-effects (in our case ADP-induced activation measured by adhesion or flow cytometry and serum TXB
-levels) must be combined with measures that are only partly dependent on ADP and TXA
respectively. For instance, an adhesion variable partly dependent on TXA
might be able to detect ASA resistance caused by increased signalling through other activating pathways. Such a scenario would be characterized by serum TXB
values showing normal COX-inhibition while platelet adhesion is increased. This study employed a screening procedure in order to find such indirect measures of the effects of ASA and clopidogrel. Our results show inhibiting effects of clopidogrel compared to ASA on adhesion to albumin in the presence of LPA or ristocetin. This was also observed for our flow cytometric measurements with SFLLRN as activator, which confirms that SFLLRN is able to induce release of granule contents in platelets. SFLLRN- and ADP-induced platelet activation, as measured by flow cytometry, was moderately correlated to each other and adhesion induced by LPA as well as ristocetin showed weak correlations with ADP-induced adhesion. These results further confirm that these measures of platelet activity are partly dependent on ADP. We have earlier shown that adhesion to albumin induced by simultaneous stimulation by LPA and adrenaline (a variable belonging to the LPA-factor in the present study) can be inhibited by inhibition of ADP-signalling
. This strengthens our conclusion that the effect on LPA-induced adhesion observed for clopidogrel is caused by inhibition of ADP-signalling. Also, the presence of LPA in atherosclerotic plaques and its possible role in thrombus formation after plaque rupture makes it especially interesting for the
setting of myocardial infarction. Assays of static platelet adhesion that have been used in previous studies aimed at investigating treatment effects of platelet inhibiting drugs. Importantly, this study shows that the static platelet adhesion assay is reproducible over time. We also showed that the static platelet adhesion assay as well as flow cytometry detected the ability of clopidogrel to inhibit platelet activation induced by ADP. Our results further suggest that other measures of platelet adhesion and platelet activation measured by flow cytometry are indirectly dependent on secreted ADP or TXA
. One such measure is adhesion to a collagen surface, which should be more thoroughly investigated for its ability to detect effects of clopidogrel and ASA. Likewise, due to its connection to atherosclerosis and myocardial infarction, the LPA-induced effect should be further evaluated for its ability to detect effects of clopidogrel. In conclusion, the screening procedure undertaken in this study has revealed suggestions on which measures of platelet activity to combine in order to evaluate platelet function.
1 The aim of this study was to examine the mechanism of impaired platelet-mediated endothelium-dependent vasodilation in diabetes. Exposure of human platelets to high glucose
in vivo or
in vitro impairs their ability to cause endothelium-dependent vasodilation. While previous data suggest that the mechanism for this involves increased activity of the cyclo-oxygenase pathway, the signal transduction pathway mediating this effect is unknown.
2 Platelets from diabetic patients as well as normal platelets and normal platelets exposed to high glucose concentrations were used to determine the role of the polyol pathway, diacylglycerol (DAG) production, protein kinase C (PKC) activity and phospholipase A
2 (PLA
2) activity on vasodilation in rabbit carotid arteries.
3 We found that two aldose-reductase inhibitors, tolrestat and sorbinil, caused only a modest improvement in the impairment of vasodilation by glucose exposed platelets. However, sorbitol and fructose could not be detected in the platelets, at either normal or hyperglycaemic conditions. We found that incubation in 17 mM glucose caused a significant increase in DAG levels in platelets. Furthermore, the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) caused significant impairment of platelet-mediated vasodilation. The PKC inhibitors calphostin C and H7 as well as inhibitors of PLA
2 activity normalized the ability of platelets from diabetic patients to cause vasodilation and prevented glucose-induced impairment of platelet-mediated vasodilation
in vitro.
4 These results suggest that the impairment of platelet-mediated vasodilation caused by high glucose concentrations is mediated by increased DAG levels and stimulation of PKC and PLA
2 activity.
Keywords: Glucose; signal-transduction; platelet; vasodilation; diabetes
Abbreviations: ADP, adenosine diphosphate; DAG, diacyglycerol; DEDA, dimethyleicosadienoic acid; EDNO, endothelium-derived nitric oxide; OAG, 1-oleoyl-2-acetyl-sn-glycerol; PKC, protein kinase C; PLA
2, phospholipase A
2; PMA, phorbol 12-myristate 13-acetate
Introduction
Activated normal platelets produce vasodilation via release of platelet-derived adenosine diphosphate (ADP), which in turn stimulates the release of endothelium-derived nitric oxide (EDNO) . EDNO causes vascular smooth muscle relaxation and inhibits platelet aggregation and excessive thrombus formation. Recent reports suggest that platelets from patients with diabetes mellitus lack the ability to produce EDNO-dependent vasodilation. This platelet defect can be reproduced in vitro by exposure of normal human platelets to high glucose concentrations, in a time and concentration dependent manner. This glucose-induced platelet defect appears to involve activation of the cyclo-oxygenase pathway, including thromboxane synthase. However, it remains unknown how exposure of platelets to high concentrations of glucose in vivo or in vitro, leads to increased activity of these enzymes. Previous studies indicate that high glucose concentrations mediate some of their adverse biologic effects via the polyol pathway high glucose increases intracellular diacylglycer-ol (DAG) levels, upregulates protein kinase C (PKC) activity and can lead to increased arachidonic acid release via PKC-mediated increase in phospholipase A2 activity, which in turn increases activity of cyclo-oxygenase. In this study we explore the possible role of these metabolic pathways in mediating the inability of diabetic and hyperglycaemia-induced platelets to produce vasodilation. In this study we show that in vitro incubation of normal human platelets in high glucose causes a significant increase in platelet DAG levels, which is evident after 30 min.
The role of protein kinase-C (PKC)
DAG and OAG are known activators of PKC. Data in Figure 2 show that normal human platelets incubated with the DAG analogue, (OAG), in order to mimic the effect of increased intracellular DAG, lost their ability to cause vasodilation. Next we tested whether enhanced PKC activity plays a role in the signalling pathway leading to impaired ability of diabetic platelets to cause vasodilation. We found that platelets from patients with diabetes mellitus that were treated with the PKC-inhibitor calphostin-C produced normal vasodilation, while untreated platelets from the same patients lacked the ability to cause vasorelaxation (Figure 3A). Similarly, while normal platelets incubated in high glucose lost their ability to cause vasorelaxation, co-incubation with calphostin-C prevented the glucose-mediated impairment of platelet-mediated vasodila-tion (Figure 3B). Calphostin-C did not affect the ability of normal platelets to mediate vasodilation: 35±3 vs 37±4% increase in vessel diameter, with or without the inhibitor (n=5), respectively. Similar results were obtained with the PKC-inhibitor H7 (50 ILM) (results not shown). In addition, normal platelets `primed’ by a 20 min incubation in Tyrode’s buffer containing PMA (80 nM) completely lost their ability to produce vasorelaxation (Figure 4). Figure 3 (A) Platelets were isolated from patients with diabetes mellitus (n=6). Platelets were incubated in Tyrode’s buffer for 2 h with or without calphostin-C (50 nM). Subsequently the platelets were thrombin (0.1 U ml—1) activated and perfused through a phenylephrine (10 jIM) preconstricted normal rabbit carotid artery, and the change in vessel diameter measured. *P<0.01. (B) Platelets isolated from healthy donors (n=6) were incubated in Tyrode’s buffer containing either 6.6 mM (118 mg dl—1) [NL Plts] or 17 mM (300 mg dl—1) [Glucose Plts] glucose for 4 h. For the last 2 h the PKC-inhibitor calphostin-C (50 nM) was added to some of the high glucose treated platelets. Subsequently the three groups of platelets were thrombin (0.1 U ml—1) activated and perfused through a phenylephrine (10 jIM) preconstricted normal rabbit carotid artery, and the change in vessel diameter measured. *P<0.01 vs NL-Plts and Gluc-Plts+Calp-C. (noy shown) Figure 4 Platelets from healthy donors (n=8) were isolated separated into two groups and treated with or without phorbol 12-myristate 13-acetate (PMA) (80 nM) for 20 min. After a washout period, treated and untreated platelets were thrombin (0.1 U ml—1) activated and perfused through a phenylephrine (10 jIM) precon-stricted rabbit carotid artery, and the change in vessel diameter measured. *P<0.01 for PMA-Plts vs NL-Plts. (not shown)
Conclusions
In summary, the results of this study along with recently published data (Oskarsson & Hofmeyer 1997; Oskarsson et al., 1997) suggest that high glucose levels cause an increase in platelet DAG that upregulates the activity of PKC, which in turn increases the activity of phospholipase A2 that causes release of arachidonic acid which leads to increased activity of cyclo-oxygenase and thromboxane synthase in platelets (Oskarsson et al., 1997). From a clinical perspective this pathway is of considerable interest since it lends itself to therapeutic interventions with inhibitors both at the level of cyclo-oxygenase and the thromboxane-synthase.
References
OSKARSSON, H.J. & HOFMEYER, T.G. (1996). Platelet-mediated endothelium-dependent vasodilation is impaired by platelets from patients with diabetes mellitus. J. Am. Coll. Cardiol., 27, 1464 – 1470. OSKARSSON, H.J. & HOFMEYER, T.G. (1997). Diabetic human platelets release a substance which inhibits platelet-mediated vasodilation. Am. J. Phys., 273, H371 – H379. OSKARSSON, H.J., HOFMEYER, T.G. & KNAPP, H.R. (1997). Malondialdehyde inhibits platelet-mediated vasodilation by interfering with platelet-derived ADP. JACC, 29 (Suppl A): 304A.
G-Protein−Coupled Receptors as Signaling Targets for Antiplatele t Therapy
Susan S. Smyth, Donna S. Woulfe, Jeffrey I. Weitz, Christian Gachet, Pamela B. Conley, et al. Participants in the 2008 Platelet Colloquium Arterioscler Thromb Vasc Biol. 2009;29:449-457. http://dx.doi.org/10.1161/ATVBAHA.108.176388 Online ISSN: 1524-4636 http://atvb.ahajournals.org/content/29/4/449
Abstract—
Platelet G protein–coupled receptors (GPCRs) initiate and reinforce platelet activation and thrombus formation. The clinical utility of antagonists of the P2Y12 receptor for ADP suggests that other GPCRs and their intracellular signaling pathways may represent viable targets for novel antiplatelet agents. For example, thrombin stimulation of platelets is mediated by 2 protease-activated receptors (PARs), PAR-1 and PAR-4. Signaling downstream of PAR-1 or PAR-4 activates phospholipase C and protein kinase C and causes autoamplification by production of thromboxane A2, release of ADP, and generation of more thrombin. In addition to ADP receptors, thrombin and thromboxane A2 receptors and their downstream effectors—including phosphoinositol-3 kinase, Rap1b, talin, and kindlin—are promising targets for new antiplatelet agents. The mechanistic rationale and available clinical data for drugs targeting disruption of these signaling pathways are discussed. The identification and development of new agents directed against specific platelet signaling pathways may offer an advantage in preventing thrombotic events while minimizing bleeding risk. (Arterioscler Thromb Vasc Biol. 2009;29:449-457.) Key Words: platelets . signaling . G proteins . receptors . thrombosis
Introduction
Since the first observations of agonist-induced platelet aggregation in 1962, remarkable progress has been made in identifying cell surface receptors and intracellular signaling pathways that regulate platelet function. These discoveries have translated into established, new, and emerging therapeutics to treat and prevent acute ischemic events by targeting platelet signal transduction. Indeed, antiplatelet therapy is a mainstay of initial management of patients with ACS and those undergoing percutaneous coronary intervention (PCI). Evidence-based refinements in anticoagulant and antiplatelet therapies have played an important role in the progressive decline in the death rate from coronary disease observed from 1994 to 2004. Despite these therapeutic advances, however, ACS patients receiving “optimal” antithrombotic therapy still suffer cardiovascular events. Platelet Signaling Pathways
Vascular injury—whether caused by spontaneous rupture of atherosclerotic plaque, plaque erosion, or PCI-related or other trauma—exposes adhesive proteins, tissue factor, and lipids promoting platelet tethering, adhesion, and activation. Once bound and activated, platelets release soluble mediators such as ADP, thromboxane A
2, and serotonin and facilitate thrombin generation. These mediators, in turn, stimulate GPCRs on the platelet surface that are critical to initiation of various intracellular signaling pathways, including activation of phospholipase C (PLC), protein kinase C (PKC), and phosphoinositide (PI)-3 kinase. Both calcium and PKC contribute to activation of the small G protein, Recently, members of the kindlin family of focal adhesion proteins have been identified as integrin activators, perhaps functioning to facilitate talin–integrin interactions.
Figure. Role of G protein–coupled receptors in the thrombotic process. In humans, protease-activated receptors (PAR)-1 and PAR-4 are coupled to intracellular signaling pathways through molecular switches from the G
q,
G12, and G
i protein families. When thrombin (scissors) cleaves the amino-terminal of PAR-l and PAR-4, several signaling pathways are activated, one result of which is ADP secretion. By binding to its receptor, P2Y
12, ADP activates additional G
i-mediated pathways. In the absence of wounding, platelet activation is counteracted by signaling from PG I
2 (PGI
2). Adapted from references 26–28 with permission. Ca
2 indicates calcium; CalDAG-GEF1, calcium and diacylglcerol-regulated guanine-nucleotide exchange factor 1; GP, glycoprotein; IP, prostacyclin; PKC, protein kinase C; PLC, phospholipase C; RIAM, Rap1-GTP–interacting adapter molecule.
Future Directions: P2Y1 and P2X Inhibition
Given the clinical success of the P2Y12 antagonists, it is worthwhile to investigate other purinergic signaling pathways in platelets. Although platelets have 2 P2Y receptors acting synergistically through different signaling pathways, the overall platelet response to ADP is relatively modest. For example, ADP alone elicits only reversible responses and does not promote platelet secretion. The low number of ADP receptors on the platelet surface also may limit signaling.
Thrombin Signaling in Platelets
Thrombin, the most potent platelet agonist, has diverse effects on various vascular cells. For example, thrombin promotes chemotaxis, adhesion, and inflammation through its effects on neutrophils and monocytes. Thrombin also influences vascular permeability through its effects on endothelial cells and triggers smooth muscle vasoconstriction and mitogenesis.54 Thrombin interacts with 2 protease-activated receptors (PARs) on the surface of human platelets—PAR-1 and PAR-4. Signaling through the PARs is triggered by thrombin-mediated cleavage of the extracellular domain of the receptor and exposure of a “tethered ligand” at the new end of the receptor (Figure 1). Signaling through either PAR can activate PLC and PKC and cause autoamplification through the production of thromboxane A2, the release of ADP, and generation of more thrombin on the platelet surface.
PAR-1 Antagonists as Antithrombotic Therapy
The expression profiles of PARs on platelets differ between humans and nonprimates. Mouse platelets lack PAR-1 and largely signal through PAR-4 in response to thrombin, with PAR-3 serving a cofactor function. Platelets from cynomol-gus monkeys contain primarily PAR-1 and PAR-4, and a peptide-mimetic PAR-1 antagonist extends the time to thrombosis after carotid artery injury. The nonpeptide antagonist SCH 530348 (described below) inhibits thrombin- and PAR-1 agonist peptide (TRAP)-induced platelet aggregation (inhibitory concentrations of 47 nmol/L and 25 nmol/L, respectively), but it has no effect on ADP, collagen, U46619, or PAR-4 agonist peptide stimulation of platelets. SCH 530348 has excellent bioavailability in rodents and monkeys (82%; 1 mg/kg) and completely inhibits ex vivo platelet aggregation in response to TRAP within 1 hour of oral administration in monkeys with no effect on prothrombin or activated partial thromboplastin times. Of the PAR-1 antagonists, SCH 530348 and E5555 are the compounds farthest along in development and clinical testing. SCH 530348 is an oral reversible PAR-1 antagonist derived from himbacine, a compound found in the bark of the Australian magnolia tree. In clinical trials, 68% of patients showed ~80% inhibition of platelet aggregation in response to thrombin receptor activating peptide (TRAP; 15 mol/L) 60 minutes after receiving a 40-mg loading dose of SCH 530348. By 120 minutes, the proportion had risen to 96%. In a Phase 2 trial of SCH 530348, 1031 patients scheduled for angiography and possible stenting were randomized to receive SCH 530348 or placebo plus aspirin, clopidogrel, and antithrombin therapy (heparin or bivalirudin). Major and minor bleeding did not differ substantially between the placebo and individual or combined SCH 530348 groups.
Future Directions: PAR-4 Inhibition
Activation and signaling of PAR-1 and PAR-4 provoke a biphasic “spike and prolonged” response, with PAR-1 activated at thrombin concentrations 50% lower than those required to activate PAR-4. A 4-amino acid segment, YEPF, on the extracellular domain of PAR-1 appears to account for the receptor’s high-affinity interactions with thrombin. The YEPF sequence has homology to the COOH-terminal of hirudin and its synthetic GEPF analog, bivaliru-din, which can interact with exosite-1 on thrombin. Thus, thrombin may interact in tandem with PAR-1 and PAR-4, with the initial interactions involving exosite-1 and PAR-1, and subsequent docking at PAR-4 via the thrombin active site.56 PAR-1 and PAR-4 may form a stable heterodimer that enables thrombin to act as a bivalent functional agonist, rendering the PAR-1–PAR-4 heterodimer complex a unique target for novel antithrombotic therapies. Pepducins, or cell-permeable peptides derived from the third intracellular loop of either PAR-1 or PAR-4, disrupt signaling between the receptors and G proteins and inhibit thrombin-induced platelet aggregation. In mice, a PAR-4 pepducin has been shown to prolong bleeding times and attenuate platelet activation. Combining bivalirudin with a PAR-4 pepducin (P4pal-i1) inhibited aggregation of human platelets from 15 healthy volunteers, even in response to high concentrations of thrombin. In addition, although bivaliru-din and P4pal-i1 each delayed the time to carotid artery occlusion after ferric chloride-induced injury in guinea pigs, their combination prolonged the time to occlusion more than did bivalirudin alone. Additional blockade of the PAR-4 receptor may confer a benefit beyond that achieved by inhibition of thrombin activity.
Targeting Thromboxane Signaling
Thromboxane A2 acts on the thromboxane A2/prostaglandin (PG) H2 (TP) receptor, causing PLC signaling and platelet activation. Several drugs have been tested and developed that prevent thromboxane synthesis—most notably, aspirin. Beyond the documented success of aspirin, however, results have been uniformly disappointing with a wide variety of thromboxane synthase inhibitors. Likewise, a multitude of TP receptor antagonists have been developed, but few have progressed beyond Phase 2 trials because of safety concerns. More recently, the thromboxane A2 receptor antagonist terutroban (S18886) showed rapid, potent inhibition of platelet aggregation in a porcine model of in-stent thrombosis that was comparable to the combination of aspirin and clopidogrel but with a more favorable bleeding profile. Ramatroban, another TP inhibitor approved in Japan for treatment of allergic rhinitis, has shown antiaggre-gatory effects in vitro comparable to those of aspirin and cilostazol.
Novel Downstream Signaling Targets
Signaling pathways stimulated by GPCR activation are essential for thrombus formation and may represent potential targets for drug development. One pathway involved in platelet activation is signaling through lipid kinases. PI-3 kinases transduce signals by generating lipid secondary messengers, which then recruit signaling proteins to the plasma membrane. A principal target for PI-3K signaling is the protein kinase Akt (Figure 1). Platelets contain both the Akt1 and Akt2 isoforms.28 In mice, both Akt1 and Akt2 are required for thrombus formation. Mice lacking Akt2 have aggregation defects in response to low concentrations of thrombin or thromboxane A2 and corresponding defects in dense and a-granule secretion. The Akt isoforms have multiple substrates in platelets. Glycogen synthase kinase (GSK)-3(3 is phosphorylated by Akt in platelets and suppresses platelet function and thrombosis in mice. Akt-mediated phosphorylation of GSK-3(3 inhibits the kinase activity of the enzyme, and with it, its suppression of platelet function. Akt activation also stimulates nitric oxide production in platelets, which results in protein kinase G–dependent degranulation. Finally, Akt has been implicated in activation of cAMP-dependent phosphodiesterase (PDE3A), which plays a role in reducing platelet cAMP levels after thrombin stimulation.67 Each of these Akt-mediated events is expected to contribute to platelet activation. Rap1 members of the Ras family of small G proteins have been implicated in GPCR signaling and integrin activation. Rap1b, the most abundant Ras GTPase in platelets, is activated rapidly after GPCR stimulation and plays a key role in the activation of integrin aIIb(3) Stimulation of Gq-linked receptors, such as PAR-4 or PAR-1, activates PLC and, with consequent increases in intracellular calcium, PKC. These signals in turn activate calcium and diacylglcerol-regulated guanine-nucleotide exchange factor 1 (CalDAG-GEF1), which has been implicated in activation of Rap1 in plate-lets. Experiments in CalDAG-GEF1-deficient platelets indicate that PKC- and CalDAG-GEF1–dependent events represent independent synergistic pathways leading to Rap1-mediated integrin aIIb(33 activation. Consistent with this concept, ADP can stimulate Rap1b activation in a P2Y12– and PI-3K-dependent, but calcium-independent, manner. A final common step in integrin activation involves binding of the cytoskeletal protein talin to the integrin-(33-subunit cytoplasmic tail. Rap1 appears to be required to form an activation complex with talin and the Rap effector RIAM, which redistributes to the plasma membrane and unmasks the talin binding site, resulting in integrin activation. Mice that lack Rap1b or platelet talin have a bleeding disorder with impaired platelet aggregation because of the lack of integrin aIIb( (33 activation. In contrast, mice with a integrin-(33 subunit mutation that prevents talin binding have impaired agonist-induced platelet aggregation and are protected from thrombosis, but do not display pathological bleeding, suggesting that this interaction may be an attractive therapeutic target. Recently, members of the kindlin family of focal adhesion proteins, kindlin-2 and kindlin-3, have been identified as coactivators of integrins, required for talin activation of integrins. Kindlin-2 binds and synergistically enhances talin activation of aIIb. Of note, deficiency in kindlin-3, the predominant kindlin family member found in hematopoietic cells, results in severe bleeding and protection from thrombosis in mice.
Conclusions
Antiplatelet therapy targeting thromboxane production, ADP effects, and fibrinogen binding to integrin aIIb(33 have proven benefit in preventing or treating acute arterial thrombosis. New agents that provide greater inhibition of ADP signaling and agents that impede thrombin’s actions on platelets are currently in clinical trials. Emerging strategies to inhibit platelet function include blocking alternative platelet GPCRs and their intracellular signaling pathways. The challenge remains to determine how to best combine the various current and pending antiplatelet therapies to maximize benefit and minimize harm. It is well documented that aspirin therapy increases bleeding compared with placebo; that when clopidogrel is added to aspirin therapy, bleeding increases relative to the use of aspirin therapy alone; and that when even greater P2Y12 inhibition with prasugrel is added to aspirin therapy, bleeding is further increased compared with the use of clopidogrel and aspirin combination therapy. Does this mean that improved antiplatelet efficacy is mandated to come at the price of increased bleeding? Not necessarily, but it will require a far better understanding of platelet signaling pathways and what aspects of platelet function must be blocked to minimize arterial thrombosis. One of the best clinical examples of the disconnect between antiplatelet-related bleeding and antithrombotic efficacy is the case of the oral platelet glycoprotein (GP) IIb/IIIa antagonists. The use of these agents uniformly led to significantly greater bleeding compared with aspirin but no greater efficacy; in fact, mortality was increased among patients receiving the oral glycoprotein IIb/IIIa inhibitors.77 Through an improved understanding of platelet signaling pathways, antiplatelet therapies likely can be developed not based on their ability to inhibit platelets from aggregating, as current therapies are, but rather based on their ability to prevent the clinically meaningful consequences of platelet activation. What exactly these are remains the greatest obstacle.
Related articles in Pharmaceutical Intelligence
(no name assigned is Larry H Bernstein, MD)
Platelets in Translational Research – 1 http://pharmaceuticalintelligence.com/10-6-2013/larryhbern/Platelets_in_Translational_Research-1
Platelets in Translational Research – 2 http://phramaceuticalintelligence.com/2013-10-7/larryhbern/Platelets-in-Translational-Research-2/
αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics http://phrmaceuticalintelligence.com/2013-10-12/larryhbern_BS-Coller/αllbβ3_Antagonists_As_An_Example_of_Translational_Medicine_Therapeutics
Do Novel Anticoagulants Affect the PT/INR? The Cases of XARELTO (rivaroxaban) and PRADAXA (dabigatran) Vivek Lal, MBBS, MD, FCIR, Justin D Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN
http://pharmaceuticalintelligence.com/2013/09/23/do-novel-anticoagulants-affect-the-ptinr-the-cases-of-xarelto-rivaroxaban-and-pradaxa-dabigatran/
Intravenous drug for the treatment of Acute Heart Failure (AHF) by Trevena, Inc. (Trevena) – Leader in the Discovery of G-protein coupled receptor (GPCR) biased ligands Aviva Lev-Ari, PhD, RN
http://pharmaceuticalintelligence.com/2013/10/10/intravenous-drug-for-the-treatment-of-acute-heart-failure-ahf-by-trevena-inc-trevena-leader-in-the-discovery-of-g-protein-coupled-receptor-gpcr-biased-ligands/
Nitric Oxide, Platelets, Endothelium and Hemostasis http://pharmaceuticalintelligence.com/2012/11/08/nitric-oxide-platelets-endothelium-and-hemostasis/
Nitric Oxide Function in Coagulation http://pharmaceuticalintelligence.com/2012/11/26/nitric-oxide-function-in-coagulation/
Advanced Topics in Sepsis and the Cardiovascular System at its End Stage http://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-Sepsis-and-the-Cardiovascular-System-at-its-End-Stage/
The Effects of Aprotinin on Endothelial Cell Coagulant Biology Demet Sag, PhD http://pharmaceuticalintelligence.com/2013/07/20/the-effects-of-aprotinin-on-coagulant-biology/
Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization http://pharmaceuticalintelligence.com/5_04_2013/bernstein_lev-ari/Bioengineering_of_Vascular_and_Tissue_Models
Vascular Repair: Stents and Biologically Active Implants http://pharmaceuticalintelligence.com/05-03-2013/Bernstein.Lev-Ari/Stents,_biologically_active_implants_and_vascular_repair/
Prostacyclin and Nitric Oxide: Adventures in Vascular Biology – A Tale of Two Mediators Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2013/04/30/prostacyclin-and-nitric-oxide-adventures-in-vascular-biology-a-tale-of-two-mediators/
Drug Eluting Stents: On MIT’s Edelman Lab’s Contributions to Vascular Biology and its Pioneering Research on DES Larry Bernstein, MD and Aviva Lev-Ari, PhD, RN http://PharmaceuticalIntelligence.com/2013/04/25/Contributions-to-vascular-biology/
Accurate Identification and Treatment of Emergent Cardiac Events http://pharmaceuticalintelligence.com/2013/03/15/accurate-identification -and-tratment-of-emergent-cardiac-events/
The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2013/02/28/the-heart-vascculature-a-concept-based-pharmaceutical-therapy-including-thymosin/
Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2013/02/27/arteriogenesis-and-cardiac-repair-two-biomaterials-injectable-thymosin-beta5-and-myocardial-matrix-hydrogel/
PCI Outcomes, Increased Ischemic Risk associated with Elevated Plasma Fibrinogen not Platelet Reactivity Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2013/01/10/pci-outcomes-increased-ischemic-risk-associated-with-elevated-plasma-fibrinogen-not-platelet-reactivity/
PLATO Trial on ACS: BRILINTA (ticagrelor) better than Plavix® (clopidogrel bisulfate): Lowering chances of having another heart attack Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2012/12/28/PLATO-trial-on-ACS:-Brilinta-(tigrelor)-better-than–Plavix-(clopidogrel-bisulfate)-lowering-chances-of-having-another-heart-attack/
Biochemistry of the Coagulation Cascade and Platelet Aggregation – Part I http://pharmaceuticalintelligence.com/2012/11/26/biochemistry-of-the-coagulation-cascade-and-platelet-aggregation/
Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2012/11/13/peroxisome-proliferator-activated-receptor-ppar-gamma-receptors-activation-pparγ-transrepression-for-angiogenesis-in-cardiovascular-disease-and-pparγ-transactivation-for-treatment-of-diabetes/
Coagulation: Transition from a familiar model tied to laboratory testing, and the new cellular-driven model http://pharmaceuticalintelligence.com/2012/11/10/coagulation-transition-from-a-familiar-model-tied-to-laboratory-testing-and-the-new-cellular-driven-model/
Nitric Oxide and Sepsis, Hemodynamic Collapse, and the Search for Therapeutic Options http://pharmaceuticalintelligence.com/2012/10/20/nitric-oxide-and-sepsis-hemodynamic-collapse-and-the-search-for-therapeutic-options/
Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control http://pharmaceuticalintelligence.com/2012/10/13/sepsis-multi-organ-dysfunction-syndrome-and-septic-shock-a-conundrum-of-signaling-pathways-cascading-out-of-control/
Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2012/10/04/endothelin-receptors-in-cardiovascular-diseases-the-role-of-enos-stimulation/
Nitric Oxide Covalent Modifications: A Putative Therapeutic Target? SJ Williams, PhD http://pharmaceuticalintelligence.com/2012/09/24/nitric-oxide-covalent-modifications-a-putative-therapeutic-target/
Interaction of Nitric Oxide and Prostacyclin in Vascular Endothelium http://pharmaceuticalintelligence.com/2012/09/14/interaction-of-nitric-oxide-and-prostacyclin-in-vascular-endothelium/
Cardiovascular Disease (CVD) and the Role of Agent Alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production Aviva Lev-Ari, PhD, RN http://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/