Feeds:
Posts
Comments

AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

Curator: Aviva Lev-Ari, PhD, RN

We had researched the topic of AI Initiatives in Big Pharma in the following article:

  • Authentic Relevance of LPBI Group’s Portfolio of IP as Proprietary Training Data Corpus for AI Initiatives at Big Pharma

https://pharmaceuticalintelligence.com/2025/11/15/authentic-relevance-of-lpbi-groups-portfolio-of-ip-as-proprietary-training-data-corpus-for-ai-initiatives-at-big-pharma/

 

We are publishing a Series of Five articles that demonstrate the Authentic Relevance of Five of the Ten Digital IP Asset Classes in LPBI Group’s Portfolio of IP for AI Initiatives at Big Pharma.

  • For the Ten IP Asset Classes in LPBI Group’s Portfolio, See

https://pharmaceuticalintelligence.com/portfolio-of-ip-assets/

The following Five Digital IP Asset classes are positioned as Proprietary Training Data and Inference for Foundation Models in Health care.
This Corpus comprises of Live Repository of Domain Knowledge Expert-Written Clinical Interpretations of Scientific Findings codified in the following five Digital IP ASSETS CLASSES:
 IP Asset Class I: Journal: PharmaceuticalIntelligence.com
6,250 scientific articles (70% curations, creative expert opinions.  30% scientific reports).
2.4MM Views, equivalent of $50MM if downloading an article is paid market rate of $30.

https://pharmaceuticalintelligence.com/vision/pharmaceuticalintelligence-com-journal-projecting-the-annual-rate-of-article-views/

 

• IP Asset Class II: 48 e-Books: English Edition & Spanish Edition.
152,000 pages downloaded under pay-per-view. The largest number of downloads for one e-Publisher (LPBI)
• IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025
Article Summary by @Grok
Conclusions and Implications
LPBI Group’s IP Asset Class III assets are “rare, defensible” for Big Pharma AI, powering from R&D acceleration to equitable care. Technical Implications: Enables theme-specific models (e.g., oncology conferences) for diagnostics/trials. Business Implications: Boosts ROI on $500M investments; licensing for symposia/webinars. Unique Insight: As the sole record of speaker insights, these outpace public data for “frontier” inference—key in series for holistic pharma AI moats.Promotional with resource links (e.g., IP portfolio, biotech conference lists). Complements prior pieces by adding temporal/event depth.

• IP Asset Class V: 7,500 Biological Images in our Digital Art Media Gallery, as prior art. The Media Gallery resides in WordPress.com Cloud of LPBI Group’s Web site

• IP Asset Class X: +300 Audio Podcasts: Interviews with Scientific Leaders
BECAUSE THE ABOVE ASSETS ARE DIGITAL ASSETS they are ready for use as Proprietary TRAINING DATA and INFERENCE for AI Foundation Models in HealthCare.
Expert‑curated healthcare corpus mapped to a living ontology, already packaged for immediate model ingestion and suitable for safe pre-training, evals, fine‑tuning and inference. If healthcare domain data is on your roadmap, this is a rare, defensible asset.
The article TITLE of each of the five Digital IP Asset Classes matched to AI Initiatives in Big Pharma, an article per IP Asset Class are:
  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-data-training-and-inference-by-lpbi-groups-ip-asset-class-i-pharmaceuticalintelligence-com-journal-2-5mm-views-6250-scientific-article/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class II: 48 e-Books: English Edition & Spanish Edition. 152,000 pages downloaded under pay-per-view

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-ii-48-e-books-english-edition-spanish-edition-152000/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-iii-100-e-proceedings-and-50-tweet-collections-of-top-biotech/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class V: 7,500 Biological Images in LPBI Group’s Digital Art Media Gallery, as Prior Art

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-v-7500-biological-images-in-lpbi-groups-digital-art/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class X: +300 Audio Podcasts Library: Interviews with Scientific Leaders

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-x-300-audio-podcasts-library-interviews-with-scientific-leaders/

 

In the series of five articles, as above, we are presenting the key AI Initiatives in Big Pharma as it was created by our prompt to @Grok on 11/18/2025:

  • What are PFIZER’s AI INITIATIVES?

@Grok Response:

x.com/i/grok/share/0ol5VOJsEYs11baXq4xkzNb0h

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines
Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker /Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on AI in Manufacturing

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

The Left Column was written @Grok

The Right Column was written by Aviva Lev-Ari, PhD, RN

 

AI Initiative at Big Pharma

i.e., Pfizer

e-Proceedings: N = +100

and

Tweet Collections: N = +50

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines e-Proceeding of +100 TOP Conferences in Biotech, in Medicine, in Genomics, in Precision Medicine

https://pharmaceuticalintelligence.com/press-coverage/part-two-list-of-biotech-conferences-2013-to-present/

In these conferences the Frontier of Science was presented. These Proceedings are the ONLY written record of the events.

The tweet Collection are QUOTES of speakers on record. NOT ELSEWHERE available by name of speaker and affiliation

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker/Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable  access to care and tools for community care

Ingest to Charlie Platform ALL e-Proceedings of ALL Conferences

 

Apply GPT:

Training Data:

–       One conference at a time

–       All Conference on ONE subject matter, i.e., Immunotherapy, Oncolytic Virus Immunotherapy, Immune Oncology

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on Ai in Manufacturing

Use Past agendas to build Future Conference Agendas

Use Speakers Lists

Use topics covered in Employee training & and in Leadership development

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

Having access to +100 e-Proceedings vs Not having access to this resource is a make or break in Branding

 

CONCLUSIONS: The Voice of Dr. Stephen J. Williams PhD

PENDING

Article Summary of the ArticleTitle:

AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

Publication Date: November 22, 2025

Author/Curator: Aviva Lev-Ari, PhD, RN
(Curator; Posted by 2012pharmaceutical)
@Grok SOURCE:


Overview: Third in LPBI Group’s five-article series on AI-ready digital IP assets for Pharma companies. This installment highlights IP Asset Class III—100 e-proceedings and 50 tweet collections from top global biotech/medical conferences (2013-2025)—as a proprietary, expert-curated corpus of frontier science insights. Using a November 18, 2025, Grok prompt on Pfizer’s AI efforts, it maps these assets to pharma applications, stressing their role in training/inference for foundation models. Unlike prior classes (journal articles, e-books), this focuses on real-time event captures (e.g., speaker quotes, agendas) as unique, non-replicable data for efficiency, education, and branding in AI-driven R&D.

Main Thesis and Key Arguments

  • Core Idea: LPBI’s IP Asset Class III assets provide the “only written record” of +100 top conferences, with tweet collections as verbatim speaker quotes/affiliations—ideal for ingesting into AI platforms to amplify human expertise in combinatorial predictions. This supports Pfizer’s goals like 16,000-hour savings via generative AI, enabling subject-specific training (e.g., immunotherapy) and future agenda building.
  • Value Proposition: 150 total assets (100 e-proceedings + 50 tweet collections) form a live repository of domain knowledge, mapped to ontology for immediate AI use. Equivalent to $50MM value (aligned with series benchmarks); unique for branding (“make or break”) as no other source offers such curated event intel. Part of five AI-ready classes (I, II, III, V, X) for healthcare models.
  • Broader Context: Builds on series by emphasizing event-based data for partnerships/education; contrasts generic datasets with defensible, ethical expert interpretations for global equity (e.g., Pfizer’s AI Learning Lab).

AI Initiatives in Big Pharma (Focus on Pfizer)Reuses Grok prompt highlights, presented in a verbatim table:

Initiative Category
Description
Generative AI Tools
Save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery Acceleration
Uses AI, supercomputing, and ML to streamline R&D timelines.
Clinical Trials & Regulatory Efficiency
Predictive Regulatory Tools; Decentralize Trials; Inventory management.
Disease Detection & Diagnostics
ATTR-CM Initiative; Rare diseases.
Generative AI & Operational Tools
Charlie Platform; Scientific Data Cloud (AWS-powered ML on centralized data); Amazon’s SageMaker/Bedrock for Manufacturing efficiency; Pfizer Foundation’s AI Learning Lab for equitable access to care and community tools.
Partnerships & Education
IMI Big Picture (3M-sample disease database); AI in Pharma AIPM Symposium (Drug discovery and Precision Medicine); Webinars on AI for biomedical data integration; Webinar on AI in Manufacturing.
Strategic Focus
$500M R&D reinvestment by 2026 for AI productivity; Part of $7.7B cost savings; Ethical AI with diverse DBs; Global biotech advances (e.g., China’s AI in CRISPR).
Mapping to LPBI’s Proprietary DataCore alignment table (verbatim extraction, linking Pfizer initiatives to Class III assets):
Pfizer AI Initiative
Class III Alignment (100 e-Proceedings + 50 Tweet Collections)
Generative AI Tools (16,000 hours saved)
(No specific mapping.)
Drug Discovery Acceleration
e-Proceedings of +100 TOP Conferences in Biotech, Medicine, Genomics, Precision Medicine (2013-2025). Frontier of Science presented; ONLY written record of events. Tweet Collections: Speaker QUOTES on record (not elsewhere available by name/affiliation).
Clinical Trials & Regulatory Efficiency
(No specific mapping.)
Disease Detection & Diagnostics (ATTR-CM, rare diseases)
(No specific mapping.)
Generative AI & Operational Tools (Charlie, AWS, etc.)
Ingest ALL e-Proceedings into Charlie Platform. Apply GPT: Training Data—one conference at a time; OR All Conferences on ONE subject (e.g., Immunotherapy, Oncolytic Virus Immunotherapy, Immune Oncology).
Partnerships & Education (IMI, AIPM, webinars)
Use Past Agendas/Speakers Lists/Topics for: Employee Training & Leadership Development; Build Future Conference Agendas.
Strategic Focus ($500M reinvestment, ethics)
Access to +100 e-Proceedings vs. None = Make or Break in Branding.

Examples: Subject clusters like Immunotherapy; resources include conference lists (2013-present) and e-proceedings deliverables.Methodologies and Frameworks

  • AI Training Pipeline: Ingest proceedings/tweets into Charlie/AWS (e.g., SageMaker); GPT processing per conference or theme for pre-training/fine-tuning/inference. Use ontology for semantic mapping; tweets for quote-based evals.
  • Productivity Model: Enhances Pfizer’s savings ($7.7B total) via event intel for education/partnerships; ethical diverse data for global grants (e.g., CRISPR AI).
  • Insights: Quote from Dr. Stephen J. Williams, PhD: Emphasizes strategic branding via access. Predicts revolution in AI education/leadership from historical agendas.

Conclusions and Implications

LPBI Group’s IP Asset Class III assets are “rare, defensible” for Big Pharma AI, powering from R&D acceleration to equitable care. Technical Implications: Enables theme-specific models (e.g., oncology conferences) for diagnostics/trials. Business Implications: Boosts ROI on $500M investments; licensing for symposia/webinars. Unique Insight: As the sole record of speaker insights, these outpace public data for “frontier” inference—key in series for holistic pharma AI moats.Promotional with resource links (e.g., IP portfolio, biotech conference lists). Complements prior pieces by adding temporal/event depth.
Let me know if you want series comparisons or dives into specific conferences!

AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class II: 48 e-Books: English Edition & Spanish Edition. 152,000 pages downloaded under pay-per-view

Curator: Aviva Lev-Ari, PhD, RN

We had researched the topic of AI Initiatives in Big Pharma in the following article:

  • Authentic Relevance of LPBI Group’s Portfolio of IP as Proprietary Training Data Corpus for AI Initiatives at Big Pharma

https://pharmaceuticalintelligence.com/2025/11/15/authentic-relevance-of-lpbi-groups-portfolio-of-ip-as-proprietary-training-data-corpus-for-ai-initiatives-at-big-pharma/

 

We are publishing a Series of Five articles that demonstrate the Authentic Relevance of Five of the Ten Digital IP Asset Classes in LPBI Group’s Portfolio of IP for AI Initiatives at Big Pharma.

  • For the Ten IP Asset Classes in LPBI Group’s Portfolio, See

https://pharmaceuticalintelligence.com/portfolio-of-ip-assets/

The following Five Digital IP Asset classes are positioned as Proprietary Training Data and Inference for Foundation Models in Health care.
This Corpus comprises of Live Repository of Domain Knowledge Expert-Written Clinical Interpretations of Scientific Findings codified in the following five Digital IP ASSETS CLASSES:
 IP Asset Class I: Journal: PharmaceuticalIntelligence.com
6,250 scientific articles (70% curations, creative expert opinions.  30% scientific reports).
2.4MM Views, equivalent of $50MM if downloading an article is paid market rate of $30.

https://pharmaceuticalintelligence.com/vision/pharmaceuticalintelligence-com-journal-projecting-the-annual-rate-of-article-views/

 

 

• IP Asset Class II: 48 e-Books: English Edition & Spanish Edition.
152,000 pages downloaded under pay-per-view. The largest number of downloads for one e-Publisher (LPBI)
• IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

• IP Asset Class V: 7,500 Biological Images in our Digital Art Media Gallery, as prior art. The Media Gallery resides in WordPress.com Cloud of LPBI Group’s Web site

• IP Asset Class X: +300 Audio Podcasts: Interviews with Scientific Leaders
BECAUSE THE ABOVE ASSETS ARE DIGITAL ASSETS they are ready for use as Proprietary TRAINING DATA and INFERENCE for AI Foundation Models in HealthCare.
Expert‑curated healthcare corpus mapped to a living ontology, already packaged for immediate model ingestion and suitable for safe pre-training, evals, fine‑tuning and inference. If healthcare domain data is on your roadmap, this is a rare, defensible asset.
The article TITLE of each of the five Digital IP Asset Classes matched to AI Initiatives in Big Pharma, an article per IP Asset Class are:
  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-data-training-and-inference-by-lpbi-groups-ip-asset-class-i-pharmaceuticalintelligence-com-journal-2-5mm-views-6250-scientific-article/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class II: 48 e-Books: English Edition & Spanish Edition. 152,000 pages downloaded under pay-per-view

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-ii-48-e-books-english-edition-spanish-edition-152000/

Article Conclusions by @grok:

Conclusions and Implications
LPBI’s e-books are “ready-to-ingest” for Big Pharma AI, enabling from efficiency gains to diagnostic breakthroughs. No prior comprehensive ML attempts highlight untapped value [by Big Pharma. However, we conducted in-house ML on two of the e-Books]; bilingual editions support global/equitable applications. Technical Implications: Powers multilingual small models for precision medicine. Business Implications: Fuels ROI on investments like Pfizer’s $500M push; licensing potential for partnerships. Unique Insight: In AI’s scale race, these assets provide a “rare moat” via curated human opus—unlike raw data, they embed clinical foresight for transformative inference. The article is promotional yet substantive, with dense Amazon links and calls to resources (e.g., BioMed e-Series page, IP portfolio). It builds on the prior Class I piece by shifting to long-form, creative text for deeper AI personalization.

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-iii-100-e-proceedings-and-50-tweet-collections-of-top-biotech/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class V: 7,500 Biological Images in LPBI Group’s Digital Art Media Gallery, as prior art

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-v-7500-biological-images-in-lpbi-groups-digital-art/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class X: +300 Audio Podcasts Library: Interviews with Scientific Leaders

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-x-300-audio-podcasts-library-interviews-with-scientific-leaders/

 

In the series of five articles, as above, we are presenting the key AI Initiatives in Big Pharma as it was created by our prompt to @Grok on 11/18/2025:

  • What are PFIZER’s AI INITIATIVES?

@Grok Response:

x.com/i/grok/share/0ol5VOJsEYs11baXq4xkzNb0h

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines
Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker /Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on AI in Manufacturing

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class II: 48 e-Books: English Edition & Spanish Edition. 152,000 pages downloaded under pay-per-view

The Left Column was written @Grok

The Right Column was written by Aviva Lev-Ari, PhD, RN

AI Initiative at Big Pharma

i.e., Pfizer

e-Books

Domain-aware Editorials and Curations

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis. The electronic Table of Contents of every e-book is a CONCEPTUAL MASTER PIECE of one unique occurrence in Nature generated by the Editor, or the Editors that had

–       Commissioned articles for the e-Book

–       Had selected articles from collections of Categories of Research created by domain knowledge experts

–       Had reviewed the TOTALITY of the Journal’s Ontology and found new concept to cover in the e-Book not originally planned

–       The vision of the Editor-in-Chief of the BioMed e-Series that reflects the BIG PICTURE of Patient care delivery.

–       UC, Berkeley PhD’83

–       Knowledge student and Knowledge worker, 10/1970 to Present

–       Conceptual pioneer of 26 algorithms in Decision Science of Operations Management decision support tools

–       2005 to Present in the Healthcare field.

–       2005-2012: Clinical Nurse Manager in Post-acute SNF settings and Long-term Acute care Hospital Supervisor – had developed a unique view on Diagnosis, Therapeutics and Patient care delivery

–       The BioMed e-Series is the EPITOM of human CREATIVITY in Healthcare an OPUS MAGNUM created by collaboration of top Scientists, Physicians and MD/PhDs

–       The 48 e-Books Published by LPBI Group – represent the ONLY one Publisher on Amazon.com with +151,000 pages downloaded since the 1st e-book published and Pay-per-View was launched by Amazon.com in 2016.

Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines Two volumes on the BioMed e-Series were subjected to Medical Text Analysis with ML, Natural Language Processing (NLP).

–       Cancer, Volume 1 (In English part of the Spanish Edition, Series C)

–       Genomics, Volume 2 (In English part of the Spanish Edition, Series B)

–       GPT capabilities are warranted to attempt to subject to ML every book of the MUTUALLY EXCLUSIVE 48 URLs provided by Amazon.com to LPBI Group, the Publisher.

–       5 URLs for 5 Bundles in The English Edition:

–       Series A,B,C,D,E – English Edition

–       All books in each series – 5 Corpuses for domain-aware Small Language Model in English

–       All books in each series – 5 Corpuses for domain-aware Small Language Model in Spanish

–       5 URLs for 5 Bundles in The Spanish Edition:

–       Series A,B,C,D,E –Spanish Edition

 

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

–       No one had attempted ML on every book, only two books were analyzed by ML.

–       No one had attempted ML on all the Volumes in any of the 5 Series.

–       No one had attempted ML on all the 48 books

–       WHEN that will be done – a REVOLUTION on Disease Detection and Diagnostics will be seen for the first time

 

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker/Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Add the content of all the Books to Charlie Platform
Partnerships and Education

 

Collaborations: IMI Big Picture for 3M – sample disease database

 

AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

 

Webinars of AI for biomedical data integration

 

Webinard on Ai in Manufacturing

e-Books are the SOURCE for Education

–       Offer the books as Partnership sustenance

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

URLs for the English-language Edition by e-Series:

 

Series A: Cardiovascular Diseases ($515)

https://www.amazon.com/gp/product/B07P981RCS?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

Series B: Frontiers in Genomics ($200)

https://www.amazon.com/gp/product/B0BSDPG2RX?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

Series C: Cancer & Oncology ($175)

https://www.amazon.com/gp/product/B0BSDWVB3H?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

Series D: Immunology ($325)

https://www.amazon.com/gp/product/B08VVWTNR4?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

Series E: Patient-Centered Medicine ($274)

https://www.amazon.com/gp/product/B0BSDW2K6C?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

 

 

CONCLUSIONS: The Voice of Dr. Stephen J. Williams PhD

Article Summary of the ArticleTitle: by @grok
AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class II: 48 e-Books: English Edition & Spanish Edition. 152,000 pages downloaded under pay-per-view
Publication Date: November 22, 2025
Author/Curator: Aviva Lev-Ari, PhD, RN
(Posted by 2012pharmaceutical)
@Grok SOURCE:


Overview: This is the second installment in a five-article series on LPBI Group’s digital IP assets for AI in pharma. It focuses on IP Asset Class II—48 e-books (bilingual English/Spanish editions)—as a proprietary, expert-curated textual corpus for training and inference in healthcare AI models. Drawing from a November 18, 2025, Grok prompt on Pfizer’s AI efforts, the article maps e-book content to pharma applications, highlighting untapped ML/NLP potential for small language models. Unlike Class I (journal articles), this emphasizes long-form editorial creativity and bilingual scalability, positioning the assets as a “defensible moat” for Big Pharma’s AI acceleration.
Main Thesis and Key Arguments

  • Core Idea: LPBI’s e-books, with 152,000 pay-per-view downloads (largest for any single Amazon e-publisher since 2016), offer domain-specific, human-curated content (e.g., conceptual tables of contents as “masterpieces” reflecting patient care visions) that outperforms generic data in AI training. This enables precise inference for drug discovery, diagnostics, and efficiency, fostering human-AI synergy.
  • Value Proposition: The BioMed e-Series (5 series: A-E, each bundled as a corpus) totals 48 volumes from collaborations with top scientists/MD/PhDs. Editor-in-Chief’s expertise (UC Berkeley PhD ’83, decision science algorithms, clinical nursing) infuses “big-picture” insights. Valued for multilingual models; only two volumes (Cancer Vol. 1, Genomics Vol. 2) have seen ML analysis—full application could “revolutionize” disease detection.
  • Broader Context: Part of LPBI’s 10 IP classes; five (I, II, III, V, X) are AI-ready via living ontology. Contrasts with open-source data by emphasizing ethical, diverse, creative inputs for foundation models.

AI Initiatives in Big Pharma (Focus on Pfizer)Reuses the Grok prompt on Pfizer’s AI, with key highlights (verbatim from article’s table):

Initiative Category
Description
Generative AI Tools
Saves up to 16,000 hours annually in literature searches/data analysis.
Drug Discovery Acceleration
AI, supercomputing, ML to streamline R&D timelines.
Clinical Trials & Regulatory Efficiency
Predictive tools, decentralized trials, inventory management.
Disease Detection & Diagnostics
ATTR-CM Initiative, rare diseases focus.
Generative AI & Operational Tools
Charlie Platform; AWS-powered Scientific Data Cloud; SageMaker/Bedrock for manufacturing; Pfizer Foundation’s AI Learning Lab for equitable care.
Partnerships & Education
IMI Big Picture (3M sample disease database); AIPM Symposium (drug discovery/precision medicine); Webinars on AI for biomedical integration and manufacturing.
Strategic Focus
$500M R&D reinvestment by 2026 for AI productivity; part of $7.7B cost savings; ethical AI with diverse DBs; global advances (e.g., China’s CRISPR AI).

Mapping to LPBI’s Proprietary DataA core table aligns Pfizer initiatives with e-book alignments, showcasing ingestion for AI enhancement:

Pfizer AI Initiative
e-Books Alignment
Generative AI Tools (16,000 hours saved)
Electronic TOCs as conceptual masterpieces: Editor commissions/selections/ontology reviews reflect big-picture patient care (UC Berkeley PhD ’83, decision science pioneer, clinical experience); BioMed e-Series as opus magnum of human creativity; 48 e-books with 152,000+ downloads since 2016.
Drug Discovery Acceleration
ML/NLP applied to Cancer Vol. 1 (Series C) and Genomics Vol. 2 (Series B); Extend GPT to all 48 books via 5 English bundles (Series A-E) and 5 Spanish bundles as corpuses for domain-aware small language models.
Clinical Trials & Regulatory Efficiency
(No specific mapping provided.)
Disease Detection & Diagnostics (ATTR-CM, rare diseases)
Untapped: No prior ML on all books/volumes/series; Full analysis promises revolution in detection/diagnostics.
Generative AI & Operational Tools (Charlie, AWS, etc.)
Ingest all book content into Charlie Platform for centralized ML.
Partnerships & Education (IMI, AIPM, webinars)
e-Books as education source; Offer for partnership sustenance.
Strategic Focus ($500M reinvestment, ethics)
Bundles enable diverse, ethical DBs; URLs for English Series: A (Cardiovascular, $515): [link]; B (Genomics, $200): [link]; C (Cancer, $175): [link]; D (Immunology, $325): [link]; E (Patient-Centered, $274): [link]. Spanish equivalents implied.

Methodologies and Frameworks

  • AI Training Pipeline: Package e-books (textual corpus) for pre-training (ontology-mapped ingestion), fine-tuning (e.g., ML on series bundles), and inference (e.g., diagnostics queries). Bilingual support for global models.
  • ML/NLP Demo: Applied to two volumes; scale to 48 books via GPT for small language models (5 corpuses/language).
  • Productivity Model: Amplifies Pfizer’s savings (16,000 hours, $7.7B total) by injecting expert creativity; ethical focus on diverse, compliant data for equity (e.g., AI Learning Lab).
  • Insights: Quotes editor’s vision as “epitome of human creativity”; predicts full ML rollout as first-of-its-kind revolution, differing from Class I’s article-based ontology by focusing on editorial depth.

Conclusions and Implications

LPBI’s e-books are “ready-to-ingest” for Big Pharma AI, enabling from efficiency gains to diagnostic breakthroughs. No prior comprehensive ML attempts highlight untapped value [by Big Pharma. However, we conducted in-house ML on two of the e-Books]; bilingual editions support global/equitable applications. Technical Implications: Powers multilingual small models for precision medicine. Business Implications: Fuels ROI on investments like Pfizer’s $500M push; licensing potential for partnerships. Unique Insight: In AI’s scale race, these assets provide a “rare moat” via curated human opus—unlike raw data, they embed clinical foresight for transformative inference. The article is promotional yet substantive, with dense Amazon links and calls to resources (e.g., BioMed e-Series page, IP portfolio). It builds on the prior Class I piece by shifting to long-form, creative text for deeper AI personalization.
If you’d like comparisons across the series, deeper dives into specific e-books, or analysis of bilingual AI potential, just say the word!

1 web page

AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology

Curator: Aviva Lev-Ari, PhD, RN

We had researched the topic of AI Initiatives in Big Pharma in the following article:

  • Authentic Relevance of LPBI Group’s Portfolio of IP as Proprietary Training Data Corpus for AI Initiatives at Big Pharma

https://pharmaceuticalintelligence.com/2025/11/15/authentic-relevance-of-lpbi-groups-portfolio-of-ip-as-proprietary-training-data-corpus-for-ai-initiatives-at-big-pharma/

 

We are publishing a Series of Five articles that demonstrate the Authentic Relevance of Five of the Ten Digital IP Asset Classes in LPBI Group’s Portfolio of IP for AI Initiatives at Big Pharma.

  • For the Ten IP Asset Classes in LPBI Group’s Portfolio, See

https://pharmaceuticalintelligence.com/portfolio-of-ip-assets/

The following Five Digital IP Asset classes are positioned as Proprietary Training Data and Inference for Foundation Models in Health care.
This Corpus comprises of Live Repository of Domain Knowledge Expert-Written Clinical Interpretations of Scientific Findings codified in the following five Digital IP ASSETS CLASSES:
 IP Asset Class I: Journal: PharmaceuticalIntelligence.com
6,250 scientific articles (70% curations, creative expert opinions.  30% scientific reports).
2.4MM Views, equivalent of $50MM if downloading an article is paid market rate of $30.

https://pharmaceuticalintelligence.com/vision/pharmaceuticalintelligence-com-journal-projecting-the-annual-rate-of-article-views/

 

• IP Asset Class II: 48 e-Books: English Edition & Spanish Edition.
152,000 pages downloaded under pay-per-view. The largest number of downloads for one e-Publisher (LPBI)
• IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

• IP Asset Class V: 7,500 Biological Images in our Digital Art Media Gallery, as prior art. The Media Gallery resides in WordPress.com Cloud of LPBI Group’s Web site

• IP Asset Class X: +300 Audio Podcasts: Interviews with Scientific Leaders
BECAUSE THE ABOVE ASSETS ARE DIGITAL ASSETS they are ready for use as Proprietary TRAINING DATA and INFERENCE for AI Foundation Models in HealthCare.
Expert‑curated healthcare corpus mapped to a living ontology, already packaged for immediate model ingestion and suitable for safe pre-training, evals, fine‑tuning and inference. If healthcare domain data is on your roadmap, this is a rare, defensible asset.
The article TITLE of each of the five Digital IP Asset Classes matched to AI Initiatives in Big Pharma, an article per IP Asset Class are:
  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-data-training-and-inference-by-lpbi-groups-ip-asset-class-i-pharmaceuticalintelligence-com-journal-2-5mm-views-6250-scientific-article/

Article conclusions by @Grok

Conclusions and Implications
The article concludes that LPBI’s assets are primed for Big Pharma adoption, enabling AI to evolve from tools to “knowledge amplifiers.” It hints at licensing opportunities without explicit calls to action. Technical Implications: Improves AI precision in complex pharma tasks like rare disease modeling. Business Implications: Accelerates ROI on AI investments (e.g., Pfizer’s $500M push) while ensuring defensible IP. Unique Insight: In an era of open-source AI, curated expert data like this is a “rare moat” for competitive edge.Overall, the piece is insightful for AI-pharma intersections, blending real-world examples with promotional asset positioning. It’s dense with links to LPBI resources (e.g., e-books, podcasts) for deeper dives.
  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class II: 48 e-Books: English Edition & Spanish Edition. 152,000 pages downloaded under pay-per-view

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-ii-48-e-books-english-edition-spanish-edition-152000/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class III: 100 e-Proceedings and 50 Tweet Collections of Top Biotech and Medical Global Conferences, 2013-2025

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-iii-100-e-proceedings-and-50-tweet-collections-of-top-biotech/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class V: 7,500 Biological Images in LPBI Group’s Digital Art Media Gallery, as Prior Art

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-v-7500-biological-images-in-lpbi-groups-digital-art/

 

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class X: +300 Audio Podcasts Library: Interviews with Scientific Leaders

https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-training-data-and-inference-by-lpbi-groups-ip-asset-class-x-300-audio-podcasts-library-interviews-with-scientific-leaders/

 

In the series of five articles, as above, we are presenting the key AI Initiatives in Big Pharma as it was created by our prompt to @Grok on 11/18/2025:

  • What are PFIZER’s AI INITIATIVES?

@Grok Response:

x.com/i/grok/share/0ol5VOJsEYs11baXq4xkzNb0h

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines
Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker /Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on AI in Manufacturing

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

  • AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology

The Left Column was written @Grok

The Right Column was written by Aviva Lev-Ari, PhD, RN

AI Initiative at Big Pharma

i.e., Pfizer

Journal articles

N = 6,250

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis. Generative AI tools searching LPBI’s Proprietary data in addition to Public Domain data sources

Journal ONTOLOGY used to optimize context classification selected for search

Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines –       Run prompts by category of research on three dyads

–       Run ML across categories of research for these three dyads

-Gene-disease

-Disease-drug

-Gene-drug

 

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

content creation across the drug lifecycle, from lab data to regulatory docs
Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Heart Failure Diagnosis by Early detection of transthyretin amyloid cardiomyopathy

–       Journal published ~30 curations by Dr. Larry on this subject

–       Run NLP on this Corpus

Rare disease:

Journal published 560 articles on Rare diseases

–       Run ML on this Corpus

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker /Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Content generated in the Journal can become “generated compliant content” if run by the

Charlie Platform.

–       For REUSE content in context

 

Entire Corpus of 9 Giga bytes can be ingested to Pfizer Foundation’s AI Learning Lab

–       Rum prompts against it

–       Journal’s Content to be used for Internal staff expertise development

–       Journal’s Content for Leadership development

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on AI in Manufacturing

The Journal had published 547 articles in Precision Medicine

 

The Journal had published 1,114 articles in Drug Discovery

 

The Journal had published 701  articles in Drug Delivery

 

The Journal had published 3,615 articles on subject matter “Disease”

 

The Journal had published 738 articles on Biomedical topic

 

The Journal had published 425 articles in Artificial Intelligence

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

The Journal had published 432 articles on CRISPR

 

Productivity derived from Journal’s content:

–       As a result of the fact that ~70% of the Journal’s articles are curations written by Domain Knowledge Experts subjectively expressing theirs clinical interpretations of basic and primary research – the productivity of the knowledge workers at any Big Pharma would increase vastly.

–       If Grok and Claude would run on LPBI Group’s Corpus – A scientific revolution will emerge

–       It is not combinatorics applied to molecules with 98% futile results!!! – it is the IQ of Gifted HUMANS, of domain knowledge experts generating content using individual CREATIVITY no Quantum or Super Intelligence which is not in existence YET.

–       Foundation Models in Healthcare depends on the OUTPUT of the human creative mind. AI takes keyword (classic search) and concepts (semantic search) and run frequency of occurrence, predict the nest word, one after the next one.

CONCLUSIONS: The Voice of Dr. Stephen J. Williams PhD

PENDING

@grok Summary of this article:

AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology https://pharmaceuticalintelligence.com/2025/11/22/ai-initiatives-in-big-pharma-grog-prompt-proprietary-data-training-and-inference-by-lpbi-groups-ip-asset-class-i-pharmaceuticalintelligence-com-journal-2-5mm-views-6250-scientific-article/

Summary of the ArticleTitle:

AI Initiatives in Big Pharma @Grok prompt & Proprietary Training Data and Inference by LPBI Group’s IP Asset Class I: PharmaceuticalIntelligence.com Journal, 2.5MM Views, 6,250 Scientific articles and Live Ontology

Publication Date: November 22, 2025

Author/Curator: Aviva Lev-Ari, PhD, RN

Overview: This article, part of a series on LPBI Group’s digital IP assets, explores how the group’s proprietary content—particularly IP Asset Class I (PharmaceuticalIntelligence.com Journal)—can serve as high-value training data for AI models in the pharmaceutical industry. It uses a Grok AI prompt to detail Pfizer’s AI efforts and maps them to the journal’s expert-curated content, emphasizing the shift from generic AI to domain-specific, human-enhanced models for drug discovery, clinical trials, and beyond. The piece positions LPBI’s assets as “defensible” resources for pre-training, fine-tuning, and inference in healthcare foundation models, contrasting them with public-domain data.Main Thesis and Key Arguments

  • Core Idea: Traditional AI in pharma often relies on combinatorial predictions from vast but uncurated data, leading to inefficiencies. LPBI’s corpus, with 70% expert interpretations (curations and opinions), injects human creativity and clinical insights, enabling more productive AI outputs. This could spark a “scientific revolution” by powering models like Grok or Claude, boosting knowledge worker efficiency and reducing R&D costs.
  • Value Proposition: The journal’s 6,250 articles (30% scientific reports, 70% expert analyses) form a 9GB digital repository with a live ontology for semantic mapping. Valued at ~$50MM (based on $30/article download equivalent), it supports AI applications across gene-disease-drug dyads, NLP for rare diseases, and regulatory content generation.
  • Broader Context: Part of a five-article series showcasing LPBI’s ten IP classes (e.g., e-books, podcasts, images) as ready-to-ingest assets for Big Pharma’s AI strategies.

AI Initiatives in Big Pharma (Focus on Pfizer)The article leverages a November 18, 2025, Grok prompt (“What are PFIZER’s AI INITIATIVES?”) to outline Pfizer’s efforts, sourced from real-time AI generation. Key highlights include:

Initiative Category
Description
Key Metrics/Examples
Generative AI Tools
Automates literature searches, data analysis, and report writing.
Saves 16,000 hours annually; integrates with Pfizer’s Charlie Platform for compliant content.
Drug Discovery Acceleration
Uses ML, supercomputing, and AI to identify targets and optimize molecules.
Part of $500M R&D reinvestment by 2026; contributes to $7.7B in cost savings.
Clinical Trials & Regulatory Efficiency
Predictive modeling for patient recruitment, decentralized trials, and inventory management.
Partnerships like IMI Big Picture; AI for faster FDA submissions.
Disease Detection & Diagnostics
Focus on rare diseases (e.g., ATTR-CM via transthyretin amyloid cardiomyopathy initiative).
NLP and ML for early detection; equitable care via AI Learning Lab.
Operational & Strategic Tools
Scientific Data Cloud with AWS ML/SageMaker; ethical AI with diverse datasets.
Webinars for education; global expansions (e.g., China’s CRISPR AI).

No other pharma companies are deeply covered, but the framework implies applicability to peers like those in prior LPBI articles.Mapping to LPBI’s Proprietary DataA central table links Pfizer’s initiatives to the journal’s content, demonstrating ingestion potential:

Pfizer AI Initiative
LPBI Journal Alignment
Productivity Boost
Generative AI for searches
Ontology-optimized semantic searches across 6,250 articles.
Enhances accuracy in 425 AI-related articles.
Drug Discovery ML
1,114 articles on discovery; dyad mapping (e.g., gene-drug).
Supports ML training on precision medicine (547 articles).
Clinical Trials Efficiency
3,615 “Disease” articles; NLP for trial simulations.
Reduces time via expert-curated protocols.
Rare Disease Diagnostics
Content on ATTR-CM and similar (e.g., 432 CRISPR articles).
Fine-tuning for targeted inference.
Operational Platforms
Full corpus ingestion for Charlie-like labs.
2.5MM views indicate high-engagement data.

This shows how the live ontology enables context classification, outperforming frequency-based AI.Methodologies and Frameworks

  • AI Training Pipeline: Ingest corpus for pre-training (broad knowledge), fine-tuning (domain-specific), and inference (real-time queries). Use prompts by research categories; apply ML across dyads; generate lifecycle content.
  • Productivity Model: 70% expert curations amplify human-AI synergy, avoiding “futile” combinatorial results. Ethical focus: Diverse, compliant data for global equity.
  • Insights: Quotes Dr. Stephen J. Williams: Foundation models thrive on “gifted humans’ creativity,” not just scale. Predicts vast productivity gains (e.g., beyond Pfizer’s 16,000 hours saved).

Conclusions and Implications

The article concludes that LPBI’s assets are primed for Big Pharma adoption, enabling AI to evolve from tools to “knowledge amplifiers.” It hints at licensing opportunities without explicit calls to action. Technical Implications: Improves AI precision in complex pharma tasks like rare disease modeling. Business Implications: Accelerates ROI on AI investments (e.g., Pfizer’s $500M push) while ensuring defensible IP. Unique Insight: In an era of open-source AI, curated expert data like this is a “rare moat” for competitive edge.Overall, the piece is insightful for AI-pharma intersections, blending real-world examples with promotional asset positioning. It’s dense with links to LPBI resources (e.g., e-books, podcasts) for deeper dives.
If you’d like a full review (e.g., strengths/weaknesses, comparisons to industry trends), or analysis of specific sections, let me know!

Authentic Relevance of LPBI Group’s Portfolio of IP as Proprietary Training Data Corpus for AI Initiatives at Big Pharma

Curators: Aviva Lev-Ari, PhD, RN and Stephen J. Williams, PhD

Updated on 11/29/2025

 

The Voice of Stephen J. Williams, PhD

Since the formation of the LPBI group in 2012, we have set as a goal to digitally curate and ontologize the biomedical literature.  These aspects of our mission, although not understandable to most at that time of our inception, was at the forefront of many academic efforts which became the springboard and initial conceptualization of today’s large language models.  In select universities like University of Illinois, University of Delaware, and the Technion, academics and researchers at Microsoft and Google, were laying the framework for  a semantic web, or Web 3.0.  Another company at the forefront of this idea was a company springing forth from Mathematica, Wolfram Research. This idea for a semantic web would entail the processes of curation, digitization, and ontology creation.  Their belief, such as ours, was  a precursor and much needed key to the puzzle of moving language from machine learning algorithms to the generative transformers used by artificial intelligence.

However as most efforts in this genre focused on general language, our efforts at LPBI Group were focused on the biomedical field, as we understood, from 2012, that the biomedical literature was unique, and so a unique strategy had to be developed to semantically understand biomedical text, even though at the time of 2012 GPTs were not even a concept.  However the potential for doing biomedical text analysis was there, and LPBI Group responded by developing a methodology of scientific curation which involved a multimodal strategy to curate, digitize, and ontologize biomedical findings and text.

It was about at the time of 2012 that other groups, mainly focused of drug development applications (for example at University of Indiana) recognized that new computational power of machine learning algorthims could be  useful in analyzing complex biological questions.  Please see our Synthetic Biology in Drug Discovery section of our Journal for more information on this. For instance, an early adopter of this strategy, a company called  Data2Discovery, one of the earliest AI for drug discovery startups, stated

We are able to improve drug discovery now as well as demonstrating new fast-cycle AI-driven processes that will have a revolutionary impact on drug discovery if fully implemented. We have had some dramatic successes, but we are just starting to discover the impact that data, knowledge graphs, AI and machine learning can together have on drug discovery.

We need all the expertise of academics, consortia, AI companies and pharma to make his happen, and it’s going to require some serious investment, and a big change of thinking. But the opportunity to get drug discovery out of the death spiral and framed for data-driven success is too important to pass up.

However the LPBI Group was cognizant of these changes occuring and pivoted to the developing natural language processing arena as well as ideas for the developing Blockchain technology.  This was more of a natural progression for the LPBI Group than a pivot (please read here).

This would be our Vision 2.0, to make biomedical text amenable for Natural Language Processing.   We utilized a few strategies in this regard, partnering with a company who was developing NLP for biomedical text analysis, and developing in house machine learning and NLP methods using the Wolfram language environment.  Our focus on structuring biomedical text (versus the highly structured genomics and omics data found in many omics related databanks) was prescient for the time.  As NLP and machine learning  efforts realized, biomedical text needs to have a structure much like genes, proteins and other molecular databases had been organized.  Therefore it was realized that structured data was imperative for efficient NLP analysis, a crux for the new GPT which was being developed (and in this mind still is a crux for current GPT and LLM models when it comes to biomedical text analysis).

Our strategy using our scientific curation methodology (as described below in links form our founder Dr. Aviva Lev-Ari, was proven to be highly efficient and amenable to NLP analysis, as a pilot with an NLP company noticed.  Most of the data they were using was unstructured and their first step involved annotation and structuring the text, as we had already performed for years.  This was critical as our text was able to pull out more concepts, relationships, in a faster time than NLP on sources such as PubMed available text.  We had also developed our own in house algorithms for NLP on our material, which is shown in some of our book offerrings and individual articles.

However with the advent of GPT it was thought all this was unnecessary.  However this idea that our strategy was outdated or irrelevent in the era of GPT was wholly  incorrect to the advocates of a sole GPT strategy to analyze biomedical text and data.  It is now understood that structure is needed as some of biomedical-centric GPT projects would find out, such as BioGPT.  We have many articles which attest to the lack of  accuracy and efficiency of these GPT architectures (seen here). These include failure rates in many areas of healthcare and biomedicine by sole reliance on GPT,

It was realized by many in the biomedical arena, especially those involved in NLP efforts, that there was much value in the semantic web 3.0 idea, and this was readily picked up by those spearheading effort to incorporate knowledge graphs with the new generative AI or GPT technology.  We have shown a clear example our scientific methodology of curation with ontology has better inference when combined with knowledge graphs and GPT than reliance on GPT alone

please read this article

Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

at https://pharmaceuticalintelligence.com/2014/09/05/multiple-lung-cancer-genomic-projects-suggest-new-targets-research-directions-for-non-small-cell-lung-cancer/

As shown here in this article

This update was performed by the following methods:
A. GPT 5 Text analysis and Reasoning
B. Insertion of Knowledge Graph on topic Curation of Genomic Analysis from Non Small Cell Lung Cancer Studies  from Nodus Labs using InfraNodus software
C. Domain Knowledge Expert evaluation of the Update outcomes
This article has the following Structure:
Part A: Introduction to LLM, Knowledge Graph software InfraNodus, ChatGPT5 and Background Information on curated material for Test Case
Part B: InfraNodus Analysis of manual curation and Knowledge Graph Creation
Part C: Chat GPT 5 Analysis of Manually Curated Material
Part D: Curation entitled Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer originally published on 09/05/2014
Results of Article Update with GPT 5
1. GPT5 alone was not able to understand the goal of the article, namely to determine knowledge gaps in a particular research area involving 5 genomic studies on lung cancer patients
2. GPT5 alone was not able to group concepts or comonalities between biological pathways unless supplied with a manually curated list of KEGG pathways from a list of mutated genes.  However this precluded any effect that fusion proteins had on the analysis and so GPT5 would only concentrate on mutated genes commonly found in literature
3. GPT was not able to access some of the open Access databases like NCBI Gene Ontology database
Results of Article Update with KnowledgeGraph presentation to GPT 5
4. As the Knowledge Graph understood the importance of fusion proteins and transversions, the knowledgegraph augmented the GPT analysis and so enriched the known pathways as well as could correctly identify the less represented pathways in the knowledge graph
5.  This led to the identification of many novel signaling pathways not identified in the original analysis, and was able to perform this task with ease and speed

6. GPT with InfraNodus Analysis was able to propose pertinent questions for future research (the goal of the original curation) such as:

  • How does the interaction between [[EGFR]] mutations and sex-specific gene alterations, including [[RBM10]], influence treatment outcomes in lung adenocarcinoma?
  • How does the intersection of mutational patterns from smoking influence pathway activation in NSCLC, and can identifying these interactions improve targeted therapy development?
Novelty in comparison to Original article published on 09/05/2014
7. it appears that manual curation is necessary to assist in the building of relevant knowledge graphs in the biomedical fields to augment generative AI analysis
8. by itself, generative AI is not optimized for inference of higher concepts from biomedical text, and therefore, at this point, requires the input from human curators developing domain-specific knowledge graphs
9.  The combination of ChatGPT5 and Knowledge graphs of this manually curated biomedical text added a further layer of complexity of gaps of knowledge not seen in the original curations including the need to study noncanonical signaling pathways like WNT and Hedgehog in smoker versus nonsmoker cohorts of lung cancer patients

The Voice of Aviva Lev-Ari, PhD, RN

LPBI Group’s Portfolio of Digital IP Assets as Proprietary Training Data Corpus for AI in Medicine, in Life Sciences, in Pharmaceutical and in Health Care Applications

The Portfolio of Digital IP Assets by Class is a rare, defensible asset, privately-held debt-free by LPBI Group’s founder. The content, aka a Data Corpus is best designed for the Training and Pre-Training of Foundation Multimodal Models in Health Care. 

#HealthcareAI

#FoundationModels

#ProprietaryTrainingData

LPBI Group is offering transfer of ownership, in full, a privately held, multimodal healthcare training corpus leveraging propriety unique data set curated by domain experts and mapped to a living ontology for GenAI creating defensibility.

The Portfolio of IP spans:

  • 6,250+ articles (~2.5MM views),
  • 48 e‑books (EN/ES) (+152,000 page downloads),
  • 100+ e‑Proceedings with +50 Tweet collections,
  • 7,500+ biological images with expert context, and
  • 300+ Audio podcasts on Life Sciences breakthroughs.

Each asset (Use Case: Scientific Article) has timestamps, author/role labels, crosslinks, and view histories.

  • Metadata export exists; full text and media transfer via WordPress/Amazon account control for immediate ingestion.
  • Rights are centrally assigned with explicit model‑training data by domain-aware for model implementation for Small Language Models or Large Language Models.

Strategic acquirers in Big Pharma of Vertical AI startups (i.e., LPBI Group) with data‑moat strategies

Pharma strategics Acquire LPBI’s end‑to‑end, rights‑clean healthcare knowledge base to accelerate R&D, medical affairs, and safety. Ideal for and with acceleration of R&D, medical affairs, and safety. Emphasize compliant internal copilots and evidence synthesis enabled by expert curation and living ontology. Close with rapid onboarding under NDA  Metadata export plus full text/media transfer for rapid onboarding. Full acquisition only.

Subject: Buy the moat: full acquisition of expert healthcare corpus with clean rights

We’re selling the entire asset: a privately held, multimodal healthcare corpus with centralized training rights and an exportable ontology, validated on gene–disease–drug extraction. It’s ingest‑ready and transfers cleanly via account control plus a metadata export. If owning differentiated data is critical for your agent or workflow, we can provide a diligence preview under NDA.

compliant internal copilots and evidence synthesis enabled by expert curation and living ontology. Close with rapid onboarding under NDA

Five Examples of Domain-aware for model implementation for Small Language Models – English Edition & Spanish Edition

Series A: Cardiovascular Diseases ($515) – Six Volumes

https://www.amazon.com/gp/product/B07P981RCS?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

Six Examples of Domain-aware in the Specialty of Cardiovascular Diseases

  • Series A, Volume One

Perspectives on Nitric Oxide in Disease Mechanisms2013

http://www.amazon.com/dp/B00DINFFYC $75

  • Series A, Volume Two 

Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation, 2015

http://www.amazon.com/dp/B018Q5MCN8 $75

  • Series A, Volume Three

Etiologies of Cardiovascular Diseases – Epigenetics, Genetics and Genomics2015

http://www.amazon.com/dp/B018PNHJ84 $75

  • Series A, Volume Four

Therapeutic Promise: Cardiovascular Diseases, Regenerative & Translational Medicine, 2015

http://www.amazon.com/dp/B019UM909A $75

  • Series A, Volume Five

Pharmacological Agents in Treatment of Cardiovascular Diseases2018

https://www.amazon.com/dp/B07MGSFDWR  $115

  • Series A, Volume Six:

Interventional Cardiology for Disease Diagnosis and Cardiac Surgery for Condition Treatment2018

https://www.amazon.com/dp/B07MKHDBHF $100

 

Series B: Frontiers in Genomics ($200) – Two Volumes

https://www.amazon.com/gp/product/B0BSDPG2RX?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

Series C: Cancer & Oncology ($175) – Two Volumes

https://www.amazon.com/gp/product/B0BSDWVB3H?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

Series D: Immunology ($325) – Four Volumes

https://www.amazon.com/gp/product/B08VVWTNR4?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

Series E: Patient-Centered Medicine ($274) – Four Volumes

https://www.amazon.com/gp/product/B0BSDW2K6C?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

One Example of Domain-aware for model implementation for Large Language Models

Eighteen volumes in the English Edition and 19 volumes in the Spanish Edition including 2,728 articles by biomedical professionals are available.

https://www.amazon.com/s?k=Aviva+Lev-Ari&i=digital-text&rh=n%3A133140011&ref=nb_sb_noss

The electronic books are collections of curated articles in biomedical science. The electronic Tables of Contents (eTOCs) of each volume was designed by a senior editor with expertise in the subjects covered in that volume. The curations use as sources published research findings in peer-reviewed scientific journals together with expert added interpretations.

The e-books are designed to make the latest research in the Five Bilingual BioMed e-Series – 37 volumes accessible to practicing health care professionals. These five e-Series cover the following medical specialties:

  • Cardiovascular diseases and therapies,
  • Genomics,
  • Cancer etiology and oncological therapies,
  • Immunology, and
  • Patient-centered precision medicine.

The material in these volumes can greatly enhance medical education and provide a resource for continued updating and education for health care professionals. In addition to the 37 e-books, LPBI has published more than 6,000 articles in its online scientific journal “PharmaceuticalIntelligence.com”, which has received 2.5 million views since its launch in 4/2012, Top articles had more than 18,000 views.

The Portfolio is:

  • rights‑clean,
  • expert‑curated healthcare corpus
  • mapped to a living Ontology,
  • already packaged for immediate model ingestion and
  • suitable for safe pre-training, evals, and fine‑tuning.

If healthcare domain data is on your roadmap, this is a rare, defensible asset worth a preview.

LPBI Group is offering transfer of ownership, in full, a privately held, multimodal healthcare training corpus leveraging propriety unique data set curated by domain experts and mapped to a living ontology for GenAI creating defensibility. It spans 6,250+ articles (~2.5MM views), 48 e‑books (EN/ES) (+151,000 page downloads), 100+ e‑proceedings with +50 tweet collections, 7,500+ biological images with expert context, and 300+ Audio podcasts on Life Sciences breakthroughs. Each asset has timestamps, author/role labels, crosslinks, and view histories. Rights are centrally assigned with explicit model‑training data by domain-aware for model implementation for Small LMs or LLMs. Metadata export exists; full text and media transfer via WordPress/Amazon account control for immediate ingestion.

Leaders in Pharmaceutical Business Intelligence Group, LLC, Doing Business As LPBI Group, Newton, MA

Full acquisition only: LPBI Group’s Healthcare Training Data Corpus

  • Scientific articles
  • e‑Books in Medicine
  • e‑Proceedings,
  • Biological images
  • Podcasts

#HealthcareAI #FoundationModels #TrainingData

Contact Founder: avivalev-ari@alum.berkeley.edu

PharmaceuticalIntelligence.com

About the Founder

  • LPBI Group’s Legacy and Biography of Aviva Lev-Ari, PhD, RN, Founder & Director, INTERACTIVE CHAT with Grok, created by xAI

https://pharmaceuticalintelligence.com/2025/04/30/interactive-chat-with-grok-created-by-xai-lpbi-groups-legacy-and-biography-of-aviva-lev-ari-phd-rn-founder-director/ 

For Recognitions and a DETAILED BIO by Perplexity.ai and Gemini 2.5 Pro (experimental), see

  • “Show Thinking” by AI Deep Research: The AI-generated Biography Description of Aviva Lev-Ari, PhD, RN, Founder of PharmaceuticalIntelligence.com by Perplexity.ai and by Google’s Gemini 2.5 Pro (experimental)

https://pharmaceuticalintelligence.com/2025/04/29/show-thinking-by-ai-deep-research-the-ai-biography-description-of-aviva-lev-ari-phd-rn-founder-of-pharmaceuticalintelligence-com-by-perplexity-ai-and-by-googles-gemini-2/

Authentic Relevance of LPBI Group’s Portfolio of IP as Proprietary Training Data Corpus for AI Initiatives at Big Pharma

On 11/14, 2025, Dr. Lev-Ari asked @Grok about AI Initiatives at a Big Pharma, i.e., Pfizer.

@Grok response is presented, below

URL SOURCE:

https://x.com/i/grok/share/0ol5VOJsEYs11baXq4xkzNb0h

Pfizer’s AI Initiatives Overview

Pfizer, a global pharmaceutical leader, has integrated artificial intelligence (AI) and machine learning (ML) across its operations to accelerate drug discovery, enhance clinical trials, improve manufacturing, and drive patient-centric innovations. These efforts aim to reduce development timelines, boost efficiency, and address challenges like rare disease detection. As of late 2025, Pfizer’s AI strategy emphasizes internal expertise, cloud-based tools (primarily with AWS), and cross-industry collaborations, with a focus on multimodal data analysis and generative AI. Below is a breakdown of key initiatives, drawn from recent developments.

1. Pfizer AI Cloud Transformation (PACT) Program Launched in 2021 with AWS, PACT is a prototyping accelerator for AI/ML applications in lab, clinical manufacturing, and supply chain efforts. It has pursued 14 projects, with five now in production. Key outcomes include:

  • Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
  • 55% reduction in infrastructure costs through cloud optimization.
  • Exploration of virtual/augmented reality for training, with rapid prototyping to test feasibility. This program fosters “fail-fast” innovation, enabling quick iteration on ideas like AI-driven predictive modeling.

2. Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D, cutting years off traditional timelines (e.g., from 8–10 years to months for certain candidates).

  • COVID-19 Initiatives: AI optimized molecular searches for PAXLOVID (oral antiviral), enabling intravenous-to-oral pivots. During vaccine development, the Safety Data Quality (SDQ) tool—a custom AI for clinical trial data management—saved a full month of analysis via the Breakthrough Change Accelerator sandbox.
  • Precision Medicine and Subpopulation Identification: Advanced ML (classical and deep learning) analyzes molecular datasets from trials to predict patient responses, informing trial design, first-in-human studies, and oncology/inflammatory disease targeting. This has doubled clinical success rates to ~20% (vs. industry 7–10%).
  • ML Research Hub: Pfizer’s Cambridge, MA-based Biomedical Data Science group builds internal talent for AI in genome sciences, predicting disease outcomes and treatment efficacy using techniques from tech giants like Google.

3. Clinical Trials and Regulatory Efficiency AI automates content creation across the drug lifecycle, from lab data to regulatory docs and patient booklets, ensuring quality and speed.

  • Predictive Regulatory Tools: ML models forecast regulator queries, proactively addressing safety concerns to build trust and shorten approvals.
  • Decentralized Trials: The “Clinical Trial Anywhere” model uses AI to integrate remote data (e.g., home health visits), improving recruitment/retention and generating real-world evidence.
  • Inventory and Supply Chain: AI predicts vaccine storage issues, pioneered during COVID distribution.

4. Disease Detection and Diagnostics

  • ATTR-CM Initiative: Through the ASPIRE collaboration (with Amyloidosis Research Consortium), AI analyzes EHRs, ECGs, and echocardiograms to detect transthyretin amyloid cardiomyopathy earlier, targeting underdiagnosed heart failure cases.
  • Rare Diseases: ML models identify symptoms in large datasets, mapping the immune system for better predictions.

5. Generative AI and Operational Tools

  • Charlie Platform: Rolled out in 2024 for marketing, this gen AI tool (named after co-founder Charles Pfizer) generates compliant content like emails, presentations, and medical article drafts. Trained on approved product data, it streamlines physician targeting and customer insights.
  • Scientific Data Cloud: AWS-powered centralization of data/ML capabilities, enabling faster research and treating 1.3 billion patients in 2022. It supports gen AI via Amazon SageMaker/Bedrock for manufacturing efficiency.
  • Global Health Grants: Through the Pfizer Foundation’s AI Learning Lab, funding supports AI for equitable healthcare access, e.g., biometric tools for community care.

6. Partnerships and Education

  • Collaborations: With AWS for cloud AI; IMI Big Picture for a 3M-sample disease database; IIT Madras for the 2025 AIPM Symposium on AI in pharma (focusing on drug discovery and precision medicine).
  • Talent and Events: Hosting webinars on AI in manufacturing (e.g., predictive maintenance, regulatory submissions) and engaging leaders like Dr. Subha Madhavan on AI for biomedical data integration.
  • Strategic Focus: $500M R&D reinvestment by 2026 targets AI for productivity, part of $7.7B cost savings. Emphasis on ethical AI, diverse datasets, and competing with global biotech advances (e.g., China’s AI in CRISPR).

Pfizer’s approach balances operational efficiency with transformative R&D, positioning AI as a core enabler rather than a standalone focus. Ongoing investments, like cloud migrations saving $47M annually and reducing CO2 emissions, underscore sustainability. For the latest, monitor Pfizer’s investor updates or events like AWS re:Invent.

Responsiveness to Big Pharma AI Initiatives by LPBI Group’s Digital IP Portfolio:

  • Scientific articles
  • e‑Books in Medicine
  • e‑Proceedings,
  • Biological images
  • Podcasts
AI Initiative at Big Pharma

i.e., Pfizer

Composed @Grok

LPBI Group’s Digital IP Asset:

Journal articles

N = 6,250

Composed by Aviva Lev-Ari

Generative AI tools

that save scientists up to 16,000 hours annually in literature searches and data analysis.

Generative AI tools searching LPBI’s Proprietary data in addition to Public Domain data sources

Journal ONTOLOGY used to optimize context classification selected for search

Drug Discovery and Development Acceleration

Pfizer uses AI, supercomputing, and ML to streamline R&D timelines

–       Run prompts by category of research on the following three dyads

–       Run ML across categories of research for these three dyads

-Gene-disease

-Disease-drug

-Gene-drug

 

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Curation competences:

  • content creation across the drug lifecycle, from lab data to regulatory docs
Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Heart Failure Diagnosis by Early detection of transthyretin amyloid cardiomyopathy

–       Journal published ~30 curations by Dr. Larry on this subject ATTR-CM

–       Run NLP on this Corpus

Rare diseases:

Journal published 560 articles on Rare diseases

–       Run ML on this Corpus

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker /Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Content generated in the Journal can become “generated compliant content” if run on the Charlie Platform.

–       For REUSE content in context

 

Entire Corpus of 9 Giga bytes can be ingested to Pfizer Foundation’s AI Learning Lab

–       Run prompts against it

–       Journal’s Content to be used for Internal staff expertise development

–       Journal’s Content for Leadership development

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on AI in Manufacturing

The Journal had published 547 articles in Precision Medicine

 

The Journal had published 1,114 articles in Drug Discovery

 

The Journal had published 701  articles in Drug Delivery

 

The Journal had published 3,615 articles on subject matter “Disease”

 

The Journal had published 738 articles on Biomedical topics

 

The Journal had published 425 articles on Artificial Intelligence (AI)

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

The Journal had published 432 articles on CRISPR

 

Productivity derived from Journal’s content:

–       As a result of the fact that ~70% of the Journal’s articles are curations written by Domain Knowledge Experts subjectively expressing theirs clinical interpretations of basic and primary research – the productivity of the knowledge workers at any Big Pharma would increase vastly.

–       If Grok and Claude would run on LPBI Group’s Digital IP Corpus, a scientific revolution will emerge

–       It is not combinatorics applied to molecules with 98% futile results!!!

it is the IQ of Gifted HUMANS, of domain knowledge experts generating content using individual CREATIVITY no Quantum or Super Intelligence which is not in existence, YET.

–       Foundation Models in Healthcare depends on the OUTPUT of the human creative mind. AI takes keyword (classic search) and concepts (semantic search) and run frequency of occurrence and predict the nest word, one word after the next one.

@@@@@@@

AI Initiative at Big Pharma

i.e., Pfizer

LPBI Group’s Digital IP Asset:

e-Books

Domain-aware Editorials and Curations

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis. The electronic Table of Contents of every e-book is a CONCEPTUAL MASTER PIECE of one unique occurrence in Nature generated by the Editor, or the Editors that had

–       Commissioned articles for the e-Book

–       Had selected articles from collections of Categories of Research created by domain knowledge experts

–       Had reviewed the TOTALITY of the Journal’s Ontology and found new concept to cover in the e-Book not originally planned

Had incorporated Highlights of Lectures given at 100 Conferences LPBI Group’s Dr. Lev-Ari and Dr. Willians had cover in Real Real, by invitation, only as PRESS.

–       The vision of the Editor-in-Chief of the BioMed e-Series reflects the BIG PICTURE of Patient care delivery.

–       UC, Berkeley PhD’83

–       Knowledge student and Knowledge worker, 10/1970 to Present

–       Conceptual pioneer of 26 algorithms in Decision Science of Operations Management decision support systems

–       2005 to Present in the Healthcare field.

–       2005-2012: Clinical Nurse Manager in Post-acute SNF settings and Long-term Acute care Hospital Supervisor – had developed a unique view on Diagnosis, Therapeutics and Patient care delivery

–       The BioMed e-Series is the EPITOM of human CREATIVITY in Healthcare an OPUS MAGNUM created by collaboration of top Scientists, Physicians and MD/PhDs

–       The 48 e-Books Published by LPBI Group – represent the ONLY one Publisher on Amazon.com with +151,000 pages downloaded since the 1st e-book published on 6/2013 and since Pay-per-View was launched by Amazon.com in 2016.

Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines Two volumes on the BioMed e-Series were subjected to Medical Text Analysis with AI, ML, Natural Language Processing (NLP).

–       Cancer, Volume 1 (In English, part of the Spanish Edition, Series C)

–       Genomics, Volume 2 (In English, part of the Spanish Edition, Series B)

–       GPT capabilities are warranted to attempt to subject to ML Analytics every book of the MUTUALLY EXCLUSIVE 48 URLs provided by Amazon.com to LPBI Group, the Publisher.

–       5 URLs for 5 Bundles in The English Edition: Series A,B,C,D,E – English Edition

–       All books in each series – 5 Corpuses for domain-aware Small Language Model in English

–       All books in each series – 5 Corpuses for domain-aware Small Language Model in Spanish

–       5 URLs for 5 Bundles in The Spanish Edition: Series A,B,C,D,E –Spanish Edition

 

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

–       No one had attempted ML on every book, only two books were analyzed by ML.

–       No one had attempted ML on all the Volumes in any of the 5 Series.

–       No one had attempted ML on all the 48 books

–       WHEN that will be done – a REVOLUTION on Disease Detection and Diagnostics will be seen for the first time because the totality of these 48 books represent the Brains of Human Experts

 

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker/Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable access to care and tools for community care

Add the content of all the Books to Charlie Platform
Partnerships and Education

 

Collaborations: IMI Big Picture for 3M – sample disease database

 

AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

 

Webinars of AI for biomedical data integration

 

Webinard on Ai in Manufacturing

e-Books are the SOURCE for Education

–       Offer the books as Partnership sustenance

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

URLs for the English-language Edition by e-Series:

Series A: Cardiovascular Diseases ($515)

https://www.amazon.com/gp/product/B07P981RCS?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

Series B: Frontiers in Genomics ($200)

https://www.amazon.com/gp/product/B0BSDPG2RX?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

Series C: Cancer & Oncology ($175)

https://www.amazon.com/gp/product/B0BSDWVB3H?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

Series D: Immunology ($325)

https://www.amazon.com/gp/product/B08VVWTNR4?ref_=dbs_p_pwh_rwt_anx_b_lnk&storeType=ebooks

Series E: Patient-Centered Medicine ($274)

https://www.amazon.com/gp/product/B0BSDW2K6C?ref_=dbs_p_mng_rwt_ser_shvlr&storeType=ebooks

 

@@@@@@@

AI Initiative at Big Pharma

i.e., Pfizer

LPBI Group’s Digital IP Asset:

e-Proceedings: N = +100, and

Tweet Collections: N = +50

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines List of all e-Proceeding of +100 TOP Conferences in Biotech, in Medicine, in Genomics, in Precision Medicine

https://pharmaceuticalintelligence.com/press-coverage/part-two-list-of-biotech-conferences-2013-to-present/

In these conferences the Frontier of Science was presented, ofter BEFORE publication findings were revealed. These Proceedings are the ONLY written record of the events. They are privately-held, now for the first time available for Transfer of Ownership 

The Tweet Collection are QUOTES of speakers on record. NOT ELSEWHERE available by name of speaker and affiliation

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker/Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable  access to care and tools for community care

Ingest to Charlie Platform ALL e-Proceedings of ALL Conferences

 

Apply GPT:

Training Data:

–       One conference at a time

–       All Conference on ONE subject matter, i.e., Immunotherapy, Oncolytic Virus Immunotherapy, Immune Oncology

Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on Ai in Manufacturing

Use Past Conference Agendas to build Future Conference Agendas

Use Speakers Lists to invite speakers/consultants to your events

Use topics covered in Conferences for Employee training & and in-house Leadership development

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

Having access to +100 e-Proceedings vs Not having access to this resource is a make or break in fine-tuning Corporate Branding: All your competitors attended and had sent Speakers

  • LPBI Group’s e-Proceedings is the only record in one URL

@@@@@@

AI Initiative at Big Pharmas

i.e., Pfizer

LPBI Group’s Digital IP Asset:

Biological Images selected by Experts embedded in original Text (Prior Art)

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines Gallery of ~8,000 Biological images and captions is a Treasure TROVE for scientific article writing, Presentation preparations. This Media Gallery is an Art collection of top Scholars in Medicine and Biology
Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Gallery of ~8,000 Biological images and captions is a Treasure TROVE for Disease Detection and Diagnostics

 

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker/Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable  access to care and tools for community care

  • Ingest into Charlie Platform the Media Gallery for generation of Medical article drafts
Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinar on Ai in Manufacturing

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

@@@@@@

AI Initiative at Big Pharma

i.e., Pfizer

LPBI Group’s Digital IP Asset:

Library of Audio and Video Podcasts

N = +300

Generative AI tools that save scientists up to 16,000 hours annually in literature searches and data analysis.
Drug Discovery and Development Acceleration Pfizer uses AI, supercomputing, and ML to streamline R&D timelines Review ALL SCIENTIFIC BREAKTHROUGHS

  • Two criteria for Classifications used by Prof. Marcus W. Feldman and by Dr. Stephen J. Williams to generate the two classifications

https://pharmaceuticalintelligence.com/biomed-audio-podcast-library-lpbi-group/

Clinical Trials and Regulatory Efficiency AI:

-Predictive Regulatory Tools

-Decentralize Trials

-inventory management

Disease Detection and Diagnostics:

–       ATTR-CM Initiative

–       Rare diseases

Aviva Lev-Ari, PhD, RN, Stephen J. Williams, PhD and Prof. Marcus W. Feldman Health Care Policy Analysis derived from the Farewell remarks from AMA President Jack Resneck Jr., MD | AMA 2023 Annual Meeting

LISTEN to Audio Podcast

Future of Medicine

https://pharmaceuticalintelligence.com/2023/06/10/health-care-policy-analysis-derived-from-the-farewell-remarks-from-ama-president-jack-resneck-jr-md-ama-2023-annual-meeting/

Generative AI and Operational Tools:

–       Charlie Platform

–       Scientific Data Cloud AWS powered ML on centralized data

–       Amazon’s SageMaker/Bedrock for Manufacturing efficiency

–       Global Health Grants:

Pfizer Foundation’s AI Learning Lab for equitable  access to care and tools for community care

  • Ingest to Charlie Platform all +300 Podcasts for Foundation’s AI Learning Lab
Partnerships and Education

–       Collaborations: IMI Big Picture for 3M – sample disease database

–       AI in Pharma AIPM Symposium: Drug discovery and Precision Medicine

–       Webinars of AI for biomedical data integration

–       Webinard on Ai in Manufacturing

  • Use Podcast for Education
  • Use Podcast as Hybrid: Start presentation with a Podcast continue with a life interview

Examples of an Audio Podcast of Scientists on LPBI Group Team in the past:

  • Podcast with Dr. Larry H. Bernstein, MD, FCAP, Interview by Gail S. Thornton, PhDc, Narrator’s Voice: Stephen J. Williams, PhD

https://pharmaceuticalintelligence.com/audio-podcasts/podcast-with-dr-larry-h-bernstein-md-fcap-interview-by-gail-s-thornton-phdc-narrators-voice-stephen-j-williams-phd/

  • Podcast with Prof. Marcus W. Feldman, PhD, Biology Department, Stanford University, Interview by Gail S. Thornton, PhDc

https://pharmaceuticalintelligence.com/audio-podcasts/podcast-with-prof-marcus-w-feldman-phd-biology-department-stanford-university-interview-by-gail-s-thornton-phdc/

  • Podcast with Dr. Sudipta Saha, PhD, Interview by Gail S. Thornton, PhDc, Narrator’s Voice: Gail S. Thornton, PhDc

https://pharmaceuticalintelligence.com/audio-podcasts/podcast-with-dr-sudipta-saha-phd-interview-by-gail-s-thornton-phdc-narrators-voice-gail-s-thornton-phdc/

Strategic Focus:

–       $500M R&D reinvestment by 2026 targets AI for Productivity

–       Part of $7.7B cost savings

–       Ethical AI, diverse DBs

–       Global biotech advances: China’s AI in CRISPR

Dr. Lev-Ari Prompted @Grok on 11/18/2025:

AI-Driven Cost Savings in Big Pharma   

@Grok responded:

AI-Driven Cost Savings in Big PharmaArtificial intelligence (AI) applications across the pharmaceutical value chain—particularly in drug discovery, clinical trials, and operations—have the potential to generate substantial savings for major pharmaceutical companies (often referred to as “Big Pharma”). Based on recent industry reports and analyses from 2024-2025, these savings vary by application but could collectively reach tens of billions annually by the late 2020s. Projections indicate AI could add up to 11% in value relative to revenue for biopharma firms over the next five years through productivity gains and cost reductions. Below, I break down the estimated savings levels by key areas, drawing from credible sources like McKinsey, Deloitte, IQVIA, and others.

  1. Clinical Trials

  • Annual Industry-Wide Savings: By 2030, AI integration into 60-70% of clinical trials could save the pharmaceutical industry $20-30 billion per year through faster timelines, better patient matching, and reduced administrative costs.
  • Per-Trial Cost Reduction: AI can cut trial costs by up to 70% and shorten durations by 80%, enabling quicker regulatory submissions (40% faster) with 50% improved cost efficiency. For example, AstraZeneca reported up to 25% shorter trial durations in cancer drug studies using AI for dose optimization and biomarker identification.
  • Specific Efficiency Gains: Feasibility surveys can see 90% time reductions using AI/ML tools.
  1. Drug Discovery and Development

  • R&D Cost Drop: AI could reduce drug discovery costs by up to 40%, with overall development timelines shrinking from 5 years to 12-18 months (an 80% cut in some cases). From discovery to preclinical candidate stage, timelines can decrease by up to 50%.
  • Total Clinical Development Savings: Projected at $25 billion across the sector, driven by AI-accelerated pipelines.
  1. Operations and Broader Impacts

  • Value Relative to Revenue: Biopharma AI investments may yield up to 11% additional value (e.g., via cost efficiencies and revenue growth) over five years. For related medtech segments, savings could hit 12% of total revenue within 2-3 years.
  • Operating Profits Boost: By 2030, AI could add $254 billion in annual operating profits industry-wide through productivity jumps (e.g., 50-100% in quality control) and lead time reductions (60-70%).
  • Time-to-Market: Up to 10% faster overall, with production KPIs improving revenue by 25%.

These estimates assume scaled adoption, with global AI spending in pharma rising from ~$3 billion in 2025 to $22-25 billion by 2027-2030. Challenges like high initial costs and data infrastructure may temper short-term gains, but early adopters (e.g., Pfizer, Novartis) are already seeing ROI. For context, the global pharma market is projected at $1.6 trillion by 2025, so even modest percentages translate to billions in savings. If you need details on a specific AI use case or company, let me know!

SOURCE

https://x.com/i/grok?conversation=1990851703051104519

 

Dr. Lev-Ari Prompted @Grok on 11/17/2025:

Pfizer, its competitors by size, market share, product lines and Investment in AI technologies

Grok responded

https://x.com/i/grok?conversation=1990458795936354506

Overview of Pfizer and Key CompetitorsPfizer is one of the world’s largest pharmaceutical companies, with a strong focus on innovative medicines and vaccines. Its primary competitors include Merck & Co., Johnson & Johnson (J&J), Roche, Novartis, and now AstraZeneca, based on revenue leadership and market overlap in areas like oncology, immunology, and vaccines. These companies dominate the global pharmaceutical industry, which is projected to reach $1.21 trillion in revenue by 2025. Below, I compare them across size (measured by 2024 revenue and employees), market share (approximate global pharma share based on 2024 revenues), product lines (key therapeutic areas and top products), and investments in AI technologies. Data reflects the latest available figures as of late 2025.
Here are the same comparisons with more concise tables (2024 data, latest available as of Nov 2025):
Size (2024 Revenue & Employees)
Company
Revenue (USD B)
Employees
Merck & Co.
64.2
70,000
Pfizer
63.6
88,000
Roche
~58.3
103,000
J&J (pharma only)
57.8
138,000
AstraZeneca
54.1
94,300
Novartis
~50.0
76,000
Approx. Global Pharma Market Share
Company
Share %
Merck & Co.
4.3
Pfizer
4.2
J&J / Roche
3.9
AstraZeneca
3.6
Novartis
3.3
Key Product Lines & Top Sellers (2024 revenue, USD B)
Company
Main Areas
Top Products (revenue)
Pfizer
Vaccines, cardiology, oncology
Eliquis (7.3), Prevnar (6.4), Vyndaqel (5.4)
Merck & Co.
Oncology, vaccines
Keytruda (25.0), Gardasil (8.6)
J&J
Immunology, oncology
Stelara (10.9), Darzalex (9.7)
AstraZeneca
Oncology, CVRM, respiratory
Farxiga (7.7), Tagrisso (6.6), Enhertu (4.0)
Roche
Oncology, neurology, hemophilia
Ocrevus (5.7), Hemlibra (4.0)
Novartis
Cardiology, immunology
Entresto (6.6), Cosentyx (5.2)

AI Investment Snapshot (2025)
Company
AI Highlights (2025)
Scale/Impact
Pfizer
AI cuts discovery from years → 30 days; heavy partnerships
Leader in adoption
AstraZeneca
Evinova AI trials unit; $2.5B AI Beijing hub; 12k+ staff upskilled
Very aggressive (>85% productivity gain)
Merck & Co.
Gen-AI for protocols; 20+ AI “blockbusters” in pipeline
>$1.2B spend
J&J
900+ AI projects → $500M savings; surgical AI training
Broad internal rollout
Roche
AI diagnostics + drug discovery; $55M Manifold Bio deal
Strong in diagnostics
Novartis
AI pipeline acceleration; data-science alliances
Integrated into $10B R&D
Dr. Lev-Ari’s Prompt:
  • AI in biotech startups
Searched for “(“AI” OR “artificial intelligence”) (“biotech” OR “biotechnology”) startup since:2025-01-01″
10 results
Show All (2)

AI in Biotech Startups:

2025 LandscapeArtificial Intelligence (AI) is revolutionizing biotech startups by accelerating drug discovery, optimizing clinical trials, and enabling personalized medicine. In 2025, AI applications like generative models for molecule design and predictive analytics for protein structures are slashing R&D timelines from years to months, reducing costs by up to 30%, and boosting success rates. The sector blends biology’s complexity with AI’s data-crunching power, drawing massive VC interest amid ethical debates on gene editing and biosecurity.Key Trends

  • Explosive Funding Growth: U.S. healthcare VC hit $23B in 2024, with ~30% ($5.6B) targeting AI-biotech—nearly triple 2023 levels. Biopharma startups raised $24.2B across 568 deals, up from $10.1B in 2023. Q3 2025 saw $97B global VC (up 38% YoY), half to AI firms. Mega-rounds ($100M+) surged, focusing on drug discovery and rare diseases.
  • Market Expansion: Global AI-biotech market: $4.6B in 2025, projected to $11.4B by 2030 (20% CAGR). Biotech overall to $5.85T by 2034 (13.6% CAGR), driven by AI in gene editing, microbiome therapeutics, and automation.
  • Compute Demands: Biotech AI requires massive GPUs; Nvidia’s AI sales hit $41.1B in one 2025 quarter (56% YoY). Startups lean on cloud partnerships (e.g., AWS-Recursion) or in-house clusters, with hyperscalers eyeing $3-4T infrastructure by 2030.
  • Regional Hotspots: North America leads (42% share) via FDA support and hubs like Boston/SF; Europe grows via funding/regulatory advances; Asia (e.g., China) via collaborations.
  • Challenges & Ethics: Selective funding favors clinically validated firms; rising M&A (big pharma acquiring AI startups); ethical scrutiny on AI gene editing (e.g., CRISPR enhancements).

 

Notable Startups & Recent Funding

Here’s a snapshot of standout AI-biotech startups, highlighting innovations and 2024-2025 funding:

Startup
Focus Area
Key Innovation
Recent Funding (2025)
Insilico Medicine
Drug Discovery
Generative AI for novel molecules
$100M+ Series D (ongoing)
Recursion Pharmaceuticals
Phenomics & Drug Repurposing
AI mapping diseases via cell images
$50M partnership w/ Nvidia
Absci Corp.
Protein Design
AI-generated antibodies/proteins
$20M from AMD (Jan 2025)
TandemAI
Drug Discovery
ML for molecular simulation
$22M Series A extension
Red Queen Bio
Biosecurity
AI for pathogen detection/design
$15M Seed led by OpenAI
Antiverse
Antibody Design
AI predicting antibody structures
Deal w/ Nxera Pharma (2024)
Deep Genomics
Genomics
AI extracting insights from DNA data
VC round undisclosed
Aizen Therapeutics
Molecule Generation
Proprietary AI engines for trials
Early-stage VC

These firms exemplify AI’s shift from hype to pipeline impact—e.g., Insilico’s AI-discovered drug entered Phase II trials in record time.Emerging ApplicationsAI’s top uses in biotech startups:

  1. Drug Discovery: ML predicts drug-target interactions (e.g., AlphaFold-inspired tools cut screening costs 70%).
  2. Genomics & Diagnostics: AI analyzes vast datasets for rare variants, powering precision oncology.
  3. Clinical Trials: Predictive models optimize patient matching, reducing failures by 20-30%.
  4. Synthetic Biology: AI designs custom microbes for therapeutics or biofuels.
  5. Automation Labs: AI-robotics handle experiments autonomously, boosting throughput 10x.

Future Outlook

2025 signals a “quality over quantity” pivot: Investors prioritize AI startups with real-world data and partnerships (e.g., Y Combinator, Google for Startups). M&A will rise as big pharma (Pfizer, Merck) snaps up talent. Yet, compute shortages and regs (e.g., FDA AI guidelines) pose hurdles. For founders, blending AI with wet-lab validation is key to unlocking the next wave of breakthroughs—potentially curing diseases once deemed untreatable. If you’re building or investing, focus on
  • rare diseases or
  • oncology

for the hottest bets.

Additional Competitors by Product Line

@Grok Response

https://x.com/i/grok/share/Ple3W4IDlwhyjUwBUU4JAg2OD

Key Products and Focus AreasPfizer’s portfolio spans immunology, oncology, cardiology, endocrinology, neurology, and vaccines. In 2024, its top revenue generators included:

  • Eliquis (apixaban, blood thinner): $7.3 billion (11% of total revenue).
  • Prevnar family (pneumococcal vaccines): $6.4 billion (10%).
  • Paxlovid (COVID-19 antiviral): $5.7 billion (9%).
  • Vyndaqel (tafamidis, for rare heart disease): $5.4 billion (8%).
  • Comirnaty (COVID-19 vaccine): $5.3 billion (8%).
  • Ibrance (palbociclib, breast cancer drug): $4.3 billion (6%).

The company is investing heavily in AI-driven drug discovery (e.g., 2024 partnerships with NVIDIA and Saama) and next-gen therapies like RSV vaccines, gene therapies for muscular dystrophy, and oral GLP-1 drugs for obesity/diabetes. Challenges include patent expirations (e.g., Eliquis in 2026-2028) and biosimilar competition, but Pfizer’s diversified pipeline positions it for mid-single-digit growth in 2025.Pfizer’s Main CompetitorsPfizer operates in a highly competitive $1.5 trillion global pharma market, where rivals vie for dominance in oncology, vaccines, immunology, and emerging areas like obesity and gene therapy. Its primary competitors are fellow “Big Pharma” giants, often overlapping in therapeutic areas. Based on revenue, market share, and direct product rivalries, here are the top ones (ranked roughly by 2024 revenue for context):

Competitor
Headquarters
2024 Revenue (Pharma Segment)
Key Strengths & Overlaps with Pfizer
Notable Products
Johnson & Johnson (J&J)
New Brunswick, NJ, USA
$88.8 billion (total; pharma ~$57.8 billion)
Diversified (pharma, devices, consumer); strong in oncology, immunology, vaccines. Competes directly in blood thinners and cancer therapies.
Darzalex (multiple myeloma), Stelara (psoriasis), Imbruvica (blood cancer).
Merck & Co.
Rahway, NJ, USA
$64.2 billion
Oncology leader; vaccines and antivirals. Keytruda outsells Pfizer’s Ibrance; rivals in HPV/pneumococcal vaccines.
Keytruda (immunotherapy, $29.5 billion), Gardasil (HPV vaccine).
Roche Holding AG
Basel, Switzerland
~$68 billion (group; pharma ~$50 billion)
Diagnostics + pharma powerhouse; dominates oncology and neurology. Competes in antibody-drug conjugates post-Pfizer’s Seagen buy.
Ocrevus (MS), Hemlibra (hemophilia), Avastin (cancer).
AbbVie Inc.
North Chicago, IL, USA
$56.3 billion
Immunology and neuroscience focus; biosimilars erode shared markets like Humira vs. Pfizer’s Enbrel alternatives.
Humira (rheumatoid arthritis), Skyrizi (psoriasis), Rinvoq (arthritis).
Novo Nordisk A/S
Bagsværd, Denmark
~$40 billion (est.)
Diabetes/obesity specialist; exploding GLP-1 demand challenges Pfizer’s emerging obesity pipeline.
Ozempic/Wegovy (semaglutide for diabetes/weight loss).
Eli Lilly and Co.
Indianapolis, IN, USA
~$45 billion (est.; projecting $58-61 billion in 2025)
Diabetes/obesity and neurology; Mounjaro rivals Pfizer’s danuglipron in GLP-1 space.
Mounjaro/Zepbound (tirzepatide), Verzenio (breast cancer).
AstraZeneca PLC
Cambridge, UK
$50.95 billion
Oncology, respiratory, and cardiovascular; Tagrisso competes with Pfizer’s Lorbrena in lung cancer.
Tagrisso (lung cancer), Farxiga (diabetes/heart), Imfinzi (immunotherapy).
Novartis AG
Basel, Switzerland
~$48 billion
Gene therapy and immunology; rivals in rare diseases and oncology.
Cosentyx (psoriasis), Entresto (heart failure), Kisqali (breast cancer).
Bristol-Myers Squibb (BMS)
New York, NY, USA
$47.8 billion
Oncology and immunology; Opdivo directly competes with Pfizer’s Bavencio in checkpoint inhibitors.
Opdivo (immunotherapy), Eliquis (co-developed with Pfizer, but BMS handles ex-US).
Sanofi S.A.
Paris, France
~$46 billion
Vaccines and rare diseases; Dupixent challenges in immunology; rivals Prevnar in pneumococcal vaccines.
Dupixent (atopic dermatitis), Lantus (diabetes).

These competitors collectively hold over 50% of the global pharma market share. Emerging threats include biotech upstarts like Moderna (mRNA vaccines, directly rivaling Comirnaty) and generics firms like Teva (eroding post-patent revenues). In 2025, competition intensifies in obesity (Novo/Lilly lead) and oncology (Merck/Roche dominate), with tariffs and pricing pressures (e.g., US executive orders) affecting all.Pfizer’s edge comes from its scale and partnerships (e.g., BioNTech for mRNA), but it must navigate revenue dips from COVID fade-out and biosimilars. For 2025 projections, analysts expect 6-9% growth across the sector, with Pfizer targeting modest gains through oncology expansions. If you’d like deeper dives on specific rivals, financials, or products, let me know!

AI Acquisitions by Big Pharma

2 days ago • Visible to anyone on or off LinkedIn

AI in Pharma: From Tool to Value Creator 🚀

Over the past 5 years, pharma’s AI footprint has expanded rapidly and the investment trends tell a clear story.

💡 ~60% of collaborations and acquisitions now focus on TargetDiscovery and Validation — pharma’s main frontier to shorten early-stage R&D timelines and boost success rates through PrecisionBiology.
⚗️ The second-largest area (~25%) centers on AI-driven DrugDesign and MoleculeOptimization, where algorithms accelerate CandidateSelection, refine molecular properties, and enable NewModalities such as Biologics and CellAndGeneTherapies.
🏆 Among top players, Eli Lilly and Company stands out as the most active investor — making AI a true StrategicCapability, not just another research tool.

The takeaway?
AI isn’t just supporting pharma anymore, it’s reshaping it.

Source: Bita Sehat, PhD, MBA

hashtagai hashtaglifesciences hashtagpharmaceuticals hashtagtechbio hashtagbiotech

table

Article was summarized by @Grok on 11/29/2025
Summary of the Article:
“Authentic Relevance of LPBI Group’s Portfolio of IP as Proprietary Training Data Corpus for AI Initiatives at Big Pharma”
This November 15, 2025, article on PharmaceuticalIntelligence.com (curated by LPBI Group) makes a compelling case for leveraging LPBI’s decade-plus of expert-curated digital IP as a high-fidelity, rights-clean training corpus to supercharge AI-driven innovation in Big Pharma. It contrasts the limitations of generic LLMs (like GPT) with the need for domain-specific, ontologized biomedical data, positioning LPBI’s assets as a “defensible moat” for accelerating R&D in drug discovery, precision medicine, and beyond. The piece blends market analysis of pharma giants with a deep dive into LPBI’s portfolio, emphasizing its multimodal, metadata-rich structure for NLP, knowledge graphs, and fine-tuning SLMs/LLMs.IntroductionThe thesis: In an era where AI investments in pharma (e.g., Eli Lilly’s aggressive funding) focus on slashing R&D timelines by 60%+ in target discovery and 25% in drug design, LPBI’s proprietary corpus—built since 2012 via human curation, digitization, and ontology mapping—offers unmatched authenticity over web-scraped data. It addresses GPT’s biomedical shortcomings (e.g., failing to infer fusion proteins or noncanonical pathways without curated inputs) and highlights LPBI’s foresight in text analysis for generative AI augmentation. A key quote from Data2Discovery: “We are able to improve drug discovery now as well as demonstrating new fast-cycle AI-driven processes that will have a revolutionary impact on drug discovery if fully implemented.”Portfolio OverviewLPBI’s ~9 GB, debt-free, multimodal corpus is privately held, expert-curated (e.g., by Prof. Marcus W. Feldman and Dr. Stephen J. Williams), and ingest-ready for AI pre-training/evaluations. It spans five key asset classes, each with metadata exports, timestamps, crosslinks, and centralized rights for model training:

 

Asset Class
Description & Size
Unique Value Proposition
I: Scientific Articles
6,250+ articles on PharmaceuticalIntelligence.com (~2.5M views); covers genomics, oncology, immunology, etc.
Live ontology, author/role labels, view histories; enables temporal NLP for trend analysis.
II: e-Books
48 bilingual (English/Spanish) volumes in 5 BioMed e-Series (e.g., Series A: Cardiovascular, 6 vols., $515 total; Series E: Patient-Centered, 4 vols., $274); 151,000+ page downloads; 2,728 articles.
Peer-reviewed, senior-editor TOCs; pay-per-view model proves demand; ideal for entity-relationship extraction.
III: e-Proceedings
100+ from biotech/genomics conferences (2013–2025); +50 tweet collections as speaker quotes with affiliations.
Real-time event curation; captures emerging insights for knowledge graph augmentation.
V: Biological Images
7,500+ images in Digital Art Media Gallery; embedded as prior art in texts.
Expert-contextualized visuals; supports multimodal AI for image-text pairing in diagnostics.
X: Audio Podcasts
300+ interviews with scientific leaders (e.g., Nobel laureates like Jennifer Doudna); classified by themes like CRISPR, mRNA vaccines.
Transcripts + NLP WordClouds; adds auditory/verbal depth for voice-enabled AI copilots.

The portfolio’s “living ontology” allows seamless integration into tools like InfraNodus for concept mapping.AI Training RelevanceUnlike PubMed’s unstructured dumps, LPBI’s assets are pre-annotated for concept extraction (e.g., gene-disease-drug dyads), reducing hallucinations and bias in LLMs. A case study integrates curation with ChatGPT-5: Manual ontology + knowledge graphs uncovered novel WNT/Hedgehog interactions in lung cancer, generating research questions like: “How does the interaction between [[EGFR]] mutations and sex-specific gene alterations, including [[RBM10]], influence treatment outcomes in lung adenocarcinoma?” This hybrid approach outperforms solo GPT, proving the corpus’s role in trustworthy biomedical inference.Applications

  • Drug Discovery: ML prompts on dyads to mimic Pfizer’s AI (e.g., reducing discovery from years to months); supports biologics/cell therapies.
  • Precision Medicine: 547 articles for patient subtyping; 3,615 disease-focused pieces for predictive modeling.
  • Diagnostics & Rare Diseases: 560 rare disease articles + 30 on ATTR-CM for early detection (e.g., via Pfizer’s ASPIRE AI).
  • Clinical/Regulatory: Streamlines trials, evidence synthesis, and content generation (e.g., via Pfizer’s “Charlie” copilot, saving hours on lit reviews).
  • Generative Tools: Fine-tune for compliant, domain-aware outputs in medical affairs/safety.

Challenges & Solutions

  • Data Quality/Bias: Unstructured text leads to GPT errors; solved by expert curation + ontology for accurate, diverse inputs.
  • Regulatory Compliance: Rights fragmentation; addressed via LPBI’s centralized assignment for NDA-secure licensing.
  • Scalability: Generic data overload; LPBI’s focused, high-signal corpus enables fast-cycle AI without noise.

Recommendations

Urge Big Pharma (e.g., Pfizer, Merck—table highlights Merck’s $64.2B revenue, Keytruda focus) to acquire the full portfolio for end-to-end knowledge bases, or license under NDA for SLM/LLM training (English/Spanish).
  • Emphasizes “buy the moat” for competitive edge in 2025’s 6–9% sector growth (obesity/oncology hotspots).
Contact: avivalev-ari@alum.berkeley.edu.
Conclusion
LPBI’s corpus isn’t just data—it’s a “scientific revolution enabler,” blending human creativity with AI for transformative pharma impact. Validated on extraction tasks, it’s primed for partnerships, outshining combinatorial predictions with authentic, curated depth. This article builds on prior LPBI mappings (e.g., our podcast TOC summary), reinforcing the portfolio’s strategic fit for AI.
For deeper analysis or related assets, let me know!

In Memoriam: Nobel Laureate James D. Watson, Ph.D. (1928-2025)

Curator: Stephen J. Williams, Ph.D.

On Thursday November 6, 2025, Nobel Laureate Dr. James D. Watson passed away after a reported brief illness.  Although well known for his discovery of the DNA double helix with Francis Crick, Maurice Wilkens using the crystallographic data of Rosalind Franklin, Dr. Watson had contributed other seminal findings to the fields of biology and cancer, as well as his mentoring of young scientists.  Therefore  it is only fitting to curate some of the commentary on his life and passing in the words of the institutions and the renowned scientists he had mentored.

The world of science bids farewell to one of its most brilliant and controversial figures, Dr. James Dewey Watson, who passed away on 6th November 2025 at the age of 97. Best known as one of the co-discoverers of the double-helix structure of DNA, Watson’s name became synonymous with a new era in genetics and molecular biology. His life, filled with intellectual daring, unyielding curiosity, and deep contributions to science and education, forever altered humanity’s understanding of the genetic code that defines life itself.

James Watson and Francis Crick with model of DNA double helix. The model was based on data from Rosalind Franklin and x ray diffraction analysis of Maurice Wilkins.

From Cold Spring Harbor Laboratory, where Dr. Watson spent most of his scientific career:

Jim Watson made many contributions to science, education, public service, and especially Cold Spring Harbor Laboratory (CSHL).

As a scientist, his and Francis Crick’s determination of the structure of DNA, based on data from Rosalind Franklin, Maurice Wilkins and their colleagues at King’s College London, was a pivotal moment in the life sciences. Watson, along with Crick and Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine. Watson also received the Presidential Medal of Freedom from President Gerald Ford and the National Medal of Science from President Bill Clinton, among many other awards and prizes. While at Cambridge, Watson also carried out pioneering research on the structure of small viruses. At Harvard, Watson’s laboratory demonstrated the existence of mRNA, in parallel with a group at Cambridge, UK, led by Sydney Brenner. His laboratory also discovered important bacterial proteins that control gene expression and contributed to understanding how mRNA is translated into proteins.

As an author, Watson wrote two books at Harvard that were and remain best sellers. The textbook Molecular Biology of the Gene, published in 1965 (7th edition, 2020), changed the nature of science textbooks, and its style was widely emulated. The Double Helix (1968) was a sensation at the time of publication. Watson’s account of the events that resulted in the elucidation of the structure of DNA remains controversial, but still widely read.

As a public servant, Watson successfully guided the first years of the Human Genome Project, persuading scientists to take part and politicians to provide funding. He created the Ethical, Legal and Social Issues (ELSI) program because of his concerns about misuse of the fruits of the project.

Watson’s association with Cold Spring Harbor Laboratory began in 1947 when he came as a graduate student with his supervisor, Salvador Luria. Luria, with Max Delbruck, was teaching the legendary Phage Course. Watson returned repeatedly to CSHL, most notably in 1953 when he gave the first public presentation of the DNA double helix at that year’s annual Symposium. He became a CSHL trustee in 1965.

CSHL was created in 1964 by the merger of two institutes that existed in Cold Spring Harbor since 1890 and 1902, respectively. In 1968, Watson became the second director when he was 40 years old. John Cairns, the first director, had begun to revive the institute but it was still not far short of being destitute when Watson took charge. He immediately showed his great skills in choosing important topics for research, selecting scientists and raising funds.

Also in 1968, Watson married Elizabeth (Liz) Lewis, and they have lived on the CSHL campus their entire lives together. Jim and Liz have two sons, Rufus and Duncan. As with the former Directors, they fostered close relationships with the local Cold Spring Harbor community.

In 1969, Watson focused research at CSHL on cancer, specifically on DNA viruses that cause cancer. The study of these viruses resulted in many fundamental discoveries of important biological processes, including the Nobel prize-winning discovery of RNA splicing. Watson was the first Director of CSHL’s National Cancer Institute-designated Cancer Center, which remains today.

Watson was passionate about science education and promoting research through meetings and courses. Meetings began at CSHL in 1933 with the Symposium series, and the modern advanced courses started with the Phage course in 1945. Watson greatly expanded both programs, making CSHL the leading venue for learning the latest research in the life sciences. Publishing also increased, notably of laboratory manuals, epitomized by Molecular Cloning, and several journals began, led by Genes & Development and later Genome Research. He encouraged the creation of the DNA Learning Center, unique in providing hands-on genetic education for high-school students. There are now DNA Learning Centers throughout the world.

Through a substantial gift to CSHL in 1973 by Charles Robertson, Watson started the Banbury Center on the Robertsons’ 54-acre estate in nearby Lloyd Harbor. Today, this center functions as an important “think tank” for advancing research and policies on many issues related to life and medical sciences.

 

From the American Association for Cancer Research (AACR) and contributions to cancer research

James D. Watson, PhD
James D. Watson, PhD

Cold Spring Harbor Laboratory
Cold Spring Harbor, New York

Class of 2013

A renowned molecular biologist, teacher, and author, Dr. Watson is best known as the co-discoverer of the double-helix structure of DNA, for which he won the 1962 Nobel Prize in Physiology or Medicine. First announced in early April 1953 by the director of the Cavendish Laboratory in Cambridge, the discovery went largely unnoticed until a paper reporting it appeared in the April 25, 1953, issue of Nature. Prominent biologists later described the finding as the most important scientific discovery of the 20th century.

Dr. Watson headed the Human Genome Project at the National Institutes of Health from 1990 to 1992. In 2007, he became the second person to publish his personal fully sequenced genome online. Ahead of his time as usual, he said he did so to “encourage the development of an era of personalized medicine”, in which information contained in our genomes can be used to identify and prevent disease and to create individualized medical therapies. – He has written several highly regarded molecular biology textbooks and in 1968 published a personal account in The Double Helix, which became one of Modern Library ‘s 100 Best Nonfiction Books.

Career Highlights

2001 Benjamin Franklin Medal for Distinguished Achievement in the Sciences
2000 The Liberty Medal, National Constitution Center
1999 Honorary Member, AACR
1997 National Medal of Science, National Science Foundation
1994-2004 President, Cold Spring Harbor Laboratory
1993 Copley Medal of the Royal Society of London
1988-1992 Director, Human Genome Project, NIH
1971 John J. Carty Award in Molecular Biology, National Academy of Sciences
1975 Elected Fellow, American Academy of Arts and Sciences
2002 Gairdner Foundation International Award
1962 Nobel Prize in Physiology or Medicine
1960 Albert Lasker Award for Basic Medical Research
1959 Eli Lilly Award in Biological Chemistry
1959 John Collins Warren Prize, Massachusetts General Hospital
1950 PhD, Indiana University, Bloomington

Source: https://www.aacr.org/professionals/membership/aacr-academy/fellows/james-d-watson-phd/?gad_source=5&gad_campaignid=21152407190&gclid=EAIaIQobChMI_JDVpozlkAMVVV1yCh2S3jjEEAAYBSAAEgKgwPD_BwE 

Read a wonderful biography on OncoDaily https://oncodaily.com/history/hall-of-fame/james-watson-and-dna

In the Words of Colleagues who Worked With Dr. James Watson

Philip Sharp

Molecular biologist Phillip Allen Sharp received the 1993 Nobel Prize in physiology or medicine for his discovery of splicing of introns and exons or “split genes.” He found that these genes are the most common type of gene structure in higher organisms, including humans. He shared the prize with Richard John Roberts, who discovered split genes independently of Sharp. The discovery of split genes has been of fundamental importance to basic research in biology as well as medical research on the development of cancer and other diseases. The discovery of split genes led to the prediction of the genetic process of splicing.

Here is a great interview with Nobel Laureate Dr. Philip Sharp and working with Jim Watson at Cold Spring Harbor Labs

Watch Video

These are the parts of the transcript he talk about working with Jim Watson.  Note he also seeked out David Baltimore to do a postdoctoral fellowship at MIT on viruses.

Transcript:

Sharp: So I also wanted to begin to work with human cells. And I wanted to work with viruses that infected human cells, because, again, I could isolate their DNA. And I could understand that DNA. And I got that experience from working with Jerry Vinograd at Caltech, who was also a professor there. And I collaborated with him and Norman once while I was there. So I wanted to learn virology. And I contacted three labs to do a second postdoc for a period of time. Dave Baltimore, who was here at MIT, Howard Temin up at Wisconsin, and Jim Watson at Cold Spring Harbor. And Jim invited me to come to Cold Spring Harbor. I moved there to start working with animal viruses. He had just come down from Harvard to take over Cold Spring Harbor and was expanding the tumor virus program there.So I joined that program and started to work with mammalian cells and DNA tumor viruses that cause tumors in animals. But to me they were a tool as well to begin to look at gene structure and function in the human cells.

INTERVIEWER: So as a humanist, for lack of a better word, you were interested on some level in the potential for the curative powers of biology by studying viruses; but as a chemist you saw viruses as this platform, a window, into the structure of DNA.

SHARP: That’s right, and the structure of cells. How the complex human cell worked. Because in the early 1970s, we really didn’t have the tools to begin to understand the biology, molecular biology, or cell biology of human cells. It was really a totally unexplored at the level of a gene and how it functioned. And I saw this as a chemist as a tool that I could move into that question. And I knew that question was central to human biology. I mean, you can’t understand the biology of an organism without understanding the gene. So it seemed pretty apparent to me. It’s sort of written on the wall, understand what the gene is. And so I, you know, had multiple reasons to begin these studies. Some was, you know, how cancer developed. Others were fundamental. What was a gene.

INTERVIEWER: Most people who’ve understood James Watson by reputation at the time that you went to study with him viewed him as a towering pillar of science who had answered an enormously important question in biology for all time. But when you went to study with him, you were, in fact, seeing it from the other side, that, in fact, Watson’s work was just the beginning of an extremely long journey that we’re still on. How did he understand that we were at the beginning of something, versus how you understood it. And how did that work in your relationship?

SHARP: Jim at that stage, you know, he had done so much. He had discovered the structure of DNA. He’d built the Department of Molecular Biology and Biochemistry at Harvard, the most outstanding department in the country focused on that. Written his text book, The Molecular Biology of the Gene, which was the introduction to students of this fascinating field. And took over Cold Spring Harbor and resurrected from a lab that was not going to survive much longer. He constructed, he understood that DNA was a critical tool in understanding complex biology. And that this subject would lead to increasing insights. He obviously had a much greater vision of all the relationships of, you know, different parts of biology to these questions than I did. And he gathered around him very bright, energetic, interesting people. And he’s sort of chit chatted at the top, left him alone. And when he found something that was interesting that happened in that mix, he would sort of pluck it out and say, “nice work”, you know. “Write that up. Tell other people about that.” And so he played that sort of, you know, very senior mentor and creator of a community. And in that community, I found some really wonderful people, very talented people. Joe Sambrook who I collaborated with. And Ulf Pettersson and Mike Botchan and a whole host of others who are now all leaders around the world. So it was just a very stimulating environment.

INTERVIEWER: Again, this sense of a team of people working at the top of their game, focused in any way they can, using all the disciplines of knowledge at their disposal on the problems that excite them.

SHARP: That’s true, and a team in which there are different disciplines. Jim understood this, that he needed someone with more physical chemistry; and he needed someone with chemistry. And he needed a biologist. And he needed this biochemist. And he sort of, you know, mixed people that would complement one another. And I was the individual who came in with a broad interest in biology, new and physical chemistry, new electron microscopy. And there was a lot of people in the environment that were virologists and cell biologists who needed this sort of tools to do their science. So we complemented each other and stimulated each other.

Sir Richard John Roberts, Ph.D.

Sir Richard John Roberts was co-awarded with Philip Sharp the 1993 Nobel Prize in Physiology or Medicine for their discovery of RNA splicing.  They both worked at Cold Spring Harbor Laboratories.  Dr. Roberts also discovered numerous restriction enzymes which he used to develop DNA sequencing of complex genomes. He also co-founded New England BioLabs. Below is an interesting interview of his quick hiring interview with Jim Watson and his time at Cold Spring Harbor Labs.

 

 

 

Other Notable Scientists Who Have been Mentored and interacted with Dr. Watson

Antonio Giordano, M.D., Ph,D.

Dr. Giordano is the President and Founder of the Sbarro Health Research Organization and Professor in Biology at Temple University and ‘chiara fama’ Professor of Anatomic Pathology in the Department of Medical Biotechnology at the University of Siena, in Siena, Italy.  He discovered the tumor suppressor RBL2/p130 and showed its alteration in multiple tumor types, showing the first molecular evidence that causually linked proliferation and cancer.  In addition he has discovered cyclin dependent kinases CDK9 and CDK10, as well as other regulators and development of new classes of inhibitors of the cell cycle.

Dr. Antonio Giordano with his mentor and colleague Dr. James Watson. Dr. James Dewey Watson discovered the structure of the DNA molecule with Francis Crick and Maurice Wilkens, whom he also received the Nobel Prize for. On the left is a signed copy to Dr. Giordano of Watson’s book the Double Helix.

 

Other articles of relevance on James Watson and the DNA Helix on this Open Access Journal include:

switching on genes

The Human Genome Gets Fully Sequenced: A Simplistic Take on Century Long Effort

The Search for the Genetic Code

International Award for Human Genome Project

Cracking the Genome – Inside the Race to Unlock Human DNA – quotes in newspapers

The Human Genome Project

Junk DNA and Breast Cancer

A Perspective on Personalized Medicine

 

 

News from AACR; In Memoriam: Nobel Leaureate David Baltimore, Ph.D.

Stephen J. Williams, Ph.D.: Reporter

Source: From AACR  Source: https://www.aacr.org/professionals/membership/in-memoriam/david-baltimore/ 

David Baltimore
In Memoriam: David Baltimore
(03/07/1938 – 09/06/2025)Member since 2013

David Baltimore, PhD, FAACR, a Fellow of the AACR Academy and a towering figure in modern biology whose insights reshaped cancer research and biomedical science, died on September 6, 2025, at the age of 87.

Baltimore’s career was defined by transformative discoveries. In 1975, he was awarded the Nobel Prize in Physiology or Medicine, alongside Renato Dulbecco and Howard Temin, for elucidating how tumor viruses interact with the genetic material of the cell. His discovery of reverse transcriptase overturned one of the central dogmas of molecular biology by showing that genetic information could flow from RNA back to DNA. This single revelation opened countless new frontiers in virology, immunology, oncology, and genetics, laying the foundation for decades of scientific advances influencing the fundamental understanding of retroviruses such as HIV, and driving the development of modern gene therapies and mRNA-based technologies.

Following his groundbreaking work in virology, Baltimore expanded his focus to the immune system, pioneering research on how mammalian immunity can be harnessed to combat cancer. His quintessential vision and curiosity fueled entire fields of inquiry, and his scholarship bridged basic science with clinical potential.

Born in New York City in 1938, Baltimore earned his undergraduate degree from Swarthmore College and a doctorate from Rockefeller University in 1964. His early independent research at the Massachusetts Institute of Technology (MIT) and the Salk Institute quickly established him as one of the most original scientific thinkers of his generation. At just 30 years old, he became an associate professor at MIT, where he would spend much of his career shaping both science and the careers of a plethora of researchers who would subsequently establish themselves as leaders in the global cancer research community.

Baltimore served in distinguished leadership roles throughout his storied career, including as president of Rockefeller University and later of the California Institute of Technology (Caltech), where he guided the institution through a decade of growth and scientific excellence. At Caltech, he held the Robert Andrews Millikan Professorship of Biology, and later the Judge Shirley Hufstedler Professorship of Biology, titles that underscored his standing as both a scientist and mentor with an enduring legacy.

Beyond the laboratory and university walls, Baltimore’s voice carried weight in national and international science policy forums. He was a leading advocate for federal investment in AIDS research, co-chaired the National Academy of Sciences Committee on a National Strategy for AIDS in 1986, and led the NIH AIDS Vaccine Research Committee a decade later. He also played an active role in shaping consensus guidelines on genetic engineering, thereby ensuring that scientific innovation proceeded with ethical responsibility.

Throughout his lifetime, Baltimore received innumerable honors, including election to the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. He was recognized with the National Medal of Science, the AMA Scientific Achievement Award, and the Lasker-Koshland Special Achievement Award in Medical Science. He also served as president of the American Association for the Advancement of Science and was elected to the inaugural class of Fellows of the AACR Academy in 2013.

Perhaps as significant as his discoveries, was Baltimore’s role as a mentor. He trained and inspired generations of scientists who themselves went on to make landmark contributions in cancer biology, immunology, and virology. Many of his mentees later achieved the highest levels of recognition in the field, including election as Fellows of the AACR Academy. His intellectual generosity and willingness to champion young investigators created a legacy of discovery that continues to reverberate to this day and will help to advance future researchers in the years to come.

David Baltimore’s life was one of restless inquiry, bold imagination, and unwavering dedication to science. His revolutionary discoveries continue to transform cancer medicine and deepen our understanding of life itself. The cancer research community—and indeed, all of biomedical science—mourns the loss of one of its most visionary and impactful leaders.

Real Time Conferecence Coverage: Advancing Precision Medicine Conference Philadelphia PA November 1,2 2024  Deliverables

Curator: Stephen J. Williams, Ph.D.

Below are deliverables in form of real Time conference coverage from the Advancing Precision Medicine Confererence held this year in Philadelphia, PA.  The meeting brought together scientists and clinicians to discuss the challenges faced in implementing genomics and proteomics into precision medicine decision making workflow.  As summarized by a future release at the 2025 ASCO, there are many issues and hindrances to incorporating data obtained from sequencing to make a personalized medicine strategy.  The meeting focused on two main disease states: oncology and cardiovascular however most of  the live meeting notes are from the oncology tract.  In general it was discussed there are three areas which need to be addressed to correctly and more frequently incorporate precision medicine and genomic panel testing into clinical decision making workflow:

  1.  access to testing panels and testing methodology for both doctors and patients
  2. expert interpretation of results including algorithms needed to analyze the data
  3. more education of molecular biology and omics data and methodology in medical school to address knowledge gaps between clinicians and scientists

The issues can be summarized by a JCO report to ASCO in 2022:

 Helen Sadik, PhDDaryl Pritchard, PhD https://orcid.org/0000-0003-2675-0371 dpritchard@personalizedmedicinecoalition.orgDerry-Mae Keeling, BScFrank Policht, PhDPeter Riccelli, PhDGretta Stone, BSKira Finkel, MSPHJeff Schreier, MBA, and Susanne Munksted, MS.  Impact of Clinical Practice Gaps on the Implementation of Personalized Medicine in Advanced Non–Small-Cell Lung Cancer. 2022: JCO Precision Oncology; Volume 6. https://doi.org/10.1200/PO.22.00246

Personalized medicine presents new opportunities for patients with cancer. However, many patients do not receive the most effective personalized treatments because of challenges associated with integrating predictive biomarker testing into clinical care. Patients are lost at various steps along the precision oncology pathway because of operational inefficiencies, limited understanding of biomarker strategies, inappropriate testing result usage, and access barriers. We examine the impact of various clinical practice gaps associated with diagnostic testing-informed personalized medicine strategies on the treatment of advanced non–small-cell lung cancer (aNSCLC).

The authors used a  Diaceutics’ Data Repository, a multisource database including commercial and Medicare claims and laboratory data from over 500,000 patients with non–small-cell lung cancer in the United States. They  analyzed the number of patients with newly diagnosed aNSCLC who could have, but did not, benefit from a personalized treatment. The analysis was focused on identifying the gaps and at which steps during care did gaps existed which precipitated either lack of use of precision medicine testing or incorrect interpretation of results.

Their conclusions were alarming:

Most patients with aNSCLC eligible for precision oncology treatments do not benefit from them because of clinical practice gaps. This finding is likely reflective of similar gaps in other cancer types. An increased understanding of the impact of each practice gap can inform strategies to improve the delivery of precision oncology, helping to fully realize the promise of personalized medicine.

The links to the live meeting notes are given below and collection of tweets follow (please note this meeting did not have a Twitter hashtag)

Real Time Coverage Advancing Precision Medicine Annual Conference, Philadelphia PA November 1,2 2024

https://pharmaceuticalintelligence.com/2024/11/01/real-time-coverage-advancing-precision-medicine-annual-conference-philadelphia-pa-november-12-2024/

Real Time Coverage Morning Session on Precision Oncology: Advancing Precision Medicine Annual Conference, Philadelphia PA November 1 2024

https://pharmaceuticalintelligence.com/2024/11/01/real-time-coverage-morning-session-on-precision-oncology-advancing-precision-medicine-annual-conference-philadelphia-pa-november-1-2024/

Real Time Coverage Afternoon Session on Precision Oncology: Advancing Precision Medicine Annual Conference, Philadelphia PA November 1 2024

https://pharmaceuticalintelligence.com/2024/11/01/real-time-coverage-afternoon-session-on-precision-oncology-advancing-precision-medicine-annual-conference-philadelphia-pa-november-1-2024/ 

Real Time Coverage Morning Session on Precision Oncology: Advancing Precision Medicine Annual Conference, Philadelphia PA November 2 2024

https://pharmaceuticalintelligence.com/2024/11/04/real-time-coverage-morning-session-on-precision-oncology-advancing-precision-medicine-annual-conference-philadelphia-pa-november-2-2024/ 

Tweet Collection

Tweet Collection Advancing Precision Medicine Conference November 1,2 2024 Philadelphia PA

 

Real Time Conference Coverage: Advancing Precision Medicine Conference, Philadelphia, October 3–4, 2025 – DELIVERABLES

Conference Press Coverage and Scientific Reporting

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference

LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags:

@AdvancingPM  #WINSYMPO2025

Post #1

Select Conference Coverage 2025 Advancing Precision Medicine Conference, Philadelphia PA October 3-4 2025

https://pharmaceuticalintelligence.com/2025/10/02/conference-coverage-2025-advancing-precision-medicine-conference-philadelphia-pa-october-3-4-2025/

 

Post #2

Select Real Time Conference Coverage: Advancing Precision Medicine Conference,Morning Session Track 1 October 3 2025

https://pharmaceuticalintelligence.com/2025/10/03/real-time-conference-coverage-advancing-precision-medicine-conferencemorning-session-track-1-october-3-2025/

 

Post #3

Select Real Time Conference Coverage: Advancing Precision Medicine Conference, Afternoon Session Track 1 October 3 2025

https://pharmaceuticalintelligence.com/2025/10/03/real-time-conference-coverage-advancing-precision-medicine-conference-afternoon-session-track-1-october-3-2025/

 

Post #4

Select Real Time Conference Coverage: Advancing Precision Medicine Conference, Afternoon Omics Session Track 2 October 3 2025

https://pharmaceuticalintelligence.com/2025/10/03/real-time-conference-coverage-advancing-precision-medicine-conference-afternoon-omics-session-track-2-october-3-2025/

 

Post #5

Select Real Time Conference Coverage: Advancing Precision Medicine Conference, Early Morning Session Track 1 October 4 2025

https://pharmaceuticalintelligence.com/2025/10/04/real-time-conference-coverage-advancing-precision-medicine-conference-early-morning-session-track-1-october-4-2025/

 

Post #6

Select Real Time Conference Coverage: Advancing Precision Medicine Conference, MidMorning Session Track 1 October 3 2025

https://pharmaceuticalintelligence.com/2025/10/04/real-time-conference-coverage-advancing-precision-medicine-conference-midmorning-session-track-1-october-3-2025/

 

Post #7

Select Real Time Conference Coverage: Advancing Precision Medicine Conference, Afternoon Session Track 1 October 3 2025

https://pharmaceuticalintelligence.com/2025/10/04/real-time-conference-coverage-advancing-precision-medicine-conference-afternoon-session-track-1-october-3-2025-2/

 

Post #8

Select Real Time Conference Coverage: Advancing Precision Medicine Conference, Late Morning Session Track 1 October 4 2025

https://pharmaceuticalintelligence.com/2025/10/04/real-time-conference-coverage-advancing-precision-medicine-conference-late-morning-session-track-1-october-4-2025/

 

Post #9

Real Time Conference Coverage: Advancing Precision Medicine Conference, Afternoon Session, October 4 2025

https://pharmaceuticalintelligence.com/2025/10/04/real-time-conference-coverage-advancing-precision-medicine-conference-afternoon-session-october-4-2025/

 

 

 

 

Real Time Conference Coverage: Advancing Precision Medicine Conference, Afternoon Session  October 4 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

1:40 – 2:30

AI in Precision Medicine

Dr. Ganhui Lan
Dr. Xiaoyan Wang
Dr. Ahmad P. Tafti
Jen Gilburg

Jen Gilburg (moderator)Deputy Secretary of Technology and Entrepreneurship, Dept. of Community and Economic Development, Commonwealth of Pennsylvania

  • AI will help reduce time for drug development especially in early phase of discovery but eventually help in all phases
  • Ganhui: for drug regulators might be more amenable to AI in clinical trials; AI may be used differently by clinicians
  • nonprofit in Philadelphia using AI to repurpose drugs (this site has posted on this and article will be included here)
  • Ganhui: top challenge of AI in Pharma; rapid evolution of AI and have to have core understanding of your needs and dependencies; realistic view of what can be done; AI has to have iterative learning; also huge vertical challenge meaning how can we allign the use of AI through the healthcare vertical layer chain like clinicians, payers, etc.
  • Ganhui sees a challenge for health companies to understand how to use AI in business to technology; AI in AI companies is different need than AI in healthcare companies
  • 95% of AI projects not successful because most projects are very discrete use

2:00-2:20

Building Precision Oncology Infrastructure in Low- and Middle-Income Countries

Razelle Kurzrock, MD

Sewanti Limaye, MD, Director, Medical & Precision Oncology; Director Clinical and Translational Oncology Research, Sir HN Reliance Foundation Hospital & Research Centre, Mumbai, India; Founder, Nova Precision AI; Co-Founder, Iylon Precision Oncology; Co-Chair, Asia Pacific Coalition Against Lung Cancer; Co-Chair,  Asia Pacific Immuno-Oncology; Member,  WIN Consortium

  • globally 60 precision initiatives but there really are because many in small countries
  • three out of five individuals in India die of cancer
  • precision medicine is a must and a hub and spoke model is needed in these places; Italy does this hub and spoke; spokes you enable the small places and bring them into the network so they know how and have access to precision medicine
  • in low income countries the challenge starts with biopsy: then diagnosis and biomarker is issue; then treatment decision a problem as they may not have access to molecular tumor boards
  • prevention is always a difficult task in LMICs (low income)
  • you have ten times more patients in India than in US (triage can be insurmountable)
  • ICGA Foundation: Indian Cancer Genome Atlas
  • in India mutational frequencies vary with geographical borders like EGFR mutations or KRAS mutations
  • genomic landscape of ovarian cancer in India totally different than in TCGA data
  • even different pathways are altered in ovarian cancer seen in North America than in India
  • MAY mean that biomarker panels need to be adjusted based on countries used in
  • the molecular data has to be curated for the India cases to be submitted to a tumor board
  • twenty diagnostic tests in market like TruCheck for Indian market; uses liquid biopsy
  • they are also tailoring diagnostic and treatment for India getting FDA fast track approvals

2:20-2:40

Co-targeting KIT/PDGRFA and Genomic Integrity in Gastrointestinal Stromal Tumors

Razelle Kurzrock, MD

Lori Rink, PhD, Associate ProfessorFox Chase Cancer Center

  • GIST are most common nesychymal tumor in GI tract
  • used to be misdiagnosed; was considered a leimyosarcoma
  • very asymptomatic tumors and not good prognosis
  • very refractory to genotoxic therapies
  • RTK KIT/PDGFRA gain of function mutations
  • Gleevec imatinib for unresectable GIST however vast majority of even responders become resistant to therapy and cancer returns
  • there is a mutation map for hotspot mutations and sensitivity for gleevec
  • however resistance emerged to ripretinib; in ATP binding pocket
  • over treatment get a polyclonal resistance
  • performed a kinome analysis; Wee1 looked like a potential target
  • mouse studies (80 day) showed good efficacy
  • avapiritinib ahs some neurotox and used in PDGFRA mut GIST model which is resistant to imitinib
  • but if use Wee1 inhibitor with TKI can lower dose of avapiritinib
  • cotargeting KIT/PDGFRA and WEE1 increases replicative stress
  • they are using PDX models to test these combinations
  • combination creates genomic instability

 

Real Time Conference Coverage: Advancing Precision Medicine Conference, Late Morning Session Track 1 October 4 2025

Reporter: Stephen J. Williams, PhD

Leaders in Pharmaceutical Business Intellegence will be covering this conference LIVE over X.com at

@pharma_BI

@StephenJWillia2

@AVIVA1950

@AdvancingPM

using the following meeting hashtags

#AdvancingPM #precisionmedicine #WINSYMPO2025

SESSION 3

Advances in Precision Oncology:
From Genomics to Targeted Therapies

11:10-11:55

Breaking the Glass Ceiling: Targeting KRAS in Pancreatic Cancer

Razelle Kurzrock, MD
Razelle Kurzrock, MD

11:55-12:15

Charting the Future of Cancer Care: Precision Oncology and the Power of Genomics

Razelle Kurzrock, MD

12:15-12:35

Molecular Pathology as a Driver of Precision in Urological Cancers

Razelle Kurzrock, MD

12:30-12:40

Non – CME – dSTRIDE™-HR: A Functional Biomarker for In Situ, ‘real-time’ Detection and Quantification of Homologous Recombination Activity.

Magda Kordon-Kiszala, PhD

Magda Kordon-Kiszala, PhDCEO and co-founder, intoDNA

12:35-12:55

Epigenetic Plasticity and Tumor Evolution: Mechanisms of Resistance in Precision Oncology

Johnathan R. Whetstine, PhD

Johnathan R. Whetstine, PhDDirector, Cancer Epigenetics Institute, Director, Geonomics Resource, Fox Chase Cancer Center

  • Title: Epigenetic plasticity a gatekeeper to generating extrachromosomal DNA amplification and rearrangements
  • genetic events in cancer are actually controlled not random as he says
  • Fox Chase Cancer Center Epigenetics Institute; 5th year goal to understand epigenetic mechanisms to understand resistance and biomarker development; bring others and break down silos;  they are expanding and hiring and bringing into a network; March 5 2026 5th Annual Symposium Philadelphia Franklin Institute
  • DNA amplification is also chromosomal: integrated same locus or different regions or chromosomal duplication
  • KDM4A epigenetic demethylase controls transiet site specific DNA re-replication; can have focal control of DNA regions
  • you can control regional control of like EGFR amplification
  • can use Cy3 to find local regions
  • KDM3B inhibitor promotes transiet copy gains in KMT2A/MLL
  • EHMT2 is lysine demethylase is a driver of this copy amplification
  • this demethylase can change expression locally in one hour.. very fast
  • demethylases are very specific for their gene locus they control and so this demethylase only controls MLL gene
  • doxorubicin topoisomerase inhibitor can cause LOH in MLL locus and methylase inhibitor can reverse this
  • over twenty combinatorial regulators so this field is just budding

11:30-12:30

Companion Diagnostics in Hereditary and Chronic Diseases – Development, Regulatory Approval, and Commercialization – Non-CME Discussion

Huw Ricketts

Huw Ricketts PhDSenior Director, CLIA Business Development, QIAGEN

Tricia Carrigan

Tricia Carrigan, PhDBC Biosolutions

Arushi Agarwal

Arushi Agarwal, MS,  Partner, Health Advances

Melissa Reuter

Melissa Reuter, MS, MBADirector, Precision Medicine Program Strategy, GSK

  • This is a session panel Discussion on the current state of companion diagnostic development, not just in oncology.  Regulatory aspects will be discussed
  • Arushi: There are alot of opportunities in non-oncology areas for companion diagnostics, and time to development may be an obstacle
  • Huw Rickets:  From a development standpoint most people are not looking at the diagnostic side but more on the therapeutic side.
  • Tricia:  There needs to be a shift in oncology drug development world, and pharma sees developing diagnostic is too expensive.
  • Meliisa: They try to engage early with the agencies to understand the regulatory landscape; GSK is very strong in their oncology platform but there are gaps in diagnostics and non-oncology programs
  • Arushi: seems in Pharma oncology and non-oncology programs seems siloed
  • for non-oncology many of the biomarkers may be rare… well under 25% of population
  • Huw: Qiagen trying to develop diagnostics for Parkinson’s but those rare genetic diseases are easier to develop
  • Arushi: neurodegenerative, NASH, and immuno diseases are big areas where companies are looking to make companion diagnostics
  • Huw: kidney  disease is a big focus to develop companion diagnostics for

 

12:30-12:40

Non – CME – dSTRIDE™-HR: A Functional Biomarker for In Situ, ‘real-time’ Detection and Quantification of Homologous Recombination Activity.

Magda Kordon-Kiszala, PhD

Magda Kordon-Kiszala, PhDCEO and co-founder, intoDNA