Feeds:
Posts
Comments

Archive for the ‘Behavioral Genetics’ Category

Sleep apnea insular glutamate and GABA levels

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Sleep Apnea Takes a Toll on Brain Function

UCLA   http://www.biosciencetechnology.com/news/2016/02/sleep-apnea-takes-toll-brain-function

 

One in 15 adults has moderate to severe obstructive sleep apnea, a disorder in which a person’s breathing is frequently interrupted during sleep — as many as 30 times per hour.

People with sleep apnea also often report problems with thinking such as poor concentration, difficulty with memory and decision-making, depression, and stress.

According to new research from the UCLA School of Nursing,  published online in the Journal of Sleep Research,  people with sleep apnea show significant changes in the levels of two important brain chemicals, which could be a reason that many have symptoms that impact their day-to-day lives.

UCLA researchers looked at levels of these neurotransmitters — glutamate and gamma-aminobutyric acid, known as GABA — in a brain region called the insula, which integrates signals from higher brain regions to regulate emotion, thinking and physical functions such as blood pressure and perspiration. They found that people with sleep apnea had decreased levels of GABA and unusually high levels of glutamate.

GABA is a chemical messenger that acts as an inhibitor in the brain, which can slow things down and help to keep people calm — like a brake pedal. GABA affects mood and helps make endorphins.

Glutamate, by contrast, is like an accelerator; when glutamate levels are high, the brain is working in a state of stress, and consequently doesn’t function as effectively. High levels of glutamate can also be toxic to nerves and neurons.

“In previous studies, we’ve seen structural changes in the brain due to sleep apnea, but in this study we actually found substantial differences in these two chemicals that influence how the brain is working,” said Paul Macey, the lead researcher on the study and an associate professor at the UCLA School of Nursing.

Macey said the researchers were taken aback by the differences in the GABA and glutamate levels.

“It is rare to have this size of difference in biological measures,” Macey said. “We expected an increase in the glutamate, because it is a chemical that causes damage in high doses and we have already seen brain damage from sleep apnea. What we were surprised to see was the drop in GABA. That made us realize that there must be a reorganization of how the brain is working.”

Macey said the study’s results are, in a way, encouraging. “In contrast with damage, if something is working differently, we can potentially fix it.”

The link between sleep apnea and changes in the state of the brain is important news for clinicians, Macey said.

“What comes with sleep apnea are these changes in the brain, so in addition to prescribing continuous positive airway pressure, or CPAP — a machine used to help an individual sleep easier, which is the gold standard treatment for sleep disturbance — physicians now know to pay attention to helping their patients who have these other symptoms,” Macey said. “Stress, concentration, memory loss — these are the things people want fixed.”

In future studies, the researchers hope to determine whether treating the sleep apnea — using CPAP or other methods — returns patients’ brain chemicals back to normal levels. If not, they will turn to the question of what treatments could be more effective. They are also studying the impacts of mindfulness exercises to see if they can reduce glutamate levels by calming the brain.

Read Full Post »

Mindful Discoveries

Larry H. Bernstein, MD, FCAP, Curator

LPBI

Schizophrenia and the Synapse

Genetic evidence suggests that overactive synaptic pruning drives development of schizophrenia.

By Ruth Williams | January 27, 2016 … more follows)

http://www.the-scientist.com/?articles.view/articleNo/45189/title/Schizophrenia-and-the-Synapse/

3.2.4

3.2.4   Mindful Discoveries, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 2: CRISPR for Gene Editing and DNA Repair

http://www.the-scientist.com/images/News/January2016/Schizophrenia.jpg

C4 (green) at synapses of human neurons

Compared to the brains of healthy individuals, those of people with schizophrenia have higher expression of a gene called C4, according to a paper published inNature today (January 27). The gene encodes an immune protein that moonlights in the brain as an eradicator of unwanted neural connections (synapses). The findings, which suggest increased synaptic pruning is a feature of the disease, are a direct extension of genome-wide association studies (GWASs) that pointed to the major histocompatibility (MHC) locus as a key region associated with schizophrenia risk.

“The MHC [locus] is the first and the strongest genetic association for schizophrenia, but many people have said this finding is not useful,” said psychiatric geneticist Patrick Sullivan of the University of North Carolina School of Medicine who was not involved in the study. “The value of [the present study is] to show that not only is it useful, but it opens up new and extremely interesting ideas about the biology and therapeutics of schizophrenia.”

Schizophrenia has a strong genetic component—it runs in families—yet, because of the complex nature of the condition, no specific genes or mutations have been identified. The pathological processes driving the disease remain a mystery.

Researchers have turned to GWASs in the hope of finding specific genetic variations associated with schizophrenia, but even these have not provided clear candidates.

“There are some instances where genome-wide association will literally hit one base [in the DNA],” explained Sullivan. While a 2014 schizophrenia GWAS highlighted the MHC locus on chromosome 6 as a strong risk area, the association spanned hundreds of possible genes and did not reveal specific nucleotide changes. In short, any hope of pinpointing the MHC association was going to be “really challenging,” said geneticist Steve McCarroll of Harvard who led the new study.

Nevertheless, McCarroll and colleagues zeroed in on the particular region of the MHC with the highest GWAS score—the C4 gene—and set about examining how the area’s structural architecture varied in patients and healthy people.

The C4gene can exist in multiple copies (from one to four) on each copy of chromosome 6, and has four different forms: C4A-short, C4B-short, C4A-long, and C4B-long. The researchers first examined the “structural alleles” of the C4 locus—that is, the combinations and copy numbers of the different C4 forms—in healthy individuals. They then examined how these structural alleles related to expression of both C4Aand C4B messenger RNAs (mRNAs) in postmortem brain tissues.From this the researchers had a clear picture of how the architecture of the C4 locus affected expression ofC4A and C4B. Next, they compared DNA from roughly 30,000 schizophrenia patients with that from 35,000 healthy controls, and a correlation emerged: the alleles most strongly associated with schizophrenia were also those that were associated with the highest C4A expression. Measuring C4A mRNA levels in the brains of 35 schizophrenia patients and 70 controls then revealed that, on average, C4A levels in the patients’ brains were 1.4-fold higher.C4 is an immune system “complement” factor—a small secreted protein that assists immune cells in the targeting and removal of pathogens. The discovery of C4’s association to schizophrenia, said McCarroll, “would have seemed random and puzzling if it wasn’t for work . . . showing that other complement components regulate brain wiring.” Indeed, complement protein C3 locates at synapses that are going to be eliminated in the brain, explained McCarroll, “and C4 was known to interact with C3 . . . so we thought well, actually, this might make sense.”McCarroll’s team went on to perform studies in mice that revealed C4 is necessary for C3 to be deposited at synapses. They also showed that the more copies of the C4 gene present in a mouse, the more the animal’s neurons were pruned.Synaptic pruning is a normal part of development and is thought to reflect the process of learning, where the brain strengthens some connections and eradicates others. Interestingly, the brains of deceased schizophrenia patients exhibit reduced neuron density. The new results, therefore, “make a lot of sense,” said Cardiff University’s Andrew Pocklington who did not participate in the work. They also make sense “in terms of the time period when synaptic pruning is occurring, which sort of overlaps with the period of onset for schizophrenia: around adolescence and early adulthood,” he added.

“[C4] has not been on anybody’s radar for having anything to do with schizophrenia, and now it is and there’s a whole bunch of really neat stuff that could happen,” said Sullivan. For one, he suggested, “this molecule could be something that is amenable to therapeutics.”

A. Sekar et al., “Schizophrenia risk from complexvariation of complement component 4,”Nature,   http://dx.doi.com:/10.1038/nature16549, 2016.     

Tags schizophrenia, neuroscience, gwas, genetics & genomics, disease/medicine and cell & molecular biology

Schizophrenia: From genetics to physiology at last

Ryan S. Dhindsa& David B. Goldstein

Nature (2016)  http://dx.doi.org://10.1038/nature16874

The identification of a set of genetic variations that are strongly associated with the risk of developing schizophrenia provides insights into the neurobiology of this destructive disease.

http://www.nytimes.com/2016/01/28/health/schizophrenia-cause-synaptic-pruning-brain-psychiatry.html

Genetic study provides first-ever insight into biological origin of schizophrenia

Suspect gene may trigger runaway synaptic pruning during adolescence — NIH-funded study

NIH/NATIONAL INSTITUTE OF MENTAL HEALTH

IMAGE

http://media.eurekalert.org/multimedia_prod/pub/web/107629_web.jpg

The site in Chromosome 6 harboring the gene C4 towers far above other risk-associated areas on schizophrenia’s genomic “skyline,” marking its strongest known genetic influence. The new study is the first to explain how specific gene versions work biologically to confer schizophrenia risk.  CREDIT  Psychiatric Genomics Consortium

Versions of a gene linked to schizophrenia may trigger runaway pruning of the teenage brain’s still-maturing communications infrastructure, NIH-funded researchers have discovered. People with the illness show fewer such connections between neurons, or synapses. The gene switched on more in people with the suspect versions, who faced a higher risk of developing the disorder, characterized by hallucinations, delusions and impaired thinking and emotions.

“Normally, pruning gets rid of excess connections we no longer need, streamlining our brain for optimal performance, but too much pruning can impair mental function,” explained Thomas Lehner, Ph.D., director of the Office of Genomics Research Coordination of the NIH’s National Institute of Mental Health (NIMH), which co-funded the study along with the Stanley Center for Psychiatric Research at the Broad Institute and other NIH components. “It could help explain schizophrenia’s delayed age-of-onset of symptoms in late adolescence/early adulthood and shrinkage of the brain’s working tissue. Interventions that put the brakes on this pruning process-gone-awry could prove transformative.”

The gene, called C4 (complement component 4), sits in by far the tallest tower on schizophrenia’s genomic “skyline” (see graph below) of more than 100 chromosomal sites harboring known genetic risk for the disorder. Affecting about 1 percent of the population, schizophrenia is known to be as much as 90 percent heritable, yet discovering how specific genes work to confer risk has proven elusive, until now.

A team of scientists led by Steve McCarroll, Ph.D., of the Broad Institute and Harvard Medical School, Boston, leveraged the statistical power conferred by analyzing the genomes of 65,000 people, 700 postmortem brains, and the precision of mouse genetic engineering to discover the secrets of schizophrenia’s strongest known genetic risk. C4’s role represents the most compelling evidence, to date, linking specific gene versions to a biological process that could cause at least some cases of the illness.

“Since schizophrenia was first described over a century ago, its underlying biology has been a black box, in part because it has been virtually impossible to model the disorder in cells or animals,” said McCarroll. “The human genome is providing a powerful new way in to this disease. Understanding these genetic effects on risk is a way of prying open that block box, peering inside and starting to see actual biological mechanisms.”

McCarroll’s team, including Harvard colleagues Beth Stevens, Ph.D., Michael Carroll, Ph.D., and Aswin Sekar, report on their findings online Jan. 27, 2016 in the journal Nature.

A swath of chromosome 6 encompassing several genes known to be involved in immune function emerged as the strongest signal associated with schizophrenia risk in genome-wide analyses by the NIMH-funded Psychiatric Genomics Consortium over the past several years. Yet conventional genetics failed to turn up any specific gene versions there linked to schizophrenia.

To discover how the immune-related site confers risk for the mental disorder, McCarroll’s team mounted a search for “cryptic genetic influences” that might generate “unconventional signals.” C4, a gene with known roles in immunity, emerged as a prime suspect because it is unusually variable across individuals. It is not unusual for people to have different numbers of copies of the gene and distinct DNA sequences that result in the gene working differently.

The researchers dug deeply into the complexities of how such structural variation relates to the gene’s level of expression and how that, in turn, might relate to schizophrenia. They discovered structurally distinct versions that affect expression of two main forms of the gene in the brain. The more a version resulted in expression of one of the forms, called C4A, the more it was associated with schizophrenia. The more a person had the suspect versions, the more C4 switched on and the higher their risk of developing schizophrenia. Moreover, in the human brain, the C4 protein turned out to be most prevalent in the cellular machinery that supports connections between neurons.

Adapting mouse molecular genetics techniques for studying synaptic pruning and C4’s role in immune function, the researchers also discovered a previously unknown role for C4 in brain development. During critical periods of postnatal brain maturation, C4 tags a synapse for pruning by depositing a sister protein in it called C3. Again, the more C4 got switched on, the more synapses got eliminated.

In humans, such streamlining/pruning occurs as the brain develops to full maturity in the late teens/early adulthood – conspicuously corresponding to the age-of-onset of schizophrenia symptoms.

Future treatments designed to suppress excessive levels of pruning by counteracting runaway C4 in at risk individuals might nip in the bud a process that could otherwise develop into psychotic illness, suggest the researchers. And thanks to the head start gained in understanding the role of such complement proteins in immune function, such agents are already in development, they note.

“This study marks a crucial turning point in the fight against mental illness. It changes the game,” added acting NIMH director Bruce Cuthbert, Ph.D. “Thanks to this genetic breakthrough, we can finally see the potential for clinical tests, early detection, new treatments and even prevention.”

###

VIDEO: Opening Schizophrenia’s Black Box https://youtu.be/s0y4equOTLg

Reference: Sekar A, Biala AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K Presumey J Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Daly MJ, Carroll MC, Stevens B, McCarroll SA. Schizophrenia risk from complex variation of complement component 4.Nature. Jan 27, 2016. DOI: 10.1038/nature16549.

Schizophrenia risk from complex variation of complement component 4

Aswin SekarAllison R. BialasHeather de RiveraAvery DavisTimothy R. Hammond, …., Michael C. CarrollBeth Stevens Steven A. McCarroll

Nature(2016)   http://dx.doi.org:/10.1038/nature16549

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia’s strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

Figure 1: Structural variation of the complement component 4 (C4) gene.

http://www.nature.com/nature/journal/vaop/ncurrent/carousel/nature16549-f1.jpg

a, Location of the C4 genes within the major histocompatibility complex (MHC) locus on human chromosome 6. b, Human C4 exists as two paralogous genes (isotypes), C4A and C4B; the encoded proteins are distinguished at a key site

http://www.nature.com/nature/journal/vaop/ncurrent/carousel/nature16549-f3.jpg

http://www.nature.com/nature/journal/vaop/ncurrent/carousel/nature16549-sf8.jpg

Gene Study Points Toward Therapies for Common Brain Disorders

University of Edinburgh    http://www.dddmag.com/news/2016/01/gene-study-points-toward-therapies-common-brain-disorders

Scientists have pinpointed the cells that are likely to trigger common brain disorders, including Alzheimer’s disease, Multiple Sclerosis and intellectual disabilities.

It is the first time researchers have been able to identify the particular cell types that malfunction in a wide range of brain diseases.

Scientists say the findings offer a roadmap for the development of new therapies to target the conditions.

The researchers from the University of Edinburgh’s Centre for Clinical Brain Sciences used advanced gene analysis techniques to investigate which genes were switched on in specific types of brain cells.

They then compared this information with genes that are known to be linked to each of the most common brain conditions — Alzheimer’s disease, anxiety disorders, autism, intellectual disability, multiple sclerosis, schizophrenia and epilepsy.

Their findings reveal that for some conditions, the support cells rather than the neurons that transmit messages in the brain are most likely to be the first affected.

Alzheimer’s disease, for example, is characterised by damage to the neurons. Previous efforts to treat the condition have focused on trying to repair this damage.

The study found that a different cell type — called microglial cells — are responsible for triggering Alzheimer’s and that damage to the neurons is a secondary symptom of disease progression.

Researchers say that developing medicines that target microglial cells could offer hope for treating the illness.

The approach could also be used to find new treatment targets for other diseases that have a genetic basis, the researchers say.

Dr Nathan Skene, who carried out the study with Professor Seth Grant, said: “The brain is the most complex organ made up from a tangle of many cell types and sorting out which of these cells go wrong in disease is of critical importance to developing new medicines.”

Professor Seth Grant said: “We are in the midst of scientific revolution where advanced molecular methods are disentangling the Gordian Knot of the brain and completely unexpected new pathways to solving diseases are emerging. There is a pressing need to exploit the remarkable insights from the study.”

Quantitative multimodal multiparametric imaging in Alzheimer’s disease

Qian Zhao, Xueqi Chen, Yun Zhou      Brain Informatics  http://link.springer.com/article/10.1007/s40708-015-0028-9

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, causing changes in memory, thinking, and other dysfunction of brain functions. More and more people are suffering from the disease. Early neuroimaging techniques of AD are needed to develop. This review provides a preliminary summary of the various neuroimaging techniques that have been explored for in vivo imaging of AD. Recent advances in magnetic resonance (MR) techniques, such as functional MR imaging (fMRI) and diffusion MRI, give opportunities to display not only anatomy and atrophy of the medial temporal lobe, but also at microstructural alterations or perfusion disturbance within the AD lesions. Positron emission tomography (PET) imaging has become the subject of intense research for the diagnosis and facilitation of drug development of AD in both animal models and human trials due to its non-invasive and translational characteristic. Fluorodeoxyglucose (FDG) PET and amyloid PET are applied in clinics and research departments. Amyloid beta (Aβ) imaging using PET has been recognized as one of the most important methods for the early diagnosis of AD, and numerous candidate compounds have been tested for Aβ imaging. Besides in vivo imaging method, a lot of ex vivo modalities are being used in the AD researches. Multiphoton laser scanning microscopy, neuroimaging of metals, and several metal bioimaging methods are also mentioned here. More and more multimodality and multiparametric neuroimaging techniques should improve our understanding of brain function and open new insights into the pathophysiology of AD. We expect exciting results will emerge from new neuroimaging applications that will provide scientific and medical benefits.

Keywords –   Alzheimer’s disease Neuroimaging PET MRI Amyloid beta Multimodal

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that gradually destroys brain cells, causing changes in memory, thinking, and other dysfunction of brain functions [1]. AD is considered to a prolonged preclinical stage where neuropathological changes precede the clinical symptoms [2]. An estimation of 35 million people worldwide is living with this disease. If effective treatments are not discovered in a timely fashion, the number of AD cases is anticipated to rise to 113 million by 2050 [3].

Amyloid beta (Aβ) and tau are two of the major biomarkers of AD, and have important and different roles in association with the progression of AD pathophysiology. Jack et al. established hypothetical models of the major biomarkers of AD. By renewing and modifying the models, they found that the two major proteinopathies underlying AD biomarker changes, Aβ and tau, may be initiated independently in late onset AD where they hypothesize that an incident Aβ pathophysiology can accelerate an antecedent limbic and brainstem tauopathy [4]. MRI technique was used in the article, which revealed that the level of Aβ load was associated with a shorter time-to-progression of AD [5]. This warrants an urgent need to develop early neuroimaging techniques of AD neuropathology that can detect and predict the disease before the onset of dementia, monitor therapeutic efficacy in halting and slowing down progression in the earlier stage of the disease.

There have been various reports on the imaging assessments of AD. Some measurements reflect the pathology of AD directly, including positron emission tomography (PET) amyloid imaging and cerebrospinal fluid (CSF) beta-amyloid 42 (Aβ42), while others reflect neuronal injury associated with AD indirectly, including CSF tau (total and phosphorylated tau), fluorodeoxy-d-glucose (FDG)-PET, and MRI. AD Neuroimaging Initiative (ADNI) has been to establish the optimal panel of clinical assessments, MRI and PET imaging measures, as well as other biomarkers from blood and CSF, to inform clinical trial design for AD therapeutic development. At the same time, it has been highly productive in generating a wealth of data for elucidating disease mechanisms occurring during early stages of preclinical and prodromal AD [6].

Single neuroimaging often reflects limit information of AD. As a result, multimodal neuroimaging is widely used in neuroscience researches, as it overcomes the limitations of individual modalities. Multimodal multiparametric imaging mean the combination of different imaging techniques, such as PET, MRI, simultaneously or separately. The multimodal multiparametric imaging enables the visualization and quantitative analysis of the alterations in brain structure and function, such as PET/CT, and PET/MRI. [7]. In this review article, we summarize and discuss the main applications, findings, perspectives as well as advantages and challenges of different neuroimaging in AD, especially MRI and PET imaging.

2 Magnetic resonance imaging

MRI demonstrates specific volume loss or cortical atrophy patterns with disease progression in AD patients [810]. There are several MRI techniques and analysis methods used in clinical and scientific research of AD. Recent advances in MR techniques, such as functional MRI (fMRI) and diffusion MRI, depict not only anatomy and atrophy of the medial temporal lobe (MTL), but also microstructural alterations or perfusion disturbance within this region.

2.1 Functional MRI

Because of the cognitive reserve (CR), the relationship between severity of AD patients’ brain damage and corresponding clinical symptoms is not always paralleled [11, 12]. Recently, resting-state fMRI (RS-fMRI) is popular for its ability to map brain functional connectivity non-invasively [13]. By using RS-fMRI, Bozzali et al. reported that the CR played a role in modulating the effect of AD pathology on default mode network functional connectivity, which account for the variable clinical symptoms of AD [14]. Moreover, AD patients with higher educated experience were able to recruit compensatory neural mechanisms, which can be measured using RS-fMRI. Arterial spin-labeled (ASL) MRI is another functional brain imaging modality, which measures cerebral blood flow (CBF) by magnetically labeled arterial blood water following through the carotid and vertebral arteries as an endogenous contrast medium. Several studies have concluded the characteristics of CBF changes in AD patients using ASL-MRI [1517].

At some point in time, sufficient brain damage accumulates to result in cognitive symptoms and impairment. Mild cognitive impairment (MCI) is a condition in which subjects are usually only mildly impaired in memory with relative preservation of other cognitive domains and functional activities and do not meet the criteria for dementia [18], or as the prodromal state AD [19]. MCI patients are at a higher risk of developing AD and up to 15 % convert to AD per year [18]. Binnewijzend et al. have reported the pseudocontinuous ASL could distinguish both MCI and AD from healthy controls, and be used in the early diagnosis of AD [20]. In their continuous study, they used quantitative whole brain pseudocontinuous ASL to compare regional CBF (rCBF) distribution patterns in different types of dementia, and concluded that ASL-MRI could be a non-invasive and easily accessible alternative to FDG-PET imaging in the assessment of CBF of AD patients [21].

2.2 Structure MRI

Structural MRI (sMRI) has already been a reliable imaging method in the clinical diagnosis of AD, characterized as gray matter reduction and ventricular enlargement in standard T1-weighted sequences [9]. Locus coeruleus (LC) and substantia nigra (SN) degeneration was seen in AD. By using new quantitative calculating method, Chen et al. presented a new quantitative neuromelanin MRI approach for simultaneous measurement of locus LC and SN of brainstem in living human subjects [22]. The approach they used demonstrated advantages in image acquisition, pre-processing, and quantitative analysis. Numerous transgenic animal models of amyloidosis are available, which can manipulate a lot of neuropathological features of AD progression from the deposition of β-amyloid [23]. Braakman et al. demonstrated the dynamics of amyloid plaque formation and development in a serial MRI study in a transgenic mouse model [24]. Increased iron accumulation in gray matter is frequently observed in AD. Because of the paramagnetic nature of iron, MRI shows nice potential in the investigating iron levels in AD [25]. Quantitative MRI was shown high sensitivity and specificity in mapping cerebral iron deposition, and helped in the research on AD diagnosis [26].

The imaging patterns are always associated with the pathologic changes, such as specific protein markers. Spencer et al. manifested the relationship between quantitative T1 and T2 relaxation time changes and three immunohistochemical markers: β-amyloid, neuron-specific nuclear protein (a marker of neuronal cell load), and myelin basic protein (a marker of myelin load) in AD transgenic mice [27].

High-field MRI has been successfully applied to imaging plaques in transgenic mice for over a decade without contrast agents [24, 2830]. Sillerud et al. devised a method using blood–brain barrier penetrating, amyloid-targeted, superparamagnetic iron oxide nanoparticles (SPIONs) for better imaging of amyloid plaque [31]. Then, they successfully used this SPION-MRI to assess the drug efficacy on the 3D distribution of Aβ plaques in transgenic AD mouse [32].

2.3 Diffusion MRI

Diffusion-weighted imaging (DWI) is a sensitive tool that allows quantifying of physiologic alterations in water diffusion, which result from microscopic structural changes.

Diffusion tensor imaging (DTI) is a well-established and commonly employed diffusion MRI technique in clinical and research on neuroimaging studies, which is based on a Gaussian model of diffusion processes [33]. In general, AD is associated with widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) in several regions, most prominently in the frontal and temporal lobes, and along the cingulum, corpus callosum, uncinate fasciculus, superior longitudinal fasciculus, and MTL-associated tracts than healthy controls [3437]. Acosta-Cabronero et al. reported increased axial diffusivity and MD in the splenium, which were the earliest abnormalities in AD [38]. FA and radial diffusivity (DR) differences in the corpus callosum, cingulum, and fornix were found to separate individuals with MCI who converted to AD from non-converters [39]. DTI was also found to be a better predictor of AD-specific MTL atrophy when compared to CSF biomarkers [40]. These findings suggested the potential clinical utility of DTI as early biomarkers of AD and its progression. However, an increase in MD and DR and a decrease in FA with advancing age in selective brain regions have been previously reported [41, 42]. Diffusion MRI can be also used in the classifying of various stages of AD. Multimodal classification method, which combined fMRI and DTI, separated more MCI from healthy controls than single approaches [43].

In recent years, tau has emerged as a potential target for therapeutic intervention. Tau plays a critical role in the neurodegenerative process forming neurofibrillary tangles, which is a major hallmark of AD and correlates with clinical disease progression. Wells et al. applied multiparametric MRI, containing high-resolution structure MRI (sMRI), a novel chemical exchange saturation transfer (CEST) MRI, DTI, and ASL, and glucose CEST to measure changes of tau pathology in AD transgenic mouse [44].

Besides DWI MRI, perfusion-weighted imaging (PWI) is another advanced MR technique, which could measure the cerebral hemodynamics at the capillary level. Zimny et al. evaluated the correlation of MTL with both DWI and PWI in AD and MCI patients [45].

3 Positron emission tomography

PET is a specific imaging technique applying in researches of brain function and neurochemistry of small animals, medium-sized animals, and human subjects [4648]. As a particular brain imaging technique, PET imaging has become the subject of intense research for the diagnosis and facilitation of drug development of AD in both animal models and human trials due to its non-invasive and translational characteristic. PET with various radiotracers is considered as a standard non-invasive quantitative imaging technique to measure CBF, glucose metabolism, and β-amyloid and tau deposition.

3.1 FDG-PET

To date, 18F-FDG is one of the best and widely used neuroimaging tracers of PET, which employed for research and clinical assessment of AD [49]. Typical lower FDG metabolism was shown in the precuneus, posterior cingulate, and temporal and parietal cortex with progression to whole brain reductions with increasing disease progress in AD brains [50, 51]. FDG-PET imaging reflects the cerebral glucose metabolism, neuronal injury, which provides indirect evidence on cognitive function and progression that cannot be provided by amyloid PET imaging.

Schraml et al. [52] identified a significant association between hypometabolic convergence index and phenotypes using ADNI data. Some researchers also used 18F-FDG-PET to analyze genetic information with multiple biomarkers to classify AD status, predicting cognitive decline or MCI to AD conversion [5355]. Trzepacz et al. [56] reported multimodal AD neuroimaging study, using MRI, 11C-PiB PET, and 18F-FDG-PET imaging to predict MCI conversion to AD along with APOE genotype. Zhang et al. [57] compared the genetic modality single-nucleotide polymorphism (SNP) with sMRI, 18F-FDG-PET, and CSF biomarkers, which were used to differentiate healthy control, MCI, and AD. They found FDG-PET is the best modality in terms of accuracy.

3.2 Amyloid beta PET

Aβ, the primary constituent of senile plaques, and tau tangles are hypothesized to play a primary role in the pathogenesis of AD, but it is still hard to identify the fundamental mechanisms [5860]. Aβ plaque in brain is one of the pathological hallmarks of AD [61,62]. Accumulation of Aβ peptide in the cerebral cortex is considered one cause of dementia in AD [63]. Numerous studies have involved in vivo PET imaging assessing cortical β-amyloid burden [6466].

Aβ imaging using PET has been recognized as one of the most important methods for the early diagnosis of AD [67]. Numerous candidate compounds have been tested for Aβ imaging, such as 11C-PiB [68], 18F-FDDNP [69], 11C-SB-13 [70], 18F-BAY94-9172 [71], 18F-AV-45 [72], 18F-flutemetamol [73, 74], 11C-AZD2184 [75], and 18F-ADZ4694 [76], 11C-BF227 and 18F-FACT [77].

Several amyloid PET studies examined genotypes, phenotypes, or gene–gene interactions. Ramanan et al. [78] reported the GWAS results with 18F-AV-45 reflecting the cerebral amyloid metabolism in AD for the first time. Swaminathan et al. [79] revealed the association between plasma Aβ from peripheral blood and cortical amyloid deposition on 11C-PiB. Hohman et al. [80] reported the relationship between SNPs involved in amyloid and tau pathophysiology with 18F-AV-45 PET.

Among the PET tracers, 11C-PiB, which has a high affinity for fibrillar Aβ, is a reliable biomarker of underlying AD pathology [68, 81]. It shows cortical uptake well paralleled with AD pathology [82, 83], has recently been approved for use by the Food and Drug Administration (FDA, April 2012) and the European Medicines Agency (January 2013). 18F-GE-067 (flutemetamol) and 18F-BAY94-9172 (florbetaben) have also been approved by the US FDA in the last 2 years [84, 85].

18F-Florbetapir (also known as 18F-AV-45) exhibits high affinity specific binding to amyloid plaques. 18F-AV-45 labels Aβ plaques in sections from patients with pathologically confirmed AD [72].

It was reported in several research groups that 18F-AV-45 PET imaging showed a reliability of both qualitative and quantitative assessments in AD patients, and Aβ+ increased with diagnostic category (healthy control < MCI < AD) [82, 86, 87]. Johnson et al. used 18F-AV-45 PET imaging to evaluate the amyloid deposition in both MCI and AD patients qualitatively and quantitatively, and found that amyloid burden increased with diagnostic category (MCI < AD), age, and APOEε4 carrier status [88]. Payoux et al. reported the equivocal amyloid PET scans using 18F-AV-45 associated with a specific pattern of clinical signs in a large population of non-demented older adults more than 70 years old [89].

More and more researchers consider combination and comparison of multiple PET tracers targeting amyloid plaque imaging together. Bruck et al. compared the prognostic ability of 11C-PiB PET, 18F-FDG-PET, and quantitative hippocampal volumes measured with MR imaging in predicting MCI to AD conversion. They found that the FDG-PET and 11C-PiB PET imaging are better in predicting MCI to AD conversion [90]. Hatashita et al. used 11C-PiB and FDG-PET imaging to identify MCI due to AD, 11C-PiB showed a higher sensitivity of 96.6 %, and FDG-PET added diagnostic value in predicting AD over a short period [91].

Besides, new Aβ imaging agents were radiosynthesized. Yousefi et al. radiosynthesized a new Aβ imaging agent 18F-FIBT, and compared the three different Aβ-targeted radiopharmaceuticals for PET imaging, including 18F-FIBT, 18F-florbetaben, and 11C-PiB [92]. 11C-AZD2184 is another new PET tracer developed for amyloid senile plaque imaging, and the kinetic behavior of 11C-AZD2184 is suitable for quantitative analysis and can be used in clinical examination without input function [75,93, 94].

4 Multimodality imaging: PET/MRI

Several diagnostic techniques, including MRI and PET, are employed for the diagnosis and monitoring of AD [95]. Multimodal imaging could provide more information in the formation and key molecular event of AD than single method. It drives the progression of neuroimaging research due to the recognition of the clinical benefits of multimodal data [96], and the better access to hybrid devices, such as PET/MRI [97].

Maier et al. evaluated the dynamics of 11C-PiB PET, 15O-H2O-PET, and ASL-MRI in transgenic AD mice and concluded that the AD-related decline of rCBF was caused by the cerebral Aβ angiopathy [98]. Edison et al. systematically compared 11C-PiB PET and MRI in AD, MCI patients, and controls. They thought that 11C-PiB PET was adequate for clinical diagnostic purpose, while MRI remained more appropriate for clinical research [99]. Zhou et al. investigated the interactions between multimodal PET/MRI in elder patients with MCI, AD, and healthy controls, and confirmed the invaluable application of amyloid PET and MRI in early diagnosis of AD [100]. Kim et al. reported that Aβ-weighted cortical thickness, which incorporates data from both MRI and amyloid PET imaging, is a consistent and objective imaging biomarker in AD [101].

5 Other imaging modalities

Multiphoton non-linear optical microscope imaging systems using ultrafast lasers have powerful advantages such as label-free detection, deep penetration of thick samples, high sensitivity, subcellular spatial resolution, 3D optical sectioning, chemical specificity, and minimum sample destruction [102, 103]. Coherent anti-Stokes–Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation (SHG) microscopy are the most widely used biomedical imaging techniques [104106].

Quantitative electroencephalographic and neuropsychological investigation of an alternative measure of frontal lobe executive functions: the Figure Trail Making Test

 Paul S. Foster, Valeria Drago, Brad J. Ferguson, Patti Kelly Harrison,David W. Harrison 

Brain Informatis    http://dx.doi.org:/10.1007/s40708-015-0025-z    http://link.springer.com/article/10.1007/s40708-015-0025-z/fulltext.html

The most frequently used measures of executive functioning are either sensitive to left frontal lobe functioning or bilateral frontal functioning. Relatively little is known about right frontal lobe contributions to executive functioning given the paucity of measures sensitive to right frontal functioning. The present investigation reports the development and initial validation of a new measure designed to be sensitive to right frontal lobe functioning, the Figure Trail Making Test (FTMT). The FTMT, the classic Trial Making Test, and the Ruff Figural Fluency Test (RFFT) were administered to 42 right-handed men. The results indicated a significant relationship between the FTMT and both the TMT and the RFFT. Performance on the FTMT was also related to high beta EEG over the right frontal lobe. Thus, the FTMT appears to be an equivalent measure of executive functioning that may be sensitive to right frontal lobe functioning. Applications for use in frontotemporal dementia, Alzheimer’s disease, and other patient populations are discussed.

Keywords – Frontal lobes, Executive functioning, Trail making test, Sequencing, Behavioral speed, Designs, Nonverbal, Neuropsychological assessment, Regulatory control, Effortful control

A recent survey indicated that the vast majority of neuropsychologists frequently assess executive functioning as part of their neuropsychological evaluations [1]. Surveys of neuropsychologists have indicated that the Trail Making Test (TMT), Controlled Oral Word Association Test (COWAT), Wisconsin Card Sorting Test (WCST), and the Stroop Color-Word Test (SCWT) are among the most commonly used instruments [1,2]. Further, the Rabin et al. [1] survey indicated that these same tests are among the most frequently used by neuropsychologists when specifically assessing executive or frontal lobe functioning. The frequent use of the TMT, WCST, and the SCWT, as well as the assumption that they are measures of executive functioning, led Demakis (2003–2004) to conduct a series of meta-analyses to determine the sensitivity of these test to detect frontal lobe dysfunction, particularly lateralized frontal lobe dysfunction. The findings indicated that the SCWT and Part A of the TMT [3], as well as the WCST [4], were all sensitive to frontal lobe dysfunction. However, only the SCWT differentiated between left and right frontal lobe dysfunction, with the worst performance among those with left frontal lobe dysfunction [3].

The finding of the Demakis [4] meta-analysis, that the WCST was not sensitive to lateralized frontal lobe dysfunction, is not surprising given the equivocal findings that have been reported. Whereas performance on the WCST is sensitive to frontal lobe dysfunction [5, 6], demonstration of lateralized frontal dysfunction has been quite problematic. Unilateral left or right dorsolateral frontal dysfunction has been associated with impaired performance on the WCST [6]. Fallgatter and Strik [7] found bilateral frontal lobe activation during performance of the WCST. However, other imaging studies have found right lateralized frontal lobe activation [8] and left lateralized frontal activation [9] in response to performance on the WCST. Further, left frontal lobe alpha power is negatively correlated with performance on the WCST [10]. Finally, patients with left frontal lobe tumors exhibit more impaired performance on the WCST than those with right frontal tumors [11].

Unlike the data for the WCST, more consistent findings have been reported regarding lateralized frontal lobe functioning for the other commonly used measures of executive functioning. For instance, as with the Demakis [3] study, many investigations have found the SCWT to be sensitive to left frontal lobe functioning, although the precise localization within the left frontal lobe has varied. Impaired performance on the SCWT results from left frontal lesions [12] and specifically from lesions localized to the left dorsolateral frontal lobe [13, 14], though bilateral frontal lesions have also yielded impaired performance [13, 14]. Further, studies using neuroimaging to investigate the neural basis of performance on the SCWT have indicated involvement of the left anterior cingulated cortex [15], left lateral prefrontal cortex [16], left inferior precentral sulcus [17], and the left dorsolateral frontal lobe [18].

Wide agreement exists among investigations of the frontal lateralization of verbal or lexical fluency to confrontation. Specifically, patients with left frontal lobe lesions are known to exhibit impaired performance on lexical fluency to confrontation tasks, relative to either patients with right frontal lesions [12, 19, 20] or controls [21]. A recent meta-analysis also indicated that the largest deficits in performance on measures of lexical fluency are associated with left frontal lobe lesions [22]. Troster et al. [23] found that, relative to patients with right pallidotomy, patients with left pallidotomy exhibited more impaired lexical fluency. Several neuroimaging investigations have further supported the role of the left frontal lobe in lexical fluency tasks [15, 2427]. Performance on lexical fluency tasks also varies as a function of lateral frontal lobe asymmetry, as assessed by electroencephalography [28].

The Trail Making Test is certainly among the most widely used tests [1] and perhaps the most widely researched. Various norms exist for the TMT (see [29]), with Tombaugh [30] providing the most recent comprehensive set of normative data. Different methods of analyzing and interpreting the data have also been proposed and used, including error analysis [13, 14, 3133], subtraction scores [13, 14, 34], and ratio scores [13, 14, 35].

Several different language versions of the test have been developed and reported, including Arabic [36], Chinese [37, 38], Greek [39], and Hebrew [40]. Numerous alternative versions of the TMT have been developed to address perceived shortcomings of the original TMT. For instance, the Symbol Trail Making Test [41] was developed to reduce the cultural confounds associated with the use of the Arabic numeral system and English alphabet in the original TMT. The Color Trails Test (CTT; [42]) was also developed to control for cultural confounds, although mixed results have been reported regarding whether the CTT is indeed analogous to the TMT [4345]. A version of the TMT for preschool children, the TRAILS-P, has also been reported [46].

Additionally, the Comprehensive Trail Making Test [47] was developed to control for perceived psychometric shortcomings of the original TMT (for a review see [48] and the Oral Trail Making Test (OTMT; [49]) was developed to reduce confounds associated with motor speed and visual search abilities, with research supporting the OTMT as an equivalent measure [50, 51]. Alternate forms of the TMT have also been developed to permit successive administrations [32, 52] and to assess the relative contributions of the requisite cognitive skills [53].

Delis et al. [54] stated that the continued development of new instrumentation for improving diagnosis and treatment is a critical undertaking in all health-related fields. Further, in their view, the field of neuropsychology has recognized the importance of continually striving to develop new clinical measures. Delis and colleagues developed the extensive Delis-Kaplan Executive Functioning System (D-KEFS; [55]) in the spirit of advancing the instrumentation of neuropsychology. The D-KEFS includes a Trail Making Test consisting of five separate conditions. The Number-Letter Switching condition involves a sequencing procedure similar to that of the classic TMT. The other four conditions are designed to assess the component processes involved in completing the Number-Letter Switching condition so that a precise analysis of the nature of any underlying dysfunction may be accomplished. Specifically, these additional components include Visual Scanning, Number Sequencing, Letter Sequencing, and Motor Speed.

Given that the TMT comprises numbers and letters and is a measure of executive functioning, it may preferentially involve the left frontal lobe. Although the literature is somewhat controversial, neuropsychological and neuroimaging studies seem to provide support for the sensitivity of the TMT to detect left frontal dysfunction [56]. Recent clinically oriented studies investigating frontal lobe involvement of the TMT using transcranial magnetic stimulation (TMS) and near-infrared spectroscopy (NIRS) also support this localization [57]. Performance on Part B of the TMT improved following repetitive TMS applied to the left dorsolateral frontal lobe [57].

With 9–13-year-old boys performing TMT Part B, Weber et al. [58] found a left lateralized increase in the prefrontal cortex in deoxygenated hemoglobin, an indicator of increased oxygen consumption. Moll et al. [59] demonstrated increased activation specific to the prefrontal cortex, especially the left prefrontal region, in healthy controls performing Part B of the TMT. Foster et al. [60] found a significant positive correlation between performance on Part A of the TMT and low beta (13–21 Hz) magnitude (μV) at the left lateral frontal lobe, but not at the right lateral frontal lobe. Finally, Stuss et al. [13, 14] found that patients with left dorsolateral frontal dysfunction evidenced more errors than patients with lesions in other areas of the frontal lobes and those patients with left frontal lesions were the slowest to complete the test.

Taken together, the possibility exists that the aforementioned tests are largely associated with left frontal lobe activity and the TMT, in particular, provides information concerning mental processing speed as well as cognitive flexibility and set-shifting. While some studies have found that deficits in visuomotor set-shifting are specific to the frontal lobe damage [61], others investigators have reported such impairment in patients with posterior brain lesions and widespread cerebral dysfunctions, including cerebellar damage [62] and Alzheimer disease [63]. Thus, it remains unclear whether impairments in visuomotor set-shifting are specific to frontal lobe dysfunction or whether they are non-specific and can result from more posterior or widespread brain dysfunction.

Compared to the collective knowledge we have regarding the cognitive roles of the left frontal lobe, relatively little is known about right frontal lobe contributions to executive functioning. This is likely a result of the dearth of tests that are associated with right frontal activity. The Ruff Figural Fluency Test (RFFT; [64]) is among the few standardized tests of right frontal lobe functioning and was listed as the 14th most commonly used instrument to assess executive functioning in the Rabin et al. [1] survey. The RFFT is known to be sensitive to right frontal lobe functioning [65, 66]; see also [67] pp. 297–298), as is a measure based on the RFFT [19].

The present investigation, with the same intent and spirit as that reported by Delis et al. [54], sought to develop and initially validate a measure of right frontal lobe functioning in an effort to attain a greater understanding of right frontal contributions to executive functioning and to advance the instrumentation of neuropsychology. To meet this objective, a version of the Trail Making Test comprising figures, as opposed to numbers and letters, was developed. The TMT was used as a model for the new test, referred to as the Figure Trail Making Test (FTMT), due to the high frequency of use, the volume of research conducted, and the ease of administration of the TMT. Given that the TMT and the FTMT are both measuring executive functioning, we felt that a moderate correlation would exist between these two measures. Specifically, we hypothesized that performance on the FTMT would be positively correlated with performance on the TMT, in terms of the total time required to complete each part of the tests, an additive and subtractive score, and a ratio score. The total time required to complete each part of the FTMT was also hypothesized to be negatively correlated with the total number of unique designs produced on the RFFT and positively correlated with the number of perseverative errors committed on the RFFT and the perseverative error ratio. We also sought to determine whether the TMT and the FTMT were measuring different constructs by conducting a factor analysis, anticipating that the two tests would load on separate factors.

Additionally, we sought to obtain neurophysiological evidence that the FTMT is sensitive to right frontal lobe functioning. Specifically, we used quantitative electroencephalography (QEEG) to measure electrical activity over the left and right frontal lobes. A previous investigation we conducted found that performance on Part A of the TMT was related to left frontal lobe (F7) low beta magnitude [60]. For the present investigation, we predicted that significant negative correlations would exist between performance on Parts A and B of the TMT and both low and high beta magnitude at the F7 electrode site. We further predicted that significant negative correlations would exist between performance on Parts C and D of the FTMT and both low and high beta magnitude at the F8 electrode site.

3 Discussion

The need for additional measures of executive functions and especially instruments which may provide implications relevant to cerebral laterality is clear. There remains especially a void for neuropsychological instruments using a TMT format, which may provide information pertaining to the functional integrity of the right frontal region. Consistent with the hypotheses forwarded, significant correlations were found between performance on the TMT and the FTMT, in terms of the raw time required to complete each respective part of the tests as well as the additive and subtraction scores. The fact that the ratio scores were not significantly correlated is not surprising given that research has generally indicated a lack of clinical utility for this score [13, 14, 35]. Given the present findings, the TMT and the FTMT appear to be equivalent measures of executive functioning. Further, the present findings not only suggest that the FTMT may be a measure of executive functioning but also extend the realm of executive functioning to the sequencing and set-shifting of nonverbal stimuli.

However, the finding of significant correlations between the TMT and the FTMT represents somewhat of a caveat in that the TMT has been found to be sensitive to left frontal lobe functioning [13, 14, 57, 59]. This would seem to suggest the possibility that the FTMT is also sensitive to left frontal lobe functioning. The possibility that FTMT is related to left frontal lobe functioning is tempered, though, by the fact that the many of the hypothesized correlations between performance on the RFFT and the FTMT were also significant. Performance on the RFFT is related to right frontal lobe functioning [65,66]. Thus, the significant correlations between the RFFT and the FTMT suggest that the FTMT may also be sensitive to right frontal lobe functioning. Additionally, it should also be noted that the TMT was not significantly correlated with performance on the RFFT, with the exception of the significant correlation between performance on the TMT Part A and the total number of unique designs produced on the RFFT. Taken together, the results suggest that the FTMT may be a measure of right frontal executive functioning.

Additional support for the sensitivity of the FTMT to right frontal lobe functioning is provided by the finding of a significant negative correlation between performance on Part D of the FTMT and high beta magnitude. We have previously used QEEG to provide neurophysiological validation of the RFFT [65] and the Rey Auditory Verbal Learning Test [70] and the present findings provide further support for the use of QEEG in validating neuropsychological tests. The lack of significant correlations between the TMT and either low or high beta magnitude may be related to a restricted range of scores on the TMT. As a whole, performance on the FTMT was more variable than performance on the TMT and this relatively restricted range for the TMT may have impacted the obtained correlations. Given the present findings, together with those of the Foster et al. [65, 70] investigations, further support is also provided for the use of EEG in establishing neurophysiological validation for neuropsychological tests.

The results from the factor analysis provide support for the contention that the FMT may be a measure of right frontal lobe activity and also provide initial discriminant validity for the FTMT. Specifically, Parts C and D of the FTMT were found to load on the same factor as the number of designs generated on the RFFT, although the time required to complete Part A of the TMT is also included. Additionally, the number of errors committed on Parts C and D of the FTMT comprises a single factor, separate from either the TMT or the RFFT. Although these results support the FTMT as a measure of nonverbal executive functioning, it would be helpful to conduct an additional factor analysis including additional measures of right frontal functioning, and perhaps other measures of right hemisphere functioning as marker variables.

We sought to develop a measure sensitive to right frontal lobe functioning due to the paucity of such tests and the potentially important uses that right frontal lobe tests may have clinically. Tests of right frontal lobe functioning may, for instance, be useful in identifying and distinguishing left versus right frontotemporal dementia (FTD). Research has indicated that FTD is associated with cerebral atrophy at the right dorsolateral frontal and left premotor cortices [71]. Fukui and Kertesz [72] found right frontal lobe volume reduction in FTD relative to Alzheimer’s disease and progressive nonfluent aphasia. Some have suggested that FTD should not be considered as a unitary disorder and that neuropsychological testing may aid in differentially diagnosing left versus right FTD [73].

Whereas right FTD has been associated with more errors and perseverative responses on the Wisconsin Card Sorting Test (WCST), left FTD has been associated with significantly worse performance on the Boston Naming Test (BNT) and the Stroop Color-Word test [73]. Razani et al. [74] also distinguished between left and right FTD in finding that left FTD performed worse on the BNT and the right FTD patients performed worse on the WCST. However, as noted earlier, the WCST has been associated with left frontal activity [9], right frontal activation [8], and bilateral frontal activation [7]. Further, patients with left frontal tumors perform worse than those with right frontal tumors [11].

Patients with FTD that predominantly involves the right frontotemporal region have behavioral and emotional abnormalities and those with predominantly left frontotemporal region damage have a loss of lexical semantic knowledge. Patients, in whom neural degeneration begins on the left side, often present to the clinicians at an early stage of the disease due to the presence of language abnormalities, but maintain their emotion processing abilities, being preserved the right anterior temporal lobe. However, as this disease advances, the disease may progress to the right frontotemporal regions. Tests sensitive to right frontal lobe functioning may be useful tools to identify in advance the course of the disease, providing immediate and specific treatments and informing the caregivers on the possible prospective frame of the disease.

A potentially more important use of tests sensitive to right frontal lobe functioning, though, may be in predicting dementia patients that will develop significant and disruptive behavioral deficits. Research has found that approximately 92 % of right-sided FTD patients exhibit socially undesirable behaviors as their initial symptom, as compared to only 11 % of left-sided FTD patients [75]. Behavioral deficits in FTD are associated with gray matter loss at the dorsomedial frontal region, particularly on the right [76].

Alzheimer’s disease (AD) is also often associated with significant behavioral disturbances. Even AD patients with mild dementia are noted to exhibit behavioral deficits such as delusions, hallucinations, agitation, dysphoria, anxiety, apathy, and irritability [77]. Indeed, Shimabukuro et al. [77] found that regardless of dementia severity, over half of all AD patients exhibited apathy, delusions, irritability, dysphoria, and anxiety. Delusions in AD patients are associated with relative right frontal hypoperfusion as indicated by SPECT imaging [78, 79]. Further, positron emission tomography (PET) has indicated that AD patients exhibiting delusions exhibit hypometabolism at the right superior dorsolateral frontal and right inferior frontal pole [80].

Although research clearly implicates right frontal lobe dysfunction in the expression of behavioral deficits, data from neuropsychological testing are not as clear. Negative symptoms in patients with AD and FTD have been related to measures of nonverbal and verbal executive functioning as well as verbal memory [81]. Positive symptoms, in contrast, were related to constructional skills and attention. However, Staff et al. [78] failed to dissociate patients with delusions from those without delusions based on neuropsychological test performance, despite significant differences existing in right frontal and limbic functioning as revealed by functional imaging. The inclusion of other measures of right frontal lobe functioning may result in improved neuropsychological differentiation of dementia patients with and without significant behavioral disturbances. Further, it may be possible to predict early in the disease process those patients that will ultimately develop behavioral disturbances with improved measures of right frontal functioning. Predicting those that may develop behavioral problems will permit earlier treatment and will provide the family with more time to prepare for the potential emergence of such difficulties. Certainly, future research needs to be conducted that incorporates measures of right and left frontal lobe functioning in regression analyses to determine the plausibility of such prediction.

Tests sensitive to right frontal lobe functioning may also be useful in identifying more subtle right frontal lobe dysfunction and the cognitive and behavioral changes that follow. The right frontal lobe mediates language melody or prosody and forms a cohesive discourse, interprets abstract communication in spoken and written languages, and interprets the inferred relationships involved in communications. Subtle difficulties in interpreting abstract meaning in communication, comprehending metaphors, and even understanding jokes that are often seen in right frontal lobe stroke patients may not be detected by the family and may also be under diagnosed by clinicians [82]. Further, patients with right frontal lobe lesions are generally more euphoric and unconcerned, often minimizing their symptoms [82] or denying the illness, which may delay referral to a clinician and diagnosis.

Attention deficit hyperactivity disorder (ADHD) is a neurological disease characterized by motor inhibition deficit, problems with cognitive flexibility, social disruption, and emotional disinhibition [83, 84]. Functional MRI studies reveal reduced right prefrontal activation during “frontal tasks,” such as go/no go [85], Stroop [86], and attention task performance [87]. The right frontal lobe deficit hypothesis is further supported by structural studies [88, 89]. Tests of right frontal lobe functioning may be useful in further characterizing the nature of this deficit and in specifying the likely hemispheric locus of dysfunction.

To summarize, we feel that right frontal lobe functioning has been relatively neglected in neuropsychological assessment and that many uses for such tests exist. Our intent was to develop a test purportedly sensitive to right frontal functioning that would be easy and quick to administer in a clinical setting. However, we are certainly not meaning to assert that our FTMT would be applicable in all the aforementioned conditions. Additional research should be conducted to determine the precise clinical utility of the FTMT.

Further validation of the FTMT should also be undertaken. Establishing convergent validation may involve correlating tests measuring the same domain, such as executive functioning. This was initially accomplished in the present investigation through the significant correlations between the TMT and the FTMT. Additionally, convergent validation may also involve correlating tests that purportedly measure the same region of the brain. This was also initially accomplished in the present investigation through the significant correlations between the FTMT and the RFFT. However, additional convergent validation certainly needs to be obtained, as well as validation using patient populations and neurophysiological validation.

We are currently collecting data that hopefully will provide neurophysiological validation of the FTMT. Certainly, though, it is hoped that the present investigation will not only stimulate further research seeking to validate the FTMT and provide more comprehensive normative data, but also stimulate research investigating whether the FTMT or other measures of right frontal lobe functioning may be used to predict patients that will develop behavioral disturbances.

World’s Greatest Literature Reveals Multifractals, Cascades of Consciousness

http://www.scientificcomputing.com/news/2016/01/worlds-greatest-literature-reveals-multifractals-cascades-consciousness

http://www.scientificcomputing.com/sites/scientificcomputing.com/files/Worlds_Greatest_Literature_Reveals_Multifractals_Cascades_of_Consciousness_440.jpg

Multifractal analysis of Finnegan’s Wake by James Joyce. The ideal shape of the graph is virtually indistinguishable from the results for purely mathematical multifractals. The horizontal axis represents the degree of singularity, and the vertical axis shows the spectrum of singularity. Courtesy of IFJ PAN

Arthur Conan Doyle, Charles Dickens, James Joyce, William Shakespeare and JRR Tolkien. Regardless of the language they were working in, some of the world’s greatest writers appear to be, in some respects, constructing fractals. Statistical analysis, however, revealed something even more intriguing. The composition of works from within a particular genre was characterized by the exceptional dynamics of a cascading (avalanche) narrative structure. This type of narrative turns out to be multifractal. That is, fractals of fractals are created.

As far as many bookworms are concerned, advanced equations and graphs are the last things which would hold their interest, but there’s no escape from the math. Physicists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Cracow, Poland, performed a detailed statistical analysis of more than one hundred famous works of world literature, written in several languages and representing various literary genres. The books, tested for revealing correlations in variations of sentence length, proved to be governed by the dynamics of a cascade. This means that the construction of these books is, in fact, a fractal. In the case of several works, their mathematical complexity proved to be exceptional, comparable to the structure of complex mathematical objects considered to be multifractal. Interestingly, in the analyzed pool of all the works, one genre turned out to be exceptionally multifractal in nature.

Fractals are self-similar mathematical objects: when we begin to expand one fragment or another, what eventually emerges is a structure that resembles the original object. Typical fractals, especially those widely known as the Sierpinski triangle and the Mandelbrot set, are monofractals, meaning that the pace of enlargement in any place of a fractal is the same, linear: if they at some point were rescaled x number of times to reveal a structure similar to the original, the same increase in another place would also reveal a similar structure.

Multifractals are more highly advanced mathematical structures: fractals of fractals. They arise from fractals ‘interwoven’ with each other in an appropriate manner and in appropriate proportions. Multifractals are not simply the sum of fractals and cannot be divided to return back to their original components, because the way they weave is fractal in nature. The result is that, in order to see a structure similar to the original, different portions of a multifractal need to expand at different rates. A multifractal is, therefore, non-linear in nature.

“Analyses on multiple scales, carried out using fractals, allow us to neatly grasp information on correlations among data at various levels of complexity of tested systems. As a result, they point to the hierarchical organization of phenomena and structures found in nature. So, we can expect natural language, which represents a major evolutionary leap of the natural world, to show such correlations as well. Their existence in literary works, however, had not yet been convincingly documented. Meanwhile, it turned out that, when you look at these works from the proper perspective, these correlations appear to be not only common, but in some works they take on a particularly sophisticated mathematical complexity,” says Professor Stanislaw Drozdz, IFJ PAN, Cracow University of Technology.

The study involved 113 literary works written in English, French, German, Italian, Polish, Russian and Spanish by such famous figures as Honore de Balzac, Arthur Conan Doyle, Julio Cortazar, Charles Dickens, Fyodor Dostoevsky, Alexandre Dumas, Umberto Eco, George Elliot, Victor Hugo, James Joyce, Thomas Mann, Marcel Proust, Wladyslaw Reymont, William Shakespeare, Henryk Sienkiewicz, JRR Tolkien, Leo Tolstoy and Virginia Woolf, among others. The selected works were no less than 5,000 sentences long, in order to ensure statistical reliability.

To convert the texts to numerical sequences, sentence length was measured by the number of words (an alternative method of counting characters in the sentence turned out to have no major impact on the conclusions). The dependences were then searched for in the data — beginning with the simplest, i.e. linear. This is the posited question: if a sentence of a given length is x times longer than the sentences of different lengths, is the same aspect ratio preserved when looking at sentences respectively longer or shorter?

“All of the examined works showed self-similarity in terms of organization of the lengths of sentences. Some were more expressive — here The Ambassadors by Henry James stood out — while others to far less of an extreme, as in the case of the French seventeenth-century romance Artamene ou le Grand Cyrus. However, correlations were evident and, therefore, these texts were the construction of a fractal,” comments Dr. Pawel Oswiecimka (IFJ PAN), who also noted that fractality of a literary text will, in practice, never be as perfect as in the world of mathematics. It is possible to magnify mathematical fractals up to infinity, while the number of sentences in each book is finite and, at a certain stage of scaling, there will always be a cut-off in the form of the end of the dataset.

Things took a particularly interesting turn when physicists from IFJ PAN began tracking non-linear dependence, which in most of the studied works was present to a slight or moderate degree. However, more than a dozen works revealed a very clear multifractal structure, and almost all of these proved to be representative of one genre, that of stream of consciousness. The only exception was the Bible, specifically the Old Testament, which has, so far, never been associated with this literary genre.

“The absolute record in terms of multifractality turned out to be Finnegan’s Wakeby James Joyce. The results of our analysis of this text are virtually indistinguishable from ideal, purely mathematical multifractals,” says Drozdz.

The most multifractal works also included A Heartbreaking Work of Staggering Genius by Dave Eggers, Rayuela by Julio Cortazar, The US Trilogy by John Dos Passos, The Waves by Virginia Woolf, 2666 by Roberto Bolano, and Joyce’sUlysses. At the same time, a lot of works usually regarded as stream of consciousness turned out to show little correlation to multifractality, as it was hardly noticeable in books such as Atlas Shrugged by Ayn Rand and A la recherche du temps perdu by Marcel Proust.

“It is not entirely clear whether stream of consciousness writing actually reveals the deeper qualities of our consciousness, or rather the imagination of the writers. It is hardly surprising that ascribing a work to a particular genre is, for whatever reason, sometimes subjective. We see, moreover, the possibility of an interesting application of our methodology: it may someday help in a more objective assignment of books to one genre or another,” notes Drozdz.

Multifractal analyses of literary texts carried out by the IFJ PAN have been published in Information Sciences, the journal of computer science. The publication has undergone rigorous verification: given the interdisciplinary nature of the subject, editors immediately appointed up to six reviewers.

Citation: “Quantifying origin and character of long-range correlations in narrative texts” S. Drożdż, P. Oświęcimka, A. Kulig, J. Kwapień, K. Bazarnik, I. Grabska-Gradzińska, J. Rybicki, M. Stanuszek; Information Sciences, vol. 331, 32–44, 20 February 2016; DOI: 10.1016/j.ins.2015.10.023

New Quantum Approach to Big Data could make Impossibly Complex Problems Solvable

David L. Chandler, MIT

http://www.scientificcomputing.com/news/2016/01/new-quantum-approach-big-data-could-make-impossibly-complex-problems-solvable

http://www.scientificcomputing.com/sites/scientificcomputing.com/files/New_Quantum_Approach_to_Big_Data_could_make_Impossibly_Complex_Problems_Solvable_440.jpg

This diagram demonstrates the simplified results that can be obtained by using quantum analysis on enormous, complex sets of data. Shown here are the connections between different regions of the brain in a control subject (left) and a subject under the influence of the psychedelic compound psilocybin (right). This demonstrates a dramatic increase in connectivity, which explains some of the drug’s effects (such as “hearing” colors or “seeing” smells). Such an analysis, involving billions of brain cells, would be too complex for conventional techniques, but could be handled easily by the new quantum approach, the researchers say. Courtesy of the researchers

From gene mapping to space exploration, humanity continues to generate ever-larger sets of data — far more information than people can actually process, manage or understand.

Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.

Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at MIT, the University of Waterloo, and the University of Southern California.

The team describes their theoretical proposal this week in the journal Nature Communications. Seth Lloyd, the paper’s lead author and the Nam P. Suh Professor of Mechanical Engineering, explains that algebraic topology is key to the new method. This approach, he says, helps to reduce the impact of the inevitable distortions that arise every time someone collects data about the real world.

In a topological description, basic features of the data (How many holes does it have? How are the different parts connected?) are considered the same no matter how much they are stretched, compressed, or distorted. Lloyd explains that it is often these fundamental topological attributes “that are important in trying to reconstruct the underlying patterns in the real world that the data are supposed to represent.”

It doesn’t matter what kind of dataset is being analyzed, he says. The topological approach to looking for connections and holes “works whether it’s an actual physical hole, or the data represents a logical argument and there’s a hole in the argument. This will find both kinds of holes.”

Using conventional computers, that approach is too demanding for all but the simplest situations. Topological analysis “represents a crucial way of getting at the significant features of the data, but it’s computationally very expensive,” Lloyd says. “This is where quantum mechanics kicks in.” The new quantum-based approach, he says, could exponentially speed up such calculations.

Lloyd offers an example to illustrate that potential speedup: If you have a dataset with 300 points, a conventional approach to analyzing all the topological features in that system would require “a computer the size of the universe,” he says. That is, it would take 2300 (two to the 300th power) processing units — approximately the number of all the particles in the universe. In other words, the problem is simply not solvable in that way.

“That’s where our algorithm kicks in,” he says. Solving the same problem with the new system, using a quantum computer, would require just 300 quantum bits — and a device this size may be achieved in the next few years, according to Lloyd.

“Our algorithm shows that you don’t need a big quantum computer to kick some serious topological butt,” he says.

There are many important kinds of huge datasets where the quantum-topological approach could be useful, Lloyd says, for example understanding interconnections in the brain. “By applying topological analysis to datasets gleaned by electroencephalography or functional MRI, you can reveal the complex connectivity and topology of the sequences of firing neurons that underlie our thought processes,” he says.

The same approach could be used for analyzing many other kinds of information. “You could apply it to the world’s economy, or to social networks, or almost any system that involves long-range transport of goods or information,” Lloyd says. But the limits of classical computation have prevented such approaches from being applied before.

While this work is theoretical, “experimentalists have already contacted us about trying prototypes,” he says. “You could find the topology of simple structures on a very simple quantum computer. People are trying proof-of-concept experiments.”

Ignacio Cirac, a professor at the Max Planck Institute of Quantum Optics in Munich, Germany, who was not involved in this research, calls it “a very original idea, and I think that it has a great potential.” He adds “I guess that it has to be further developed and adapted to particular problems. In any case, I think that this is top-quality research.”

The team also included Silvano Garnerone of the University of Waterloo in Ontario, Canada, and Paolo Zanardi of the Center for Quantum Information Science and Technology at the University of Southern California. The work was supported by the Army Research Office, Air Force Office of Scientific Research, Defense Advanced Research Projects Agency, Multidisciplinary University Research Initiative of the Office of Naval Research, and the National Science Foundation.

Beyond Chess: Computer Beats Human in Ancient Chinese Game

http://www.rdmag.com/news/2016/01/beyond-chess-computer-beats-human-ancient-chinese-game

http://www.rdmag.com/sites/rdmag.com/files/rd1601_chess.jpg

A player places a black stone while his opponent waits to place a white one as they play Go, a game of strategy, in the Seattle Go Center, Tuesday, April 30, 2002. The game, which originated in China more than 2,500 years ago, involves two players who take turns putting markers on a grid. The object is to surround more area on the board with the markers than one’s opponent, as well as capturing the opponent’s pieces by surrounding them. A paper released Wednesday, Jan. 27, 2016 describes how a computer program has beaten a human master at the complex board game, marking significant advance for development of artificial intelligence. (AP Photo/Cheryl Hatch)

A computer program has beaten a human champion at the ancient Chinese board game Go, marking a significant advance for development of artificial intelligence.

The program had taught itself how to win, and its developers say its learning strategy may someday let computers help solve real-world problems like making medical diagnoses and pursuing scientific research.

The program and its victory are described in a paper released Wednesday by the journal Nature.

Computers previously have surpassed humans for other games, including chess, checkers and backgammon. But among classic games, Go has long been viewed as the most challenging for artificial intelligence to master.

Go, which originated in China more than 2,500 years ago, involves two players who take turns putting markers on a checkerboard-like grid. The object is to surround more area on the board with the markers than one’s opponent, as well as capturing the opponent’s pieces by surrounding them.

While the rules are simple, playing it well is not. It’s “probably the most complex game ever devised by humans,” Dennis Hassabis of Google DeepMind in London, one of the study authors, told reporters Tuesday.

The new program, AlphaGo, defeated the European champion in all five games of a match in October, the Nature paper reports.

In March, AlphaGo will face legendary player Lee Sedol in Seoul, South Korea, for a $1 million prize, Hassabis said.

Martin Mueller, a computing science professor at the University of Alberta in Canada who has worked on Go programs for 30 years but didn’t participate in AlphaGo, said the new program “is really a big step up from everything else we’ve seen…. It’s a very, very impressive piece of work.”

Biological Origin of Schizophrenia

Excessive ‘pruning’ of connections between neurons in brain predisposes to disease

http://hms.harvard.edu/sites/default/files/uploads/news/McCarroll_C4_600x400.jpg

Imaging studies showed C4 (in green) located at the synapses of primary human neurons. Image: Heather de Rivera, McCarroll lab

 PAUL GOLDSMITH    http://hms.harvard.edu/news/biological-origin-schizophrenia

The risk of schizophrenia increases if a person inherits specific variants in a gene related to “synaptic pruning”—the elimination of connections between neurons—according to a study from Harvard Medical School, the Broad Institute and Boston Children’s Hospital. The findings were based on genetic analysis of nearly 65,000 people.

The study represents the first time that the origin of this psychiatric disease has been causally linked to specific gene variants and a biological process.

Get more HMS news here

It also helps explain two decades-old observations: synaptic pruning is particularly active during adolescence, which is the typical period of onset for symptoms of schizophrenia, and the brains of schizophrenic patients tend to show fewer connections between neurons.

The gene, complement component 4 (C4), plays a well-known role in the immune system. It has now been shown to also play a key role in brain development and schizophrenia risk. The insight may allow future therapeutic strategies to be directed at the disorder’s roots, rather than just its symptoms.

The study, which appears online Jan. 27 in Nature, was led by HMS researchers at the Broad Institute’s Stanley Center for Psychiatric Research and Boston Children’s. They include senior author Steven McCarroll, HMS associate professor of genetics and director of genetics for the Stanley Center; Beth Stevens, HMS assistant professor of neurology at Boston Children’s and institute member at the Broad; Michael Carroll, HMS professor of pediatrics at Boston Children’s; and first author Aswin Sekar, an MD-PhD student at HMS.

The study has the potential to reinvigorate translational research on a debilitating disease. Schizophrenia afflicts approximately 1 percent people worldwide and is characterized by hallucinations, emotional withdrawal and a decline in cognitive function. These symptoms most frequently begin in patients when they are teenagers or young adults.

“These results show that it is possible to go from genetic data to a new way of thinking about how a disease develops—something that has been greatly needed.”

First described more than 130 years ago, schizophrenia lacks highly effective treatments and has seen few biological or medical breakthroughs over the past half-century.

In the summer of 2014, an international consortium led by researchers at the Stanley Center identified more than 100 regions in the human genome that carry risk factors for schizophrenia.

The newly published study now reports the discovery of the specific gene underlying the strongest of these risk factors and links it to a specific biological process in the brain.

“Since schizophrenia was first described over a century ago, its underlying biology has been a black box, in part because it has been virtually impossible to model the disorder in cells or animals,” said McCarroll. “The human genome is providing a powerful new way in to this disease. Understanding these genetic effects on risk is a way of prying open that black box, peering inside and starting to see actual biological mechanisms.”

“This study marks a crucial turning point in the fight against mental illness,” said Bruce Cuthbert, acting director of the National Institute of Mental Health. “Because the molecular origins of psychiatric diseases are little-understood, efforts by pharmaceutical companies to pursue new therapeutics are few and far between. This study changes the game. Thanks to this genetic breakthrough we can finally see the potential for clinical tests, early detection, new treatments and even prevention.”

The path to discovery

The discovery involved the collection of DNA from more than 100,000 people, detailed analysis of complex genetic variation in more than 65,000 human genomes, development of an innovative analytical strategy, examination of postmortem brain samples from hundreds of people and the use of animal models to show that a protein from the immune system also plays a previously unsuspected role in the brain.

Over the past five years, Stanley Center geneticists and collaborators around the world collected more than 100,000 human DNA samples from 30 different countries to locate regions of the human genome harboring genetic variants that increase the risk of schizophrenia. The strongest signal by far was on chromosome 6, in a region of DNA long associated with infectious disease. This caused some observers to suggest that schizophrenia might be triggered by an infectious agent. But researchers had no idea which of the hundreds of genes in the region was actually responsible or how it acted.

Based on analyses of the genetic data, McCarroll and Sekar focused on a region containing the C4 gene. Unlike most genes, C4 has a high degree of structural variability. Different people have different numbers of copies and different types of the gene.

McCarroll and Sekar developed a new molecular technique to characterize the C4 gene structure in human DNA samples. They also measured C4 gene activity in nearly 700 post-mortem brain samples.

They found that the C4 gene structure (DNA) could predict the C4 gene activity (RNA) in each person’s brain. They then used this information to infer C4 gene activity from genome data from 65,000 people with and without schizophrenia.

These data revealed a striking correlation. People who had particular structural forms of the C4 gene showed higher expression of that gene and, in turn, had a higher risk of developing schizophrenia.

Connecting cause and effect through neuroscience

But how exactly does C4—a protein known to mark infectious microbes for destruction by immune cells—affect the risk of schizophrenia?

Answering this question required synthesizing genetics and neurobiology.

Stevens, a recent recipient of a MacArthur Foundation “genius grant,” had found that other complement proteins in the immune system also played a role in brain development. These results came from studying an experimental model of synaptic pruning in the mouse visual system.

“This discovery enriches our understanding of the complement system in brain development and in disease, and we could not have made that leap without the genetics.”

Carroll had long studied C4 for its role in immune disease, and developed mice with different numbers of copies of C4.

The three labs set out to study the role of C4 in the brain.

They found that C4 played a key role in pruning synapses during maturation of the brain. In particular, they found that C4 was necessary for another protein—a complement component called C3—to be deposited onto synapses as a signal that the synapses should be pruned. The data also suggested that the more C4 activity an animal had, the more synapses were eliminated in its brain at a key time in development.

The findings may help explain the longstanding mystery of why the brains of people with schizophrenia tend to have a thinner cerebral cortex (the brain’s outer layer, responsible for many aspects of cognition) with fewer synapses than do brains of unaffected individuals. The work may also help explain why the onset of schizophrenia symptoms tends to occur in late adolescence.

The human brain normally undergoes widespread synapse pruning during adolescence, especially in the cerebral cortex. Excessive synaptic pruning during adolescence and early adulthood, due to increased complement (C4) activity, could lead to the cognitive symptoms seen in schizophrenia.

“Once we had the genetic findings in front of us we started thinking about the possibility that complement molecules are excessively tagging synapses in the developing brain,” Stevens said.

“This discovery enriches our understanding of the complement system in brain development and in disease, and we could not have made that leap without the genetics,” she said. “We’re far from having a treatment based on this, but it’s exciting to think that one day we might be able to turn down the pruning process in some individuals and decrease their risk.”

Opening a path toward early detection and potential therapies

Beyond providing the first insights into the biological origins of schizophrenia, the work raises the possibility that therapies might someday be developed that could turn down the level of synaptic pruning in people who show early symptoms of schizophrenia.

This would be a dramatically different approach from current medical therapies, which address only a specific symptom of schizophrenia—psychosis—rather than the disorder’s root causes, and which do not stop cognitive decline or other symptoms of the illness.

The researchers emphasize that therapies based on these findings are still years down the road. Still, the fact that much is already known about the role of complement proteins in the immune system means that researchers can tap into a wealth of existing knowledge to identify possible therapeutic approaches. For example, anticomplement drugs are already under development for treating other diseases.

“In this area of science, our dream has been to find disease mechanisms that lead to new kinds of treatments,” said McCarroll. “These results show that it is possible to go from genetic data to a new way of thinking about how a disease develops—something that has been greatly needed.”

This work was supported by the Broad Institute’s Stanley Center for Psychiatric Research and by the National Institutes of Health (grants U01MH105641, R01MH077139 and T32GM007753).

Adapted from a Broad Institute news release.

 

Scientists open the ‘black box’ of schizophrenia with dramatic genetic discovery

Amy Ellis Nutt    https://www.washingtonpost.com/news/speaking-of-science/wp/2016/01/27/scientists-open-the-black-box-of-schizophrenia-with-dramatic-genetic-finding/

Scientists Prune Away Schizophrenia’s Hidden Genetic Mechanisms

http://www.genengnews.com/gen-news-highlights/scientists-prune-away-schizophrenia-s-hidden-genetic-mechanisms/81252297/

https://youtu.be/s0y4equOTLg

A landmark study has revealed that a person’s risk of schizophrenia is increased if they inherit specific variants in a gene related to “synaptic pruning”—the elimination of connections between neurons. The findings represent the first time that the origin of this devastating psychiatric disease has been causally linked to specific gene variants and a biological process.

http://www.genengnews.com/Media/images/GENHighlight/thumb_107629_web2209513618.jpg

The site in Chromosome 6 harboring the gene C4 towers far above other risk-associated areas on schizophrenia’s genomic “skyline,” marking its strongest known genetic influence. The new study is the first to explain how specific gene versions work biologically to confer schizophrenia risk. [Psychiatric Genomics Consortium]

  • A new study by researchers at the Broad Institute’s Stanley Center for Psychiatric Research, Harvard Medical School, and Boston Children’s Hospital genetically analyzed nearly 65,000 people and revealed that an individual’s risk of schizophrenia is increased if they inherited distinct variants in a gene related to “synaptic pruning”—the elimination of connections between neurons. This new data represents the first time that the origin of this psychiatric disease has been causally linked to particular gene variants and a biological process.

The investigators discovered that versions of a gene commonly thought to be involved in immune function might trigger a runaway pruning of an adolescent brain’s still-maturing communications infrastructure. The researchers described a scenario where patients with schizophrenia show fewer such connections between neurons or synapses.

“Normally, pruning gets rid of excess connections we no longer need, streamlining our brain for optimal performance, but too much pruning can impair mental function,” explained Thomas Lehner, Ph.D., director of the Office of Genomics Research Coordination at the NIH’s National Institute of Mental Health (NIMH), which co-funded the study along with the Stanley Center for Psychiatric Research at the Broad Institute and other NIH components. “It could help explain schizophrenia’s delayed age-of-onset of symptoms in late adolescence and early adulthood and shrinkage of the brain’s working tissue. Interventions that put the brakes on this pruning process-gone-awry could prove transformative.”

The gene the research team called into question, dubbed C4 (complement component 4), was associated with the largest risk for the disorder. C4’s role represents some of the most compelling evidence, to date, linking specific gene versions to a biological process that could cause at least some cases of the illness.

The findings from this study were published recently in Nature through an article entitled “Schizophrenia risk from complex variation of complement component 4.”

“Since schizophrenia was first described over a century ago, its underlying biology has been a black box, in part because it has been virtually impossible to model the disorder in cells or animals,” noted senior study author Steven McCarroll, Ph.D., director of genetics for the Stanley Center and an associate professor of genetics at Harvard Medical School. “The human genome is providing a powerful new way into this disease. Understanding these genetic effects on risk is a way of prying open that block box, peering inside and starting to see actual biological mechanisms.”

Dr. McCarroll and his colleagues found that a stretch of chromosome 6 encompassing several genes known to be involved in immune function emerged as the strongest signal associated with schizophrenia risk in genome-wide analyses. Yet conventional genetics failed to turn up any specific gene versions there that were linked to schizophrenia.

In order to uncover how the immune-related site confers risk for the mental disorder, the scientists mounted a search for cryptic genetic influences that might generate unconventional signals. C4, a gene with known roles in immunity, emerged as a prime suspect because it is unusually variable across individuals.

Upon further investigation into the complexities of how such structural variation relates to the gene’s level of expression and how that, in turn, might link to schizophrenia, the team discovered structurally distinct versions that affect expression of two main forms of the gene within the brain. The more a version resulted in expression of one of the forms, called C4A, the more it was associated with schizophrenia. The greater number of copies an individual had of the suspect versions, the more C4 switched on and the higher their risk of developing schizophrenia. Furthermore, the C4 protein turned out to be most prevalent within the cellular machinery that supports connections between neurons.

“Once we had the genetic findings in front of us we started thinking about the possibility that complement molecules are excessively tagging synapses in the developing brain,” remarked co-author Beth Stevens, Ph.D. a neuroscientist and assistant professor of neurology at Boston Children’s Hospital and institute member at the Broad. “This discovery enriches our understanding of the complement system in brain development and disease, and we could not have made that leap without the genetics. We’re far from having a treatment based on this, but it’s exciting to think that one day we might be able to turn down the pruning process in some individuals and decrease their risk.”

“This study marks a crucial turning point in the fight against mental illness. It changes the game,” added acting NIMH director Bruce Cuthbert, Ph.D. “Because the molecular origins of psychiatric diseases are little-understood, efforts by pharmaceutical companies to pursue new therapeutics are few and far between. This study changes the game. Thanks to this genetic breakthrough, we can finally see the potential for clinical tests, early detection, new treatments, and even prevention.”

Connecting cause and effect through neuroscience

But how exactly does C4—a protein known to mark infectious microbes for destruction by immune cells—affect the risk of schizophrenia?

Answering this question required synthesizing genetics and neurobiology.

Stevens, a recent recipient of a MacArthur Foundation “genius grant,” had found that other complement proteins in the immune system also played a role in brain development. These results came from studying an experimental model of synaptic pruning in the mouse visual system.

“This discovery enriches our understanding of the complement system in brain development and in disease, and we could not have made that leap without the genetics.”

Carroll had long studied C4 for its role in immune disease, and developed mice with different numbers of copies of C4.

The three labs set out to study the role of C4 in the brain.

They found that C4 played a key role in pruning synapses during maturation of the brain. In particular, they found that C4 was necessary for another protein—a complement component called C3—to be deposited onto synapses as a signal that the synapses should be pruned. The data also suggested that the more C4 activity an animal had, the more synapses were eliminated in its brain at a key time in development.

The findings may help explain the longstanding mystery of why the brains of people with schizophrenia tend to have a thinner cerebral cortex (the brain’s outer layer, responsible for many aspects of cognition) with fewer synapses than do brains of unaffected individuals. The work may also help explain why the onset of schizophrenia symptoms tends to occur in late adolescence.

The human brain normally undergoes widespread synapse pruning during adolescence, especially in the cerebral cortex. Excessive synaptic pruning during adolescence and early adulthood, due to increased complement (C4) activity, could lead to the cognitive symptoms seen in schizophrenia.

“Once we had the genetic findings in front of us we started thinking about the possibility that complement molecules are excessively tagging synapses in the developing brain,” Stevens said.

“This discovery enriches our understanding of the complement system in brain development and in disease, and we could not have made that leap without the genetics,” she said. “We’re far from having a treatment based on this, but it’s exciting to think that one day we might be able to turn down the pruning process in some individuals and decrease their risk.”

Opening a path toward early detection and potential therapies

Beyond providing the first insights into the biological origins of schizophrenia, the work raises the possibility that therapies might someday be developed that could turn down the level of synaptic pruning in people who show early symptoms of schizophrenia.

This would be a dramatically different approach from current medical therapies, which address only a specific symptom of schizophrenia—psychosis—rather than the disorder’s root causes, and which do not stop cognitive decline or other symptoms of the illness.

The researchers emphasize that therapies based on these findings are still years down the road. Still, the fact that much is already known about the role of complement proteins in the immune system means that researchers can tap into a wealth of existing knowledge to identify possible therapeutic approaches. For example, anticomplement drugs are already under development for treating other diseases.

“In this area of science, our dream has been to find disease mechanisms that lead to new kinds of treatments,” said McCarroll. “These results show that it is possible to go from genetic data to a new way of thinking about how a disease develops—something that has been greatly needed.”

This work was supported by the Broad Institute’s Stanley Center for Psychiatric Research and by the National Institutes of Health (grants U01MH105641, R01MH077139 and T32GM007753).

Adapted from a Broad Institute news release.

 

https://img.washingtonpost.com/wp-apps/imrs.php?src=https://img.washingtonpost.com/rf/image_908w/2010-2019/WashingtonPost/2011/09/27/Production/Sunday/SunBiz/Images/mental2b.jpg&w=1484

This post has been updated.

For the first time, scientists have pinned down a molecular process in the brain that helps to trigger schizophrenia. The researchers involved in the landmark study, which was published Wednesday in the journal Nature, say the discovery of this new genetic pathway probably reveals what goes wrong neurologically in a young person diagnosed with the devastating disorder.

The study marks a watershed moment, with the potential for early detection and new treatments that were unthinkable just a year ago, according to Steven Hyman, director of the Stanley Center for Psychiatric Research at the Broad Institute at MIT. Hyman, a former director of the National Institute of Mental Health, calls it “the most significant mechanistic study about schizophrenia ever.”

“I’m a crusty, old, curmudgeonly skeptic,” he said. “But I’m almost giddy about these findings.”

The researchers, chiefly from the Broad Institute, Harvard Medical School and Boston Children’s Hospital, found that a person’s risk of schizophrenia is dramatically increased if they inherit variants of a gene important to “synaptic pruning” — the healthy reduction during adolescence of brain cell connections that are no longer needed.

[Schizophrenic patients have different oral bacteria than non-mentally ill individuals]

In patients with schizophrenia, a variation in a single position in the DNA sequence marks too many synapses for removal and that pruning goes out of control. The result is an abnormal loss of gray matter.

The genes involved coat the neurons with “eat-me signals,” said study co-author Beth Stevens, a neuroscientist at Children’s Hospital and Broad. “They are tagging too many synapses. And they’re gobbled up.

The Institute’s founding director, Eric Lander, believes the research represents an astonishing breakthrough. “It’s taking what has been a black box…and letting us peek inside for the first time. And that is amazingly consequential,” he said.

The timeline for this discovery has been relatively fast. In July 2014, Broad researchers published the results of the largest genomic study on the disorder and found more than 100 genetic locations linked to schizophrenia. Based on that research, Harvard and Broad geneticist Steven McCarroll analyzed data from about 29,000 schizophrenia cases, 36,000 controls and 700 post mortem brains. The information was drawn from dozens of studies performed in 22 countries, all of which contribute to the worldwide database called the Psychiatric Genomics Consortium.

[Influential government-appointed panel recommends depression screening for everyone]

One area in particular, when graphed, showed the strongest association. It was dubbed the “Manhattan plot” for its resemblance to New York City’s towering buildings. The highest peak was on chromosome 6, where McCarroll’s team discovered the gene variant. C4 was “a dark corner of the human genome,” he said, an area difficult to decipher because of its “astonishing level” of diversity.

C4 and numerous other genes reside in a region of chromosome 6 involved in the immune system, which clears out pathogens and similar cellular debris from the brain. The study’s researchers found that one of C4’s variants, C4A, was most associated with a risk for schizophrenia.

More than 25 million people around the globe are affected by schizophrenia, according to the World Health Organization, including 2 million to 3 million Americans. Highly hereditable, it is one of the most severe mental illnesses, with an annual economic burden in this country of tens of billions of dollars.

“This paper is really exciting,” said Jacqueline Feldman, associate medical director of the National Alliance on Mental Illness. “We as scientists and physicians have to temper our enthusiasm because we’ve gone down this path before. But this is profoundly interesting.”

There have been hundreds of theories about schizophrenia over the years, but one of the enduring mysteries has been how three prominent findings related to each other: the apparent involvement of immune molecules, the disorder’s typical onset in late adolescence and early adulthood, and the thinning of gray matter seen in autopsies of patients.

[A low-tech way to help treat young schizophrenic patients]

“The thing about this result,” said McCarroll, the lead author, ” it makes a lot of other things understandable. To have a result to connect to these observations and to have a molecule and strong level of genetic evidence from tens of thousands of research participants, I think that combination sets [this study] apart.”

The authors stressed that their findings, which combine basic science with large-scale analysis of genetic studies, depended on an unusual level of cooperation among experts in genetics, molecular biology, developmental neurobiology and immunology.

“This could not have been done five years ago,” said Hyman. “This required the ability to reference a very large dataset . …When I was [NIMH] director, people really resisted collaborating. They were still in the Pharaoh era. They wanted to be buried with their data.”

The study offers a new approach to schizophrenia research, which has been largely stagnant for decades.  Most psychiatric drugs seek to interrupt psychotic thinking, but experts agree that psychosis is just a single symptom — and a late-occurring one at that. One of the chief difficulties for psychiatric researchers, setting them apart from most other medical investigators, is that they can’t cut schizophrenia out of the brain and look at it under a microscope. Nor are there any good animal models.

All that now has changed, according to Stevens. “We now have a strong molecular handle, a pathway and a gene, to develop better models,” he said.

Which isn’t to say a cure is right around the corner.

“This is the first exciting  clue, maybe even the most important we’ll ever have, but it will be decades” before a true cure is found,” Hyman said. “Hope is a wonderful thing. False promise is not.”

Insight Pharma Report

Three neurodegenerative disorders that are heavily focused on in this report include: Alzheimer’s Disease/Mild Cognitive Impairment, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Part II of the report will include all three of these disorders, highlighting specifics including background, history, and development of the disease. Deeper into the chapters, the report will unfold biomarkers under investigation, genetic targets, and an analysis of multiple studies investigating these elements.

Experts interviewed in these chapters include:

  • Dr. Jens Wendland, Head of Neuroscience Genetics, Precision Medicine, Clinical Research, Pfizer Worldwide R&D
  • Dr. Howard J. Federoff, Executive Vice President for Health Sciences, Georgetown University
  • Dr. Andrew West, Associate Professor of Neurology and Neurobiology and Co-Director, Center for Neurodegeneration and Experimental Therapeutics
  • Dr. Merit Ester Cudkowicz, Chief of Neurology at Massachusetts General Hospital

Part III of the report makes a shift from neurobiomarkers to neurodiagnostics. This section highlights several diagnostics in play and in the making from a number of companies, identifying company strategies, research underway, hypotheses, and institution goals. Elite researchers and companies highlighted in this part include:

  • Dr. Xuemei Huang, Professor and Vice Chair, Department of Neurology; Professor of Neurosurgery, Radiology,  Pharmacology, and Kinesiology Director; Hershey Brain Analysis Research Laboratory for Neurodegenerative Disorders, Penn State University-Milton, S. Hershey Medical Center Department of Neurology
  • Dr. Andreas Jeromin, CSO and President of Atlantic Biomarkers
  • Julien Bradley, Senior Director, Sales & Marketing, Quanterix
  • Dr. Scott Marshall, Head of Bioanalytics, and Dr. Jared Kohler, Head of Biomarker Statistics, BioStat Solutions, Inc.

Further analysis appears in Part IV. This section includes a survey exclusively conducted for this report. With over 30 figures and graphics and an in depth analysis, this part features insight into targets under investigation, challenges, advantages, and desired features of future diagnostic applications. Furthermore, the survey covers more than just the featured neurodegenerative disorders in this report, expanding to Multiple Sclerosis and Huntington’s Disease.

Finally, Insight Pharma Reports concludes this report with clinical trial and pipeline data featuring targets and products from over 300 companies working in Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis.

Epigenome Tapped to Understand Rise of Subtype of Brain Medulloblastoma

http://www.genengnews.com/gen-news-highlights/epigenome-tapped-to-understand-rise-of-subtype-of-brain-medulloblastoma/81252294/

Scientists have identified the cells that likely give rise to the brain tumor subtype Group 4 medulloblastoma. [V. Yakobchuk/ Fotolia]

http://www.genengnews.com/Media/images/GENHighlight/thumb_Jan_28_2016_Fotolia_6761569_ColorfulBrain_4412824411.jpg

An international team of scientists say they have identified the cells that likely give rise to the brain tumor subtype Group 4 medulloblastoma. The believe their study (“Active medulloblastoma enhancers reveal subgroup-specific cellular origins”), published in Nature, removes a barrier to developing more effective targeted therapies against the brain tumor’s most common subtype.

Medulloblastoma occurs in infants, children, and adults, but it is the most common malignant pediatric brain tumor. The disease includes four biologically and clinically distinct subtypes, of which Group 4 is the most common. In children, about half of medulloblastoma patients are of the Group 4 subtype. Efforts to improve patient outcomes, particularly for those with high-risk Group 4 medulloblastoma, have been hampered by the lack of accurate animal models.

Evidence from this study suggests Group 4 tumors begin in neural stem cells that are born in a region of the developing cerebellum called the upper rhomic lip (uRL), according to the researchers.

“Pinpointing the cell(s) of origin for Group 4 medulloblastoma will help us to better understand normal cerebellar development and dramatically improve our chances of developing genetically faithful preclinical mouse models. These models are desperately needed for learning more about Group 4 medulloblastoma biology and evaluating rational, molecularly targeted therapies to improve patient outcomes,” said Paul Northcott, Ph.D., an assistant member of the St. Jude department of developmental neurobiology. Dr. Northcott, Stefan Pfister, M.D., of the German Cancer Research Center (DKFZ), and James Bradner, M.D., of Dana-Farber Cancer Institute, are the corresponding authors.

The discovery and other findings about the missteps fueling tumor growth came from studying the epigenome. Researchers used the analytic tool ChiP-seq to identify and track medulloblastoma subtype differences based on the activity of epigenetic regulators, which included proteins known as master regulator transcription factors. They bind to DNA enhancers and super-enhancers. The master regulator transcription factors and super-enhancers work together to regulate the expression of critical genes, such as those responsible for cell identity.

Those and other tools helped investigators identify more than 3,000 super-enhancers in 28 medulloblastoma tumors as well as evidence that the activity of super-enhancers varied by subtype. The super-enhancers switched on known cancer genes, including genes like ALK, MYC, SMO, and OTX2 that are associated with medulloblastoma, the researchers reported.

Knowledge of the subtype super-enhancers led to identification of the transcription factors that regulate their activity. Using computational methods, researchers applied that information to reconstruct the transcription factor networks responsible for medulloblastoma subtype diversity and identity, providing previously unknown insights into the regulatory landscape and transcriptional output of the different medulloblastoma subtypes.

The approach helped to discover and nominate Lmx1A as a master regulator transcription factor of Group 4 tumors, which led to the identification of the likely Group 4 tumor cells of origin. Lmx1A was known to play an important role in normal development of cells in the uRL and cerebellum. Additional studies performed in mice with and without Lmx1A in this study supported uRL cells as the likely source of Group 4 tumors.

“By studying the epigenome, we also identified new pathways and molecular dependencies not apparent in previous gene expression and mutational studies,” explained Dr. Northcott. “The findings open new therapeutic avenues, particularly for the Group 3 and 4 subtypes where patient outcomes are inferior for the majority of affected children.”

For example, researchers identified increased enhancer activity targeting the TGFbeta pathway. The finding adds to evidence that the pathway may drive Group 3 medulloblastoma, currently the subtype with the worst prognosis. The pathway regulates cell growth, cell death, and other functions that are often disrupted in cancer, but it’s role in medulloblastoma is poorly understood.

The analysis included samples from 28 medulloblastoma tumors representing the four subtypes. Researchers believe it is the largest epigenetic study yet for any single cancer type and, importantly, the first to use a large cohort of primary patient tumor tissues instead of cell lines grown in the laboratory. Previous studies have suggested that cell lines may be of limited use for studying the tumor epigenome. The three Group 3 medulloblastoma cell lines used in this study reinforced the observation, highlighting significant differences in epigenetic regulators at work in medulloblastoma cell lines versus tumor samples.

Read Full Post »

Kurzweill Reports in Medical Science I

Curator: Larry H. Bernstein, MD, FCAP

 

 

 

E-coli bacteria found in some China farms and patients cannot be killed with antiobiotic drug of last resort

“One of the most serious global threats to human health in the 21st century” — could spread around the world, requiring “urgent coordinated global action”
November 20, 2015

http://www.kurzweilai.net/e-coli-bacteria-found-in-some-china-farms-and-patients-cannot-be-killed-with-antiobiotic-drug-of-last-resort

Colistin antibiotic overused in farm animals in China apparently caused E-coli bacteria to become completely resistant to treatment; E-coli strain has already spread to Laos and Malaysia (credit: Yi-Yun Liu et al./Lancet Infect Dis)

Widespread E-coli bacteria that cannot be killed with the antiobiotic drug of last resort — colistin — have been found in samples taken from farm pigs, meat products, and a small number of patients in south China, including bacterial strains with epidemic potential, an international team of scientists revealed in a paper published Thursday Nov. 19 in the journal The Lancet Infectious Diseases.

The scientists in China, England, and the U.S. found a new gene, MCR-1, carried in E-coli bacteria strain SHP45. MCR-1 enables bacteria to be highly resistant to colistin and other polymyxins drugs.

“The emergence of the MCR-1 gene in China heralds a disturbing breach of the last group of antibiotics — polymixins — and an end to our last line of defense against infection,” said Professor Timothy Walsh, from the Cardiff University School of Medicine, who collaborated on this research with scientists from South China Agricultural University.

Walsh, an expert in antibiotic resistance, is best known for his discovery in 2011 of the NDM-1 disease-causing antibiotic-resistant superbug in New Delhi’s drinking water supply. “The rapid spread of similar antibiotic-resistant genes such as NDM-1 suggests that all antibiotics will soon be futile in the face of previously treatable gram-negative bacterial infections such as E.coli and salmonella,” he said.

Likely to spread worldwide; already found in Laos and Malaysia

The MCR-1 gene was found on plasmids — mobile DNA that can be easily copied and transferred between different bacteria, suggesting an alarming potential to spread and diversify between different bacterial populations.

Structure of plasmid pHNSHP45 carrying MCR-1 from Escherichia coli strain SHP45 (credit: Yi-Yun Liu et al./Lancet Infect Dis)

“We now have evidence to suggest that MCR-1-positive E.coli has spread beyond China, to Laos and Malaysia, which is deeply concerning,” said Walsh.  “The potential for MCR-1 to become a global issue will depend on the continued use of polymixin antibiotics, such as colistin, on animals, both in and outside China; the ability of MCR-1 to spread through human strains of E.coli; and the movement of people across China’s borders.”

“MCR-1 is likely to spread to the rest of the world at an alarming rate unless we take a globally coordinated approach to combat it. In the absence of new antibiotics against resistant gram-negative pathogens, the effect on human health posed by this new gene cannot be underestimated.”

“Of the top ten largest producers of colistin for veterinary use, one is Indian, one is Danish, and eight are Chinese,” The Lancet Infectious Diseases notes. “Asia (including China) makes up 73·1% of colistin production with 28·7% for export including to Europe.29 In 2015, the European Union and North America imported 480 tonnes and 700 tonnes, respectively, of colistin from China.”

Urgent need for coordinated global action

“Our findings highlight the urgent need for coordinated global action in the fight against extensively resistant and pan-resistant gram-negative bacteria,” the journal paper concludes.

“The implications of this finding are enormous,” an associated editorial comment to the The Lancet Infectious Diseases paper stated. “We must all reiterate these appeals and take them to the highest levels of government or face increasing numbers of patients for whom we will need to say, ‘Sorry, there is nothing I can do to cure your infection.’”

Margaret Chan, MD, Director-General of the World Health Organization, warned in 2011 that “the world is heading towards a post-antibiotic era, in which many common infections will no longer have a cure and, once again, kill unabated.”

“Although in its 2012 World Health Organization Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) report the WHO concluded that colistin should be listed under those antibiotics of critical importance, it is regrettable that in the 2014 Global Report on Surveillance, the WHO did not to list any colistin-resistant bacteria as part of their ‘selected bacteria of international concern,’” The Lancet Infectious Diseases paper says, reflecting WHO’s inaction in Ebola-stricken African countries, as noted last September by the international medical humanitarian organization Médecins Sans Frontières.

Funding for the E-coli bacteria study was provided by the Ministry of Science and Technology of China and National Natural Science Foundation of China.


Abstract of Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via
horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae.

The mcr-1 gene in E coli strain SHP45 was identified by whole plasmid sequencing and subcloning. MCR-1 mechanistic studies were done with sequence comparisons, homology modelling, and electrospray ionisation mass spectrometry. The prevalence of mcr-1 was investigated in E coli and Klebsiella pneumoniae strains collected from five provinces between April, 2011, and November, 2014. The ability of MCR-1 to confer polymyxin resistance in vivo was examined in a murine thigh model.

Polymyxin resistance was shown to be singularly due to the plasmid-mediated mcr-1 gene. The plasmid carrying mcr-1 was mobilised to an E coli recipient at a frequency of 10−1 to 10−3 cells per recipient cell by conjugation, and maintained in K pneumoniae and Pseudomonas aeruginosa. In an in-vivo model, production of MCR-1 negated the efficacy of colistin. MCR-1 is a member of the phosphoethanolamine transferase enzyme family, with expression in E coli resulting in the addition of phosphoethanolamine to lipid A. We observed mcr-1 carriage in E coli isolates collected from 78 (15%) of 523 samples of raw meat and 166 (21%) of 804 animals during 2011–14, and 16 (1%) of 1322 samples from inpatients with infection.

The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance. Although currently confined to China, MCR-1 is likely to emulate other global resistance mechanisms such as NDM-1. Our findings emphasise the urgent need for coordinated global action in the fight against pan-drug-resistant Gram-negative bacteria.

 

Researchers discover signaling molecule that helps neurons find their way in the developing brain

November 20, 2015

http://www.kurzweilai.net/researchers-discover-signaling-molecule-that-helps-neurons-find-their-way-in-the-developing-brain

This image shows a section of the spinal cord of a mouse embryo. Neurons appear green. Commissural axons (which connect the two sides of the brain) appear as long, u-shaped threads, and the bottom, yellow segment of the structure represents the midline (between brain hemispheres). (credit: Laboratory of Brain Development and Repair/ The Rockefeller University)

Rockefeller University researchers have discovered a molecule secreted by cells in the spinal cord that helps guide axons (neuron extensions) during a critical stage of central nervous system development in the embryo. The finding helps solve the mystery: how do the billions of neurons in the embryo nimbly reposition themselves within the brain and spinal cord, and connect branches to form neural circuits?

Working in mice, the researchers identified an axon guidance factor, NELL2, and explained how it makes commissural axons (which connect the two sides of the brain).

The findings could help scientists understand what goes wrong in a rare disease called horizontal gaze palsy with progressive scoliosis. People affected by the condition often suffer from abnormal spine curvature, and are unable to move their eyes horizontally from side to side. The study was published Thursday Nov. 19 in the journal Science.


Abstract of Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2

Axon pathfinding is orchestrated by numerous guidance cues, including Slits and their Robo receptors, but it remains unclear how information from multiple cues is integrated or filtered. Robo3, a Robo family member, allows commissural axons to reach and cross the spinal cord midline by antagonizing Robo1/2–mediated repulsion from midline-expressed Slits and potentiating deleted in colorectal cancer (DCC)–mediated midline attraction to Netrin-1, but without binding either Slits or Netrins. We identified a secreted Robo3 ligand, neural epidermal growth factor-like-like 2 (NELL2), which repels mouse commissural axons through Robo3 and helps steer them to the midline. These findings identify NELL2 as an axon guidance cue and establish Robo3 as a multifunctional regulator of pathfinding that simultaneously mediates NELL2 repulsion, inhibits Slit repulsion, and facilitates Netrin attraction to achieve a common guidance purpose.

A sensory illusion that makes yeast cells self-destruct

A possible tactic for cancer therapeutics
November 20, 2015

http://www.kurzweilai.net/a-sensory-illusion-that-makes-yeast-cells-self-destruct

 

Effects of osmotic changes on yeast cell growth. (A) Schematic of the flow chamber used to create osmotic level oscillations for different periods of time. (B) Cell growth for these periods. The graphs show the average number of progeny cells (blue) before and after applying stress for different periods (gray shows orginal “no stress” line). The inset shows representative images of cells for two periods. (credit: Amir Mitchell et al./Science)

UC San Francisco researchers have discovered that even brainless single-celled yeast have “sensory biases” that can be hacked by a carefully engineered illusion — a finding that could be used to develop new approaches to fighting diseases such as cancer.

In the new study, published online Thursday November 19 in Science Express, Wendell Lim, PhD, the study’s senior author*, and his team discovered that yeast cells falsely perceive a pattern of osmotic levels (by applying potassium chloride) that alternate in eight minute intervals as massive, continuously increasing stress. In response, the microbes over-respond and kill themselves. (In their natural environment, salt stress normally gradually increases.)

The results, Lim says, suggest a whole new way of looking at the perceptual abilities of simple cells and this power of illusion could even be used to develop new approaches to fighting cancer and other diseases.

“Our results may also be relevant for cellular signaling in disease, as mutations affecting cellular signaling are common in cancer, autoimmune disease, and diabetes,” the researchers conclude in the paper. “These mutations may rewire the native network, and thus could modify its activation and adaptation dynamics. Such network rewiring in disease may lead to changes that can be most clearly revealed by simulation with oscillatory inputs or other ‘non-natural’ patterns.

“The changes in network response behaviors could be exploited for diagnosis and functional profiling of disease cells, or potentially taken advantage of as an Achilles’ heel to selectively target cells bearing the diseased network.”

https://youtu.be/CuDjZrM8xtA
UC San Francisco (UCSF) | Sensory Illusion Causes Cells to Self-Destruct

* Chair of the Department of Cellular and Molecular Pharmacology at UCSF, director of the UCSF Center for Systems and Synthetic Biology, and a Howard Hughes Medical Institute (HHMI) investigator.

** Normally, sensor molecules in a yeast cell detect changes in salt concentration and instruct the cell to respond by producing a protective chemical. The researchers found that the cells were perfectly capable of adapting when they flipped the salt stress on and off every minute or every 32 minutes. But to their surprise, when they tried an eight-minute oscillation of precisely the same salt level the cells quickly stopped growing and began to die off.


Abstract of Oscillatory stress stimulation uncovers an Achilles’ heel of the yeast MAPK signaling network

Cells must interpret environmental information that often changes over time. We systematically monitored growth of yeast cells under various frequencies of oscillating osmotic stress. Growth was severely inhibited at a particular resonance frequency, at which cells show hyperactivated transcriptional stress responses. This behavior represents a sensory misperception—the cells incorrectly interpret oscillations as a staircase of ever-increasing osmolarity. The misperception results from the capacity of the osmolarity-sensing kinase network to retrigger with sequential osmotic stresses. Although this feature is critical for coping with natural challenges—like continually increasing osmolarity—it results in a tradeoff of fragility to non-natural oscillatory inputs that match the retriggering time. These findings demonstrate the value of non-natural dynamic perturbations in exposing hidden sensitivities of cellular regulatory networks.

Google Glass helps cardiologists complete difficult coronary artery blockage surgery

November 20, 2015

http://www.kurzweilai.net/google-glass-helps-cardiologists-in-challenging-coronary-artery-blockage-surgery

 

Google Glass allowed the surgeons to clearly visualize the distal coronary vessel and verify the direction of the guide wire advancement relative to the course of the occluded vessel segment. (credit: Maksymilian P. Opolski et al./Canadian Journal of Cardiology

Cardiologists from the Institute of Cardiology, Warsaw, Poland have used Google Glass in a challenging surgical procedure, successfully clearing a blockage in the right coronary artery of a 49-year-old male patient and restoring blood flow, reports the Canadian Journal of Cardiology.

Chronic total occlusion, a complete blockage of the coronary artery, sometimes referred to as the “final frontier in interventional cardiology,” represents a major challenge for catheter-based percutaneous coronary intervention (PCI), according to the cardiologists.

That’s because of the difficulty of recanalizing (forming new blood vessels through an obstruction) combined with poor visualization of the occluded coronary arteries.

Coronary computed tomography angiography (CTA) is increasingly used to provide physicians with guidance when performing PCI for this procedure. The 3-D CTA data can be projected on monitors, but this technique is expensive and technically difficult, the cardiologists say.

So a team of physicists from the Interdisciplinary Centre for Mathematical and Computational Modelling of theUniversity of Warsaw developed a way to use Google Glass to clearly visualize the distal coronary vessel and verify the direction of the guide-wire advancement relative to the course of the blocked vessel segment.

Three-dimensional reconstructions displayed on Google Glass revealed the exact trajectory of the distal right coronary artery (credit: Maksymilian P. Opolski et al./Canadian Journal of Cardiology)

The procedure was completed successfully, including implantation of two drug-eluting stents.

“This case demonstrates the novel application of wearable devices for display of CTA data sets in the catheterization laboratory that can be used for better planning and guidance of interventional procedures, and provides proof of concept that wearable devices can improve operator comfort and procedure efficiency in interventional cardiology,” said lead investigatorMaksymilian P. Opolski, MD, PhD, of the Department of Interventional Cardiology and Angiology at the Institute of Cardiology, Warsaw, Poland.

“We believe wearable computers have a great potential to optimize percutaneous revascularization, and thus favorably affect interventional cardiologists in their daily clinical activities,” he said. He also advised that “wearable devices might be potentially equipped with filter lenses that provide protection against X-radiation.


Abstract of First-in-Man Computed Tomography-Guided Percutaneous Revascularization of Coronary Chronic Total Occlusion Using a Wearable Computer: Proof of Concept

We report a case of successful computed tomography-guided percutaneous revascularization of a chronically occluded right coronary artery using a wearable, hands-free computer with a head-mounted display worn by interventional cardiologists in the catheterization laboratory. The projection of 3-dimensional computed tomographic reconstructions onto the screen of virtual reality glass allowed the operators to clearly visualize the distal coronary vessel, and verify the direction of the guide wire advancement relative to the course of the occluded vessel segment. This case provides proof of concept that wearable computers can improve operator comfort and procedure efficiency in interventional cardiology.

Modulating brain’s stress circuity might prevent Alzheimer’s disease

Drug significantly prevented onset of cognitive and cellular effects in mice
November 17, 2015

http://www.kurzweilai.net/modulating-brains-stress-circuity-might-prevent-alzheimers-disease

 

Effect of drug treatment on AD mice in control group (left) or drug (right) on Ab plaque load. (credit: Cheng Zhang et al./Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association)

In a novel animal study design that mimicked human clinical trials, researchers at University of California, San Diego School of Medicine report that long-term treatment using a small-molecule drug that reduces activity of  the brain’s stress circuitry significantly reduces Alzheimer’s disease (AD) neuropathology and prevents onset of cognitive impairment in a mouse model of the neurodegenerative condition.

The findings are described in the current online issue of the journal Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association.

Previous research has shown a link between the brain’s stress signaling pathways and AD. Specifically, the release of a stress-coping hormone called corticotropin-releasing factor (CRF), which is widely found in the brain and acts as a neurotransmitter/neuromodulator, is dysregulated in AD and is associated with impaired cognition and with detrimental changes in tau protein and increased production of amyloid-beta protein fragments that clump together and trigger the neurodegeneration characteristic of AD.

“Our work and that of our colleagues on stress and CRF have been mechanistically implicated in Alzheimer’s disease, but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models,” said the study’s principal investigator and corresponding author Robert Rissman, PhD, assistant professor in the Department of Neurosciences and Biomarker Core Director for the Alzheimer’s Disease Cooperative Study (ADCS).

The researchers determined that modulating the mouse brain’s stress circuitry mitigated generation and accumulation of amyloid plaques widely attributed with causing neuronal damage and death. As a consequence, behavioral indicators of AD were prevented and cellular damage was reduced.  The mice began treatment at 30-days-old — before any pathological or cognitive signs of AD were present — and continued until six months of age.

One particular challenge, Rissman noted, is limiting exposure of the drug to the brain so that it does not impact the body’s ability to respond to stress. “This can be accomplished because one advantage of these types of small molecule drugs is that they readily cross the blood-brain barrier and actually prefer to act in the brain,” Rissman said.

“Rissman’s prior work demonstrated that CRF and its receptors are integrally involved in changes in another AD hallmark, tau phosphorylation,” said William Mobley, MD, PhD, chair of the Department of Neurosciences and interim co-director of the Alzheimer’s Disease Cooperative Study at UC San Diego. “This new study extends those original mechanistic findings to the amyloid pathway and preservation of cellular and synaptic connections.  Work like this is an excellent example of UC San Diego’s bench-to-bedside legacy, whereby we can quickly move our basic science findings into the clinic for testing,” said Mobley.

Rissman said R121919 was well-tolerated by AD mice (no significant adverse effects) and deemed safe, suggesting CRF-antagonism is a viable, disease-modifying therapy for AD. Drugs like R121919 were originally designed to treat generalized anxiety disorder, irritable bowel syndrome and other diseases, but failed to be effective in treating those disorders.

Rissman noted that repurposing R121919 for human use was likely not possible at this point. He and colleagues are collaborating with the Sanford Burnham Prebys Medical Discovery Institute to design new assays to discover the next generation of CRF receptor-1 antagonists for testing in early phase human safety trials.

“More work remains to be done, but this is the kind of basic research that is fundamental to ultimately finding a way to cure — or even prevent —Alzheimer’s disease,” said David Brenner, MD, vice chancellor, UC San Diego Health Sciences and dean of UC San Diego School of Medicine. “These findings by Dr. Rissman and his colleagues at UC San Diego and at collaborating institutions on the Mesa suggest we are on the cusp of creating truly effective therapies.”


Abstract of Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer’s disease

Introduction: Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer’s disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models.

Methods: To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points.

Results: R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-β levels in both genders. We observed no tolerability or toxicity issues in mice treated with R121919.

Discussion: CRFR1 antagonism presents a viable disease-modifying therapy for AD, recommending its advancement to early-phase human safety trials.

Allen Institute researchers decode patterns that make our brains human
Conserved gene patterning across human brains provide insights into health and disease
November 17, 2015

http://www.kurzweilai.net/allen-institute-researchers-decode-patterns-that-make-our-brains-human

 

Percentage of known neuron-, astrocyte- and oligodendrocyte-enriched genes in 32 modules, ordered by proportion of neuron-enriched gene membership. (credit: Michael Hawrylycz et al./Nature Neuroscience)

Allen Institute researchers have identified a surprisingly small set of just 32 gene-expression patterns for all 20,000 genes across 132 functionally distinct human brain regions, and these patterns appear to be common to all individuals.

In research published this month in Nature Neuroscience, the researchers used data for six brains from the publicly available Allen Human Brain Atlas. They believe the study is important because it could provide a baseline from which deviations in individuals may be measured and associated with diseases, and could also provide key insights into the core of the genetic code that makes our brains distinctly human.

While many of these patterns were similar in human and mouse, many genes showed different patterns in human. Surprisingly, genes associated with neurons were most conserved (consistent) across species, while those for the supporting glial cells showed larger differences. The most highly stable genes (the genes that were most consistent across all brains) include those associated with diseases and disorders like autism and Alzheimer’s, and these genes include many existing drug targets.

These patterns provide insights into what makes the human brain distinct and raise new opportunities to target therapeutics for treating disease.

The researchers also found that the pattern of gene expression in cerebral cortex is correlated with “functional connectivity” as revealed by neuroimaging data from the Human Connectome Project.

“The human brain is phenomenally complex, so it is quite surprising that a small number of patterns can explain most of the gene variability across the brain,” says Christof Koch, Ph.D., President and Chief Scientific Officer at the Allen Institute for Brain Science. “There could easily have been thousands of patterns, or none at all. This gives us an exciting way to look further at the functional activity that underlies the uniquely human brain.”


Abstract of Canonical genetic signatures of the adult human brain

The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure and function. We applied a correlation-based metric called differential stability to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing mesoscale genetic organization. The genes with the highest differential stability are highly biologically relevant, with enrichment for brain-related annotations, disease associations, drug targets and literature citations. Using genes with high differential stability, we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely patterned genes displayed marked shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry.

Read Full Post »

Brain Development

Larry H. Bernstein, MD, FCAP, Curator

LPBI

Updated 11/22/2015

Single Gene Found to Play Huge Role in Brain Development

http://www.genengnews.com/gen-news-highlights/single-gene-found-to-play-huge-role-in-brain-development/81251997/

 

Single Gene Found to Play Huge Role in Brain Development

Figure 1: Cells in which NeuroD1 is turned on are reprogrammed to become neurons. Cell nuclei are shown in blue (Höchst stain) and neurons are shown in red (stained with neuronal marker TUJ1). [A. Pataskar,J. Jung, V. Tiwari]

 

Researchers at the Institute of Molecular Biology (IMB) in Mainz, Germany say they have unraveled a complex regulatory mechanism that explains how a single gene can drive the formation of brain cells. Their study (“NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program”), published in The EMBO Journal, is an important step toward a better understanding of how the brain develops. It also harbors potential for regenerative medicine, according to the scientists.

Neurodegenerative disorders, such as Parkinson’s disease, are often characterized by an irreversible loss neurons. Unlike many other cell types in the body, neurons are generally not able to regenerate by themselves, so if the brain is damaged, it stays damaged. One hope of developing treatments for this kind of damage is to understand how the brain develops in the first place, and then try to imitate the process. However, the brain is also one of the most complex organs in the body, and very little is understood about the molecular pathways that guide its development.

 

Figure 2: Diagram showing how NeuroD1 influences the development of neurons. During brain development, expression of NeuroD1 marks the onset of neurogenesis. NeuroD1 accomplishes this via epigenetic reprogramming: neuronal genes are switched on, and the cells develop into neurons. TF: transcription factor; V: ventricle; P: pial surface. [A. Pataskar, J. Jung, V. Tiwari]

 

ijay Tiwari, Ph.D, and his group have been investigating a central gene in brain development, NeuroD1. This gene is expressed in the developing brain and marks the onset of neurogenesis.

In their research article, Dr. Tiwari and his colleagues have shown that during brain development NeuroD1 is not only expressed in brain stem cells but acts as a master regulator of a large number of genes that cause these cells to develop into neurons. They used a combination of neurobiology, epigenetics, and computational biology approaches to show that these genes are normally turned off in development, but NeuroD1 activity changes their epigenetic state in order to turn them on. Strikingly, the researchers show that these genes remain switched on even after NeuroD1 is later switched off. They further show that this is because NeuroD1 activity leaves permanent epigenetic marks on these genes that keep them turned on, in other words it creates an epigenetic memory of neuronal differentiation in the cell.

“Our research has shown how a single factor, NeuroD1, has the capacity to change the epigenetic landscape of the cell, resulting in a gene expression program that directs the generation of neurons,” wrote the screenplay investigators.

“This is a significant step toward understanding the relationship between DNA sequence, epigenetic changes and cell fate. It not only sheds new light on the formation of the brain during embryonic development but also opens up novel avenues for regenerative therapy,” says Dr. Tiwari.

 

NEUROD1 neuronal differentiation 1 [ Homo sapiens (human) ]

Official Symbol NEUROD1 provided by HGNC 

Official Full Name neuronal differentiation 1 provided by HGNC

Primary source HGNC:HGNC:7762 See related Ensembl:ENSG00000162992; HPRD:03428; MIM:601724; Vega:OTTHUMG00000132583

Gene type protein coding

RefSeq status REVIEWED

OrganismHomo sapiens

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo

Also known asBETA2; BHF-1; MODY6; NEUROD; bHLHa3

Summary This gene encodes a member of the NeuroD family of basic helix-loop-helix (bHLH) transcription factors. The protein forms heterodimers with other bHLH proteins and activates transcription of genes that contain a specific DNA sequence known as the E-box. It regulates expression of the insulin gene, and mutations in this gene result in type II diabetes mellitus. [provided by RefSeq, Jul 2008]

Orthologs mouse all

 

https://en.wikipedia.org/wiki/NEUROD1

Neurogenic differentiation 1 (NeuroD1), also called β2,[1] is a transcription factor of the NeuroD-type. It is encoded by the human gene NEUROD1.

It is a member of the NeuroD family of basic helix-loop-helix (bHLH) transcription factors. The protein forms heterodimers with other bHLH proteins and activates transcription of genes that contain a specific DNA sequence known as the E-box. It regulates expression of the insulin gene, and mutations in this gene result in type II diabetes mellitus.[2]

Contents  [hide

1Interactions

2References

3Further reading

4External links

 

NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis

Camille BoutinOlaf HardtAntoine de ChevignyNathalie CoréSandra GoebbelsRalph SeidenfadenAndreas Bosio and Harold Cremer

PNAS Jan 19, 2010; 107(3):   1201–1206.   http://dx.doi.org:/10.1073/pnas.0909015107

After their generation and specification in periventricular regions, neuronal precursors maintain an immature and migratory state until their arrival in the respective target structures. Only here are terminal differentiation and synaptic integration induced. Although the molecular control of neuronal specification has started to be elucidated, little is known about the factors that control the latest maturation steps. We aimed at identifying factors that induce terminal differentiation during postnatal and adult neurogenesis, thereby focusing on the generation of periglomerular interneurons in the olfactory bulb. We isolated neuronal precursors and mature neurons from the periglomerular neuron lineage and analyzed their gene expression by microarray. We found that expression of the bHLH transcription factor NeuroD1 strikingly coincides with terminal differentiation. Using brain electroporation, we show that overexpression of NeuroD1 in the periventricular region in vivo leads to the rapid appearance of cells with morphological and molecular characteristics of mature neurons in the subventricular zone and rostral migratory stream. Conversely, shRNA-induced knockdown of NeuroD1 inhibits terminal neuronal differentiation. Thus, expression of a single transcription factor is sufficient to induce neuronal differentiation of neural progenitors in regions that normally do not show addition of new neurons. These results suggest a considerable potential of NeuroD1 for use in cell-therapeutic approaches in the nervous system.

 

Determination of neuronal subtypes is an early event that coincides with cell cycle exit (1, 2). However, after their generation, new neurons have to remain immature for prolonged periods, allowing their migration to final destinations where terminal differentiation occurs (3). Little is known about the factors that maintain the precursor state or induce terminal differentiation.

Olfactory neurogenesis is particularly suited to approach these late steps in neuronal differentiation. Here, stem cell populations first located in the ventricular zone and after the establishment of an ependymal layer positioned in subventricular zone (SVZ) generate migratory neuroblasts throughout life (4). These perform long-distance chain migration via the rostral migratory stream (RMS) into the olfactory bulb (OB), where they migrate into the granule cell layer (GCL) and the glomerular layer (GL) to differentiate into GABA- and dopaminergic neurons (4, 5). Thus, in this system, generation of neurons is permanent and the consecutive steps in the neurogenic sequence are spatially separated.

Determination of newly generated neurons has been studied intensively over the past years. For example, it has been demonstrated that defined areas surrounding the lateral ventricle contain predetermined stem cells that give rise to defined subsets of interneurons (6, 7). Several transcription factors have been implicated in the specification of the different neuronal populations. The zinc finger transcription factor sp8, for instance, appears to be involved in the generation of interneurons expressing calretinin (8), and analysis of Sall3 mutant mice (9) points to a role of this factor in the dopaminergic, tyrosine hydroxylase–positive lineage (10). Furthermore, it appears that interneuron diversity relies on the combinatorial expression of such transcription factors. This is exemplified by Pax6 and Dlx2, which have been shown to interact in the determination of adult generated neuronal precursors toward a dopaminergic fate (9, 11, 12). All of these transcriptional regulators are expressed early during the neurogenic process and remain present until terminal differentiation occurs.

We aimed at the identification of transcription factors that induce terminal differentiation of postnatal generated neurons in the OB. To do so we isolated neuronal precursors and differentiated interneurons from the periglomerular lineage of the OB and compared their gene expression by microarray. We established that the expression of NeuroD1, a bHLH transcription factor that has been implicated in neuronal differentiation in several experimental systems (1317), coincides with the passage from neuronal precursor to mature interneurons. Functionally, we show that premature expression of NeuroD1 in vitro and in vivo induced highly efficiently the differentiation of forebrain progenitors. In vivo, this leads to the transitory appearance of ectopic neurons in the SVZ, RMS and striatum. Conversely, knockdown of NeuroD1 specifically inhibits terminal maturation of periglomerular neurons in the OB. Thus, NeuroD1 is both necessary and sufficient to induce key steps in terminal neuronal differentiation.

 

NeuroD1 Is Specifically Expressed in Mature GL Interneurons.

Subpopulations of neuronal precursors destined for the GCL and GL of the OB are generated by regionally defined stem cell populations in the periventricular region but migrate intermingled in the RMS to the OB. Once there, cells resegregate: granule cell precursors terminate their migration in the GCL, whereas the smaller population of periglomerular neuron precursors traverses this layer and the mitral cell layer (MCL) to invade the peripherally located GL (Fig. 1A). Thus, at a given time point, the GL contains both mature periglomerular neurons and their specific progenitors. Based on this spatial organization we isolated these two populations, concurrently depleting glial cells.

We devised a three-step strategy based on the following: (i) microdissection followed by enzymatic dissociation of the postnatal GL, (ii) depletion of contaminating glial cells by magnetic activated cell sorting (MACS) using an A2B5 specific antibody (18), (iii) separation of PSA-NCAM expressing cells (19) from the remaining fraction containing the mature neurons (Fig. 1B). The same purification strategy was applied to tissue microdissected from the P2 periventricular region (18). Characterization of the different cell population after sorting was performed via immunocytochemistry using the markers used for sorting (A2B5 and PSA-NCAM) as well as the differentiation marker Gad65 (18) (Fig. S1). Thus, as starting material we obtained highly enriched mature OB periglomerular interneurons (PGN), their immature progenitors (PGP), as well as a mixed population of generic progenitors (GP) from the SVZ/RMS.

 

Fig. 1.

Fig. 1.

Expression of NeuroD1 in the olfactory neurogenic system (A) DAPI-stained coronal section through the olfactory bulb of P5. (B) Strategy to isolate neuronal populations at different steps of their maturation. (C) Relative changes in gene expression for selected genes. Expression in GP was considered baseline, and changes are expressed as fold difference. (D–F) NeuroD1 in situ hybridization on sections from P5 mouse brain. No signal was detected along the lateral ventricle or in the RMS (D). In the olfactory bulb, individual NeuroD1+ cells were present in the GCL, whereas the MCL and the GL contained higher amounts (E, high magnification in F). A similar expression pattern was found after β-gal reaction on NeuroD1-lacZ-knockin tissue (G). (Scale bar: 200 μm in A; 100 μm inD and E; 20 μm in F and G).

 

Based on the purified and characterized cell populations, we performed microarray analyses to gain insight into the changes in gene expression during the neurogenic process. Investigation of expression dynamics of genes associated with either the precursor status or neuronal differentiation (Fig. S2 A and B) were used to validate the approach. Furthermore, these data were compared with those from an already available Serial Analysis of Gene Expression (SAGE) study (20).

Serial Analysis of Microarray (SAM) demonstrated the presence of groups of genes with comparable expression patterns (Fig. S2 C–E). Interestingly, only a relatively small fraction of genes were absent in the immature cell populations GP and PGP but highly represented in mature PGN (Fig. S2E). One of the genes showing such a pattern was NeuroD1, which was expressed more than 50-fold higher in PGN than in the immature populations (Fig. 1C). This was in agreement with the above-cited SAGE data, showing that NeuroD1 expression was below the detection level in neuronal precursors of the adult SVZ (20). Thus, expression of NeuroD1 was absent from precursors but coincided with terminal neuronal differentiation.

This late expression of NeuroD1 was in contrast to that of factors that have been functionally implicated in the specification of PGN, including Pax6, Sp8 and Sall3, which were expressed in both the immature populations and in the mature neurons (Fig. 1C; in situ hybridization for Pax6 in Fig. S3). Only Dlx2 showed a moderate increase in the PGN lineage outgoing, however, from an already considerable baseline level in migrating precursors (12) (Fig. 1C).

Next we analyzed the expression of NeuroD1 using in situ hybridization on P5 forebrain sections. Strong expression was found in the GL, whereas weaker expression was observed in the GCL and MCL (Fig. 1 Eand F). The transcript was undetectable in the periventricular region and the RMS (Fig. 1D). This staining was confirmed using NeuroD1-lacZ knockin mice (21) (Fig. 1G). In conclusion, these data demonstrated the absence of NeuroD1 from immature cells of the system and its strong expression in mature PGN. This pattern was coherent with a function in terminal neuronal differentiation.

NeuroD1 Induces Neuronal Differentiation in Vitro.

We studied the neurogenic potential of NeuroD1 in primary cultured neural stem cells using the neurosphere assay. In parallel to NeuroD1, we performed all experiments under the same conditions using the transcription factor Pax6, a well-described neurogenic signal in the system (9, 11, 12), to control for specificity of the observed effects. Neurosphere cells were coelectroporated with NeuroD1 or Pax6 expression vectors and GFP immediately before plating in differentiation conditions. One week after transfection, in the control condition, 14 ± 1% of the GFP-positive cells coexpressed the early neuronal marker Tuj1 (Fig. S4 A and D) whereas NeuroD1 induced Tuj1 expression in virtually all cells (98.0 ± 2%, Fig. S4 B and D). Pax6 gain-of-function led to an intermediate value (60.0 ± 3%, Fig. S4 C and D). NeuN, a later neuronal marker (22), was expressed by 21.1 ± 1% of the Tuj1-positive cells in the control situation (Fig. S4 E and H) but induced by NeuroD1 in almost all cells (93.9 ± 2%; Fig. S4 F and H). Surprisingly, Pax6 expression led to nearly complete disappearance of NeuN (1.7 ± 0.3%; Fig. S4 G and H). We investigated the induction of subtype specific markers by NeuroD1. Whereas tyrosine hydroxylase showed no augmentation, we found a 20% increase in calretinin labeling, in agreement with previous findings (23).

Next we investigated morphological parameters like process length as well as density and length of filopodia. Both NeuroD1 and Pax6 induced a significant, greater than 2-fold increase in process length (Fig. S4 I and L). We analyzed dendritic filopodia, structures that are believed to be precursors of dendritic spines (24). Expression of NeuroD1 induced a doubling in density and length of filopodia (Fig. S4 N, P, and Q). Interestingly, Pax6 reduced filopodia density to a level significantly below that of controls (Fig. S4 O and P), whereas length of the few remaining filopodia was not affected (7.0 ± 0.4 μm; Fig. S4Q).

Thus, the expression of NeuroD1 in neurosphere amplified neural stem cells induced neuronal commitment as well as morphological characteristics of mature neurons. Like NeuroD1, Pax6 favored neuronal commitment but appeared to actively suppress certain characteristics of terminal neuronal differentiation.

NeuroD1 Induces Ectopic Neurons in Vivo.

We asked whether NeuroD1 was also sufficient to induce neuronal differentiation in vivo. We used postnatal forebrain electroporation, an approach that allows efficient genetic manipulation of neural stem cells along the lateral ventricles and, consequently, of all transitory or permanent cell populations that are generated in the olfactory neurogenic process (25). The NeuroD1 expression vector or empty control plasmids were coelectroporated together with a GFP-containing vector that allowed visualization of transfected cells and their progeny at high resolution. Consequences of NeuroD1 gain-of-function were analyzed at 2, 4, 6, 8, and 15 days postelectroporation (dpe). As for the in vitro studies, results were compared with the effects of Pax6 gain-of-function.

At 2 dpe of a control vector into the lateral wall of the forebrain ventricle, 9.8 ± 1.3% (Fig. 2 A and K) of the GFP-expressing cells were localized in the VZ and had the morphology of radial glia (RG) (25). The majority of the GFP + cells, representing mainly neuronal precursors, were localized in the SVZ. Electroporation of a NeuroD1 expression vector induced a loss of GFP-positive RG cells (3.7 ± 0.5%; Fig. 2 B and K). The remaining cells in the VZ showed lower GFP levels than in controls (Fig. 2 A and B asterisks).

Fig. 2.

Fig. 2.

NeuroD1 induces neuronal morphology in vivo. Effect of NeuroD1 gain-of-function at different time points postelectroporation. (A and B) Coronal forebrain sections at the level of the lateral ventricle at 2 dpe. In the control condition, strongly GFP labeled RG are present in the VZ (A, asterisk). Expression of NeuroD1 induced a relative loss of radial glia and fainter GFP label (B, asterisk). (C and D) Coronal sections at the level of the lateral ventricle at 4 dpe. NeuroD1 expression induced an accumulation of transfected cells in the SVZ (D) and the almost total disappearance of radial glia (D). (E–F′) Sagittal sections of the RMS at 4 dpe. In the control situation, cells migrated toward the OB and presented the bipolar morphology specific of migrating precursors (E, E′, arrowheads). NeuroD1 electroporation induced loss of tangential orientation, induction of complex branching (F, F′, arrowhead), and invasion of the surrounding tissues (F, arrowheads). (G and H) Coronal section at the level of the olfactory bulb at 4 dpe. Although the majority of cells have reached the OB in the control situation (G), only a few cells were located in the center of the OB in the presence of NeuroD1 (H). (I and I′) Examples of cells presenting neuronal morphology in the SVZ at 4 dpe. (J) High magnification showing the presence of filopodia covering NeuroD1-expressing cells (arrowheads). (K) Quantification of GFP-positive cells presenting radial glia cell morphology along the lateral ventricle at 2 and 4 dpe. Control: 9.8 ± 1.3% (n= 6) at 2 dpe; 24 ± 11.8% at 4 dpe (n = 3); NeuroD1: 3.7 ± 0.5% at 2 dpe (n = 6); 1.6 ± 0.7% at 4 dpe (n = 3). (l) Distribution of the GFP-positive cells along the rostrocaudal axis. NeuroD1 expressing cells accumulated in proximal parts of the system. (M) Morphological analysis of cells in the SVZ/RMS. Three different classes were defined: (i) bipolar cells presenting tangential orientation, (ii) spherical cells, and (iii) branched cells presenting multiple processes in various directions (compare I). NeuroD1-expressing cells presented a highly branched morphology. Control: bipolar, 80.4%; spherical, 19.5%; branched, 0% (n = 133 cells). NeuroD1: bipolar, 5%; spherical, 16.8%; branched, 78% (n = 119 cells). Statistics: Mann-Whitney test. ns, not significant. **P < 0.01; ***P < 0.005. (Scale bar: 100 μm in E, F, G,and H; 25 μm in A, B, C, D,E, and F’; 10 μm in I; 5 μm in J.)

 

At 4 dpe, in the control situation, considerable amounts of strongly GFP+ RG cells were still present in the VZ (Fig. 2C asterisks), whereas NeuroD1 expression induced an almost complete loss of RG cells (Fig. 2 Dand K). At this time point, control cells were found along the entire SVZ and RMS. They showed generally tangential orientation and the typical morphology of migratory neuronal precursors. Large amounts of such cells were also found in the center of the OB (Fig. 2 G and L). NeuroD1 expression induced an accumulation of GFP-labeled cells in the SVZ (Fig. 2 D and L) at the expense of cells in the RMS (Fig. 2H,quantified in Fig. 2L). The accumulating cells did not have the appearance of migrating precursors but displayed complex multibranched morphologies (Fig. 2 F and F, examples in Fig. 2 I and I, quantified inFig. 2M). All principal processes of these cells were covered with small protrusions resembling filopodia (Fig. 2J). Such morphologically complex cells, strongly resembling neurons, were also predominant in and along proximal parts of the RMS (Fig. 2F). Interestingly, considerable amounts of multibranched cells were found outside of the periventricular region and the RMS, invading neighboring structures such as the striatum (Fig. 2F, arrows). There was a clear correlation between the quantity of transgene expression, as visualized by GFP fluorescence, and the above parameters. Thus, NeuroD1 induced dose-dependently a neuron-like morphology in cells in the SVZ, RMS, and surrounding tissues.

We characterized the NeuroD1 induced neuron-like cell population in the periventricular region using neuronal and glial markers (Fig. 3; examples in Fig. S5). Doublecortin (DCX), a microtubule-associated protein expressed in migratory neuronal precursors (26), was seen in 75.2 ± 4.5% of the cells in the control situation but showed a significant increase after expression of NeuroD1 (91.7 ± 2.2%). NeuN, a marker for most mature neuronal cell types in the brain (22) was low in controls (5.2 ± 1.4%, n = 8) but strongly induced by NeuroD1 (65.9 ± 4.5%, n = 9). Map2, a later generic neuronal marker (27), was also rare in control cells (14.1 ± 1.4%, n = 3) but highly expressed in the NeuroD1 condition (61.9 ± 2.7%, n = 3). GFAP and Olig2 did not show significant alterations due to NeuroD1 expression. Thus, the NeuroD1-induced ectopic cells with neuronal morphology in the SVZ and RMS showed molecular characteristics of neurons.

 

Fig. 3.

Fig. 3.

NeuroD1 induces generic neuronal markers in vivo Molecular phenotype of the cells located in the periventricular region (level 4 in Fig. 2l). Quantification representing the percentage of GFP-positive cells expressing the respective markers. DCX: control, 75.2 ± 4.5%, n = 5; NeuroD1, 91.7 ± 2.2%, n = 5. NeuN: control, 5.2 ± 1.4%, n = 8; NeuroD1, 65.9 ± 4.5%, n = 9. Map2: control, 14.1 ± 1.4%, n = 3; NeuroD1, 61.9 ± 2.7%, n = 3. Olig2: control, 6.8 ± 5%, n = 3; NeuroD1, 2.5 ± 0.5%, n = 3. GFAP: control, 0%, n = 3; NeuroD1, 0%, n = 2. Errors bars indicate SEM. Statistics: DCX and Map2, unpaired ttest; NeuN, Mann-Whitney test. ns, not significant. *P < 0.05; **P < 0.01; ***P < 0.005.

HighWire Press-hosted articles citing this article

  • ……..

    NeuroD1 Is Necessary For OB Interneuron Differentiation in Vivo.

    Next we asked whether NeuroD1 is essential for the generation of PGN. Given that NeuroD1 deficiency in mice is generally associated with perinatal lethality (14, 15, 21), we used a strategy based on RNAi in concert with postnatal in vivo electroporation to knock down NeuroD1 in the olfactory bulb neurogenic system. For validation, three different NeuroD1 specific shRNA vectors were cotransfected with a NeuroD1 expression construct into COS-7 cells. Western blot analysis demonstrated that two of the shRNAs, sh775 and sh776, efficiently inhibited production of the NeuroD1 protein, whereas sh777 induced a less efficient downregulation (sh775, 94.6%; sh776, 96.9%; sh777, 78.4%; corrected for loading against αtubulin; Fig. 4A). All three shRNAs were used for further in vivo studies.

    Fig. 4.

Fig. 4.

In vivo terminal neuronal differentiation of PGC is impaired in absence of NeuroD1. (A) Western blot analysis of protein extracts from cos-7 cells transfected with NeuroD1 or in combination with different NeuroD1 specific shRNAs. sh775 and sh776 strongly repressed NeuroD1 protein expression (94.6% and 96.9%, respectively), whereas sh777 repressed NeuroD1 by 74.8%. (B–H′′) Consequences of loss-of-function of NeuroD1 via in vivo postnatal electroporation at 4 and 15 dpe. (B–E) No differences were observed at the level of the lateral ventricle or in the RMS at 4 dpe. (F) Cell distribution along the rostro-caudal axis was normal (definition of levels in Fig. 2l). (G and H′′) Consequences of NeuroD1 knockdown on PGN morphology at 15 dpe. (G) Whereas shRNAs showing a strong effect on NeuroD1 expression strongly inhibited morphological differentiation, the weakly active shRNA 777 had only a minor effect compared with control. (H) Examples of cells that served for classification of PGN. Class1 cells present primary and secondary branching. Dendritic spines (arrowheads) indicate their synaptic integration in OB circuitry. Class 2 cells present a single primary branch. Class 3 cells present a spherical morphology and no branching. Errors bars indicate SEM. Statistics, unpaired t test. ns, not significant. **P < 0.01; ***P < 0.005. (Scale bar: 100 μm in B–E; 20 μm in H.

………

When the two highly active NeuroD1-specific shRNAs sh775 and sh776 were electroporated, the vast majority of cells in the GL showed simple morphologies with few or no processes (classes 2 and 3), whereas cells with complex neuronal morphologies were sparse (Fig. 4G). When the less-efficient shRNA sh777 was expressed, an intermediate degree of neuronal maturation was observed (Fig. 4G), suggesting a dose-dependent action of NeuroD1 under these conditions. Comparable results were obtained for the GCL. As in the PGL, knockdown of NeuroD1 induced a dose-dependent inhibition of terminal neuronal differentiation (Fig. S9 A and B).

Thus, knockdown of NeuroD1 did not notably interfere with early steps of interneuron generation, but induced a specific defect in the acquisition of the differentiated neuronal phenotype in the OB.

 

Discussion

Although considerable information is available concerning the generation, specification, and migration of neurons, little is known concerning the factors and regulatory cascades that maintain the immature neuronal precursor status or induce the exit from this state and trigger terminal differentiation. Using a systematic approach, we identified NeuroD1 as a candidate for the latter function and validated this role using gain- and loss-of function approaches.

In Xenopus, a late function of NeuroD1 has been suggested based on two lines of evidence (13). First, NeuroD1 is transitorily expressed in territories where neuronal differentiation occurs. Second, misexpression of NeuroD1 causes the premature differentiation of neuronal precursors into neurons. However, the observation that NeuroD1 could also convert presumptive epidermal cells into neurons pointed toward a determination function. Therefore, a doubtless discrimination between a proneural and a terminal differentiation function was not possible.

The above-cited pioneering work in the frog has been extended through the analysis of mice with mutations in the NeuroD1 gene (14, 15, 21). In the hippocampal dentate gyrus of such animals, granule cell precursors are generated correctly in the neuroepithelium and invade the hippocampal anlage. However, in the target structure, precursors show a severe deficit in proliferation, and a defined dentate gryus is not formed (15). In the mutant cerebellum, generation and migration of early precursors appear not to be affected. Nevertheless, once these cells become postmitotic, massive cell death is observed and the cerebellum is severely affected (14). Thus, in these systems a late function of NeuroD1 is already suggested. However, because of the complexity of the models and the relatively low level of resolution, the available information is still fragmentary.

We attempted to clarify the role of NeuroD1 in neuronal differentiation by analyzing its function during olfactory neurogenesis. Using SAGE, microarray, in situ hybridization, and lacZ knockin into the NeuroD1 locus, we have demonstrated that NeuroD1 is expressed in mature neurons of the OB but is absent from immature stages. These findings are in contrast to recent expression data based on a NeuroD1 antibody, suggesting expression of the transcription factor already in the SVZ and RMS (23, 29). However, our loss-of-function approach based on RNAi shows that NeuroD1 is dispensable for generation and migration of precursors but is necessary for their transition into neurons in the target layer. These findings are in agreement with those of a recent study based on conditional NeuroD1 mutants, which showed a comparable defect in the OB (29).

……

This work demonstrates that expression of a single transcription factor can induce massive ectopic neuronal differentiation of neural stem cells in the vertebrate forebrain. The existence of postnatal and adult neurogenesis holds potential for the treatment of neurodegenerative diseases (34). However, in many experimental paradigms, transplanted or recruited cells fail to undergo differentiation into neurons and either transdifferentiate into glia or remain immature precursors (18, 35). It appears conceivable to combine such approaches with the strong neuronal differentiation inducing activity of NeuroD1.

Scientists Unveil Critical Mechanism of Memory Formation

In a new study that could have implications for future drug discovery efforts for a number of neurodegenerative diseases, scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that the interaction between a pair of brain proteins has a substantial and previously unrecognized effect on memory formation.
The study, which was published November 19, 2015 by the journal Cell, focuses on two receptors previously believed to be unrelated—one for the neurotransmitter dopamine, which is involved in learning and memory, reward-motivated behavior, motor control and other functions, and the other for the hormone ghrelin, which is known for regulating appetite as well as the distribution and use of energy.
“Our immediate question was, what is the ghrelin receptor doing in the brain since the natural ligand—ghrelin—for it is missing? What is it’s functional role?” said Roy Smith, chair of TSRI’s Department of Metabolism and Aging. “We found in animal models that when these two receptors interact, the ghrelin receptor changes the structure of the dopamine receptor and alters its signaling pathway.”
“This concept has potentially profound therapeutic implications,” said Andras Kern, the first author of the study and a staff scientist in the Smith lab, “pointing to a possible strategy for selective fine-tuning of dopamine signaling in neurons related to memory. By using small molecules binding to the ghrelin receptor we can enhance or inhibit dopamine signaling.”
Challenging the current theory, which involves canonical dopamine signaling in neurons, the new study shows that the biologically active ghrelin-dopamine receptor complex produces synaptic plasticity, the ability of the brain’s synapses (parts of nerve cells that communicate with other nerve cells) to grow and expand, the biological process underpinning long-term memory formation.
In addition, when the researchers blocked the ghrelin receptor, dopamine-dependent memory formation was inhibited in animal models, demonstrating the mechanism is essential to that process.
Combined with conclusions from earlier studies that showed a significant role for the ghrelin receptor in neurons that regulate food intake, insulin release and immune system deterioration due to aging, the new study further expands the ghrelin receptor’s importance. In animal models, ghrelin inhibits neuronal loss associated with Parkinson’s disease, and stroke, Smith noted, and the new study underlines its possible role in treating memory loss, age related or otherwise.
“All in all, it’s a pretty amazing receptor,” he said.
In addition to Smith and Kern, other authors of the study, “Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor,” are Maria Mavrikaki, Celine Ullrich, Rosie Albarran-Zeckler and Alicia Faruzzi Brantley of TSRI.
This work was supported by the National Institutes of Health (grant R01AG019230).
Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor
Andras Kern, Maria Mavrikaki3, Celine Ullrich4, Rosie Albarran-Zeckler, Alicia Faruzzi Brantley, Roy G. Smith
Figure thumbnail fx1
  • In hippocampal neurons GHSR1a and DRD1 forms heteromers in a complex with Gαq
  • DRD1-induced hippocampal synaptic plasticity is dependent on GHSR1a and Gαq
  • DRD1 mediated learning and memory is dependent on Gαq-PLC rather than Gαs signaling
  • DRD1-induced hippocampal memory is regulated by allosteric DRD1:GHSR1a interactions

The ghrelin receptor (GHSR1a) and dopamine receptor-1 (DRD1) are coexpressed in hippocampal neurons, yet ghrelin is undetectable in the hippocampus; therefore, we sought a function for apo-GHSR1a. Real-time single-molecule analysis on hippocampal neurons revealed dimerization between apo-GHSR1a and DRD1 that is enhanced by DRD1 agonism. In addition, proximity measurements support formation of preassembled apo-GHSR1a:DRD1:Gαqheteromeric complexes in hippocampal neurons. Activation by a DRD1 agonist produced non-canonical signal transduction via Gαq-PLC-IP3-Ca2+ at the expense of canonical DRD1 GαscAMP signaling to result in CaMKII activation, glutamate receptor exocytosis, synaptic reorganization, and expression of early markers of hippocampal synaptic plasticity. Remarkably, this pathway is blocked by genetic or pharmacological inactivation of GHSR1a. In mice, GHSR1a inactivation inhibits DRD1-mediated hippocampal behavior and memory. Our findings identify a previously unrecognized mechanism essential for DRD1 initiation of hippocampal synaptic plasticity that is dependent on GHSR1a, and independent of cAMP signaling.

 

 

Read Full Post »

Studying Alzheimer’s biomarkers in Down syndrome

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

NIH supports new studies to find Alzheimer’s biomarkers in Down syndrome

Groundbreaking initiative will track dementia onset, progress in Down syndrome volunteers

http://www.nih.gov/news-events/news-releases/nih-supports-new-studies-find-alzheimers-biomarkers-down-syndrome

 

The National Institutes of Health has launched a new initiative to identify biomarkers and track the progression of Alzheimer’s in people with Down syndrome. Many people with Down syndrome have Alzheimer’s-related brain changes in their 30s that can lead to dementia in their 50s and 60s. Little is known about how the disease progresses in this vulnerable group. The NIH Biomarkers of Alzheimer’s Disease in Adults with Down Syndrome Initiative will support teams of researchers using brain imaging, as well as fluid and tissue biomarkers in research that may one day lead to effective interventions for all people with dementia.

The studies will be funded by the National Institute on Aging (NIA) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), both part of NIH. The institutes are jointly providing an estimated $37 million over five years to two highly collaborative projects, which enlist a number of leading researchers to the effort. To advance Alzheimer’s research worldwide, the teams will make their data and samples freely available to qualified researchers.

“This is the first large-scale Alzheimer’s biomarker endeavor to focus on this high-risk group,” said Laurie Ryan, Ph.D., chief of the Dementias of Aging Branch in NIA’s Division of Neuroscience, which leads NIH research on Alzheimer’s.  “Much like the long-established Alzheimer’s Disease Neuroimaging Initiative, the goal of this initiative is to develop biomarker measures that signal the onset and progression of Alzheimer’s in people with Down syndrome. Hopefully, one day, we will also use these biomarkers to determine the effectiveness of promising treatments.”

The link between Alzheimer’s and Down syndrome is well-known. People with Down syndrome are born with an extra copy of chromosome 21, which contains the amyloid precursor protein gene. This gene plays a role in the production of harmful amyloid plaque, sticky clumps that build up outside neurons in Alzheimer’s disease. Having three copies of this gene is a known risk factor for early-onset Alzheimer’s that can occur in people in their 30s, 40s and 50s. By middle age, most but not all adults with Down syndrome develop signs of Alzheimer’s, and a high percentage go on to develop symptoms of dementia as they age into their 70s.

The initiative establishes funding for two research teams that will pool data and standardize procedures, increase sample size, and collectively analyze data that will be made widely available to the research community. The teams will employ an array of biomarkers to identify and track Alzheimer’s-related changes in the brain and cognition for over 500 Down syndrome volunteers, aged 25 and older. The measures include:

  • Positron emission tomography (PET) scans that track levels of amyloid and glucose (energy used by brain cells); MRI of brain volume and function; and levels of amyloid and tau in cerebrospinal fluid and blood;
  • Blood tests to identify biomarkers in blood, including proteins, lipids and markers of inflammation;
  • Blood tests to collect DNA for genome-wide association studies that identify the genetic factors that may confer risk, or protect against, developing Alzheimer’s;
  • Evaluations of medical conditions and cognitive and memory tests to determine levels of function and monitor any changes;
  • For the first time in people with Down syndrome, PET brain scans that detect levels of tau, the twisted knots of protein within brain cells that are a hallmark Alzheimer’s disease.

Aside from earlier onset, Alzheimer’s in people with Down syndrome is similar to Alzheimer’s in others. The first symptom may be memory loss, although people with Down syndrome initially tend to show behavior changes and problems with walking.

“Over the past 30 years, the average lifespan of people with Down syndrome has doubled to 60 years—a  bittersweet achievement when faced with the possibility of developing Alzheimer’s,” said Melissa Parisi, M.D., Ph.D., chief of the NICHD Intellectual and Developmental Disabilities Branch, which leads NIH’s Down syndrome research. “There is much to learn about Alzheimer’s in Down syndrome, and we’re hopeful that these new projects will provide some answers. One mystery we hope to solve is whether or not the disease progresses at a faster rate in this group.”

Parisi noted that research into Alzheimer’s in Down syndrome is a key focus of the National Plan to Address Alzheimer’s Disease(link is external), which calls for improved care for specific populations that are unequally burdened by the disease, including people with Down syndrome, and for increased research that may lead to possible Alzheimer’s therapies.

Benjamin Handen, Ph.D., Department of Psychiatry, University of Pittsburgh, heads a team that involves investigators and data from: Banner Alzheimer’s Institute, Phoenix; Cambridge University, England; Alzheimer’s Disease Cooperative Study, San Diego; Laboratory of Neuro Imaging, University of Southern California, Los Angeles. Nicole Schupf, Ph.D., Columbia University Medical Center, New York City, leads a team involving investigators at: University of California, Irvine; Kennedy Krieger Institute/Johns Hopkins University, Baltimore; Massachusetts General Hospital/Harvard University, Boston; and the University of North Texas Health Sciences Center, Fort Worth.

Learn more about this topic at https://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-people-down-syndrome.

About the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD): The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit the Institute’s website at http://www.nichd.nih.gov.

About the National Institute on Aging: The NIA leads the federal government effort conducting and supporting research on aging and the health and well-being of older people. It provides information on age-related cognitive change and neurodegenerative disease specifically at its Alzheimer’s Disease Education and Referral (ADEAR) Center at www.nia.nih.gov/alzheimers.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

 

 

NATIONAL PLAN TO ADDRESS ALZHEIMER’S DISEASE: 2015 UPDATE

pdf-document/national-plan-address-alzheimer%E2%80%99s-disease-2015-update (58 PDF pages)

Introduction

Vision Statement

National Alzheimer’s Project Act

Alzheimer’s Disease and Related Dementias

The Challenges

Framework and Guiding Principles

Goals as Building Blocks for Transformation

2015 Update

 

The Connection between Down Syndrome and Alzheimer’s Disease

Many, but not all, people with Down syndrome develop Alzheimer’s disease when they get older. Alzheimer’s is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills and, eventually, the ability to carry out simple tasks.

Alzheimer’s disease is the most common cause of dementia among older adults. Dementia is the loss of cognitive functioning—thinking, remembering, and reasoning—and behavioral abilities to such an extent that it interferes with a person’s daily life and activities.

People with Down syndrome are born with an extra copy of chromosome 21, which carries the APP gene. This gene produces a specific protein called amyloid precursor protein (APP). Too much APP protein leads to a buildup of protein clumps called beta-amyloid plaques in the brain. By age 40, almost all people with Down syndrome have these plaques, along with other protein deposits, called tau tangles, which cause problems with how brain cells function and increase the risk of developing Alzheimer’s dementia.

However, not all people with these brain plaques will develop the symptoms of Alzheimer’s. Estimates suggest that 50 percent or more of people with Down syndrome will develop dementia due to Alzheimer’s disease as they age into their 70s.

Alzheimer’s Disease Symptoms

Many people with Down syndrome begin to show symptoms of Alzheimer’s disease in their 50s or 60s. But, like in all people with Alzheimer’s, changes in the brain that lead to these symptoms are thought to begin at least 10 years earlier. These brain changes include the buildup of plaques and tangles, the loss of connections between nerve cells, the death of nerve cells, and the shrinking of brain tissue (called atrophy).

The risk for Alzheimer’s disease increases with age, so it’s important to watch for certain changes in behavior, such as:

  • increased confusion
  • short-term memory problems (for example, asking the same questions over and over)
  • reduction in or loss of ability to do everyday activities

Other possible symptoms of Alzheimer’s dementia are:

  • seizures that begin in adulthood
  • problems with coordination and walking
  • reduced ability to pay attention
  • behavior and personality changes, such as wandering and being less social
  • decreased fine motor control
  • difficulty finding one’s way around familiar areas

Currently, Alzheimer’s disease has no cure, and no medications have been approved to treat Alzheimer’s in people with Down syndrome.

Down Syndrome and Alzheimer’s Disease Research

Alzheimer’s can last several years, and symptoms usually get worse over time.  Scientists are working hard to understand why some people with Down syndrome develop dementia while others do not. They want to know how Alzheimer’s disease begins and progresses, so they can develop drugs or other treatments that can stop, delay, or even prevent the disease process.

Research in this area includes:

  • Basic studies to improve our understanding of the genetic and biological causes of brain abnormalities that lead to Alzheimer’s
  • Observational research to measure cognitive changes in people over time
  • Studies of biomarkers (biological signs of disease), brain scans, and other tests that may help diagnose Alzheimer’s—even before symptoms appear—and show brain changes as people with Down syndrome age
  • Clinical trials to test treatments for dementia in adults with Down syndrome. Clinical trials are best the way to find out if a treatment is safe and effective in people.

 

Alzheimers Disease Neuroimaging Initiative (ADNI)

A public-private partnership, the purpose of ADNI is to develop a multisite, longitudinal, prospective, naturalistic study of normal cognitive aging, mild cognitive impairment (MCI), and early Alzheimer’s disease as a public domain research resource to facilitate the scientific evaluation of neuroimaging and other biomarkers for the onset and progression of MCI and Alzheimer’s disease.

Dr. Laurie Ryan of the NIA gives a brief overview of ADNI in this video:

https://youtu.be/0rBVe0Fwnik

Dr. Thomas Obisesan of Howard University, an ADNI study participant, and a study companion describe ADNI and what it’s like to be involved in the study

https://youtu.be/rK1yWvvHHl8

Learn more about this topic at https://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-people-down-syndrome.

Read Full Post »

Behavior

Curator: Larry H Bernstein, MD, FCAP

 

Behavior Brief

The Scientist

http://www.the-scientist.com//?articles.view/articleNo/43904/title/Behavior-Brief/

Wasp-directed webs make better cocoons?

Scientists have uncovered more detail about the unique relationship between the parasitic ichneumon wasp (Reclinervellus nielseni) and its arachnid host, the orb-weaving spider (Cyclosa argenteoalba). While the spider carries the wasp’s egg—and later, hatched larva—within its abdomen, the arachnid spins an atypical web, according to a study published last month (August 5) in The Journal of Experimental Biology. When the larva emerges, killing the spider host, the wasp uses the modified webbing to build a cocoon.

“This discovery—of enhanced behavior as opposed to merely switched behavior—is completely new, impressively demonstrated, and rather unexpected I think,” Mark Shaw an entomologist at the National Museum of Scotland, who was not involved in the study, told Newsweek.

According to The Vergescientists from Kobe University in Japan along with their collaborators determined that the modified web is similar to the orb-weaving spider’s resting web that it uses when it molts—only it is 40 times stronger. This may help the wasp larva build a more durable cocoon. Ecologist Sophie Labaude of the University of Burgundy in France, who was not involved in the work told The Verge that the altered web composition may be a coincidental side effect of chemicals thought to be introduced into the spider during the course of the parasitic infection.

Catharus ustulatus with a tracker on its back J. CRAVES

Some songbirds don’t set cruising altitude

A study published last month (August 12) in The Auk: Ornithological Advances reported the first complete flight-altitude data for a songbird, revealing that one species, the Swainson’s thrush (Catharus ustulatus), changes its altitude intermittently throughout its migration.

“I really thought that the birds would mostly behave like commercial aircraft, ascending to a particular altitude, leveling off and cruising near that altitude, and then coming down just before they landed,” study coauthor Melissa Bowlin of the University of Michigan-Dearborn said in a statement. “I was shocked when I made the first graph for the first bird, and thought it was an anomaly. The more data we obtained, however, the more often we saw the up-and-down pattern to the birds’ flight.”

Bowlin and her colleagues attached radio transmitters to nine Swainson’s thrushes captured from a forest in Illinois during the birds’ spring migration seasons between 2011 and 2013. Once the birds took off, the researchers followed them in a car, keeping track of the birds’ altitudes as they flew through different landscapes. The researchers found that the birds often altered their altitudes by more than 100 meters during their migration. While the authors noted that the precise locations at which the birds ascended and descended cannot be determined until more data are analyzed, they speculated that the birds’ decisions to change altitude may be related to atmospheric changes.

“Dr. Bowlin and her colleagues’ unique yet perplexing records of migrant altitudes raise a number of thought-provoking questions that have implications for species conservation,” Robert Diehl of the US Geological Survey’s Northern Rocky Mountain Science Center said in a statement.

FLICKR, LAGGEDONUSER

Bonobos reuse “peeps”

Humans may not be the only species that can disassociate their communication from their environment. Bonobos (Pan paniscus) also seem to produce the same high-pitched “peep” noises to express psychological states regardless of their context or circumstances, according to study published last month (August 4) in PeerJ. This ability, called functional flexibility, is analogous to the cries or laughter of a human infant, the study’s authors wrote.

“When I studied the bonobos in their native setting in the Congo, I was struck by how frequent their peeps were, and how many different contexts they produce them in,” study coauthor Zanna Clay, a psychologist at the University of Birmingham, told The Guardian. “It became apparent we couldn’t always differentiate between peeps. We needed to understand the context to get to the root of their communication.”

Clay and her colleagues recorded bonobo peeps made during a range of situations, including feeding, sleeping, and traveling. The researchers found that peeps produced during positive situations, such as feeding were indistinguishable from those made within neutral contexts such as resting. However, in negative circumstances such as a state of alarm, the bonobos’ peeps were acoustically different.

“We interpret this evidence as an example of an evolutionary early transition away from fixed vocal signaling towards functional flexibility,” Clay told The Guardian.

An ant (Pristomyrmex punctatus) stands guard over a Japanese oakblue caterpillar (Narathura japonica).WIKIMEDIA, L. SHYAMAL

Manipulation or mutalism?

A new study suggests that a species of Japanese ant (Pristomyrmex punctatus) that imbibes the sweet nectar secreted by Japanese oakblue butterfly (Narathura japonica) caterpillars must pay a price. According to a study published this summer (July 28) in Current Biology, chemicals in the nectar can effectively brainwash the ants, turning them into loyal bodyguards for the caterpillars.

An international group of researchers led by investigators at Kobe University found that ants who fed upon N. japonica’s sweet secretion displayed more aggressive behavior and had lower levels of dopamine in their brains than ants found near caterpillars that didn’t consume the nectar, according toScience.

The results suggest that the relationship between the ants and caterpillar may not be mutualistic, as previously thought, but may have an aspect of parasitism.

“It’s possible that these common food-for-defense interactions, which are typically assumed to be mutualistic, may in fact be maintained primarily through parasitic manipulation of ant behavior,” the authors wrote in their report.

NATURE COMMUNICATIONS, J. COSTELLO ET AL.

Young siphonophores take the lead

For physonect siphonophores (Nanomia bijuga), jellyfish-like marine creatures that travel together as a single unit, the youngest colony members alwaysride shotgun, according to a study published yesterday (September 1) in Nature Communications.

To cover distances of up to 200 meters a day to find food, N. bijuga colony members have to work together. “The younger swimming bells at the tip of the colony are responsible for turning. They generate a lot of torque,” study coauthor Kelly Sutherland, an oceanographer at the University of Oregon, said in a statement. “The older swimming bells toward the base of the colony are responsible for thrust.”

Sutherland and her colleagues recorded swimming colonies from Friday Harbor, Washington, and tracked how the organism displaced particles around it to discern the contribution each unit makes to the movement. They found that even small amounts of water displacement exerted by the youngest members at the tip of the colony had big impacts on which direction the unit travelled.

“They are like the handle of a door,” study coauthor John Costello, a biologist at the Marine Biological Laboratory in Woods Hole, Massachusetts, said in a statement. “If you push on a door near its hinges—its axis of rotation—the door is hard to open. But if you push on the door handle, which is far from the axis of rotation, the door opens easily. A little force placed with a big lever arm has a big effect on turning.”

The authors suggested that the siphonophore’s strategy involving multiple propulsion “engines” and efficient directional control could inspire improved designs for underwater vehicles.

Tags

songbirdplanktonparasitismparasitic wasporb web spidernon-human primatesmigration

Read Full Post »

The Neurogenetics of Language – Patricia Kuhl

Larry H. Bernstein, MD, FCAP, Curator

Leaders in Pharmaceutical Innovation

This image has an empty alt attribute; its file name is ArticleID-182.png

WordCloud Image Produced by Adam Tubman

Series E. 2; 5.7

2015 George A. Miller Award

In neuroimaging studies using structural (diffusion weighted magnetic resonance imaging or DW-MRI) and functional (magnetoencephalography or MEG) imaging, my laboratory has produced data on the neural connectivity that underlies language processing, as well as electrophysiological measures of language functioning during various levels of language processing (e.g., phonemic, lexical, or sentential). Taken early in development, electrophysiological measures or “biomarkers” have been shown to predict future language performance in neurotypical children as well as children with autism spectrum disorders (ASD). Work in my laboratory is now combining these neuroimaging approaches with genetic sequencing, allowing us to understand the genetic contributions to language learning.

http://www.youtube.com/watch%3Fv%3DG2XBIkHW954

http://www.youtube.com/watch%3Fv%3DM-ymanHajN8

Patricia Kuhl shares astonishing findings about how babies learn one language over another — by listening to the humans around them

Kuhl Constructs: How Babies Form Foundations for Language

MAY 3, 2013

by Sarah Andrews Roehrich, M.S., CCC-SLP

Years ago, I was captivated by an adorable baby on the front cover of a book, The Scientist in the Crib: What Early Learning Tells Us About the Mind, written by a trio of research scientists including Alison Gopknik, PhDAndrew Meltzoff, PhD, and Patricia Kuhl, PhD.

At the time, I was simply interested in how babies learn about their worlds, how they conduct experiments, and how this learning could impact early brain development.  I did not realize the extent to which interactions with family, caretakers, society, and culture could shape the direction of a young child’s future.

Now, as a speech-language pathologist in Early Intervention in Massachusetts, more cognizant of the myriad of factors that shape a child’s cognitive, social-emotional, language, and literacy development, I have been absolutely delighted to discover more of the work of Dr. Kuhl, a distinguished speech-and-language pathologist at The University of Washington.  So, last spring, when I read that Dr. Kuhl was going to present “Babies’ Language Skills” as one part of a 2-part seminar series sponsored by the Mind, Brain, and Behavior Annual Distinguished Lecture Series at Harvard University1, I was thrilled to have the opportunity to attend. Below are some highlights from that experience and the questions it has since sparked for me:

Lip ‘Reading’ Babies
According to a study by Dr. Patricia Kuhl and Dr. Andrew Meltzoff, “Bimodal Perception of Speech in Infancy” (Science, 1982), cited in the 2005 Seattle Times article, “Infant Science: How do Babies Learn to Talk?” by Paula Bock, Drs. Patricia Kuhl and Andrew Meltzoff showed that babies as young as 18 weeks of age could listen to “Ah ah ah” or “Ee ee ee” vowel sounds and gaze at the correct, corresponding lip shape on a video monitor.
This image from Kuhl’s 2011 TED talk shows how a baby is trained to turn his head in response to a change in such vowel sounds, and is immediately rewarded by watching a black box light up while a panda bear inside pounds a drum.  Images provided courtesy of Dr. Patricia Kuhl’s Lab at the University of Washington.

Who is Dr. Patricia Kuhl and how has her work re-shaped our knowledge about how babies learn language?

Dr. Kuhl, who is co-director of the Institute for Learning and Brain Sciences at The University of Washington, has been internationally recognized for her research on early language and brain development, and for her studies on how young children learn.  In her most recent research experiments, she’s been using magnetoencephalography (MEG)–a relatively new neuroscience technology that measures magnetic fields generated by the activity of brain cells–to investigate how, where, and with what frequency babies from around the world process speech sounds in the brain when they are listening to adults speak in their native and non-native languages.

A 6-month-old baby sits in a magnetoencephalography machine, which maps brain activity, while listening to various languages in earphones and playing with a toy. Image originally printed in “Brain Mechanisms in Early Language Acquisition” (Neuron review, Cell Press, 2010) and provided courtesy of Dr. Patricia Kuhl’s Lab at the University of Washington.

Not only does Kuhl’s research point us in the direction of how babies learn to process phonemes, the sound units upon which many languages are built, but it is part of a larger body of studies looking at infants across languages and cultures that has revolutionized our understanding of language development over the last half of the 20th century—leading to, as Kuhl puts it, “a new view of language acquisition, that accounts for both the initial state of linguistic knowledge in infants, and infants’ extraordinary ability to learn simply by listening to their native language.”2

What is neuroplasticity and how does it underlie child development?

Babies are born with 100 billion neurons, about the same as the number of stars in the Milky Way.3 In The Whole Brain Child,Daniel Siegel, MD and Tina Payne Bryson, PhD explain that when we undergo an experience, these brain cells respond through changes in patterns of electrical activity—in other words, they “fire” electrical signals called “action potentials.”4

In a child’s first years of life, the brain exhibits extraordinary neuroplasticity, refining its circuits in response to environmental experiences. Synapses—the sites of communication between neurons—are built, strengthened, weakened and pruned away as needed. Two short videos from the Center on the Developing Child at Harvard, “Experiences Build Brain Architecture” and “Serve and Return Interaction Shapes Brain Circuitry”, nicely depict how some of this early brain development happens.5

Since brain circuits organize and reorganize themselves in response to an infant’s interactions with his or her environment, exposing babies to a variety of positive experiences (such as talking, cuddling, reading, singing, and playing in different environments) not only helps tune babies in to the language of their culture, but it also builds a foundation for developing the attention, cognition, memory, social-emotional, language and literacy, and sensory and motor skills that will help them reach their potential later on.

When and how do babies become “language-bound” listeners?

In her 2011 TED talk, “The Linguistic Genius of Babies,” Dr. Kuhl discusses how babies under 8 months of age from different cultures can detect sounds in any language from around the world, but adults cannot do this. 6   So when exactly do babies go from being “citizens of the world”, as Kuhl puts it, to becoming “language-bound” listeners, specifically focused on the language of their culture?”

Between 8-10 months of age, when babies are trying to master the sounds used in their native language, they enter a critical period for sound development.1  Kuhl explains that in one set of experiments, she compared a group of babies in America learning to differentiate the sounds “/Ra/” and “/La/,” with a group of babies in Japan.  Between 6-8 months, the babies in both cultures recognized these sounds with the same frequency.  However, by 10-12 months, after multiple training sessions, the babies in Seattle, Washington, were much better at detecting the “/Ra/-/La/” shift than were the Japanese babies.

Kuhl explains these results by suggesting that babies “take statistics” on how frequently they hear sounds in their native and non-native languages.  Because “/Ra/” and “/La/” occur more frequently in the English language, the American babies recognized these sounds far more frequently in their native language than the Japanese babies.  Kuhl believes that the results in this study indicate a shift in brain development, during which babies from each culture are preparing for their own languages and becoming “language-bound” listeners.

In what ways are nurturing interactions with caregivers more valuable to babies’ early language development than interfacing with technology?

If parents, caretakers, and other children can help mold babies’ language development simply by talking to them, it is tempting to ask whether young babies can learn language by listening to the radio, watching television, or playing on their parents’ mobile devices. I mean, what could be more engaging than the brightly-colored screens of the latest and greatest smart phones, iPads, iPods, and computers? They’re perfect for entertaining babies.  In fact, some babies and toddlers can operate their parents’ devices before even having learned how to talk.

However, based on her research, Kuhl states that young babies cannot learn language from television and it is necessary for babies to have lots of face-to-face interaction to learn how to talk.1  In one interesting study, Kuhl’s team exposed 9 month old American babies to Mandarin in various forms–in person interactions with native Mandarin speakers vs. audiovisual or audio recordings of these speakers–and then looked at the impact of this exposure on the babies’ ability to make Mandarin phonetic contrasts (not found in English) at 10-12 months of age. Strikingly, twelve laboratory visits featuring in person interactions with the native Mandarin speakers were sufficient to teach the American babies how to distinguish the Mandarin sounds as well as Taiwanese babies of the same age. However, the same number of lab visits featuring the audiovisual or audio recordings made no impact. American babies exposed to Mandarin through these technologies performed the same as a control group of American babies exposed to native English speakers during their lab visits.

This diagram depicts the results of a Kuhl study on American infants exposed to Mandarin in various forms–in person interactions with native speakers versus television or audio recordings of these speakers. As the top blue triangle shows, the American infants exposed in person to native Mandarin speakers performed just as well on a Mandarin phoneme distinction task as age-matched Taiwanese counterparts. However, those American infants exposed to television or audio recordings of the Mandarin speakers performed the same as a control group of American babies exposed to native English speakers during their lab visits. Diagram displayed in Kuhl’s TED TAlk 6, provided courtesy of Dr. Patricia Kuhl’s Lab at the University of Washington.

Kuhl believes that this is primarily because a baby’s interactions with others engages the social brain, a critical element for helping children learn to communicate in their native and non-native languages. 6  In other words, learning language is not simply a technical skill that can be learned by listening to a recording or watching a show on a screen.  Instead, it is a special gift that is handed down from one generation to the next.

Language is learned through talking, singing, storytelling, reading, and many other nurturing experiences shared between caretaker and child.  Babies are naturally curious; they watch every movement and listen to every sound they hear around them.  When parents talk, babies look up and watch their mouth movements with intense wonder.  Parents respond in turn, speaking in “motherese,” a special variant of language designed to bathe babies in the sound patterns and speech sounds of their native language. Motherese helps babies hear the “edges” of sound, the very thing that is difficult for babies who exhibit symptoms of dyslexia and auditory processing issues later on.

Over time, by listening to and engaging with the speakers around them, babies build sound maps which set the stage for them to be able to say words and learn to read later on.  In fact, based on years of research, Kuhl has discovered that babies’ abilities to discriminate phonemes at 7 months-old is a predictor of future reading skills for that child at age 5.7

I believe that educating families about brain development, nurturing interactions, and the benefits and limits of technology is absolutely critical to helping families focus on what is most important in developing their children’s communication skills.  I also believe that Kuhl’s work is invaluable in this regard.  Not only has it focused my attention on how babies form foundations for language, but it has illuminated my understanding of how caretaker-child interactions help set the stage for babies to become language-bound learners.

Sources

(1) Kuhl, P. (April 3, 2012.) Talk on “Babies’ Language Skills.” Mind, Brain, and Behavior Annual Distinguished Lecture Series, Harvard University.

(2) Kuhl, P. (2000). “A New View of Language Acquisition.” This paper was presented at the National Academy of Sciences colloquium “Auditory Neuroscience: Development, Transduction, and Integration,” held May 19–21, 2000, at the Arnold and Mabel Beckman Center in Irvine, CA. Published by the National Academy of Sciences.

(3) Bock, P. (2005.)  “The Baby Brain.  Infant Science: How do Babies Learn to Talk?” Pacific Northwest: The Seattle Times Magazine.

(4) Siegel, D., Bryson, T. (2011.)  The Whole-Brain Child: 12 Revolutionary Strategies to Nurture Your Child’s Developing Mind. New York, NY:  Delacorte Press, a division of Random House, Inc.

(5) Center on the Developing Child at Harvard University. “Experiences Build Brain Architecture” and “Serve and Return Interaction Shapes Brain Circuitry” videos, two parts in the three-part series, “Three Core Concepts in Early Development.

http://developingchild.harvard.edu/resources/multimedia/videos

(6) Kuhl, P.  (February 18, 2011.) “The Linguistic Genius of Babies,” video talk on TED.com, a TEDxRainier event.

www.ted.com/talks/patricia_kuhl_the_linguistic_genius_of_babies.html

(7) Lerer, J. (2012.) “Professor Discusses Babies’ Language Skills.”  The Harvard Crimson.

Andrew Meltzoff & Patricia Kuhl: Joint attention to mind

Sarah DeWeerdt  11 Feb 2013

Power couple: In addition to a dizzying array of peer-reviewed publications, Andrew Meltzoff and Patricia Kuhl have written a popular book on brain development, given TED talks and lobbied political leaders.

Andrew Meltzoff shares many things with his wife — research dollars, authorship, a keen interest in the young brain — but he does not keep his wife’s schedule.

“It’s one of the agreements we have,” he says, laying out the rule with a twinkle in his eye that conveys both the delights and the complications of working with one’s spouse.

Meltzoff, professor of psychology at the University of Washington in Seattle, and his wife, speech and hearing sciences professor Patricia Kuhl, are co-directors of the university’s Institute for Learning and Brain Sciences, which focuses on the development of the brain and mind during the first five years of life.

Between them, they have shown that learning is a fundamentally social process, and that babies begin this social learning when they are just weeks or even days old.

You could say the couple is attached at the cerebral cortex, but not at the hip: They take equal roles in running the institute, but they each have their own daily rhythms and distinct, if overlapping, scientific interests.

Kuhl studies how infants “crack the language code,” as she puts it — how they figure out sounds and meanings and eventually learn to produce speech. Meltzoff’s work focuses on social building blocks such as imitation and joint attention, or a shared focus on an object or activity. Meltzoff says these basic behaviors help children develop theory of mind, a sophisticated awareness and understanding of others’ thoughts and feelings.

All of these abilities are impaired in children with autism. Most of the couple’s studies have focused on typically developing infants, because, they say, it’s essential to understand typical development in order to appreciate the irregularities in autism.

Both also study autism, which can in turn help explain typical development.

In addition to a dizzying array of peer-reviewed publications, the duo have written a popular book on developmental psychiatry, The Scientist in the Crib, and promote their ideas through TED talks and by lobbying political leaders.

Geraldine Dawson, chief science officer of the autism science and advocacy organization Autism Speaks and a longtime collaborator, calls Meltzoff and Kuhl “the dynamic duo.” “They’re sort of bigger-than-life type people, who fill the room when they walk into it,” she says.

Making a match:

Meltzoff and Kuhl’s story began with a scientific twist on a standard rom-com meet cute.

It was the early 1980s, and Kuhl, who had recently joined the faculty at the University of Washington, wanted to understand how infants hear and see vowels. But she was having trouble designing an effective experiment.

“I kept running into Andy’s office,” which was near hers, to talk it through, Kuhl recalls.

Meltzoff had done some research on how babies integrate what they see with what they touch, a process called cross-modal matching1. Soon he and Kuhl realized that they could adapt his experimental design to her question, and decided to collaborate.

They showed babies two video screens, each featuring a person mouthing a different vowel sound – “ahhh” or “eeee.” A speaker placed between the two screens played one of those two vowel sounds.

They found that babies as young as 18 to 20 weeks look longer at the face that matches the sound they hear, integrating faces with voices2.

But that wasn’t the only significant result from those experiments.

“Speaking only for myself, I will say I became very interested in the very attractive, smart blonde that I was collaborating with,” Meltzoff says. “Criticizing each other’s scientific writing at the same time the relationship was building was… interesting.”

And effective: Their paper appeared in Science in 1982, and the couple married three years later.

Listening to Meltzoff tell that story, it’s easy to understand why some colleagues say he is funny but they can’t quite explain why. His humor is subtle and wry. More obvious is his passion, not just for science, but for working out the theory underlying empirical results. Even his wife describes his personality as “cerebral.”

“He just has this laser vision for homing in on what is the heart of the issue,” says Rechele Brooks, research assistant professor of psychiatry and behavioral sciences at the University of Washington, who collaborates with Meltzoff on studies of gaze.

For example, in one of his earliest papers, Meltzoff wanted to investigate how babies learn to imitate. He found that infants just 12 to 21 days old can imitate both facial expressions and hand gestures, much earlier than previously thought3.

“It really turned the scientific community on its head,” Brooks says.

Early insights:

Face to face: Meltzoff and Kuhl are developing a method to simultaneously record the brain activity of two people as they interact.

Meltzoff continued to study infants, tracing back the components of theory of mind to their earliest developmental source. That sparked the interest of Dawson, who had gotten to know Meltzoff as a student at the University of Washington in the 1970s, and became the first director of the university’s autism center in 1996.

Meltzoff and Dawson together applied his techniques to study young, often nonverbal, children with autism. In one study, they found that children with autism have more trouble imitating others than do either typically developing children or those with Down syndrome4.

In another study, they found that children with autism are less interested in social sounds such as clapping or hearing their name called than are their typically developing peers5.  They also found that how children with autism imitate and play with toys when they are 3 or 4 years old predicts their communication skills two years later6.

Most previous studies of autism had focused on older children, Dawson says, and this work helped paint a picture of the disorder earlier in childhood.

Kuhl began her career with studies showing that monkeys7 and even chinchillas8 can distinguish the difference between speech sounds, or phonemes, such as “ba” and “pa,” just as human infants can.

“The bottom line was that animals were sharing this aspect of perception,” Kuhl says.

So why are people so much better than animals at learning language? Kuhl has been trying to answer that question ever since, first through behavioral studies and then by measuring brain activity using imaging techniques.

Kuhl is soft-spoken, but a listener wants to lean in to catch every word. Scientists who have worked with her describe her as poised and perfectly put together, a master of gentle yet effective diplomacy.

“She has her sort of magnetic power to pull people together,” says Yang Zhang, associate professor of speech-language-hearing sciences at the University of Minnesota in Rochester, who was a graduate student and postdoctoral researcher in Kuhl’s lab beginning in the late 1990s.

Listen and learn:

At one point, Kuhl turned her considerable powers of persuasion on a famously smooth negotiator, then-President Bill Clinton.

Kuhl had shown that newborns hear virtually all speech sounds, but by 6 months of age they lose the ability to distinguish sounds that aren’t part of their native language9.

At the White House Conference on Early Childhood Development and Learning in 1997, she described how infants learn by listening, long before they can speak.

Clinton, ever the policy wonk, asked her how much babies need to hear in order to learn. Kuhl said she didn’t know — but if Clinton gave her the funds, she would find out. “Even the president could see that research on the effects of language input on the young brain had impact on society,” she says.

Kuhl used the funds Clinton gave her to design a study in which 9-month-old babies in the U.S. received 12 short Mandarin Chinese ‘lessons.’ The babies quickly learned to distinguish speech sounds in the second language, her team found — but only if the speaker was live, not in a video10.

Those results contributed to Kuhl’s ‘social gating’ hypothesis, which holds that social interaction is necessary for picking up on the sounds and patterns of language. “We’re saying that social interaction is a kind of gate to an interest in learning, the kind that humans are completely masters of,” she says.

Her results also suggest that the language problems in children with autism may be the result of their social deficits.

“Children with autism will have a very difficult time acquiring language if language requires the social gate to be open,” she says.

Over the years, Kuhl and Meltzoff have had largely independent research programs, but her recent focus on the social roots of language dovetails with his long-time focus on social interaction.

These days, they are trying to develop ‘face-to-face neuroscience,’ which involves simultaneously recording brain activity from two people as they interact with each other.

This approach would allow researchers to observe, for example, what happens in an infant’s brain when she hears her mother’s voice, and what happens in the mother’s brain as she sees her infant respond to her. “It’s going to be very special to do,” Meltzoff says enthusiastically, even though the effort is more directly related to Kuhl’s work than to his own.

It’s clear that this fervor for each other’s work goes both ways.

“That’s one of the great things about being married to a scientist,” Meltzoff says. “When you come home and think, ‘God, I really nailed this methodologically,’ your wife, instead of yawning, leans forward and says, ‘You did? Tell me about the method, that’s so exciting.’”

News and Opinion articles on SFARI.org are editorially independent of the Simons Foundation.

References:

1: Meltzoff A.N. and R.W. Borton Nature 282, 403-404 (1979) PubMed

2: Kuhl P.K. and A.N. Meltzoff Science 218, 1138-1141 (1982) PubMed

3: Meltzoff A.N. and M.K. Moore Science 198, 75-78 (1977) PubMed

4: Dawson G. et al. Child Dev. 69, 1276-1285 (1998) PubMed

5: Dawson G. et al. J. Autism Dev. Disord. 28, 479-485 (1998) PubMed

6: Toth K. et al. J. Autism Dev. Disord. 36, 993-1005 (2006) PubMed

7: Kuhl P.K. and D.M. Padden Percept. Psychophys. 32, 542-550 (1982) PubMed

8: Kuhl P.K. and J.D. Miller Science 190, 69-72 (1975) PubMed

9: Kuhl P.K. et al. Science 255, 606-608 (1992) PubMed

10: Kuhl P.K. et al. Proc. Natl. Acad. Sci. U.S.A. 100, 9096-9101 (2003) PubMed

Using genetic data in cognitive neuroscience: from growing pains to genuine insights

Adam E. Green, Marcus R. Munafò, Colin G. DeYoung, John A. Fossella, Jin Fan & Jeremy R. Gray
Nature Reviews Neuroscience 2008 Sep; 9, 710-720
http://dx.doi.org:/10.1038/nrn2461

Research that combines genetic and cognitive neuroscience data aims to elucidate the mechanisms that underlie human behaviour and experience by way of ‘intermediate phenotypes’: variations in brain function. Using neuroimaging and other methods, this approach is poised to make the transition from health-focused investigations to inquiries into cognitive, affective and social functions, including ones that do not readily lend themselves to animal models. The growing pains of this emerging field are evident, yet there are also reasons for a measured optimism.

NSF – Cognitive Neuroscience Award

The cross-disciplinary integration and exploitation of new techniques in cognitive neuroscience has generated a rapid growth in significant scientific advances. Research topics have included sensory processes (including olfaction, thirst, multi-sensory integration), higher perceptual processes (for faces, music, etc.), higher cognitive functions (e.g., decision-making, reasoning, mathematics, mental imagery, awareness), language (e.g., syntax, multi-lingualism, discourse), sleep, affect, social processes, learning, memory, attention, motor, and executive functions. Cognitive neuroscientists further clarify their findings by examining developmental and transformational aspects of such phenomena across the span of life, from infancy to late adulthood, and through time.

New frontiers in cognitive neuroscience research have emerged from investigations that integrate data from a variety of techniques. One very useful technique has been neuroimaging, including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), optical imaging (near infrared spectroscopy or NIRS), anatomical MRI, and diffusion tensor imaging (DTI). A second class of techniques includes physiological recording such as subdural and deep brain electrode recording, electroencephalography (EEG), event-related electrical potentials (ERPs), and galvanic skin responses (GSRs). In addition, stimulation methods have been employed, including transcranial magnetic stimulation (TMS), subdural and deep brain electrode stimulation, and drug stimulation. A fourth approach involves cognitive and behavioral methods, such as lesion-deficit neuropsychology and experimental psychology. Other techniques have included genetic analysis, molecular modeling, and computational modeling. The foregoing variety of methods is used with individuals in healthy, neurological, psychiatric, and cognitively-impaired conditions. The data from such varied sources can be further clarified by comparison with invasive neurophysiological recordings in non-human primates and other mammals.

Findings from cognitive neuroscience can elucidate functional brain organization, such as the operations performed by a particular brain area and the system of distributed, discrete neural areas supporting a specific cognitive, perceptual, motor, or affective operation or representation. Moreover, these findings can reveal the effect on brain organization of individual differences (including genetic variation), plasticity, and recovery of function following damage to the nervous system.

Read Full Post »

Neonatal Pathophysiology

Neonatal Pathophysiology

Writer and Curator: Larry H. Bernstein, MD, FCAP 

 

Introduction

This curation deals with a large and specialized branch of medicine that grew since the mid 20th century in concert with the developments in genetics and as a result of a growing population, with large urban populations, increasing problems of premature deliveries.  The problems of prematurity grew very preterm to very low birth weight babies with special problems.  While there were nurseries, the need for intensive care nurseries became evident in the 1960s, and the need for perinatal care of pregnant mothers also grew as a result of metabolic problems of the mother, intrauterine positioning of the fetus, and increasing numbers of teen age pregnancies as well as nutritional problems of the mother.  There was also a period when the manufacturers of nutritional products displaced the customary use of breast feeding, which was consequential.  This discussion is quite comprehensive, as it involves a consideration of the heart, the lungs, the brain, and the liver, to a large extent, and also the kidneys and skeletal development.

It is possible to outline, with a proportionate emphasis based on frequency and severity, this as follows:

  1. Genetic and metabolic diseases
  2. Nervous system
  3. Cardiovascular
  4. Pulmonary
  5. Skeletal – bone and muscle
  6. Hematological
  7. Liver
  8. Esophagus, stomach, and intestines
  9. Kidneys
  10. Immune system

Fetal Development

Gestation is the period of time between conception and birth when a baby grows and develops inside the mother’s womb. Because it’s impossible to know exactly when conception occurs, gestational age is measured from the first day of the mother’s last menstrual cycle to the current date. It is measured in weeks. A normal gestation lasts anywhere from 37 to 41 weeks.

Week 5 is the start of the “embryonic period.” This is when all the baby’s major systems and structures develop. The embryo’s cells multiply and start to take on specific functions. This is called differentiation. Blood cells, kidney cells, and nerve cells all develop. The embryo grows rapidly, and the baby’s external features begin to form.

Week 6-9:   Brain forms into five different areas. Some cranial nerves are visible. Eyes and ears begin to form. Tissue grows that will the baby’s spine and other bones. Baby’s heart continues to grow and now beats at a regular rhythm. Blood pumps through the main vessels. Your baby’s brain continues to grow. The lungs start to form. Limbs look like paddles. Essential organs begin to grow.

Weeks 11-18: Limbs extended. Baby makes sucking motion. Movement of limbs. Liver and pancreas produce secretions. Muscle and bones developing.

Week 19-21: Baby can hear. Mom feels baby – and quickening.

http://www.nlm.nih.gov/medlineplus/ency/article/002398.htm

fetal-development

fetal-development

https://polination.files.wordpress.com/2014/02/abortion-new-research-into-fetal-development.jpg

Inherited Metabolic Disorders

The original cause of most genetic metabolic disorders is a gene mutation that occurred many, many generations ago. The gene mutation is passed along through the generations, ensuring its preservation.

Each inherited metabolic disorder is quite rare in the general population. Considered all together, inherited metabolic disorders may affect about 1 in 1,000 to 2,500 newborns. In certain ethnic populations, such as Ashkenazi Jews (Jews of central and eastern European ancestry), the rate of inherited metabolic disorders is higher.

Hundreds of inherited metabolic disorders have been identified, and new ones continue to be discovered. Some of the more common and important genetic metabolic disorders include:

Lysosomal storage disorders : Lysosomes are spaces inside cells that break down waste products of metabolism. Various enzyme deficiencies inside lysosomes can result in buildup of toxic substances, causing metabolic disorders including:

  • Hurler syndrome (abnormal bone structure and developmental delay)
  • Niemann-Pick disease (babies develop liver enlargement, difficulty feeding, and nerve damage)
  • Tay-Sachs disease (progressive weakness in a months-old child, progressing to severe nerve damage; the child usually lives only until age 4 or 5)
  • Gauchers disease and others

Galactosemia: Impaired breakdown of the sugar galactose leads to jaundice, vomiting, and liver enlargement after breast or formula feeding by a newborn.

Maple syrup urine disease: Deficiency of an enzyme called BCKD causes buildup of amino acids in the body. Nerve damage results, and the urine smells like syrup.

Phenylketonuria (PKU): Deficiency of the enzyme PAH results in high levels of phenylalanine in the blood. Mental retardation results if the condition is not recognized.

Glycogen storage diseases: Problems with sugar storage lead to low blood sugar levels, muscle pain, and weakness.

Metal metabolism disorders: Levels of trace metals in the blood are controlled by special proteins. Inherited metabolic disorders can result in protein malfunction and toxic accumulation of metal in the body:

Wilson disease (toxic copper levels accumulate in the liver, brain, and other organs)

Hemochromatosis (the intestines absorb excessive iron, which builds up in the liver, pancreas, joints, and heart, causing damage)

Organic acidemias: methylmalonic acidemia and propionic acidemia.

Urea cycle disorders: ornithine transcarbamylase deficiency and citrullinemia

Hemoglobinopathies – thalassemias, sickle cell disease

Red cell enzyme disorders – glucose-6-phosphate dehydrogenase, pyruvate kinase

This list is by no means complete.

http://www.webmd.com/a-to-z-guides/inherited-metabolic-disorder-types-and-treatments

New variations in the galactose-1-phosphate uridyltransferase (GALT) gene

Clinical and molecular spectra in galactosemic patients from neonatal screening in northeastern Italy: Structural and functional characterization of new variations in the galactose-1-phosphate uridyltransferase (GALT) gene

E Viggiano, A Marabotti, AP Burlina, C Cazzorla, MR D’Apice, et al.
Gene 559 (2015) 112–118
http://dx.doi.org/10.1016/j.gene.2015.01.013
Galactosemia (OMIM 230400) is a rare autosomal recessive inherited disorder caused by deficiency of galactose-1-phosphate uridyltransferase (GALT; OMIM 606999) activity. The incidence of galactosemia is 1 in 30,000–60,000, with a prevalence of 1 in 47,000 in the white population. Neonates with galactosemia can present acute symptoms, such as severe hepatic and renal failure, cataract and sepsis after milk introduction. Dietary restriction of galactose determines the clinical improvement in these patients. However, despite early diagnosis by neonatal screening and dietary treatment, a high percentage of patients develop long-term complications such as cognitive disability, speech problems, neurological and/or movement disorders and, in females, ovarian dysfunction.

With the benefit of early diagnosis by neonatal screening and early therapy, the acute presentation of classical galactosemia can be prevented. The objectives of the current study were to report our experience with a group of galactosemic patients identified through the neonatal screening programs in northeastern Italy during the last 30 years.

No neonatal deaths due to galactosemia complications occurred after the introduction of the neonatal screening program. However, despite the early diagnosis and dietary treatment, the patients with classical galactosemia showed one or more long-term complications.

A total of 18 different variations in the GALT gene were found in the patient cohort: 12 missense, 2 frameshift, 1 nonsense, 1 deletion, 1 silent variation, and 1 intronic. Six (p.R33P, p.G83V, p.P244S, p.L267R, p.L267V, p.E271D) were new variations. The most common variation was p.Q188R (12 alleles, 31.5%), followed by p.K285N (6 alleles, 15.7%) and p.N314D (6 alleles, 15.7%). The other variations comprised 1 or 2 alleles. In the patients carrying a new mutation, the biochemical analysis of GALT activity in erythrocytes showed an activity of < 1%. In silico analysis (SIFT, PolyPhen-2 and the computational analysis on the static protein structure) showed potentially damaging effects of the six new variations on the GALT protein, thus expanding the genetic spectrum of GALT variations in Italy. The study emphasizes the difficulty in establishing a genotype–phenotype correlation in classical galactosemia and underlines the importance of molecular diagnostic testing prior to making any treatment.

Diagnosis and Management of Hereditary Hemochromatosis

Reena J. Salgia, Kimberly Brown
Clin Liver Dis 19 (2015) 187–198
http://dx.doi.org/10.1016/j.cld.2014.09.011

Hereditary hemochromatosis (HH) is a diagnosis most commonly made in patients with elevated iron indices (transferrin saturation and ferritin), and HFE genetic mutation testing showing C282Y homozygosity.

The HFE mutation is believed to result in clinical iron overload through altering hepcidin levels resulting in increased iron absorption.

The most common clinical complications of HH include cirrhosis, diabetes, nonischemic cardiomyopathy, and hepatocellular carcinoma.

Liver biopsy should be performed in patients with HH if the liver enzymes are elevated or serum ferritin is greater than 1000 mg/L. This is useful to determine the degree of iron overload and stage the fibrosis.

Treatment of HH with clinical iron overload involves a combination of phlebotomy and/or chelation therapy. Liver transplantation should be considered for patients with HH-related decompensated cirrhosis.

Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann–Pick Type C disease among intellectually disabled using discrete event simulation

CDM van Karnebeek, Tima Mohammadi, Nicole Tsaod, Graham Sinclair, et al.
Molecular Genetics and Metabolism 114 (2015) 226–232
http://dx.doi.org/10.1016/j.ymgme.2014.07.004

Background: Recently a less invasive method of screening and diagnosing Niemann–Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods.
Methods: A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted.
Results: The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients’ quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs.
Conclusion: Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients’ quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence.

Neurological and Behavioral Disorders

Estrogen receptor signaling during vertebrate development

Maria Bondesson, Ruixin Hao, Chin-Yo Lin, Cecilia Williams, Jan-Åke Gustafsson
Biochimica et Biophysica Acta 1849 (2015) 142–151
http://dx.doi.org/10.1016/j.bbagrm.2014.06.005

Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affectingboth the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

 

Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults

Synne Aanes, Knut Jørgen Bjuland, Jon Skranes, Gro C.C. Løhaugen
NeuroImage 105 (2015) 76–83
http://dx.doi.org/10.1016/j.neuroimage.2014.10.023

The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure–function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19–20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural–functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth.

The relation of infant attachment to attachment and cognitive and behavioural outcomes in early childhood

Yan-hua Ding, Xiu Xua, Zheng-yan Wang, Hui-rong Li, Wei-ping Wang
Early Human Development 90 (2014) 459–464
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.004

Background: In China, research on the relation of mother–infant attachment to children’s development is scarce.
Aims: This study sought to investigate the relation of mother–infant attachment to attachment, cognitive and behavioral development in young children.                                                                                                                            Study design: This study used a longitudinal study design.
Subjects: The subjects included healthy infants (n=160) aged 12 to 18 months.
Outcome measures: Ainsworth’s “Strange Situation Procedure” was used to evaluate mother–infant attachment types. The attachment Q-set (AQS) was used to evaluate the attachment between young children and their mothers. The Bayley scale of infant development-second edition (BSID-II) was used to evaluate cognitive developmental level in early childhood. Achenbach’s child behavior checklist (CBCL) for 2- to 3-year-oldswas used to investigate behavioral problems.
Results: In total, 118 young children (73.8%) completed the follow-up; 89.7% of infants with secure attachment and 85.0% of infants with insecure attachment still demonstrated this type of attachment in early childhood (κ = 0.738, p b 0.05). Infants with insecure attachment collectively exhibited a significantly lower mental development index (MDI) in early childhood than did infants with secure attachment, especially the resistant type. In addition, resistant infants were reported to have greater social withdrawal, sleep problems and aggressive behavior in early childhood.
Conclusion: There is a high consistency in attachment development from infancy to early childhood. Secure mother–infant attachment predicts a better cognitive and behavioral outcome; whereas insecure attachment, especially the resistant attachment, may lead to a lower cognitive level and greater behavioral problems in early childhood.

representations of the HPA axis

representations of the HPA axis

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

representations of limbic stress-integrative pathways from the prefrontal cortex, amygdala and hippocampus

Fetal programming of schizophrenia: Select mechanisms

Monojit Debnatha, Ganesan Venkatasubramanian, Michael Berk
Neuroscience and Biobehavioral Reviews 49 (2015) 90–104
http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.

NMDA receptor dysfunction in autism spectrum disorders

Eun-Jae Lee, Su Yeon Choi and Eunjoon Kim
Current Opinion in Pharmacology 2015, 20:8–13
http://dx.doi.org/10.1016/j.coph.2014.10.007

Autism spectrum disorders (ASDs) represent neurodevelopmental disorders characterized by two core symptoms;

(1)  impaired social interaction and communication, and
(2)  restricted and repetitive behaviors, interests, and activities.

ASDs affect ~ 1% of the population, and are considered to be highly genetic in nature. A large number (~600) of ASD-related genetic variations have been identified (sfari.org), and target gene functions are apparently quite diverse. However, some fall onto common pathways, including synaptic function and chromosome remodeling, suggesting that core mechanisms may exist.

Abnormalities and imbalances in neuronal excitatory and inhibitory synapses have been implicated in diverse neuropsychiatric disorders including autism spectrum disorders (ASDs). Increasing evidence indicates that dysfunction of NMDA receptors (NMDARs) at excitatory synapses is associated with ASDs. In support of this, human ASD-associated genetic variations are found in genes encoding NMDAR subunits. Pharmacological enhancement or suppression of NMDAR function ameliorates ASD symptoms in humans. Animal models of ASD display bidirectional NMDAR dysfunction, and correcting this deficit rescues ASD-like behaviors. These findings suggest that deviation of NMDAR function in either direction contributes to the development of ASDs, and that correcting NMDAR dysfunction has therapeutic potential for ASDs.

Among known synaptic proteins implicated in ASD are metabotropic glutamate receptors (mGluRs). Functional enhancement and suppression of mGluR5 are associated with fragile X syndrome and tuberous sclerosis, respectively, which share autism as a common phenotype. More recently, ionotropic glutamate receptors, namely NMDA receptors (NMDARs) and AMPA receptors (AMPARs), have also been implicated in ASDs. In this review, we will focus on NMDA receptors and summarize evidence supporting the hypothesis that NMDAR dysfunction contributes to ASDs, and, by extension, that correcting NMDAR dysfunction has therapeutic potential for ASDs. ASD-related human NMDAR genetic variants.

Chemokines roles within the hippocampus

Chemokines roles within the hippocampus

IL-1 mediates stress-induced activation of the HPA axis

IL-1 mediates stress-induced activation of the HPA axis

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

A systemic model of the beneficial role of immune processes in behavioral and neural plasticity

Three Classes of Glutamate Receptors

Three Classes of Glutamate Receptors

Clinical studies on ASDs have identified genetic variants of NMDAR subunit genes. Specifically, de novo mutations have been identified in the GRIN2B gene, encoding the GluN2B subunit. In addition, SNP analyses have linked both GRIN2A (GluN2A subunit) and GRIN2B with ASDs. Because assembled NMDARs contain four subunits, each with distinct properties, ASD-related GRIN2A/ GRIN2B variants likely alter the functional properties of NMDARs and/or NMDAR-dependent plasticity.

Pharmacological modulation of NMDAR function can improve ASD symptoms. D-cycloserine (DCS), an NMDAR agonist, significantly ameliorates social withdrawal and repetitive behavior in individuals with ASD. These results suggest that reduced NMDAR function may contribute to the development of ASDs in humans.

We can divide animal studies into two groups. The first group consists of animals in which NMDAR modulators were shown to normalize both NMDAR dysfunction and ASD-like behaviors, establishing strong association between NMDARs and ASD phenotypes (Fig.). In the second group, NMDAR modulators were shown to rescue ASD-like behaviors, but NMDAR dysfunction and its correction have not been demonstrated.

ASD models with data showing rescue of both NMDAR dysfunction and ASD like behaviors Mice lacking neuroligin-1, an excitatory postsynaptic adhesion molecule, show reduced NMDAR function in the hippocampus and striatum, as evidenced by a decrease in NMDA/AMPA ratio and long-term potentiation (LTP). Neuroligin-1 is thought to enhance synaptic NMDAR function, by directly interacting with and promoting synaptic localization of NMDARs.

Fig not shown.

Bidirectional NMDAR dysfunction in animal models of ASD. Animal models of ASD with bidirectional NMDAR dysfunction can be positioned on either side of an NMDAR function curve. Model animals were divided into two groups.

Group 1: NMDAR modulators normalize both NMDAR dysfunction and ASD-like behaviors (green).

Group 2: NMDAR modulators rescue ASD-like behaviors, but NMDAR dysfunction and its rescue have not been demonstrated (orange). Note that Group 2 animals are tentatively placed on the left-hand side of the slope based on the observed DCS rescue of their ASD-like phenotypes, but the directions of their NMDAR dysfunctions remain to be experimentally determined.

ASD models with data showing rescue of ASD-like behaviors but no demonstrated NMDAR dysfunction

Tbr1 is a transcriptional regulator, one of whose targets is the gene encoding the GluN2B subunit of NMDARs. Mice haploinsufficient for Tbr1 (Tbr1+/-) show structural abnormalities in the amygdala and limited GluN2B induction upon behavioral stimulation. Both systemic injection and local amygdalar infusion of DCS rescue social deficits and impaired associative memory in Tbr1+/- mice. However, reduced NMDAR function and its DCS-dependent correction have not been demonstrated.

Spatial working memory and attention skills are predicted by maternal stress during pregnancy

André Plamondon, Emis Akbari, Leslie Atkinson, Meir Steiner
Early Human Development 91 (2015) 23–29
http://dx.doi.org/10.1016/j.earlhumdev.2014.11.004

Introduction: Experimental evidence in rodents shows that maternal stress during pregnancy (MSDP) negatively impacts spatial learning and memory in the offspring. We aim to investigate the association between MSDP (i.e., life events) and spatial working memory, as well as attention skills (attention shifting and attention focusing), in humans. The moderating roles of child sex, maternal anxiety during pregnancy and postnatal care are also investigated.  Methods: Participants were 236mother–child dyads that were followed from the second trimester of pregnancy until 4 years postpartum. Measurements included questionnaires and independent observations.
Results: MSDP was negatively associated with attention shifting at 18monthswhen concurrent maternal anxiety was low. MSDP was associated with poorer spatial working memory at 4 years of age, but only for boys who experienced poorer postnatal care.
Conclusion: Consistent with results observed in rodents, MSDP was found to be associated with spatial working memory and attention skills. These results point to postnatal care and maternal anxiety during pregnancy as potential targets for interventions that aim to buffer children from the detrimental effects of MSDP.

Acute and massive bleeding from placenta previa and infants’ brain damage

Ken Furuta, Shuichi Tokunaga, Seishi Furukawa, Hiroshi Sameshima
Early Human Development 90 (2014) 455–458
http://dx.doi.org/10.1016/j.earlhumdev.2014.06.002

Background: Among the causes of third trimester bleeding, the impact of placenta previa on cerebral palsy is not well known.
Aims: To clarify the effect ofmaternal bleeding fromplacenta previa on cerebral palsy, and in particular when and how it occurs.
Study design: A descriptive study.
Subjects: Sixty infants born to mothers with placenta previa in our regional population-based study of 160,000 deliveries from 1998 to 2012. Premature deliveries occurring atb26 weeks of gestation and placenta accrete were excluded.
Outcome measures: Prevalence of cystic periventricular leukomalacia (PVL) and cerebral palsy (CP).
Results: Five infants had PVL and 4 of these infants developed CP (1/40,000 deliveries). Acute and massive bleeding (>500 g) within 8 h) occurred at around 30–31 weeks of gestation, and was severe enough to deliver the fetus. None of the 5 infants with PVL underwent antenatal corticosteroid treatment, and 1 infant had mild neonatal hypocapnia with a PaCO2 < 25 mm Hg. However, none of the 5 PVL infants showed umbilical arterial academia with pH < 7.2, an abnormal fetal heart rate monitoring pattern, or neonatal hypotension.
Conclusions: Our descriptive study showed that acute and massive bleeding from placenta previa at around 30 weeks of gestation may be a risk factor for CP, and requires careful neonatal follow-up. The underlying process connecting massive placental bleeding and PVL requires further investigation.

Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes

Courtney J. Wusthoff, Irene M. Loe
Seminars in Fetal & Neonatal Medicine 20 (2015) 52e57
http://dx.doi.org/10.1016/j.siny.2014.12.003

Extreme neonatal hyperbilirubinemia has long been known to cause the clinical syndrome of kernicterus, or chronic bilirubin encephalopathy (CBE). Kernicterus most usually is characterized by choreoathetoid cerebral palsy (CP), impaired upward gaze, and sensorineural hearing loss, whereas cognition is relatively spared. The chronic condition of kernicterus may be, but is not always, preceded in the acute stage by acute bilirubin encephalopathy (ABE). This acute neonatal condition is also due to hyperbilirubinemia, and is characterized by lethargy and abnormal behavior, evolving to frank neonatal encephalopathy, opisthotonus, and seizures. Less completely defined is the syndrome of bilirubin-induced neurologic dysfunction (BIND).

Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism.

As noted in a technical report by the American Academy of Pediatrics Subcommittee on Hyperbilirubinemia, “it is apparent that the use of a single total serum bilirubin level to predict long-term outcomes is inadequate and will lead to conflicting results”. As described above, this has certainly been the case in research to date. To clarify how hyperbilirubinemia influences neurodevelopmental outcome, more sophisticated consideration is needed both of how to assess bilirubin exposure leading to neurotoxicity, and of those comorbid conditions which may lower the threshold for brain injury.

For example, premature infants are known to be especially susceptible to bilirubin neurotoxicity, with kernicterus reported following TB levels far lower than the threshold expected in term neonates. Similarly, among extremely preterm neonates, BBC is proportional to gestational age, meaning that the most premature infants have the highest UB, even for similar TB levels. Thus, future studies must be adequately powered to examine preterm infants separately from term infants, and should consider not just peak TB, but also BBC, as independent variables in neonates with hyperbilirubinemia. Similarly, an analysis by the NICHD NRN found that, among ELBW infants, higher UB levels were associated with a higher risk of death or NDI. However, increased TB levels were only associated with death or NDI in unstable infants. Again, UB or BBC appeared to be more useful than TB.

Are the neuromotor disabilities of bilirubin-induced neurologic dysfunction disorders related to the cerebellum and its connections?

Jon F. Watchko, Michael J. Painter, Ashok Panigrahy
Seminars in Fetal & Neonatal Medicine 20 (2015) 47e51
http://dx.doi.org/10.1016/j.siny.2014.12.004

Investigators have hypothesized a range of subcortical neuropathology in the genesis of bilirubin induced neurologic dysfunction (BIND). The current review builds on this speculation with a specific focus on the cerebellum and its connections in the development of the subtle neuromotor disabilities of BIND. The focus on the cerebellum derives from the following observations:
(i) the cerebellum is vulnerable to bilirubin-induced injury; perhaps the most vulnerable region within the central nervous system;
(ii) infants with cerebellar injury exhibit a neuromotor phenotype similar to BIND; and                                                       (iii) the cerebellum has extensive bidirectional circuitry projections to motor and non-motor regions of the brain-stem and cerebral cortex that impact a variety of neurobehaviors.
Future study using advanced magnetic resonance neuroimaging techniques have the potential to shed new insights into bilirubin’s effect on neural network topology via both structural and functional brain connectivity measurements.

Bilirubin-induced neurologic damage is most often thought of in terms of severe adverse neuromotor (dystonia with or without athetosis) and auditory (hearing impairment or deafness) sequelae. Observed together, they comprise the classic neurodevelopmental phenotype of chronic bilirubin encephalopathy or kernicterus, and may also be seen individually as motor or auditory predominant subtypes. These injuries reflect both a predilection of bilirubin toxicity for neurons (relative to glial cells) and the regional topography of bilirubin-induced neuronal damage characterized by prominent involvement of the globus pallidus, subthalamic nucleus, VIII cranial nerve, and cochlear nucleus.

It is also asserted that bilirubin neurotoxicity may be associated with other less severe neurodevelopmental disabilities, a condition termed “subtle kernicterus” or “bilirubin-induced neurologic dysfunction” (BIND). BIND is defined by a constellation of “subtle neurodevelopmental disabilities without the classical findings of kernicterus that, after careful evaluation and exclusion of other possible etiologies, appear to be due to bilirubin neurotoxicity”. These purportedly include:

(i) mild-to-moderate disorders of movement (e.g., incoordination, clumsiness, gait abnormalities, disturbances in static and dynamic balance, impaired fine motor skills, and ataxia);                                                                                             (ii) disturbances in muscle tone; and
(iii) altered sensorimotor integration. Isolated disturbances of central auditory processing are also included in the spectrum of BIND.

  • Cerebellar vulnerability to bilirubin-induced injury
  • Cerebellar injury phenotypes and BIND
  • Cerebellar projections
Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brainstem

Transverse section of cerebellum and brain-stem from a 34 gestational-week premature kernicteric infant formalin-fixed for two weeks. Yellow staining is evident in the cerebellar dentate nuclei (upper arrow) and vestibular nuclei at the pontomedullary junction (lower arrowhead). Photo is courtesy of Mahmdouha Ahdab-Barmada and reprinted with permission from Taylor-Francis Group (Ahdab Barmada M. The neuropathology of kernicterus: definitions and debate. In: Maisel MJ, Watchko JF editors. Neonatal jaundice. Amsterdam: Harwood Academic Publishers; 2000. p. 75e88

Whether cerebellar injury is primal or an integral part of disturbed neural circuitry in bilirubin-induced CNS damage is unclear. Movement disorders, however, are increasingly recognized to arise from abnormalities of neuronal circuitry rather than localized, circumscribed lesions. The cerebellum has extensive bidirectional circuitry projections to an array of brainstem nuclei and the cerebral cortex that modulate and refine motor activities. In this regard, the cerebellum is characteristically subdivided into three lobes based on neuroanatomic and phylogenetic criteria as well as by their primary afferent and efferent connections. They include:
(i) flocculonodular lobe (archicerebellum);
(ii) anterior lobe (paleocerebellum); and
(iii) posterior lobe (neocerebellum).

The archicerebellum, the oldest division phylogenically, receives extensive input from the vestibular system and is therefore also known as the vestibulocerebellum and is important for equilibrium control. The paleocerebellum, also a primitive region, receives extensive somatosensory input from the spinal cord, including the anterior and posterior spinocerebellar pathways that convey unconscious proprioception, and is therefore also known as the spinocerebellum. The neocerebellum is the most recently evolved region, receives most of the input from the cerebral cortex, and is thus termed the cerebrocerebellum. This area has greatly expanded in association with the extensive development of the cerebral cortex in mammals and especially primates. To cause serious longstanding dysfunction, cerebellar injury must typically involve the deep cerebellar nuclei and their projections.

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other

Schematic of the bidirectional connectivity between the cerebellum and other brain regions including the cerebral cortex. Most cerebro-cerebellar afferent projections pass through the basal (anterior or ventral) pontine nuclei and intermediate cerebellar peduncle, whereas most cerebello-cerebral efferent projections pass through the dentate and ventrolateral thalamic nuclei. DCN, deep cerebellar nuclei; RN, red nucleus; ATN, anterior thalamic nucleus; PFC, prefrontal cortex; MC, motor cortex; PC, parietal cortex; TC, temporal cortex; STN, subthalamic nucleus; APN, anterior pontine nuclei. Reprinted under the terms of the Creative Commons Attribution License from D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit to cognition. Front Neural Circuits 2013; 6:116.

Given the vulnerability of the cerebellum to bilirubin-induced injury, cerebellar involvement should also be evident in classic kernicterus, contributing to neuromotor deficits observed therein. It is of interest, therefore, that cerebellar damage may play a role in the genesis of bilirubin-induced dystonia, a prominent neuromotor feature of chronic bilirubin encephalopathy in preterm and term neonates alike. This complex movement disorder is characterized by involuntary sustained muscle contractions that result in abnormal position and posture. Moreover, dystonia that is brief in duration results in chorea, and, if brief and repetitive, leads to athetosis ‒ conditions also classically observed in kernicterus. Recent evidence suggests that dystonic movements may depend on disruption of both basal ganglia and cerebellar neuronal networks, rather than isolated dysfunction of only one motor system.

Dystonia is also a prominent feature in Gunn rat pups and neonatal Ugt1‒/‒-deficient mice both robust models of kernicterus. The former is used as an experimental model of dystonia. Although these models show basal ganglia injury, the sine qua non of bilirubin-induced murine neuropathology is cerebellar damage and resultant cerebellar hypoplasia.

Studies are needed to define more precisely the motor network abnormalities in kernicterus and BIND. Magnetic resonance imaging (MRI) has been widely used in evaluating infants at risk for bilirubin-induced brain injury using conventional structural T1-and T2-weighted imaging. Infants with chronic bilirubin encephalopathy often demonstrate abnormal bilateral, symmetric, high-signal intensity on T2-weighted MRI of the globus pallidus and subthalamic nucleus, consistent with the neuropathology of kernicterus. Early postnatal MRI of at-risk infants, although frequently showing increased T1-signal in these regions, may give false-positive findings due to the presence of myelin in these structures.

Diffusion tensor imaging and tractography could be used to delineate long-term changes involving specific white matter pathways, further elucidating the neural basis of long-term disability in infants and children with chronic bilirubin encephalopathy and BIND. It will be equally valuable to use blood oxygen level-dependent (BOLD) “resting state” functional MRI to study intrinsic connectivity in order to identify vulnerable brain networks in neonates with kernicterus and BIND. Structural networks of the CNS (connectome) and functional network topology can be characterized in infants with kernicterus and BIND to determine disease-related pattern(s) with respect to both long- and short-range connectivity. These findings have the potential to shed novel insights into the pathogenesis of these disorders and their impact on complex anatomical connections and resultant functional deficits.

Audiologic impairment associated with bilirubin-induced neurologic damage

Cristen Olds, John S. Oghalai
Seminars in Fetal & Neonatal Medicine 20 (2015) 42e46
http://dx.doi.org/10.1016/j.siny.2014.12.006

Hyperbilirubinemia affects up to 84% of term and late preterm infants in the first week of life. The elevation of total serum/plasma bilirubin (TB) levels is generally mild, transitory, and, for most children, inconsequential. However, a subset of infants experiences lifelong neurological sequelae. Although the prevalence of classic kernicterus has fallen steadily in the USA in recent years, the incidence of jaundice in term and premature infants has increased, and kernicterus remains a significant problem in the global arena. Bilirubin-induced neurologic dysfunction (BIND) is a spectrum of neurological injury due to acute or sustained exposure of the central nervous system(CNS) to bilirubin. The BIND spectrum includes kernicterus, acute bilirubin encephalopathy, and isolated neural pathway dysfunction.

Animal studies have shown that unconjugated bilirubin passively diffuses across cell membranes and the blood‒brain barrier (BBB), and bilirubin not removed by organic anion efflux pumps accumulates within the cytoplasm and becomes toxic. Exposure of neurons to bilirubin results in increased oxidative stress and decreased neuronal proliferation and presynaptic neuro-degeneration at central glutaminergic synapses. Furthermore, bilirubin administration results in smaller spiral ganglion cell bodies, with decreased cellular density and selective loss of large cranial nerve VIII myelinated fibers. When exposed to bilirubin, neuronal supporting cells have been found to secrete inflammatory markers, which contribute to increased BBB permeability and bilirubin loading.

The jaundiced Gunn rat is the classic animal model of bilirubin toxicity. It is homozygous for a premature stop codon within the gene for UDP-glucuronosyltransferase family 1 (UGT1). The resultant gene product has reduced bilirubin-conjugating activity, leading to a state of hyperbilirubinemia. Studies with this rat model have led to the concept that impaired calcium homeostasis is an important mechanism of neuronal toxicity, with reduced expression of calcium-binding proteins in affected cells being a sensitive index of bilirubin-induced neurotoxicity. Similarly, application of bilirubin to cultured auditory neurons from brainstem cochlear nuclei results in hyperexcitability and excitotoxicity.

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brainstem response (ABR).

The auditory pathway and normal auditory brain-stem response (ABR). The ipsilateral (green) and contralateral (blue) auditory pathways are shown, with structures that are known to be affected by hyperbilirubinemia highlighted in red. Roman numerals in parentheses indicate corresponding waves in the normal human ABR (inset). Illustration adapted from the “Ear Anatomy” series by Robert Jackler and Christine Gralapp, with permission.

Bilirubin-induced neurologic dysfunction (BIND)

Vinod K. Bhutani, Ronald Wong
Seminars in Fetal & Neonatal Medicine 20 (2015) 1
http://dx.doi.org/10.1016/j.siny.2014.12.010

Beyond the traditional recognized areas of fulminant injury to the globus pallidus as seen in infants with kernicterus, other vulnerable areas include the cerebellum, hippocampus, and subthalamic nuclear bodies as well as certain cranial nerves. The hippocampus is a brain region that is particularly affected by age related morphological changes. It is generally assumed that a loss in hippocampal volume results in functional deficits that contribute to age-related cognitive deficits. Lower grey matter volumes within the limbic-striato-thalamic circuitry are common to other etiological mechanisms of subtle neurologic injury. Lower grey matter volumes in the amygdala, caudate, frontal and medial gyrus are found in schizophrenia and in the putamen in autism. Thus, in terms of brain volumetrics, schizophrenia and autism spectrum disorders have a clear degree of overlap that may reflect shared etiological mechanisms. Overlap with injuries observed in infants with BIND raises the question about how these lesions are arrived at in the context of the impact of common etiologies.

Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health

Olena Babenko, Igor Kovalchuk, Gerlinde A.S. Metz
Neuroscience and Biobehavioral Reviews 48 (2015) 70–91
http://dx.doi.org/10.1016/j.neubiorev.2014.11.013

Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.

Sensitive time-windows for susceptibility in neurodevelopmental disorders

Rhiannon M. Meredith, Julia Dawitz and Ioannis Kramvis
Trends in Neurosciences, June 2012; 35(6): 335-344
http://dx.doi.org:/10.1016/j.tins.2012.03.005

Many neurodevelopmental disorders (NDDs) are characterized by age-dependent symptom onset and regression, particularly during early postnatal periods of life. The neurobiological mechanisms preceding and underlying these developmental cognitive and behavioral impairments are, however, not clearly understood. Recent evidence using animal models for monogenic NDDs demonstrates the existence of time-regulated windows of neuronal and synaptic impairments. We propose that these developmentally-dependent impairments can be unified into a key concept: namely, time-restricted windows for impaired synaptic phenotypes exist in NDDs, akin to critical periods during normal sensory development in the brain. Existence of sensitive time-windows has significant implications for our understanding of early brain development underlying NDDs and may indicate vulnerable periods when the brain is more susceptible to current therapeutic treatments.

Fig (not shown)

Misregulated mechanisms underlying spine morphology in NDDs. Several proteins implicated in monogenic NDDs (highlighted in red) are linked to the regulation of the synaptic cytoskeleton via F-actin through different Rho-mediated signaling pathways (highlighted in green). Mutations in OPHN1, TSC1/2, FMRP, p21-activated kinase (PAK) are directly linked to human NDDs of intellectual disability. For instance, point mutations in OPHN1 and a PAK isoform are linked to non-syndromic mental retardation, whereas mutations or altered expression of TSC1/2 and FMRP are linked to TSC and FXS, respectively. Cytoplasmic interacting protein (CYFIP) and LIM-domain kinase 1 (LIMK1) are known to interact with FMRP and PAK, respectively [105]. LIMK1 is one of many dysregulated proteins contributing to the NDD Williams syndrome. Mouse models are available for all highlighted (red) proteins and reveal specific synaptic and behavioral deficits. Local protein synthesis in synapses, dendrites and glia is also regulated by proteins such as TSC1/2 and the FMRP/CYFIP complex. Abbreviations: 4EBP, 4E binding protein; eIF4E, eukaryotic translation initiation factor 4E.

Fig (not shown)

Sensitive time-windows, synaptic phenotypes and NDD gene targets. Sensitive time-windows exist in neural circuits, during which gene targets implicated in NDDs are normally expressed. Misregulation of these genes can affect multiple synaptic phenotypes during a restricted developmental period. The effect upon synaptic phenotypes is dependent upon the temporal expression of these NDD genes and their targets. (a) Expression outside a critical period of development will have no effect upon synaptic phenotypes. (b,c) A temporal expression pattern that overlaps with the onset (b) or closure (c) of a known critical period can alter the synaptic phenotype during that developmental time-window.

Outstanding questions

(1) Can treatment at early presymptomatic stages in animal models for NDDs prevent or ease the later synaptic, neuronal, and behavioral impairments?

(2) Are all sensory critical periods equally misregulated in mouse models for a specific NDD? Are there different susceptibilities for auditory, visual and somatosensory neurocircuits that reflect the degree of impairments observed in patients?

(3) If one critical period is missed or delayed during formation of a layer-specific connection in a network, does the network overcome this misregulated connectivity or plasticity window?

(4) In monogenic NDDs, does the severity of misregulating one particular time-window for synaptic establishment during development correlate with the importance of that gene for that synaptic circuit?

(5) Why do critical periods close in brain development?

(6) What underlies the regression of some altered synaptic phenotypes in Fmr1-KO mice?

(7) Can the concept of susceptible time-windows be applied to other NDDs, including schizophrenia and Tourette’s syndrome?

Cardiovascular

Cardiac output monitoring in newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 143–148
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.032

There is an increased interest in methods of objective cardiac output measurement in critically ill patients. Several techniques are available for measurement of cardiac output in children, although this remains very complex in newborns. Cardiac output monitoring could provide essential information to guide hemodynamic management. An overview is given of various methods of cardiac output monitoring with advantages and major limitations of each technology together with a short explanation of the basic principles.

Fick principle

According to the Fick principle the volume of blood flow in a given period equals the amount of substance entering the blood stream in the same period divided by the difference in concentrations of the substrate upstream respectively downstream to the point of entry in the circulation. This substance can be oxygen (O2-Fick) or carbon dioxide (CO2-FICK), so cardiac output can be calculated by dividing measured pulmonary oxygen uptake by the arteriovenous oxygen concentration difference. The direct O2-Fick method is regarded as gold standard in cardiac output monitoring in a research setting, despite its limitations. When the Fick principle is applied for carbon dioxide (CO2 Fick), the pulmonary carbon dioxide exchange is divided by the venoarterial CO2 concentration difference to calculate cardiac output.

In the modified CO2 Fick method pulmonary CO2 exchange is measured at the endotracheal tube. Measurement of total CO2 concentration in blood is more complex and simultaneous sampling of arterial and central venous blood is required. However, frequent blood sampling will result in an unacceptable blood loss in the neonatal population.

Blood flow can be calculated if the change in concentration of a known quantity of injected indicator is measured in time distal to the point of injection, so an indicator dilution curve can be obtained. Cardiac output can then be calculated with the use of the Stewart–Hamilton equation. Several indicators are used, such as indocyanine green, Evans blue and brilliant red in dye dilution, cold solutions in thermodilution, lithium in lithium dilution, and isotonic saline in ultrasound dilution.

Cardiovascular adaptation to extra uterine life

Alice Lawford, Robert MR Tulloh
Paediatrics And Child Health 2014; 25(1): 1-6.

The adaptation to extra uterine life is of interest because of its complexity and the ability to cause significant health concerns. In this article we describe the normal changes that occur and the commoner abnormalities that are due to failure of normal development and the effect of congenital cardiac disease. Abnormal development may occur as a result of problems with the mother, or with the fetus before birth. After birth it is essential to determine whether there is an underlying abnormality of the fetal pulmonary or cardiac development and to determine the best course of management of pulmonary hypertension or congenital cardiac disease. Causes of underdevelopment, maldevelopment and maladaptation are described as are the causes of critical congenital heart disease. The methods of diagnosis and management are described to allow the neonatologist to successfully manage such newborns.

Fetal vascular structures that exist to direct blood flow

Fetal structure Function
Arterial duct Connects pulmonary artery to the aorta and shunts blood right to left; diverting flow away from fetal lungs
Foramen ovale Opening between the two atria thatdirects blood flow returning to right

atrium through the septal wall into the left atrium bypassing lungs

Ductus venosus Receives oxygenated blood fromumbilical vein and directs it to the

inferior vena cava and right atrium

Umbilical arteries Carrying deoxygenated blood fromthe fetus to the placenta
Umbilical vein Carrying oxygenated blood from theplacenta to the fetus

Maternal causes of congenital heart disease

Maternal disorders rubella, SLE, diabetes mellitus
Maternal drug use Warfarin, alcohol
Chromosomal abnormality Down, Edward, Patau, Turner, William, Noonan

 

Fetal and Neonatal Circulation  The fetal circulation is specifically adapted to efficiently exchange gases, nutrients, and wastes through placental circulation. Upon birth, the shunts (foramen ovale, ductus arteriosus, and ductus venosus) close and the placental circulation is disrupted, producing the series circulation of blood through the lungs, left atrium, left ventricle, systemic circulation, right heart, and back to the lungs.

Clinical monitoring of systemic hemodynamics in critically ill newborns

Willem-Pieter de Boode
Early Human Development 86 (2010) 137–141
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.031

Circulatory failure is a major cause of mortality and morbidity in critically ill newborn infants. Since objective measurement of systemic blood flow remains very challenging, neonatal hemodynamics is usually assessed by the interpretation of various clinical and biochemical parameters. An overview is given about the predictive value of the most used indicators of circulatory failure, which are blood pressure, heart rate, urine output, capillary refill time, serum lactate concentration, central–peripheral temperature difference, pH, standard base excess, central venous oxygen saturation and color.

Key guidelines

➢ The clinical assessment of cardiac output by the interpretation of indirect parameters of systemic blood flow is inaccurate, irrespective of the level of experience of the clinician

➢ Using blood pressure to diagnose low systemic blood flow will consequently mean that too many patients will potentially be undertreated or overtreated, both with substantial risk of adverse effects and iatrogenic damage.

➢ Combining different clinical hemodynamic parameters enhances the predictive value in the detection of circulatory failure, although accuracy is still limited.

➢ Variation in time (trend monitoring) might possibly be more informative than individual, static values of clinical and biochemical parameters to evaluate the adequacy of neonatal circulation.

Monitoring oxygen saturation and heart rate in the early neonatal period

J.A. Dawson, C.J. Morley
Seminars in Fetal & Neonatal Medicine 15 (2010) 203e207
http://dx.doi.org:/10.1016/j.siny.2010.03.004

Pulse oximetry is commonly used to assist clinicians in assessment and management of newly born infants in the delivery room (DR). In many DRs, pulse oximetry is now the standard of care for managing high risk infants, enabling immediate and dynamic assessment of oxygenation and heart rate. However, there is little evidence that using pulse oximetry in the DR improves short and long term outcomes. We review the current literature on using pulse oximetry to measure oxygen saturation and heart rate and how to apply current evidence to management in the DR.

Practice points

  • Understand how SpO2 changes in the first minutes after birth.
  • Apply a sensor to an infant’s right wrist as soon as possible after birth.
  • Attach sensor to infant then to oximeter cable.
  • Use two second averaging and maximum sensitivity.

Using pulse oximetry assists clinicians:

  1. Assess changes in HR in real time during transition.
  2. Assess oxygenation and titrate the administration of oxygen to maintain oxygenation within the appropriate range for SpO2 during the first minutes after birth.

Research directions

  • What are the appropriate centiles to target during the minutes after birth to prevent hypoxia and hyperoxia: 25th to 75th, or 10th to 90th, or just the 50th (median)?
  • Can the inspired oxygen be titrated against the SpO2 to keep the SpO2 in the ‘normal range’?
  • Does the use of centile charts in the DR for HR and oxygen saturation reduce the rate of hyperoxia when infants are treated with oxygen.
  • Does the use of pulse oximetry immediately after birth improve short term outcomes, e.g. efficacy of immediate respiratory support, intubation rates in the DR, percentage of inspired oxygen, rate of use of adrenalin or chest compressions, duration of hypoxia/hyperoxia and bradycardia.
  • Does the use of pulse oximetry in the DR improve short term respiratory and long term neurodevelopmental outcomes for preterm infants, e.g. rate of intubation, use of surfactant, and duration of ventilation, continuous positive airway pressure, or supplemental oxygen?
  • Can all modern pulse oximeters be used effectively in the DR or do some have a longer delay before giving an accurate signal and more movement artefact?
  • Would a longer averaging time result in more stable data?

Peripheral haemodynamics in newborns: Best practice guidelines

Michael Weindling, Fauzia Paize
Early Human Development 86 (2010) 159–165
http://dx.doi.org:/10.1016/j.earlhumdev.2010.01.033

Peripheral hemodynamics refers to blood flow, which determines oxygen and nutrient delivery to the tissues. Peripheral blood flow is affected by vascular resistance and blood pressure, which in turn varies with cardiac function. Arterial oxygen content depends on the blood hemoglobin concentration (Hb) and arterial pO2; tissue oxygen delivery depends on the position of the oxygen-dissociation curve, which is determined by temperature and the amount of adult or fetal hemoglobin. Methods available to study tissue perfusion include near-infrared spectroscopy, Doppler flowmetry, orthogonal polarization spectral imaging and the peripheral perfusion index. Cardiac function, blood gases, Hb, and peripheral temperature all affect blood flow and oxygen extraction. Blood pressure appears to be less important. Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing the intrathoracic pressure.

graphic

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation

NIRS with partial venous occlusion to measure venous oxygen saturation. Taken from Yoxall and Weindling

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue

graphic

Schematic representation of the biphasic relationship between oxygen delivery and oxygen consumption in tissue.  (a) oxygen delivery (DO2). (b) As DO2 decreases, VO2 is dependent on DO2. The slope of the line indicates the FOE, which in this case is about 0.50. (c) The slope of the line indicates the FOE in the normal situation where oxygenation is DO2 independent, usually < 0.35

The oxygen-dissociation curve

The oxygen-dissociation curve

graphic

The oxygen-dissociation curve

Considerable information about the response of the peripheral circulation has been obtained using NIRS with venous occlusion. Although these measurements were validated against blood co-oximetry in human adults and infants, they can only be made intermittently by a trained operator and are thus not appropriate for general clinical use. Further research is needed to find other better measures of peripheral perfusion and oxygenation which may be easily and continuously monitored, and which could be useful in a clinical setting.

Peripheral oxygenation and management in the perinatal period

Michael Weindling
Seminars in Fetal & Neonatal Medicine 15 (2010) 208e215
http://dx.doi.org:/10.1016/j.siny.2010.03.005

The mechanisms for the adequate provision of oxygen to the peripheral tissues are complex. They involve control of the microcirculation and peripheral blood flow, the position of the oxygen dissociation curve including the proportion of fetal and adult hemoglobin, blood gases and viscosity. Systemic blood pressure appears to have little effect, at least in the non-shocked state. The adequate delivery of oxygen (DO2) depends on consumption (VO2), which is variable. The balance between VO2 and DO2 is given by fractional oxygen extraction (FOE ¼ VO2/DO2). FOE varies from organ to organ and with levels of activity. Measurements of FOE for the whole body produce a range of about 0.15-0.33, i.e. the body consumes 15-33% of oxygen transported.

Fig (not shown)

Biphasic relationship between oxygen delivery (DO2) and oxygen consumption (VO2) in tissue. Dotted lines show fractional oxygen extraction (FOE). ‘A’ indicates the normal situation when VO2 is independent ofDO2 and FOE is about 0.30. AsDO2 decreases in the direction of the arrow, VO2 remains independent of DO2 until the critical point is reached at ‘B’; in this illustration, FOE is about 0.50. The slope of the dotted line indicates the FOE (¼ VO2/DO2), which increases progressively as DO2 decreases.

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction

Graphic
(A)Relationship between haemoglobin F fraction (HbF) and peripheral fractional oxygen extraction in anaemic and control infants. (From Wardle et al.)  (B) HbF synthesis and concentration. (From Bard and Widness.) (C) Oxygen dissociation curve.

Peripheral fractional oxygen extraction in babies

Peripheral fractional oxygen extraction in babies

graphic

Peripheral fractional oxygen extraction in babies with asymptomatic or symptomatic anemia compared to controls. Bars represent the median for each group. (From Wardle et al.)

Practice points

  • Peripheral tissue DO2 is complex: cardiac function, blood gases, Hb concentration and the proportion of HbF, and peripheral temperature all play a part in determining blood flow and oxygen extraction in the sick, preterm infant. Blood pressure appears to be less important.
  • Other factors likely to play a role are the administration of vasoactive medications and ventilation strategies, which affect blood gases and cardiac output by changing intrathoracic pressure.
  • Central blood pressure is a poor surrogate measurement for the adequacy of DO2 to the periphery. Direct measurement, using NIRS, laser Doppler flowmetry or other means, may give more useful information.
  • Reasons for total hemoglobin concentration (Hb) being a relatively poor indicator of the adequacy of the provision of oxygen to the tissues:
  1. Hb is only indirectly related to red blood cell volume, which may be a better indicator of the body’s oxygen delivering capacity.
  2. Hb-dependent oxygen availability depends on the position of the oxygen-hemoglobin dissociation curve.
  3. An individual’s oxygen requirements vary with time and from organ to organ. This means that DO2 also needs to vary.
  4. It is possible to compensate for a low Hb by increasing cardiac output and ventilation, and so the ability to compensate for anemia depends on an individual’s cardio-respiratory reserve as well as Hb.
  5. The normal decrease of Hb during the first few weeks of life in both full-term and preterm babies usually occurs without symptoms or signs of anemia or clinical consequences.

The relationship between VO2 and DO2 is complex and various factors need to be taken into account, including the position of the oxygen dissociation curve, determined by the proportion of HbA and HbF, temperature and pH. Furthermore, diffusion of oxygen from capillaries to the cell depends on the oxygen tension gradient between erythrocytes and the mitochondria, which depends on microcirculatory conditions, e.g. capillary PO2, distance of the cell from the capillary (characterized by intercapillary distances) and the surface area of open capillaries. The latter can change rapidly, for example, in septic shock where arteriovenous shunting occurs associated with tissue hypoxia in spite of high DO2 and a low FOE.

Changes in local temperature deserve particular consideration. When the blood pressure is low, there may be peripheral vasoconstriction with decreased local perfusion and DO2. However, the fall in local tissue temperature would also be expected to be associated with a decreased metabolic rate and a consequent decrease in VO2. Thus a decreased DO2 may still be appropriate for tissue needs.

Pulmonary

Accurate Measurements of Oxygen Saturation in Neonates: Paired Arterial and Venous Blood Analyses

Shyang-Yun Pamela K. Shiao
Newborn and Infant Nurs Rev,  2005; 5(4): 170–178
http://dx.doi.org:/10.1053/j.nainr.2005.09.001

Oxygen saturation (So2) measurements (functional measurement, So2; and fractional measurement, oxyhemoglobin [Hbo2]) and monitoring are commonly investigated as a method of assessing oxygenation in neonates. Differences exist between the So2 and Hbo2 when blood tests are performed, and clinical monitors indicate So2 values. Oxyhemoglobin will decrease with the increased levels of carbon monoxide hemoglobin (Hbco) and methemo-globin (MetHb), and it is the most accurate measurements of oxygen (O2) association of hemoglobin (Hb). Pulse oximeter (for pulse oximetry saturation [Spo2] measurement) is commonly used in neonates. However, it will not detect the changes of Hb variations in the blood for accurate So2 measurements. Thus, the measurements from clinical oximeters should be used with caution. In neonates, fetal hemoglobin (HbF) accounts for most of the circulating Hb in their blood. Fetal hemoglobin has a high O2 affinity, thus releases less O2 to the body tissues, presenting a left-shifted Hbo2 dissociation curve.5,6 To date, however, limited data are available with HbF correction, for accurate arterial and venous (AV) So2 measurements (arterial oxygen saturation [Sao2] and venous oxygen saturation [Svo2]) in neonates, using paired AV blood samples.

In a study of critically ill adult patients, increased pulmonary CO production and elevation in arterial Hbco but not venous Hbco were documented by inflammatory stimuli inducing pulmonary heme oxygenase–1. In normal adults, venous Hbco level might be slightly higher than or equal to arterial Hbco because of production of CO by enzyme heme oxygenase–2, which is predominantly produced in the liver and spleen. However, hypoxia or pulmonary inflammation could induce heme oxygenase–1 to increase endogenous CO, thus elevating pulmonary arterial and systemic arterial Hbco levels in adults. Both endogenous and exogenous CO can suppress proliferation of pulmonary smooth muscles, a significant consideration for the prevention of chronic lung diseases in newborns. Despite these considerations, a later study in healthy adults indicated that the AV differences in Hbco were from technical artifacts and perhaps from inadequate control of different instruments. Thus, further studies are needed to provide more definitive answers for the AV differences of Hbco for adults and neonates with acute and chronic lung diseases.

Methemoglobin is an indicator of Hb oxidation and is essential for accurate measurement of Hbo2, So2, and oxygenation status. No evidence exists to show the AV MetHb difference, although this difference was elucidated with the potential changes of MetHb with different O2 levels.  Methemoglobin can be increased with nitric oxide (NO) therapy, used in respiratory distress syndrome (RDS) to reduce pulmonary hypertension and during heart surgery. Nitric oxide, in vitro, is an oxidant of Hb, with increased O2 during ischemia reperfusion. In hypoxemic conditions in vivo, nitrohemoglobin is a product generated by vessel responsiveness to nitrovasodilators. Nitro-hemoglobin can be spontaneously reversible in vivo, requiring no chemical agents or reductase. However, when O2 levels were increased experimentally in vitro following acidic conditions (pH 6.5) to simulate reperfusion conditions, MetHb levels were increased for the hemolysates (broken red cells). Nitrite-induced oxidation of Hb was associated with an increase in red blood cell membrane rigidity, thus contributing to Hb breakdown. A newer in vitro study of whole blood cells, however, concluded that MetHb formation is not dependent on increased O2 levels. Additional studies are needed to examine in vivo reperfusion of O2 and MetHb effects.

Purpose: The aim of this study was to examine the accuracy of arterial oxygen saturation (Sao2) and venous oxygen saturation (Svo2) with paired arterial and venous (AV) blood in relation to pulse oximetry saturation (Spo2) and oxyhemoglobin (Hbo2) with fetal hemoglobin determination, and their Hbo2 dissociation curves. Method: Twelve preterm neonates with gestational ages ranging from 27 to 34 weeks at birth, who had umbilical AV lines inserted, were investigated. Analyses were performed with 37 pairs of AV blood samples by using a blood volume safety protocol. Results: The mean differences between Sao2 and Svo2, and AV Hbo2 were both 6 percent (F6.9 and F6.7 percent, respectively), with higher Svo2 than those reported for adults. Biases were 2.1 – 0.49 for Sao2, 2.0 – 0.44 for Svo2, and 3.1 – 0.45 for Spo2, compared against Hbo2. With left-shifted Hbo2 dissociation curves in neonates, for the critical values of oxygen tension values between 50 and 75 millimeters of mercury, Hbo2 ranged from 92 to 93.4 percent; Sao2 ranged from 94.5 to 95.7 percent; and Spo2 ranged from 93.7 to 96.3 percent (compared to 85–94 percent in healthy adults). Conclusions: In neonates, both left-shifted Hbo2 dissociation curve and lower AV differences of oxygen saturation measurements indicated low flow of oxygen to the body tissues. These findings demonstrate the importance of accurate assessment of oxygenation statues in neonates.

In these neonates, the mean AV blood differences for both So2 and Hbo2 were about 6 percent, which was much lower than those reported for healthy adults (23 percent) for O2 supply and demand. In addition, with very high levels of HbF releasing less O2 to the body tissue, the results of blood analyses are worrisome for these critically ill neonates for low systemic oxygen states.  O’Connor and Hall determined AV So2 in neonates without HbF determination. Much of the AV So2 difference is dependent on Svo2 measurement. The ranges of Svo2 spanned for 35 percent, and the ranges of Sao2 spanned 6 percent in these neonates. The greater intervals for Svo2 measurements contribute to greater sensitivity for the measurements (than Sao2 measurements) in responding to nursing care and changes of O2 demand. Thus, Svo2 measurement is essential for better assessment of oxygenation status in neonates.

The findings of this study on AV differences of So2 were limited with very small number of paired AV blood samples. However, critically ill neonates need accurate assessment of oxygenation status because of HbF, which releases less O2 to the tissues. Decreased differences of AV So2 measurements added further possibilities of lower flow of O2 to the body tissues and demonstrated the greater need to accurately assess the proper oxygenation in the neonates. The findings of this study continued to clarify the accuracy of So2 measurements for neonates. Additional studies are needed to examine So2 levels in neonates to further validate these findings by using larger sample sizes.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal  ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

Scott A. Sands, BA Edwards, VJ Kelly, MR Davidson, MH Wilkinson, PJ Berger
PLoS Comput Biol 5(12): e1000588
http://dx.doi.org:/10.1371/journal.pcbi.1000588

Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea (_SSaO2 ) is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates _SSaO2 throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar PO2 causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates _SSaO2 during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines _SSaO2 during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia.

A novel approach to study oxidative stress in neonatal respiratory distress syndrome

Reena Negi, D Pande, K Karki, A Kumar, RS Khanna, HD Khanna
BBA Clinical 3 (2015) 65–69
http://dx.doi.org/10.1016/j.bbacli.2014.12.001

Oxidative stress is an imbalance between the systemic manifestation of reactive oxygen species and a biological system’s ability to readily detoxify the reactive intermediates or to repair the resulting damage. It is a physiological event in the fetal-to-neonatal transition, which is actually a great stress to the fetus. These physiological changes and processes greatly increase the production of free radicals, which must be controlled by the antioxidant defense system, the maturation of which follows the course of the gestation. This could lead to several functional alterations with important repercussions for the infants. Adequately mature and healthy infants are able to tolerate this drastic change in the oxygen concentration. A problem occurs when the intrauterine development is incomplete or abnormal. Preterm or intrauterine growth retarded (IUGR) and low birth weight neonates are typically of this kind. An oxidant/antioxidant imbalance in infants is implicated in the pathogenesis of the major complications of prematurity including respiratory distress syndrome (RDS), necrotizing enterocolitis (NEC), chronic lung disease, retinopathy of prematurity and intraventricular hemorrhage (IVH).

Background: Respiratory distress syndrome of the neonate (neonatal RDS) is still an important problem in treatment of preterm infants. It is accompanied by inflammatory processes with free radical generation and oxidative stress. The aim of study was to determine the role of oxidative stress in the development of neonatal RDS. Methods: Markers of oxidative stress and antioxidant activity in umbilical cord blood were studied in infants with neonatal respiratory distress syndrome with reference to healthy newborns. Results: Status of markers of oxidative stress (malondialdehyde, protein carbonyl and 8-hydroxy-2-deoxy guanosine) showed a significant increase with depleted levels of total antioxidant capacity in neonatal RDS when compared to healthy newborns. Conclusion: The study provides convincing evidence of oxidative damage and diminished antioxidant defenses in newborns with RDS. Neonatal RDS is characterized by damage of lipid, protein and DNA, which indicates the augmentation of oxidative stress. General significance: The identification of the potential biomarker of oxidative stress consists of a promising strategy to study the pathophysiology of neonatal RDS.

Neonatal respiratory distress syndrome represents the major lung complications of newborn babies. Preterm neonates suffer from respiratory distress syndrome (RDS) due to immature lungs and require assisted ventilation with high concentrations of oxygen. The pathogenesis of this disorder is based on the rapid formation of the oxygen reactive species, which surpasses the detoxification capacity of antioxidative defense system. The high chemical reactivity of free radical leads to damage to a variety of cellular macro molecules including proteins, lipids and nucleic acid. This results in cell injury and may induce respiratory cell death.

Malondialdehyde (MDA) is one of the final products of polyunsaturated fatty acids peroxidation. The present study showed increased concentration of MDA in neonates with respiratory disorders than that of control in consonance with the reported study.

Anemia, Apnea of Prematurity, and Blood Transfusions

Kelley Zagol, Douglas E. Lake, Brooke Vergales, Marion E. Moorman, et al
J Pediatr 2012;161:417-21
http://dx.doi.org:/10.1016/j.jpeds.2012.02.044

The etiology of apnea of prematurity is multifactorial; however, decreased oxygen carrying capacity may play a role. The respiratory neuronal network in neonates is immature, particularly in those born preterm, as demonstrated by their paradoxical response to hypoxemia. Although adults increase the minute ventilation in response to hypoxemia, newborns have a brief increase in ventilation followed by periodic breathing, respiratory depression, and occasionally cessation of respiratory effort. This phenomenon may be exacerbated by anemia in preterm newborns, where a decreased oxygen carrying capacity may result in decreased oxygen delivery to the central nervous system, a decreased efferent output of the respiratory neuronal network, and an increase in apnea.

Objective Compare the frequency and severity of apneic events in very low birth weight (VLBW) infants before and after blood transfusions using continuous electronic waveform analysis. Study design We continuously collected waveform, heart rate, and oxygen saturation data from patients in all 45 neonatal intensive care unit beds at the University of Virginia for 120 weeks. Central apneas were detected using continuous computer processing of chest impedance, electrocardiographic, and oximetry signals. Apnea was defined as respiratory pauses of >10, >20, and >30 seconds when accompanied by bradycardia (<100 beats per minute) and hypoxemia (<80% oxyhemoglobin saturation as detected by pulse oximetry). Times of packed red blood cell transfusions were determined from bedside charts. Two cohorts were analyzed. In the transfusion cohort, waveforms were analyzed for 3 days before and after the transfusion for all VLBW infants who received a blood transfusion while also breathing spontaneously. Mean apnea rates for the previous 12 hours were quantified and differences for 12 hours before and after transfusion were compared. In the hematocrit cohort, 1453 hematocrit values from all VLBW infants admitted and breathing spontaneously during the time period were retrieved, and the association of hematocrit and apnea in the next 12 hours was tested using logistic regression. Results Sixty-seven infants had 110 blood transfusions during times when complete monitoring data were available. Transfusion was associated with fewer computer-detected apneic events (P < .01). Probability of future apnea occurring within 12 hours increased with decreasing hematocrit values (P < .001). Conclusions Blood transfusions are associated with decreased apnea in VLBW infants, and apneas are less frequent at higher hematocrits.

Bronchopulmonary dysplasia: The earliest and perhaps the longest lasting obstructive lung disease in humans

Silvia Carraro, M Filippone, L Da Dalt, V Ferraro, M Maretti, S Bressan, et al.
Early Human Development 89 (2013) S3–S5
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.015

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy, an umbrella term for a number of different diseases that evolve as a consequence of a neonatal respiratory disorder. BPD is defined as the need for supplemental oxygen for at least 28 days after birth, and its severity is graded according to the respiratory support required at 36 post-menstrual weeks.

BPD was initially described as a chronic respiratory disease occurring in premature infants exposed to mechanical ventilation and oxygen supplementation. This respiratory disease (later named “old BPD”) occurred in relatively large premature newborn and, from a pathological standpoint, it was characterized by intense airway inflammation, disruption of normal pulmonary structures and lung fibrosis.

Bronchopulmonary dysplasia (BPD) is one of the most important sequelae of premature birth and the most common form of chronic lung disease of infancy. From a clinical standpoint BPD subjects are characterized by recurrent respiratory symptoms, which are very frequent during the first years of life and, although becoming less severe as children grow up, they remain more common than in term-born controls throughout childhood, adolescence and into adulthood. From a functional point of view BPD subjects show a significant airflow limitation that persists during adolescence and adulthood and they may experience an earlier and steeper decline in lung function during adulthood. Interestingly, patients born prematurely but not developing BPD usually fare better, but they too have airflow limitations during childhood and later on, suggesting that also prematurity per se has life-long detrimental effects on pulmonary function. For the time being, little is known about the presence and nature of pathological mechanisms underlying the clinical and functional picture presented by BPD survivors. Nonetheless, recent data suggest the presence of persistent neutrophilic airway inflammation and oxidative stress and it has been suggested that BPD may be sustained in the long term by inflammatory pathogenic mechanisms similar to those underlying COPD. This hypothesis is intriguing but more pathological data are needed.  A better understanding of these pathogenetic mechanisms, in fact, may be able to orient the development of novel targeted therapies or prevention strategies to improve the overall respiratory health of BPD patients.

We have a limited understanding of the presence and nature of pathological mechanisms in the lung of BPD survivors. The possible role of asthma-like inflammation has been investigated because BPD subjects often present with recurrent wheezing and other symptoms resembling asthma during their childhood and adolescence. But BPD subjects have normal or lower than normal exhaled nitric oxide levels and exhaled air temperatures, whereas they are higher than normal in asthmatic patients.

Of all obstructive lung diseases in humans, BPD has the earliest onset and is possibly the longest lasting. Given its frequent association with other conditions related to preterm birth (e.g. growth retardation, pulmonary hypertension, neurodevelopmental delay, hearing defects, and retinopathy of prematurity), it often warrants a multidisciplinary management.

Effects of Sustained Lung Inflation, a lung recruitment maneuver in primary acute respiratory distress syndrome, in respiratory and cerebral outcomes in preterm infants

Chiara Grasso, Pietro Sciacca, Valentina Giacchi, Caterina Carpinato, et al.
Early Human Development 91 (2015) 71–75
http://dx.doi.org/10.1016/j.earlhumdev.2014.12.002

Background: Sustained Lung Inflation (SLI) is a maneuver of lung recruitment in preterm newborns at birth that can facilitate the achieving of larger inflation volumes, leading to the clearance of lung fluid and formation of functional residual capacity (FRC). Aim: To investigate if Sustained Lung Inflation (SLI) reduces the need of invasive procedures and iatrogenic risks. Study design: 78 newborns (gestational age ≤ 34 weeks, weighing ≤ 2000 g) who didn’t breathe adequately at birth and needed to receive SLI in addition to other resuscitation maneuvers (2010 guidelines). Subjects: 78 preterm infants born one after the other in our department of Neonatology of Catania University from 2010 to 2012. Outcome measures: The need of intubation and surfactant, the ventilation required, radiological signs, the incidence of intraventricular hemorrhage (IVH), periventricular leukomalacia, retinopathy in prematurity from III to IV plus grades, bronchopulmonary dysplasia, patent ductus arteriosus, pneumothorax and necrotizing enterocolitis. Results: In the SLI group infants needed less intubation in the delivery room (6% vs 21%; p b 0.01), less invasive mechanical ventilation (14% vs 55%; p ≤ 0.001) and shorter duration of ventilation (9.1 days vs 13.8 days; p ≤ 0.001). There wasn’t any difference for nasal continuous positive airway pressure (82% vs 77%; p = 0.43); but there was less surfactant administration (54% vs 85%; p ≤ 0.001) and more infants received INSURE (40% vs 29%; p=0.17). We didn’t found any differences in the outcomes, except for more mild intraventricular hemorrhage in the SLI group (23% vs 14%; p = 0.15; OR= 1.83). Conclusion: SLI is easier to perform even with a single operator, it reduces the necessity of more complicated maneuvers and surfactant without statistically evident adverse effects.

Long-term respiratory consequences of premature birth at less than 32 weeks of gestation

Anne Greenough
Early Human Development 89 (2013) S25–S27
http://dx.doi.org/10.1016/j.earlhumdev.2013.07.004

Chronic respiratory morbidity is a common adverse outcome of very premature birth, particularly in infants who had developed bronchopulmonary dysplasia (BPD). Prematurely born infants who had BPD may require supplementary oxygen at home for many months and affected infants have increased healthcare utilization until school age. Chest radiograph abnormalities are common; computed tomography of the chest gives predictive information in children with ongoing respiratory problems. Readmission to hospital is common, particularly for those who have BPD and suffer respiratory syncytial virus lower respiratory infections (RSV LRTIs). Recurrent respiratory symptoms requiring treatment are common and are associated with evidence of airways obstruction and gas trapping. Pulmonary function improves with increasing age, but children with BPD may have ongoing airflow limitation. Lung function abnormalities may be more severe in those who had RSV LRTIs, although this may partly be explained by worse premorbid lung function. Worryingly, lung function may deteriorate during the first year. Longitudinal studies are required to determine if there is catch up growth.

Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia

Anita Bhandari and Sharon McGrath-Morrow
Seminars in Perinatology 37 (2013)132–137
http://dx.doi.org/10.1053/j.semperi.2013.01.010

Bronchopulmonary dysplasia (BPD) is the commonest cause of chronic lung disease in infancy. The incidence of BPD has remained unchanged despite many advances in neonatal care. BPD starts in the neonatal period but its effects can persist long term. Premature infants with BPD have a greater incidence of hospitalization, and continue to have a greater respiratory morbidity and need for respiratory medications, compared to those without BPD. Lung function abnormalities, especially small airway abnormalities, often persist. Even in the absence of clinical symptoms, BPD survivors have persistent radiological abnormalities and presence of emphysema has been reported on chest computed tomography scans. Concern regarding their exercise tolerance remains. Long-term effects of BPD are still unknown, but given reports of a more rapid decline in lung function and their susceptibility to develop chronic obstructive pulmonary disease phenotype with aging, it is imperative that lung function of survivors of BPD be closely monitored.

Neonatal ventilation strategies and long-term respiratory outcomes

Sandeep Shetty, Anne Greenough
Early Human Development 90 (2014) 735–739
http://dx.doi.org/10.1016/j.earlhumdev.2014.08.020

Long-term respiratory morbidity is common, particularly in those born very prematurely and who have developed bronchopulmonary dysplasia (BPD), but it does occur in those without BPD and in infants born at term. A variety of neonatal strategies have been developed, all with short-term advantages, but meta-analyses of randomized controlled trials (RCTs) have demonstrated that only volume-targeted ventilation and prophylactic high-frequency oscillatory ventilation (HFOV) may reduce BPD. Few RCTs have incorporated long-term follow-up, but one has demonstrated that prophylactic HFOV improves respiratory and functional outcomes at school age, despite not reducing BPD. Results from other neonatal interventions have demonstrated that any impact on BPD may not translate into changes in long-term outcomes. All future neonatal ventilation RCTs should have long-term outcomes rather than BPD as their primary outcome if they are to impact on clinical practice.

Prediction of neonatal respiratory distress syndrome in term pregnancies by assessment of fetal lung volume and pulmonary artery resistance index

Mohamed Laban, GM Mansour, MSE Elsafty, AS Hassanin, SS EzzElarab
International Journal of Gynecology and Obstetrics 128 (2015) 246–250
http://dx.doi.org/10.1016/j.ijgo.2014.09.018

Objective: To develop reference cutoff values for mean fetal lung volume (FLV) and pulmonary artery resistance index (PA-RI) for prediction of neonatal respiratory distress syndrome (RDS) in low-risk term pregnancies. Methods: As part of a cross-sectional study, women aged 20–35 years were enrolled and admitted to a tertiary hospital in Cairo, Egypt, for elective repeat cesarean at 37–40 weeks of pregnancy between January 1, 2012, and July 31, 2013. FLV was calculated by virtual organ computer-aided analysis, and PA-RI was measured by Doppler ultrasonography before delivery. Results: A total of 80 women were enrolled. Neonatal RDS developed in 11 (13.8%) of the 80 newborns. Compared with neonates with RDS, healthy neonates had significantly higher FLVs (P b 0.001) and lower PA-RIs (P b 0.001). Neonatal RDS is less likely with FLV of at least 32 cm3 or PA-RI less than or equal to 0.74. Combining these two measures improved the accuracy of prediction. Conclusion: The use of either FLV or PA-RI predicted neonatal RDS. The predictive value increased when these two measures were combined

Pulmonary surfactant - a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary surfactant – a front line of lung host defense, 2003 JCI0318650.f2

Pulmonary hypertension in bronchopulmonary dysplasia

Sara K.Berkelhamer, Karen K.Mestan, and Robin H. Steinhorn
Seminars In  Perinatology 37 (2013)124–131
http://dx.doi.org/10.1053/j.semperi.2013.01.009

Pulmonary hypertension (PH) is a common complication of neonatal respiratory diseases, including bronchopulmonary dysplasia (BPD), and recent studies have increased aware- ness that PH worsens the clinical course, morbidity and mortality of BPD. Recent evidence indicates that up to 18% of all extremely low-birth-weight infants will develop some degree of PH during their hospitalization, and the incidence rises to 25–40% of the infants with established BPD. Risk factors are not yet well understood, but new evidence shows that fetal growth restriction is a significant predictor of PH. Echocardiography remains the primary method for evaluation of BPD-associated PH, and the development of standardized screening timelines and techniques for identification of infants with BPD-associated PH remains an important ongoing topic of investigation. The use of pulmonary vasodilator medications, such as nitric oxide, sildenafil, and others, in the BPD population is steadily growing, but additional studies are needed regarding their long-term safety and efficacy.
An update on pharmacologic approaches to bronchopulmonary dysplasia

Sailaja Ghanta, Kristen Tropea Leeman, and Helen Christou
Seminars In Perinatology 37 (2013)115–123
http://dx.doi.org/10.1053/j.semperi.2013.01.008

Bronchopulmonary dysplasia (BPD) is the most prevalent long-term morbidity in surviving extremely preterm infants and is linked to increased risk of reactive airways disease, pulmonary hypertension, post-neonatal mortality, and adverse neurodevelopmental outcomes. BPD affects approximately 20% of premature newborns, and up to 60% of premature infants born before completing 26 weeks of gestation. It is characterized by the need for assisted ventilation and/or supplemental oxygen at 36 weeks postmenstrual age. Approaches to prevention and treatment of BPD have evolved with improved understanding of its pathogenesis. This review will focus on recent advancements and detail current research in pharmacotherapy for BPD. The evidence for both current and potential future experimental therapies will be reviewed in detail. As our understanding of the complex and multifactorial pathophysiology of BPD changes, research into these current and future approaches must continue to evolve.

Methylxanthines
Diuretics and bronchodilators
Corticosteroids
Macrolide antibiotics
Recombinant human Clara cell 10-kilodalton protein(rhCC10)
Vitamin A
Surfactant
Leukotriene receptor antagonist
Pulmonary vasodilators

Skeletal and Muscle

Skeletal Stem Cells in Space and Time

Moustapha Kassem and Paolo Bianco
Cell  Jan 15, 2015; 160: 17-19
http://dx.doi.org/10.1016/j.cell.2014.12.034

The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.

The groundbreaking concept that bone, cartilage, marrow adipocytes, and hematopoiesis-supporting stroma could originate from a common progenitor and putative stem cell was surprising at the time when it was formulated (Owen and Friedenstein, 1988). The putative stem cell, nonhematopoietic in nature, would be found in the postnatal bone marrow stroma, generate tissues previously thought of as foreign to each other, and support the turnover of tissues and organs that self-renew at a much slower rate compared to other tissues associated with stem cells (blood, epithelia). This concept also connected bone and bone marrow as parts of a single-organ system, implying their functional interplay. For many years, the evidence underpinning the concept has been incomplete.

While multipotency of stromal progenitors has been demonstrated by in vivo transplantation experiments, self-renewal, the defining property of a stem cell, has not been easily demonstrated until recently in humans (Sacchetti et al., 2007) and mice (Mendez-Ferrer et al., 2010). Meanwhile, a confusing and plethoric terminology has been introduced into the literature, which diverted and confounded the search for a skeletal stem cell and its physiological significance (Bianco et al., 2013).

Two studies in this issue of Cell (Chan et al., 2015; Worthley et al., 2015), using a combination of rigorous single-cell analyses and lineage tracing technologies, mark significant steps toward rectifying the course of skeletal stem cell discovery by making several important points, within and beyond skeletal physiology.

First, a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors can in fact be identified and linked to defined phenotype(s) in the mouse. The system is framed conceptually, and approached experimentally, similar to the hematopoietic system.

Second, based on its assayable functions and potential, the stem cell at the top of the hierarchy is defined as a skeletal stem cell (SSC). As noted earlier (Sacchetti et al., 2007) (Bianco et al., 2013), this term clarifies, well beyond semantics, that the range of tissues that the self-renewing stromal progenitor (originally referred to as an ‘‘osteogenic’’ or ‘‘stromal’’ stem cell) (Owen and Friedenstein, 1988) can actually generate in vivo, overlaps with the range of tissues that make up the skeleton.

Third, these cells are spatially restricted, local residents of the bone/bone marrow organ. The systemic circulation is not a sizable contributor to their recruitment to locally deployed functions.

Fourth, a native skeletogenic potential is inherent to the system of progenitor/ stem cells found in the skeleton, and internally regulated by bone morphogenetic protein (BMP) signaling. This is reflected in the expression of regulators and antagonists of BMP signaling within the system, highlighting potential feedback mechanisms modulating expansion or quiescence of specific cell compartments.

Fifth, in cells isolated from other tissues, an assayable skeletogenic potential is not inherent: it can only be induced de novo by BMP reprogramming. These two studies (Chan et al., 2015, Worthley et al., 2015) corroborate the classical concept of ‘‘determined’’ and ‘‘inducible’’ skeletal progenitors (Owen and Friedenstein, 1988): the former residing in the skeleton, the latter found in nonskeletal tissues; the former capable of generating skeletal tissues, in vivo and spontaneously, the latter requiring reprogramming signals in order to acquire a skeletogenic capacity; the former operating in physiological bone formation, the latter in unwanted, ectopic bone formation in diseases such as fibrodysplasia ossificans progressiva.

To optimize our ability to obtain specific skeletal tissues for medical application, the study by Chan et al. offers a glimpse of another facet of the biology of SSC lineages and progenitors. Chan et al. show that a homogeneous cell population inherently committed to chondrogenesis can alter its output to generate bone if cotransplanted with multipotent progenitors. Conversely, osteogenic cells can be shifted to a chondrogenic fate by blockade of vascular endothelial growth factor receptor, consistent with the avascular and hypoxic milieu of cartilage. This has two important implications:

  • commitment is flexible in the system;
  • the choir is as important as the soloist and can modulate the solo tune.

Reversibility and population behavior thus emerge as two features that may be characteristic, albeit not unique, of the stromal system, resonating with conceptually comparable evidence in the human system.

The two studies by Chan et al. and Worthely et al. emphasize the relevance not only of their new data, but also of a proper concept of a skeletal stem cell per se, for proper clinical use. Confusion arising from improper conceptualization of skeletal stem cells has markedly limited clinical development of skeletal stem cell biology.

Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

Daniel L. Worthley, Michael Churchill, Jocelyn T. Compton, Yagnesh Tailor, et al.
Cell, Jan 15, 2015; 160: 269–284
http://dx.doi.org/10.1016/j.cell.2014.11.042

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).

Identification and Specification of the Mouse Skeletal Stem Cell

Charles K.F. Chan, Eun Young Seo, James Y. Chen, David Lo, A McArdle, et al.
Cell, Jan 15, 2015; 160: 285–298
http://dx.doi.org/10.1016/j.cell.2014.12.002

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.

Bone mesenchymal development

Bone mesenchymal development

Bone mesenchymal development

The bone-remodeling cycle

The bone-remodeling cycle

Nuclear receptor modulation – Role of coregulators in selective estrogen receptor modulator (SERM) actions

Qin Feng, Bert W. O’Malley
Steroids 90 (2014) 39–43
http://dx.doi.org/10.1016/j.steroids.2014.06.008

Selective estrogen receptor modulators (SERMs) are a class of small-molecule chemical compounds that bind to estrogen receptor (ER) ligand binding domain (LBD) with high affinity and selectively modulate ER transcriptional activity in a cell- and tissue-dependent manner. The prototype of SERMs is tamoxifen, which has agonist activity in bone, but has antagonist activity in breast. Tamoxifen can reduce the risk of breast cancer and, at same time, prevent osteoporosis in postmenopausal women. Tamoxifen is widely prescribed for treatment and prevention of breast cancer. Mechanistically the activity of SERMs is determined by the selective recruitment of coactivators and corepressors in different cell types and tissues. Therefore, understanding the coregulator function is the key to understanding the tissue selective activity of SERMs.

Hematopoietic

Hematopoietic Stem Cell Arrival Triggers Dynamic Remodeling of the Perivascular Niche

Owen J. Tamplin, Ellen M. Durand, Logan A. Carr, Sarah J. Childs, et al.
Cell, Jan 15, 2015; 160: 241–252
http://dx.doi.org/10.1016/j.cell.2014.12.032

Hematopoietic stem and progenitor cells (HSPCs) can reconstitute and sustain the entire blood system. We generated a highly specific transgenic reporter of HSPCs in zebrafish. This allowed us to perform high resolution live imaging on endogenous HSPCs not currently possible in mammalian bone marrow. Using this system, we have uncovered distinct interactions between single HSPCs and their niche. When an HSPC arrives in the perivascular niche, a group of endothelial cells remodel to form a surrounding pocket. This structure appears conserved in mouse fetal liver. Correlative light and electron microscopy revealed that endothelial cells surround a single HSPC attached to a single mesenchymal stromal cell. Live imaging showed that mesenchymal stromal cells anchor HSPCs and orient their divisions. A chemical genetic screen found that the compound lycorine promotes HSPC-niche interactions during development and ultimately expands the stem cell pool into adulthood. Our studies provide evidence for dynamic niche interactions upon stem cell colonization.

Neonatal anemia

Sanjay Aher, Kedar Malwatkar, Sandeep Kadam
Seminars in Fetal & Neonatal Medicine (2008) 13, 239e247
http://dx.doi.org:/10.1016/j.siny.2008.02.009

Neonatal anemia and the need for red blood cell (RBC) transfusions are very common in neonatal intensive care units. Neonatal anemia can be due to blood loss, decreased RBC production, or increased destruction of erythrocytes. Physiologic anemia of the newborn and anemia of prematurity are the two most common causes of anemia in neonates. Phlebotomy losses result in much of the anemia seen in extremely low birthweight infants (ELBW). Accepting a lower threshold level for transfusion in ELBW infants can prevent these infants being exposed to multiple donors.

Management of anemia in the newborn

Naomi L.C. Luban
Early Human Development (2008) 84, 493–498
http://dx.doi.org:/10.1016/j.earlhumdev.2008.06.007

Red blood cell (RBC) transfusions are administered to neonates and premature infants using poorly defined indications that may result in unintentional adverse consequences. Blood products are often manipulated to limit potential adverse events, and meet the unique needs of neonates with specific diagnoses. Selection of RBCs for small volume (5–20 mL/kg) transfusions and for massive transfusion, defined as extracorporeal bypass and exchange transfusions, are of particular concern to neonatologists. Mechanisms and therapeutic treatments to avoid transfusion are another area of significant investigation. RBCs collected in anticoagulant additive solutions and administered in small aliquots to neonates over the shelf life of the product can decrease donor exposure and has supplanted the use of fresh RBCs where each transfusion resulted in a donor exposure. The safety of this practice has been documented and procedures established to aid transfusion services in ensuring that these products are available. Less well established are the indications for transfusion in this population; hemoglobin or hematocrit alone are insufficient indications unless clinical criteria (e.g. oxygen desaturation, apnea and bradycardia, poor weight gain) also augment the justification to transfuse. Comorbidities increase oxygen consumption demands in these infants and include bronchopulmonary dysplasia, rapid growth and cardiac dysfunction. Noninvasive methods or assays have been developed to measure tissue oxygenation; however, a true measure of peripheral oxygen offloading is needed to improve transfusion practice and determine the value of recombinant products that stimulate erythropoiesis. The development of such noninvasive methods is especially important since randomized, controlled clinical trials to support specific practices are often lacking, due at least in part, to the difficulty of performing such studies in tiny infants.
The Effect of Blood Transfusion on the Hemoglobin Oxygen Dissociation Curve of Very Early Preterm Infants During the First Week of Life

Virginie De HaUeux, Anita Truttmann, Carmen Gagnon, and Harry Bard
Seminars in Perinatology, 2002; 26(6): 411-415
http://dx.doi.org:/10.1053/sper.2002.37313

This study was conducted during the first week of life to determine the changes in Ps0 (PO2 required to achieve a saturation of 50% at pH 7.4 and 37~ and the proportions of fetal hemoglobin (I-IbF) and adult hemoglobin (HbA) prior to and after transfusion in very early preterm infants. Eleven infants with a gestational age <–27 weeks have been included in study. The hemoglobin dissociation curve and the Ps0 was determined by Hemox-analyser. Liquid chromatography was also performed to determine the proportions of HbF and HbA. The mean gestational age of the 11 infants was 25.1 weeks (-+1 weeks) and their mean birth weight was 736 g (-+125 g). They received 26.9 mL/kg of packed red cells. The mean Ps0 prior and after transfusion was 18.5 +- 0.8 and 21.0 + 1 mm Hg (P = .0003) while the mean percentage of HbF was 92.9 -+ 1.1 and 42.6 -+ 5.7%, respectively. The data of this study show a decrease of hemoglobin oxygen affinity as a result of blood transfusion in very early preterm infants prone to O 2 toxicity. The shift in HbO 2 curve after transfusion should be taken into consideration when oxygen therapy is being regulated for these infants.

Effect of neonatal hemoglobin concentration on long-term outcome of infants affected by fetomaternal hemorrhage

Mizuho Kadooka, H Katob, A Kato, S Ibara, H Minakami, Yuko Maruyama
Early Human Development 90 (2014) 431–434
http://dx.doi.org/10.1016/j.earlhumdev.2014.05.010

Background: Fetomaternal hemorrhage (FMH) can cause severe morbidity. However, perinatal risk factors for long-term poor outcome due to FMH have not been extensively studied.                                                                                 Aims: To determine which FMH infants are likely to have neurological sequelae.
Study design: A single-center retrospective observational study. Perinatal factors, including demographic characteristics, Kleihauer–Betke test, blood gas analysis, and neonatal blood hemoglobin concentration ([Hb]), were analyzed in association with long-term outcomes.
Subjects: All 18 neonates referred to a Neonatal Intensive Care Unit of Kagoshima City Hospital and diagnosed with FMH during a 15-year study period. All had a neonatal [Hb] b7.5 g/dL and 15 of 17 neonates tested had Kleihauer–Betke test result N4.0%.
Outcome measures: Poor long-term outcome was defined as any of the following determined at 12 month old or more: cerebral palsy, mental retardation, attention deficit/hyperactivity disorder, and epilepsy.
Results: Nine of the 18 neonates exhibited poor outcomes. Among demographic characteristics and blood variables compared between two groups with poor and favorable outcomes, significant differences were observed in [Hb] (3.6 ± 1.4 vs. 5.4 ± 1.1 g/dL, P = 0.01), pH (7.09 ± 0.11 vs. 7.25 ± 0.13, P = 0.02) and base deficits (17.5 ± 5.4 vs. 10.4 ± 6.0 mmol/L, P = 0.02) in neonatal blood, and a number of infants with [Hb] ≤ 4.5 g/dL (78%[7/9] vs. 22%[2/9], P= 0.03), respectively. The base deficit in neonatal arterial blood increased significantly with decreasing neonatal [Hb].
Conclusions: Severe anemia causing severe base deficit is associated with neurological sequelae in FMH infants

Clinical and hematological presentation among Indian patients with common hemoglobin variants

Khushnooma Italia, Dipti Upadhye, Pooja Dabke, Harshada Kangane, et al.
Clinica Chimica Acta 431 (2014) 46–51
http://dx.doi.org/10.1016/j.cca.2014.01.028

Background: Co-inheritance of structural hemoglobin variants like HbS, HbD Punjab and HbE can lead to a variable clinical presentation and only few cases have been described so far in the Indian population.
Methods: We present the varied clinical and hematological presentation of 22 cases (HbSD Punjab disease-15, HbSE disease-4, HbD Punjab E disease-3) referred to us for diagnosis.
Results: Two of the 15 HbSDPunjab disease patients had moderate crisis, one presented with mild hemolytic anemia; however, the other 12 patients had a severe clinical presentation with frequent blood transfusion requirements, vaso occlusive crisis, avascular necrosis of the femur and febrile illness. The 4 HbSE disease patients had a mild to moderate presentation. Two of the 3 HbD Punjab E patients were asymptomatic with one patient’s sibling having a mild presentation. The hemoglobin levels of the HbSD Punjab disease patients ranged from 2.3 to 8.5 g/dl and MCV from 76.3 to 111.6 fl. The hemoglobin levels of the HbD Punjab E and HbSE patients ranged from 10.8 to 11.9 and 9.8 to 10.0 g/dl whereas MCV ranged from 67.1 to 78.2 and 74.5 to 76.0 fl respectively.
Conclusions: HbSD Punjab disease patients should be identified during newborn screening programs and managed in a way similar to sickle cell disease. Couple at risk of having HbSD Punjab disease children may be given the option of prenatal diagnosis in subsequent pregnancies.

Sickle cell anemia is the most common hemoglobinopathy seen across the world. It is caused by a point mutation in the 6th codon of the beta (β) globin gene leading to the substitution of the amino acid glutamic acid to valine. The sickle gene is frequently seen in Africa, some Mediterranean countries, India, Middle East—Saudi Arabia and North America. In India the prevalence of hemoglobin S (HbS) carriers varies from 2 to 40% among different population groups and HbS is mainly seen among the scheduled tribe, scheduled caste and other backward class populations in the western, central and parts of eastern and southern India. Sickle cell anemia has a variable clinical presentation in India with the most severe clinical presentation seen in central India whereas patients in the western region show a mild to moderate clinical presentation.

Hemoglobin D Punjab (HbD Punjab) (also known as HbD Los-Angeles, HbD Portugal, HbD North Carolina, D Oak Ridge and D Chicago) is another hemoglobin variant due to a point mutation in codon 121 of the β globin gene resulting in the substitution of the amino acid glutamic acid to glycine. It is a widely distributed hemoglobin with a relatively low prevalence of 0.86% in the Indo-Pak subcontinent, 1–3% in north-western India, 1–3% in the Black population in the Caribbean and North America and has also been reported among the English. It accounts for 55.6% of all the Hb variants seen in the Xenjiang province of China.

Hemoglobin E (HbE) is the most common abnormal hemoglobin in Southeast Asia. In India, the frequency ranges from 4% to 51% in the north eastern region and 3% to 4% in West Bengal in the east. The HbE mutation (β26 GAG→AAG) creates an alternative splice site and the βE chain is insufficiently synthesized, hence the phenotype of this disorder is that of a mild form of β thalassemia.

Though these 3 structural variants are prevalent in different regions of India, their interaction is increasingly seen in all states of the country due to migration of people to different regions for a better livelihood. There are very few reports on interaction of these commonly seen Hb variants and the phenotypic–genotypic presentation of these cases is important for genetic counseling and management.

HbF of patients with HbSD Punjab disease with variable clinical severity. The HbF values of 4 patients are not included as they were post blood transfusion

The genotypes of the patients were confirmed by restriction enzyme digestion and ARMS (Fig). Patients 1 to 15 were characterized as compound heterozygous for HbS and HbD Punjab whereas patients 16 to 19 were characterized as compound heterozygous for HbS and HbE. Patient nos. 20 to 22 were characterized as compound heterozygous for HbE and HbD Punjab.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

Molecular characterization of HbS and HbDPunjab by restriction enzyme digestion and of HbE by ARMS.

The 3 common β globin gene variants of hemoglobin, HbS, HbE and HbD Punjab are commonly seen in India, with HbS having a high prevalence in the central belt and some parts of western, eastern and southern India, HbE in the eastern and north eastern region whereas HbD is mostly seen in the north western part of India. These hemoglobin variants have been reported in different population groups. However, with migration and intermixing of the different populations from different geographic regions, occasional cases of HbSD Punjab and HbSE are being reported. There are several HbD variants like HbD Punjab, HbD Iran, HbD Ibadan. However, of these only HbD Punjab interacts with HbS to form a clinically significant condition as the glutamine residue facilitates polymerization of HbS. HbD Iran and HbD Ibadan are non-interacting and produce benign conditions like the sickle cell trait. The first case of HbSD Punjab disease was a brother and sister considered to have atypical sickle cell disease in 1934. This family was further reinvestigated and reported as the first case of HbD Los Angeles which has the same mutation as the HbD Punjab. Serjeant et al. reported HbD Punjab in an English parent in 6 out of 11 HbSD-Punjab disease cases. This has been suggested to be due to the stationing of nearly 50,000 British troops on the Indian continent for a period of 200 y and the introduction into Britain of their Anglo-Indian children.

HbSD Punjab disease shows a similar pattern to HbS homozygous on alkaline hemoglobin electrophoresis but can be differentiated on acid agar gel electrophoresis and on HPLC. In HbSD Punjab disease cases, the peripheral blood films show anisocytosis, poikilocytosis, target cells and irreversibly sickled cells. Values of HbF and HbA2 are similar to those in sickle homozygous cases. HbSD Punjab disease is characterized by a moderately severe hemolytic anemia.

Twenty-one cases of HbSDPunjab were reported by Serjeant of which 16 were reported by different workers among patients originating from Caucasian, Spanish, Australian, Irish, English, Portuguese, Black, American, Venezuelan, Caribbean, Mexican, Turkish and Jamaican backgrounds. Yavarian et al. 2009 reported a multi centric origin of HbD Punjab which in combination with HbS results in sickle cell disease. Patel et al. 2010 have also reported 12 cases of HbSD Punjab from the Orissa state of eastern India. Majority of these cases were symptomatic, presenting with chronic hemolytic anemia and frequent painful crises.

HbF levels >20% were seen in 4 out of our 11 clinically severe patients of HbSD-Punjab disease with the mean HbF levels of 16.8% in 8 clinically severe patients, while 3 clinically severe patients were post transfused. However, the 3 patients with a mild to moderate clinical presentation showed a mean HbF level of 8.6%. This is in contrast to the relatively milder clinical presentation associated with high HbF seen in patients with sickle cell anemia. This was also reported by Adekile et al. 2010 in 5 cases of HbS-DLos Angeles where high HbF did not ameliorate the severe clinical presentation seen in these patients.

These 15 cases of HbSDPunjab disease give us an overall idea of the severe clinical presentation of the disease in different regions of India. However the HbDPunjabE cases were milder or asymptomatic and the HbSE cases were moderately symptomatic. Since most of the cases of HbSDPunjab disease were clinically severe, it is important to pick up these cases during newborn screening and enroll them into a comprehensive care program with the other sickle cell disease patients with introduction of therapeutic interventions such as penicillin prophylaxis if required and pneumococcal immunization. In fact, 2 of our cases (No. 6 and 7) were identified during newborn screening for sickle cell disorders. The parents can be given information on home care and educated to detect symptoms that may lead to serious medical emergencies. The parents of these patients as well as the couples who are at risk of having a child with HbSDPunjab disease could also be counseled about the option of prenatal diagnosis in subsequent pregnancies. It is thus important to document the clinical and hematological presentation of compound heterozygotes with these common β globin chain variants.

Common Hematologic Problems in the Newborn Nursery

Jon F. Watchko
Pediatr Clin N Am – (2015) xxx-xxx
http://dx.doi.org/10.1016/j.pcl.2014.11.011

Common RBC disorders include hemolytic disease of the newborn, anemia, and polycythemia. Another clinically relevant hematologic issue in neonates to be covered herein is thrombocytopenia. Disorders of white blood cells will not be reviewed.

KEY POINTS

(1)               Early clinical jaundice or rapidly developing hyperbilirubinemia are often signs of hemolysis, the differential diagnosis of which commonly includes immune-mediated disorders, red-cell enzyme deficiencies, and red-cell membrane defects.

(2)             Knowledge of the maternal blood type and antibody screen is critical in identifying non-ABO alloantibodies in the maternal serum that may pose a risk for severe hemolytic disease in the newborn.

(3)             Moderate to severe thrombocytopenia in an otherwise well-appearing newborn strongly suggests immune-mediated (alloimmune or autoimmune) thrombocytopenia.

Hemolytic conditions in the neonate

1. Immune-mediated (positive direct Coombs test)  a. Rhesus blood group: Anti-D, -c, -C, -e, -E, CW, and several others

  b. Non-Rhesus blood groups: Kell, Duffy, Kidd, Xg, Lewis, MNS, and others

  c. ABO blood group: Anti-A, -B

2. Red blood cell (RBC) enzyme defects

  a. Glucose-6-phosphate dehydrogenase (G6PD) deficiency

  b. Pyruvate kinase deficiency

  c. Others

3. RBC membrane defects

  a. Hereditary spherocytosis

  b. Elliptocytosis

  c. Stomatocytosis

  d. Pyknocytosis

  e. Others

4. Hemoglobinopathies

  a. alpha-thalassemia

  b. gamma-thalassemia

Standard maternal antibody screeningAlloantibody                                 Blood Group

D, C, c, E, e, f, CW, V                     Rhesus

K, k, Kpa, Jsa                                  Kell

Fya, Fyb                                          Duffy

Jka, Jkb                                           Kidd

Xga                                                  Xg

Lea, Leb                                          Lewis

S, s, M, N                                        MNS

P1                                                    P

Lub                                                  Lutheran

Non-ABO alloantibodies reported to cause moderate to severe hemolytic disease of the newbornWithin Rh system: Anti-D, -c, -C, -Cw, -Cx, -e, -E, -Ew, -ce, -Ces, -Rh29, -Rh32, -Rh42, -f, -G, -Goa, -Bea, -Evans, -Rh17, -Hro, -Hr, -Tar, -Sec, -JAL, -STEM

Outside Rh system:  Anti-LW, -K, -k, -Kpa, -Kpb, -Jka, -Jsa, -Jsb, -Ku, -K11, -K22, -Fya, -M, -N, -S, -s, -U, -PP1 pk, -Dib, -Far, -MUT, -En3, -Hut, -Hil, -Vel, -MAM, -JONES, -HJK, -REIT

 

Red Blood Cell Enzymopathies

G6PD9 and pyruvate kinase (PK) deficiency are the 2 most common red-cell enzyme disorders associated with marked neonatal hyperbilirubinemia. Of these, G6PD deficiency is the more frequently encountered and it remains an important cause of kernicterus worldwide, including the United States, Canada, and the United Kingdom, the prevalence in Western countries a reflection in part of immigration patterns and intermarriage. The risk of kernicterus in G6PD deficiency also relates to the potential for unexpected rapidly developing extreme hyperbilirubinemia in this disorder associated with acute severe hemolysis.

Red Blood Cell Membrane Defects

Establishing a diagnosis of RBC membrane defects is classically based on the development of Coombs-negative hyperbilirubinemia, a positive family history, and abnormal RBC smear, albeit it is often difficult because newborns normally exhibit a marked variation in red-cell membrane size and shape. Spherocytes, however, are not often seen on RBC smears of hematologically normal newborns and this morphologic abnormality, when prominent, may yield a diagnosis of hereditary spherocytosis (HS) in the immediate neonatal period. Given that approximately 75% of families affected with hereditary spherocytosis manifest an autosomal dominant phenotype, a positive family history can often be elicited and provide further support for this diagnosis. More recently, Christensen and Henry highlighted the use of an elevated mean corpuscular hemoglobin concentration (MCHC) (>36.0 g/dL) and/or elevated ratio of MCHC to mean corpuscular volume, the latter they term the “neonatal HS index” (>0.36, likely >0.40) as screening tools for HS. An index of greater than 0.36 had 97% sensitivity, greater than 99% specificity, and greater than 99% negative predictive value for identifying HS in neonates. Christensen and colleagues also provided a concise update of morphologic RBC features that may be helpful in diagnosing this and other underlying hemolytic conditions in newborns.

The diagnosis of HS can be confirmed using the incubated osmotic fragility test when coupled with fetal red-cell controls or eosin-5-maleimide flow cytometry. One must rule out symptomatic ABO hemolytic disease by performing a direct Coombs test, as infants so affected also may manifest prominent micro-spherocytosis. Moreover, HS and symptomatic ABO hemolytic disease can occur in the same infant and result in severe hyperbilirubinemia and anemia.  Of other red-cell membrane defects, only hereditary elliptocytosis,  stomato-cytosis, and infantile pyknocytosis have been reported to exhibit significant hemolysis in the newborn period. Hereditary elliptocytosis and stomatocytosis are both rare. Infantile pyknocytosis, a transient red-cell membrane abnormality manifesting itself during the first few months of life, is more common.

Risk factors for bilirubin neurotoxicityIsoimmune hemolytic disease

G6PD deficiency

Asphyxia

Sepsis

Acidosis

Albumin less than 3.0 g/dL
Data from Maisels MJ, Bhutani VK, Bogen D, et al. Hyperbilirubinemia in the newborn infant > or 535 weeks’ gestation: an update with clarifications. Pediatrics 2009; 124:1193–8.

Polycythemia

Polycythemia (venous hematocrit 65%) in seen in infants across a range of conditions associated with active erythropoiesis or passive transfusion.76,77 They include, among others, placental insufficiency, the infant of a diabetic mother, recipient in twin-twin transfusion syndrome, and several aneuploidies, including trisomy. The clinical concern related to polycythemia is the risk for microcirculatory complications of hyperviscosity. However, determining which polycythemic infants are hyperviscous and when to intervene is a challenge.

 

 

Liver

Metabolic disorders presenting as liver disease

Germaine Pierre, Efstathia Chronopoulou
Paediatrics and Child Health 2013; 23(12): 509-514
The liver is a highly metabolically active organ and many inherited metabolic disorders have hepatic manifestations. The clinical presentation in these patients cannot usually be distinguished from liver disease due to acquired causes like infection, drugs or hematological disorders. Manifestations include acute and chronic liver failure, cholestasis and hepatomegaly. Metabolic causes of acute liver failure in childhood can be as high as 35%. Certain disorders like citrin deficiency and Niemann-Pick C disease may present in infancy with self-limiting cholestasis before presenting in later childhood or adulthood with irreversible disease. This article reviews important details from the history and clinical examination when evaluating the pediatric patient with suspected metabolic disease, the specialist and genetic tests when investigating, and also discusses specific disorders, their clinical course and treatment. The role of liver transplantation is also briefly discussed. Increased awareness of this group of disorders is important as in many cases, early diagnosis leads to early intervention with improved outcome. Diagnosis also allows genetic counselling and future family planning.

Adult liver disorders caused by inborn errors of metabolism: Review and update

Sirisak Chanprasert, Fernando Scaglia
Molecular Genetics and Metabolism 114 (2015) 1–10
http://dx.doi.org/10.1016/j.ymgme.2014.10.011

Inborn errors of metabolism (IEMs) are a group of genetic diseases that have protean clinical manifestations and can involve several organ systems. The age of onset is highly variable but IEMs afflict mostly the pediatric population. However, in the past decades, the advancement in management and new therapeutic approaches have led to the improvement in IEM patient care. As a result, many patients with IEMs are surviving into adulthood and developing their own set of complications. In addition, some IEMs will present in adulthood. It is important for internists to have the knowledge and be familiar with these conditions because it is predicted that more and more adult patients with IEMs will need continuity of care in the near future. The review will focus on Wilson disease, alpha-1 antitrypsin deficiency, citrin deficiency, and HFE-associated hemochromatosis which are typically found in the adult population. Clinical manifestations and pathophysiology, particularly those that relate to hepatic disease as well as diagnosis and management will be discussed in detail.

Inborn errors of metabolism (IEMs) are a group of genetic diseases characterized by abnormal processing of biochemical reactions, resulting in accumulation of toxic substances that could interfere with normal organ functions, and failure to synthesize essential compounds. IEMs are individually rare, but collectively numerous. The clinical presentations cover a broad spectrum and can involve almost any organ system. The age of onset is highly variable but IEMs afflict mostly the pediatric population.

Wilson disease is an autosomal recessive genetic disorder of copper metabolism. It is characterized by an abnormal accumulation of inorganic copper in various tissues, most notably in the liver and the brain, especially in the basal ganglia. The disease was first described in 1912 by Kinnier Wilson, and affects between 1 in 30,000 and 1 in 100,000 individuals. Clinical features are variable and depend on the extent  and the severity of copper deposition. Typically, patients tend to develop hepatic disease at a younger age than the neuropsychiatric manifestations. Individuals withWilson disease eventually succumb to complications of end stage liver disease or become debilitated from neurological problems, if they are left untreated.

The clinical presentations of Wilson disease are varied affecting many organ systems. However, the overwhelming majority of cases display hepatic and neurologic symptoms. In general, patients with hepatic disease present between the first and second decades of life although patients as young as 3 years old or over 50 years old have also been reported. The most common modes of presentations are acute self-limited hepatitis and chronic active hepatitis that are indistinguishable from other hepatic disorders although liver aminotransferases are generally much lower than in autoimmune or viral hepatitis. Acute fulminant hepatic failure is less common but is observed in approximately 3% of all cases of acute liver failure. Symptoms of acute liver failure include jaundice, coagulopathy, and hepatic encephalopathy. Cirrhosis can develop over time and may be clinically silent. Hepatocellular carcinoma (HCC) is rarely associated with Wilson disease, but may occur in the setting of cirrhosis and chronic inflammation.

Copper is an essential element, and is required for the proper functioning of various proteins and enzymes. The total body content of copper in a healthy adult individual is approximately 70–100 mg, while the daily requirements are estimated to be between 1 and 5 mg. Absorption occurs in the small intestine. Copper is taken up to the hepatocytes via the copper transporter hTR1. Once inside the cell, copper is bound to various proteins including metallothionein and glutathione, however, it is the metal chaperone, ATOX1 that helps direct copper to the ATP7B protein for intracellular transport and excretion. At the steady state, copper will be bound to ATP7B and is then incorporated to ceruloplasmin and secreted into the systemic circulation. When the cellular copper concentration arises, ATP7B protein will be redistributed from the trans-Golgi network to the prelysosomal vesicles facilitating copper excretion into the bile. The molecular defects in ATP7B lead to a reduction of copper excretion. Excess copper is accumulated in the liver causing tissue injury. The rate of accumulation of copper varies among individuals, and it may depend on other factors such as alcohol consumption, or viral hepatitis infections. If the liver damage is not severe, patients will accumulate copper in various tissues including the brain, the kidney, the eyes, and the musculoskeletal system leading to clinical disease. A failure of copper to incorporate into ceruloplasmin leads to secretion of the unsteady protein that has a shorter half-life, resulting in the reduced concentrations of ceruloplasmin seen in most patients with Wilson disease.

Wilson disease used to be a progressive fatal condition during the first half of the 20th century because there was no effective treatment available at that time. Penicillamine was the first pharmacologic agent introduced in 1956 for treating this condition. Penicillamine is a sulfhydryl-bearing amino acid cysteine doubly substituted with methyl groups. This drug acts as a chelating agent that promotes the urinary excretion of copper. It is rapidly absorbed in the gastrointestinal track, and over 80% of circulating penicillamine is excreted via the kidneys. Although it is very effective, approximately 10%–50% of Wilson disease patients with neuropsychiatric presentations may experience worsening of their symptoms, and often times the worsening symptoms may not be reversible.

Alpha1-antitrypsin deficiency

Alpha1-antitrypsin deficiency (AATD) is one of the most common genetic liver diseases in children and adults, affecting 1 in 2000 to 1 in 3000 live births worldwide. It is transmitted in an autosomal co-dominant fashion with variable expressivity. Alpha1 antitrypsin (A1AT) is a member of the serine protease inhibitor (SERPIN) family. Its function is to counteract the proteolytic effect of neutrophil elastase and other neutrophil proteases. Mutations in the SERPINA1, the gene encoding A1AT, result in changes in the protein structure with the PiZZ phenotype being the most common cause of liver and lung disease-associated AATDs. Although, it classically causes early onset chronic obstructive pulmonary disease (COPD) in adults, liver disease characterized by chronic inflammation, hepatic fibrosis, and cirrhosis is not uncommon in the adult population. Decreased plasma concentration of A1AT predisposes lung tissue to be more susceptible to injury from protease enzymes. However, the underlying mechanism of liver injury is different, and is believed to be caused by accumulation of polymerized mutant A1AT in the hepatocyte endoplasmic reticulum (ER). Currently, there is no specific treatment for liver disease-associated AATD, but A1AT augmentation therapy is available for patients affected with pulmonary involvement.

A1AT is a single-chain, 52-kDa polypeptide of approximately 394 amino acids [56]. It is synthesized in the liver, circulates in the plasma, and functions as an inhibitor of neutrophil elastase and other proteases such as cathepsin G, and proteinase 3. A1AT has a globular shape composed of two central β sheets surrounded by a small β sheet and nine α helices. The pathophysiology underlying liver disease is thought to be a toxic gain-of-function mutation associated with the PiZZ phenotypes. This hypothesis has been supported by the fact that null alleles which produce no detectable plasma A1AT, are not associated with liver disease. In addition, the transgenic mouse model of AATD PiZZ developed periodic acid-Schiff-positive diastase-resistant intrahepatic globule early in life similar to AATD patients. The PiZZ phenotype results in the blockade of the final processing of A1AT in the liver, as only 15% of the A1AT reaches the circulation whereas 85% of non-secreted protein is accumulated in the hepatocytes.

Citrin deficiency

Citrin deficiency is a relatively newly-defined autosomal recessive disease. It encompasses two different sub-groups of patients, neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), and adult onset citrullinemia type 2 (CTLN 2).

AGC2 exports aspartate out of the mitochondrial matrix in exchange for glutamate and a proton. Thus, this protein has an important role in ureagenesis and gluconeogenesis. In CTLN2, a defect in this protein is believed to limit the supply of aspartate for the formation of argininosuccinate in the cytosol resulting in impairment of ureagenesis. Interestingly, the mouse model of citrin deficiency (Ctrn−/−) fails to develop symptoms of CTLN2 suggesting that the mitochondrial aspartate is not the only source of ureagenesis. However, it should be noted that the rodent liver expresses higher glycerol-phosphate shuttle activity than the human counterpart. With the intact glycerol-phosphate dehydrogenase, it can compensate for the deficiency of AGC2, as demonstrated by the AGC2 and glycerol-phosphate dehydrogenase double knock-out mice that exhibit similar features to those observed in human CTLN2.

HFE-associated hemochromatosis

HFE-associated hemochromatosis is an inborn error of iron metabolism characterized by excessive iron storage resulting in tissue and organ damage. It is the most common autosomal recessive disorder in the Caucasian population, affecting 0.3%–0.5% of individuals of Northern European descent. The term “hemochromatosis” was coined in 1889 by the German pathologist Friedrich Daniel Von Recklinghausen, who described it as bronze stain of organs caused by a blood borne pigment.

The classic clinical triad of cirrhosis, diabetes, and bronze skin pigmentation is rarely observed nowadays given the early recognition, diagnosis, and treatment of this condition. The most common presenting symptoms are nonspecific including weakness, lethargy, and arthralgia.

The liver is a major site of iron storage in healthy individuals and as such it is the organ that is universally affected in HFE-associated hemochromatosis. Elevation of liver aminotransferases indicative of hepatocyte injury is the most common mode of presentation and it can be indistinguishable from other causes of hepatitis. Approximately 15%–40% of patients with HFE-associated hemochromatosis have other liver conditions, including chronic viral hepatitis B or C infection, nonalcoholic fatty liver disease, and alcoholic liver disease.

 

The liver in haemochromatosis

Rune J. Ulvik
Journal of Trace Elements in Medicine and Biology xxx (2014) xxx–xxx
http://dx.doi.org/10.1016/j.jtemb.2014.08.005

The review deals with genetic, regulatory and clinical aspects of iron homeostasis and hereditary hemochromatosis. Hemochromatosis was first described in the second half of the 19th century as a clinical entity characterized by excessive iron overload in the liver. Later, increased absorption of iron from the diet was identified as the pathophysiological hallmark. In the 1970s genetic evidence emerged supporting the apparent inheritable feature of the disease. And finally in 1996 a new “hemochromato-sis gene” called HFE was described which was mutated in about 85% of the patients. From the year2000 onward remarkable progress was made in revealing the complex molecular regulation of iron trafficking in the human body and its disturbance in hemochromatosis. The discovery of hepcidin and ferroportin and their interaction in regulating the release of iron from enterocytes and macrophages to plasma were important milestones. The discovery of new, rare variants of non-HFE-hemochromatosis was explained by mutations in the multicomponent signal transduction pathway controlling hepcidin transcription. Inhibited transcription induced by the altered function of mutated gene products, results in low plasma levels of hepcidin which facilitate entry of iron from enterocytes into plasma. In time this leads to progressive accumulation of iron and subsequently development of disease in the liver and other parenchymatous organs. Being the major site of excess iron storage and hepcidin synthesis the liver is a cornerstone in maintaining normal systemic iron homeostasis. Its central pathophysiological role in HFE-hemochromatosis with downgraded hepcidin synthesis, was recently shown by the finding that liver transplantation normalized the hepcidin levels in plasma and there was no sign of iron accumulation in the new liver.

Gastrointestinal

Decoding the enigma of necrotizing enterocolitis in premature infants

Roberto Murgas TorrazzaNan Li, Josef Neu
Pathophysiology 21 (2014) 21–27
http://dx.doi.org/10.1016/j.pathophys.2013.11.011

Necrotizing enterocolitis (NEC) is an enigmatic disease that affects primarily premature infants. It often occurs suddenly and when it occurs, treatment attempts at treatment often fail and results in death. If the infant survives, there is a significant risk of long term sequelae including neurodevelopmental delays. The pathophysiology of NEC is poorly understood and thus prevention has been difficult. In this review, we will provide an overview of why progress may be slow in our understanding of this disease, provide a brief review diagnosis, treatment and some of the current concepts about the pathophysiology of this disease.

Necrotizing enterocolitis (NEC) has been reported since special care units began to house preterm infants .With the advent of modern neonatal intensive care approximately 40 years ago, the occurrence and recognition of the disease markedly increased. It is currently the most common and deadly gastro-intestinal illness seen in preterm infants. Despite major efforts to better understand, treat and prevent this devastating disease, little if any progress has been made during these 4 decades. Underlying this lack of progress is the fact that what is termed “NEC” is likely more than one disease, or mimicked by other diseases, each with a different etiopathogenesis.

Human gut microbiome

Human gut microbiome

Term or near term infants with “NEC” when compared to matched controls usually have occurrence of their disease in the first week after birth, have a significantly higher frequency of prolonged rupture of membranes, chorio-amnionitis, Apgar score <7 at 1 and 5 min, respiratory problems, congenital heart disease, hypoglycemia, and exchange transfusions. When a “NEC” like illness presents in term or near term infants, it should be noted that these are likely to be distinct in pathogenesis than the most common form of NEC and should be differentiated as such.

The infants who suffer primary ischemic necrosis are term or near term infants (although this can occur in preterms) who have concomitant congenital heart disease, often related to poor left ventricular output or obstruction. Other factors that have been associated with primary ischemia are maternal cocaine use, hyperviscosity caused by polycythemia or a severe antecedent hypoxic–ischemic event. Whether the dis-ease entity that results from this should be termed NEC can be debated on historical grounds, but the etiology is clearly different from the NEC seen in most preterm infants.

The pathogenesis of NEC is uncertain, and the etiology seems to be multifactorial. The “classic” form of NEC is highly associated with prematurity; intestinal barrier immaturity, immature immune response, and an immature regulation of intestinal blood flow (Fig.). Although genetics appears to play a role, the environment, especially a dysbiotic intestinal microbiota acting in concert with host immaturities predisposes the preterm infant to disruption of the intestinal epithelia, increased permeability of tight junctions, and release of inflammatory mediators that leads to intestinal mucosa injury and therefore development of necrotizing enterocolitis.

NEC is a multifactorial disease

NEC is a multifactorial disease

What causes NEC? NEC is a multifactorial disease with an interaction of several etiophathologies

It is clear from this review that there are several entities that have been described as NEC. What is also clear is that despite having some overlap in the final parts of the pathophysiologic cascade that lead to necrosis, the disease that is most commonly seen in the preterm infant is likely to have an origin that differs markedly from that seen in term infants with congenital heart disease or severe hypoxic–ischemic injury. Thus, epidemiologic studies will need to differentiate these entities, if the aim is to dissect common features that are most highly associated with development of the disease. At this juncture, we areleft with more of a population based preventative approach, where the use of human milk, evidence based feeding guide-lines, considerations for microbial therapy once these are proved safe and effective and approved as such by regulatory authorities, and perhaps even measures that prevent prematurity will have a major impact on this devastating disease.

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines

Influenced by the microbiota, intestinal epithelial cells (IECs) elaborate cytokines, including thymic stromal lymphoprotein (TSLP), transforming growthfactor (TGF), and interleukin-10 (IL-10), that can influence pro-inflammatory cytokine production by dendritic cells (DC) and macrophages present in the laminapropria (GALT) and Peyer’s patches. Signals from commensal organisms may influence tissue-specific functions, resulting in T-cell expansion and regulation of the numbers of Th-1,
Th-2, and Th-3 cells. Also modulated by the microbiota, other IEC derived factors, including APRIL (a proliferation-inducing ligand),B-cell activating factor (BAFF), secretory leukocyte peptidase inhibitor (SLPI), prostaglandin E2(PGE2), and other metabolites, directly regulate functions ofboth antigen presenting cells and lymphocytes in the intestinal ecosystem. NK: natural killer cell; LN: lymph node; DC: dendritic cells.Modified from R. Sharma, C. Young, M. Mshvildadze, J. Neu, Intestinal microbiota does it play a role in diseases of the neonate? NeoReviews 10 (4) (2009)e166, with permission

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Current Issues in the Management of Necrotizing Enterocolitis

Marion C. W. Henry and R. Lawrence Moss
Seminars in Perinatology, 2004; 28(3): 221-233
http://dx.doi.org:/10.1053/j.semperi.2004.03.010

Necrotizing enterocolitis is almost exclusively a disease of prematurity, with 90% of all cases occurring in premature infants and 90% of those infants weighing less than 2000 g. Prematurity is the only risk factor for necrotizing enterocolitis consistently identified in case control studies and the disease is rare in countries where prematurity is uncommon such as Japan and Sweden. When necrotizing enterocolitis does occur in full-term infants, it appears to by a somewhat different disease, typically associated with some predisposing condition.

NEC occurs in one to three in 1,000 live births and most commonly affects babies born between 30-32 weeks. It is most often diagnosed during the second week of life and occurs more often in previously fed infants. The mortality from NEC has been cited as 10% to 50% of all NEC cases. Surgical mortality has decreased over the last several decades from 70% to between 20 and 50%. The incremental cost per case of acute hospital care is estimated at $74 to 186 thousand compared to age matched controls, not including additional costs of long term care for the infants’ with lifelong morbidity. Survivors may develop short bowel syndrome, recurrent bouts of catheter-related sepsis, malabsorption, malnutrition, and TPN induced liver failure.

Although extensive research concerning the pathophysiology of necrotizing enterocolitis has occurred, a complete understanding has not been fully elucidated. The classic histologic finding is coagulation necrosis; present in over 90% of specimens. This finding suggests the importance of ischemia in the pathogenesis of NEC. Inflammation and bacterial overgrowth also are present. These findings support the assumptions by Kosloske that NEC occurs by the interaction of 3 events:

  • intestinal ischemia,
  • colonization by pathogenic bacteria and
  • excess protein substrate in the intestinal lumen.

Additionally, the immunologic immaturity of the neonatal gut has been implicated in the development of NEC. Reparative tissue changes including epithelial regeneration, formation of granulation tissue and fibrosis, and mixed areas of acute and chronic inflammatory changes suggest that the pathogenesis of NEC may involve a chronic process of injury and repair.

Premature newborns born prior to the 32nd week of gestational age may have compromised intestinal peristalsis and decreased motility. These motility problems may lead to poor clearance of bacteria, and subsequent bacterial overgrowth. Premature infants also have an immature intestinal tract in terms of immunologic immunity.

There are fewer functional B lymphocytes present and the ability to produce sufficient secretory IgA is reduced. Pepsin, gastric acid and mucus are also not produced as well in prematurity. All of these factors may contribute to the limited proliferation of intestinal flora and the decreased binding of these flora to mucosal cells (Fig).

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC

Role of nitric oxide in the pathogenesis of NEC.

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis

Characteristics of the immature gut leading to increased risk of necrotizing enterocolitis.

As understanding of the pathophysiology of necrotizing enterocolitis continues to evolve, a unifying concept is emerging. Initially, there is likely a subclinical insult leading to NEC. This may arise from a brief episode of hypoxia or infection. With colonization of the intestines, bacteria bind to the injured mucosa eliciting an inflammatory response which leads to further inflammation.

Intestinal Microbiota Development in Preterm Neonates and Effect of Perinatal Antibiotics

Silvia Arboleya, Borja Sanchez,, Christian Milani, Sabrina Duranti, et al.
Pediatr 2014;-:—).  http://dx.doi.org/10.1016/j.jpeds.2014.09.041

Objectives Assess the establishment of the intestinal microbiota in very low birth-weight preterm infants and to evaluate the impact of perinatal factors, such as delivery mode and perinatal antibiotics.
Study design We used 16S ribosomal RNA gene sequence-based microbiota analysis and quantitative polymerase chain reaction to evaluate the establishment of the intestinal microbiota. We also evaluated factors affecting the microbiota, during the first 3 months of life in preterm infants (n = 27) compared with full-term babies (n = 13).
Results Immaturity affects the microbiota as indicated by a reduced percentage of the family Bacteroidaceae during the first months of life and by a higher initial percentage of Lactobacillaceae in preterm infants compared with full term infants. Perinatal antibiotics, including intrapartum antimicrobial prophylaxis, affects the gut microbiota, as indicated by increased Enterobacteriaceae family organisms in the infants.

Human gut microbiome

Human gut microbiome

Conclusions Prematurity and perinatal antibiotic administration strongly affect the initial establishment of microbiota with potential consequences for later health.

Ischemia and necrotizing enterocolitis: where, when, and how

Philip T. Nowicki
Seminars in Pediatric Surgery (2005) 14, 152-158
http://dx.doi.org:/10.1053/j.sempedsurg.2005.05.003

While it is accepted that ischemia contributes to the pathogenesis of necrotizing enterocolitis (NEC), three important questions regarding this role subsist. First, where within the intestinal circulation does the vascular pathophysiology occur? It is most likely that this event begins within the intramural microcirculation, particularly the small arteries that pierce the gut wall and the submucosal arteriolar plexus insofar as these represent the principal sites of resistance regulation in the gut. Mucosal damage might also disrupt the integrity or function of downstream villous arterioles leading to damage thereto; thereafter, noxious stimuli might ascend into the submucosal vessels via downstream venules and lymphatics. Second, when during the course of pathogenesis does ischemia occur? Ischemia is unlikely to the sole initiating factor of NEC; instead, it is more likely that ischemia is triggered by other events, such as inflammation at the mucosal surface. In this context, it is likely that ischemia plays a secondary, albeit critical role in disease extension. Third, how does the ischemia occur? Regulation of vascular resistance within newborn intestine is principally determined by a balance between the endothelial production of the vasoconstrictor peptide endothelin-1 (ET-1) and endothelial production of the vasodilator free radical nitric oxide (NO). Under normal conditions, the balance heavily favors NO-induced vasodilation, leading to a low resting resistance and high rate of flow. However, factors that disrupt endothelial cell function, eg, ischemia-reperfusion, sustained low-flow perfusion, or proinflammatory mediators, alter the ET-1:NO balance in favor of constriction. The unique ET-1–NO interaction thereafter might facilitate rapid extension of this constriction, generating a viscous cascade wherein ischemia rapidly extends into larger portions of the intestine.

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation

Schematic representation of the intestinal microcirculation. Small mesenteric arteries pierce the muscularis layers and terminate in the submucosa where they give rise to 1A (1st order) arterioles. 2A (2nd order) arterioles arise from the 1A. Although not shown here, these 2A arterioles connect merge with several 1A arterioles, thus generating an arteriolar plexus, or manifold that serves to pressurize the terminal downstream microvasculature. 3A (3rd order) arterioles arise from the 2A and proceed to the mucosa, giving off a 4A branch just before descent into the mucosa. This 4A vessel travels to the muscularis layers. Each 3A vessel becomes the single arteriole perfusing each villus.

Collectively, these studies indicate that disruption of endothelial cell function has the potential to disrupt the normal balance between NO and ET-1 within the newborn intestinal circulation, and that such an event can generate significant ischemia. In this context, it is important to note that NO and ET-1 each regulate the expression and activity of the other. An increased [NO] within the microvascular environment reduces ET-1 expression and compromises ligand binding to the ETA receptor (thus decreasing its contractile efficacy), while ET-1 compromises eNOS expression. Thus, factors that upset the balance between NO and ET-1 will have an immediate and direct effect on vascular tone, but also exert an additional indirect effect by extenuating the disruption of balance between these two factors.

It is not difficult to construct a hypothesis that links the perturbations of I/R and sustained low-flow perfusion with an initial inflammatory insult. Initiation of an inflammatory process at the mucosal–luminal interface could have a direct impact on villus and mucosal 3A arterioles, damaging arteriolar integrity and disrupting villus hemodynamics. Ascent of proinflammatory mediators to the submucosal 1A–2A arteriolar plexus could occur via draining venules and lymphatics, generating damage to vascular effector systems therein; these mediators might include cytokines and platelet activating factor, as these elements have been recovered from human infants with NEC. This event, coupled with a generalized loss of 3A flow throughout a large portion of the mucosal surface, could compromise flow rate within the submucosal arteriolar plexus.

Necrotizing enterocolitis: An update

Loren Berman, R. Lawrence Moss
Seminars in Fetal & Neonatal Medicine 16 (2011) 145e150
http://dx.doi.org:/10.1016/j.siny.2011.02.002

Necrotizing enterocolitis (NEC) is a leading cause of death among patients in the neonatal intensive care unit, carrying a mortality rate of 15e30%. Its pathogenesis is multifactorial and involves an over reactive response of the immune system to an insult. This leads to increased intestinal permeability, bacterial translocation, and sepsis. There are many inflammatory mediators involved in this process, but thus far none has been shown to be a suitable target for preventive or therapeutic measures. NEC usually occurs in the second week of life after the initiation of enteral feeds, and the diagnosis is made based on physical examination findings, laboratory studies, and abdominal radiographs. Neonates with NEC are followed with serial abdominal examinations and radiographs, and may require surgery or primary peritoneal drainage for perforation or necrosis. Many survivors are plagued with long term complications including short bowel syndrome, abnormal growth, and neurodevelopmental delay. Several evidence-based strategies exist that may decrease the incidence of NEC including promotion of human breast milk feeding, careful feeding advancement, and prophylactic probiotic administration in at-risk patients. Prevention is likely to have the greatest impact on decreasing mortality and morbidity related to NEC, as little progress has been made with regard to improving outcomes for neonates once the disease process is underway.

Immune Deficiencies

Primary immunodeficiencies: A rapidly evolving story

Nima Parvaneh, Jean-Laurent Casanova,  LD Notarangelo, ME Conley
J Allergy Clin Immunol 2013;131:314-23.
http://dx.doi.org/10.1016/j.jaci.2012.11.051

The characterization of primary immunodeficiencies (PIDs) in human subjects is crucial for a better understanding of the biology of the immune response. New achievements in this field have been possible in light of collaborative studies; attention paid to new phenotypes, infectious and otherwise; improved immunologic techniques; and use of exome sequencing technology. The International Union of Immunological Societies Expert Committee on PIDs recently reported on the updated classification of PIDs. However, new PIDs are being discovered at an ever-increasing rate. A series of 19 novel primary defects of immunity that have been discovered after release of the International Union of Immunological Societies report are discussed here. These new findings highlight the molecular pathways that are associated with clinical phenotypes and suggest potential therapies for affected patients.

Combined Immunodeficiencies

  • T-cell receptor a gene mutation: T-cell receptor ab1 T-cell depletion

T cells comprise 2 distinct lineages that express either ab or gd T-cell receptor (TCR) complexes that perform different tasks in immune responses. During T-cell maturation, the precise order and efficacy of TCR gene rearrangements determine the fate of the cells. Productive β-chain gene rearrangement produces a pre-TCR on the cell surface in association with pre-Tα invariant peptide (β-selection). Pre-TCR signals promote α-chain recombination and transition to a double-positive stage (CD41CD81). This is the prerequisite for central tolerance achieved through positive and negative selection of thymocytes.

  • Ras homolog gene family member H deficiency: Loss of naive T cells and persistent human papilloma virus infections
  • MST1 deficiency: Loss of naive T cells

New insight into the role of MST1 as a critical regulator of T-cell homing and function was provided by the characterization of 8 patients from 4 unrelated families who had homozygous nonsense mutations in STK4, the gene encoding MST1. MST1 was originally identified as an ubiquitously expressed kinase with structural homology to yeast Ste. MST1 is the mammalian homolog of the Drosophila Hippo protein, controlling cell growth, apoptosis, and tumorigenesis. It has both proapoptotic and antiapoptotic functions.

  • Lymphocyte-specific protein tyrosine kinase deficiency: T-cell deficiency with CD41 lymphopenia

Defects in pre-TCR– and TCR-mediated signaling lead to aberrant T-cell development and function (Fig). One of the earliest biochemical events occurring after engagement of the (pre)-TCR is the activation of lymphocyte-specific protein tyrosine kinase (LCK), a member of the SRC family of protein tyrosine kinases. This kinase then phosphorylates immunoreceptor tyrosine-based activation motifs of intracellular domains of CD3 subunits. Phosphorylated immunoreceptor tyrosine-based activation motifs recruit z-chain associated protein kinase of 70 kDa, which, after being phosphorylated by LCK, is responsible for activation of critical downstream events. Major consequences include activation of the membrane-associated enzyme phospholipase Cg1, activation of the mitogen-activated protein kinase, nuclear translocation of nuclear factor kB (NFkB), and Ca21/Mg21 mobilization. Through these pathways, LCK controls T-cell development and activation. In mice lacking LCK, T-cell development in the thymus is profoundly blocked at an early double-negative stage.

TCR signaling

TCR signaling

TCR signaling. Multiple signal transduction pathways are stimulated through the TCR. These pathways collectively activate transcription factors that organize T-cell survival, proliferation, differentiation, homeostasis, and migration. Mutant molecules in patients with TCR-related defects are indicated in red.

  • Uncoordinated 119 deficiency: Idiopathic CD41 lymphopenia

Idiopathic CD41 lymphopenia (ICL) is a very heterogeneous clinical entity that is defined, by default, by persistent CD41 T-cell lymphopenia (<300 cells/mL or <20% of total T cells) in the absence of HIV infection or any other known cause of immunodeficiency.

Well-Defined Syndromes with Immunodeficiency

  • Wiskott-Aldrich syndrome protein–interacting protein deficiency: Wiskott-Aldrich syndrome-like phenotype

In hematopoietic cells Wiskott-Aldrich syndrome protein (WASP) is stabilized through forming a complex with WASP interacting protein (WIP).

  • Phospholipase Cg2 gain-of-function mutations: Cold urticaria, immunodeficiency, and autoimmunity/autoinflammatory

This is a unique phenotype, sharing features of antibody deficiency, autoinflammatory diseases, and immune dysregulatory disorders, making its classification difficult. Two recent studies validated the pleiotropy of genetic alterations in the same gene.

Predominantly Antibody Defects

  • Defect in the p85a subunit of phosphoinositide 3-kinase: Agammaglobulinemia and absent B cells
  • CD21 deficiency: Hypogammaglobulinemia
  • LPS-responsive beige-like anchor deficiency:
  • Hypogammaglobulinemia with autoimmunity and

early colitis

Defects Of Immune Dysregulation

  • Pallidin deficiency: Hermansky-Pudlak syndrome type 9
  • CD27 deficiency: Immune dysregulation and
  • persistent EBV infection

Congenital Defects Of Phagocyte Number, Function, Or Both

  • Interferon-stimulated gene 15 deficiency: Mendelian susceptibility to mycobacterial diseases

Defects In Innate Immunity

  • NKX2-5 deficiency: Isolated congenital asplenia
  • Toll/IL-1 receptor domain–containing adaptor inducing IFN-b and TANK-binding kinase 1 deficiencies: Herpes simplex encephalitis
  • Minichromosome maintenance complex component 4 deficiency: NK cell deficiency associated with growth retardation and adrenal insufficiency

Autoinflammatory Disorders

  • A disintegrin and metalloproteinase 17 deficiency: Inflammatory skin and bowel disease

 

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte.macrophage cells and T.NK lymphocytes

Cross-talk between monocyte/macrophage cells and T/NK lymphocytes. Genes in the IL-12/IFN-g pathway are particularly important for protection against mycobacterial disease. IRF8 is an IFN-g–inducible transcription factor required for the induction of various target genes, including IL-12. The NF-kB essential modulator (NEMO) mutations in the LZ domain impair CD40-NEMO–dependent pathways. Some gp91phox mutations specifically abolish the respiratory burst in monocyte-derived macrophages. ISG15 is secreted by neutrophils and potentiates IFN-g production by NK/T cells. Genetic defects that preclude monocyte development (eg, GATA2) can also predispose to mycobacterial infections (not shown). Mutant molecules in patients with unusual susceptibility to infection are indicated in red.

The field of PIDs is advancing at full speed in 2 directions. New genetic causes of known PIDs are being discovered (eg, CD21 and TRIF). Moreover, new phenotypes qualify as PIDs with the identification of a first genetic cause (eg, generalized pustular psoriasis). Recent findings contribute fundamental knowledge about immune system biology and its perturbation in disease. They are also of considerable clinical benefit for the patients and their families. A priority is to further translate these new discoveries into improved diagnostic methods and more effective therapeutic strategies, promoting the well-being of patients with PIDs.

Primary immunodeficiencies

Luigi D. Notarangelo
J Allergy Clin Immunol 2010; 125(2): S182-194
http://dx.doi.org:/10.1016/j.jaci.2009.07.053

In the last years, advances in molecular genetics and immunology have resulted in the identification of a growing number of genes causing primary immunodeficiencies (PIDs) in human subjects and a better understanding of the pathophysiology of these disorders. Characterization of the molecular mechanisms of PIDs has also facilitated the development of novel diagnostic assays based on analysis of the expression of the protein encoded by the PID-specific gene. Pilot newborn screening programs for the identification of infants with severe combined immunodeficiency have been initiated. Finally, significant advances have been made in the treatment of PIDs based on the use of subcutaneous immunoglobulins, hematopoietic cell transplantation from unrelated donors and cord blood, and gene therapy. In this review we will discuss the pathogenesis, diagnosis, and treatment of PIDs, with special attention to recent advances in the field.

 

 

Read Full Post »

Review: Atul Gawande’s ‘Being Mortal’ – MiamiHerald.com

Reporter: Aviva Lev-Ari, PhD, RN

 

 

 

 

 

 

 

 

 

 

Surgeon explores difficult questions of end-of-life care and discovers that less (or none) is more.

Source: www.miamiherald.com

See on Scoop.itCardiotoxicity

Read Full Post »

Social Anxiety, High Anxiety, Beta Blockers For Anxiety, Postpartum Anxiety, Existential Anxiety – YouTube

Reporter: Aviva Lev-Ari, PhD, RN

 

https://www.youtube.com/v/gUKlf1PHoA4?fs=1&hl=fr_FR

Social Anxiety, High Anxiety, Beta Blockers For Anxiety, Postpartum Anxiety, Existential Anxiety http://panic-attacks-anxiety.good-info.co Why anxiety causes…

Source: www.youtube.com

See on Scoop.itCardiovascular Disease: PHARMACO-THERAPY

Read Full Post »

« Newer Posts - Older Posts »