    4. neutraceuticals.
While neutraceuticals is a black box industry that evolved from
  • the extraction of ancient herbal remedies of agricultural derivation
    (which could be extended to digitalis and Foxglove; or to coumadin; and to penecillin, and to other drugs that are not neutraceuticals).

The best examples are the importance of

  • n-3 fatty acids, and
  • fiber
  • dietary sulfur (in the source of methionine), folic acid, vitamin B12
  • arginine combined with citrulline to drive eNOS
  • and of iodine, which can’t be understated.
In addition, meat consumption involves the intake of fat that contains

  • the proinflammatory n-6 fatty acid.

The importance of the ratio of n-3/n-6 fatty acids in diet is not seriously discussed when

  • we look at the association of fat intake and disease etiology.
Part 2 then leads into signaling pathways and proteomics. The signaling pathways are
  • critical to understanding the inflammatory process, just as
  • dietary factors tie in with a balance that is maintained by dietary intake,
    • possibly gut bacteria utilization of delivered substrate, and
    • proinflammatory factors in disaease.
These are being explored by microfluidic proteomic and metabolomic technologies that were inconceivable a half century ago.
This portion extended into the diagnosis of cardiovascular disease, and
  • elucidated the relationship between platelet-endothelial interaction in the formation of vascular plaque.
It explored protein, proteomic, and genomic markers
  1. for identifying and classifying types of disease pathobiology, and
  2. for following treatment measures.

Part 3

connected with genetics and genomic discoveries in cardiovascular diseases.

Part 4

is the tie between life style habits and disease etiology, going forward with
  • the pursuit of cardiovascular disease prevention.
The presentation of walking and running, and of bariatric surgery (type 2DM) are fine examples.
It further discussed gene therapy and congenital heart disease.  But the most interesting presentations are
  • in the pharmacogenomics for cardiovascular diseases, with
    1. volyage-gated calcium-channels, and
    2. ApoE in the statin response.

This volume is a splendid example representative of the entire collection on cardiovascular diseases.

Read Full Post »

Introduction to Genomics and Epigenomics Roles in Cardiovascular Diseases


Introduction to Genomics and Epigenomics Roles in Cardiovascular Diseases

Author and Curator: Larry H Bernstein, MD, FCAP

This introduction is to a thorough evaluation of a rich source of research literature on the genomic influences, which may have variable strength in the biological causation of atherosclerosis, microvascular disease, plaque formation, not necessarily having expressing, except in a multivariable context that includes the environment, dietary factors, level of emotional stress, sleep habits, and the daily activities of living for affected individuals.  The potential of genomics is carried in the DNA, copied to RNA, and this is most well studied in the micro RNAs (miRNA).  The miRNA has been explored for the appearance in the circulation of specific miRNAs that might be associated with myocyte or endothelial cell injury, and they are also being used as targets for therapeutics by the creation of silencing RNAs (siRNA).  The extent to which there is evidence of success in these studies is limited, but is being translated from animal studies to human disease.  There is also a long history of the measurement of  circulating enzymes and isoenzymes (alanine amino transferase, creatine kinase, and lactate dehydrogenase, not to leave out the adenylate kinase species specific to myocardium), and more recently the release of troponins I and T, and the so far still not fully explored ischemia modified albumin, or of miRNAs for the diagnosis of myocardial infarction.

There is also a significant disagreement about the value of measuring high sensitivity C reactive protein (hs-CRP), which has always been a marker for systemic inflammatory disease, in both chronic rheumatic and infectious diseases having a broad range, so that procalcitonin has appeared to be better for that situation, and for early diagnosis of sepsis. The hs-CRP has been too easily ignored because of

1. the ubiquitous elevations in the population
2. the expressed concerns that one might not be inclined to treat a mild elevation without other risk factors, such as, LDL cholesterolemia, low HDL, absent diabetes or obesity.  Nevertheless, hs-CRP raises an reasonable argument for preventive measures, and perhaps the use of a statin.

There has been a substantial amount of work on the relationship of obesity to both type 2 diabetes mellitus (T2DM) and to coronary vascular disease and stroke.  Here we bring in the relationship of the vascular endothelium, adipose tissue secretion of adiponectin, and platelet activation.  A whole generation of antiplatelet drugs addresses the mechanism of platelet activation, adhession, and interaction with endothelium.   Very interesting work has appeared on RESISTIN, that could bear some fruit in the treatment of both obesity and T2DM.

It is important to keep in mind that epigenomic gene rearrangements or substitutions occur throughout life, and they may have an expression late in life.  Some of the known epigenetic events occur with some frequency, but the associations are extremely difficult to pin down, as well as the strength of the association.  In a population that is not diverse, epigenetic changes are passed on in the population in the period of childbearing age.  The establishment of an epigenetic change is diluted in a diverse population.  There have been a number of studies with different findings of association between cardiovascular disease and genetic mutations in the Han and also in the Uyger Chinese populations, which are distinctly different populations that is not part of this discussion.

This should be sufficient to elicit broad appeal in reading this volume on cardiovascular diseases, and perhaps the entire series.  Below is a diagram of this volume in the series.

PART 1 – Genomics and Medicine
Introduction to Genomics and Medicine (Vol 3)
Genomics and Medicine: The Physician’s View
Ribozymes and RNA Machines
Genomics and Medicine: Genomics to CVD Diagnoses
Establishing a Patient-Centric View of Genomic Data
VIDEO:  Implementing Biomarker Programs ­ P Ridker PART 2 – Epigenetics – Modifiable
Factors Causing CVD
Diseases Etiology
   Environmental Contributors
Implicated as Causing CVD
   Diet: Solids and Fluid Intake
and Nutraceuticals
   Physical Activity and
Prevention of CVD
   Psychological Stress and
Mental Health: Risk for CVD
   Correlation between
Cancer and CVD
PART 3  Determinants of CVD – Genetics, Heredity and Genomics Discoveries
Introduction
    Why cancer cells contain abnormal numbers of chromosomes (Aneuploidy)
     Functional Characterization of CV Genomics: Disease Case Studies @ 2013 ASHG
     Leading DIAGNOSES of CVD covered in Circulation: CV Genetics, 3/2010 – 3/2013
     Commentary on Biomarkers for Genetics and Genomics of CVD
PART 4 Individualized Medicine Guided by Genetics and Genomics Discoveries
    Preventive Medicine: Cardiovascular Diseases
    Walking and Running: Similar Risk Reductions for Hypertension, Hypercholesterolemia,
DM, and possibly CAD
https://pharmaceuticalintelligence.com/2013/04/04/walking-and-running-similar-risk-reductions-for-hypertension-hypercholesterolemia-dm-and-possibly-cad/
    Prevention of Type 2 Diabetes: Is Bariatric Surgery the Solution?
https://pharmaceuticalintelligence.com/2012/08/23/prevention-of-type-2-diabetes-is-bariatric-surgery-the-solution/
Gene-Therapy for CVD
Congenital Heart Disease/Defects
   Medical Etiologies: EBM – LEADING DIAGNOSES, Risks Pharmacogenomics for Cardio-
vascular Diseases
   Signaling Pathways     Response to Rosuvastatin in
Patients With Acute Myocardial Infarction:
Hepatic Metabolism and Transporter Gene
Variants Effect
https://pharmaceuticalintelligence.com/2014/
01/02/response-to-rosuvastatin-in-patients-
with-acute-myocardial-infarction-hepatic-
metabolism-and-transporter-gene-variants-effect/
   Proteomics and Metabolomics      Voltage-Gated Calcium Channel and Pharmaco-
genetic Association with Adverse Cardiovascular
Outcomes: Hypertension Treatment with Verapamil
SR (CCB) vs Atenolol (BB) or Trandolapril (ACE)
https://pharmaceuticalintelligence.com/2014/01/02/
voltage-gated-calcium-channel-and-pharmacogenetic-
association-with-adverse-cardiovascular-outcomes-
hypertension-treatment-with-verapamil-sr-ccb-vs-
atenolol-bb-or-trandolapril-ace/
      SNPs in apoE are found to influence statin response
significantly. Less frequent variants in
PCSK9 and smaller effect sizes in SNPs in HMGCR
https://pharmaceuticalintelligence.com/2014/01/02/snps-in-apoe-are-found-to-influence-statin-response-significantly-less-frequent-variants-in-pcsk9-and-smaller-effect-sizes-in-snps-in-hmgcr/

Read Full Post »


Triggering of Plaque Disruption and Arterial Thrombosis

Curator and Reporter: Larry H Bernstein, MD, FCAP

 

This discussion is a very interesting experimental model for the elucidation of plaque rupture in acute coronary syndromes.  The knowledge exists that there is a series of steps in develoiping atheromatous plaque.  We also know that platelets and endothelium are the location of this pathological development.  We don’t know exactly the role or mechanism of the contribution of hyperlipidemia, and what triggers plaque rupture.  This work reported is an experimental rabbit model that sheds light on the triggering of plaque rupture.

Triggering of Plaque Disruption and Arterial Thrombosis in an Atherosclerotic Rabbit Model

George S. Abela, MD, MSc; Paulo D. Picon, MD, MSc; Stephan E. Friedl, MEE; Otavio C. Gebara, MD; Akira Miyamoto, MD; Micheline Federman, PhD; Geoffrey H. Tofler, MB; James E. Muller, MD
From the Institute for Prevention of Cardiovascular Disease, Cardiovascular Division (G.S.A., S.E.F., G.H.T., J.E.M.), and the Department of Pathology (C.S.A., M.F.), Deaconess Hospital, Harvard Medical School, Boston, Mass; the Department of Pharmacology, Federal University and University of Passo Fundo (P.D.P.), Rio Grande de Sul, Brazil; the Heart Institute, University of São Paulo (O.C.G.), São Paulo, Brazil; and the First Department of Internal Medicine, National Defense Medical College (A.K.), Saitama, Japan.

Abstract

Background

It is now recognized that plaque disruption and thrombosis, a process often triggered by activities of the patient, is generally the cause of the onset of acute coronary syndromes. Understanding of disease onset could be greatly enhanced by the availability of a suitable animal model of plaque disruption and thrombosis. The aim of this study was to replicate and further characterize an atherosclerotic rabbit model of triggering of arterial thrombosis that was introduced by Constantinides and Chakravarti more than 30 years ago but not subsequently used.

  • Aortic plaques were induced by a high-cholesterol diet, by mechanical balloon injury of the artery, or by a combination of the two.
  • Triggering was attempted by injection of Russell’s viper venom (RVV), which is a proteolytic procoagulant, and histamine.

 Methods and Results

A total of 53 New Zealand White rabbits were exposed to one of four preparatory regimens:

  1. rabbits in group I (n=9) were fed a regular diet for 8 months;
  2. rabbits in group II (n=13) were fed a diet of 1% cholesterol for 2 months alternated with 2 months of a regular diet for a total of 8 months;
  3. rabbits in group III (n=5) underwent balloon-induced arterial wall injury, then were given a regular diet for 8 months; and
  4. rabbits in group IV (n=14) underwent balloon-induced arterial wall injury, then were given a diet of 1% cholesterol for 2 months followed by a regular diet for 2 months for a total of 4 months. After completion of the preparatory regimen, triggering of plaque disruption and thrombosis was attempted by injection of RVV (0.15 mg/kg IP) and histamine (0.02 mg/kg IV).
  • In group I, normal control rabbits without atherosclerosis, only one small thrombus was noted in 1 of 9 rabbits.
  • In group II, cholesterol-fed rabbits, thrombosis occurred in 3 of 13 rabbits.
  • Thrombus occurred in all rabbits in group III (5 of 5) and in 10 of 14 rabbits in group IV.
Although the frequency of thrombosis was not significantly different between groups I and II, possibly due to a small sample size, it was significantly different among all four groups (P<.001). Also, the frequency and amount of thrombus formation were significantly different among all four groups (P<.001; P<.0001) but not between groups I and II. Rabbits with atherosclerosis (those in groups II and IV) demonstrated plaque disruption and overlying platelet-rich thrombus formation similar to that observed in patients with acute coronary syndromes. The surface area covered by thrombus was
  1. 2 mm^2 in group I, 1
  2. 5.3±19.2 mm^2 in group II,
  3. 223±119 mm^2 in group III, and
  4. 263±222 mm^2 in group IV.
Rabbits in groups III and IV had the greatest amount of thrombus, and this amount was significantly greater than in rabbits in groups I and II (P<.001 and P<.03, respectively).

Conclusions

A suitable animal model is available for the study of plaque disruption and arterial thrombosis.

  • Hypercholesterolemia and mechanical arterial wall injury seemed to produce plaques vulnerable to triggering of disruption and thrombosis, whereas
  • normal arteries were relatively resistant to triggering.
This model provides a method to evaluate agents that might decrease the occurrence of vulnerable plaques or the amount of thrombus formed after triggering. Most important, the model can be used to identify the features of vulnerable plaques and the pharmacological stressors that trigger plaque disruption and thrombus formation.

Key Words: thrombosis, atherosclerosis, balloon, histamine, RVV

Introduction

Plaque disruption and subsequent arterial thrombosis are now recognized as critical to the onset of acute coronary ischemic syndromes. It is hypothesized that occurrence of thrombotic coronary occlusion has three components.
  1. First, a plaque that is vulnerable to disruption must be present.
  2. Second, acute physiological events are required to induce plaque disruption and thrombosis.
  3. Third, a relatively hypercoagulable state and heightened vasomotor tone increase the likelihood that arterial thrombosis will produce complete lumen occlusion.
 Recent epidemiological studies of human patients with myocardial infarction have demonstrated that in many cases a triggering activity, such as physical exertion, precipitates the acute onset of the disorder. Although a better understanding of plaque vulnerability and triggering would be of great value, knowledge of this process is limited because human studies are difficult and a suitable animal model has not been used.
In human patients, the opportunity to study factors responsible for acute onset of myocardial infarction is limited because coronary angiography performed before the event cannot prospectively identify plaques vulnerable to disruption.(9) After the event, angiography cannot distinguish the features of the plaque responsible for the disruption from those resulting from the disruption.(10) Although findings at autopsy provide detailed information about plaque disruption, these observations may be biased toward more advanced disease, since plaque disruptions producing total vascular occlusion and death may be more severe than those occurring in asymptomatic individuals or in patients with unstable angina or nonfatal myocardial infarction.
These difficulties, inherent in the study of plaque disruption and thrombosis in human patients, create a great need for an animal model of the process. More than 30 years ago, Constantinides and Chakravarti(13) developed such a model in atherosclerotic rabbits. Atherosclerotic plaques were produced in New Zealand White rabbits by intermittent cholesterol feeding. Triggering of plaque disruption and thrombosis was then accomplished by intraperitoneal injection of Russell’s viper venom (RVV, a procoagulant and endothelial toxin) followed by the intravenous injection of histamine, a vasopressor in rabbits. The aortas of the rabbits were then found to have disrupted atherosclerotic plaques with overlying platelet-rich thrombi.
Despite the similarity of these lesions to those observed in human patients, the model has received little attention or use during the past 3 decades. A recent review of the animal models of thrombosis currently in use noted that “thus far, it has not been possible to duplicate in a model the most common clinical cause of thrombosis—an ulcerated atherosclerotic plaque.”(14)
The advantage of the Constantinides model over other animal models used to study thrombosis is that it uses a biological intervention to trigger localized atherosclerotic plaque disruption and formation of platelet-rich arterial thrombi. The model facilitates the study of the process because the investigator determines when disruption and thrombosis will occur.
Disadvantages of the Constantinides model are
  • (1) the low yield of triggering (only about one third of the rabbits developed thrombosis) and
  • (2) the long (8-month) preparatory period. In addition, there is a need to replicate the findings of Constantinides and Chakravarti(13) from 30 years ago because of the biological variability of rabbit strains and RVV.
It cannot be assumed that the rabbits and RVV currently available will produce the results obtained in the 1960s.
In this study, we attempted to reproduce the original model of Constantinides.13 In addition, we wanted to determine whether mechanical injury to the aorta early in the preparatory phase could enhance the development of vulnerable plaques, thereby increasing the yield of disrupted plaques and shortening the preparatory period.

Methods

Fifty-three New Zealand White rabbits weighing between 2 and 3 kg were started on the experimental protocol; 41 survived until the time of attempted triggering. In these 41 rabbits, four dietary and interventional regimens were used in preparation for attempted triggering (Fig 1⇓). The control group, group I, consisted of normal rabbits (n=9) that were fed a regular diet for 8 months. Group II rabbits (n=13) were fed a high-cholesterol diet (1% cholesterol, ICN) for 2 months alternated with 2 months of a regular diet for a total of 8 months.15 Rabbits in group III (n=5) underwent balloon-induced arterial injury and were maintained on a regular diet for 8 months. Rabbits in group IV (n=14) underwent balloon-induced arterial injury, were maintained on a 1% cholesterol diet for 2 months, then were given a regular diet for 2 months for a total of 4 months.
Balloon-induced arterial wall injury of the aorta was performed with a 4F Fogarty catheter introduced through a femoral artery cutdown. The catheter was advanced in a retrograde fashion to the aortic valve and then withdrawn 3 cm. The balloon was inflated with 1.5 cm3 of air, and the catheter was retracted down to the iliofemoral artery. This was repeated three times in each rabbit as cm3 described previously.16 Rabbits were anesthetized with ketamine (50 mg/kg IM) and xylazine (20 mg/kg IM).

Of the 12 rabbits that died during the preparatory period, 5 were in group II, 2 in group III, and 5 in group IV. Seven of the 12 rabbits that died prematurely underwent an autopsy, and none had evidence of plaque disruption or arterial thrombosis. The causes of death included respiratory infection and liver failure from lipid infiltration.

The triggering agents RVV (Sigma Chemical Co) and histamine (Eli Lilly) were administered according to the method of Constantinides and Chakravarti.(13) RVV (0.15 mg/kg) was given by intraperitoneal injection 48 and 24 hours before the rabbits were killed. Thirty minutes after each RVV injection, histamine (0.02 mg/kg) was administered intravenously through an ear vein. Rabbits were killed by an overdose of intravenous pentobarbital and potassium chloride. The aorta and iliofemoral arteries were dissected and excised, and the intimal surface was exposed by an anterior longitudinal incision of the vessel.

The total surface area of the aorta, from the aortic arch to the distal common iliac branches, was measured. The surface area covered with atherosclerotic plaque and the surface area covered with antemortem thrombus were then determined. Images of the arterial surface were collected with a color charge-coupled device camera (TM 54, Pulnix) and digitized by an IBM PC/AT computer with a color image processing subsystem. The digitized images were calibrated by use of a graticule, and surface areas were measured by use of a customized quantitative image analysis package.

Tissue samples (1 cm in length) were taken from the thoracic aorta, 3 and 6 cm distal to the aortic valve; from the abdominal aorta, 7 and 4 cm proximal to the iliac bifurcation; and from the iliofemoral arteries. and prepared for and examined by light microscopy and they were examined by quantitative colorimetric assay.  Electron microscopy was also carried out with a Hitachi 600 microscope.

Biochemical analysis was done for tissue cholesterol. Free cholesterol and cholesteryl esters in the aorta were determined by high-performance liquid chromatography (HPLC) on the basis of the method of Kim and Chung. Each sample of aorta was ground to a fine powder with anhydrous sodium sulfate and extracted twice with 5 mL chloroform: methanol (2:1). The extract was dried under nitrogen and redissolved in 5 mL isopropanol.   Serum cholesterol, plasma fibrinogen, and platelet counts were done.

Overall comparison among the four groups was conducted with Fisher’s exact test and the Kruskal-Wallis test for discrete and continuous data, respectively. Comparisons between any two groups of rabbits were made by an exact Wilcoxon midrank test.23 P<.05 was considered statistically significant, and measured data were reported as mean±SD.

Results

Extent of Thrombosis After Triggering

In the 41 rabbits that underwent attempted triggering, the frequency of plaque disruption and focal thrombosis varied markedly depending on the type of preparatory regimen. In group I, only 1 of 9 control rabbits developed a thrombus. This was a small white thrombus with a surface area of 2 mm^2. Three of the 13 rabbits in group II on a 1% cholesterol diet developed white thrombi, all of which were small but were larger than that observed in group I (mean surface area, 15.3±19.2 mm^2). In group III, each of the 5 rabbits that had balloon-induced arterial wall injury developed large white thrombi (mean surface area, 223.0±119 mm^2). Ten of 14 group IV rabbits, with combined arterial wall injury and a high-cholesterol diet, developed white thrombi, all of which were large (mean surface area, 263.0±222 mm^2).

Both the frequency of occurrence and the amount of thrombus formation were significantly different among all four groups (P<.001 and P<.0001, respectively). However, the frequency and the amount of thrombus formation tested individually between groups I and II were not statistically different. The average surface area covered by thrombi in rabbits from groups III and IV was significantly greater than that observed in group II (P=.03 and P=.02) or group I (P=.001 and P=.001) rabbits. The average surface area covered by thrombi did not significantly differ between rabbits in group III versus those in group IV.

No white thrombi were noted in the ascending aorta or the aortic arch. In the non–balloon-treated rabbits in groups I and II, only 1 of 5 thrombi was in the abdominal aorta. In the balloon-injured rabbits in groups III and IV, the thrombi were almost evenly distributed between the thoracic and abdominal aorta (48 versus 66). There were more thrombi in the balloon-injured rabbits than in the non–balloon-injured rabbits (P<.002).

Extent of Plaque Covering the Arterial Surface

 The plaque surface area was significantly different among the four groups (P<.0001). Plaque was present in all the rabbits that were maintained on a high-cholesterol diet or that had balloon-induced arterial injury. The plaque distribution for each group is shown in Fig 4⇓. (not shown) Individual comparisons showed a larger amount of plaque in rabbits from groups III and IV than in those from group II (P=.04 and P=.001, respectively). There was no significant difference in the amount of the plaque in group III versus group IV rabbits. The Table demonstrates the relations of the various groups regarding frequency of disruption with the amount of thrombus formation and plaque surface area.
 The intima in group I rabbits appeared normal by gross inspection. In group II rabbits, white-yellow plaque was widely distributed over the arterial surface, with focal punctate ulceration occasionally noted under a dissecting microscope. In group III rabbits, the intima was smooth and widely covered with white plaque. Group IV rabbits had extensive sheets of elevated white-yellow plaque. By gross visualization, ulceration of the surface was present without superimposed thrombus in two rabbits in group IV.

Histological Features of Plaque Disruption and Thrombosis

 Over 4500 tissue sections were prepared and evaluated. Light microscopy of arterial samples from group I showed normal vascular histology. Group II samples had a predominance of foam cell infiltration of the intima surrounded with connective tissue. Group III samples had fibromuscular plaque composed mostly of muscular cell elements and minimal fibroconnective tissue. This was confirmed by Masson’s trichrome stains showing mostly red muscle cells and minimal blue fibrous tissue. Group IV samples had extensive plaque with an infiltration predominantly composed of foam cells.

Light microscopic examination of adjacent serial sections from thrombosis sites revealed platelet-rich thrombi with interrupted but long adhesion sites to the arterial wall over most of their length. Early organization and inflammatory cell infiltration were present within the thrombi. In sections from groups II and IV, some areas of plaque directly adjacent to the thrombi had marked thinning of the connective tissue cap and areas of dehiscent foam cells,. These observations were rare and were noted in <0.5% of the examined lesions. In most cases, the arterial thrombus was not located at a site of obvious plaque rupture. Foam cell infiltration was also noted adjacent to sites of thrombosis.

Figure 6.

A, Light micrograph shows that degenerated foam cells are present in a large cavity below a cap separating the cavity from the intimal surface of thoracic aorta from a rabbit in group IV (Movat’s pentachrome, magnification ×40). B, Light micrograph of large thrombus attached to the luminal surface of the thoracic aorta in the same rabbit shown in A. The cavitation is seen below the thrombus, and the intimal surface is markedly thinned (Masson’s trichrome, magnification ×16). C, Light micrograph of thrombus overlying a region of plaque with a large accumulation of foam cells from a rabbit in group IV. The free edges of the thrombus correspond to the underlying contour of the plaque, which suggests that the thrombus became detached during fixation (Masson’s trichrome, magnification ×25). D, Light micrograph of thrombus from the abdominal aorta in a rabbit from group IV, 48 hours after triggering. The thrombus is firmly attached and becoming organized. The yellow stain represents red blood cells, and the fibrin and platelets appear pink (Carstair’s stain, magnification ×25).
The degree of blue staining indicative of fibrous tissue in Masson’s trichrome–prepared slides was greatest in group II samples, as represented by values closer to the pure blue region (0.0) on CIE coordinates. Group II samples (0.33±0.046, mean±SD) were more blue than group III (0.43±0.06, P<.001) or group IV samples (0.38±0.05, P<.001). The degree of blue staining was not statistically different between samples from groups III and IV.
Scanning electron microscopy demonstrated fissures of various lengths below areas from which overlying thrombi were removed. Endothelial cells could be seen lining the intimal surface of the aorta in the rabbits that had undergone balloon-induced arterial wall injury 8 months earlier. Surface blebs and focal endothelial breakdown with ulcer formation, without grossly visible thrombosis, were occasionally seen in samples from groups II and IV. The base of these ulcers was layered with platelets, fibrin, and red blood cells. Transmission electron microscopy of areas with thrombosis confirms that the thrombi were platelet rich.

Biochemical Findings

 Baseline serum cholesterol for all rabbits was 50±25 mg/dL and did not differ among the four groups. In rabbits in groups II and IV, which received cholesterol feeding, serum cholesterol rose to an average peak level of 2500± 1200 mg/dL.
In the two groups that received cholesterol feeding, the total cholesterol content in tissue samples pooled from the thoracic and abdominal aorta was significantly higher in group IV (16±7.2 mg/g) than in group II (2.8±1.6 mg/g) (P<.0001). Rabbits that were maintained on a regular diet (groups I and III) had equally low levels of tissue cholesterol (0.05±0.04 versus 0.06±0.02 mg/g, P=NS).

Hematological Changes Accompanying Triggering

The average fibrinogen level before triggering in the 27 rabbits in which fibrinogen was measured was 210±119 mg/dL; it rose to 403±168 mg/dL 48 hours after triggering (P<.001). Plasma fibrinolytic activity did not change after triggering (85.5±37.8 versus 94.8±33.5 arbitrary units). Platelet counts (measured in only 19 rabbits in groups II and IV) decreased from 350±84×103 to 215±116×103 per cubic millimeter after triggering (P<.001). White blood cell count did not decrease after triggering (12.8±13.0 versus 12.8±7.1×103 cells per cubic millimeter). However, the hematocrit dropped from 35.7±3.8% to 32.0±5.8% (P<.0002).

Discussion

The results demonstrate that vulnerable plaques can be produced and that plaque disruption and platelet-rich arterial thrombus formation may be triggered pharmacologically in an animal model of arterial plaque. This finding documents that the New Zealand White rabbit strains and the RVV currently available can be used to obtain the same results observed by Constantinides and Chakravarti(13) more than 30 years ago.
The frequency of successful triggering was dependent on the type of preparatory regimen used. In control rabbits maintained on a regular diet, only 1 of 9 developed a small thrombus after injection of the triggering agents. Although rabbits fed a high-cholesterol diet had more thrombosis after triggering, the values were not statistically different between rabbits in groups I and II. In other studies of triggering of cholesterol-fed rabbits, a total of 7 of 30 rabbits have developed thrombi, but this also does not achieve statistical significance (unpublished data, 1994). The number of rabbits studied may have been too low to demonstrate a moderate difference of thrombus occurrence. However, earlier work by Constantinides and Chakravarti(13 24) demonstrated a frequency of thrombi in 1 of 22 rabbits not fed cholesterol versus 22 of 77 rabbits fed cholesterol, which does achieve statistical significance (P<.02). This indicates that a larger sample may demonstrate a difference between groups I and II and that cholesterol feeding increases the likelihood of the disruption and thrombosis process in the rabbit model. Thus, our results in conjunction with those of Constantinides and Chakravarti suggest that thrombosis triggered by RVV and histamine may be facilitated in the presence of atherosclerosis. However, these observations do not preclude the possibility of thrombosis in a normal artery, which can be induced by injury from various triggers.
Rabbits subjected to arterial balloon injury developed extensive thrombosis only after triggering, as did rabbits subjected to both arterial injury and a high-cholesterol diet. Thus, a high-cholesterol diet especially in the presence of mechanical injury is capable of producing a plaque vulnerable to disruption and thrombosis by triggering with RVV and histamine.

Production of Vulnerable Plaque by Cholesterol Feeding

The technique of pulsed cholesterol feeding used in this study has been shown to be an effective method of producing experimental atherosclerosis, as have continuous cholesterol feeding regimens. Recently, it has been demonstrated that cholesterol feeding induces an upregulation of vascular cell adhesion molecule-1 in rabbit endothelium. This may predispose a site to monocyte adhesion and migration into the subendothelial space. Continued macrophage accumulation may make the site particularly vulnerable to disruption and thrombosis.
Autopsy studies in humans have led to the hypothesis that a lesion with a lipid pool beneath a thin cap is particularly vulnerable to disruption and thrombosis.4 5 This morphology has been shown to generate stress concentrations that would predispose a plaque to disrupt.  Although sites with lipid pools and thin caps were noted in the present study, their occurrence was too limited to permit studies to determine whether these were sites particularly prone to thrombosis. Cholesterol feeding for 2 years may be required to produce a sufficient number of such lesions to determine their vulnerability to disruption.

Production of Vulnerable Plaque by Balloon-Induced Injury

An important finding of this study is that vulnerability to disruption and thrombosis was present 8 months after deendothelialization with balloon-induced arterial wall injury in rabbits on a regular diet (group III). This occurred in the presence of a regenerated endothelium overlying a diffuse fibromuscular plaque. Previous reports have demonstrated that endothelium that regenerates after balloon deendothelialization is physiologically dysfunctional for a prolonged period. From our study, it appears that endothelial function is compromised in its role as a thrombosis-resistant surface over a long period as well. An important factor that may contribute to the altered function is the presence of underlying plaque.

Triggering Agents RVV and Histamine

Among its numerous constituents, RVV contains proteases that activate factors V and X. Such activation leads to thrombosis, which is most likely to occur at sites of cell injury. In addition to this procoagulant effect, RVV is a direct endothelial toxin.31 However, in the absence of arterial abnormalities produced by cholesterol feeding or other means, RVV alone or in combination with a vasoconstrictor agent rarely produces thrombosis.4 The increase in fibrinogen levels and the stability of hematological factors during triggering indicate that RVV does not act by producing a disseminated coagulopathy. The localization of thrombus at focal arterial sites is further evidence that this model does not merely produce a nonspecific thrombotic effect.
Histamine is an arterial vasoconstrictor in rabbits. This effect is mediated by an H1 receptor that regulates release of norepinephrine at the presynaptic norepinephrine sites. Histamine may contribute to plaque disruption by raising the arterial pressure and stress on the plaque and/or by the development of vasospasm. Other, similar agents, thromboxane A2 and serotonin, also have been shown to result in severe vasoconstriction of epicardial coronary arteries that is mediated by platelet deposition at stenosed sites.

Comparison With Other Models

This is a unique model that combines features of several other animal models that have been used to study atherosclerosis and thrombosis. With regard to thrombosis, the model provides the opportunity to extend observations previously made in other animal models of thrombosis to the special conditions surrounding triggering of acute cardiovascular syndromes. While the model of Folts et al has been invaluable in assessing enhanced platelet deposition in dog and pig coronary arteries, it requires both endothelial injury and the production of a 60% to 70% lumen stenosis. Moreover, it does not use an atherosclerotic artery with a vulnerable plaque.
Badimon et al used a flow chamber to evaluate platelet deposition on activated arterial surfaces. They demonstrated that deep arterial injury results in more thrombus formation than superficial injury. However, their model does not recreate the in vivo environment or provide an opportunity for evaluation of various thrombogenic sites, as does the model presented in this study.

Relation of the Model to Human Coronary Thrombosis

Certain features of the lesions seen in this model are similar to those of human lesions seen at autopsy of patients with fatal myocardial infarction, ie, a lesion with a fissured collagen cap overlying a lipid mass of amorphous and crystalline lipid. However, most of the lesions in the model did not have these features and were more consistent with a recent pathological study of fatal coronary thrombosis, which revealed that in approximately half the cases, the plaque was relatively intact but an inflammatory infiltrate was present.36 Perhaps the incidence of plaque rupture causing thrombus may be even lower in patients with nonfatal coronary thrombosis, as suggested from angioscopic studies of coronary arteries that have shown plaque ulceration of various severities.
Although the model we used produced lesions with many similarities to the nonruptured lesions described in patients, extension of this preparation for a 2-year period has been documented to produce lesions with deep fissures similar to those observed in many patients with fatal coronary thrombosis. Also, use of balloon injury in this model to enhance plaque development resulted in plaques that were morphologically similar to advanced plaques induced by the alternating high-cholesterol diet.
Analyses of human plaques have demonstrated that disrupted plaques have significantly less collagen, glycosaminoglycans, and smooth muscle cells and more extracellular lipid and macrophages than do nondisrupted plaques. This is consistent with findings in our study that rabbits in group II had more connective tissue and a lower rate of disruption and thrombosis than those in groups III and IV.
Perhaps the major limitation of this study is that it used a complex pharmacological mixture as the trigger, which makes speculation on the mechanism of action difficult. Further studies will be necessary to determine which components of RVV and histamine are responsible for the focal thrombosis.

Potential Utility of the Model to Study Plaque Disruption and Thrombosis

The observation that large, platelet-rich thrombi can be obtained by triggering in animals with underlying plaques produced by cholesterol feeding or by balloon injury broadens the types of plaque that can be studied for vulnerability. Various types of preparatory regimens could be studied for their ability to promote or retard the development of vulnerable plaque.
The model also can be used to test pharmacological agents that may reduce the development of vulnerable atherosclerotic plaques, such as lipid-lowering agents, antioxidants, calcium channel blocking agents, and angiotensin-converting enzyme inhibitors. Antiplatelet and other antithrombotic drug therapies can be tested for the ability to reduce the amount of thrombus complicating plaque disruption. Finally, the model can be used to characterize the biochemical and cellular bases for plaque vulnerability by comparing the features of sites that do and do not develop thrombi soon after triggering.

 References

3 Friedman M, van den Bovenkamp GJ. The pathogenesis of a coronary thrombus. Am J Pathol. 1966;80:19-44.
4 Constantinides P. Plaque fissures in human coronary thrombosis. J Atheroscler Res. 1966;6:1-17.
5 Davies MJ, Thomas AC. Plaque fissuring: the cause of acute myocardial infarction causing sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363-373. FREE Full Text
8 Tofler GH, Stone PH, Maclure M, Edelman E, Davis VG, Robertson T, Antman EM, Muller JE, and the MILIS Study Group. Analysis of possible triggers of acute myocardial infarction (the MILIS Study). Am J Cardiol. 1990;66:22-27. CrossRefMedline
9  Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157-1166. Abstract/FREE Full Text
10 Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R, Fuster V. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol. 1986;7:472-478. Abstract
11 Davies MJ, Bland MJ, Hartgartner WR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary thrombi in sudden ischemic death. Eur Heart J. 1989;10:203-208. Abstract/FREE Full Text
12  JH, Fuster V, Badimon L, Taubman M, Badimon J, Cheseboro JH. Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol. 1990;15:1667-1687. Abstract
13 Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures. Arch Pathol. 1961;72:197-208. Medline
14  Runge RS, Haber E. Animal models for the study of thrombolysis in vivo. Circulation. 1991;83(suppl IV): IV-1-IV-2. Abstract.
15 Constantinides P, Booth J, Carlson G. Production of advanced cholesterol atherosclerosis in the rabbit. Arch Pathol. 1960;70:80-92.

Related Articles in Pharmaceutical Intelligence:

(no author designation is Larry H Bernstein, MD)

Platelets in Translational Research – 1
Platelets in Translational Research – 2
αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics
Do Novel Anticoagulants Affect the PT/INR? The Cases of XARELTO (rivaroxaban) and PRADAXA (dabigatran)
Intravenous drug for the treatment of Acute Heart Failure (AHF) by Trevena, Inc. (Trevena) – Leader in the Discovery of G-protein coupled receptor (GPCR) biased ligands
Landscape of Cardiac Biomarkers for Improved Clinical Utilization
Nitric Oxide, Platelets, Endothelium and Hemostasis
Nitric Oxide Function in Coagulation
 Advanced Topics in Sepsis and the Cardiovascular System at its End Stage
The Effects of Aprotinin on Endothelial Cell Coagulant Biology   Demet Sag, PhD    https://pharmaceuticalintelligence.com/2013/07/20/the-effects-of-aprotinin-on-coagulant-biology/
Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization
Vascular Repair: Stents and Biologically Active Implants
Prostacyclin and Nitric Oxide: Adventures in Vascular Biology – A Tale of Two Mediators    Aviva Lev-Ari, PhD, RN
Drug Eluting Stents: On MIT’s Edelman Lab’s Contributions to Vascular Biology and its Pioneering Research on DES
Larry Bernstein, MD and Aviva Lev-Ari, PhD, RN       http://PharmaceuticalIntelligence.com/2013/04/25/Contributions-to-vascular-biology/
Accurate Identification and Treatment of Emergent Cardiac Events
The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN    Aviva Lev-Ari, PhD, RN
Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel    Aviva Lev-Ari, PhD, RN
PCI Outcomes, Increased Ischemic Risk associated with Elevated Plasma Fibrinogen not Platelet Reactivity    Aviva Lev-Ari, PhD, RN
PLATO Trial on ACS: BRILINTA (ticagrelor) better than Plavix® (clopidogrel bisulfate): Lowering chances of having another heart attack    Aviva Lev-Ari, PhD, RN
Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression  for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes     Aviva Lev-Ari, PhD, RN
Coagulation: Transition from a familiar model tied to laboratory testing, and the new cellular-driven model
https://pharmaceuticalintelligence.com/2012/11/10/coagulation-transition-from-a-familiar-model-tied-to-laboratory-testing-and-the-new-cellular-driven-model/
Nitric Oxide and Sepsis, Hemodynamic Collapse, and the Search for Therapeutic Options   https://pharmaceuticalintelligence.com/2012/10/20/nitric-oxide-and-sepsis-hemodynamic-collapse-and-the-search-for-therapeutic-options/
Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control
Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation    Aviva Lev-Ari, PhD, RN    https://pharmaceuticalintelligence.com/2012/10/04/endothelin-receptors-in-cardiovascular-diseases-the-role-of-enos-stimulation/
Nitric Oxide Covalent Modifications: A Putative Therapeutic Target?    SJ Williams, PhD    https://pharmaceuticalintelligence.com/2012/09/24/nitric-oxide-covalent-modifications-a-putative-therapeutic-target/
Cardiovascular Disease (CVD) and the Role of Agent Alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production     Aviva Lev-Ari, PhD, RN

Read Full Post »