Posts Tagged ‘acute coronary syndromes’

Curation, HealthCare System in the US, and Calcium Signaling Effects on Cardiac Contraction, Heart Failure, and Atrial Fibrillation, and the Relationship of Calcium Release at the Myoneural Junction to Beta Adrenergic Release

Curation, HealthCare System in the US, and Calcium Signaling Effects on Cardiac Contraction, Heart Failure, and Atrial Fibrillation, and the Relationship of Calcium Release at the Myoneural Junction to Beta Adrenergic Release

Curator and e-book Contributor: Larry H. Bernstein, MD, FCAP
Curator and BioMedicine e-Series Editor-in-Chief: Aviva Lev Ari, PhD, RN


Content Consultant to Six-Volume e-SERIES A: Cardiovascular Diseases: Justin Pearlman, MD, PhD, FACC

This portion summarises what we have covered and is now familiar to the reader.  There are three related topics, and an extension of this embraces other volumes and chapters before and after this reading.  This approach to the document has advantages over the multiple authored textbooks that are and have been pervasive as a result of the traditional publication technology.  It has been stated by the founder of ScoopIt, that amount of time involved is considerably less than required for the original publications used, but the organization and construction is a separate creative process.  In these curations we amassed on average five articles in one curation, to which, two or three curators contributed their views.  There were surprises, and there were unfulfilled answers along the way.  The greatest problem that is being envisioned is the building a vision that bridges and unmasks the hidden “dark matter” between the now declared “OMICS”, to get a more real perspective on what is conjecture and what is actionable.  This is in some respects unavoidable because the genome is an alphabet that is matched to the mino acid sequences of proteins, which themselves are three dimensional drivers of sequences of metabolic reactions that can be altered by the accumulation of substrates in critical placements, and in addition, the proteome has functional proteins whose activity is a regulatory function and not easily identified.  In the end, we have to have a practical conception, recognizing the breadth of evolutionary change, and make sense of what we have, while searching for more.

We introduced the content as follows:

1. We introduce the concept of curation in the digital context, and it’s application to medicine and related scientific discovery.

Topics were chosen were used to illustrate this process in the form of a pattern, which is mostly curation, but is significantly creative, as it emerges in the context of this e-book.

  • Alternative solutions in Treatment of Heart Failure (HF), medical devices, biomarkers and agent efficacy is handled all in one chapter.
  • PCI for valves vs Open heart Valve replacement
  • PDA and Complications of Surgery — only curation could create the picture of this unique combination of debate, as exemplified of Endarterectomy (CEA) vs Stenting the Carotid Artery (CAS), ischemic leg, renal artery stenosis.

2. The etiology, or causes, of cardiovascular diseases consist of mechanistic explanations for dysfunction relating to the heart or vascular system. Every one of a long list of abnormalities has a path that explains the deviation from normal. With the completion of the analysis of the human genome, in principle all of the genetic basis for function and dysfunction are delineated. While all genes are identified, and the genes code for all the gene products that constitute body functions, there remains more unknown than known.

3. Human genome, and in combination with improved imaging methods, genomics offers great promise in changing the course of disease and aging.

4. If we tie together Part 1 and Part 2, there is ample room for considering clinical outcomes based on individual and organizational factors for best performance. This can really only be realized with considerable improvement in information infrastructure, which has miles to go.


Curation is an active filtering of the web’s  and peer reviewed literature found by such means – immense amount of relevant and irrelevant content. As a result content may be disruptive. However, in doing good curation, one does more than simply assign value by presentation of creative work in any category. Great curators comment and share experience across content, authors and themes.
Great curators may see patterns others don’t, or may challenge or debate complex and apparently conflicting points of view.  Answers to specifically focused questions comes from the hard work of many in laboratory settings creatively establishing answers to definitive questions, each a part of the larger knowledge-base of reference. There are those rare “Einstein’s” who imagine a whole universe, unlike the three blindmen of the Sufi tale.  One held the tail, the other the trunk, the other the ear, and they all said this is an elephant!
In my reading, I learn that the optimal ratio of curation to creation may be as high as 90% curation to 10% creation. Creating content is expensive. Curation, by comparison, is much less expensive.  The same source says “ is my content marketing testing “sandbox”. In sharing, he says that comments provide the framework for what and how content is shared.

Healthcare and Affordable Care Act

We enter year 2014 with the Affordable Care Act off to a slow start because of the implementation of the internet signup requiring a major repair, which is, unfortunately, as expected for such as complex job across the US, and with many states unwilling to participate.  But several states – California, Connecticut, and Kentucky – had very effective state designed signups, separate from the federal system.  There has been a very large rush and an extension to sign up. There are many features that we can take note of:

1. The healthcare system needed changes because we have the most costly system, are endowed with advanced technology, and we have inexcusable outcomes in several domains of care, including, infant mortality, and prenatal care – but not in cardiology.

2. These changes that are notable are:

  • The disparities in outcome are magnified by a large disparity in highest to lowest income bracket.
  • This is also reflected in educational status, and which plays out in childhood school lunches, and is also affected by larger class size and cutbacks in school programs.
  • This is not  helped by a large paralysis in the two party political system and the three legs of government unable to deal with work and distraction.
  • Unemployment is high, and the banking and home construction, home buying, and rental are in realignment, but interest rates are problematic.

3.  The  medical care system is affected by the issues above, but the complexity is not to be discounted.

  •  The medical schools are unable at this time to provide the influx of new physicians needed, so we depend on a major influx of physicians from other countries
  • The technology for laboratories, proteomic and genomic as well as applied medical research is rejuvenating the practice in cardiology more rapidly than any other field.
  • In fields that are imaging related the life cycle of instruments is shorter than the actual lifetime use of the instruments, which introduces a shortening of ROI.
  • Hospitals are consolidating into large consortia in order to maintain a more viable system for referral of specialty cases, and also is centralizing all terms of business related to billing.
  • There is reduction in independent physician practices that are being incorporated into the hospital enterprise with Part B billing under the Physician Organization – as in Partners in Greater Boston, with the exception of “concierge” medical practices.
  • There is consolidation of specialty laboratory services within state, with only the most specialized testing going out of state (Quest, LabCorp, etc.)
  • Medicaid is expanded substantially under the new ACA.
  • The federal government as provider of services is reducing the number of contractors for – medical devices, diabetes self-testing, etc.
  • The current rearrangements seeks to provide a balance between capital expenses and fixed labor costs that it can control, reduce variable costs (reagents, pharmaceutical), and to take in more patients with less delay and better performance – defined by outside agencies.

Cardiology, Genomics, and calcium ion signaling and ion-channels in cardiomyocyte function in health and disease – including heart failure, rhythm abnormalities, and the myoneural release of neurotransmitter at the vesicle junction.

This portion is outlined as follows:

2.1 Human Genome: Congenital Etiological Sources of Cardiovascular Disease

2.2 The Role of Calcium in Health and Disease

2.3 Vasculature and Myocardium: Diagnosing the Conditions of Disease

Genomics & Genetics of Cardiovascular Disease Diagnoses

actin cytoskeleton

wall stress, ventricular workload, contractile reserve

Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

calcium and actin skeleton, signaling, cell motility

hypertension & vascular compliance

Genetics of Conduction Disease

Ca+ stimulated exostosis: calmodulin & PKC (neurotransmitter)

complications & MVR

disruption of Ca2+ homeostasis cardiac & vascular smooth muscle

synaptotagmin as Ca2+ sensor & vesicles

atherosclerosis & ion channels

It is increasingly clear that there are mutations that underlie many human diseases, and this is true of the cardiovascular system.  The mutations are mistakes in the insertion of a purine nucleotide, which may or may not have any consequence.  This is why the associations that are being discovered in research require careful validation, and even require demonstration in “models” before pursuing the design of pharmacological “target therapy”.  The genomics in cardiovascular disease involves very serious congenital disorders that are asserted early in life, but the effects of and development of atherosclerosis involving large and medium size arteries has a slow progression and is not dominated by genomic expression.  This is characterized by loss of arterial elasticity. In addition there is the development of heart failure, which involves the cardiomyocyte specifically.  The emergence of regenerative medical interventions, based on pleuripotent inducible stem cell therapy is developing rapidly as an intervention in this sector.

Finally, it is incumbent on me to call attention to the huge contribution that research on calcium (Ca2+) signaling has made toward the understanding of cardiac contraction and to the maintenance of the heart rhythm.  The heart is a syncytium, different than skeletal and smooth muscle, and the innervation is by the vagus nerve, which has terminal endings at vesicles which discharge at the myocyte junction.  The heart specifically has calmodulin kinase CaMK II, and it has been established that calmodulin is involved in the calcium spark that triggers contraction.  That is only part of the story.  Ion transport occurs into or out of the cell, the latter termed exostosis.  Exostosis involves CaMK II and pyruvate kinase (PKC), and they have independent roles.  This also involves K+-Na+-ATPase.  The cytoskeleton is also discussed, but the role of aquaporin in water transport appears elsewhere, as the transport of water between cells.  When we consider the Gibbs-Donnan equilibrium, which precedes the current work by a century, we recall that there is an essential balance between extracellular Na+ + Ca2+ and the intracellular K+ + Mg2+, and this has been superceded by an incompletely defined relationship between ions that are cytoplasmic and those that are mitochondrial.  The glass is half full!



Read Full Post »

Triggering of Plaque Disruption and Arterial Thrombosis

Curator and Reporter: Larry H Bernstein, MD, FCAP


This discussion is a very interesting experimental model for the elucidation of plaque rupture in acute coronary syndromes.  The knowledge exists that there is a series of steps in develoiping atheromatous plaque.  We also know that platelets and endothelium are the location of this pathological development.  We don’t know exactly the role or mechanism of the contribution of hyperlipidemia, and what triggers plaque rupture.  This work reported is an experimental rabbit model that sheds light on the triggering of plaque rupture.

Triggering of Plaque Disruption and Arterial Thrombosis in an Atherosclerotic Rabbit Model

George S. Abela, MD, MSc; Paulo D. Picon, MD, MSc; Stephan E. Friedl, MEE; Otavio C. Gebara, MD; Akira Miyamoto, MD; Micheline Federman, PhD; Geoffrey H. Tofler, MB; James E. Muller, MD
From the Institute for Prevention of Cardiovascular Disease, Cardiovascular Division (G.S.A., S.E.F., G.H.T., J.E.M.), and the Department of Pathology (C.S.A., M.F.), Deaconess Hospital, Harvard Medical School, Boston, Mass; the Department of Pharmacology, Federal University and University of Passo Fundo (P.D.P.), Rio Grande de Sul, Brazil; the Heart Institute, University of São Paulo (O.C.G.), São Paulo, Brazil; and the First Department of Internal Medicine, National Defense Medical College (A.K.), Saitama, Japan.



It is now recognized that plaque disruption and thrombosis, a process often triggered by activities of the patient, is generally the cause of the onset of acute coronary syndromes. Understanding of disease onset could be greatly enhanced by the availability of a suitable animal model of plaque disruption and thrombosis. The aim of this study was to replicate and further characterize an atherosclerotic rabbit model of triggering of arterial thrombosis that was introduced by Constantinides and Chakravarti more than 30 years ago but not subsequently used.

  • Aortic plaques were induced by a high-cholesterol diet, by mechanical balloon injury of the artery, or by a combination of the two.
  • Triggering was attempted by injection of Russell’s viper venom (RVV), which is a proteolytic procoagulant, and histamine.

 Methods and Results

A total of 53 New Zealand White rabbits were exposed to one of four preparatory regimens:

  1. rabbits in group I (n=9) were fed a regular diet for 8 months;
  2. rabbits in group II (n=13) were fed a diet of 1% cholesterol for 2 months alternated with 2 months of a regular diet for a total of 8 months;
  3. rabbits in group III (n=5) underwent balloon-induced arterial wall injury, then were given a regular diet for 8 months; and
  4. rabbits in group IV (n=14) underwent balloon-induced arterial wall injury, then were given a diet of 1% cholesterol for 2 months followed by a regular diet for 2 months for a total of 4 months. After completion of the preparatory regimen, triggering of plaque disruption and thrombosis was attempted by injection of RVV (0.15 mg/kg IP) and histamine (0.02 mg/kg IV).
  • In group I, normal control rabbits without atherosclerosis, only one small thrombus was noted in 1 of 9 rabbits.
  • In group II, cholesterol-fed rabbits, thrombosis occurred in 3 of 13 rabbits.
  • Thrombus occurred in all rabbits in group III (5 of 5) and in 10 of 14 rabbits in group IV.
Although the frequency of thrombosis was not significantly different between groups I and II, possibly due to a small sample size, it was significantly different among all four groups (P<.001). Also, the frequency and amount of thrombus formation were significantly different among all four groups (P<.001; P<.0001) but not between groups I and II. Rabbits with atherosclerosis (those in groups II and IV) demonstrated plaque disruption and overlying platelet-rich thrombus formation similar to that observed in patients with acute coronary syndromes. The surface area covered by thrombus was
  1. 2 mm^2 in group I, 1
  2. 5.3±19.2 mm^2 in group II,
  3. 223±119 mm^2 in group III, and
  4. 263±222 mm^2 in group IV.
Rabbits in groups III and IV had the greatest amount of thrombus, and this amount was significantly greater than in rabbits in groups I and II (P<.001 and P<.03, respectively).


A suitable animal model is available for the study of plaque disruption and arterial thrombosis.

  • Hypercholesterolemia and mechanical arterial wall injury seemed to produce plaques vulnerable to triggering of disruption and thrombosis, whereas
  • normal arteries were relatively resistant to triggering.
This model provides a method to evaluate agents that might decrease the occurrence of vulnerable plaques or the amount of thrombus formed after triggering. Most important, the model can be used to identify the features of vulnerable plaques and the pharmacological stressors that trigger plaque disruption and thrombus formation.

Key Words: thrombosis, atherosclerosis, balloon, histamine, RVV


Plaque disruption and subsequent arterial thrombosis are now recognized as critical to the onset of acute coronary ischemic syndromes. It is hypothesized that occurrence of thrombotic coronary occlusion has three components.
  1. First, a plaque that is vulnerable to disruption must be present.
  2. Second, acute physiological events are required to induce plaque disruption and thrombosis.
  3. Third, a relatively hypercoagulable state and heightened vasomotor tone increase the likelihood that arterial thrombosis will produce complete lumen occlusion.
 Recent epidemiological studies of human patients with myocardial infarction have demonstrated that in many cases a triggering activity, such as physical exertion, precipitates the acute onset of the disorder. Although a better understanding of plaque vulnerability and triggering would be of great value, knowledge of this process is limited because human studies are difficult and a suitable animal model has not been used.
In human patients, the opportunity to study factors responsible for acute onset of myocardial infarction is limited because coronary angiography performed before the event cannot prospectively identify plaques vulnerable to disruption.(9) After the event, angiography cannot distinguish the features of the plaque responsible for the disruption from those resulting from the disruption.(10) Although findings at autopsy provide detailed information about plaque disruption, these observations may be biased toward more advanced disease, since plaque disruptions producing total vascular occlusion and death may be more severe than those occurring in asymptomatic individuals or in patients with unstable angina or nonfatal myocardial infarction.
These difficulties, inherent in the study of plaque disruption and thrombosis in human patients, create a great need for an animal model of the process. More than 30 years ago, Constantinides and Chakravarti(13) developed such a model in atherosclerotic rabbits. Atherosclerotic plaques were produced in New Zealand White rabbits by intermittent cholesterol feeding. Triggering of plaque disruption and thrombosis was then accomplished by intraperitoneal injection of Russell’s viper venom (RVV, a procoagulant and endothelial toxin) followed by the intravenous injection of histamine, a vasopressor in rabbits. The aortas of the rabbits were then found to have disrupted atherosclerotic plaques with overlying platelet-rich thrombi.
Despite the similarity of these lesions to those observed in human patients, the model has received little attention or use during the past 3 decades. A recent review of the animal models of thrombosis currently in use noted that “thus far, it has not been possible to duplicate in a model the most common clinical cause of thrombosis—an ulcerated atherosclerotic plaque.”(14)
The advantage of the Constantinides model over other animal models used to study thrombosis is that it uses a biological intervention to trigger localized atherosclerotic plaque disruption and formation of platelet-rich arterial thrombi. The model facilitates the study of the process because the investigator determines when disruption and thrombosis will occur.
Disadvantages of the Constantinides model are
  • (1) the low yield of triggering (only about one third of the rabbits developed thrombosis) and
  • (2) the long (8-month) preparatory period. In addition, there is a need to replicate the findings of Constantinides and Chakravarti(13) from 30 years ago because of the biological variability of rabbit strains and RVV.
It cannot be assumed that the rabbits and RVV currently available will produce the results obtained in the 1960s.
In this study, we attempted to reproduce the original model of Constantinides.13 In addition, we wanted to determine whether mechanical injury to the aorta early in the preparatory phase could enhance the development of vulnerable plaques, thereby increasing the yield of disrupted plaques and shortening the preparatory period.


Fifty-three New Zealand White rabbits weighing between 2 and 3 kg were started on the experimental protocol; 41 survived until the time of attempted triggering. In these 41 rabbits, four dietary and interventional regimens were used in preparation for attempted triggering (Fig 1⇓). The control group, group I, consisted of normal rabbits (n=9) that were fed a regular diet for 8 months. Group II rabbits (n=13) were fed a high-cholesterol diet (1% cholesterol, ICN) for 2 months alternated with 2 months of a regular diet for a total of 8 months.15 Rabbits in group III (n=5) underwent balloon-induced arterial injury and were maintained on a regular diet for 8 months. Rabbits in group IV (n=14) underwent balloon-induced arterial injury, were maintained on a 1% cholesterol diet for 2 months, then were given a regular diet for 2 months for a total of 4 months.
Balloon-induced arterial wall injury of the aorta was performed with a 4F Fogarty catheter introduced through a femoral artery cutdown. The catheter was advanced in a retrograde fashion to the aortic valve and then withdrawn 3 cm. The balloon was inflated with 1.5 cm3 of air, and the catheter was retracted down to the iliofemoral artery. This was repeated three times in each rabbit as cm3 described previously.16 Rabbits were anesthetized with ketamine (50 mg/kg IM) and xylazine (20 mg/kg IM).

Of the 12 rabbits that died during the preparatory period, 5 were in group II, 2 in group III, and 5 in group IV. Seven of the 12 rabbits that died prematurely underwent an autopsy, and none had evidence of plaque disruption or arterial thrombosis. The causes of death included respiratory infection and liver failure from lipid infiltration.

The triggering agents RVV (Sigma Chemical Co) and histamine (Eli Lilly) were administered according to the method of Constantinides and Chakravarti.(13) RVV (0.15 mg/kg) was given by intraperitoneal injection 48 and 24 hours before the rabbits were killed. Thirty minutes after each RVV injection, histamine (0.02 mg/kg) was administered intravenously through an ear vein. Rabbits were killed by an overdose of intravenous pentobarbital and potassium chloride. The aorta and iliofemoral arteries were dissected and excised, and the intimal surface was exposed by an anterior longitudinal incision of the vessel.

The total surface area of the aorta, from the aortic arch to the distal common iliac branches, was measured. The surface area covered with atherosclerotic plaque and the surface area covered with antemortem thrombus were then determined. Images of the arterial surface were collected with a color charge-coupled device camera (TM 54, Pulnix) and digitized by an IBM PC/AT computer with a color image processing subsystem. The digitized images were calibrated by use of a graticule, and surface areas were measured by use of a customized quantitative image analysis package.

Tissue samples (1 cm in length) were taken from the thoracic aorta, 3 and 6 cm distal to the aortic valve; from the abdominal aorta, 7 and 4 cm proximal to the iliac bifurcation; and from the iliofemoral arteries. and prepared for and examined by light microscopy and they were examined by quantitative colorimetric assay.  Electron microscopy was also carried out with a Hitachi 600 microscope.

Biochemical analysis was done for tissue cholesterol. Free cholesterol and cholesteryl esters in the aorta were determined by high-performance liquid chromatography (HPLC) on the basis of the method of Kim and Chung. Each sample of aorta was ground to a fine powder with anhydrous sodium sulfate and extracted twice with 5 mL chloroform: methanol (2:1). The extract was dried under nitrogen and redissolved in 5 mL isopropanol.   Serum cholesterol, plasma fibrinogen, and platelet counts were done.

Overall comparison among the four groups was conducted with Fisher’s exact test and the Kruskal-Wallis test for discrete and continuous data, respectively. Comparisons between any two groups of rabbits were made by an exact Wilcoxon midrank test.23 P<.05 was considered statistically significant, and measured data were reported as mean±SD.


Extent of Thrombosis After Triggering

In the 41 rabbits that underwent attempted triggering, the frequency of plaque disruption and focal thrombosis varied markedly depending on the type of preparatory regimen. In group I, only 1 of 9 control rabbits developed a thrombus. This was a small white thrombus with a surface area of 2 mm^2. Three of the 13 rabbits in group II on a 1% cholesterol diet developed white thrombi, all of which were small but were larger than that observed in group I (mean surface area, 15.3±19.2 mm^2). In group III, each of the 5 rabbits that had balloon-induced arterial wall injury developed large white thrombi (mean surface area, 223.0±119 mm^2). Ten of 14 group IV rabbits, with combined arterial wall injury and a high-cholesterol diet, developed white thrombi, all of which were large (mean surface area, 263.0±222 mm^2).

Both the frequency of occurrence and the amount of thrombus formation were significantly different among all four groups (P<.001 and P<.0001, respectively). However, the frequency and the amount of thrombus formation tested individually between groups I and II were not statistically different. The average surface area covered by thrombi in rabbits from groups III and IV was significantly greater than that observed in group II (P=.03 and P=.02) or group I (P=.001 and P=.001) rabbits. The average surface area covered by thrombi did not significantly differ between rabbits in group III versus those in group IV.

No white thrombi were noted in the ascending aorta or the aortic arch. In the non–balloon-treated rabbits in groups I and II, only 1 of 5 thrombi was in the abdominal aorta. In the balloon-injured rabbits in groups III and IV, the thrombi were almost evenly distributed between the thoracic and abdominal aorta (48 versus 66). There were more thrombi in the balloon-injured rabbits than in the non–balloon-injured rabbits (P<.002).

Extent of Plaque Covering the Arterial Surface

 The plaque surface area was significantly different among the four groups (P<.0001). Plaque was present in all the rabbits that were maintained on a high-cholesterol diet or that had balloon-induced arterial injury. The plaque distribution for each group is shown in Fig 4⇓. (not shown) Individual comparisons showed a larger amount of plaque in rabbits from groups III and IV than in those from group II (P=.04 and P=.001, respectively). There was no significant difference in the amount of the plaque in group III versus group IV rabbits. The Table demonstrates the relations of the various groups regarding frequency of disruption with the amount of thrombus formation and plaque surface area.
 The intima in group I rabbits appeared normal by gross inspection. In group II rabbits, white-yellow plaque was widely distributed over the arterial surface, with focal punctate ulceration occasionally noted under a dissecting microscope. In group III rabbits, the intima was smooth and widely covered with white plaque. Group IV rabbits had extensive sheets of elevated white-yellow plaque. By gross visualization, ulceration of the surface was present without superimposed thrombus in two rabbits in group IV.

Histological Features of Plaque Disruption and Thrombosis

 Over 4500 tissue sections were prepared and evaluated. Light microscopy of arterial samples from group I showed normal vascular histology. Group II samples had a predominance of foam cell infiltration of the intima surrounded with connective tissue. Group III samples had fibromuscular plaque composed mostly of muscular cell elements and minimal fibroconnective tissue. This was confirmed by Masson’s trichrome stains showing mostly red muscle cells and minimal blue fibrous tissue. Group IV samples had extensive plaque with an infiltration predominantly composed of foam cells.

Light microscopic examination of adjacent serial sections from thrombosis sites revealed platelet-rich thrombi with interrupted but long adhesion sites to the arterial wall over most of their length. Early organization and inflammatory cell infiltration were present within the thrombi. In sections from groups II and IV, some areas of plaque directly adjacent to the thrombi had marked thinning of the connective tissue cap and areas of dehiscent foam cells,. These observations were rare and were noted in <0.5% of the examined lesions. In most cases, the arterial thrombus was not located at a site of obvious plaque rupture. Foam cell infiltration was also noted adjacent to sites of thrombosis.

Figure 6.

A, Light micrograph shows that degenerated foam cells are present in a large cavity below a cap separating the cavity from the intimal surface of thoracic aorta from a rabbit in group IV (Movat’s pentachrome, magnification ×40). B, Light micrograph of large thrombus attached to the luminal surface of the thoracic aorta in the same rabbit shown in A. The cavitation is seen below the thrombus, and the intimal surface is markedly thinned (Masson’s trichrome, magnification ×16). C, Light micrograph of thrombus overlying a region of plaque with a large accumulation of foam cells from a rabbit in group IV. The free edges of the thrombus correspond to the underlying contour of the plaque, which suggests that the thrombus became detached during fixation (Masson’s trichrome, magnification ×25). D, Light micrograph of thrombus from the abdominal aorta in a rabbit from group IV, 48 hours after triggering. The thrombus is firmly attached and becoming organized. The yellow stain represents red blood cells, and the fibrin and platelets appear pink (Carstair’s stain, magnification ×25).
The degree of blue staining indicative of fibrous tissue in Masson’s trichrome–prepared slides was greatest in group II samples, as represented by values closer to the pure blue region (0.0) on CIE coordinates. Group II samples (0.33±0.046, mean±SD) were more blue than group III (0.43±0.06, P<.001) or group IV samples (0.38±0.05, P<.001). The degree of blue staining was not statistically different between samples from groups III and IV.
Scanning electron microscopy demonstrated fissures of various lengths below areas from which overlying thrombi were removed. Endothelial cells could be seen lining the intimal surface of the aorta in the rabbits that had undergone balloon-induced arterial wall injury 8 months earlier. Surface blebs and focal endothelial breakdown with ulcer formation, without grossly visible thrombosis, were occasionally seen in samples from groups II and IV. The base of these ulcers was layered with platelets, fibrin, and red blood cells. Transmission electron microscopy of areas with thrombosis confirms that the thrombi were platelet rich.

Biochemical Findings

 Baseline serum cholesterol for all rabbits was 50±25 mg/dL and did not differ among the four groups. In rabbits in groups II and IV, which received cholesterol feeding, serum cholesterol rose to an average peak level of 2500± 1200 mg/dL.
In the two groups that received cholesterol feeding, the total cholesterol content in tissue samples pooled from the thoracic and abdominal aorta was significantly higher in group IV (16±7.2 mg/g) than in group II (2.8±1.6 mg/g) (P<.0001). Rabbits that were maintained on a regular diet (groups I and III) had equally low levels of tissue cholesterol (0.05±0.04 versus 0.06±0.02 mg/g, P=NS).

Hematological Changes Accompanying Triggering

The average fibrinogen level before triggering in the 27 rabbits in which fibrinogen was measured was 210±119 mg/dL; it rose to 403±168 mg/dL 48 hours after triggering (P<.001). Plasma fibrinolytic activity did not change after triggering (85.5±37.8 versus 94.8±33.5 arbitrary units). Platelet counts (measured in only 19 rabbits in groups II and IV) decreased from 350±84×103 to 215±116×103 per cubic millimeter after triggering (P<.001). White blood cell count did not decrease after triggering (12.8±13.0 versus 12.8±7.1×103 cells per cubic millimeter). However, the hematocrit dropped from 35.7±3.8% to 32.0±5.8% (P<.0002).


The results demonstrate that vulnerable plaques can be produced and that plaque disruption and platelet-rich arterial thrombus formation may be triggered pharmacologically in an animal model of arterial plaque. This finding documents that the New Zealand White rabbit strains and the RVV currently available can be used to obtain the same results observed by Constantinides and Chakravarti(13) more than 30 years ago.
The frequency of successful triggering was dependent on the type of preparatory regimen used. In control rabbits maintained on a regular diet, only 1 of 9 developed a small thrombus after injection of the triggering agents. Although rabbits fed a high-cholesterol diet had more thrombosis after triggering, the values were not statistically different between rabbits in groups I and II. In other studies of triggering of cholesterol-fed rabbits, a total of 7 of 30 rabbits have developed thrombi, but this also does not achieve statistical significance (unpublished data, 1994). The number of rabbits studied may have been too low to demonstrate a moderate difference of thrombus occurrence. However, earlier work by Constantinides and Chakravarti(13 24) demonstrated a frequency of thrombi in 1 of 22 rabbits not fed cholesterol versus 22 of 77 rabbits fed cholesterol, which does achieve statistical significance (P<.02). This indicates that a larger sample may demonstrate a difference between groups I and II and that cholesterol feeding increases the likelihood of the disruption and thrombosis process in the rabbit model. Thus, our results in conjunction with those of Constantinides and Chakravarti suggest that thrombosis triggered by RVV and histamine may be facilitated in the presence of atherosclerosis. However, these observations do not preclude the possibility of thrombosis in a normal artery, which can be induced by injury from various triggers.
Rabbits subjected to arterial balloon injury developed extensive thrombosis only after triggering, as did rabbits subjected to both arterial injury and a high-cholesterol diet. Thus, a high-cholesterol diet especially in the presence of mechanical injury is capable of producing a plaque vulnerable to disruption and thrombosis by triggering with RVV and histamine.

Production of Vulnerable Plaque by Cholesterol Feeding

The technique of pulsed cholesterol feeding used in this study has been shown to be an effective method of producing experimental atherosclerosis, as have continuous cholesterol feeding regimens. Recently, it has been demonstrated that cholesterol feeding induces an upregulation of vascular cell adhesion molecule-1 in rabbit endothelium. This may predispose a site to monocyte adhesion and migration into the subendothelial space. Continued macrophage accumulation may make the site particularly vulnerable to disruption and thrombosis.
Autopsy studies in humans have led to the hypothesis that a lesion with a lipid pool beneath a thin cap is particularly vulnerable to disruption and thrombosis.4 5 This morphology has been shown to generate stress concentrations that would predispose a plaque to disrupt.  Although sites with lipid pools and thin caps were noted in the present study, their occurrence was too limited to permit studies to determine whether these were sites particularly prone to thrombosis. Cholesterol feeding for 2 years may be required to produce a sufficient number of such lesions to determine their vulnerability to disruption.

Production of Vulnerable Plaque by Balloon-Induced Injury

An important finding of this study is that vulnerability to disruption and thrombosis was present 8 months after deendothelialization with balloon-induced arterial wall injury in rabbits on a regular diet (group III). This occurred in the presence of a regenerated endothelium overlying a diffuse fibromuscular plaque. Previous reports have demonstrated that endothelium that regenerates after balloon deendothelialization is physiologically dysfunctional for a prolonged period. From our study, it appears that endothelial function is compromised in its role as a thrombosis-resistant surface over a long period as well. An important factor that may contribute to the altered function is the presence of underlying plaque.

Triggering Agents RVV and Histamine

Among its numerous constituents, RVV contains proteases that activate factors V and X. Such activation leads to thrombosis, which is most likely to occur at sites of cell injury. In addition to this procoagulant effect, RVV is a direct endothelial toxin.31 However, in the absence of arterial abnormalities produced by cholesterol feeding or other means, RVV alone or in combination with a vasoconstrictor agent rarely produces thrombosis.4 The increase in fibrinogen levels and the stability of hematological factors during triggering indicate that RVV does not act by producing a disseminated coagulopathy. The localization of thrombus at focal arterial sites is further evidence that this model does not merely produce a nonspecific thrombotic effect.
Histamine is an arterial vasoconstrictor in rabbits. This effect is mediated by an H1 receptor that regulates release of norepinephrine at the presynaptic norepinephrine sites. Histamine may contribute to plaque disruption by raising the arterial pressure and stress on the plaque and/or by the development of vasospasm. Other, similar agents, thromboxane A2 and serotonin, also have been shown to result in severe vasoconstriction of epicardial coronary arteries that is mediated by platelet deposition at stenosed sites.

Comparison With Other Models

This is a unique model that combines features of several other animal models that have been used to study atherosclerosis and thrombosis. With regard to thrombosis, the model provides the opportunity to extend observations previously made in other animal models of thrombosis to the special conditions surrounding triggering of acute cardiovascular syndromes. While the model of Folts et al has been invaluable in assessing enhanced platelet deposition in dog and pig coronary arteries, it requires both endothelial injury and the production of a 60% to 70% lumen stenosis. Moreover, it does not use an atherosclerotic artery with a vulnerable plaque.
Badimon et al used a flow chamber to evaluate platelet deposition on activated arterial surfaces. They demonstrated that deep arterial injury results in more thrombus formation than superficial injury. However, their model does not recreate the in vivo environment or provide an opportunity for evaluation of various thrombogenic sites, as does the model presented in this study.

Relation of the Model to Human Coronary Thrombosis

Certain features of the lesions seen in this model are similar to those of human lesions seen at autopsy of patients with fatal myocardial infarction, ie, a lesion with a fissured collagen cap overlying a lipid mass of amorphous and crystalline lipid. However, most of the lesions in the model did not have these features and were more consistent with a recent pathological study of fatal coronary thrombosis, which revealed that in approximately half the cases, the plaque was relatively intact but an inflammatory infiltrate was present.36 Perhaps the incidence of plaque rupture causing thrombus may be even lower in patients with nonfatal coronary thrombosis, as suggested from angioscopic studies of coronary arteries that have shown plaque ulceration of various severities.
Although the model we used produced lesions with many similarities to the nonruptured lesions described in patients, extension of this preparation for a 2-year period has been documented to produce lesions with deep fissures similar to those observed in many patients with fatal coronary thrombosis. Also, use of balloon injury in this model to enhance plaque development resulted in plaques that were morphologically similar to advanced plaques induced by the alternating high-cholesterol diet.
Analyses of human plaques have demonstrated that disrupted plaques have significantly less collagen, glycosaminoglycans, and smooth muscle cells and more extracellular lipid and macrophages than do nondisrupted plaques. This is consistent with findings in our study that rabbits in group II had more connective tissue and a lower rate of disruption and thrombosis than those in groups III and IV.
Perhaps the major limitation of this study is that it used a complex pharmacological mixture as the trigger, which makes speculation on the mechanism of action difficult. Further studies will be necessary to determine which components of RVV and histamine are responsible for the focal thrombosis.

Potential Utility of the Model to Study Plaque Disruption and Thrombosis

The observation that large, platelet-rich thrombi can be obtained by triggering in animals with underlying plaques produced by cholesterol feeding or by balloon injury broadens the types of plaque that can be studied for vulnerability. Various types of preparatory regimens could be studied for their ability to promote or retard the development of vulnerable plaque.
The model also can be used to test pharmacological agents that may reduce the development of vulnerable atherosclerotic plaques, such as lipid-lowering agents, antioxidants, calcium channel blocking agents, and angiotensin-converting enzyme inhibitors. Antiplatelet and other antithrombotic drug therapies can be tested for the ability to reduce the amount of thrombus complicating plaque disruption. Finally, the model can be used to characterize the biochemical and cellular bases for plaque vulnerability by comparing the features of sites that do and do not develop thrombi soon after triggering.


3 Friedman M, van den Bovenkamp GJ. The pathogenesis of a coronary thrombus. Am J Pathol. 1966;80:19-44.
4 Constantinides P. Plaque fissures in human coronary thrombosis. J Atheroscler Res. 1966;6:1-17.
5 Davies MJ, Thomas AC. Plaque fissuring: the cause of acute myocardial infarction causing sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363-373. FREE Full Text
8 Tofler GH, Stone PH, Maclure M, Edelman E, Davis VG, Robertson T, Antman EM, Muller JE, and the MILIS Study Group. Analysis of possible triggers of acute myocardial infarction (the MILIS Study). Am J Cardiol. 1990;66:22-27. CrossRefMedline
9  Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78:1157-1166. Abstract/FREE Full Text
10 Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R, Fuster V. Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol. 1986;7:472-478. Abstract
11 Davies MJ, Bland MJ, Hartgartner WR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary thrombi in sudden ischemic death. Eur Heart J. 1989;10:203-208. Abstract/FREE Full Text
12  JH, Fuster V, Badimon L, Taubman M, Badimon J, Cheseboro JH. Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol. 1990;15:1667-1687. Abstract
13 Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures. Arch Pathol. 1961;72:197-208. Medline
14  Runge RS, Haber E. Animal models for the study of thrombolysis in vivo. Circulation. 1991;83(suppl IV): IV-1-IV-2. Abstract.
15 Constantinides P, Booth J, Carlson G. Production of advanced cholesterol atherosclerosis in the rabbit. Arch Pathol. 1960;70:80-92.

Related Articles in Pharmaceutical Intelligence:

(no author designation is Larry H Bernstein, MD)

Platelets in Translational Research – 1
Platelets in Translational Research – 2
αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics
Do Novel Anticoagulants Affect the PT/INR? The Cases of XARELTO (rivaroxaban) and PRADAXA (dabigatran)
Intravenous drug for the treatment of Acute Heart Failure (AHF) by Trevena, Inc. (Trevena) – Leader in the Discovery of G-protein coupled receptor (GPCR) biased ligands
Landscape of Cardiac Biomarkers for Improved Clinical Utilization
Nitric Oxide, Platelets, Endothelium and Hemostasis
Nitric Oxide Function in Coagulation
 Advanced Topics in Sepsis and the Cardiovascular System at its End Stage
The Effects of Aprotinin on Endothelial Cell Coagulant Biology   Demet Sag, PhD
Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization
Vascular Repair: Stents and Biologically Active Implants
Prostacyclin and Nitric Oxide: Adventures in Vascular Biology – A Tale of Two Mediators    Aviva Lev-Ari, PhD, RN
Drug Eluting Stents: On MIT’s Edelman Lab’s Contributions to Vascular Biology and its Pioneering Research on DES
Larry Bernstein, MD and Aviva Lev-Ari, PhD, RN
Accurate Identification and Treatment of Emergent Cardiac Events
The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN    Aviva Lev-Ari, PhD, RN
Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel    Aviva Lev-Ari, PhD, RN
PCI Outcomes, Increased Ischemic Risk associated with Elevated Plasma Fibrinogen not Platelet Reactivity    Aviva Lev-Ari, PhD, RN
PLATO Trial on ACS: BRILINTA (ticagrelor) better than Plavix® (clopidogrel bisulfate): Lowering chances of having another heart attack    Aviva Lev-Ari, PhD, RN
Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression  for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes     Aviva Lev-Ari, PhD, RN
Coagulation: Transition from a familiar model tied to laboratory testing, and the new cellular-driven model
Nitric Oxide and Sepsis, Hemodynamic Collapse, and the Search for Therapeutic Options
Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control
Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation    Aviva Lev-Ari, PhD, RN
Nitric Oxide Covalent Modifications: A Putative Therapeutic Target?    SJ Williams, PhD
Cardiovascular Disease (CVD) and the Role of Agent Alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production     Aviva Lev-Ari, PhD, RN

Read Full Post »