Feeds:
Posts
Comments

Archive for the ‘Nutrition’ Category

ADDRESS FOR CORRESPONDENCE: Dr. Andrew M. Freeman, Division of Cardiology, Department of Medicine, National Jewish Health, 1400 Jackson Street, J317, Denver, Colorado 80206. E-mail: andrew@docandrew.com.

Item Level of Evidence Available and Included in This Paper Recommendations for Patients Dietary pattern with added fats, fried food, eggs, organ and processed meats, and sugar-sweetened beverages (Southern diet pattern) Prospective studies Avoid Dietary cholesterol RCTs and prospective studies along with meta-analyses Limit Canola oil RCT meta-analyses show improvement in lipids but no prospective studies or RCTs for CVD outcomes In moderation Coconut oil RCT meta-analyses and observational studies on adverse lipid effects. No prospective studies or RCTs for CVD outcomes Avoid Sunflower oil No prospective studies or RCTs for CVD outcomes In moderation Olive oil RCTs supporting improved CVD outcomes In moderation Palm oil RCTs and observation studies showing worsened CVD outcomes Avoid Antioxidant-rich fruits and vegetables RCTs and observational studies showing improved CVD outcomes and improvements in blood lipids Frequent Antioxidant supplements RCTs and prospective and observational studies show potential harm Avoid Nuts RCT and large prospective and meta-analysis studies showing improved CVD outcomes In moderation Green leafy vegetables Large meta-analyses and variably sized observational studies as well as a large prospective study Frequent Protein from plant sources Large observational and prospective studies Frequent Gluten-containing foods Observational studies and RCTs Avoid if sensitive or allergic
CENTRAL ILLUSTRATION Evidence for Cardiovascular Health Impact of Foods Reviewed Summary of heart-harmful and heart-healthy foods/diets Coconut oil and palm oil are high in saturated fatty acids and raise cholesterol Extra-virgin olive oil reduces some CVD outcomes when Blueberries and strawberries (>3 servings/week) induce protective antioxidants 30 g serving of nuts/day. Portion control is necessary to avoid weight gain.† Green leafy vegetables have significant cardioprotective properties when consumed daily Plant-based proteins are significantly more heart-healthy compared to animal proteins Eggs have a serum cholesterol-raising effect Juicing of fruits/vegetables with pulp removal increases Southern diets caloric concentration* (added fats and oils, fried foods, eggs, organ and processed meats, sugar-sweetened drinks) High-dose antioxidant supplements Juicing of fruits/vegetables without pulp removal* Gluten-containing foods (for people without gluten-related disease) Evidence of harm; limit or avoid Evidence of benefit; recommended Inconclusive evidence; for harm or benefit Sunflower oil and other liquid vegetable oils consumed in moderate quantities Freeman, A.M. et al. J Am Coll Cardiol. 2017;69(9):1172–87. This figure summarizes the foods discussed in this paper that should be consumed often, and others that should be avoided from a cardiovascular health perspective. *It is important to note that juicing becomes less of a benefit if calorie intake increases because of caloric concentration with pulp removal. †Moderate quantities are required to prevent caloric excess.
Source: J Am Coll Cardiol
Curated by: Emily Willingham, PhD
May 30, 2018

Takeaway

  • Antioxidants and niacin are tied to increased all-cause mortality, and other popular supplements offer little detectable cardiovascular (CV) benefit.
  • Folic acid and B6 and B12 might offer some stroke protection.

Why this matters

  • Supplements, including multivitamins, vitamins C and D, and calcium, remain hugely popular.
  • These authors evaluated supplement-related randomized controlled trials published before and since the US Preventive Services Task Force’s 2013 evidence review and 2014 recommendation statement.

Keyresults

  • 4 most common supplements (vitamins D and C, calcium, multivitamins) had no effect on CV outcomes, all-cause mortality.
  • With folic acid
    • Modest stroke reduction (2 studies: relative risk [RR], 0.80; P=.003).
    • CV disease reduction (5 studies: RR, 0.83; P=.002).
  • Other supplements
    • B-complex: reduced stroke risk, 9/12 trials (RR, 0.90; P=.04).
    • Niacin: taken with statin, tied to 10% increased all-cause mortality (P=.05).
    • Antioxidants: increased all-cause mortality, 21 trials (RR, 1.06; P=.05; without selenium: RR, 1.09 [95% CI, 1.04-1.13; P=.0002]).
    • No effect of vitamins A, B6, E, beta-carotene, minerals.

Study design

  • Meta-analysis, 179 randomized controlled trials (15 since 2013/2014).
  • Outcomes: all-cause/CV mortality, total CV disease risk/related outcomes.
  • Funding: Canada Research Chair Endorsement, others.

Limitations

  • No long-term cohort studies included.

  • Selected populations in clinical trials.

  • Supplement differences possible.

SOURCE

http://univadis.com/player/ykvkttzwr?m=1_20180531&partner=unl&rgid=5wrwznernxgefmacwqyebgmyb&ts=2018053100&o=tile_01_id

Other related articles in this Open Access Online Scientific Journal include the following: 

Nutrition: Articles of Note @PharmaceuticalIntelligence.com

Author and Curator: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/03/28/nutrition-articles-of-note-pharmaceuticalintelligence-com/

Read Full Post »

Benefits of Fiber in Diet

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

UPDATED on 1/15/2019

This is How Much Daily Fiber to Eat for Better Health – More appears better in meta-analysis — as in more than 30 g/day

by Ashley Lyles, Staff Writer, MedPage Today

In the systematic review, observational data showed a 15% to 30% decline in cardiovascular-related death, all-cause mortality, and incidence of stroke, coronary heart disease, type 2 diabetes, and colorectal cancer among people who consumed the most dietary fiber compared to those consuming the lowest amounts.

Whole grain intake yielded similar findings.

Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer.

https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(18)31809-9.pdf

Eating more dietary fiber was linked with lower risk of disease and death, a meta-analysis showed.

According to observational studies, risk was reduced most for a range of critical outcomes from all-cause mortality to stroke when daily fiber consumption was between 25 grams and 29 grams, reported Jim Mann, PhD, of University of Otago in Dunedin, New Zealand, and colleagues in The Lancet.

By upping daily intake to 30 grams or more, people had even greater prevention of certain conditions: colorectal and breast cancer, type 2 diabetes, and cardiovascular diseases, according to dose-response curves the authors created.

Quantitative guidelines relating to dietary fiber have not been available, the researchers said. With the GRADE method, they determined that there was moderate and low-to-moderate certainty of evidence for the benefits of dietary fiber consumption and whole grain consumption, respectively.

Included in the systematic review were 58 clinical trials and 185 prospective studies for a total of 4,635 adult participants with 135 million person-years of information (one trial in children was included, but analyzed separately from adults). Trials and prospective studies assessing weight loss, supplement use, and participants with a chronic disease were excluded.

 

Food is digested by bathing in enzymes that break down its molecules. Those molecular fragments then pass through the gut wall and are absorbed in our intestines. But our bodies make a limited range of enzymes, so that we cannot break down many of the tough compounds in plants. The term “dietary fiber” refers to those indigestible molecules. These dietary fibers are indigestible only to us. The gut is coated with a layer of mucus, on which sits a carpet of hundreds of species of bacteria, part of the human microbiome. Some of these microbes carry the enzymes needed to break down various kinds of dietary fibers.

 

Scientists at the University of Gothenburg in Sweden are running experiments that are yielding some important new clues about fiber’s role in human health. Their research indicates that fiber doesn’t deliver many of its benefits directly to our bodies. Instead, the fiber we eat feeds billions of bacteria in our guts. Keeping them happy means our intestines and immune systems remain in good working order. The scientists have recently reported that the microbes are involved in the benefits obtained from the fruits-and-vegetables diet. Research proved that low fiber diet decreases the gut bacteria population by tenfold.

 

Along with changes to the microbiome there were also rapid changes observed in the experimental mice. Their intestines got smaller, and its mucus layer thinner. As a result, bacteria wound up much closer to the intestinal wall, and that encroachment triggered an immune reaction. After a few days on the low-fiber diet, mouse intestines developed chronic inflammation. After a few weeks, they started putting on fat and developing higher blood sugar levels. Inflammation can help fight infections, but if it becomes chronic, it can harm our bodies. Among other things, chronic inflammation may interfere with how the body uses the calories in food, storing more of it as fat rather than burning it for energy.

 

In a way fiber benefits human health is by giving, indirectly, another source of food. When bacteria finished harvesting the energy in the dietary fiber, they cast off the fragments as waste. That waste — in the form of short-chain fatty acids — is absorbed by intestinal cells, which use it as fuel. But the gut’s microbes do more than just make energy. They also send messages. Intestinal cells rely on chemical signals from the bacteria to work properly. The cells respond to the signals by multiplying and making a healthy supply of mucus. They also release bacteria-killing molecules. By generating these responses, gut bacteria help to maintain a peaceful coexistence with the immune system. They rest on the gut’s mucus layer at a safe distance from the intestinal wall. Any bacteria that wind up too close get wiped out by antimicrobial poisons.

 

A diet of fiber-rich foods, such as fruits and vegetables, reduces the risk of developing diabetes, heart disease and arthritis. Eating more fiber seems to lower people’s mortality rate, whatever be the cause. Researchers hope that they will learn more about how fiber influences the microbiome to use it as a way to treat disorders. Lowering inflammation with fiber may also help in the treatment of immune disorders such as inflammatory bowel disease. Fiber may also help reverse obesity. They found that fiber supplements helped obese people to lose weight. It’s possible that each type of fiber feeds a particular set of bacteria, which send their own important signals to our bodies.

 

References:

 

https://www.nytimes.com/2018/01/01/science/food-fiber-microbiome-inflammation.html

 

 

https://www.ncbi.nlm.nih.gov/pubmed/29276171

 

https://www.ncbi.nlm.nih.gov/pubmed/29276170

 

https://www.ncbi.nlm.nih.gov/pubmed/29486139

 

https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/in-depth/fiber/art-20043983

 

https://nutritiouslife.com/eat-empowered/high-fiber-diet/

 

http://www.eatingwell.com/article/287742/10-amazing-health-benefits-of-eating-more-fiber/

 

http://www.cookinglight.com/eating-smart/nutrition-101/what-is-a-high-fiber-diet

 

https://www.helpguide.org/articles/healthy-eating/high-fiber-foods.htm

 

https://www.gicare.com/diets/high-fiber-diet/

 

Read Full Post »

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

The trillions of microbes in the human gut are known to aid the body in synthesizing key vitamins and other nutrients. But this new study suggests that things can sometimes be more adversarial.

 

Choline is a key nutrient in a range of metabolic processes, as well as the production of cell membranes. Researchers identified a strain of choline-metabolizing E. coli that, when transplanted into the guts of germ-free mice, consumed enough of the nutrient to create a choline deficiency in them, even when the animals consumed a choline-rich diet.

 

This new study indicate that choline-utilizing bacteria compete with the host for this nutrient, significantly impacting plasma and hepatic levels of methyl-donor metabolites and recapitulating biochemical signatures of choline deficiency. Mice harboring high levels of choline-consuming bacteria showed increased susceptibility to metabolic disease in the context of a high-fat diet.

 

DNA methylation is essential for normal development and has been linked to everything from aging to carcinogenesis. This study showed changes in DNA methylation across multiple tissues, not just in adult mice with a choline-consuming gut microbiota, but also in the pups of those animals while they developed in utero.

 

Bacterially induced reduction of methyl-donor availability influenced global DNA methylation patterns in both adult mice and their offspring and engendered behavioral alterations. This study reveal an underappreciated effect of bacterial choline metabolism on host metabolism, epigenetics, and behavior.

 

The choline-deficient mice with choline-consuming gut microbes also showed much higher rates of infanticide, and exhibited signs of anxiety, with some mice over-grooming themselves and their cage-mates, sometimes to the point of baldness.

 

Tests have also shown as many as 65 percent of healthy individuals carry genes that encode for the enzyme that metabolizes choline in their gut microbiomes. This work suggests that interpersonal differences in microbial metabolism should be considered when determining optimal nutrient intake requirements.

 

References:

 

https://news.harvard.edu/gazette/story/2017/11/harvard-research-suggests-microbial-menace/

 

http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(17)30304-9

 

https://www.ncbi.nlm.nih.gov/pubmed/23151509

 

https://www.ncbi.nlm.nih.gov/pubmed/25677519

 

http://mbio.asm.org/content/6/2/e02481-14

 

Read Full Post »

“Minerals in Medicine” –  40 Minerals that are crucial to Human Health and Biomedicine: Exhibit by NIH Clinical Center and The Smithsonian Institution National Museum of Natural History

Reporter: Aviva Lev-Ari, PhD, RN

 

Friday, September 9, 2016

NIH Clinical Center and The Smithsonian Institution partner to launch Minerals in Medicine Exhibition

What

The National Institutes of Health Clinical Center, in partnership with The Smithsonian Institution National Museum of Natural History, will open a special exhibition of more than 40 minerals that are crucial to human health and biomedicine. “Minerals in Medicine” is designed to enthrall and enlighten NIH Clinical Center’s patients, their loved ones, and the NIH community. Media are invited into America’s Research Hospital, the NIH Clinical Center, to experience this unique exhibition during a ribbon cutting ceremony on Monday September 12 at 4pm.

Beyond taking in the minerals’ arresting beauty, spectators can learn about their important role in keeping the human body healthy, and in enabling the creation of life-saving medicines and cutting edge medical equipment that is used in the NIH Clinical Center and healthcare facilities worldwide. The exhibition, which is on an eighteen-month loan from the National Museum of Natural History, includes specimens that were handpicked from the museum’s vast collection by NIH physicians in partnership with Smithsonian Institution geologists. Some of the minerals on display were obtained regionally as they are part of the Maryland and Virginia landscape.

Who

  • John I. Gallin, M.D., Director of the NIH Clinical Center
  • Jeffrey E. Post, Ph.D., Smithsonian Institution National Museum of Natural History, Chair of the Department of Mineral Sciences and Curator of the National Gem and Mineral Collection

When

Monday, September 12, 2016, 4:00 – 5:00 p.m.

Where

NIH Clinical Center (Building 10), 10 Center Drive, Bethesda, MD, 20892; 1st Floor near Admissions

How

RSVP encouraged, but not required, to attend in person. NIH Visitors Map: http://www.ors.od.nih.gov/maps/Pages/NIH-Visitor-Map.aspx

About the NIH Clinical Center: The NIH Clinical Center is the clinical research hospital for the National Institutes of Health. Through clinical research, clinician-investigators translate laboratory discoveries into better treatments, therapies and interventions to improve the nation’s health. More information: http://clinicalcenter.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

SOURCE

https://www.nih.gov/news-events/news-releases/nih-clinical-center-smithsonian-institution-partner-launch-minerals-medicine-exhibition

Read Full Post »

Nutrition & Aging: Dr. Simin Meydani appointed Vice Provost for Research @Tufts University

Reporter: Aviva Lev-Ari, PhD, RN

Article ID #207: Nutrition & Aging: Dr. Simin Meydani appointed Vice Provost for Research @Tufts University. Published on 8/1/2016

WordCloud Image Produced by Adam Tubman

  
 

 

August 1, 2016

 

Dear Members of the Tufts Community,

It is my great pleasure to announce that Simin Nikbin Meydani, DVM, PhD, will serve as Tufts University’s Vice Provost for Research (VPR). Simin will begin her new responsibilities on a part-time basis on August 15, and assume the office fully on October 1. During this transition period, Simin will continue to serve as Director of the USDA Jean Mayer Human Nutrition Research Center on Aging (HNRCA). As VPR she will remain research active, continuing to serve as Director of the HNRCA Nutritional Immunology Laboratory.

Dr. Meydani’s scientific interests include the basic mechanisms of aging, impact of nutrition on the aging process and age-associated diseases, role of nutrition on immune and inflammatory responses, and predisposition to infectious diseases in developed and less developed countries. Her research is multidisciplinary and expands from cell and molecular to animal and clinical investigations. She is an internationally recognized scholar with more than 300 publications and over $40M of continuous NIH, USDA, industry and foundation research funding as principal investigator or co-investigator and serves/has served on several NIH study sections, industry and foundation grant review committees and advisory boards.

Simin has been associated with Tufts University for more than 30 years, first as a scientist and then as a lab director at HNRCA. Since 2009, she has been the HNRCA Director. Over the past few years, Simin has led the very successful university-wide thematic area working group on Healthy and Active Aging. In addition to her HNRCA appointments, Simin is Professor of Nutrition and Immunology at the Friedman School of Nutrition Science and Policy and the Sackler Graduate Program in Immunology. Throughout her career, she has mentored many students, young scientists and faculty. Simin was President of the American Society of Nutrition in 2014-2015 and President of the American Aging Association in 2005-2006. She is the recipient of both societies’ most prestigious awards.

I wish to thank the deans, administrators, and Office of the Vice Provost (OVPR) staff who participated in this internal search. Please join me in congratulating Simin on her new role at Tufts, and thanking her in advance for the leadership and partnership she will provide.

Sincerely,

 

David Harris

Provost and Senior Vice President

SOURCE

From: announcements-all-request@elist.tufts.edu [mailto:announcements-all-request@elist.tufts.edu] On Behalf Of announcements@tufts.edu
Sent: Monday, August 01, 2016 11:59 AM
To: announcements-all@elist.tufts.edu
Subject: Announcing Dr. Simin Meydani as Vice Provost for Research

 

Read Full Post »

Consuming Risk Free Food & Beverages

Author: Debashree Chakrabarti, MSc., Biological Sciences, UMass Lowell (Expected May 2016)

Leading researchers and medical health professionals have raised their concern about the over all declining status of health and well being world wide. A rising trend in childhood obesity, cardiovascular diseases, clinical depression syndrome in young adults is reason enough to try and broaden the scope of plausible agents which result in people making bad health decisions.  As a witness to the emerging dietary trends adopted by children and young adults, it is natural to question the ethics of processed food and beverages industry. Does it seem reasonable the 2L bottles of soda cost $2 USD? There are more people claiming to not like water since it is flavorless. 100% fresh juices are subject to scrutiny for their lack of adequate fiber content and excess presence of sugars. Products with high fructose corn syrups, added preservatives in processed meat, ‘read to eat’ meals are agreeably cost effective and saves a lot of time, however the over riding damage is in the long run with deficient immune system and gain of unnatural toxins which the body finds hard to eliminate. Another marketing frenzy is visible in the neutraceuticals range of instant energy drinks, protein shakes and over the counter pills. The focus is towards having the visibly attractive, muscular body regardless of the compromised health. The companies do their bit of limiting the usage by adding a precaution statement and dosage remarks on the product labels. This is however not translated as useful information to the young consumers who do not foresee the detrimental outcomes in advance.

As the prices of insurance packages and medical aid is negotiated, the same effort needs invested in the regulation of consumer dietary products. We do not want a ban on Colas however, we do not also need them to be sold at prices cheaper than water. Fresh fruits and vegetables need not be price tagged astronomically driving population to adopt a risk driven lifestyle. Taking initiatives to promote urban farming and local gardens, reaching out to the people about their choices and how it impacts the global financial predicament is a need of the hour. We are ok with the attitude of “Don’t tell me how to live my life” in a world relying heavily on subsidized medicines. This has to change. Subsidized medicine is a privilege and should be benefited to those responsible. Researchers and big pharma companies are not the only stake holders in this fight against an exponentially growing illness of misinformed decisions. People need to be brought in and educated. This includes strong arming anyone who feels they have a right to abuse their health or the health of the world.

92ab5dd0-9921-4c26-9a7c-cdf20397cb42.jpg

Another paradigm to this discussion is the need for more extensive research hubs world wide and making the accessibility of advanced medicines available to the dense population regions in Asia, Africa and Middle East Arab countries which host the majority of the population and have the least of the resources. We need 100 Massachusetts world wide with cutting edge researchers deep diving and venture capitalists backing them up. A vision for 2050 must encompass every individual being aware of what it takes to damage a human body which is a very robust machine. Eating right and being able to afford health must not be difficult. Choices available in the stores must be rational to the level where the most ignorant of the lot is still consuming risk free substances. Given the fantastic evolutionary armaments we have, it takes a lot to be unwell and yet we seem to making it fairly easy to catch cold. Healthy people translate to healthy economy.

Read Full Post »

Nutrition: Articles of Note @PharmaceuticalIntelligence.com

Author and Curator: Larry H. Bernstein, MD, FCAP and Curator: Aviva Lev-Ari, PhD, RN

 

 

Nutrition and Wellbeing

 

Introduction 

Larry H. Bernstein, MD, FCAP

 

The chapters that follow are divided into three parts, but they are also a summary of 25 years of work with nutritional support research and involvement with nutritional support teams in Connecticut and New York, attendance and presentations at the American Association for Clinical Chemistry and the American Society for Parenteral and Enteral Nutrition, and long term collaborations with the surgeons Walter Pleban and Prof. Stanley Dudrick, and Prof. Yves Ingenbleek at the Laboratory of Nutrition, Department of Pharmacy, University Louis Pasteur, Strasbourg, Fr.   They are presented in the order: malnutrition in childhood; cancer, inflammation, and nutrition; and vegetarian diet and nutrition role in alternative medicines. These are not unrelated as they embrace the role of nutrition throughout the lifespan, the environmental impact of geo-ecological conditions on nutritional wellbeing and human development, and the impact of metabolism and metabolomics on the outcomes of human disease in relationship to severe inflammatory disorders, chronic disease, and cancer. Finally, the discussion emphasizes the negative impact of a vegan diet on long term health, and it reviews the importance of protein sources during phases of the life cycle.

Malnutrition in Childhood

 

Protein Energy Malnutrition and Early Child Development

Curator: Larry H. Bernstein, MD, FCAP

 

The Significant Burden of Childhood Malnutrition and Stunting

Curator: Larry H. Bernstein, MD, FCAP

 

Is Malnutrition the Cost of Civilization?

Curation: Larry H. Bernstein, MD, FCAP

 

Malnutrition in India, High Newborn Death Rate and Stunting of Children Age Under Five Years

Curator: Larry H Bernstein, MD, FCAP

 

Under Nutrition Early in Life may lead to Obesity

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Protein Malnutrition

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

Cancer, Inflammation and Nutrition

 

A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

Author and Curator: Larry H. Bernstein, MD, FACP

 

Cancer and Nutrition

Writer and Curator: Larry H. Bernstein, MD, FCAP

 

The history and creators of total parenteral nutrition

Curator: Larry H. Bernstein, MD, FCAP

 

Nutrition Plan

Curator: Larry H. Bernstein, MD, FCAP

 

Nutrition and Aging

Curator: Larry H Bernstein, MD, FCAP

 

Vegetarian Diet and Nutrition Role in Alternative Medicines

 

Plant-based Nutrition, Neutraceuticals and Alternative Medicine: Article Compilation the Journal PharmaceuticalIntelligence.com

Curator: Larry H. Bernstein, MD, FCAP

 

Metabolomics, Metabonomics and Functional Nutrition: the next step in nutritional metabolism and biotherapeutics

Reviewer and Curator: Larry H. Bernstein, MD, FCAP

 

2014 Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism Conference: San Francisco, Ca. Conference Dates: San Francisco, CA 3/18-21, 2014

Reporter: Aviva Lev-Ari, PhD, RN

 

Metabolomics: its Applications in Food and Nutrition Research

Reporter and Curator: Sudipta Saha, Ph.D.

 

Summary

Larry H. Bernstein, MD, FCAP 

The interest in human malnutrition became a major healthcare issue in the 1980’s with the publication of several seminal papers on hospital malnutrition. However, the basis for protein-energy malnutrition that focused on the distinction between kwashiorkor and marasmus was first identified in seminal papers by Ingenbleek and others:

Ingenbleek Y. La malnutrition protein-calorique chez l’enfant en bas age. Repercussions sur la function thyroidienne et les protein vectrices du serum. PhD Thesis. Acco Press. 1997. Univ Louvain.

Ingenbleek Y, Carpentier YA. A prognostic inflammatory and nutrition index scoring critically ill patients. Internat J Vit Nutr Res 1985; 55:91-101.

Ingenbleek Y, Young VR. Transthyretin (prealbumin) in health and disease. Nutritional implications. Ann Rev Nutr 1994; 14:495-533.

Ingenbleek Y, Hardillier E, Jung L. Subclinical protein malnutrition is a determinant of hyperhomocysteinemia. Nutrition 2002; 18:40-46.

It was these early papers that transfixed my attention, and drove me to establish early the transthyretin test by immunodiffusion and later by automated immunoassay at Bridgeport Hospital.

Among the important studies often referred to with respect to hospital malnutrition are:

  1. Hill GL, Blackett RL, Pickford I, Burkinshaw L, Young GA, Warren JV. Malnutrition in surgical patients: An unrecognised problem. Lancet.1977; 310:689–692. [PubMed]
  2. Bistrian BR, Blackburn GL, Vitale J, Cochrane D, Naylor J. Prevalence of malnutrition in general medical patients. JAMA. 1976; 235:1567–1570. [PubMed]
  3. Butterworth CE. The skeleton in the hospital closet. Nutrition Today.1974; 9:4–8.
  4. Buzby GP, Mullen JL, Matthews DC, Hobbs CL, Rosato EF. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980; 139:160–167.[PubMed]
  5. Dempsey DT, Mullen JL, Buzby GP. The link between nutritional status and clinical outcomes: can nutritional intervention modify it? Am. J. Clin. Nutr. 1988; 47:352–356. [PubMed]
  6. Detsky AS, Mclaughlin JR, Baker JP, Johnston N, Whittaker S, Mendleson RA, Jeejeebhoy KN. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987; 11:8–13. [PubMed]
  7. Scrimshaw NS, DanGiovanni JP. Synergism of nutrition, infection and immunity, an overview. J. Nutr. 1997; 133:S316–S321.
  8. Chandra RK. Nutrition and the immune system: an introduction. Am. J. Clin. Nutr. 1997; 66:460S–463S. [PubMed]
  9. Hill GL. Body composition reserach: Implications for the practice of clinical nutrition. JPEN J. Parenter. Enteral Nutr. 1992; 16:197. [PubMed]
  10. Smith PE, Smith AE. High-quality nutritional interventions reduce costs.Healthc. Financ. Manage. 1997; 5:66–69. [PubMed]
  11. Gallagher-Allred CR, Voss AC, Finn SC, McCamish MA. Malnutrition and clinical outcomes. J. Am. Diet. Assoc. 1996; 96:361–366. [PubMed]
  12. Ferguson M. Uncovering the skeleton in the hoapital closet. What next? Aust. J. Nutr. Diet. 2001; 58:83–84.
  13. Waitzberg DL, Caiaffa WT, Correia MITD. Hospital malnutrition: The Brazilian national survey (IBRANUTRI): a study of 4000 patients. Nutrition.2001; 17:573–580. [PubMed]

The work on hospital (and nursing home) treatment of malnutrition described in this series led to established standards. It first requires identifying a patient at malnutrition risk to be identified via either screening or assessment. This needs to be done on admission, and it has been made mandatory by health care accrediting bodies. In order to achieve this, dietitians need to have the confidence and knowledge to detect malnutrition, which is ideally done using a validated assessment for patient outcomes and financial benefits to be realized.

There is a worldwide relationship between ecological conditions, religious practices, soil conditions, availability of animal food sources, and altitude and river flows has not received the attention that evidence requires. We have seen that the emphasis on the Hindu tradition of not eating beef or having dairy is possibly problematic in the Ganges River basin. There may be other meat sources, but it is questionable that sufficient animal protein is available for the large population. The additional problem of water pollution is an aggravating situation. However, it is this region that is one of the most affected by stunting of children. We have a situation here and in other poor societies where veganism is present, and there is also voluntary veganism in western societies. This is not a practice that leads to any beneficial effect, and it has been shown to lead to a hyperhomocystenemia with the associated risk of arterial vascular disease. For those who voluntarily choose veganism, this is an unexpected result.

Met is implicated in a large spectrum of metabolic and enzyme activities and participates in the conformation of a large number of molecules of survival importance. Due to the fact that plant products are relatively Met-deficient, vegan subjects are more exposed than omnivorous to develop hyperhomocysteinemia – related disorders. Dietary protein restriction may promote supranormal Hcy concentrations which appears as the dark side of adaptive attempts developed by the malnourished and/or stressed body to preserve Met homeostasis.  Summing up, we assume that the low TTR concentrations reported in the blood and CSF of AD or MID patients result in impairment of their normal scavenging capacity and in the excessive accumulation of Hcy in body fluids, hence causing direct harmful damage to the brain and cardiac vasculature.

The content of these discussions has also included nutrition and cancer. This is perhaps least well understood. Reasons for such an association may well include chronic exposure to radiation damage, or persistent focal chronic inflammatory conditions. These would result in a cirumferential and repeated cycle of injury and repair combined with an underlying hypoxia. I have already established a fundamental relationship between inflammation, the cytokine storm, the decreased hepatic synthesis of essential plasma proteins, such as, albumin, transferrin, retinol-binding protein, and transthyretin, and the surge of steroid hormones. This results in an imbalance in the protein and free protein equilibrium of essential vitamins, the retinoids, and other circulating ligands transported. This is discussed in the ‘nutrition-inflammatory conundrum”. As stated, whatever the nutritional status and the disease condition, the actual transthyretin (TTR) plasma level is determined by opposing influences between anabolic and catabolic alterations. Rising TTR values indicate that synthetic processes prevail over tissue breakdown with a nitrogen balance (NB) turning positive as a result of efficient nutritional support and / or anti-inflammatory therapy. Declining TTR values are associated with an effect of maladjusted dietetic management and / or further worsening of the morbid condition.

Inflammatory disorders of any cause are initiated by activated leukocytes releasing a shower of cytokines working as autocrine, paracrine and endocrine molecules. Cytokines regulate the overproduction of acute-phase proteins (APPs), notably that of CRP, 1-acid glycoprotein (AGP), fibrinogen, haptoglobin, 1-antitrypsin and antichymotrypsin. APPs contribute in several ways to defense and repair mechanisms, being characterized by proper kinetic and functional properties. Interleukin-6 (IL-6) is regarded as a key mediator governing both the acute and chronic inflammatory processes, as documented by data recorded on burn, sepsis and AIDS patients. IL-6-NF possesses a high degree of homology with C/EBP-NF1 and competes for the same DNA response element of the IL-6 gene. IL-6-NF is not expressed under normal circumstances, explaining why APP concentrations are kept at baseline levels. In stressful conditions, IL-6-NF causes a dramatic surge in APP values with a concomitant suppressed synthesis of TTR.

Inadequate nutritional management, multiple injuries, occurrence of severe sepsis and metabolic complications result in persistent proteolysis and subnormal TTR concentrations. The evolutionary patterns of urinary N output and of TTR thus appear as mirror images of each other, which supports the view that TTR might well reflect the depletion of TBN in both acute and chronic disease processes. Even in the most complex stressful conditions, the synthesis of visceral proteins is submitted to opposing anabolic or catabolic influences yielding ultimately TTR as an end-product reflecting the prevailing tendency. Whatever the nutritional and/or inflammatory causal factors, the actual TTR plasma level and its course in process of time indicates the exhaustion or restoration of the body N resources, hence its likely (in)ability to assume defense and repair mechanisms.

In westernized societies, elderly persons constitute a growing population group. A substantial proportion of them may develop a syndrome of frailty characterized by weight loss, clumsy gait, impaired memory and sensorial aptitudes, poor physical, mental and social activities, depressive trends. Hallmarks of frailty combine progressive depletion of both structural and metabolic N compartments. Sarcopenia and limitation of muscle strength are naturally involutive events of normal ageing which may nevertheless be accelerated by cytokine-induced underlying inflammatory disorders. Depletion of visceral resources is substantiated by the shrinking of FFM and its partial replacement by FM, mainly in abdominal organs, and by the down-regulation of indices of growth and protein status. Due to reduced tissue reserves and diminished efficiency of immune and repair mechanisms, any stressful condition affecting old age may trigger more severe clinical impact whereas healing processes require longer duration with erratical setbacks. As a result, protein malnutrition is a common finding in most elderly patients with significantly increased morbidity and mortality rates.

TTR has proved to be a useful marker of nutritional alterations with prognostic implications in large bowel cancer, bronchopulmonary carcinoid tumor, ovarian carcinoma and squamous carcinoma of bladder. Many oncologists have observed a rapid TTR fall 2 or 3 months prior to the patient’s death. In cancer patients submitted to surgical intervention, most postoperative complications occurred in subjects with preoperative TTR  180 mg/L. Two independent studies came to the same conclusion that a TTR threshold of 100 mg/L is indicative of extremely weak survival likelihood and that these terminally ill patients better deserve palliative care rather than aggressive therapeutic strategies.

Thyroid hormones and retinoids indeed function in concert through the mediation of common heterodimeric motifs bound to DNA response elements. The data also imply that the provision of thyroid molecules within the CSF works as a relatively stable secretory process, poorly sensitive to extracerebral influences as opposed to the delivery of retinoid molecules whose plasma concentrations are highly dependent on nutritional and/or inflammatory alterations. This last statement is documented by mice experiments and clinical investigations showing that the level of TTR production by the liver operates as a limiting factor for retinol transport. Defective TTR synthesis determines the occurrence of secondary hyporetinolemia which nevertheless results from entirely different kinetic mechanisms in the two quoted studies.

Points to consider:

Protein energy malnutrition has an unlikely causal relationship to carcinogenesis. Perhaps the opposite is true. However, cancer has a relationship to protein energy malnutrition without any doubt. PEM is the consequence of cachexia, whether caused by dietary insufficiency, inflammatory or cancer.

Protein energy malnutrition leads to hyperhomocysteinemia, and by that means, the relationship of dietary insufficiency of methionine has a relationship to heart disease. This is the significant link between veganism and cardiovascular disease, whether voluntary or by unavailability of adequate source.

The last portion of these chapters deals with metabolomics and functional nutrition. This is an emerging and important area of academic interest. There is a significant relationship between these emerging studies and pathways to understanding natural products medicinal chemistry.

 

Read Full Post »

Inflammatory Disorders: Articles published @ pharmaceuticalintelligence.com

Curators: Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

This is a compilation of articles on Inflammatory Disorders that were published 

@ pharmaceuticalintelligence.com, since 4/2012 to date

There are published works that have not been included.  However, there is a substantial amount of material in the following categories:

  1. The systemic inflammatory response
    http://pharmaceuticalintelligence.com/2014/11/08/introduction-to-impairments-in-pathological-states-endocrine-disorders-stress-hypermetabolism-cancer/

    Summary and Perspectives: Impairments in Pathological States: Endocrine Disorders, Stress Hypermetabolism and Cancer

    Neutrophil Serine Proteases in Disease and Therapeutic Considerations

    What is the key method to harness Inflammation to close the doors for many complex diseases?

    Therapeutic Targets for Diabetes and Related Metabolic Disorders

    A Second Look at the Transthyretin Nutrition Inflammatory Conundrum

    Zebrafish Provide Insights Into Causes and Treatment of Human Diseases

    IBD: Immunomodulatory Effect of Retinoic Acid – IL-23/IL-17A axis correlates with the Nitric Oxide Pathway

    Role of Inflammation in Disease


    http://pharmaceuticalintelligence.com/2013/03/06/can-resolvins-suppress-acute-lung-injury/
    http://pharmaceuticalintelligence.com/2015/02/26/acute-lung-injury/

  2. sepsis
    http://pharmaceuticalintelligence.com/2012/10/20/nitric-oxide-and-sepsis-hemodynamic-collapse-and-the-search-for-therapeutic-options/
  3. vasculitis
    http://pharmaceuticalintelligence.com/2015/02/26/acute-lung-injury/

    The Molecular Biology of Renal Disorders: Nitric Oxide – Part III


    http://pharmaceuticalintelligence.com/2012/11/20/the-potential-for-nitric-oxide-donors-in-renal-function-disorders/

  4. neurodegenerative disease
    http://pharmaceuticalintelligence.com/2013/02/27/ustekinumab-new-drug-therapy-for-cognitive-decline-resulting-from-neuroinflammatory-cytokine-signaling-and-alzheimers-disease/

    Amyloid and Alzheimer’s Disease

    Alzheimer’s Disease – tau art thou, or amyloid

    Beyond tau and amyloid

    Remyelination of axon requires Gli1 inhibition

    Neurovascular pathways to neurodegeneration

    New Alzheimer’s Protein – AICD

    impairment of cognitive function and neurogenesis


    http://pharmaceuticalintelligence.com/2014/05/06/bwh-researchers-genetic-variations-can-influence-immune-cell-function-risk-factors-for-alzheimers-diseasedm-and-ms-later-in-life/

  5. cancer immunology
    http://pharmaceuticalintelligence.com/2013/04/12/innovations-in-tumor-immunology/

    Signaling of Immune Response in Colon Cancer

    Vaccines, Small Peptides, aptamers and Immunotherapy [9]

    Viruses, Vaccines and Immunotherapy

    Gene Expression and Adaptive Immune Resistance Mechanisms in Lymphoma

    The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology


  6. autoimmune diseases: rheumatoid arthritis, colitis, ileitis, …
    http://pharmaceuticalintelligence.com/2016/02/11/intestinal-inflammatory-pharmaceutics/
    http://pharmaceuticalintelligence.com/2016/01/07/two-new-drugs-for-inflammatory-bowel-syndrome-are-giving-patients-hope/
    http://pharmaceuticalintelligence.com/2015/12/16/contribution-to-inflammatory-bowel-disease-ibd-of-bacterial-overgrowth-in-gut-on-a-chip/

    Cytokines in IBD

    Autoimmune Inflammtory Bowel Diseases: Crohn’s Disease & Ulcerative Colitis: Potential Roles for Modulation of Interleukins 17 and 23 Signaling for Therapeutics

    Autoimmune Disease: Single Gene eliminates the Immune protein ISG15 resulting in inability to resolve Inflammation and fight Infections – Discovery @Rockefeller University

    Diarrheas – Bacterial and Nonbacterial

    Intestinal inflammatory pharmaceutics

    Biologics for Autoimmune Diseases – Cambridge Healthtech Institute’s Inaugural, May 5-6, 2014 | Seaport World Trade Center| Boston, MA

    Rheumatoid arthritis update


    http://pharmaceuticalintelligence.com/2013/08/04/the-delicate-connection-ido-indolamine-2-3-dehydrogenase-and-immunology/

    Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Hemeostasis of Immune Responses for Good and Bad

    Tofacitinib, an Oral Janus Kinase Inhibitor, in Active Ulcerative Colitis

    Approach to Controlling Pathogenic Inflammation in Arthritis

    Rheumatoid Arthritis Risk


    http://pharmaceuticalintelligence.com/2012/07/08/the-mechanism-of-action-of-the-drug-acthar-for-systemic-lupus-erythematosus-sle/

  7. T cells in immunity
    http://pharmaceuticalintelligence.com/2015/09/07/t-cell-mediated-immune-responses-signaling-pathways-activated-by-tlrs/

    Allogeneic Stem Cell Transplantation [9.3]

    Graft-versus-Host Disease

    Autoimmune Disease: Single Gene eliminates the Immune protein ISG15 resulting in inability to resolve Inflammation and fight Infections – Discovery @Rockefeller University

    Immunity and Host Defense – A Bibliography of Research @Technion

    The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

    Confined Indolamine 2, 3 dioxygenase (IDO) Controls the Hemeostasis of Immune Responses for Good and Bad


    http://pharmaceuticalintelligence.com/2013/04/14/immune-regulation-news/

Proteomics, metabolomics and diabetes

http://pharmaceuticalintelligence.com/2015/11/16/reducing-obesity-related-inflammation/

http://pharmaceuticalintelligence.com/2015/10/25/the-relationship-of-stress-hypermetabolism-to-essential-protein-needs/

http://pharmaceuticalintelligence.com/2015/10/24/the-relationship-of-s-amino-acids-to-marasmic-and-kwashiorkor-pem/

http://pharmaceuticalintelligence.com/2015/10/24/the-significant-burden-of-childhood-malnutrition-and-stunting/

http://pharmaceuticalintelligence.com/2015/04/14/protein-binding-protein-protein-interactions-therapeutic-implications-7-3/

http://pharmaceuticalintelligence.com/2015/03/07/transthyretin-and-the-stressful-condition/

http://pharmaceuticalintelligence.com/2015/02/13/neural-activity-regulating-endocrine-response/

http://pharmaceuticalintelligence.com/2015/01/31/proteomics/

http://pharmaceuticalintelligence.com/2015/01/17/proteins-an-evolutionary-record-of-diversity-and-adaptation/

http://pharmaceuticalintelligence.com/2014/11/01/summary-of-signaling-and-signaling-pathways/

http://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

http://pharmaceuticalintelligence.com/2014/10/24/diabetes-mellitus/

http://pharmaceuticalintelligence.com/2014/10/16/metabolomics-summary-and-perspective/

http://pharmaceuticalintelligence.com/2014/10/14/metabolic-reactions-need-just-enough/

http://pharmaceuticalintelligence.com/2014/11/03/introduction-to-protein-synthesis-and-degradation/

http://pharmaceuticalintelligence.com/2015/09/25/proceedings-of-the-nyas/

http://pharmaceuticalintelligence.com/2014/10/31/complex-models-of-signaling-therapeutic-implications/

http://pharmaceuticalintelligence.com/2014/03/21/what-is-the-key-method-to-harness-inflammation-to-close-the-doors-for-many-complex-diseases/

http://pharmaceuticalintelligence.com/2013/03/05/irf-1-deficiency-skews-the-differentiation-of-dendritic-cells/

http://pharmaceuticalintelligence.com/2012/11/26/new-insights-on-no-donors/

http://pharmaceuticalintelligence.com/2012/11/20/the-potential-for-nitric-oxide-donors-in-renal-function-disorders/

 

 

 

Read Full Post »

A Reconstructed View of Personalized Medicine

Author: Larry H. Bernstein, MD, FCAP

 

There has always been Personalized Medicine if you consider the time a physician spends with a patient, which has dwindled. But the current recognition of personalized medicine refers to breakthrough advances in technological innovation in diagnostics and treatment that differentiates subclasses within diagnoses that are amenable to relapse eluding therapies.  There are just a few highlights to consider:

  1. We live in a world with other living beings that are adapting to a changing environmental stresses.
  2. Nutritional resources that have been available and made plentiful over generations are not abundant in some climates.
  3. Despite the huge impact that genomics has had on biological progress over the last century, there is a huge contribution not to be overlooked in epigenetics, metabolomics, and pathways analysis.

A Reconstructed View of Personalized Medicine

There has been much interest in ‘junk DNA’, non-coding areas of our DNA are far from being without function. DNA has two basic categories of nitrogenous bases: the purines (adenine [A] and guanine [G]), and the pyrimidines (cytosine [C], thymine [T], and  no uracil [U]),  while RNA contains only A, G, C, and U (no T).  The Watson-Crick proposal set the path of molecular biology for decades into the 21st century, culminating in the Human Genome Project.

There is no uncertainty about the importance of “Junk DNA”.  It is both an evolutionary remnant, and it has a role in cell regulation.  Further, the role of histones in their relationship the oligonucleotide sequences is not understood.  We now have a large output of research on noncoding RNA, including siRNA, miRNA, and others with roles other than transcription. This requires major revision of our model of cell regulatory processes.  The classic model is solely transcriptional.

  • DNA-> RNA-> Amino Acid in a protein.

Redrawn we have

  • DNA-> RNA-> DNA and
  • DNA->RNA-> protein-> DNA.

Neverthess, there were unrelated discoveries that took on huge importance.  For example, since the 1920s, the work of Warburg and Meyerhoff, followed by that of Krebs, Kaplan, Chance, and others built a solid foundation in the knowledge of enzymes, coenzymes, adenine and pyridine nucleotides, and metabolic pathways, not to mention the importance of Fe3+, Cu2+, Zn2+, and other metal cofactors.  Of huge importance was the work of Jacob, Monod and Changeux, and the effects of cooperativity in allosteric systems and of repulsion in tertiary structure of proteins related to hydrophobic and hydrophilic interactions, which involves the effect of one ligand on the binding or catalysis of another,  demonstrated by the end-product inhibition of the enzyme, L-threonine deaminase (Changeux 1961), L-isoleucine, which differs sterically from the reactant, L-threonine whereby the former could inhibit the enzyme without competing with the latter. The current view based on a variety of measurements (e.g., NMR, FRET, and single molecule studies) is a ‘‘dynamic’’ proposal by Cooper and Dryden (1984) that the distribution around the average structure changes in allostery affects the subsequent (binding) affinity at a distant site.

What else do we have to consider?  The measurement of free radicals has increased awareness of radical-induced impairment of the oxidative/antioxidative balance, essential for an understanding of disease progression.  Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Various studies have confirmed that metals activate signaling pathways and the carcinogenic effect of metals has been related to activation of mainly redox sensitive transcription factors, involving NF-kappaB, AP-1 and p53.

I have provided mechanisms explanatory for regulation of the cell that go beyond the classic model of metabolic pathways associated with the cytoplasm, mitochondria, endoplasmic reticulum, and lysosome, such as, the cell death pathways, expressed in apoptosis and repair.  Nevertheless, there is still a missing part of this discussion that considers the time and space interactions of the cell, cellular cytoskeleton and extracellular and intracellular substrate interactions in the immediate environment.

There is heterogeneity among cancer cells of expected identical type, which would be consistent with differences in phenotypic expression, aligned with epigenetics.  There is also heterogeneity in the immediate interstices between cancer cells.  Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. In the case of breast cancer, there is interaction with estrogen , and we refer to an androgen-unresponsive prostate cancer.

Finally,  the interaction between enzyme and substrates may be conditionally unidirectional in defining the activity within the cell.  The activity of the cell is dynamically interacting and at high rates of activity.  In a study of the pyruvate kinase (PK) reaction the catalytic activity of the PK reaction was reversed to the thermodynamically unfavorable direction in a muscle preparation by a specific inhibitor. Experiments found that in there were differences in the active form of pyruvate kinase that were clearly related to the environmental condition of the assay – glycolitic or glyconeogenic. The conformational changes indicated by differential regulatory response were used to present a dynamic conformational model functioning at the active site of the enzyme. In the model, the interaction of the enzyme active site with its substrates is described concluding that induced increase in the vibrational energy levels of the active site decreases the energetic barrier for substrate induced changes at the site. Another example is the inhibition of H4 lactate dehydrogenase, but not the M4, by high concentrations of pyruvate. An investigation of the inhibition revealed that a covalent bond was formed between the nicotinamide ring of the NAD+ and the enol form of pyruvate.  The isoenzymes of isocitrate dehydrogenase, IDH1 and IDH2 mutations occur in gliomas and in acute myeloid leukemias with normal karyotype. IDH1 and IDH2 mutations are remarkably specific to codons that encode conserved functionally important arginines in the active site of each enzyme. In this case, there is steric hindrance by Asp279 where the isocitrate substrate normally forms hydrogen bonds with Ser94.

Personalized medicine has been largely viewed from a lens of genomics.  But genomics is only the reading frame.  The living activities of cell processes are dynamic and occur at rapid rates.  We have to keep in mind that personalized in reference to genotype is not complete without reconciliation of phenotype, which is the reference to expressed differences in outcomes.

 

Read Full Post »

Nuts and health in aging

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

 

Nut consumption and age-related disease

Giuseppe GrossoRamon Estruch

MATURITAS · OCT 2015     http://dx.doi.org/10.1016/j.maturitas.2015.10.014

Current knowledge on the effects of nut consumption on human health has rapidly increased in recent years and it now appears that nuts may play a role in the prevention of chronic age-related diseases. Frequent nut consumption has been associated with better metabolic status, decreased body weight as well as lower body weight gain over time and thus reduce the risk of obesity. The effect of nuts on glucose metabolism, blood lipids, and blood pressure are still controversial. However, significant decreased cardiovascular risk has been reported in a number of observational and clinical intervention studies. Thus, findings from cohort studies show that increased nut consumption is associated with a reduced risk of cardiovascular disease and mortality (especially that due to cardiovascular-related causes). Similarly, nut consumption has been also associated with reduced risk of certain cancers, such as colorectal, endometrial, and pancreatic neoplasms. Evidence regarding nut consumption and neurological or psychiatric disorders is scarce, but a number of studies suggest significant protective effects against depression, mild cognitive disorders and Alzheimer’s disease. The underlying mechanisms appear to include antioxidant and anti-inflammatory actions, particularly related to their mono- and polyunsaturated fatty acids (MUFA and PUFA, as well as vitamin and polyphenol content. MUFA have been demonstrated to improve pancreatic beta-cell function and regulation of postprandial glycemia and insulin sensitivity. PUFA may act on the central nervous system protecting neuronal and cell-signaling function and maintenance. The fiber and mineral content of nuts may also confer health benefits. Nuts therefore show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people. Their association with decreased mortality suggests a potential in reducing disease burden, including cardiovascular disease, cancer, and cognitive impairments.

 

Global life expectancy has increased from 65 years in 1990 to about 71 years in 2013 [1]. As life expectancy has increased, the number of healthy years lost due to disability has also risen in most countries, consistent with greater morbidity [2]. Reduction of mortality rates in developed countries has been associated with a shift towards more chronic non-communicable diseases [1]. Cardiovascular diseases (CVDs) and related risk factors, such as hypertension, diabetes mellitus, hypercholesterolemia, and obesity are the top causes of death globally, accounting for nearly one-third of all deaths worldwide [3]. Equally, the estimated incidence, mortality, and disability- adjusted life-years (DALYs) for cancer rose to 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs, with the highest impact of prostate and breast cancer in men and women, respectively [4]. Depression is a leading cause of disability worldwide (in terms of total years lost due to disability), especially in high-income countries, increasing from 15th to 11th rank (37% increase) and accounting for 18% of total DALYs (almost 100 million DALYs) [5]. Overall, the global rise in chronic non-communicable diseases is congruent with a similar rise in the elderly population. The proportion of people over the age of 60 is growing faster than any other age group and is estimated to double from about 11% to 22% within the next 50 years [6]. Public health efforts are needed to face this epidemiological and demographic transition, both improving the healthcare systems, as well as assuring a better health in older people. Accordingly, a preventive approach is crucial to dealing with an ageing population to reduce the burden of chronic disease.

In this context, lifestyle behaviors have demonstrated the highest impact for older adults in preventing and controlling the morbidity and mortality due to non- communicable diseases [7]. Unhealthy behaviors, such as unbalanced dietary patterns, lack of physical activity and smoking, play a central role in increasing both cardiovascular and cancer risk [7]. Equally, social isolation and depression in later life may boost health decline and significantly contribute to mortality risk [8]. The role of diet in prevention of disability and death is a well-established factor, which has an even more important role in geriatric populations. Research has focused on the effect of both single foods and whole dietary patterns on a number of health outcomes, including mortality, cardiovascular disease (CVD), cancer and mental health disorders (such as cognitive decline and depression) [9-13]. Plantbased dietary patterns demonstrate the most convincing evidence in preventing chronic non-communicable diseases [14-17]. Among the main components (including fruit and vegetables, legumes and cereals), only lately has attention focused on foods such as nuts. Knowledge on the effect of nut consumption on human health has increased rapidly in recent years. The aim of this narrative review is to examine recent evidence regarding the role of nut consumption in preventing chronic disease in older people.

Tree nuts are dry fruits with an edible seed and a hard shell. The most popular tree nuts are almonds (Prunus amigdalis), hazelnuts (Corylus avellana), walnuts (Juglans regia), pistachios (Pistachia vera), cashews (Anacardium occidentale), pecans (Carya illinoiensis), pine nuts (Pinus pinea), macadamias (Macadamia integrifolia), Brazil nuts (Bertholletia excelsa), and chestnuts (Castanea sativa). When considering the “nut” group, researchers also include peanuts (Arachis hypogea), which technically are groundnuts. Nuts are nutrient dense foods, rich in proteins, fats (mainly unsaturated fatty acids), fiber, vitamins, minerals, as well as a number of phytochemicals, such as phytosterols and polyphenols [18]. Proteins account for about 10-25% of energy, including individual aminoacids, such as L-arginine, which is involved in the production of nitric oxide (NO), an endogenous vasodilatator [19].

The fatty acids composition of nuts involves saturated fats for 415% and unsaturated fatty acids for 30-60% of the content. Unsaturated fatty acids are different depending on the nut type, including monounsaturated fatty acids (MUFA, such as oleic acid in most of nuts, whereas polyunsaturated fatty acids (PUFA, such as alpha-linolenic acid) in pine nuts and walnuts [20]. Also fiber content is similar among most nut types (about 10%), although pine nuts and cashews hold the least content. Vitamins contained in nuts are group B vitamins, such as B6 (involved in many aspects of macronutrient metabolism) and folate (necessary for normal cellular function, DNA synthesis and metabolism, and homocysteine detoxification), as well as tocopherols, involved in anti-oxidant mechanisms [21]. Among minerals contained in vegetables, nuts have an optimal content in calcium, magnesium, and potassium, with an extremely low amount of sodium, which is implicated on a number of pathological conditions, such as bone demineralization, hypertension and insulin resistance[22]. Nuts are also rich in phytosterols, non-nutritive components of certain plant-foods that exert both structural (at cellular membrane phospholipids level) and hormonal (estrogen-like) activities [23]. Finally, nuts have been demonstrated to be a rich source of polyphenols, which account for a key role in their antioxidant and anti-inflammatory effects.

 

Metabolic disorders are mainly characterized by obesity, hypertension, dyslipidemia, and hyperglycemia/ hyperinsulinemia/type-2 diabetes, all of which act synergistically to increase morbidity and mortality of aging population.

Obesity Increasing high carbohydrate and fat food intake in the last decades has contributed significantly to the rise in metabolic disorders. Nuts are energy-dense foods that have been thought to be positively associated with increased body mass index (BMI). As calorie-dense foods, nuts may contain 160–200 calories per ounce. The recommendation from the American Heart  Association to consume 5 servings per week (with an average recommended serving size of 28 g) corresponds to a net increase of 800–1000 calories per week, which may cause weight gain. However, an inverse relation between the frequency of nut consumption and BMI has been observed in large cohort studies [24]. Pooling the baseline observations of BMI by category of nut consumption in 5 cohort studies found a significant decreasing trend in BMI values with increasing nut intake [24]. While the evidence regarding nut consumption and obesity is limited, findings so far are encouraging [25, 26]. When the association between nut consumption and body weight has been evaluated longitudinally over time, nut intake was associated with a slightly lower risk of weight gain and obesity [25]. In the Nurses’ Health Study II (NHS II), women who eat nuts ≥2 times per week had slightly less weight gain (5.04 kg) than did women who rarely ate nuts (5.55 kg) and marginally significant 23% lower risk of obesity after 9-year follow-up [25]. Further evaluation of the NHS II data and the Physicians’ Health Study (PHS) comprising a total of 120,877 US women and men and followed up to 20 years revealed that 4-y weight change was inversely associated with a 1-serving increment in the intake of nuts (20.26 kg) [27]. In the “Seguimiento Universidad de Navarra” (SUN) cohort study, a significant decreased weight change has been observed over a period of 6 years [26]. After adjustment for potential confounding factors the analysis was no longer significant, but overall no weight gain associated with >2 servings per week of nuts has been observed. Finally, when considering the role of the whole diet on body weight, a meta-analysis of 31 clinical trials led to the conclusion of a null effect of nut intake on body weight, BMI, and waist circumference [28].

Glucose metabolism and type-2 diabetes The association between nut consumption and risk of type-2 diabetes in prospective cohort studies is controversial [29-32]. A pooled analysis relied on the examination of five large cohorts, including the NHS, the Shanghai Women’s Health Study, the Iowa Women’s Health Study, and the PHS, and two European studies conducted in Spain (the PREDIMED trial) and Finland including a total of more than 230,000 participants and 13,000 cases, respectively. Consumption of 4 servings per week was associated with 13% reduced risk of type-2 diabetes without effect modification by age [29]. In contrast, other pooled analyses showed non-significant reduction of risk for increased intakes of nuts, underlying that the inverse association between the consumption of nuts and diabetes was attenuated after adjustment for confounding factors, including BMI [30]. However, results from experimental studies showed promising results. Thus, nut consumption has been demonstrated to exert beneficial metabolic effects due to their action on post-prandial glycemia an insulin sensitivity. A number of RCTs have demonstrated positive effects of nut consumption on post-prandial glycemia in healthy individuals [33-38]. Moreover, a meta-analysis of RCTs on the effects of nut intake on glycemic control in diabetic individuals including 12 trials and a total of 450 participants showed that diets with an emphasis on nuts (median dose = 56 g/d) significantly lowered HbA1c (Mean Difference [MD] : -0.07%; 95% confidence interval [CI]: -0.10, -0.03%; P = 0.0003) and fasting glucose (MD : -0.15 mmol/L; 95% CI: -0.27, -0.02 mmol/L; P = 0.03) compared with control diets [39]. No significant treatment effects were observed for fasting insulin and homeostatic model assessment (HOMA-IR), despite the direction of effect favoring diet regimens including nuts.

Blood lipids and hypertension Hypertension and dyslipidemia are major risk factors for CVD. Diet alone has a predominant role in blood pressure and plasma lipid homeostasis. One systematic review [40] and 3 pooled quantitative analyses of RCTs [41-43] evaluated the effects of nut consumption on lipid profiles. A general agreement was relevant on certain markers, as daily consumption of nuts (mean = 67 g/d) induced a pooled reduction of total cholesterol concentration (10.9 mg/dL [5.1% change]), low-density lipoprotein cholesterol concentration (LDL-C) (10.2 mg/dL [7.4% change]), ratio of LDL-C to high-density lipoprotein cholesterol concentration (HDL-C) (0.22 [8.3% change]), and ratio of total cholesterol concentration to HDL-C (0.24 [5.6% change]) (P <0.001 for all) [42]. All meta-analyses showed no significant effects of nut (including walnut) consumption on HDL cholesterol or triglyceride concentrations in healthy individuals [41], although reduced plasma triglyceride levels were found in individuals with hypertriglyceridemia [42]. Interestingly, the effects of nut consumption were dose related, and different types of nuts had similar effects on blood lipid concentrations.

There is only limited evidence from observational studies to suggest that nuts have a protective role on blood pressure. A pooled analysis of prospective cohort studies on nut consumption and hypertension reported a decreased risk associated with increased intake of nuts [32]. Specifically, only a limited number of cohort studies have been conducted exploring the association between nut consumption and hypertension (n = 3), but overall reporting an 8% reduced risk of hypertension for individuals consuming >2 servings per week (Risk Ratio [RR] = 0.92, 95% CI: 0.87-0.97) compared with never/rare consumers, whereas consumption of nuts at one serving per week had similar risk estimates (RR = 0.97, 95% CI: 0.83, 1.13) [32]. These findings are consistent with results obtained in a pooled analysis of 21 experimental studies reporting the effect of consuming single or mixed nuts (in doses ranging from 30 to 100 g/d) on systolic (SBP) and diastolic blood pressure (DBP) [44]. A pooled analysis found a significant reduction in SBP in participants without type2 diabetes [MD: -1.29 mmHg; 95% CI: -2.35, -0.22; P = 0.02] and DBP (MD: -1.19; 95% CI: -2.35, -0.03; P = 0.04), whereas subgroup analyses of different nut types showed that pistachios, but not other nuts, significantly reduced SBP (MD: -1.82; 95% CI: -2.97, -0.67; P = 0.002) and SBP (MD: -0.80; 95% CI: -1.43, -0.17; P = 0.01) [44].

Nut consumption and CVD risk Clustering of metabolic risk factors occurs in most obese individuals, greatly increasing risk of CVD. The association between nut consumption and CVD incidence [29-31] and mortality [24] has been explored in several pooled analyses of prospective studies. The overall risk calculated for CVD on a total of 8,862 cases was reduced by 29% for individuals consuming 7 servings per week (RR = 0.71, 95% CI: 0.59, 0.85) [30]. A meta-analysis including 9 studies on coronary artery disease (CAD) including 179,885 individuals and 7,236 cases, reporting that 1-serving/day increment would reduce risk of CAD of about 20% (RR = 0.81, 95% CI: 0.72, 0.91) [31]. Similar risk estimates were calculated for ischemic heart disease (IHD), with a comprehensive reduced risk of about 25-30% associated with a daily intake of nuts [29, 30]. Findings from 4 prospective studies have been pooled to estimate the association between nut consumption and risk of stroke, and a non-significant/borderline reduced risk was found [29-31, 45]. CVD mortality was explored in a recent meta-analysis including a total of 354,933 participants, 44,636 cumulative incident deaths, and 3,746,534 cumulative person-years [24]. One serving of nuts per week and per day resulted in decreased risk of CVD mortality (RR = 0.93, 95% CI: 0.88, 0.99 and RR =0.61, 95% CI: 0.42, 0.91, respectively], primarily driven by decreased coronary artery disease (CAD) deaths rather than stroke deaths [24]. Overall, all pooled analyses demonstrated a significant association between nut consumption and cardiovascular health. However, it has been argued that nut consumption was consistently associated with healthier background characteristics reflecting overall healthier lifestyle choices that eventually lead to decreased CVD mortality risk.

Nut consumption and cancer risk Cancer is one of the leading causes of death in the elderly population. After the evaluation of the impact on cancer burden of food and nutrients, it has been concluded that up to one third of malignancies may be prevented by healthy lifestyle choices. Fruit and vegetable intake has been the focus of major attention, but studies on nut consumption and cancer are scarce. A recent metaanalysis pooled together findings of observational studies on cancer incidence, including a total of 16 cohort and 20 casecontrol studies comprising 30,708 cases, compared the highest category of nut consumption with the lowest category and found a lower risk of any cancer of 25% (RR = 0.85, 95% CI: 0.86, 0.95) [46]. When the analysis was conducted by cancer site, highest consumption of nuts was associated with decreased risk of colorectal (RR = 0.76, 95% CI: 0.61, 0.96), endometrial (RR = 0.58, 95% CI: 0.43, 0.79), and pancreatic cancer (RR = 0.71, 95% CI: 0.51, 0.99), with only one cohort study was conducted on the last [46]. The potential protective effects of nut consumption on cancer outcomes was supported also by pooled analysis of 3 cohort studies [comprising the PREDIMED, the NHS, the HPS, and the Health Professionals Follow-Up Study (HPFS) cohorts] showing a decreased risk of cancer death for individuals consuming 3-5 servings of nuts per week compared with never eaters (RR = 0.86, 95% CI: 0.75, 0.98) [24]. The analysis was recently updated by including results from the Netherlands Cohort Study reaching a total of 14,340 deaths out of 247,030 men and women observed, confirming previous results with no evidence of between-study heterogeneity (RR = 0.85, 95% CI: 0.77, 0.93) [47]. However, a dose- response relation showed the non-linearity of the association, suggesting that only moderate daily consumption up to 5 g reduced risk of cancer mortality, and extra increased intakes were associated with no further decreased risk.

Nut consumption and affective/cognitive disorders Age-related cognitive decline is one of the most detrimental health problems in older people. Cognitive decline is a paraphysiological process of aging, but timing and severity of onset has been demonstrated to be affected by modifiable lifestyle factors, including diet. In fact, the nature of the age- related conditions leading to a mild cognitive impairment (MCI) differs by inflammation-related chronic neurodegenerative diseases, such as dementia, Alzheimer’s disease, Parkinson’s disease and depression. Evidence restricted to nut consumption alone is scarce, but a number of studies have been conducted on dietary patterns including nuts as a major component. A pooled analysis synthesizing findings of studies examining the association between adherence to a traditional Mediterranean diet and risk of depression (n = 9), cognitive decline (n = 8), and Parkinson’s disease (n = 1) showed a reduction of risk of depression (RR = 0.68, 95% CI: 0.54, 0.86) and cognitive impairment (RR = 0.60, 95% CI: 0.43, 0.83) in individuals with increased dietary adherence [10].

The study that first found a decreased risk of Alzheimer’s disease in individuals highly adherent to the Mediterranean diet was conducted in over 2,000 individuals in the Washington/Hamilton Heights-Inwood Columbia Aging Project (WHICAP), a cohort of non-demented elders aged 65 and older living in a multi-ethnic community of Northern Manhattan in the US (Hazard Ratio [HR] = 0.91, 95% CI: 0.83, 0.98) [48]. These results have been replicated in further studies on the Mediterranean diet, however nut consumption was not documented [49, 50]. A number of observational studies also demonstrated a significant association between this dietary pattern and a range of other cognitive outcomes, including slower global cognitive decline [51]. However, evidence from experimental studies is limited to the PREDIMED trial, providing interesting insights on the association between the Mediterranean diet supplemented with mixed nuts and both depression and cognitive outcomes. Regarding depression, the nutritional intervention with a Mediterranean diet supplemented with nuts showed a lower risk of about 40% in participants with type-2 diabetes (RR = 0.59, 95% CI: 0.36, 0.98) compared with the control diet [52]. However the effect was not significant in the whole cohort overall [52]. Regarding cognitive outcomes after a mean follow-up of 4.1 years, findings from the same trial showed significant improvements in memory and global cognition tests for individuals allocated to the Mediterranean diet supplemented with nuts [adjusted differences: -0.09 (95% CI: -0.05, 0.23), P = 0.04 and -0.05 (95% CI: -0.27, 0.18), P = 0.04, respectively], compared to control group, showing that Mediterranean diet plus mixed nuts is associated with improved cognitive function [53].

 

Potential mechanisms of protection of nut consumption Despite the exact mechanisms by which nuts may ameliorate human health being largely unknown, new evidence has allowed us to start to better understand the protection of some high-fat, vegetable, energy-dense foods such as nuts. Non- communicable disease burden related with nutritional habits is mainly secondary to exaggerated intakes of refined sugars and saturated fats, such as processed and fast- foods. Nuts provide a number of nutrient and non-nutrient compounds and it is only recently that scientists have tried to examine their effects on metabolic pathways.

Metabolic and cardiovascular protection With special regard to body weight and their potential effects in decreasing the risk of obesity (or weight gain, in general), nuts may induce satiation (reduction in the total amount of food eaten in a single meal) and satiety (reduction in the frequency of meals) due to their content in fibers and proteins, which are associated with increased release of glucagon-like protein 1 (GLP-1) and cholecystokinin (CCK), gastrointestinal hormones with satiety effects [54, 55]. The content in fiber of nuts may also increase thermogenesis and resting energy expenditure, and reduce post- prandial changes of glucose, thus ameliorating inflammation and insulin resistance. Moreover, the specific content profile of MUFA and PUFA provides readily oxidized fats than saturated or trans fatty acids, leading to reduced fat accumulation [56, 57]. The beneficial effects of nuts toward glucose metabolism may be provided by their MUFA content that improves the efficiency of pancreatic beta-cell function by enhancing the secretion of GLP1, which in turn helps the regulation of postprandial glycemia and insulin sensitivity [58]. MUFA and PUFA are also able to reduce serum concentrations of the vasoconstrictor thromboxane 2, which might influence blood pressure regulation. Together with polyphenols and anti-oxidant vitamins, nuts may also ameliorate inflammatory status at the vascular level, reducing circulating levels of soluble cellular adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, which are released from the activated endothelium and circulating monocytes [59]. Moreover, nuts may improve vascular reactivity due to their content in L-arginine, which is a potent precursor of the endogenous vasodilator nitric oxide. Nuts content in microelements is characterized by a mixture that may exert a direct effect in modulating blood pressure, including low content of sodium and richness in magnesium, potassium and calcium, which may interact to beneficially influence blood pressure
Despite the exact mechanisms by which nuts may ameliorate human health being largely unknown, new evidence has allowed us to start to better understand the protection of some high-fat, vegetable, energy-dense foods such as nuts. Non- communicable disease burden related with nutritional habits is mainly secondary to exaggerated intakes of refined sugars and saturated fats, such as processed and fast- foods. Nuts provide a number of nutrient and non-nutrient compounds and it is only recently that scientists have tried to examine their effects on metabolic pathways.

Cancer protection The potential mechanisms of action of nuts that may intervene in the prevention of cancer have not been totally elucidated. Numerous hypotheses have been proposed on the basis of basic research exploring the antioxidant and anti-inflammatory compounds characterizing nuts [61]. Vitamin E can regulate cell differentiation and proliferation, whereas polyphenols (particularly flavonoids such as quercetin and stilbenes such as resveratrol) have been shown to inhibit chemically-induced carcinogenesis [62]. Polyphenols may regulate the inflammatory response and immunological activity by acting on the formation of the prostaglandins and pro-inflammatory cytokines, which may be an important mechanism involved in a number of cancers, including colorectal, gastric, cervical and pancreatic neoplasms [62]. Among other compounds contained in nuts, dietary fiber may exert protective effects toward certain cancers (including, but not limited to colorectal cancer) by the aforementioned metabolic effects as well as increasing the volume of feces and anaerobic fermentation, and reducing the length of intestinal transit. As a result, the intestinal mucosa is exposed to carcinogens for a reduced time and the carcinogens in the colon are diluted [62]. Finally, there is no specific pathway demonstrating the protective effect of PUFA intake against cancer, but their interference with cytokines and prostaglandin metabolism may inhibit a state of chronic inflammation that may increase cancer risk [63].

Cognitive aging and neuro-protection There is no universal mechanism of action for nuts with regard to age-related conditions. A number of systemic biological conditions, such as oxidative stress, inflammation, and reduced cerebral blood flow have been considered as key factors in the pathogenesis of both normal cognitive ageing and chronic neurodegenerative disease [64]. Nuts, alone or as part of healthy dietary patterns, may exert beneficial effects due to their richness in antioxidants, including vitamins, polyphenols and unsaturated fatty acids, that may be protective against the development of cognitive decline and depression [65, 66]. Both animal studies and experimental clinical trials demonstrated vascular benefits of nuts, including the aforementioned lowering of inflammatory markers and improved endothelial function, which all appear to contribute to improved cognitive function [67]. The antioxidant action may affect the physiology of the ageing brain directly, by protecting neuronal and cell-signaling function and maintenance. Moreover, certain compounds contained in nuts may directly interact with the physiology and functioning of the brain. For instance, walnuts are largely composed of PUFA, especially ALA, which have been suggested to induce structural change in brain areas associated with affective experience [66]. Moreover, PUFA have been associated with improved symptoms in depressed patients, suggesting an active role in the underlying pathophysiological mechanisms [68]. Thus, the mechanisms of action of nut consumption on age-related cognitive and depressive disorders are complex, involving direct effects on brain physiology at the neuronal and cellular level and indirect effects by influencing inflammation.

 

Summary From an epidemiological point of view, nut eaters have been associated with overall healthier lifestyle habits, such as increased physical activity, lower prevalence of smoking, and increased consumption of fruits and vegetables [24]. These variables represent strong confounding factors in determining the effects of nuts alone on human health and final conclusions cannot be drawn. Nevertheless, results from clinical trials are encouraging. Nuts show promise as useful adjuvants to prevent, delay or ameliorate a number of chronic conditions in older people.

Read Full Post »

« Newer Posts - Older Posts »