Feeds:
Posts
Comments

Posts Tagged ‘tumor suppressor’

War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert


War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert

Writer, Curator: Stephen J. Williams, Ph.D.

Is one of the world’s most prominent cancer researchers throwing in the towel on the War On Cancer? Not throwing in the towel, just reminding us that cancer is more complex than just a genetic disease, and in the process, giving kudos to those researchers who focus on non-genetic aspects of the disease (see Dr. Larry Bernstein’s article Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?).

 

National Public Radio (NPR) has been conducting an interview series with MIT cancer biology pioneer, founding member of the Whitehead Institute for Biomedical Research, and National Academy of Science member and National Medal of Science awardee Robert A. Weinberg, Ph.D., who co-discovered one of the first human oncogenes (Ras)[1], isolation of first tumor suppressor (Rb)[2], and first (with Dr. Bill Hahn) proved that cells could become tumorigenic after discrete genetic lesions[3].   In the latest NPR piece, Why The War On Cancer Hasn’t Been Won (seen on NPR’s blog by Richard Harris), Dr. Weinberg discusses a comment in an essay he wrote in the journal Cell[4], basically that, in recent years, cancer research may have focused too much on the genetic basis of cancer at the expense of multifaceted etiology of cancer, including the roles of metabolism, immunity, and physiology. Cancer is the second most cause of medically related deaths in the developed world. However, concerted efforts among most developed nations to eradicate the disease, such as increased government funding for cancer research and a mandated ‘war on cancer’ in the mid 70’s has translated into remarkable improvements in diagnosis, early detection, and cancer survival rates for many individual cancer. For example, survival rate for breast and colon cancer have improved dramatically over the last 40 years. In the UK, overall median survival times have improved from one year in 1972 to 5.8 years for patients diagnosed in 2007. In the US, the overall 5 year survival improved from 50% for all adult cancers and 62% for childhood cancer in 1972 to 68% and childhood cancer rate improved to 82% in 2007. However, for some cancers, including lung, brain, pancreatic and ovarian cancer, there has been little improvement in survival rates since the “war on cancer” has started.

(Other NPR interviews with Dr. Weinberg include How Does Cancer Spread Through The Body?)

As Weinberg said, in the 1950s, medical researchers saw cancer as “an extremely complicated process that needed to be described in hundreds, if not thousands of different ways,”. Then scientists tried to find a unifying principle, first focusing on viruses as the cause of cancer (for example rous sarcoma virus and read Dr. Gallo’s book on his early research on cancer, virology, and HIV in Virus Hunting: AIDS, Cancer & the Human Retrovirus: A Story of Scientific Discovery).

However (as the blog article goes on) “that idea was replaced by the notion that cancer is all about wayward genes.”

“The thought, at least in the early 1980s, was that were a small number of these mutant, cancer-causing oncogenes, and therefore that one could understand a whole disparate group of cancers simply by studying these mutant genes that seemed to be present in many of them,” Weinberg says. “And this gave the notion, the illusion over the ensuing years, that we would be able to understand the laws of cancer formation the way we understand, with some simplicity, the laws of physics, for example.”

According to Weinberg, this gene-directed unifying theory has given way as recent evidences point back once again to a multi-faceted view of cancer etiology.

But this is not a revolutionary or conflicting idea for Dr. Weinberg, being a recipient of the 2007 Otto Warburg Medal and focusing his latest research on complex systems such as angiogenesis, cell migration, and epithelial-stromal interactions.

In fact, it was both Dr. Weinberg and Dr. Bill Hanahan who formulated eight governing principles or Hallmarks of cancer:

  1. Maintaining Proliferative Signals
  2. Avoiding Immune Destruction
  3. Evading Growth Suppressors
  4. Resisting Cell Death
  5. Becoming Immortal
  6. Angiogenesis
  7. Deregulating Cellular Energy
  8. Activating Invasion and Metastasis

Taken together, these hallmarks represent the common features that tumors have, and may involve genetic or non-genetic (epigenetic) lesions … a multi-modal view of cancer that spans over time and across disciplines. As reviewed by both Dr. Larry Bernstein and me in the e-book Volume One: Cancer Biology and Genomics for Disease Diagnosis, each scientific discipline, whether the pharmacologist, toxicologist, virologist, molecular biologist, physiologist, or cell biologist has contributed greatly to our total understanding of this disease, each from their own unique perspective based on their discipline. This leads to a “multi-modal” view on cancer etiology and diagnosis, treatment. Many of the improvements in survival rates are a direct result of the massive increase in the knowledge of tumor biology obtained through ardent basic research. Breakthrough discoveries regarding oncogenes, cancer cell signaling, survival, and regulated death mechanisms, tumor immunology, genetics and molecular biology, biomarker research, and now nanotechnology and imaging, have directly led to the advances we now we in early detection, chemotherapy, personalized medicine, as well as new therapeutic modalities such as cancer vaccines and immunotherapies and combination chemotherapies. Molecular and personalized therapies such as trastuzumab and aromatase inhibitors for breast cancer, imatnib for CML and GIST related tumors, bevacizumab for advanced colorectal cancer have been a direct result of molecular discoveries into the nature of cancer. This then leads to an interesting question (one to be tackled in another post):

Would shifting focus less on cancer genome and back to cancer biology limit the progress we’ve made in personalized medicine?

 

In a 2012 post Genomics And Targets For The Treatment Of Cancer: Is Our New World Turning Into “Pharmageddon” Or Are We On The Threshold Of Great Discoveries? Dr. Leonard Lichtenfield, MD, Deputy Chief Medical Officer for the ACS, comments on issues regarding the changes which genomics and personalized strategy has on oncology drug development. As he notes, in the past, chemotherapy development was sort of ‘hit or miss’ and the dream and promise of genomics suggested an era of targeted therapy, where drug development was more ‘rational’ and targets were easily identifiable.

To quote his post

That was the dream, and there have been some successes–even apparent cures or long term control–with the used of targeted medicines with biologic drugs such as Gleevec®, Herceptin® and Avastin®. But I think it is fair to say that the progress and the impact hasn’t been quite what we thought it would be. Cancer has proven a wily foe, and every time we get answers to questions what we usually get are more questions that need more answers. The complexity of the cancer cell is enormous, and its adaptability and the genetic heterogeneity of even primary cancers (as recently reported in a research paper in the New England Journal of Medicine) has been surprising, if not (realistically) unexpected.

                                                                               ”

Indeed the complexity of a given patient’s cancer (especially solid tumors) with regard to its genetic and mutation landscape (heterogeneity) [please see post with interview with Dr. Swanton on tumor heterogeneity] has been at the forefront of many clinicians minds [see comments within the related post as well as notes from recent personalized medicine conferences which were covered live on this site including the PMWC15 and Harvard Personalized Medicine conference this past fall].

In addition, Dr. Lichtenfeld makes some interesting observations including:

  • A “pharmageddon” where drug development risks/costs exceed the reward so drug developers keep their ‘wallets shut’. For example even for targeted therapies it takes $12 billion US to develop a drug versus $2 billion years ago
  • Drugs are still drugs and failure in clinical trials is still a huge risk
  • “Eroom’s Law” (like “Moore’s Law” but opposite effect) – increasing costs with decreasing success
  • Limited market for drugs targeted to a select mutant; what he called “slice and dice”

The pros and cons of focusing solely on targeted therapeutic drug development versus using a systems biology approach was discussed at the 2013 Institute of Medicine’s national Cancer Policy Summit.

  • Andrea Califano, PhD – Precision Medicine predictions based on statistical associations where systems biology predictions based on a physical regulatory model
  • Spyro Mousses, PhD – open biomedical knowledge and private patient data should be combined to form systems oncology clearinghouse to form evolving network, linking drugs, genomic data, and evolving multiscalar models
  • Razelle Kurzrock, MD – What if every patient with metastatic disease is genomically unique? Problem with model of smaller trials (so-called N=1 studies) of genetically similar disease: drugs may not be easily acquired or re-purposed, and greater regulatory burdens

So, discoveries of oncogenes, tumor suppressors, mutant variants, high-end sequencing, and the genomics and bioinformatic era may have led to advent of targeted chemotherapies with genetically well-defined patient populations, a different focus in chemotherapy development

… but as long as we have the conversation open I have no fear of myopia within the field, and multiple viewpoints on origins and therapeutic strategies will continue to develop for years to come.

References

  1. Parada LF, Tabin CJ, Shih C, Weinberg RA: Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 1982, 297(5866):474-478.
  2. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP: A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986, 323(6089):643-646.
  3. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA: Creation of human tumour cells with defined genetic elements. Nature 1999, 400(6743):464-468.
  4. Weinberg RA: Coming full circle-from endless complexity to simplicity and back again. Cell 2014, 157(1):267-271.

 

Other posts on this site on The War on Cancer and Origins of Cancer include:

 

2013 Perspective on “War on Cancer” on December 23, 1971

Is the Warburg Effect the Cause or the Effect of Cancer: A 21st Century View?

World facing cancer ‘tidal wave’, warns WHO

2013 American Cancer Research Association Award for Outstanding Achievement in Chemistry in Cancer Research: Professor Alexander Levitzki

Genomics and Metabolomics Advances in Cancer

The Changing Economics of Cancer Medicine: Causes for the Vanishing of Independent Oncology Groups in the US

Cancer Research Pioneer, after 71 years of Immunology Lab Research, Herman Eisen, MD, MIT Professor Emeritus of Biology, dies at 96

My Cancer Genome from Vanderbilt University: Matching Tumor Mutations to Therapies & Clinical Trials

Articles on Cancer-Related Topic in http://pharmaceuticalintelligence.com Scientific Journal

Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

Read Full Post »


Larry H Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/6-19-2014/larryhbern/Gene Switch Takes Blood Cells to Leukemia and Back Again

Kevin Mayer

 

Summary

Loss-of-function mutations in a gene called Pax5 have been known to drive normal blood cells to turn into leukemia cells. Such mutations are permanent, so it remained unclear whether an initial, temporary loss of function would instigate an irreversible cascade of events leading to an accumulation of undifferentiated lymphoblasts, or whether an ongoing loss of function would be needed to maintain the disease state.

 

With the publication of a new study, the question has become more than academic. The study, by researchers at Melbourne’s Walter and Eliza Hall Institute, has not only shown that switching off Pax5 causes cancer in a murine model of B-progenitor acute lymphoblastic leukemia (B-ALL), it has also demonstrated that switching on Pax5 essentially cures the disease.

The results of the study appeared June 15 in the journal Genes & Development, in an article entitled “Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia.” The article described how the researchers used transgenic RNAi to reversibly suppress endogenous Pax5 expression in the hematopoietic compartment of mice, which cooperates with activated signal transducer and activator of transcription 5 (STAT5) to induce B-ALL.

“In this model, restoring endogenous Pax5 expression in established B-ALL triggers immunophenotypic maturation and durable disease remission by engaging a transcriptional program reminiscent of normal B-cell differentiation,” wrote the authors. “Notably, even brief Pax5 restoration in B-ALL cells causes rapid cell cycle exit and disables their leukemia-initiating capacity.”

Institute researcher Grace Liu noted that Pax5, which is frequently “lost” in childhood B-ALL, is essential for normal development of B cells. “When Pax5 function is compromised, developing B cells can get trapped in an immature state and become cancerous,” she said. “We have shown that restoring Pax5 function, even in cells that have already become cancerous, removes this ‘block,’ and enables the cells to develop into normal white blood cells.”

Simply restoring Pax5 sufficed to normalize cancer cells. That is, re-engaging the stalled differentiation program in immature white blood cells restored normal development “despite the presence of additional oncogenic lesions.”

Institute researcher Ross Dickins, Ph.D., said that forcing B-ALL cells to resume their normal development could provide a new strategy for treating leukemia: “While B-ALL has a relatively good prognosis compared with other cancers, current treatments can last years and have major side effects. By understanding how specific genetic changes drive B-ALL, it may be possible to develop more specific treatments that act faster with fewer side effects.”

“It is very difficult to develop drugs that restore the function of genes that are lost during cancer development,” Dr. Dickins added. “However, by understanding the mechanisms by which Pax5 loss causes leukemia, we can begin to look at ways of developing drugs that could have the same effect as restoring Pax5 function.”

Pax5 is just one of about 100 genes known to suppress human tumors. Now that Pax5 has been scrutinized with genetic switch technology, the researchers speculate that similar technology could be used to characterize other tumor suppressor genes.

 

Read Full Post »


Aneuploidy and Carcinogenesis

Curator and Reporter: Larry H. Berntein, MD, FCAP

and

Curator: Stephen J Williams, PhD

 

New Theory of Cancer Development

Researchers have been unable to explain why cancer cells contain abnormal numbers of chromosomes for over a century. The phenomenon known as aneuploidy is associated with all types of cancer. Harvard Medical School researchers have hypothesized why cancer cells contain many more chromosome abnormalities than healthy cells. They have devised a way to understand

  • patterns of aneuploidy in tumors and
  • predict which genes in the affected chromosomes are likely to be cancer suppressors or promoters, and
  • they propose that aneuploidy is a driver of cancer, rather than a result of it.

The study, to be published online in Cell, offers a new theory of cancer development and could lead to new treatment targets.  This would be feasible if they could identify key cancers suppressors.

The cancer cell characteristically has many gene deletions and amplifications, chromosome gains and losses. Although it has the appearance of randomness, previous research has shown that there is a pattern to the alterations in chromosomes and chromosome arms, which suggests that we can decipher that pattern and perhaps learn how or if it drives the cancer, according to the senior author, Stephen Elledge, Gregor Mendel professor of Genetics and of Medicine at HMS and professor of medicine at Brigham and Women’s Hospital.  Having proposed the theory about how these cellular genetic changes occur, the team set out to prove it using mathematical analysis.

See “Related Links” for full-size image. (Source: HMS/ University of Cambridge/Joanne Davidson, Mira Grigorova and Paul Edwards)

Mining for answers

Cancer research has focused on mutations for decades since the “oncogene revolution.”  Changes in the DNA code that abnormally activate genes, called oncogenes, either promote cancer or deactivate genes that suppress cancer. The role of aneuploidy— in which entire chromosomes or chromosome arms are added or deleted— has remained largely unstudied.

Elledge and his team, including research fellow and first author Teresa Davoli, suspected that aneuploidy has a significant role to play in cancer because missing or extra chromosomes likely affect genes involved in tumor-related processes such as cell division and DNA repair.

To test their hypothesis, the researchers developed a computer program called TUSON (Tumor Suppressor and Oncogene) Explorer together with Wei Xu and Peter Park at HMS and Brigham and Women’s. The program analyzed genome sequence data from more than 8,200 pairs of cancerous and normal tissue samples in three preexisting databases.

They found many more potential cancer drivers than anticipated

  • after generating a list of suspected oncogenes and tumor suppressor genes based on their mutation patterns.

They ranked the suspects by how powerful an effect their deletion or duplication was likely to have on cancer development.  The team then looked at where the suspects normally appear in chromosomes.

They discovered that

  • the number of tumor suppressor genes or oncogenes in a chromosome
  • correlated with how often the whole chromosome or part of the chromosome was deleted or duplicated in cancers.

Where there were concentrations of tumor suppressor genes alongside

  • fewer oncogenes and fewer genes essential to survival,
  • there was more chromosome deletion.

Conversely,

When the team factored in gene potency, the correlations got even stronger. A cluster of highly potent tumor suppressors was

  • more likely to mean chromosome deletion than a cluster of weak suppressors.

Number matters

Since 1971, the standard tumor suppressor model has held that

  • cancer is caused by a “two-hit” cascade in which first one copy and
  • then the second copy of a gene becomes mutated.

Elledge argues that simply losing or gaining one copy of a gene through aneuploidy can influence tumor growth as well. However, the loss or gain of multiple cancer driver genes that individually have low potency

  • can have big effects by accretion of potency

These novel algorithms that identify tumor suppressors and oncogenes give experimentally verifiable basis for how  aneuploidies evolve in cancer cells, and

  • Indicate that subtle changes in the activity of many different genes at the same time can contribute to tumorigenesis

These findings also may have answered a long-standing question about whether aneuploidy is a cause or effect of cancer, leaving researchers free to pursue the question of how.  “Aneuploidy is driving cancer, not simply a consequence of it,” said Elledge. “Other things also matter, such as gene mutations, rearrangements and changes in expression. We don’t know what the weighting is, but now we should be able to figure it out.”  Elledge and Davoli plan to gather experimental evidence to support their mathematical findings. That will include validating some of the new predicted tumor suppressors and oncogenes as well as “making some deletions and amplifications and seeing if they have the properties we think they do”.

Source: Harvard Medical School

Read Full Post »


AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo

Reporter-Curator: Stephen J. Williams, Ph.D.

There has been a causal link between alterations in cellular metabolism and the cancer phenotype.  Reorganization of cellular metabolism, marked by a shift from oxidative phosphorylation to aerobic glycolysis for cellular energy requirements (Warburg effect), is considered a hallmark of the transformed cell.  In addition, if tumors are to survive and grow, cancer cells need to adapt to environments high in metabolic stress and to avoid programmed cell death (apoptosis). Recently, a link between cancer growth and metabolism has been supported by the discovery that the LKB1/AMPK signaling pathway as a tumor suppressor axis[1].

LKB1/AMPK/mTOR Signaling Pathway

The Liver Kinase B1 (LKB1)/AMPK  AMP-activated protein kinase/mammalian Target of Rapamycin Complex 1 (mTORC1) signaling pathway links cellular metabolism and energy status to pathways involved in cell growth, proliferation, adaption to energy stress, and autophagy.  LKB1 is a master control for 14 other kinases including AMPK, a serine-threonine kinase which senses cellular AMP/ATP ratios.  In response to cellular starvation, AMPK is allosterically activated by AMP, leading to activation of ATP-generating pathways like fatty acid oxidation and blocking anabolic pathways, like lipid and cholesterol synthesis (which consume ATP).  In addition, AMPK regulates cell growth, proliferation, and autophagy by regulating the mTOR pathway.  AMPK activates the tuberous sclerosis complex 1/2, which ultimately inhibits mTORC1 activity and inhibits protein translation.  This mTOR activity is dis-regulated in many cancers.

LKB1AMPK pathway

LKB1/AMPK in Cancer

  • Somatic mutations of the STK11 gene encoding LKB1 are detected in lung and cervical cancers
  • Therefore LKB1 may be a strong tumor suppressor
  • Pharmacologic activation of LKB1/AMPK with metformin can suppress cancer cell growth

In a recent Cell Metabolism paper[2], Brandon Faubert and colleagues describe how AMPK activity reduces aerobic glycolysis and tumor proliferation while loss of AMPK activity promotes tumor proliferation by shifting cells to aerobic glycolysis and increasing anabolic pathways in a HIF1-dependent manner.

The paper’s major findings were as follows:

  • Loss of AMPKα1 cooperates with the Myc oncogene to accelerate lymphomagenesis
  • AMPKα dysfunction enhances aerobic glycolysis (Warburg effect)
  • Inhibiting HIF-1α reverses the metabolic effects of AMPKα loss
  • HIF-1α mediates the growth advantage of tumors with reduced AMPK signaling

Summary

AMPK is a metabolic sensor that helps maintain cellular energy homeostasis. Despite evidence linking AMPK with tumor suppressor functions, the role of AMPK in tumorigenesis and tumor metabolism is unknown. Here we show that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells and suppresses tumor growth in vivo. Genetic ablation of the α1 catalytic subunit of AMPK accelerates Myc-induced lymphomagenesis. Inactivation of AMPKα in both transformed and nontransformed cells promotes a metabolic shift to aerobic glycolysis, increased allocation of glucose carbon into lipids, and biomass accumulation. These metabolic effects require normoxic stabilization of the hypoxia-inducible factor-1α (HIF-1α), as silencing HIF-1α reverses the shift to aerobic glycolysis and the biosynthetic and proliferative advantages conferred by reduced AMPKα signaling. Together our findings suggest that AMPK activity opposes tumor development and that its loss fosters tumor progression in part by regulating cellular metabolic pathways that support cell growth and proliferation.

Below is the graphical abstract of this paper.

Graphical Abstract FINAL.pptx

(Photo credit reference(2; Faubert et. al) permission from Elsevier)

However, this regulation of tumor promotion by AMPK may be more complicated and dependent on the cellular environment.

Nissam Hay from the University of Illinois College of Medicine, Chicago, Illinois, USA and his co-workers Sang-Min Jeon and Navdeep Chandel were investigating the mechanism through which LKB1/AMPK regulate the balance between cancer cell growth and apoptosis under energy stress[3]. In their system, the loss of function of either of these proteins makes cells more sensitive to apoptosis in low glucose environments, and cells deficient in either AMPK or LKB1 were shown to be resistant to oncogenic transformation.  Whereas previous studies showed (as above) AMPK opposes tumor proliferation in a HIF1-dependent manner, their results showed AMPK could promote tumor cell survival during periods of low glucose or altered redox status.

The researchers incubated LKB1-deficient cancer cells in the presence of either glucose or one of the non-metabolizable glucose analogues 2-deoxyglucose (2DG) and 5-thioglucose (5TG), and found that 2DG, but not 5TG, induced the activation of AMPK and protected the cells from apoptosis, even in cells that were deficient in LKB1.

The authors demonstrated that glucose deprivation depleted NADPH levels, increased H2O2 levels and increased cell death, and that this was accelerated in cells deficient in the enzyme glucose-6-phosphate dehydrogenase. Anti-oxidants were also found to inhibit cell death in cells deficient in either AMPK or LKB1.

Knockdown or knockout of either LKB1 or AMPK in cancer cells significantly increased levels of H2O2 but not of peroxide (O2) during glucose depletion. The glucose analogue 2DG was able to activate AMPK and maintain high levels of NADPH and low levels of H2O2 in these cells.

The nucleotide coenzyme NADPH is generated in the pentose phosphate pathway and mitochondrial metabolism, and consumed in H2O2 elimination and fatty acid synthesis. If glucose is limited mitochondrial metabolism becomes the major source of NADPH, supported by fatty acid oxidation. AMPK is known to be a regulator of fatty acid metabolism through inhibition of two acetyl-CoA carboxylases, ACC1 and ACC2.

Short interfering RNAs (siRNAs) to knock down levels of both ACC1 and ACC2 in A549 cancer cells and found that only ACC2 knockdown significantly increased peroxide accumulation and apoptosis, while over-expression of mutant ACC1 and ACC2 in LKB1-proficient cells increased H2O2 and apoptosis.

Therefore, it was concluded AMPK acts to promote early tumor growth and prevent apoptosis in conditions of energy stress through inhibiting acetyl-CoA carboxylase activity, thus maintaining NADPH levels and preventing the build-up of peroxide in glucose-deficient conditions.

This may appear to be conflicting with the previous report in this post however, it is possible that these reports reflect differences in the way cells respond to various cellular stresses, be it hypoxia, glucose deprivation, or changes in redox status.  Therefore a complex situation may arise:

  • AMPK promotes tumor progression under glucose starvation
  • AMPK can oppose tumor proliferation under a normoxic, HIF1-dependent manner
  • Could AMPK regulation be different in cancer stem cells vs. non-stem cell?

References:

1.            Green AS, Chapuis N, Lacombe C, Mayeux P, Bouscary D, Tamburini J: LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 2011, 10(13):2115-2120.

2.            Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B et al: AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell metabolism 2013, 17(1):113-124.

3.            Jeon SM, Chandel NS, Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485(7400):661-665.

 Other posts on this site related to Warburg Effect and Cancer include:

Read Full Post »


How Mobile Elements in “Junk” DNA Promote Cancer – Part 1: Transposon-mediated Tumorigenesis

Author, Writer and Curator: Stephen J. Williams, Ph.D.

 

SOURCE

Landscape of Somatic Retrotransposition in Human Cancers. Science (2012); Vol. 337:967-971. (1)

Sequencing of the human genome via massive programs such as the Cancer Genome Atlas Program (CGAP) and the Encyclopedia of DNA Elements (ENCODE) consortium in conjunction with considerable bioinformatics efforts led by the National Center for Biotechnology Information (NCBI) have unlocked a myriad of yet unclassified genes (for good review see (2).  The project encompasses 32 institutions worldwide which, so far, have generated 1640 data sets, initially depending on microarray platforms but now moving to the more cost effective new sequencing technology.  Initially the ENCODE project focused on three types of cells: an immature white blood cell line GM12878, leukemic line K562, and an approved human embryonic cell line H1-hESC.  The analysis was rapidly expanded to another 140 cell types.  DNA sequencing had revealed 20,687 known coding regions with hints of 50 more coding regions.  Another 11,224 DNA stretches were classified as pseudogenes.  The ENCODE project reveals that many genes encode for an RNA, not protein product, so called regulatory RNAs.

However some of the most recent and interesting results focus on the noncoding regions of the human genome, previously discarded as uninteresting or “junk” DNA .  Only 2% of the human genome contains coding regions while 98% of this noncoding part of the genome is actually found to be highly active “with about 4 million constantly communicating switches” (3).  Some of these “switches” in the noncoding portion contain small, repetitive elements which are mobile throughout the genome, and can control gene expression and/or predispose to disease such as cancer.  These mobile elements, found in almost all organisms, are classified as transposable elements (TE), inserting themselves into far-reaching regions of the genome.  Retro-transposons are capable of generating new insertions through RNA intermediates.  These transposable elements are normally kept immobile by epigenetic mechanisms(4-6) however some TEs can escape epigenetic repression and insert in areas of the genome, a process described as insertional mutagenesis as the process can lead to gene alterations seen in disease(7).  In addition, this insertional mutagenesis can lead to the transformation of cells and, as described in Post 2, act as a model system to determine drivers of oncogenesis. This insertional mutagenesis is a different mechanism of genetic alteration and rearrangement seen in cancer like recombination and fusion of gene fragments as seen with the Philadelphia chromosome and BCR/ABL fusion protein (8).  The mechanism of transposition and putative effects leading to mutagenesis are described in the following figure:

Image

Figure.  Insertional mutagenesis based on transposon-mediated mechanism.  A) Basic structure of  transposon contains gene/sequence flanked by two inverted repeats (IR) and/or direct repeats (DR).  An enzyme, the transposase (red hexagon) binds and cuts at the IR/DR and transposon is pasted at another site in DNA, containing an insertion site.  B)   Multiple transpositions may results in oncogenic events by inserting in promoters leading to altered expression of genes driving oncogenesis or inserting within coding regions and inactivating tumor suppressors or activating oncogenes.  Deep sequencing of the resultant tumor genomes ( based on nested PCR from IR/DRs) may reveal common insertion sites (CIS) and oncogenic mutations could be identified.

In a bioinformatics study Eunjung Lee et al.(1), in collaboration with the Cancer Genome Atlas Research Network, the authors had analyzed 43 high-coverage whole-genome sequencing datasets from five cancer types to determine transposable element insertion sites.  Using a novel computational method, the authors had identified 194 high-confidence somatic TE insertion sites present in cancers of epithelial origin such as colorectal, prostate and ovarian, but not in brain or blood cancers.  Sixty four of the 194 detected somatic TE insertions were located within 62 annotated genes. Genes with TE insertion in colon cancers have commonly high mutation rates and enriched genes were associated with cell adhesion functions (CDH12, ROBO2,NRXN3, FPR2, COL1A1, NEGR1, NTM and CTNNA2) or tumor suppressor functions (NELL1m ROBO2, DBC1, and PARK2).  None of the somatic events were located within coding regions, with the TE sequences being detected in untranslated regions (UTR) or intronic regions.  Previous studies had shown insertion in these regions (UTR or intronic) can disrupts gene expression (9). Interestingly, most of the genes with insertion sites were down-regulated, suggested by a recent paper showing that local changes in methylation status of transposable elements can drive retro-transposition (10,11).  Indeed, the authors found that somatic insertions are biased toward the hypomethylated regions in cancer cell DNA.  The authors also confirmed that the insertion sites were unique to cancer and were somatic insertions, not germline (germline: arising during embryonic development) in origin by analyzing 44 normal genomes (41 normal blood samples from cancer patients and three healthy individuals).

The authors conclude:

“that some TE insertions provide a selective advantage during tumorigenesis,

rather than being merely passenger events that precede clonal expansion(1).”

The authors also suggest that more bioinformatics studies, which utilize the expansive genomic and epigenetic databases, could determine functional consequences of such transposable elements in cancerThe following Post will describe how use of transposon-mediated insertional mutagenesis is leading to discoveries of the drivers (main genetic events) leading to oncogenesis.

1.            Lee, E., Iskow, R., Yang, L., Gokcumen, O., Haseley, P., Luquette, L. J., 3rd, Lohr, J. G., Harris, C. C., Ding, L., Wilson, R. K., Wheeler, D. A., Gibbs, R. A., Kucherlapati, R., Lee, C., Kharchenko, P. V., and Park, P. J. (2012) Science 337, 967-971

2.            Pennisi, E. (2012) Science 337, 1159, 1161

3.            Park, A. (2012) Don’t Trash These Genes. “Junk DNA may lead to valuable cures. in Time, Time, Inc., New York, N.Y.

4.            Maksakova, I. A., Mager, D. L., and Reiss, D. (2008) Cellular and molecular life sciences : CMLS 65, 3329-3347

5.            Slotkin, R. K., and Martienssen, R. (2007) Nature reviews. Genetics 8, 272-285

6.            Yang, N., and Kazazian, H. H., Jr. (2006) Nature structural & molecular biology 13, 763-771

7.            Hancks, D. C., and Kazazian, H. H., Jr. (2012) Current opinion in genetics & development 22, 191-203

8.            Sattler, M., and Griffin, J. D. (2001) International journal of hematology 73, 278-291

9.            Han, J. S., Szak, S. T., and Boeke, J. D. (2004) Nature 429, 268-274

10.          Reichmann, J., Crichton, J. H., Madej, M. J., Taggart, M., Gautier, P., Garcia-Perez, J. L., Meehan, R. R., and Adams, I. R. (2012) PLoS computational biology 8, e1002486

11.          Byun, H. M., Heo, K., Mitchell, K. J., and Yang, A. S. (2012) Journal of biomedical science 19, 13

Other research paper on ENCODE and Cancer were published on this Scientific Web site as follows:

Expanding the Genetic Alphabet and linking the genome to the metabolome

Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes

ENCODE Findings as Consortium

Reveals from ENCODE project will invite high synergistic collaborations to discover specific targets

ENCODE: the key to unlocking the secrets of complex genetic diseases

Impact of evolutionary selection on functional regions: The imprint of evolutionary selection on ENCODE regulatory elements is manifested between species and within human populations

Metabolite Identification Combining Genetic and Metabolic Information: Genetic association links unknown metabolites to functionally related genes

Advances in Separations Technology for the “OMICs” and Clarification of Therapeutic Targets

Commentary on Dr. Baker’s post “Junk DNA codes for valuable miRNAs: non-coding DNA controls Diabetes”

Cancer Genomics – Leading the Way by Cancer Genomics Program at UC Santa Cruz

Read Full Post »