Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Cognition’


Recent progress in neurodegenerative diseases and gliomas

Curator: Larry H. Bernstein, MD, FCAP

LPBI

 

 

Alzheimer’s Protein Not All Bad, Says MassGen Study

A controversial idea—that amyloid-beta (Aβ) protein fights bacterial infections in the brain—has gained additional support from a new study. Previously, the idea seemed worthy of investigation, if a bit of a stretch, on the basis of cell culture results. Now, thanks to the efforts of a scientific team lead by researchers based at Massachusetts General Hospital, it has been reinforced by observations of how the Aβ protein functions in animals’ brains.

Details of the new study appeared May 25 in the journal Science Translational Medicine, in an article entitled, “Amyloid-β Peptide Protects against Microbial Infection in Mouse and Worm Models of Alzheimer’s Disease.” The article suggests that the tendency of Aβ protein to form insoluble aggregates is not, as has been widely assumed, intrinsically abnormal, even though the aggregates are recognized as a hallmark of Alzheimer’s disease. Rather, Aβ protein appears to be a natural antibiotic that can trap and imprison bacterial pathogens that manage to pass the blood–brain barrier, which becomes increasingly “leaky” with age.

“We present in vivo data showing that Aβ expression protects against fungal and bacterial infections in mouse, nematode, and cell culture models of AD,” wrote the article’s authors. “We show that Aβ oligomerization, a behavior traditionally viewed as intrinsically pathological, may be necessary for the antimicrobial activities of the peptide.”

The MassGen scientists and their colleagues found that transgenic mice expressing human Aβ survived significantly longer after the induction of Salmonella infection in their brains than did mice with no genetic alteration. Mice lacking the amyloid precursor protein died even more rapidly. Transgenic Aβ expression also appeared to protect C. elegans roundworms from either Candida orSalmonella infection. Similarly, human Aβ expression protected cultured neuronal cells from Candida. In fact, human Aβ expressed by living cells appears to be 1000 times more potent against infection than does the synthetic Aβ used in previous studies.

That superiority appears to relate to properties of Aβ that have been considered part of Alzheimer’s disease pathology—the propensity of small molecules to form oligomers and then aggregate into Aβ plaques. This propensity, suggests the MassGen-led team, may indicate that Aβ acts like an antimicrobial peptide (AMP).

While AMPs fight infection through several mechanisms, a fundamental process involves forming oligomers that bind to microbial surfaces and then clump together into aggregates that both prevent the pathogens from attaching to host cells and allow the AMPs to kill microbes by disrupting their cellular membranes. The synthetic Aβ preparations used in earlier studies did not include oligomers. In the current study, however, oligomeric human Aβ not only showed an even stronger antimicrobial activity, its aggregation into the sorts of fibrils that form Aβ plaques was also seen to entrap microbes in both mouse and roundworm models.

“Our findings raise the intriguing possibility that β-amyloid may play a protective role in innate immunity and infectious or sterile inflammatory stimuli may drive amyloidosis,” the study’s authors concluded. “These data suggest a dual protective/damaging role for Aβ, as has been described for other antimicrobial peptides.”

One of the study’s co-corresponding authors, Rudolph Tanzi, Ph.D., director of the Genetics and Aging Research Unit in the MassGeneral Institute for Neurodegenerative Disease (MGH-MIND), pointed out that AMPs are known to play a role in the pathologies of a broad range of major and minor inflammatory disease. “For example, LL-37, which has been our model for Aβ’s antimicrobial activities, has been implicated in several late-life diseases, including rheumatoid arthritis, lupus, and atherosclerosis,” he elaborated. “The sort of dysregulation of AMP activity that can cause sustained inflammation in those conditions could contribute to the neurodegenerative actions of Aβ in Alzheimer’s disease.”

The study’s other co-corresponding author, Robert Moir, M.D., also of the MGH-MIND Genetics and Aging unit, noted that the study’s findings may lead to potential new therapeutic strategies. He also indicated that therapies designed to eliminate amyloid plaques from patient’s brains may have their limitations.

“It does appear likely that the inflammatory pathways of the innate immune system could be potential treatment targets, Dr. Moir explained. “If validated, our data also warrant the need for caution with therapies aimed at totally removing Aβ plaques. Amyloid-based therapies aimed at dialing down but not wiping out Aβ in the brain might be a better strategy.”

It remains to be determined, however, whether Aβ typically fights real infections or is apt to behave errantly, forming aggregates as though microbes are present, even if they are, in fact, not. “Our findings raise the intriguing possibility that Alzheimer’s pathology may arise when the brain perceives itself to be under attack from invading pathogens,” said Dr. Moir. “Further study will be required to determine whether or not a bona fide infection is involved.”Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease

Deepak Kumar, Vijaya Kumar, Se Hoon Choi, Kevin J. Washicosky, et al.
Science Translational Medicine  25 May 2016;  8 (340): 340ra72
http://dx.doi.org:/10.1126/scitranslmed.aaf1059

Rehabilitation of a β-amyloid bad boy

A protein called Aβ is thought to cause neuronal death in Alzheimer’s disease (AD). Aβ forms insoluble aggregates in the brains of patients with AD, which are a hallmark of the disease. Aβ and its propensity for aggregation are widely viewed as intrinsically abnormal. However, in new work, Kumar et al. show that Aβ is a natural antibiotic that protects the brain from infection. Most surprisingly, Aβ aggregates trap and imprison bacterial pathogens. It remains unclear whether Aβ is fighting a real or falsely perceived infection in AD. However, in any case, these findings identify inflammatory pathways as potential new drug targets for treating AD.

Abstract

The amyloid-β peptide (Aβ) is a key protein in Alzheimer’s disease (AD) pathology. We previously reported in vitro evidence suggesting that Aβ is an antimicrobial peptide. We present in vivo data showing that Aβ expression protects against fungal and bacterial infections in mouse, nematode, and cell culture models of AD. We show that Aβ oligomerization, a behavior traditionally viewed as intrinsically pathological, may be necessary for the antimicrobial activities of the peptide. Collectively, our data are consistent with a model in which soluble Aβ oligomers first bind to microbial cell wall carbohydrates via a heparin-binding domain. Developing protofibrils inhibited pathogen adhesion to host cells. Propagating β-amyloid fibrils mediate agglutination and eventual entrapment of unatttached microbes. Consistent with our model, Salmonella Typhimurium bacterial infection of the brains of transgenic 5XFAD mice resulted in rapid seeding and accelerated β-amyloid deposition, which closely colocalized with the invading bacteria. Our findings raise the intriguing possibility that β-amyloid may play a protective role in innate immunity and infectious or sterile inflammatory stimuli may drive amyloidosis. These data suggest a dual protective/damaging role for Aβ, as has been described for other antimicrobial peptides.

 

CRISPR Crossing New Barriers

Researchers Are Developing Ways to Edit Some of the Most Difficult-to-Edit DNA-Neuronal DNA

http://www.genengnews.com/insight-and-intelligence/crispr-crossing-new-barriers/77900666/

 

Confocal microscopic image of the hippocampus showing immunoreactivities for mEGFP (magenta) and the HA tag (green) fused to ß-Actin.

Ryohei Yasuda, Ph.D., scientific director, and his team at the Max Planck Florida Institute of Neuroscience (MPFI) are working to understand the way individual cells in our brains change as we learn and form memories. One of their main goals is to understand how different proteins behave and impact the structure and function of an individual cell, but, much like the field of genetics was once limited by the inability to visualize the structure of DNA, their research has been limited by their ability to locate and visualize the many different types of proteins within a single cell. Current imaging methods do not provide contrast and specificity high enough to see distinct proteins. Plus, the best methods are time-consuming and expensive; it can take a year or more to develop engineered models.

Over the past few years, the development of CRISPR technology has helped scientists overcome countless genetic engineering challenges, and allowed them to edit genes with unmatched precision and speed, massively increasing clarity and cutting the cost of research requiring genetic engineering. The technique has been used in myriad ways to increase understanding and treatment of diseases and disorders, but some cells are more difficult to edit than others. Brain cells have proven especially difficult to manipulate using CRISPR.

Recently, MPFI researchers Takayasu Mikuni, Ph.D., M.D., and Jun Nishiyama, Ph.D., M.D., and Dr. Yasuda were able to harness the power of the CRISPR/Cas9 system in order to create a quick, scalable, and high-resolution technique to edit neuronal DNA, which they called “SLENDR,” (single-cell labeling of endogenous proteins by CRISPR/Cas9-mediated homology-directed repair.) Using the technique, the researchers labeled several distinct proteins with fluorescence, and were able to observe protein localization in the brain that was previously invisible. That’s just the start of what researchers may be able to accomplish using this reliable, new technique for inserting genes into neurons.

CRISPR/Cas9 and Neurons

CRISPR is a tool built into bacterial DNA that the organisms use to fight infections. When a virus invades and attempts to insert its infectious DNA into that of a bacterial cell, a special section of the bacterial DNA, called CRISPR, cuts the viral DNA and renders it unable to wreak havoc on the bacteria. The organism then inserts a copy of the viral DNA into its own DNA to work as a type of adaptive immune system, to better recognize and defeat the invader in the future. As scientists have begun to understand how this system works, they have manipulated it to target and damage specific, functional genes in a variety of organisms, and in some cases, insert a new gene in its place.

Once the section of DNA is damaged, the technique relies on the cell to naturally repair its own DNA. There are two methods that the cell might use to accomplish this. One is homology-directed repair (HDR), the other is non-homologous end joining (NHEJ). HDR rebuilds or replaces the damaged locus of the genome, whereas NHEJ reattaches the damaged ends. When the reattachment occurs following the degradation of the ends, it often leads to the deletion of function of the gene (“knock-out” the gene). If a cell uses HDR to repair itself, scientists can include a desired gene in the CRISPR system that will be inserted into the DNA to replace the damaged gene.

Despite the impressive power of CRISPR system, its use in brain cells has been limited because by the time the brain has developed, its cells are no longer dividing. Most mature brain cells will repair themselves using NHEJ. The researcher can’t give the cell a gene to insert if it’s not going to insert one to begin with. While scientists can use CRISPR relatively easily to damage and knock out certain genes through NHEJ in the brain, the lack of cell division has made it very difficult for them to knock indesired sequences to genes, through HDR, with reliable precision. That’s where the SLENDR technique comes in.

  • SLENDR

SLENDR combines the power of the CRISPR/Cas9 system with the specificity and timing of in utero electroporation. Electroporation is a well-known technique used for introducing new material into cells and creating genetic knock-outs and knock-ins. Using in utero electroporation allows researchers to insert the CRISPR/CAS9 system into prenatal models, where brain cells are still developing and dividing. Thus, the broken DNA is still being repaired via HDR, giving researchers the opportunity to precisely modify a gene. This is a big deal. “I believe that SLENDR will be a standard tool for molecular and cellular neurobiology,” said Dr. Yasuda. “SLENDR provides a valuable means to determine subcellular localization of proteins, and will help researchers to determine the function of the proteins.”

In the recent study, the researchers at MPFI inserted a gene that made proteins of interest fluoresce under the microscope. They were even able to reliably label two different proteins with distinct colors at the same time in the same cell. The researchers were able to use the technique to visualize the proteins both in vivo and in vitro. And they were able to do it in a matter of days rather than years.

With existing knowledge of how brains develop, researchers can adjust the timing and position of the electroporation in utero to accurately target cells that will go on to populate particular cortical layers of the brain, even if they haven’t differentiated and moved to that layer yet.

The recent study used the technique primarily to tag certain proteins within brain cells and observe their behavior. But, with continued optimization, the method has the potential to elucidate immeasurable brain activities in both normal and diseased brains, and lead to a deeper understanding of brain function. “The most important part is that precise genome editing is possible in the brain. That’s what’s important,” said Dr.  Nishiyama, post-doctoral researcher who worked on the study. “That’s the biggest thing.” Neuroscientists would be remiss to ignore its worth and not explore its potential.

Emma Yasinski is a scientific writer at Max Planck Florida Institute for Neuroscience. Correspondence should be directed to Ryohei Yasuda, Ph.D. (ryohei.yasuda@mpfi.org), scientific director, Max Planck Florida Institute for Neuroscience.

 

Altered Metabolism of Four Compounds Drives Glioblastoma Growth

Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.

http://www.technologynetworks.com/Metabolomics/news.aspx?ID=190732

The altered metabolism of two essential amino acids helps drive the development of the most common and lethal form of brain cancer, according to a new study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The study shows that in glioblastoma (GBM), the essential amino acids methionine and tryptophan are abnormally metabolized due to the loss of key enzymes in GBM cells.

The altered methionine metabolism leads to activation of oncogenes, while the changes in tryptophan metabolism shield GBM cells from detection by immune cells. Together, the changes promote tumor progress and cancer-cell survival.

“Our findings suggest that restricting dietary intake of methionine and tryptophan might help slow tumor progression and improve treatment outcomes,” says first author and OSUCCC – James researcher Kamalakannan Palanichamy, PhD, research assistant professor in Radiation Oncology.

“While we need to better understand how these abnormally regulated metabolites activate oncogenic proteins, our intriguing discovery suggests novel therapeutic targets for this disease,” says principal investigator and study leader Arnab Chakravarti, MD, chair and professor of Radiation Oncology and co-director of the Brain Tumor Program.

“For example, restoring the lost enzymes in the two metabolic pathways might slow tumor progression and reduce aggressiveness by inactivating oncogenic kinases and activating immune responses,” says Chakravarti, who holds the Max Morehouse Chair in Cancer Research.

Chakravarti further notes that because GBM cells take up methionine much faster than normal glioma cells, positron emission tomography that uses methionine as a tracer (MET-PET) might help map GBM tumors more accurately, allowing more precise surgical removal and radiation therapy planning. (MET-PET is currently an experimental imaging method.)

More than 11,880 new cases of GBM were estimated to occur in 2015, with overall survival averaging 12 to 15 months, so there is an urgent need for more effective therapies.

Amino acids are the building blocks of proteins. Tryptophan and methionine are essential amino acids – the diet must provide them because cells cannot make them. Normally, the lack of an essential amino acid in the diet can lead to serious diseases and even death. Foods rich in tryptophan and methionine include cheese, lamb, beef, pork, chicken, turkey, fish, eggs, nuts and soybeans.

Palanichamy, Chakravarti and their colleagues conducted this study using 13 primary GBM cell lines derived from patient tumors, four commercially available GBM cell lines and normal human astrocyte cells. Metabolite analyses were done using liquid chromatography coupled with mass spectrometry.

http://www.oncology-central.com/2016/04/01/study-highlights-altered-amino-acid-metabolism-in-glioblastoma/

AUTHORS: EMILY BROWN, FUTURE SCIENCE GROUP

An investigation carried out at The Ohio State University Comprehensive Cancer Center (OH, USA) has uncovered abnormal metabolism of the essential amino acids methionine and tryptophan in glioblastoma.

The study suggests that this abnormal amino acid metabolism aids in the development of the disease. Furthermore, the findings, published recently in Clinical Cancer Research, hint at novel methods to potentially treat the malignancy, slow its progression and reveal its extent more precisely.

According to the study, it is the loss of key enzymes within glioblastoma cells that results in this abnormal metabolism. Modified methionine metabolism is described as promoting the activation of oncogenes, and the changes in tryptophan aid in masking the malignant cells from the immune system.

“While we need to better understand how these abnormally regulated metabolites activate oncogenic proteins, our intriguing discovery suggests novel therapeutic targets for this disease,” commented principal investigator and study leader Arnab Chakravarti (The Ohio State University Comprehensive Cancer Center).

 

Rapid eye movement sleep (dreaming) shown necessary for memory formation


Rapid eye movement sleep (dreaming) shown necessary for memory formation
A study published in the journal Science by researchers at the Douglas Mental Health University Institute at McGill University and the University of Bern provides the first evidence that rapid eye movement (REM) sleep — the phase where dreams appear — is directly involved in memory formation (at least in mice). “We already knew that … more…

May 16, 2016

Inhibition of  media septum GABA neurons during rapid eye movement (REM) sleep reduces theta rhythm (a characteristic of REM sleep). Schematic of the in vivo recording configuration: an optic fiber delivered orange laser light to the media septum part of the brain, allowing for optogenetic inhibition of media septum GABA neurons while recording the local field potential signal from electrodes implanted in hippocampus area CA1. (credit: Richard Boyce et al./Science)

A study published in the journal Science by researchers at the Douglas Mental Health University Institute at McGill University and the University of Bern provides the first evidence that rapid eye movement (REM) sleep — the phase where dreams appear — is directly involved in memory formation (at least in mice).

“We already knew that newly acquired information is stored into different types of memories, spatial or emotional, before being consolidated or integrated,” says Sylvain Williams, a researcher and professor of psychiatry at McGill*. “How the brain performs this process has remained unclear until now. We were able to prove for the first time that REM sleep (dreaming) is indeed critical for normal spatial memory formation in mice,” said Williams.

Dream quest

Hundreds of previous studies have tried unsuccessfully to isolate neural activity during REM sleep using traditional experimental methods. In this new study, the researchers instead used optogenetics, which enables scientists to precisely target a population of neurons and control its activity by light.

“We chose to target [GABA neurons in the media septum] that regulate the activity of the hippocampus, a structure that is critical for memory formation during wakefulness and is known as the ‘GPS system’ of the brain,” Williams says.

To test the long-term spatial memory of mice, the scientists trained the rodents to spot a new object placed in a controlled environment where two objects of similar shape and volume stand. Spontaneously, mice spend more time exploring a novel object than a familiar one, showing their use of learning and recall.

Shining orange laser light on media septum (MS) GABA neurons during REM sleep reduces frequency and power (purple section) of neuron signals in dorsal CA1 area of hippocampus (credit: Richard Boyce et al./Science)

When these mice were in REM sleep, however, the researchers used light pulses to turn off their memory-associated neurons to determine if it affects their memory consolidation. The next day, the same rodents did not succeed the spatial memory task learned on the previous day. Compared to the control group, their memory seemed erased, or at least impaired.

“Silencing the same neurons for similar durations outside of REM episodes had no effect on memory. This indicates that neuronal activity specifically during REM sleep is required for normal memory consolidation,” says the study’s lead author, Richard Boyce, a PhD student.

Implications for brain disease

REM sleep is understood to be a critical component of sleep in all mammals, including humans. Poor sleep quality is increasingly associated with the onset of various brain disorders such as Alzheimer’s and Parkinson’s disease.

In particular, REM sleep is often significantly perturbed in Alzheimer’s diseases (AD), and results from this study suggest that disruption of REM sleep may contribute directly to memory impairments observed in AD, the researchers say.

This work was partly funded by the Canadian Institutes of Health Research (CIHR), the Natural Science and Engineering Research Council of Canada (NSERC), a postdoctoral fellowship from Fonds de la recherche en Santé du Québec (FRSQ) and an Alexander Graham Bell Canada Graduate scholarship (NSERC).

* Williams’ team is also part of the CIUSSS de l’Ouest-de-l’Île-de-Montréal research network. Williams co-authored the study with Antoine Adamantidis, a researcher at the University of Bern’s Department of Clinical Research and at the Sleep Wake Epilepsy Center of the Bern University Hospital.

Abstract of Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation

Rapid eye movement sleep (REMS) has been linked with spatial and emotional memory consolidation. However, establishing direct causality between neural activity during REMS and memory consolidation has proven difficult because of the transient nature of REMS and significant caveats associated with REMS deprivation techniques. In mice, we optogenetically silenced medial septum γ-aminobutyric acid–releasing (MSGABA) neurons, allowing for temporally precise attenuation of the memory-associated theta rhythm during REMS without disturbing sleeping behavior. REMS-specific optogenetic silencing of MSGABA neurons selectively during a REMS critical window after learning erased subsequent novel object place recognition and impaired fear-conditioned contextual memory. Silencing MSGABA neurons for similar durations outside REMS episodes had no effect on memory. These results demonstrate that MSGABA neuronal activity specifically during REMS is required for normal memory consolidation.

 

Quantifying Consciousness

By Tanya Lewis

Overall brain metabolic rate can distinguish between pathological states of human consciousness, a study shows.

 


Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics
.

Abedini A, Plesner A, Cao P, Ridgway Z, et al.
eLife May 23, 2016; 10.7554/eLife.12977. http://dx.doi.org/10.7554/eLife.12977

Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death.

 

NIH study visualizes proteins involved in cancer cell metabolism

Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.

https://www.nih.gov/news-events/news-releases/nih-study-visualizes-proteins-involved-cancer-cell-metabolism

Scientists using a technology called cryo-EM (cryo-electron microscopy) have broken through a technological barrier in visualizing proteins with an approach that may have an impact on drug discovery and development. They were able to capture images of glutamate dehydrogenase, an enzyme found in cells, at a resolution of 1.8 angstroms, a level of detail at which the structure of the central parts of the enzyme could be visualized in atomic detail. The scientists from the National Cancer Institute (NCI), part of the National Institutes of Health, and their colleagues also reported achieving another major milestone, by showing that the shapes of cancer target proteins too small to be considered within the reach of current cryo-EM capabilities can now be determined at high resolution.

The research team was led by NCI’s Sriram Subramaniam, Ph.D., with contributions from scientists at the National Center for Advancing Translational Sciences (NCATS), also part of NIH. The findings appeared online May 26, 2016, in Cell.

“These advances demonstrate a real-life scenario in which drug developers now could potentially use cryo-EM to tweak drugs by actually observing the effects of varying drug structure — much like an explorer mapping the shoreline to find the best place to dock a boat — and alter its activity for a therapeutic effect,” said Doug Lowy, M.D., acting director, NCI.

Both discoveries have the potential to have an impact on drug discovery and development. Cryo-EM imaging enables analysis of structures of target proteins bound to drug candidates without first needing a step to coax the proteins to form ordered arrays. These arrays were needed for the traditional method of structure determination using X-ray crystallography, a powerful technique that has served researchers well for more than a half century. However, not all proteins can be crystallized easily, and those that do crystallize may not display the same shape that is present in their natural environment, either since the protein shape can be modified by crystallization additives or by the contacts that form between neighboring proteins within the crystal lattice.

“It is exciting to be able to use cryo-EM to visualize structures of complexes of potential drug candidates at such a high level of detail.”

Sriram Subramaniam, Ph.D.,National Caner Institute

“It is exciting to be able to use cryo-EM to visualize structures of complexes of potential drug candidates at such a high level of detail,” said Subramaniam. “The fact that we can obtain structures of small cancer target proteins bound to drug candidates without needing to form 3D crystals could revolutionize and accelerate the drug discovery process.”

Two of the small proteins the researchers imaged in this new study, isocitrate dehydrogenase (IDH1) and lactate dehydrogenase (LDH), are active targets for cancer drug development. Mutations in the genes that code for these proteins are common in several types of cancer. Thus, imaging the surfaces of these proteins in detail can help scientists identify molecules that will bind to them and aid in turning the protein activity off.

In publications in the journal Science last year and this year, Subramaniam and his team reported resolutions of 2.2 angstroms and 2.3 angstroms in cryo-EM with larger proteins, including a complex of a cancer target protein with a small molecule inhibitor. Of note, the journal Nature Methods deemed cryo-EM as the “Method of the Year” in January 2016. “Our earlier work showed what was technically possible,” Subramaniam said. “This latest advance is a delivery of that promise for small cancer target proteins.” For more information on cryo-EM, go to http://electron.nci.nih.gov.

 

Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics.

Abedini A, Plesner A, Cao P, Ridgway Z, et al.
eLife May 23, 2016; 10.7554/eLife.12977. http://dx.doi.org/10.7554/eLife.12977

Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death.

 

Single domain antibodies (sdAbs) aid in x-ray crystallography of mammalian serotonin 5-HT3 receptor

Serotonin 5-HT3 is part of the cys-loop receptor family, the mechanism of this family is not well understood due to difficulties in obtaining high resolution crystal structures. Serotonin 5-HT3 receptor is an important druggable target in alleviating nausea and vomiting induced by chemotherapy or anesthesia, as well as psychiatric disorders. It’s structure is critical in discovering new drugs to modulate its activity.

Previously, electron microscopy imaging of non-mammalian homologs of Cys-loop receptors provided basic understanding of extracellular ligand binding sites and pore forming domains. Little was known about intracellular domains and the way they interact with cellular scaffolding proteins, as they are absent in non-mammalian homologs. A recent publication in Nature extends our understanding behind the mechanism of serotonin 5-HT3 receptors, by resolving a 3.5A crystal structure.

Mouse 5-HT3 exists as a homopentamer and is difficult to express, purify and crystallize. To overcome this challenge, researchers split the receptor by proteolyzing each subunit into two fragments. In addition, an sdAb chaperone, which acts as an inhibitor locking the channel into a non-conducting conformation, was used to stabilized the pentameric structure, enabling resolution of a 3.5A crystal structure. Most importantly the split receptor displays an intracellular domain that is tightly coupled to the membrane domain, which provides important structural information that will lead to further understanding of the physiological conformation of 5-HT3 and Cys-loop receptors.

Hassaine G. et al. X-ray structure of the mouse serotonin 5-HT3 receptor Nature. Aug 2014. 512(7514):276-281

 

UCLA animal study shows how brain connects memories across time

Wednesday, May 25, 2016

Using a miniature microscope that opens a window into the brain, UCLA neuroscientists have identified in mice how the brain links different memories over time–and this may help develop new drugs in the future for memory-robbing diseases such as Alzheimer’s.

 

FDA approves new antibody drug for treating pediatric neuroblastoma

Pediatric neuroblastoma is a rare and difficult to treat cancer that forms from immature nerve cells. This form of cancer occurs in 1 in 100,000 children, with 650 new cases each year in the United States. Current therapies, which are non-specific, only provide 40-50% long term survival rate to patients suffering from high-risk neuroblastoma, making this form of cancer an area of high medical unmet need.

A new drug, called dinutuxumab was granted priority review and orphan drug designation by the FDA. It is the first drug of its kind to be approved that specifically treats pediatric neuroblastoma. In addition to the approval, the FDA also issued a rare pediatric review priority voucher to the makers of the drug, for future groundbreaking therapies in pediatric neuroblastoma.

Dinutuxumab (formerly called ch14.18) is a disialoganglioside (GD2) binding chimeric monoclonal antibody that works in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2), and 13-cis-retinoic acid (RA) for treating high-risk pediatric neuroblastoma.

Antibody therapeutics are highly efficacious and specific towards rare and difficult-to-treat cancers and discovery of new antibody therapeutics will help address critical needs. Antibody drug discovery may be challenging, but working with an experienced partner can help.

FDA approves first therapy for high-risk neuroblastoma

 

Electronic Biosensor Detects Molecules Linked to Cancer, Alzheimer’s, and Parkinson’s

5/20/2016  by Fundação de Amparo À Pesquisa Do Estado de São Paulo

A biosensor developed by researchers at the National Nanotechnology Laboratory (LNNano) in Campinas, São Paulo State, Brazil, has been proven capable of detecting molecules associated with neurodegenerative diseases and some types of cancer.

The device is basically a single-layer organic nanometer-scale transistor on a glass slide. It contains the reduced form of the peptide glutathione (GSH), which reacts in a specific way when it comes into contact with the enzyme glutathione S-transferase (GST), linked to Parkinson’s, Alzheimer’s and breast cancer, among other diseases. The GSH-GST reaction is detected by the transistor, which can be used for diagnostic purposes.

An inexpensive portable biosensor has been developed by researchers at Brazil’s National Nanotechnology Laboratory with FAPESP’s support. (Credit: LNNano)

The project focuses on the development of point-of-care devices by researchers in a range of knowledge areas, using functional materials to produce simple sensors and microfluidic systems for rapid diagnosis.

“Platforms like this one can be deployed to diagnose complex diseases quickly, safely and relatively cheaply, using nanometer-scale systems to identify molecules of interest in the material analyzed,” explained Carlos Cesar Bof Bufon, Head of LNNano’s Functional Devices & Systems Lab (DSF) and a member of the research team for the project, whose principal investigator is Lauro Kubota, a professor at the University of Campinas’s Chemistry Institute (IQ-UNICAMP).

In addition to portability and low cost, the advantages of the nanometric biosensor include its sensitivity in detecting molecules, according to Bufon.

“This is the first time organic transistor technology has been used in detecting the pair GSH-GST, which is important in diagnosing degenerative diseases, for example,” he explained. “The device can detect such molecules even when they’re present at very low levels in the examined material, thanks to its nanometric sensitivity.” A nanometer (nm) is one billionth of a meter (10-9 meter), or one millionth of a millimeter.

The system can be adapted to detect other substances, such as molecules linked to different diseases and elements present in contaminated material, among other applications. This requires replacing the molecules in the sensor with others that react with the chemicals targeted by the test, which are known as analytes.

The team is working on paper-based biosensors to lower the cost even further and to improve portability and facilitate fabrication as well as disposal.

The challenge is that paper is an insulator in its usual form. Bufon has developed a technique to make paper conductive and capable of transporting sensing data by impregnating cellulose fibers with polymers that have conductive properties.

The technique is based on in situ synthesis of conductive polymers. For the polymers not to remain trapped on the surface of the paper, they have to be synthesized inside and between the pores of the cellulose fibers. This is done by gas-phase chemical polymerization: a liquid oxidant is infiltrated into the paper, which is then exposed to monomers in the gas phase. A monomer is a molecule of low molecular weight capable of reacting with identical or different molecules of low molecular weight to form a polymer.

The monomers evaporate under the paper and penetrate the pores of the fibers at the submicrometer scale. Inside the pores, they blend with the oxidant and begin the polymerization process right there, impregnating the entire material.

The polymerized paper acquires the conductive properties of the polymers. This conductivity can be adjusted by manipulating the element embedded in the cellulose fibers, depending on the application for which the paper is designed. Thus, the device can be electrically conductive, allowing current to flow without significant losses, or semiconductive, interacting with specific molecules and functioning as a physical, chemical or electrochemical sensor.

 

Protein Oxidation in Aging: Not All Proteins Are Created Equal

Cancer, Alzheimer’s disease and other age-related diseases develop over the course of aging, and certain proteins are shown to play critical roles this process. Those proteins are subject to destabilization as a result of oxidation, which further leads to features of aging cells. It is estimated that almost 50% of proteins are damaged due to oxidation for people at their 80s. The oxidative damage mediated by free radicals occurs when converting food to energy in the presence of oxygen. Cellular structures, such as proteins, DNA, and lipids, are prone to these oxidation damages, which further contribute to the development of age-related diseases.

Using computational models with physics principles incorporated, de Graff el al. from Stony Brook University unfolded the molecular mechanism that how natural chemical process affects the aging of proteins. First, the authors revealed the major factor to explain stability loss in aging cells and organisms is likely to be random modification of the protein sidechains. Furthermore, through the evaluation and analysis on the protein electrostatics, the authors suggested that highly charged proteins are in particular subject to the oxidation induced destabilization. Even one single oxidation could lead to unfold the whole structure for these highly charged proteins. Old cells are enriched in those highly charged proteins, thus the destabilization effects are elevated in the aging cells. In addition, 20 proteins associated with aging are further identified to be at high risk of oxidation. The list includes telomerase proteins and histones, both of which play critical roles in the aging of cells and cancer development. The team is currently working on analyzing more proteins, with the hope to provide key information to aid targeted treatments against age-related diseases.

Further Reading: Emerging Opportunity for Treating Alzheimer Disease by Immunotherapy

Adam M.R. de Graff, Michael J. Hazoglou, Ken A. Dill. Highly Charged Proteins: The Achilles’ Heel of Aging Proteomes.Structure, 24, 285-292 (2016)

Baruch, K. et al. PD-1 Immune Checkpoint Blockade Reduces Pathology and Improves Memory in Mouse Models of Alzheimer’s Disease. Nat. Med. 22, 135-137 (2016)

 

Single domain antibodies shown to cross blood brain barrier and offers enhanced delivery of therapeutics to CNS targets

A major challenge in developing both small molecule and antibody therapeutics for CNS disorders including brain cancer and neurodegenerative diseases, is penetrating the blood brain barrier (BBB). A study published in FASEB demonstrated that monomeric variable heavy-chain domain of camel homodimeric antibodies (mVHH), can cross the BBB in-vivo, and recognize its intracellular target: glial fibrillary acidic protein (GFAP). The ability of mVHH to cross the BBB of normal animals and those undergoing pathological stress makes it a promising modality for treating CNS diseases as well as for brain imaging.

The investigators of this study expressed a recombinant fusion protein, VHH-GFP, which was able to cross the BBB in-vivo and specifically label astrocytes. GenScript is fully engaged in single-domain antibody lead generation and optimization. With our one-stop services, we are determined to be your best partner in antibody drug discovery from gene synthesis to in-vivo characterization of candidate antibodies. All you need to provide is the Genbank accession number of the antigen protein!

Li T. et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB. Oct 2012. 26:3969-79

 

New insight behind the success of fighting cancer by targeting immune checkpoint proteins

Immune checkpoint blockade has proven to be highly successful in the clinic at treating aggressive and difficult-to-treat forms of cancer. The mechanism of the blockade, targeting CTLA-4 and PD-1 receptors which act as on/off switches in T cell-mediated tumor rejection, is well understood. However, little is known about the tumor antigen recognition profile of these affected T-cells, once the checkpoint blockade is initiated.

In a recent published study, the authors used genomics and bioinformatics approaches to identify critical epitopes on 3-methylcholanthrene induced sarcoma cell lines, d42m1-T3 and F244. CD8+ T cells in anti-PD-1 treated tumor bearing mice were isolated and fluorescently labeled with tetramers loaded with predicted mutant epitopes. Out of 66 predicted mutants, mLama4 and mAlg8 were among the highest in tetramer-positive infiltrating T-cells. To determine whether targeting these epitopes alone would yield similar results as anti-PD-1 treatment, vaccines against these two epitopes were developed and tested in mice. Prophylactic administration of the combined vaccine against mLama4 and mAlg8 yielded an 88% survival in tumor bearing mice, thus demonstrating that these two epitopes are the major antigenic targets from checkpoint-blockade and therapies against these two targets are similarly efficacious.

In addition to understanding the mechanism, identification of these tumor-specific mutant antigens is the first step in discovering the next wave of cancer immunotherapies via vaccines or antibody therapeutics. Choosing the right antibody platform can speed the discovery of a new therapeutics against these new targets. Single domain antibodies have the advantage of expedited optimization, flexibility of incorporating multiple specificity and functions, superior stability, and low COG over standard antibody approaches.

Gubin MM. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. Nov 2014. 515:577-584

 

Anti-PD-1 is poised to be a blockbuster, which other immune-checkpoint targeting drugs are on the horizon?

Clinical studies of anti-immune-checkpoint protein therapeutics have shown not only an improved overall survival, but also a long-term durable response, compared to chemotherapy and genomically-targeted therapy. To expand the success of immune-checkpoint therapeutics into more tumor types and improving efficacy in difficult-to-treat tumors, additional targets involved in checkpoint-blockade need to be explored, as well as testing the synergy between combining approaches.

Currently, CTLA-4 and PD-1/PD-L1 are furthest along in development, and have shown very promising results in metastatic melanoma patients. This is just a fraction of targets involved in the checkpoint-blockade pathway. Several notable targets include:

  • LAG-3 – Furthest along in clinical development with both a fusion protein and antibody approach, antibody apporach being tested in combination with anti-PD-1
  • TIM-3 – Also in clinical development. Pre-clinical studies indicate that it co-expresses with PD-1 on tumor-infiltrating lymphocytes. Combination with anti-PD-improves anti-tumor response
  • VISTA – Antibody targeting VISTA was shown to improve anti-tumor immune response in mice

In addition, there are also co-stimulatory factors that are also being explored as viable therapeutic targets

  • OX40 – Both OX40 and 4-1BB are part of the TNF-receptor superfamily. Phase I data shows acceptable safety profile, and evidence of anti-tumor response in some patients
  • 4-1BB – Phase I/II data on an antibody therapeutic targeting OX40 shows promising clinical response for melanoma, renal cell carcinoma and ovarian cancer.
  • Inducible co-stimulator (ICOS) – Member of the CD28/B7 family. Its expression was found to increase upon T-cell activation. Anti-CTLA-4 therapy increases ICOS-positive effector T-cells, indicating that it may work in synergy with anti-CTLA-4. Clinical trials of anti-ICOS antibody are planned for 2015.

Sharma P and Allison JP. Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell. April 2015;161:205-214

 

CTLA-4 found in dendritic cells suggests New cancer treatment possibilities

Both dendritic cells and T cells are important in triggering the immune response, whereas antigen presenting dendritic cells act as the “general” leading T cells “soldiers” to chase and eliminate enemies in the battle against cancer. The well-known immune checkpoint break, CTLA-4, is believed to be present only in T cells (and cells of the same lineage). However, a new study published in Stem Cells and Development suggests that CTLA-4 also presents in dendritic cells. It further explores the mechanism on how turning off the dendritic cells in the immune response against tumors.

Matthew Halpert, et al. Dendritic Cell Secreted CTLA-4 Regulates the T-cell Response by Downmodulating Bystander Surface B7. Stem Cells and Development, 2016; DOI: 10.1089/scd.2016.0009

 

With a wide range of animal models to choose from, what are the crucial factors to consider?

A recent perspective published in Nature Medicine addresses these gaps by comparing the strengths and limitations of different tumor models, as well as best models to use for answering different biological questions and best practices for preclinical modeling.

Below is a summary of the authors’ key considerations:

  • It is important to choose a model based on the biology of the target. Several diverse tumor models may be required to address complex biology
  • If the biology of the target includes signaling between the tumor and the stroma, then it is crucial to understand drug efficacy in the presence of an appropriate tumor microenvironment with orthotopic models
  • Avoid overuse of models that are highly sensitive to the drug, unless there is clinically relevant biomarker data to support the findings
  • For studying agents that reduce pre-existing tumors, make sure that the tumors are established in the model prior to treatment
  • Understanding the pharmacokinetics of a drug in the model prior to studies is important to ensure that the dosing is within range, and that off-target and toxic side effects are not skewing anti-tumor activity.

Gould SE, Junttila MR and de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med. May 2015. 21(5):431-439


Revolutionary Impact of Nanodrug Delivery on Neuroscience

Reza Khanbabaie1,2,3 and Mohsen Jahanshahi
Curr Neuropharmacol. 2012 Dec; 10(4): 370–392.   doi:  10.2174/157015912804143513

Brain research is the most expanding interdisciplinary research that is using the state of the art techniques to overcome limitations in order to conduct more accurate and effective experiments. Drug delivery to the target site in the central nervous system (CNS) is one of the most difficult steps in neuroscience researches and therapies. Taking advantage of the nanoscale structure of neural cells (both neurons and glia); nanodrug delivery (second generation of biotechnological products) has a potential revolutionary impact into the basic understanding, visualization and therapeutic applications of neuroscience. Current review article firstly provides an overview of preparation and characterization, purification and separation, loading and delivering of nanodrugs. Different types of nanoparticle bioproducts and a number of methods for their fabrication and delivery systems including (carbon) nanotubes are explained. In the second part, neuroscience and nervous system drugs are deeply investigated. Different mechanisms in which nanoparticles enhance the uptake and clearance of molecules form cerebrospinal fluid (CSF) are discussed. The focus is on nanodrugs that are being used or have potential to improve neural researches, diagnosis and therapy of neurodegenerative disorders.

Keywords: Nanodrug, Nanofabrication and purification, Neuroscience, Nervous system, Nano-nervous drugs.

1. INTRODUCTION

The delivery of drugs to the nervous system is mainly limited by the presence of two anatomical and biochemical dynamic barriers: the blood–brain barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB) separating the blood from the cerebral parenchyma [1]. These barriers tightly seal the central nervous system (CNS) from the changeable milieu of blood. With the advancement of electron microscopy it is found that the ultrastructural localization of the blood–brain barrier is correlated with the capillary endothelial cells within the brain [2]. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier [1, 3]. Beside its barrier function, it allows the directed transport of ions and nutrients into the cerebrospinal fluid (CSF) and removal of toxic agents out of the CSF using numerous transport systems.

One of the most challenging steps in neuroscience researches and therapy is the availability of techniques to penetrate these permeability barriers and delivering drugs to the CNS. Several strategies have been used to circumvent the barriers inhibiting CNS penetration. These strategies generally fall into one or more of the following three categories: manipulating drugs, disrupting the BBB (BBBD) and finding alternative routes for drug delivery. Drug manipulation methods include: Lipophilic Analogs, prodrugs, chemical drug delivery systems (CDDS), Carrier-mediated transport (CMT) and Receptor-mediated drug delivery. The drug manipulating strategy has been frequently employed, but the results have often been disappointing [46]. All of these methods have major limitations: they are invasive procedures, have toxic side effects and low efficiency, and are not sufficiently safe [7]. Two methods for disrupting the BBB have been reported: osmotic blood-brain barrier disruption and biochemical blood-brain barrier disruption. However, these procedures also break down the self-defense mechanism of the brain and make it vulnerable to damage or infection from all circulating chemicals or toxins. Since the above techniques aim to enhance the penetration of drugs to the CNS via circulatory system, they will increase the penetration of drugs throughout the entire body. This will frequently result in unwanted systemic side effects. In the other hand, systemically administered agents must penetrate the BBB to enter the CNS, which is a difficult task. Despite advances in rational CNS drug design and BBBD, many potentially efficacious drug molecules still cannot penetrate into the brain parenchyma at therapeutic concentrations. The alternative strategy to enhance CNS penetration of drug molecules is based on methodology that does not rely on the cardiovascular system. These strategies circumvent the BBB altogether and do not need drug manipulation to enhance BBB permeability and/or BBBD. Using alternative routes to deliver drugs to the CNS, e.g. intraventricular/intrathecal route and olfactory pathway, is one of these strategies.

One strategy for bypassing the BBB that has been studied extensively both in laboratory and in clinical trials is the intralumbar injection or intreventricular infusion of drugs directly into the CSF. Compared to vascular drug delivery, intra-CSF drug administration theoretically has several advantages. Intra-CSF administration bypasses the BCB and results in immediate high CSF drug concentrations. Due to the fact that the drug is somewhat contained within the CNS, a smaller dose can be used, potentially minimizing systemic toxicity. Furthermore, drugs in the CSF encounter minimize protein binding and decrease enzymatic activity relative to drugs in plasma, leading to longer drug half-life in the CSF. Finally, since the CSF freely exchanges molecules with the extracellular fluid of the brain parenchyma, delivering drugs into the CSF could theoretically result in therapeutic CNS drug concentrations [7, 8]. However, for several reasons this delivery was not as successful as predicted. These include a slow rate of drug distribution within the CSF and increase in intracranial pressure associated with fluid injection or infusion into small ventricular volumes.

Another CNS drug delivery route is the intranasal route. In this method drugs are transported intranasally along olfactory sensory neurons to yield significant concentrations in the CSF and olfactory bulb. An obvious advantage of this method is that it is noninvasive relative to other strategies. This method has received relatively little attention, since there are difficulties that have to be overcome. Among these obstacles is an enzymatically active, low pH nasal epithelium, the possibility of mucosal irritation or the possibility of large variability caused by nasal pathology, such as common cold.

Based on the advantages and disadvantages of aforementioned strategies, researchers are still looking for novel and better methods of CNS drug deliveries. The most direct way of circumventing the BBB is to deliver drugs directly to the brain interstitium which mainly includes the use of small colloidal particles like liposomes and nanoparticles [8]. By directing agents uniquely to an intracranial target, interstitial drug delivery can theoretically yield high CNS drug concentrations with minimal systemic exposure and toxicity. Furthermore, with this strategy, intracranial drug concentrations can be sustained, which is crucial in treatment with many chemotherapeutic agents. The basic reason of common acceptance of these carriers is due to their controlled profile or drug release nature as well as due to their selected targeting mechanism. Targeting action maybe due to the steric hindrance created by nano-vectors for achieving targeting ability. These carriers are usually administered through parenteral route and due to their steric phenomenon they conceal themselves from opsonisation event induced by tissue macrophages. By this way they achieve targeting ability to brain and other reticuloendothelial system (RES) organs like liver, spleen, etc.

Several approaches have been developed for delivering drugs directly to the brain interstitium like injections, catheters, and pumps. One such methodology is the Ommaya reservoir or implantable pump which achieves truly continuous drug delivery. Though interstitial drug delivery to the CNS has had only modest clinical impact, its therapeutic potential may soon be realized using new advances in polymer technologies to modify the aforementioned techniques. Polymeric or lipidbased devices that can deliver drug molecules at defined rates for specific periods of time are now making a tremendous impact in clinical medicine.

Among the strategies of direct drug delivery to the CNS, nanoparticles have attracted considerable interest from the last few decades. It has been shown that nano delivery systems have great potential to facilitate the movement of drugs across barriers (e.g., BBB). Nanosystems employed for the development of nano drug delivery systems in the treatment of CNS disorders include polymeric nanoparticles, nanospheres, nanosuspensions, nanoemulsions, nanogels, nano-micelles and nano-liposomes, carbon nanotubes, nanofibers and nanorobots, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and lipid drug conjugates (LDC). Although the exact mechanism of barrier opening by nanoparticles is not known, the novel properties such as tiny size, tailored surface, better solubility, and multi-functionality of nanoparticles present the capability to interact with composite cellular functions in new ways. In fact, nanotechnology has now emerged as an area of research for invention of newer approaches for the CNS drug delivery and a revolutionary method to improve diagnosis and therapy of neurodegenerative disorders.

In this line, an overview of preparation and characterization, purification and separation, loading and delivering of nanodrugs is the first subject of this review. Different types of nanoparticle bioproducts including carbon nanotubes as a drug delivery system and also as a novel tool in neuroscience research are explored. For instance, nanodrug delivery systems like human serum albumin (HSA) nanoparticles, bovine serum albumin (BSA)-Gum Arabic (Acacia) nanoparticles and α-lactalbumin nanoparticles are explained.

The impact of nanotechnology on neuroscience and drug delivery to the central nervous system (CNS) is the subject of the second part of this review. Different mechanisms in which nanoparticles enhance the uptake of molecules both hydrophilic and hydrophobic across the BBB and the impact of various physiochemical parameters of nanoparticles on its uptake and clearance form CSF are discussed. Also nanodrugs that are being used or have potential to improve neural researches, diagnosis and therapy of neurodegenerative disorders are investigated.

2. FROM NANOTECHNOLOGY TO NEUROPHARMACOLOGY

Nanotechnology started by the suggestion of a famous physicist, Richard Feynman, that it should be possible, in principle, to make nanoscale machines that “arrange the atoms the way we want”, and do chemical synthesis by mechanical manipulation [9, 10]. Nanotechnologies exploit materials and devices with a functional organization that has been engineered at the nanometer scale. In a broad sense, they can be defined as the science and engineering involved in the design, syntheses, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale, ranging from a few to several hundred nanometers. A nanometer is roughly the size of a molecule itself (e.g., a DNA molecule is about 2.5 nm long while a sodium atom is about 0.2 nm) [10]. Nanotechnology is not in itself a single emerging scientific discipline but rather a meeting of traditional sciences such as chemistry, physics, materials science, and biology to bring together the required collective expertise needed to develop these novel technologies.

The application of nanotechnology in cell biology and physiology enables targeted interactions at a fundamental molecular level. Nanotechnology, in the context of nanomedicine, can be defined as the technologies for making nanocarriers of therapeutics and imaging agents, nanoelectronic biosensors, nanodevices, and microdevices with nanostructures. It also covers possible future applications of molecular nanotechnology (MNT) and nanovaccinology. Unlike the definition in core nanotechnology field, which restricts the “nano” to at least 1–100 nm in one dimension, nanocarriers in the biomedical field are often referred to as particles with a dimension a few nanometers to 1000 nm [8, 11]. Although, the initial properties of nanomaterials studied were for its physical, mechanical, electrical, magnetic, chemical and biological applications, recently, attention has been geared towards its pharmaceutical application, especially in the area of drug delivery [8]. There are a few challenges in use of large size materials in drug deliveries. Some of these challenges are poor bioavailability, in vivo stability, solubility, intestinal absorption, sustained and targeted delivery to site of action, therapeutic effectiveness, generalized side effects, and plasma fluctuations of drugs (see Table 11).

The most important innovations are taking place in nanopharmocology and drug delivery which involves developing nanoscale particles or molecules to improve bioavailability. These pharmacological applications of nanotechnology include: the formation of novel nanoscopic entities [11, 27], exploring and matching specific compounds to particular patients for maximum effectiveness; and advanced pharmaceutical delivery systems and discovery of new pharmacological molecular entities; selection of pharmaceuticals for specific individuals to maximize effectiveness and minimize side effects, and delivery of pharmaceuticals to targeted locations or tissues within the body. Examples of nanomaterials include nanotubes and nanofibers, liposomes, nanoparticles, polymeric micelles, block ionomer complexes, nanogels, and dendrimers.

Nanotubes [28, 29] and nanofibers mimic tubular structures that appear in nature, such as rod shaped bacteria or viruses, microtubules, ion channels, as well as axons and dendrites. They are low-dimensional nanostructures, having a very large axial ratio. Properties of a molecule in a nanotube or nanofiber structure can be different from those in the bulk or in other nanomaterials, such as spherical nanoparticles. These materials have a large surface–volume ratio, which results in a high exposure of the material components to the surrounding environment [30]. This makes nanotubes and nanofibers promising structures for biosensing and molecular recognition [31]. However, it provides a way to control drug release through the nanotubes wall, while the large hollow area inside nanotubes provides an excellent storage for drugs and other agents [32]. Furthermore, nanotubes can be synthesized to be open-ended, which can be exploited for certain biological applications.

Carbon nanotubes (CNTs) was discovered by Iijima [33] which are composed of carbon atoms arranged in hexagonal ring structures similar to graphite, with some five-membered or seven-membered rings providing the structure curvature [29, 34,35]. CNTs are compatible with biological tissues for scaffolding purposes and the charge carried by the nanotubes can be manipulated to control neurite outgrowth [36, 37]. It has also been suggested that CNTs functionalized with growth factors, such as nerve growth factor or brain-derived neurotrophic factor, can stimulate growth of neurons on the nanotube scaffold [3840]. In such application the toxicity of CNTs remains an issue that must be overcome [41, 42]. It has been reported that conductive polymer coatings for living neural cells has been generated using poly (3,4-ethylenedioxythiophene) PEDOT nanotubes [43]. The electric conductivity of PEDOT was used to enhance the electrical activity of the tissue with a long range aim of treating CNS disorders, which show sensory and motor impairments. These observations suggested that nanotube and nanofiber scaffolds have potential for neuroregeneration as well as treatment of CNS trauma [27, 44]. Nanomaterials suggest a promising strategy for neuroprotection [45]. Neuroprotection is an effect that may result in salvage, recovery, or regeneration of the nervous system.

The role of nanotechnology in targeted drug delivery and imaging was discussed in many reviews and papers [46, 47]. As a step towards a realistic system, a brief overview of preparation, characterization, delivery, loading, purification and separation of nanoparticles and nanodrugs are presented herein. In next two sections the fabrication methods of nanoparticle bioproducts and also the delivery systems of nanodrugs are explained. Subsequently we go back to the CNS nanodrugs for research and therapy and the delivery systems of nanodrugs for nervous system.

……

3. NANODRUG DELIVERY SYSTEMS

The major goals in designing nanoparticles as a delivery system are to control particle size, surface properties [85] and release of pharmacologically active agents in order to achieve the site-specific action of the drug at the therapeutically optimal rate and dose regimen [86]. If nanoparticles are considered to be used as drug delivery vehicles, it depends on many factors including: (a) size of nanoparticles required; (b) inherent properties of the drug, e.g., aqueous solubility; (c) surface characteristics such as charge and permeability; (d) degree of biodegradability, biocompatibility and toxicity; (e) drug release profile desired; and (f) antigenicity of the final product. The advantages of using nanoparticles as a drug delivery system might be summarized as follow [87]:

  1. Particle size and surface characteristics of nanoparticles can be easily manipulated to achieve both passive and active drug targeting after parenteral administration.
  2. They control and sustain release of the drug during the transportation and at the site of localization, altering organ distribution of the drug and subsequent clearance of the drug so as to achieve increase in drug therapeutic efficacy and reduction in side effects.
  3. Controlled release and particle degradation characteristics can be readily modulated by the choice of matrix constituents. Drug loading is relatively high and drugs can be incorporated into the systems without any chemical reaction; this is an important factor for preserving the drug activity.
  4. Site-specific targeting can be achieved by attaching targeting ligands to surface of particles or use of magnetic guidance.
  5. The system can be used for various routes of administration including oral, nasal, parenteral, intraocular etc.

NANODRUG DELIVERY SYSTEMS

The major goals in designing nanoparticles as a delivery system are to control particle size, surface properties [85] and release of pharmacologically active agents in order to achieve the site-specific action of the drug at the therapeutically optimal rate and dose regimen [86]. If nanoparticles are considered to be used as drug delivery vehicles, it depends on many factors including: (a) size of nanoparticles required; (b) inherent properties of the drug, e.g., aqueous solubility; (c) surface characteristics such as charge and permeability; (d) degree of biodegradability, biocompatibility and toxicity; (e) drug release profile desired; and (f) antigenicity of the final product. The advantages of using nanoparticles as a drug delivery system might be summarized as follow [87]:

  1. Particle size and surface characteristics of nanoparticles can be easily manipulated to achieve both passive and active drug targeting after parenteral administration.
  2. They control and sustain release of the drug during the transportation and at the site of localization, altering organ distribution of the drug and subsequent clearance of the drug so as to achieve increase in drug therapeutic efficacy and reduction in side effects.
  3. Controlled release and particle degradation characteristics can be readily modulated by the choice of matrix constituents. Drug loading is relatively high and drugs can be incorporated into the systems without any chemical reaction; this is an important factor for preserving the drug activity.
  4. Site-specific targeting can be achieved by attaching targeting ligands to surface of particles or use of magnetic guidance.
  5. The system can be used for various routes of administration including oral, nasal, parenteral, intraocular etc.

NERVOUS SYSTEM NANODRUGS

Nanomaterials and nanoparticles can interact with biological systems at fundamental and molecular levels [100, 101]. In neuroscience, the application of nanotechnologies entails specific interactions with neurons and glial cells. Nanodevices can target the cells and glia with a high degree of specificity. This unique molecular specificity enables the nanodrugs to stimulate and interact with tissues and neurons in controlled ways, while minimizing undesirable effects. There are two main types of nervous system drugs (neurodrugs): behavioural and molecular. Behavioural neurodrugs are for the study of how different drugs affect human behaviour and human brain. These drugs are usually used for diagnosis and therapy of neurodegeneration disorders [47, 102]. Molecular neurodrugs are used for the study of neurons and their neurochemical interactions. Since for the most part, neurons in the human brain communicate with one another by releasing chemical messengers called neurotransmitters, these drugs have to target specific transmitters and receptors to have beneficial effect on neurological functions. The preparation of these two types of drugs is closely connected. Researchers are studying the interactions of different neurotransmitters [103], neurohormones [104], neuromodulators [105], enzymes [106], second messengers [107], co-transporters [108, 109], ion channels [110], and receptor proteins [111] in the central and peripheral nervous systems to develop drugs to treat many different neurological disorders, including pain [112], neurodegenerative diseases such as Parkinson’s disease [113] and Alzheimer’s disease [114], psychological disorders [115], addiction [116], and many others.

The blood–brain barrier significantly hinders the passage of systemically delivered therapeutics and the brain extracellular matrix limits the distribution and longevity of locally delivered agents. Nanoparticles represent a promising solution to these problems. They can cross blood-brain barrier and enter the CNS. Although the applications of nanotechnology in basic and clinical neuroscience are only in the early stages of development, partly because of the complexities associated with interacting with neural cells and the mammalian nervous system, however the early results show an impressive potential of nanotechnologies to contribute to neuroscience research [117]. One area in which nanotechnology may have a significant clinical impact in neuroscience is the selective transport and delivery of drugs and other small molecules across the blood brain barrier that cannot cross otherwise.

Examples of current research include technologies that are designed to better interact with neural cells, advanced molecular imaging technologies [118, 119], materials and hybrid molecules used in neural regeneration [120], neuroprotection [121], and targeted delivery of drugs and small molecules across the blood–brain barrier [122, 123]. Among all these modern methods of drug delivery to the central nervous system (CNS), the design and application of bionanotechnologies aimed at the CNS provide revolutionary new approaches for studying cell and molecular biology and physiology. The successful and meaningful development of bionanotechnologies designed to interact with the CNS as research or clinical tools require an understanding of the relevant neurophysiology and neuropathology, an appreciation of the inherent ‘nanoscale’ structure of the CNS, and an understanding of the relevant chemistry and materials science and engineering. At nanoscale, consideration of individual molecules and interacting groups of molecules in relation to the bulk macroscopic properties of the material or device becomes important, since it is control over the fundamental molecular structure that allows control over the macroscopic chemical and physical properties [124]. Applications to neuroscience and physiology imply materials and devices designed to interact with the body at subcellular (i.e., molecular) scales with a high degree of specificity. This can potentially translate into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic affects with minimal side effects.

It started with controlled release strategy and the development of miniaturized delivery systems [125] and continued by the application of albumin nanoparticles for the first time in the Johns Hopkins Medical Institution in Baltimore [126]. Other nanoconstructs such as drug-polymer conjugates were first proposed in the 1970s [127] and developed pre-clinically in the 1980s [128]. Prof. Kreuter [129] proposed a definition of polymeric nanoparticles for pharmaceutical purposes for the first time that later was adopted by the Encyclopaedia of Pharmaceutical Technology [130] and the Encyclopedia of nanotechnology [131]. Today, more than 25 nanomedicines have already been approved for human use [102]. Usually the application of nanodrugs to neuroscience is divided into two parts: application in basic neuroscience [124], and in clinical neuroscience [27].

The development of nanotechnology products may play an important role in adding a new group of therapeutics to the products of pharmaceutical companies [132]. Nanotechnology enhances (1) delivery of poorly water-soluble drugs; (2) delivery of large macromolecule drugs to intracellular sites of action; (3) targeted delivery of drugs in a cell- or tissue-specific manner; (4) transcytosis of drugs across tight epithelial and endothelial barriers; (5) co-delivery of two or more drugs or therapeutic modality for combination therapy; (6) visualization of sites of drug delivery by combining therapeutic agents with imaging modalities; and (7) real-time read on the in vivo efficacy of a therapeutic agent [133]. Additionally, the manufacturing complexity of nanotechnology therapeutics may also create a significant hurdle for generic drug companies to develop equivalent therapeutics readily [132].

…….

Safe, site-specific, and efficient delivery of compounds to CNS disease sites remains a singular goal in achieving optimal therapeutic outcomes to combat neurodegenerative diseases. Treatment of CNS disorders by systemic administration or local delivery of drugs is currently inefficient in many cases. Furthermore, clinical neuroscience faces great challenges due to the extremely heterogeneous cellular and molecular environment and the complexities of the brain’s anatomical and functional “wiring” and associated information processing [224]. However, the emergence of nanotechnology provides hope that it will revolutionize diagnosis and treatment of CNS disorders. Neurodegenerative diseases are usually linked to a loss of brain and spinal cord cells. For example, the neuronal damage in AD and PD is associated with abnormal protein processing and accumulation and results in gradual cognitive and motor deterioration [225].

 

 

 

 

Advertisements

Read Full Post »


Omega 3 fatty acids for cognitive decline

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke

Miled Bourouroua, b,  Catherine Heurteauxa, bNicolas Blondeaua, b,

Neuropharmacology  Available online 29 April 2016    doi:10.1016/j.neuropharm.2016.04.040
Highlights
•   High level of disability remains a substantial problem for stroke.
•   An emerging concept to support stroke recovery is nutritional support.
•   We compared whether oral or i.v supplementation of the omega-3, alpha-linolenic acid (ALA) best support recovery from stroke.
•   Both types of ALA supplementation improved spatial learning and memory after stroke.
•   This supports therapeutic plans using nutritional support in ALA in recovery from stroke.

 

Image for unlabelled figure

 

Stroke is a leading cause of disability and death worldwide. Numerous therapeutics applied acutely after stroke have failed to improve long-term clinical outcomes. An emerging direction is nutritional intervention with omega-3 polyunsaturated fatty acids acting as disease-modifying factors and targeting post-stroke disabilities. Our previous studies demonstrated that the omega-3 precursor, alpha-linolenic acid (ALA) administrated by injections or dietary supplementation reduces stroke damage by direct neuroprotection, and triggering brain artery vasodilatation and neuroplasticity. Successful translation of putative therapies will depend on demonstration of robust efficacy on common deficits resulting from stroke like loss of motor control and memory/learning. This study evaluated the value of ALA as adjunctive therapy for stroke recovery by comparing whether oral or intravenous supplementation of ALA best support recovery from ischemia. Motor and cognitive deficits were assessed using rotarod, pole and Morris water maze tests. ALA supplementation in diet was better than intravenous treatment in improving motor coordination, but this improvement was not due to a neuroprotective effect since infarct size was not reduced. Both types of ALA supplementation improved spatial learning and memory after stroke. This cognitive improvement correlated with higher survival of hippocampal neurons. These results support clinical investigation establishing therapeutic plans using ALA supplementation

 

 

Read Full Post »


Brain and behavior

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Behavior Brief

A round-up of recent discoveries in behavior research

By Catherine Offord | March 25, 2016

http://www.the-scientist.com/?articles.view/articleNo/45665/title/Behavior-Brief

Manta in the mirror

http://www.the-scientist.com/images/News/March2016/mantamain.jpg

The mirror self-recognition (MSR) test is commonly used to evaluate nonhuman animals’ self-awareness, and has been reportedly passed by several mammals and birds including apes, elephants, dolphins, and magpies. According to a study published earlier this month (March 11) in The Journal of Ethology, there’s now evidence to add manta rays to that list.

Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness?

Csilla Ari  , Dominic P. D’Agostino     Journal of Ethology   11 March 2016: 1-8    http://link.springer.com/article/10.1007%2Fs10164-016-0462-z    doi:10.​1007/​s10164-016-0462-z

Elaborate cognitive skills arose independently in different taxonomic groups. Self-recognition is conventionally identified by the understanding that one’s own mirror reflection does not represent another individual but oneself, which has never been proven in any elasmobranch species to date. Manta rays have a high encephalization quotient, similar to those species that have passed the mirror self-recognition test, and possess the largest brain of all fish species. In this study, mirror exposure experiments were conducted on two captive giant manta rays to document their response to their mirror image. The manta rays did not show signs of social interaction with their mirror image. However, frequent unusual and repetitive movements in front of the mirror suggested contingency checking; in addition, unusual self-directed behaviors could be identified when the manta rays were exposed to the mirror. The present study shows evidence for behavioral responses to a mirror that are prerequisite of self-awareness and which has been used to confirm self-recognition in apes.

X-RAY MAG: How did you become interested in studying the behavior of manta rays?

CA: I knew that I wanted to dedicate my life to study and protect marine life since I was 13 years old. It was during a family vacation in Croatia when I first had the chance to try scuba diving. I was so mesmerized by the experience that when I surfaced I decided to try to find out more about this magical world. I became especially fascinated by the majestic and mysterious manta rays after watching a nature documentary, soon after this first dive. It described how little we know about them and how vulnerable they are.

But growing up in Hungary, a landlocked country, I did not have much option to pursue my dream as a marine biologist, so I got my master’s degree in zoology and my doctorate in neurobiology, while volunteering at oceanography institutes in different countries during the summers. During my PhD studies, I worked on the neuroanatomy and neurohistology of several shark and ray species, including mobulids (mantas and mobulas). During these years, I had the chance to explore the brain structures of mantas and mobulas, which reflected some very unique and surprising features. It was the unusual enlargement of some of their brain parts that got me interested in focusing on their behavior.

“Manta rays are likely the first fish species found to exhibit self-awareness, which implies higher order brain function, as well as sophisticated cognitive and social skills,” study coauthor Csilla Ari told X-Ray Mag.

COGNITION AND SELF AWARENESS IN MANTA RAYS   

Observing two rays in a tank at the Atlantis Aquarium in the Bahamas, the researchers noticed that the animals changed their behavior when a mirror was placed on one of the walls. New behaviors included apparently checking out their fins (see this video) and blowing bubbles at their reflections.     https://youtu.be/LQ1KErB_2oU

X-RAY MAG: What were the findings that caused you to conclude that these animals are using cognition?

CA: Animal cognition, often referred to as animal intelligence, is an exciting scientific field that attempts to describe the mental capacity of an animal. It developed from the field of comparative psychology and it includes exciting research questions, such as perception, attention, selective learning, memory, spatial cognition, tool use, problem solving or consciousness.

There are no easy ways to test these on manta rays, but I found a widely-used and well-established test that can give us insight on their cognitive abilities. The mirror self-recognition (MSR) test is considered to be a reliable behavioral index to show the animal’s ability for self-recognition/self-awareness. Recognizing oneself in a mirror is a very rare capacity among animals. Only a few, large-brained species have passed this test so far, including Asian elephants, bottlenose dolphins and great apes, but no fish species so far.

So, employing a protocol adapted from primates and bottlenose dolphin MSR studies, I exposed captive manta rays to a large mirror and recorded their behavior. The manta rays showed significantly higher frequency of repetitive behavior, such as circling at the mirror or high frequency cephalic fin movements when the mirror was placed in the tank. Contingency checking and self-directed behavior included body turns into a vertical direction, exposing the ventral side of the body to the mirror while staying visually oriented to the mirror. Most surprisingly, such self-directed behaviors were sometimes accompanied with bubble blowing front of the mirror and sharp downward swims.

“This new discovery is incredibly important,” Marc Bekoff of the University of Colorado in Boulder who was not involved in the study told New Scientist. “It shows that we really need to expand the range of animals we study.”

But the MSR test’s developer, Gordon Gallup of the State University of New York at Albany, told New Scientist that the observed movements might reflect curious, rather than self-aware, behavior. “Humans, chimpanzees, and orangutans are the only species for which there is compelling, reproducible evidence for mirror self-recognition,” he said.

Manta rays are first fish to recognise themselves in a mirror  https://www.newscientist.com/article/2081640-manta-rays-are-first-fish-to-recognise-themselves-in-a-mirror

Manta Ray (Manta birostris) feeding on plankton in current, Sangalakki Island, Borneo

Manta ray hears the dinner bell    Norbert Wu/Minden Pictures/FLPA

Giant manta rays have been filmed checking out their reflections in a way that suggests they are self-aware.

Harmless but zippy

Rattlesnakes and other vipers are well-known for their lightning-quick bites, but nonvenomous snakes may be just as speedy, according to a study published this month (March 15) in Biology Letters.

Debunking the viper’s strike: harmless snakes kill a common assumption

David A. Penning, Baxter Sawvel, Brad R. Moon

“There’s this kind of pre-emptive discussion that [vipers] are faster,” study coauthor David Penning of the University of Louisiana, Lafayette, told Smithsonian. But, he added, “as sexy as the topic sounds, there’s not that much research on it.”

To Scientists’ Surprise, Even Nonvenomous Snakes Can Strike at Ridiculous Speeds  By Marcus Woo

The Texas rat snake was just as much of a speed demon as deadly vipers, challenging long-held notions about snake adaptations

http://www.smithsonianmag.com/science-nature/scientists-surprise-even-nonvenomous-snakes-can-strike-ridiculous-speeds-180958452

Texas Rat Snake

Read more: http://www.smithsonianmag.com/science-nature/scientists-surprise-even-nonvenomous-snakes-can-strike-ridiculous-speeds-180958452/#XCyQyDlTqj1JWi14.99

To put the assumption to the test, Penning and his colleagues used a high-speed camera to film strikes from three snake species—the western cottonmouth and the western diamond-backed rattlesnake (both vipers), and a relatively harmless Texas rat snake that kills its prey using constriction.

When a snake strikes, it literally moves faster than the blink of an eye, whipping its head forward so quickly that it can experience accelerations of more than 20 Gs. “It’s the lynchpin of their strategy as predators,” says Rulon Clark at San Diego State University. “Natural selection has optimized a series of adaptations around striking and using venom that really helps them be effective predators.”

When Penning and his colleagues compared strike speeds in three types of snakes, they found that at least one nonvenomous species was just as quick as the vipers. The results hint that serpents’ need for speed may be much more widespread than thought, which raises questions about snake evolution and physiology.  They compared the western cottonmouth and the western diamond-backed rattlesnake, which are both vipers, and the nonvenomous Texas rat snake. They put each snake inside a container and inserted a stuffed glove on the end of a stick. They waved the glove around until the animal struck, recording the whole thing with a high-speed camera. The team tested 14 rat snakes, 6 cottonmouths and 12 rattlesnakes, recording several strikes for each individual.

The recordings revealed that although the highest head acceleration—279 meters per second squared, or nearly 29 g—did indeed come from a rattlesnake, one of the rat snakes followed close behind, accelerating its head at 274 meters per second squared.   All the snakes turned out to be speed demons, the team reports this week in Biology Letters. The rattlesnake scored the highest measured acceleration, at 279 meters per second squared. But to their surprise, the nonvenomous rat snake came in a close second at 274 meters per second squared. That’s lightning-quick, considering that a Formula One race car accelerates at less than 27 meters per second squared to go from 0 to 60 in just one second.

“I was really surprised, because this comparison hadn’t been made before,” Rulon Clark of San Diego Statue University who was not involved in the work told Smithsonian. “It’s not that the vipers are slow, it’s that this very high-speed striking ability is something that seems common to a lot of snake species—or a wider array than people might’ve expected.”

Penning told Discover Magazine that the results make sense, since even nonvenomous snakes have to catch their food. “Prey are not passively waiting to be eaten by snakes,” he said.

Even Harmless Snakes Strike at Deadly Speed

Rather than offering the snakes some sacrificial prey animals, the researchers baited the snakes into striking in self-defense. They used a stuffed glove on a stick. The glove would move around the snake until the animal realized the glove was “clearly not going away,” Penning says, and struck at it. High-speed cameras and mirrors captured these attacks, which happened in the blink of an eye.

Early learning

Emerging evidence suggests that both humans and superb fairywrens begin learning the vocal patterns of their mothers even before birth. Now, a study published this month (March 16) in The Auk: Ornithological Advances indicates that the same is true of the red-backed fairywren, offering the possibility of studying the phenomenon across related species.

“Fairywrens have become a new model system in which to test new dimensions in the ontogeny of parent-offspring communication in vertebrates,” study coauthor Mark Hauber of New York City’s Hunter College said in a statement.

Following on their previous discovery of prenatal learning in superb fairywrens, the researchers compared the structure of nestling calls in the red-backed fairywren to the calls of the birds’ mothers. The team found that the more calls per hour that nestlings received when in the egg, the higher the similarity to maternal calls after hatching. (The number of calls received during the nestling period had no effect on call similarity.)

“Prenatal vocal learning has rarely been described in any animal, with the exception of humans and Australian superb fairywrens,” William Feeney of the University of Queensland, Australia, who was not involved in the work said in the statement. “This result is exciting as it opens the door to investigating the taxonomic diversity of this ability, which could provide insights into why it evolves.”

Vocal imitation of mother’s calls by begging Red-backed Fairywren nestlings increases parental provisioning

Red-backed fairywren (Malurus melanocephalus)  J WELKIN

 

Prenatal imitative learning is an emerging research area in both human and non-human animals. Previous studies in Superb Fairywrens (Malurus cyaneus) showed that mothers are vocal tutors to their embryos and that better imitation of maternal calls yields more parental provisions after hatching. To begin to test if such adaptive behavior is widespread amongst Australasian wrens in Maluridae, we investigated maternal in-nest calling patterns in Red-backed Fairywrens (Malurus melanocephalus). We first compared the structure of maternal and nestling call elements. Next, we examined how in-nest calling behavior varied with parental behaviors and ecological contexts (i.e. prevalence of brood parasitism and nest predation). All Red-backed Fairywren females called to their eggs during incubation and they continued to do so for several days after hatching at a lower rate. Embryos that received more calls per hour during the incubation period (but not the nestling period) developed into hatchlings with higher call element similarity between mother and young. Female call rate was mostly independent of nest predation but in years with more interspecific brood parasitism, nestling element similarity was greater and female call rates tended to be higher. Playback experiments showed that broods with higher element similarity to their mother received more successful feeds. The potential for prenatal tutoring and imitative begging calls in 2 related fairywren taxa sets the stage for a full-scale comparative analysis of the evolution and function of these behaviors across Maluridae and in other vocal-learning lineages.

 

Traveling junk-foodies

White storks may be addicted to junk food, in some cases making migratory trips of tens of kilometers to landfill sites during the breeding season, according to a study published earlier this month (March 15) in Movement Ecology.

“We found that the continuous availability of junk food from landfill has influenced nest use, daily travel distances, and foraging ranges,” study coauthor Aldina Franco of the University of East Anglia said in a statement. “Storks now rely on landfill sites for food—especially during the non-breeding season when other food sources are more scarce.”

Using GPS tracking, the researchers focused on 17 storks traveling between nesting and feeding areas over the course of a year. They found that most long-distance trips were made to landfill sites, and that “having a nest close to a guaranteed food supply also means that the storks are less inclined to leave for the winter,” Franco explained in the statement. “They instead spend their non-breeding season defending their highly desirable nest locations.”

“It’s clear migratory behaviors are quite plastic, in that the [storks] are adaptable and can change quickly,” Andrew Farnsworth of the Cornell Lab of Ornithology who was not involved in the work told National Geographic. He added that the new, detailed dataset will help scientists “consider how such changes in behavior may affect the future population of these birds.”

Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population

Nathalie I. Gilbert Email authorRicardo A. CorreiaJoão Paulo Silva,…, Jenny A. Gill and Aldina M. A. Franco

Movement Ecology 2016; 4:7      http://dx.doi.org:/10.1186/s40462-016-0070-0

The migratory patterns of animals are changing in response to global environmental change with many species forming resident populations in areas where they were once migratory. The white stork (Ciconia ciconia) was wholly migratory in Europe but recently guaranteed, year-round food from landfill sites has facilitated the establishment of resident populations in Iberia. In this study 17 resident white storks were fitted with GPS/GSM data loggers (including accelerometer) and tracked for 9.1 ± 3.7 months to quantify the extent and consistency of landfill attendance by individuals during the non-breeding and breeding seasons and to assess the influence of landfill use on daily distances travelled, percentage of GPS fixes spent foraging and non-landfill foraging ranges.   Results   Resident white storks used landfill more during non-breeding (20.1 % ± 2.3 of foraging GPS fixes) than during breeding (14.9 % ± 2.2). Landfill attendance declined with increasing distance between nest and landfill in both seasons. During non-breeding a large percentage of GPS fixes occurred on the nest throughout the day (27 % ± 3.0 of fixes) in the majority of tagged storks. This study provides first confirmation of year-round nest use by resident white storks. The percentage of GPS fixes on the nest was not influenced by the distance between nest and the landfill site. Storks travelled up to 48.2 km to visit landfills during non-breeding and a maximum of 28.1 km during breeding, notably further than previous estimates. Storks nesting close to landfill sites used landfill more and had smaller foraging ranges in non-landfill habitat indicating higher reliance on landfill. The majority of non-landfill foraging occurred around the nest and long distance trips were made specifically to visit landfill.  Conclusions   The continuous availability of food resources on landfill has facilitated year-round nest use in white storks and is influencing their home ranges and movement behaviour. White storks rely on landfill sites for foraging especially during the non-breeding season when other food resources are scarcer and this artificial food supplementation probably facilitated the establishment of resident populations. The closure of landfills, as required by EU Landfill Directives, will likely cause dramatic impacts on white stork populations.

WEIRD & WILD   Junk Food-Loving Birds Diss Migration, Live on Landfill    By Brian Handwerk

Spain and Portugal’s white storks are forgoing their annual journeys to African wintering grounds, a new study says

http://news.nationalgeographic.com/2016/03/060315-storks-food-animals-science-urban-food/

You’ve heard of the staycation. Some white storks in Europe are now opting for the staygration. 

The big birds are skipping their annual trip to African wintering grounds to remain year-round in Spain and Portugal, a new study shows.

Why? They’ve developed an addiction to junk food at landfills.

“White storks used to be wholly migratory. Before the 1980s, there were no white storks staying in” Spain and Portugal, says study leader Aldina Franco, a conservation ecologist at the University of East Anglia in the U.K.

“During the 1980s, the first individuals started staying, and now we see those numbers increasing exponentially.” (Related: “Beloved Storks, Emblems of Fertility, Rebounding in France.”)

 

Unlikely allies

Israel’s barren Negev desert is home to striped hyenas and gray wolves—two large scavenger species with considerably overlapping diets. But although such conditions might be expected to create fierce competition, researchers in Israel and the U.S. have now presented evidence that—at least in some cases—these animals form alliances and may even hunt collaboratively for food. The findings were published last month (February 10) in Zoology in the Middle East.

Wolves and hyenas in the desert might “just need each other to survive, because food is so, so limited,” study coauthor Vladimir Dinets of the University of Tennessee in Knoxville told The Washington Post.

Collating observations made over the past two decades (including reports of overlapping paw prints, and sightings of hyenas among packs of wolves), the researchers note that the findings could reflect the behavior of a few, oddly behaving hyenas, or a more widespread commensal, or even cooperative, relationship between the species.

“Animal behavior is often more flexible than described in textbooks,” Dinets said in a press release. “When necessary, animals can abandon their usual strategies and learn something completely new and unexpected. It’s a very useful skill for people, too.”

Read Full Post »


An inconvenient truth about dreams

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

It is natural to dream. Dreaming is a flashback recording of recent occurrences associated with cleaning out the memory of daily events.  There is much written in both literature and in neuroscience as I write this.  Dreaming is both natural and perhaps also adaptive, and dreams may be distressing or unintelligible in circumstances that we view as pathological.  This is thought to be related to a loss of plasticity of the memory circuits. This occurs with mood disorders, sleep disorders with and without leg movement disorder, and with schizophrenia.

The term given by Martin Luther King, “I had a dream” is out of place under the cirumstances I describe. I am identical twin with a nonidentical triplet sister.  Our brother died more than a decade ago, prematurely aged from living with schizophrenia.  I and my sister could talk to him and understand what he said, even though it meant nothing to others. What I did not share was the total fragmentation of mental thoughts at an early age.  Both I and my sister had guilt over the situation for years. I sought psychiatric assistance that went on for years.  But I was not schizophrenic and I had a successful career by any standard, but was burdened trying to make up in achievement what was denied to my immigrant father and to my identical twin brother. It was by no means easy in the 1960s for my parents to deal with the situation, with a societal lack of understanding, a feeling of what have I done wrong, and a serious cost burden.

I went to medical school, which I had decided as a child, when I read Paul de Kruif’s Microbe Hunters.
I had a sister two years older who was a “wunder” kind, who I tried to follow.  She had a GM scholarship and set the class curve as an undergraduate in a graduate course in numbers theory.  Fortunately, my best friend, who was as brilliant as they come and a Merit Scholar college entry, cautioned not to overburden myself with the chemistry/math major that I never declared. My brother entered the hospital as I entered medical school, and the first year that would be expected to be difficult, certainly was for me.

Only in the last 5 years did I learn from extensive testing that I had a very high intelligence to match my achievement , but that I had Asperger’s.  I also learned that I had an uncommon double mutation of the hydroxymethyl-folate reductase gene that is associated nonspecifically with neurological disorders. I take methyl folate for the genetic disorder to give access of folic acid to cross the blood brain barrier.
I’m retired for several years and had enormous difficulty in retiring, and was a workaholic.  Work had great meaning and rewards for me.

I am now 74 and had a difficult 3 years with illness and hospitalization for me and my spouse of 45 years.  We moved to be near my younger daughter, son-in-law, and grandson.  This has brought great satisfaction. All the same, my asthma, sleep apnea, and general condition declined, and the move was more difficult than any I previously experienced.  I have vivid dreams that requires clonipin for relief initially.

I have had increased frequency of dreams that can be resolved.  However, with my awareness of the suicide of Robin Williams, I was given an awareness of his situation beyond what one would expect who has not seen such patients or has not experienced this.  In my situation it was worsened by added depression.  In the recent events I thought for the first time how incredible it was for my brother to have experienced this much of his schizophrenic life, even though I am not schizophrenic by any measure.

What’s in a dream?

I have had dreams before that I thought were interesting because of the people who I knew and the situations, that might have been unusual and gave me an inclination to write down.  If I collected these, it could perhaps warrant a collection of stories.  Those that are very recent have suggested that the one when I entertained my grandson is worthwhile. It was not so noxious, but it does fit the pieces together.
I watched some of the reporting of election returns of republican and democratic candidates.  I sort of tossed around and played with the exceptional 6 year old who need not be exposed to such nonsence as we are seeing.  It was early evening and to finish his limited allowable screentime, Nanny and Grandpa, and grandchild watched a children,s movie before bedtime. It was … … a takeoff on Red Ridinghood, with good cartoon figures, some recognizable voices, and an interesting storyline.  Yes, LRRH does go through the woods to see her grandma, and she meets the wolf, who goes to her grandma’s house.  Her grandma is tied up in the closet, and the woodsman, in the role of Paul Bunyan, gives a visit at the time of rescue.  The storyline becomes a detective story to cull out the events leading up to a criminal event – who stole grandma’s recipe book, with a long family line of cooking.   The grandma was an Olympic skiing champ who beets out the characters who stole her cookbooks.  I’ll say no more than that the search comes upon grandma and LRRH escape with a parachute finish and the bad guys, led by a crafty rabbit, slide down on a ski-tram into a waiting police car.  So that evening I have a dream that is a cockamaimie replay in which I am driving on the highway and enter a tunnel (like the rail in the movie), and the lane is cluttered with a wolf, and other creatures, making passage quite impossible.

 

I talked to my sister who called the next day. It was terrific when she said that if I had a pad and wrote them down immediately, they would form a pattern. Again, I have a dream, and I recall there was a pattern of feeling of failure. I am on Gabapentin for the restless leg. This time I have my brother (impossible) in it, I left my coat in a conference room and can’t get it immediately, and I have to return home with an exam the next day.  In a recurring pattern, my brother is to drive.  I can’t drive because of now having a diplopia from thyroid eye disease related to Grave’s disease.  The exam has two questions about plasma from unclotted blood that is spun down and serum from clotted blood. This is very basic. The pattern is related to systemic notions of failure.  My sister had a repeated pattern of rushing to get to the classes she teaches and not getting there on time (consistent with her rush rush).

I go back to bed and get another few hours of sleep. We had watched a number of Miss Marple movies recently.  In the move I had the stressful experience of going through 40 years of save photographic equipment and photography, research literature, computer stuff, ya da, ya da, ya da.   Very thorough, and tiring.  The old lady in RRH and Miss Marple were merged into a character in a story related to the corroded pipes in Flint, and a criminal search for the cause of this problem (having watched the debate). Incredibly, this character was going through the material so rapidly, uncovering clues, and I was amazed.
I was struggling to keep up.  Then I woke up. So my spouses assurances were correct.  This is actually normal dreaming.

It is disturbing, consistent with a recent New York Times article on how the brain cleans out the garbage.  I have too much garbage.  My medication does have to be adjusted.  It is perhaps not the same as my late brother’s experience. My sister’s observations have been helpful.  My brother’s dreams were recognizable to me, but not to others, but they also had patterns, but patterns that were more distorted.  If mine have been “normal”, but more frequent, this suggests a failure in the brain’s plasticity as I am aging, perhaps from from the stress in a major move.  It is perhaps to be viewed as distressing at best compared with the worst case (my brother, or Robin Williams).

This is substantiated by my remembrance of driving on Woodward avenue or the expressway in Detroit, Michigan. I grew up on 2967 Sturtevant off of Dexter Ave. My elementary school no longer exists. We moved to the Northwest section and I graduated from Mumford High School in 1961.  I lived in Trumbull, adjacent to Bridgeport, CT for 33 years, where my children grew up.  The bizarreness of my recurring dream pattern has to do with a repeated driving and confusion between Detroit and Connecticut.  I drove from Connecticut to New York for the last five years before retirement, but I failed to record these experiences.  I had two car accidents related to narcolepsy in asbout 7 years related to my sleep apnea prior to getting it treated. In the last, I went to New Jersey to see an associate and driving back to Trumbull I veered off the highway and managed to veer into a tree in the snow. Fortunately I was able to control the car at the last minute.  Fortunately, this could be much worse.

 

 

 

 

 

 

 

Read Full Post »


What a brain is this?

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

New cryopreservation procedure wins Brain Preservation Prize

First preservation of the connectome demonstrated in a whole brain
February 9, 2016

http://www.kurzweilai.net/new-cryopreservation-procedure-wins-brain-preservation-prize

 

(Left): Control rabbit brain, showing neuropil near the CA1 band in the hippocampus. (Right): Vitrified rabbit brain, same location. Synapses, vesicles, and microfilaments are clear. The myelinated axon shows excellent preservation. (credit: Robert L. McIntyre and Gregory M. Fahy/Cryobiology)

 

The Brain Preservation Foundation (BPF) has announced that a team at 21st Century Medicine led by Robert McIntyre, PhD., has won the Small Mammal Brain Preservation Prize, which carries an award of $26,735.

The Small Mammalian Brain Preservation Prize was awarded after the determination that the protocol developed by McIntyre, termed Aldehyde-Stabilized Cryopreservation, was able to preserve an entire rabbit brain with well-preserved ultrastructure, including cell membranes, synapses, and intracellular structures such as synaptic vesicles (full protocol here).

The judges for the prize were Kenneth Hayworth, PhD., Brain Preservation Foundation President and neuroscientist at the Howard Hughes Medical Institute; and Prof. Sebastian Seung, PhD., Princeton Neuroscience Institute and Computer Science Department.

First preservation of the connectome

“This is a milestone in the development of brain preservation techniques: it is the first time that the preservation of the connectome has been demonstrated in a whole brain (prior to this only small parts of brains have been preserved to this level of detail),” said the BPF announcement.

“Current models of the brain suggest that the connectome contains all the information necessary for personal identity (i.e., memory and personality). This technique is not the same as conventional cryonics (rapidly freezing the brain), which has never demonstrated preservation of the ultrastructure of the brain. Thus the winning of this prize represents a significant advance in the methods available for large scale studies of the connectome and could lead to procedures that preserve a complete human brain.

Kenneth Hayworth (KH) (President of the Brain Preservation Foundation (BPF)) and Michael Shermer (member of BPF advisory board) witnessed (on Sept. 25, 2015) the full Aldehyde Stabilized Cryopreservation surgical procedure performed on this rabbit at the laboratories of 21 Century Medicine under the direction of 21CM lead researcher Robert McIntyre. This included the live rabbit’s carotid arteries being perfused with glutaraldehyde and subsequent perfusion with cryoprotectant agent (CPA). KH witnessed this rabbit brain being put in -135 degrees C storage, removal from storage the following day (verifying that it had vitrified solid), and KH witnessed all subsequent tissue processing steps involved in the evaluation process. (credit: The Brain Preservation Foundation)

“The key breakthrough was the rapid perfusion of a deadly chemical fixative (glutaraldehyde) through the brain’s vascular system, instantly stopping metabolic decay and fixing all proteins in place by covalent crosslinks. This stabilized the tissue and vasculature so that cryoprotectant could be perfused at an optimal temperature and rate. The result was an intact rabbit brain filled with such a high concentration of cryoprotectants that it could be stored as a solid ‘vitrified’ block at a temperature of ­-135 degrees Celsius.”

Winning the award also required that the procedure be published in a peer reviewed scientific publication. McIntyre satisfied this requirement and published the protocol in an open-access paper in the Journal of Cryobiology.

 

3D microscope evaluation of the rabbit brain tissue preservation (credit: Brain Preservation Foundation)

 

The Brain Preservation Foundation plans to continue to promote the idea that brain preservation following legal death, by using scientifically validated techniques, is a reasonable choice for consenting individuals to make. Focus now shifts to the final Large Mammal phase of the contest, which requires an intact pig brain to be preserved with similar fidelity in a manner that could be directly adapted to terminal patients in a hospital setting.

The 21st Century Medicine team has recently submitted to the BPF such a preserved pig brain for official evaluation. Lead researcher Robert McIntyre has started Nectome to further develop this method.

“Of course, [the demonstrated brain preservation procedure] is only useful if you think all the relevant information is preserved in the fixation,” said Anders Sandberg, PhD., of the Future of Humanity Institute/Oxford Martin School. “Protein states and small molecule chemical information may be messed up.”

https://youtu.be/l-VpUOQ3Ihg

GPA | Will You Preserve Your Brain?

 

Background and significance (statement by BPF)

Proponents of cryonics have long sought a technique that could put terminal patients into long­term stasis, the goal being a form of medical time travel in which patients are stabilized against decay with the hope of being biologically revived and cured by future technologies. Despite decades of research, this goal of reversible cryopreservation remains far out of reach — too much damage occurs during the cryopreservation itself.

This has led a new generation of researchers to focus on a more achievable and demonstrable goal–preservation of brain structure only. Specifically preservation of the delicate pattern of synaptic connections (the “connectome”) which neuroscience contends encodes a person’s memory and identity. Instead of biological revival, these new researchers often envision a future “synthetic revival” comprising nanometer-­scale scanning of the preserved brain to serve as the basis for mind uploading.

This shift in focus toward “synthetic” revival has completely transformed the cryonics debate, opening up new avenues of research and bringing it squarely within the purview of today’s scientific investigation. Hundreds of neuroscience papers have detailed how memory and personality are encoded structurally in synaptic connections, and recent advances in connectome imaging and brain simulation can be seen as a preview of the synthetic revival technologies to come.

Until now, the crucial unanswered questions were “How well does cryonics preserve the brain’s connectome?” and “Are there alternatives/modifications to cryonics that might preserve the connectome better and in a manner that could be demonstrated today?” The Brain Preservation Prize was put forward in 2010 to spur research that could definitively answer these questions. Now, five years later, these questions have been answered: Traditional cryonics procedures were not able to demonstrate (to the BPF’s satisfaction) preservation of the connectome, but the newly invented “Aldehyde­-Stabilized Cryopreservation” technique was.

This result directly answers what has for decades been the main skeptical and scientific criticism against cryonics –that it does not provably preserve the delicate synaptic circuitry of the brain. As such, this research sets the stage for renewed interest within the scientific community, and offers a potential challenge to medical researchers to develop a human surgical procedure based on these successful animal experiments.

 

Abstract of Aldehyde-stabilized cryopreservation

We describe here a new cryobiological and neurobiological technique, aldehyde-stabilized cryopreservation (ASC), which demonstrates the relevance and utility of advanced cryopreservation science for the neurobiological research community. ASC is a new brain-banking technique designed to facilitate neuroanatomic research such as connectomics research, and has the unique ability to combine stable long term ice-free sample storage with excellent anatomical resolution. To demonstrate the feasibility of ASC, we perfuse-fixed rabbit and pig brains with a glutaraldehyde-based fixative, then slowly perfused increasing concentrations of ethylene glycol over several hours in a manner similar to techniques used for whole organ cryopreservation. Once 65% w/v ethylene glycol was reached, we vitrified brains at −135 °C for indefinite long-term storage. Vitrified brains were rewarmed and the cryoprotectant removed either by perfusion or gradual diffusion from brain slices. We evaluated ASC-processed brains by electron microscopy of multiple regions across the whole brain and by Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) imaging of selected brain volumes. Preservation was uniformly excellent: processes were easily traceable and synapses were crisp in both species. Aldehyde-stabilized cryopreservation has many advantages over other brain-banking techniques: chemicals are delivered via perfusion, which enables easy scaling to brains of any size; vitrification ensures that the ultrastructure of the brain will not degrade even over very long storage times; and the cryoprotectant can be removed, yielding a perfusable aldehyde-preserved brain which is suitable for a wide variety of brain assays.

Comments

Ion Christopher –

Totally weird – IOW those “covalent bonds” act like a preservation matrix. So this brain indeed has been “fixed” – just at a smaller scale and level.

A couple of other factors:

* Quite a lot of the brain that counts (memory) may be on a larger scale than this – and may be preserved. While it is not, per the Connetome idea, at the macro axon scale – it is a general idea that at the molecular scale, something “plays” through the consciousness mechanism (Search = Hameroff Memory.)
I personally suspect a DNA like encoding in an as yet unproven language software. Perhaps even multiple “scale” functionality that would be a combination of organelle specialization (perhaps time perception) and THEN the inter-connectedness.

* As for personality, I know that that is entirely reproducible – in spite of such extreme complexity – but that is a proof for another day.

Just for kicks, note how the “search” code above results in prefabricated libraries being sent to your mind.

 

Gorden Russell –

You had me until I got to this part: “…a deadly chemical fixative (glutaraldehyde) through the brain’s vascular system…”

So this process perfectly preserves your brain after killer it dead.

So in the future it can be scanned and printed out into a perfect copy — but the copy won’t be you, it’ll be somebody else who is just like you. You will still be dead.

I’d rather be a live brain in a jar atop a robot wired into the spinal column so that I could still have all of my senses while awaiting the time a human body can be regrown.

 

CT

We have to differentiate on how we define “me” or “you”. Do we mean our memories (data) or consciousness (process). Our memories, personality, knowledge… alone (e.g. while we sleep and are unconscious)… are like fixed data until the brain (or a computer) begins to run and consciousness comes into existence .
We could copy the data to a computer (through scanning), which in the next step (after the simulation is beginning to operate) would create consciousness as well (defining itself as “me” or “you”). It wouldn’t be the same consciousness (process) due to other environmental inputs (and over time other memory/data- background). But the same is true for a biological based consciousness. My consciousness right now is not the consciousness anymore I had last year. It’s always a unique set-up.
From my point of view, the sentiment that there is some kind of metaphysical soul over an entire lifetime is an illusion based on the fact that we have memories, knowledge and personality (which we would have after the scanning process of our brain as well), that were formed in the past, and we are able to (subjectively altered) recreate it (and remember it) in our current state of consciousness. As a result we conclude, that we are/ have the same state of consciousness as the past me, which is (as I see it) an illusion.
So if we would be able to make a perfect copy of our brain that is able to create consciousness (in any kind of computer substrate, digital, analog or quantum) it wouldn’t be more or less the me (the consciousness) at the present than my future me in 5 minutes or years would be (in its biological form). From my point of view, the status quo wouldn’t change.

 

It is a copy because maybe one day they can do it without killing the original. The only way out of this conundrum was explained to me on this web site a while back in comments: if they substituted every neuron in my brain one at a time over a certain timescale so that eventually my brain would be synthetic, ‘”I” probably wouldn’t even notice.

 

But you are dreaming during your sleep.

Glutaraldehyde will put an end to all of your dreams.

A printed copy of you may have similar dreams, but not your dreams.

 

 

 

Read Full Post »


Graphene Interaction with Neurons

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Graphene Shown to Safely Interact with Neurons in the Brain

University of Cambridge

(Source: University of Cambridge)

http://www.biosciencetechnology.com/sites/biosciencetechnology.com/files/bt1601_cambridge_graphene.png

 

Researchers have successfully demonstrated how it is possible to interface graphene – a two-dimensional form of carbon – with neurons, or nerve cells, while maintaining the integrity of these vital cells. The work may be used to build graphene-based electrodes that can safely be implanted in the brain, offering promise for the restoration of sensory functions for amputee or paralyzed patients, or for individuals with motor disorders such as epilepsy or Parkinson’s disease.

The research, published in the journal ACS Nano, was an interdisciplinary collaboration coordinated by the University of Trieste in Italy and the Cambridge Graphene Centre.

Previously, other groups had shown that it is possible to use treated graphene to interact with neurons. However the signal to noise ratio from this interface was very low. By developing methods of working with untreated graphene, the researchers retained the material’s electrical conductivity, making it a significantly better electrode.

“For the first time we interfaced graphene to neurons directly,” said Professor Laura Ballerini of the University of Trieste in Italy. “We then tested the ability of neurons to generate electrical signals known to represent brain activities, and found that the neurons retained their neuronal signaling properties unaltered. This is the first functional study of neuronal synaptic activity using uncoated graphene based materials.”

Our understanding of the brain has increased to such a degree that by interfacing directly between the brain and the outside world we can now harness and control some of its functions. For instance, by measuring the brain’s electrical impulses, sensory functions can be recovered. This can be used to control robotic arms for amputee patients or any number of basic processes for paralyzed patients – from speech to movement of objects in the world around them. Alternatively, by interfering with these electrical impulses, motor disorders (such as epilepsy or Parkinson’s) can start to be controlled.

Scientists have made this possible by developing electrodes that can be placed deep within the brain. These electrodes connect directly to neurons and transmit their electrical signals away from the body, allowing their meaning to be decoded.

However, the interface between neurons and electrodes has often been problematic: not only do the electrodes need to be highly sensitive to electrical impulses, but they need to be stable in the body without altering the tissue they measure.

Too often the modern electrodes used for this interface (based on tungsten or silicon) suffer from partial or complete loss of signal over time. This is often caused by the formation of scar tissue from the electrode insertion, which prevents the electrode from moving with the natural movements of the brain due to its rigid nature.

Graphene has been shown to be a promising material to solve these problems, because of its excellent conductivity, flexibility, biocompatibility and stability within the body.

Based on experiments conducted in rat brain cell cultures, the researchers found that untreated graphene electrodes interfaced well with neurons. By studying the neurons with electron microscopy and immunofluorescence the researchers found that they remained healthy, transmitting normal electric impulses and, importantly, none of the adverse reactions which lead to the damaging scar tissue were seen.

According to the researchers, this is the first step towards using pristine graphene-based materials as an electrode for a neuro-interface. In future, the researchers will investigate how different forms of graphene, from multiple layers to monolayers, are able to affect neurons, and whether tuning the material properties of graphene might alter the synapses and neuronal excitability in new and unique ways. “Hopefully this will pave the way for better deep brain implants to both harness and control the brain, with higher sensitivity and fewer unwanted side effects,” said Ballerini.

“We are currently involved in frontline research in graphene technology towards biomedical applications,” said Professor Maurizio Prato from the University of Trieste. “In this scenario, the development and translation in neurology of graphene-based high-performance biodevices requires the exploration of the interactions between graphene nano- and micro-sheets with the sophisticated signalling machinery of nerve cells. Our work is only a first step in that direction.”

“These initial results show how we are just at the tip of the iceberg when it comes to the potential of graphene and related materials in bio-applications and medicine,” said Professor Andrea Ferrari, Director of the Cambridge Graphene Centre. “The expertise developed at the Cambridge Graphene Centre allows us to produce large quantities of pristine material in solution, and this study proves the compatibility of our process with neuro-interfaces.”

The research was funded by the Graphene Flagship, a European initiative which promotes a collaborative approach to research with an aim of helping to translate graphene out of the academic laboratory, through local industry and into society.

Source: University of Cambridge

 

Remembering to Remember Supported by Two Distinct Brain Processes

http://www.biosciencetechnology.com/news/2013/08/remembering-remember-supported-two-distinct-brain-processes

To investigate how prospective memory is processed in the brain, psychological scientist Mark McDaniel of Washington University in St. Louis and colleagues had participants lie in an fMRI scanner and asked them to press one of two buttons to indicate whether a word that popped up on a screen was a member of a designated category.  In addition to this ongoing activity, participants were asked to try to remember to press a third button whenever a special target popped up. The task was designed to tap into participants’ prospective memory, or their ability to remember to take certain actions in response to specific future events.

When McDaniel and colleagues analyzed the fMRI data, they observed that two distinct brain activation patterns emerged when participants made the correct button press for a special target.

When the special target was not relevant to the ongoing activity—such as a syllable like “tor”—participants seemed to rely on top-down brain processes supported by the prefrontal cortex. In order to answer correctly when the special syllable flashed up on the screen, the participants had to sustain their attention and monitor for the special syllable throughout the entire task. In the grocery bag scenario, this would be like remembering to bring the grocery bags by constantly reminding yourself that you can’t forget them.

When the special target was integral to the ongoing activity—such as a whole word, like “table”—participants recruited a different set of brain regions, and they didn’t show sustained activation in these regions. The findings suggest that remembering what to do when the special target was a whole word didn’t require the same type of top-down monitoring. Instead, the target word seemed to act as an environmental cue that prompted participants to make the appropriate response—like reminding yourself to bring the grocery bags by leaving them near the front door.

“These findings suggest that people could make use of several different strategies to accomplish prospective memory tasks,” says McDaniel.

McDaniel and colleagues are continuing their research on prospective memory, examining how this phenomenon might change with age.

Co-authors on this research include Pamela LaMontagne, Michael Scullin, Todd Braver of Washington University in St. Louis; and Stefanie Beck of Technische Universität Dresden.

This research was funded by the National Institute on Aging, the Washington University Institute of Clinical and Translation Sciences, the National Center for Advancing Translational Sciences, and the German Science Foundation.

Read Full Post »


Robin Williams death

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Lewy body: The ‘monster’ dementia blamed for Robin Williams’s death

Schneider says depression didn’t cause Williams’s death: “Lewy body dementia killed Robin. That’s what took his life.”

Strikingly, LBD – sometimes referred to as dementia with Lewy bodies or Parkinson’s with Lewy bodies, depending on symptoms – is the second-most common dementia after Alzheimer’s and affects more than 127,000 Britons. Yet most people have never heard of it.

Robin Williams who suffered from Lewy Body Dementia.

James Galvin, a neurology and psychiatry professor at Florida Atlantic University, says: “It’s the most common disease you’ve never heard of.”

“This disease is a sea monster with 50 tentacles of symptoms that show when they want,” Schneider said.

Williams suffered hallucinations, anxiety, depression, loss of motor control and problem-solving skills, sleep, balance and spatial awareness problems, and delusions.

Schneider describes one incident just weeks before Williams’s death, when she was in the shower and he was standing by the sink.

“Something didn’t seem right,” she recalls, so Schneider got out of the shower to find her husband’s head covered in blood. “He pointed to the door and I said, ‘Did you hit your head?’ and he nodded.” The incident confused her at the time. “But now, finding out all about Lewy body disease, lo and behold, their vision is affected, as is the ability to recognise and identify objects,” she says. “Now I get it.”

 

Lewy bodies are protein deposits in the brain, explains Professor David Burn, consultant neurologist and director of the biomedical research unit in LBD at the UK National Institute of Health Research (NIHR).

Discovered by Dr Frederic Lewy, a colleague of Dr Alzheimer’s, in 1912, the deposits develop inside nerve cells (neurons) in the brain, interrupting messaging and causing neurons to die. A patient’s symptoms will depend on which part of the brain is affected.

“When neurons die in the cortex, it causes dementia, but when it occurs in the brainstem, it causes motor symptoms (Parkinsonism),” says Burn.

“LBD patients face a rapid deterioration in their cognitive, physical and psychiatric function, and it tends to progress faster than other dementias,” he says.

When Paul Moynagh’s wife, Imogen, couldn’t find her way from a cafe table to the counter on a visit to a National Trust house in Devon in 2006, he thought little of it.Paul, 78, couldn’t have predicted the confusing set of symptoms that Imogen, 74, would experience. LBD is often misdiagnosed as Parkinson’s or Alzheimer’s, and it took doctors almost seven years to confirm her illness.

“Looking back, it began with little signs – loss of spatial awareness is an early symptom –  but they were so inconsistent,” recalls Paul, a retired surgeon.

First, there was a minor trembling in Imogen’s hands, then severe sleepiness during the day, along with spasms that made her right foot turn in when she walked. Then she developed depression and suffered panic attacks.

“Imogen has a pragmatic personality,” says Paul. “She used to play sports, was a keen gardener, walked everywhere and looked after our two children, Mark and Rachel. Ten years ago, if you had told her she would be afraid of being left alone, she would have laughed.”

By 2010, Imogen’s reasoning and planning skills were suffering – a key sign of LBD.

A keen bridge player, Imogen recalls: “I stopped winning, so I knew something was wrong.” (Though her speech is now slow, her sense of humour remains.)

 

Like Schneider, Paul Moynagh was also baffled by his wife’s repeated falls in the years preceding her diagnosis. “She’d had nine different broken bones, breaking her wrist twice, her ankle, and once, when she’d fallen down some stairs, her elbow.”

Imogen, like Williams and many LBD sufferers, was initially diagnosed with Parkinson’s disease.

 “She began shuffling when she walked and her voice became weak, both symptoms of Parkinson’s,” says Paul. Meanwhile, her depression was getting worse, not least because Imogen was so aware of what was happening to her.

“It’s different from Alzheimer’s in that people know exactly what’s happening, and one day can be completely lucid and the next be experiencing terrible anxiety and delusions. The more Imogen is aware of her situation, the more she gets depressed.”

When Paul Moynagh’s wife began experiencing hallucinations – a tell-tale sign of LBD – he knew that there was more to her illness than Parkinson’s. “She would see people in the windows of the conservatory and in our floor – which we made look like natural stone – she saw figures speaking to her.

“In my desperation, I would spend hours Googling Imogen’s symptoms until I stumbled on Lewy body dementia,” he says.

Brown says Robert had paranoia and hallucinations – he was frightened by faces he would see in the windows of a summer house he had built at the bottom of the garden. “One evening we were watching the Baftas on television and the camera panned, settling on various stars, and Bob turned to me and said: ‘I think Judi saw us.’ He meant Dame Judi Dench. He thought we were there and became very distressed because he wasn’t correctly dressed.”

“I’m a doctor and I had never even heard of it, and the neurologist was reluctant to accept it, but Imogen ticked all the boxes.” By 2013, a locum psychiatrist finally diagnosed Imogen with LBD. “I went along with my Google list, and she finally made the diagnosis. Two months later, the neurologist finally agreed.”

 

June Brown, who plays Dot Cotton in EastEnders, lost her husband, actor Robert Arnold, to LBD in 2003.

In a moving video made for the charity Lewy Body Society, Brown recalls: “Bob knew what was happening to him and he hated it. He once said: ‘I never thought I would go like this.'”

Unlike Alzheimer’s sufferers, LBD patients often have lucid memories. “Bob never lost his memory for people’s names. It’s the most strange disease because he would have moments of confusion and moments of clarity. It’s worse than Alzheimer’s because of this awareness of what you’re going through.”

 

Now, the only way to know that someone had Lewy body dementia is when a post-mortem examination finds Lewy bodies in the brain.

According to LBD specialist Ian McKeith, professor of old age psychiatry at the Newcastle University Institute for Ageing, LBD often gets misdiagnosed because doctors don’t know which questions to ask. He is in the middle of a study funded by the NIHR to develop a diagnostic toolkit for use in NHS practices.

Although there is no cure for LBD, doctors can treat symptoms using drugs that work on the brain’s messaging system, says McKeith. But correct diagnosis is essential. “If antipsychotic or anti-Parkinson’s drugs are given to patients with LBD, they can be fatal,” he says.

“We were living a nightmare,” Susan Schneider said of Robin Williams’s final months.

McKeith says one study found that when carers looking after someone with LBD were asked to rate their quality of life on a scale of zero to one (where zero was as bad as it could be), one in four rated it as below zero.

Still, Paul Moynagh refuses to refer to life with Imogen as a nightmare. She now needs 24-hour attention and help feeding. They recently celebrated their 50th wedding anniversary. During our interview, she turns to her husband and says slowly, with the difficulty she now has in getting words out: “Without your care, I don’t know where I would be.”

“Underneath it all, she is still the lovely person that I married,” he says.

“We still love each other as much as we did before – that hasn’t changed. If anything, I love her more.”

 

 

Read Full Post »

Older Posts »