Feeds:
Posts
Comments

Archive for the ‘Diabetes Mellitus’ Category

Merck Might End DPP-4 Drug Development Program Due to Serious Adverse Events

Stephen J. Williams, PhD.: Reporter/Curator

As Reported From FiercePharma

Read Full Post »

A Concise Review of Cardiovascular Biomarkers of Hypertension

Curator: Larry H. Bernstein, MD, FCAP

LPBI

Revised 5/25/2016

 

Introduction

While a large body of work had been done on cholesterol synthesis, HDL and LDL cholesterol, triglycerides, and lipoproteins for a quarter century, and the concept of metabolic syndrome was emerging, there was neither a unifying concept nor a sufficient multivariable approach to apply the use of laboratory markers to clinical practice.  The mathematical foundation for such an evaluation of the biological markers and the computational tools were maturing at the turn of the 20th century, and the interest in outcomes research for improved healthcare practice was maturing. In addition, there was now heavy investment in health information systems that would support emerging health networks of a rapidly consolidating patient base.  This has become important for the pharmaceutical industry and for allied health sciences to enable a suitable method of measuring the effectiveness of drug and of lifestyle changes to improve the population health.

The importance of finding biomarkers for hypertension is significant as stated above. I refer to observations in a lecture by Teresa Seeman, Ph.D., Professor, UCLA Geffen School of Medicine (1).
The missed cased of hypertension in the U.S. alone has been examined by the NHANES studies. Table  I
shows the poor identification of this serious chronic condition. The next table (Table II)*, also from NHANES  (Seeman study) looks at Allostatic Load for biomarkers using component biomarker measurement criterion cutpoints.  Table III* gives the odds ratios for mortality by Allostatic Load Score.

An explanatory problem for our difficulty with diagnosis of a number of hypertension disease “subsets” is that there is peripheral hypertension that might be idiopathic, or it might be related to coexisting diseases with both inflammatory and vascular structural dynamics nature.  In addition, this may be concurrent with pulmonary hypertension, systemic hypertension, and progressive renal disease.  This discussion is reserved for later.  As stated, the late or missed diagnosis of systemic or essential idiopathic hypertension is illustrated in the three Seeman tables (1).

 

Table 1

Table 2

Table 3

 

 

 

 

Table 1*. Missed cases by “self report”

Self-reports

vs undiagnosed

study NHANES 88-94 NHANES 99-2004 NHANES 2005-08
Hypertension %unaware  BP > 140/90 42.7 43.5 39.06
SR-controlled
SR-high

Unaware

  7.45

10

13.88

8.35

10.85

16.12

6.5

10.18

19.98

High cholesterol Chol > 220 g/dl 55.93 49.3 47.05
SR-controlled
SR- high
Unaware
  11.02
8.68
12.12
8.47
8.72
18.5
7.22
8.12
23.46
Diabetes HgA1C > 6.4%      
SR-controlled

SR- high

Unaware

  2.41

3.43

1.64

1.76

5.01

3.09

2.11
5.51
3.09

*modified from Seeman

 

 

 

 

 

 

 

 

 

Table II* USHANES: Allostatic Load – component cutpoints

Biomarker Total N High Risk Percent (%) Cutpoint
DBP (mm Hg) 15,489 1,180   7.62    90
SBP (mm Hg) 15,491 3,461 22.34  140
Pulse Rate 15,117 1,009   6.67    90
HgA1C (%) 15,441 1,482   9.60    6.4
WHR 14,824 6,778 45.72    0.94
HDL Cholesterol (mg/dl) 15,187 3,440 22.65     40
Total Cholesterol

(mg/dl)

15,293 3,196  20.90    240

*From  T. Seaman, UCLA Geffen SOM

 

Table III*. Odds of mortality by Allostatic Load Score.

ALS Odds Ratio
7-8 5
6 2.6
5 2.3
4 2.1
3 1.8
2 1.5
1 1.4

 

*From  T. Seaman, UCLA Geffen SOM

 

I refer to cardiovascular diseases in reference to an aggregate of diseases affecting the heart, the circulatory system from large artery to the capillary, the lungs and kidneys, excluding the lymphatics.
These major disease entities are both separate and interrelated, not necessarily found in the same combinations. However, they account for a growing proportion of illness, apart from cancers, that affect the aging population of western societies. In the discussion that follows, I shall construct a picture of the pathophysiology of cardiovascular diseases, describe the major biomarkers for the assessment of these, point out the relationship of these to hypertension, and try to develop a more targeted approach to the assessment of hypertension and related disorders.

Chronic kidney disease (CKD) is defined as persistent kidney damage accompanied by a reduction in the glomerular filtration rate (GFR) and the presence of albuminuria. The rise in incidence of CKD is attributed to an aging populace and increases in hypertension (HTN), diabetes, and obesity within the U.S. population. CKD is associated with a host of complications including electrolyte imbalances, mineral and bone disorders, anemia, dyslipidemia, and HTN. It is well known that CKD is a risk factor for cardiovascular disease (CVD), and that a reduced GFR and albuminuria are independently associated with an increase in cardiovascular and all-cause mortality.

The relationship between CKD and HTN is cyclic, as CKD can contribute to or cause HTN (3). Elevated BP leads to damage of blood vessels within the kidney, as well as throughout the body. This damage impairs the kidney’s ability to filter fluid and waste from the blood, leading to an increase of fluid volume in the blood—thus causing an increase in BP.

 

A cursory description of the blood circulation

The full circulation involves the heart as a pump, and the arteries and veins, comprising small and large vessels, and capillaries at the point of delivery of oxygen and capture of carbon dioxide, and of transfer of substrates to tissues.  The brain, liver, pancreas and spleen, and endocrines are not further considered here, except for a consideration on neuro-humoral peptides that have emerged in the regulation of blood pressure and are essential to the stress response. The lung and the liver are both important with respect to the exchange of air and metabolites, and both have secondary circulations, the pulmonary and the portal vascular circulations.  In the case of the lungs, the vena cava flows into the right atrium, which delivers unoxygenated blood to the lungs via the right ventricle and right pulmonary artery, which returns to the left atrium by way of the right pulmonary vein.  The blood from the left atrium that flows into the left ventricle is ejected into the aorta.  The coronary arteries that nourish the heart are at the base of the aorta.  The heart muscle is a syncytium, unlike striated muscle, and it is densely packed with mitochondria, suitable for continuous contraction under vasovagal control. This is the anatomical construct, but the physiology is still being clarified because normal function and disease are both a matter of regulatory control.

In order to understand hypertension, we have to view the heart functioning over a long period of time.
In a still frame picture, we envision the left ventricle contracts emptying the oxygenated blood into the circulation. The ejection of blood into the aorta is called systole, by which the blood is delivered by the force of contraction into the circulation.  The filling pressure is called diastole.  So we have a filling and an emptying, and heard by the stethoscope is a lub-dub, synchronously repeated.   A normal systolic blood pressure is below 120. A systolic blood pressure of 120 to 139 means you have prehypertension, or borderline high blood pressure. Even people with prehypertension are at a higher risk of developing heart disease. A systolic blood pressure number of 140 or higher is considered to be hypertension, or high blood pressure. The diastolic blood pressure number or the bottom number indicates the pressure in the arteries when the heart rests between beats. A normal diastolic blood pressure number is less than 80. A diastolic blood pressure between 80 and 89 indicates prehypertension. A diastolic blood pressure number of 90 or higher is considered to be hypertension or high blood pressure. So now we have identified a systolic and a diastolic high blood pressure. Systolic pressure increases with vigorous activity, and becomes normal when the activity resides.  The systolic blood pressure increases with age. Over time, consistently high blood pressure weakens and damages the blood vessels so affected. Moreover, changes in the body’s normal functions may cause high blood pressure, including changes to kidney fluid and salt balances, the renin-angiotensin-aldosterone system, sympathetic nervous system activity, and blood vessel structure and function.

 

Starling’s Law of the Heart

Two principal intrinsic mechanisms, namely the Frank-Starling mechanism and rate induced regulation, enable the myocardium to adapt to changes in hemodynamic conditions. The Frank-Starling mechanism (also referred to as Starling’s law of the heart), is invoked in response to changes in the resting length of the myocardial fibers. Rate-induced regulation is invoked in response to changes in the frequency of the heartbeat.  (3-9).

Frank and Starling (3, 4) showed that an increase in diastolic volume caused an increase in systolic performance. The stretch effect persists across a range of myocardial contractile states, but during exercise it plays only a lesser role augmenting ventricular function maximal exercise. This is because in healthy human subjects adrenergic reflex mechanisms modulate myocardial performance, heart rate, vascular impedance and coronary flow during exercise and changes in these variables can overshadow the effect of fiber stretch or even prevent an increase in end-diastolic volume during stress (5). (See you- tube (6).

According to Lakatta muscle length modulates the extent of myofilament calcium ion (Ca2+) activation (7-9).   Similarly, the fiber length during a contraction, which is determined in part by the load encountered during shortening, also determines the extent of myofilament Ca2+ activation. Therefore, the terms preload, afterload and myocardial contractile state lose part of their significance in light of current knowledge.

 

Biology and High Blood Pressure

Researchers continue to study how various changes in normal body functions cause high blood pressure. The key functions affected in high blood pressure include (10):

Kidney Fluid and Salt Balances

The kidneys normally regulate the body’s salt balance by retaining sodium and water and excreting potassium. Imbalances in this kidney function can expand blood volumes, which can cause high blood pressure.

Renin-Angiotensin-Aldosterone System

The renin-angiotensin-aldosterone system makes angiotensin and aldosterone hormones. Angiotensin narrows or constricts blood vessels, which can lead to an increase in blood pressure. Aldosterone controls how the kidneys balance fluid and salt levels. Increased aldosterone levels or activity may change this kidney function, leading to increased blood volumes and high blood pressure.

Sympathetic Nervous System Activity

The sympathetic nervous system has important functions in blood pressure regulation, including heart rate, blood pressure, and breathing rate. Researchers are investigating whether imbalances in this system cause high blood pressure.

Blood Vessel Structure and Function

Changes in the structure and function of small and large arteries may contribute to high blood pressure. The angiotensin pathway and the immune system may stiffen small and large arteries, which can affect blood pressure.

Two or more types of hypertension

Systemic hypertension

Idiopathic hypertension

Hypertension from chronic renal disease

Pulmonary artery hypertension

Hypertension associated with systemic chronic inflammatory disease (rheumatoid arthritis and other collagen vascular diseases)

Genetic Causes of High Blood Pressure

Much of the understanding of the body systems involved in high blood pressure has come from genetic studies. High blood pressure often runs in families. Years of research have identified many genes and other mutations associated with high blood pressure, some in the renal salt regulatory and renin-angiotensin-aldosterone pathways. However, these known genetic factors only account for 2 to 3 percent of all cases. Emerging research suggests that certain DNA changes during fetal development also may cause the development of high blood pressure later in life.

Environmental Causes of High Blood Pressure

Environmental causes of high blood pressure include unhealthy lifestyle habits, being overweight or obese, and medicines.

Other medical causes of high blood pressure include other medical conditions such as chronic kidney disease, sleep apnea, thyroid problems, or certain tumors.

The common complications of hypertension and their signs and symptoms include:

http://www.nhlbi.nih.gov/health/health-topics/topics/hbp/causes10

 

Pulse Pressure and Stroke Volume

The  pulse pressure is the difference between systolic (the upper number) and diastolic (the lower number) (11).

Systemic pulse pressure = Psystolic – Pdiastolic

The pulse pressure is 40 mmHg for a typical blood pressure reading of 120/80 mmHg.

Pulse pressure (PP) is proportional to stroke volume (SV), the amount of blood pumped from the heart in one beat, and inversely proportional to the compliance or flexibility of the blood vessels, mainly the aorta.

A low (also called narrow) pulse pressure means that not much blood is being expelled from the heart, and can be caused by a number of factors, including severe blood loss due to trauma, congestive heart failure, shock, a narrowing of the valve leading from the heart to the aorta (stenosis), and fluid accumulating around the heart (tamponade).

High (or wide) pulse pressures occur during exercise, as stroke volume increases and the overall resistance to blood flow decreases. It can also occur for many reasons, such as hardening of the arteries (which can have numerous causes), various deficiencies in the aorta (mainly) or other arteries, including leaksfistulas, and a usually-congenital condition known as AVM, pain/anxiety, fever, anemia, pregnancy, and more. Certain medications for high blood pressure can widen pulse pressure, while others narrow it. A chronic increase in pulse pressure is a risk factor for heart disease, and can lead to the type of arrhythmia called atrial fibrillation or A-Fib.

 

Hypertension Background and Definition

The prevalence of CKD has steadily increased over the past two decades, and was reported to affect over 13% of the U.S. population in 2004.  In 2009, more than 570,000 people in the United States were classified as having end-stage renal disease (ESRD), including nearly 400,000 dialysis patients and over 17,000 transplant recipients.  A patient is determined to have ESRD when he or she requires replacement therapy, including dialysis or kidney transplantation. A National Health Examination Survey (NHANES) spanning 2005-2006 showed that 29% of US adults 18 years of age and older were hypertensive, and of those with high blood pressure (BP), 78% were aware they were hypertensive, 68% were being treated with antihypertensive agents, and only 64% of treated individuals had controlled hypertension (12, 13). In addition, data from NHANES 1999-2006 estimated that 30% of adults 20 years of age and older have prehypertension, defined as an untreated SBP of 120-139 mm Hg or untreated DBP of 80-89 mmHg (12, 13).

Hypertension is the most important modifiable risk factor for coronary heart disease (the leading cause of death in North America), stroke (the third leading cause), congestive heart failure, end-stage renal disease, and peripheral vascular disease. The 2010 Institute for Clinical Systems Improvement (ICSI) guideline (14) on the diagnosis and treatment of hypertension indicates that systolic blood pressure (SBP) should be the major factor to detect, evaluate, and treat hypertension In adults aged 50 years and older. The 2013 joint European Society of Hypertension (ESH) (15) and the European Society of Cardiology (ESC) (16) guidelines recommend that ambulatory blood-pressure monitoring (ABPM) be incorporated into the assessment of cardiovascular risk factors and hypertension.

The JNC 7 (17) identifies the following as major cardiovascular risk factors:

  • Hypertension: component of metabolic syndrome
  • Tobacco use, particularly cigarettes, including chewing tobacco
  • Elevated LDL cholesterol (or total cholesterol ≥240 mg/dL) or low HDL cholesterol: component of metabolic syndrome
  • Diabetes mellitus: component of metabolic syndrome
  • Obesity (BMI ≥30 kg/m 2): component of metabolic syndrome
  • Age greater than 55 years for men or greater than 65 years for women: increased risk begins at the respective ages; the Adult Treatment Panel III used earlier age cut points to suggest the need for earlier action
  • Estimated glomerular filtration rate less than 60 mL/min
  • Microalbuminuria
  • Family history of premature cardiovascular disease (men < 55 years; women < 65 years)
  • Lack of exercise

The Eighth Report of the JNC (JNC 8), released in December 2013 no longer recommends just thiazide-type diuretics as initial therapy in most patients. In essence, the JNC 8 recommends treating to 150/90 mm Hg in patients over age 60 years; for everybody else, the goal BP is 140/90 (18).

Biomarkers Associated with Hypertension

The biomarkers associated with hypertension are for the most part derived from features that characterize the disordered physiology. We might first consider the measurement of blood pressure. Then it becomes necessary to analyze the physiological elements that largely contribute to blood pressure. Finally, there are several biomarkers that have loomed large as measures are myocardial function or myocardial cell death, and are also not independent of renal function, that are indicators of short term and long term cardiovascular status. Having already indicated the importance of measurement of pulse, diastolic and systolic blood pressure in the routine examination of physical status, which is related to cardiac output we shall pay attention to the pulse pressure and pulse wave velocity.    These were defined in the preceding discussion.  They are critically related to the development of hypertension and in the long term, they emerge significantly earlier than either congestive heart failure, chronic kidney disease, acute coronary syndrome, stroke, or cardio-renal syndrome.

Even though cardiovascular disease (CVD), the leading cause of death in developed countries, is not predicted by classic risk factors, there are elements of the risk factor association that need further exploration and will be dissected, such as activity level, obesity, lipids, diabetes mellitus, family history and stress.  Further analysis will point to endocrine and/or metabolic factors that drive cardiovascular risk.

In taking into account the blood pressure measurements, we consider the pulse pressure (PP) and the pulse wave velocity (PWV).  If we refer back to the stroke volume and the Law of the Heart, the systolic blood pressure (SBP) is increased with increased left ventricular output that raises the left ventricular (LV) afterload. This coincides with a decrease in diastolic pressure (DBP) that accompanies a change in coronary artery perfusion (CAP).  Thus, many studies point to increased SBP as a strong risk factor for stroke and CVD.  However, there are sufficient studies that indicate the brachial artery pulse pressure (PP) is a strong determinant of CVD and stroke, and these two elements, SBP and brachial artery PP, may be an indicator of increased arterial stiffness in hypertensive patients and the general population. Brachial PP is also a determinant of recurrent events after acute coronary syndrome (ACS) or with left ventricular hypertrophy (LVH), or the risk of CHF in the aging population, and of all-cause-mortality in the general population.  In addition, the aortic PWV calculated from the Framingham equations was a suitable predictor of CVD risk. In a classic study of arterial stiffness and of CVD and all-cause mortality in an essential hypertension cohort at the Broussais Hospital between 1980 and 1996 (19), the carotid-femoral PWV was measured as an indicator of aortic stiffness, and it was found to be significantly associated with all-cause and CVD mortality independent of previous CVD, age, and diabetes. They tested the hypothesis that aortic stiffness is a predictor of cardiovascular and all-cause mortality in hypertensive patients based on the consideration that the elastic properties of the aorta and central arteries are the major determinants of systemic arterial impedance, and the PWV measured along the aortic and aorto-iliac pathway is the most clinically relevant. They assessed arterial stiffness by measuring the PWV using  the Moens-Korteweg equation based on the increase of the square root of the elasticity modulus in stiffer arteries (20).

PWV as a Diagnostic Test

To assess the performance of PWV considered as a diagnostic test, with the use of receiver operating characteristic (ROC) curves, they calculated sensitivities, specificities, positive predictive values, and negative predictive values of PWV at different cutoff values, first to detect the presence of AA in the overall population and second to detect patients with high 10-year cardiovascular mortality risk in the subgroup of 462 patients without AA with age range from 30 to 74 years. Optimal cutoff values of PWV were defined as the maximization of the sum of sensitivity and specificity.

The main finding of the study was that PWV was a strong predictor of cardiovascular risks as determined by the Framingham equations in a population of treated or untreated subjects with essential hypertension (21). They measured the PWV from foot-to-foot transit time in the aorta for a noninvasive evaluation of regional aortic stiffness, which allows an estimate of the distance traveled by the pulse. The presence of a PWV > 13 m/s, taken alone, appeared as a strong predictor of cardiovascular mortality with high performance values (21). Their work and other studies (22, 23) established increased pulse pressure, the major hemodynamic consequence of increased aortic PWV, as a strong independent predictor of cardiac mortality, mainly MI, in populations of normotensive and hypertensive subjects.

In addition to the findings above, the PWV was found to be an independent predictor of future increase in SBP and of incident hypertension in the Baltimore study (21). The authors reported that in a subset of 306 subjects who were normotensive at baseline, hypertension developed in 105 (34%) during a median follow-up of 4.3 years (range 2 to 12 years). PWV was also an independent predictor of incident hypertension (hazard ratio 1.10 per 1 m/s increase in PWV, 95% confidence interval 1.00 to 1.30, p = 0.03) in individuals with a follow-up duration greater than the median. The authors (21) concluded that carotid-femoral PWV measured using nondirectional transcutaneous Doppler probes (model 810A, 9 to 10-Mhz probes, Parks Medical Electronics, Inc., Aloha, Oregon) could be done to identify normotensive individuals who should be targeted for the implementation of interventions aimed at preventing or delaying the progression of subclinical arterial stiffening and the onset of hypertension.  They reported that age, BMI, and MAP were independently associated with higher SBP on the last visit (Table IV); in addition, PWV was also independently associated with higher SBP on the last visit, and explained 4% of its variance. As shown in Table V, age, BMI, and MAP (p = 0.09, p = 0.009, p < 0.0001 respectively for the interaction terms with time) were predictors of the longitudinal changes in SBP. In addition, PWV was also an independent predictor of the longitudinal increase in SBP (p = 0.003 for the interaction term with time).

In addition, they report that in the group with follow-up duration greater than the median (in which all subjects remained normotensive for the first 4.3 years), beyond age (hazard ratio [HR] 1.02 per 1 year, 95% confidence interval [CI] 0.99 to 1.04, p = 0.2) and SBP (HR 1.05 per 1 mm Hg, 95% CI 1.01 to 1.09, p = 0.006), both HDL (HR 0.96 per 1 mg/dl, 95% CI 0.93 to 0.99, p = 0.02) and PWV (HR 1.10 per 1 m/s, 95% CI 1.00 to 1.30, p = 0.03) (Fig. 1) were independent predictors of incident HTN.

Their findings in a longitudinal projection indicate that PWV, a marker of central arterial stiffening, is an independent determinant of longitudinal SBP increase in healthy BLSA volunteers, and an independent risk factor for incident hypertension among normotensive subjects followed up for longer than 4 years. The study was accompanied by a commentary in the same journal that states: “Pulse wave velocity (PWV) is a simple measure of the time taken by the pressure wave to travel over a specific distance. By virtue of its intrinsic relation to the mechanical properties of the artery by the Moens–Kortweg formula (PWV=√(Eh/2)Rρ; where E is the Young’s Modulus of the arterial wall, h the wall thickness, R the end- diastolic radius and ρ is the density of blood)(20), and buoyed a number of longitudinal studies that reported on the independent predictive value of PWV measurement for cardiovascular events and mortality in various populations, PWV is now widely accepted as the ‘gold standard’ measure of arterial stiffness.

 

 

 

Table IV Multiple Regression Analysis Evaluating the Predictors of Last Visit SBP 21

Variable Parameter
Estimate
Standard
Error
p Value
Age (yrs) 0.32 0.06 <0.0001
Gender (men) 0.65 1.78 0.71
Race (white) −1.22 2.00 0.54
Smoking (ever) 2.48 1.61 0.12
BMI (kg/m2)* 0.61 0.22 0.006
MAP (mm Hg)* 0.60 0.08 <0.0001
PWV (m/s)* 1.56 0.38 <0.0001
Heart rate (beats/min) 0.08 0.06 0.20
Total cholesterol (mg/dl) −0.005 0.02 0.83
Triglycerides (mg/dl) −0.009 0.01 0.50
HDL cholesterol (mg/dl) −0.001 0.07 0.98
Glucose (mg/dl) −0.02 0.06 0.75

 

 

 

 

 

 

 

 

Table V Predictors of Longitudinal SBP Derived From a Linear Mixed-Effects Regression Model 21

Variable Coefficient Standardized

Coefficient

95% Confidence

Interval

p Value
Time (yrs) 3.14 0.14 0.61 to 5.66 0.02
Age (yrs) −0.37 0.25 −0.68 to −0.06 0.02
Age2 (yrs2)* 0.006 0.08 0.002 to 0.008 <0.0001
Gender (men) 0.61 0.03 −1.26 to 2.47 0.52
BMI (kg/m2)* 0.25 0.11 −0.01 to 0.50 0.06
MAP (mmHg)* 1.03 0.47 0.93 to 1.12 <0.0001
PWV (m/s) 0.29 0.12 −0.16 to 0.74 0.21
Time × age* 0.02 0.04 −0.002 to 0.038 0.09
Time × BMI* 0.10 0.06 0.02 to 0.183 0.009
Time × MAP* −0.08 −0.12 −0.11 to −0.05 <0.0001
Time × PWV* 0.22 0.08 0.07 to 0.36 0.003

 

 

Figure 1 21

http://content.onlinejacc.org/data/Journals/JAC/23115/10065_gr1.jpeg

Figure 2.21

http://content.onlinejacc.org/data/Journals/JAC/23115/10065_gr2.jpeg

The interest in this physiological measure is illustrated by the increasing number and diversity of research publications in this arena related to human hypertension, relating PWV to pathophysiological processes (for example, homocysteine, inflammation and extracellular matrix turnover and disorders related to hypertension, such as sleep apnea). The epidemiology, genetic associations and prognostic implications of PWV (and arterial stiffness) have also been reported as has the relationship to hemodynamics, cardiac structure and function.” (24) Furthermore, arterial stiffening may be “characterized by an increase in (central) PP and changes in the morphology of the arterial waveform, both of which can now be measured non-invasively using tonometers from commercially available devices. Wave reflection is typically characterized by aortic pressure augmentation (ΔP) and the augmentation index (ΔP/PP) (Figure 3)(24). Higher augmented pressure, as an index of wave reflection, has been linked to adverse clinical outcomes in different populations.

Figure 3.24

Analysis of the pressure waveform. The initial systolic pressure is labelled as P1 and augmented pressure ( P) is typically measured as the difference between peak pressure (P2) and P1. Augmentation index is  P/PP. PP, pulse pressure.    http://www.nature.com/jhh/journal/v22/n10/images/jhh200847f1.gif 24

A review by Payne et al. (25) states that aortic stiffness and arterial pulse wave reflections determine elevated central systolic pressure and are associated with risk of adverse cardiovascular outcomes. This is because an impaired compensatory mechanism through matrix metalloproteinases of remodeling to compensate for changes in wall stress, possibly related to angiotensin II and inhibition of the vascular adhesion protein semicarbazide-sensitive amine oxidase, related to reduced elastin fiber cross-linking. This has implications for pharmacological agents that target age-related advanced glycation end-product cross-links. This also brings into consideration NO playing a considerable role. But they caution that the endogenous NO synthase inhibitors asymmetric dimethylarginine and L-NG-monomethyl arginine associated with clinical atherosclerosis don’t appear to be associated with arterial stiffening. The matter leaves much to be explained.  The mechanisms underlying arterial stiffness could well require insights into inflammation, calcification, vascular growth and remodeling, and endothelial dysfunction. Nevertheless, arterial stiffness is independently associated with cardiovascular outcome in most of the situations where it has been examined.  Given this train of thinking, O’Rourke (26) considers a progressive arterial dilatation with repeated cycles of stress that leads to degeneration of the arterial wall and increases the pressure wave impulse and wave velocity, augmenting the pressure in late systole. Drugs may reduce wave reflection, but have no direct effect on arterial stiffness.  However, reduction in wave reflection decreases aortic systolic pressure augmentation.  DK Arnett (26) depicts the effect of persistently elevated blood pressure in the following diagram (Figure 4).

 

Figure 4.26  Both transient and sustained stiffening of the artery are likely to be present in hypertension.

An initial elevation in blood pressure may establish a positive feedback in which hypertension biomechanically increases arterial stiffness without any structural change. This elevated blood pressure   might later lead to additional vascular hypertrophy and hyperplasia, collagen deposition, and atherosclerosis, and fixed elevations in arterial stiffness.  As to a genetic factor, she refers to a gene contributing to pulse pressure on chromosome 8 located at 32 cM, which also contains the lipoprotein lipase (LPL) gene which has been associated with hypertension. LPL may be an important candidate gene for pulse pressure.  She specifically identifies a relationship between genetic regions contributing to aortic compliance in African American sibships ascertained for hypertension in Figure 5 (27).  These results suggest there may be influential genetic regions contributing to aortic compliance in African American sibships ascertained for hypertension (27). Collectively, these two studies, the first to our knowledge, indicate the presence of genetic factors influencing hypertension.

Other authors state that PWV has a direct relationship to intrinsic elasticity of the arterial wall, and it is an independent predictor of CVD related morbidity and mortality, but it is not associated with classical risk factors for atherosclerosis (28).  They point out that PWV doesn’t increase during early stages of atherosclerosis, as measured by intima-media thickness and non-calcified atheroma, but it does increase in the presence of aortic calcification that occurs with advanced atherosclerotic plaque. Age-related
PWV measurement. Carotid-to-femoral PWV is calculated by dividing the distance (d) between the two arterial sites by the difference in time of pressure wave arrival between the carotid (t1) and femoral artery (t2) referenced to the R wave of the electrocardiogram.

Figure 5. Linkage of arterial compliance on chromosome 2: HyperGEN27

Widening of the pulse pressure is the major cause of age-related increase in prevalence of hypertension and is related to arterial stiffening. (28)  Commonly used points for measuring the PWV are the carotid and femoral artery because they are superficial and easy to access. Arterial distensibility is measured by the Bramwell and Hill equation (29): PWV = √(V × ΔP/ρ × ΔV), where ρ is blood density. This is shown in Figure 6.

 

Figure 6 28

 

View larger version:

 

Furthermore, these authors (28) report arterial stiffness increases with age by approximately 0.1 m/s/y in East Asian populations with low prevalences of atherosclerosis, but some authors have found accelerated stiffening between 50 and 60 years of age. In contrast, stiffness of peripheral arteries increases less or not at all with increasing age. Again, ageing of the arterial media is associated with increased expression of matrix metalloproteinases (MMP), which are members of the zinc-dependent endopeptidase family and are involved in degradation of vascular elastin and collagen fibers. Several different types of MMP exist in the vascular wall, but in relation to arterial stiffness, much interest has focused on MMP-2 and MMP-9.  This concludes the discussion of PP and PWV in the evolution of hypertension.

 

Diagnostic Biomarkers of essential hypertension.

Ioannidis and Tzoulaki (30) reviewed the literature on 10 popular ‘‘new’’ biomarkers and found that each one had accrued more than 6000 publications.1 The predictive effects of these popular blood biomarkers for coronary heart disease in the general population are listed in Table VI (31).

 

Table VI.* Predictive Value of New Biomarkers 30,31

Biomarker Adjusted Relative Risk (95% C.I.)
Triglycerides 0.99 (0.94–1.05)
C-reactive protein 1.39 (1.32–1.47)
Fibrinogen 1.45 (1.34–1.57)
Interleukin 6 1.27 (1.19–1.35)
BNP or NT-proBNP 1.42 (1.24–1.63)
Serum albumin 1.2 (1.1–1.3)
ICAM-1 (0.75–1.64)
Homocysteine 1.05 (1.03–1.07)
Uric acid 1.09 (1.03–1.16)

*Ionnidis and Tzoulaki from Giles
The majority of these biomarkers show small effects, if any, even in combination.  Giles (31) points out that an elevated homocysteine level might be of great importance to a young person with a myocardial infarction and a positive family history of similar occurrences. Emerging biomarkers, eg, asymmetric and symmetric dimethylarginine and galectin-3, are promising more specific biomarkers based on pathophysiologies for cardiovascular disease. Even then, blood pressure remains the biomarker par excellence for hypertension and for many other cardiovascular entities.

The importance of blood pressure was highlighted by the report of the cardiovascular lifetime risk pooling project.(10) Starting at 55 years of age, 61,585 men and women were followed over an average of 14 years, ie, 700,000 person-years. Individuals who maintained or decreased their blood pressure to normal levels had the lowest remaining lifetime risk for cardiovascular disease (22–41%) compared with individuals who had or developed hypertension by 55 years of age (42–69%). The study indicated that efforts should continue to emphasize the importance of lowering blood pressure and avoiding or delaying the incidence of hypertension to reduce the lifetime risk for cardiovascular disease

A small study involving 120 hypertensive patients with or without heart failure tried to establish a multi-biomarker approach to heart failure (HF) in hypertensive patients using N-terminal pro BNP (32). The following biomarkers were included in the study: Collagen III N-terminal propeptide (PIIINP), cystatin C (CysC), lipocalin-2/NGAL, syndecan-4, tumor necrosis factor-α (TNF-α), interleukin 1 receptor type I (IL1R1), galectin-3, cardiotrophin-1 (CT-1), transforming growth factor β (TGF-β) and N-terminal pro-brain natriuretic peptide (NT-proBNP). The highest discriminative value for HF was observed for NT-proBNP (area under the receiver operating characteristic curve (AUC) = 0.873) and TGF-β (AUC = 0.878). On the basis of ROC curve analysis they found that CT-1 > 152 pg/mL, TGF-β < 7.7 ng/mL, syndecan > 2.3 ng/mL, NT-proBNP > 332.5 pg/mL, CysC > 1 mg/L and NGAL > 39.9 ng/mL were significant predictors of overt HF. There was only a small improvement in predictive ability of the multi-biomarker panel including the four biomarkers with the best performance in the detection of HF (NT-proBNP, TGF-β, CT-1, CysC) compared to the panel with NT-proBNP, TGF-β and CT-1 (absent  CysC). The biomarkers with different pathophysiological backgrounds (NT-proBNP, TGF-β, CT-1) give additive prognostic value for incident compared to NT-proBNP alone.

Inflammation has been associated with pathophysiology of hypertension and vascular damage. Resistant hypertensive patients (RHTN) have unfavorable prognosis due to poor blood pressure control and higher prevalence of target organ damage. Endothelial dysfunction and arterial stiffness are involved in such condition. Previous studies showed that RHTN patients have higher arterial stiffness and endothelial dysfunction than controlled hypertensive and normotensive subjects. The relationship between high blood pressure levels and arterial stiffness may be explained in part, by inflammatory pathways. Previous studies also found that hypertensive subjects have higher levels of inflammatory cytokines including TNF-α, IL-10, IL-1β and CRP. Moreover, IL-1β correlates with arterial stiffness and levels of blood pressure, which are particularly high in patients with resistant hypertension. Increased inflammatory cytokines levels might be related to the development of vascular damage and to the higher cardiovascular risk of resistant hypertensive patients. Elevated BP may cause cardiovascular structural and functional alterations leading to organ damage such as left ventricular hypertrophy, arterial and renal dysfunction. TNF-α inhibition reduced systolic BP and endothelial inflammation in SHR [33]. They also found that IL-1β correlates with arterial stiffness and levels of blood pressure, even after adjust for age and glucose [33]. These investigators then demonstrated that isoprostane levels, an oxidative stress marker, were associated with endothelial dysfunction in these patients [33].

Chao et al. carried out studies of kallistatin (34-36). Kallistatin is an endogenous protein in human plasma as a tissue Kallikrein-Binding Protein (KBP). Tissue kallikrein is a serine protease that releases vasodilating kinin peptides from kininogen substrate. The tissue kallikrein-kinin system is involved in mediating beneficial effects in hypertension as well as cardiac, cerebral and renal injury. KBP was later identified as a serine protease inhibitor (serpin) because of its ability to inhibit tissue kallikrein activity, and was subsequently named “kallistatin”. Kallistatin is mainly expressed in the liver, but is also present in the heart, kidney and blood vessel. Kallistatin protein contains two structural elements: an active site and a heparin-binding domain. The active site of kallistatin is crucial for complex formation with tissue kallikrein, and thus tissue kallikrein inhibition.

Kallistatin is expressed in tissues relevant to cardiovascular function, and has consequently been shown to have vasodilating properties.  Kallistatin has pleiotropic effects in vasodilation and inhibition of inflammation, angiogenesis, oxidative stress, fibrosis, and cancer progression. Injection of a neutralizing Kallistatin antibody into hypertensive rats aggravates cardiovascular and renal injury in association with increased inflammation, oxidative stress and tissue remodeling.  Neither the blood pressure-lowering effect nor the vasorelaxation ability of kallistatin is abolished by icatibant (Hoe140, a kinin B2 receptor antagonist), indicating that kallistatin-mediated vasodilation is unrelated to the tissue kallikrein-kinin system.

The findings reported indicate that kallistatin exerts beneficial effects against hypertension and organ damage. Kallistatin levels in circulation, body fluids or tissues were lower in patients with liver disease, septic syndrome, diabetic retinopathy, severe pneumonia, inflammatory bowel disease, and cancer of the colon and prostate. In addition, reduced plasma kallistatin levels are associated with adiposity and metabolic risk in apparently healthy African American youths. Considered a negative acute-phase protein, circulating kallistatin levels as well as hepatic expression are rapidly reduced within 24 hours after Lipopolysaccharide (LPS) induced endotoxemia in mice. Similarly, circulating kallistatin levels are markedly decreased in patients with septic syndrome and liver disease. Taking together, the studies indicate that kallistatin exhibits potent anti-inflammatory activity.

The pathogenesis of hypertension and cardiovascular and renal diseases is tightly linked to increased oxidative stress and reduced NO bioavailability (37-39). Time-dependent elevation of circulating oxygen species are associated with reduced kallistatin levels in animal models of hypertension and cardiovascular and renal injury. Stimulation of NO formation by kallistatin may lead to inhibition of oxidative stress and thus multi-organ damage. On the other hand, endogenous kallistatin depletion by neutralizing antibody increased oxidative stress and aggravated cardiovascular and renal damage.

A human kallistatin gene polymorphism has been shown to correlate with a decreased risk of developing acute kidney injury during septic shock. Kallistatin levels are markedly reduced in both humans and mice with sepsis syndrome. However, kallistatin administration protects against lethality and organ injury in animal models of toxic septic shock. Moreover, kallistatin levels are decreased in patients with liver disease, septic shock, inflammatory bowel disease, severe pneumonia and acute respiratory distress syndrome. Taken together, the results indicate that kallistatin has the potential to be a molecular biomarker for patients with sepsis, cardiovascular and metabolic disorders.

Pulmonary hypertension (PH) is defined as a mean pulmonary artery pressure of .25 mmHg at rest or .30 mmHg with exercise. Right heart catheterization is required for the definitive diagnosis. Subsequent investigations are instituted to further characterize the disease. The 6-min walk test (6MWT), a measure of exercise capacity, and the New York Heart Association (NYHA)/World Health Organization (WHO) functional classification, a measure of severity, are used to follow the clinical course while receiving treatment, and these both correlate with disease severity and prognosis (43).

Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary vasculature that leads to exercise limitation, right heart failure, and death. There is a need for biomarkers that can aid in early detection, disease surveillance, and treatment monitoring in PAH. Several potential molecules have been investigated; however, only brain natriuretic peptide is currently recommended at diagnosis and for follow-up of PAH patients.

ANP is released from storage granules in atrial tissue, while BNP is secreted from ventricular tissue in a constitutive fashion. ANP secretion is stimulated by atrial stretch caused by atrial volume overload; BNP is released in response to ventricular stretch. Natriuretic peptides act on the kidney, causing natriuresis and diuresis, and relax vascular smooth muscle, causing arterial and venous dilatation, leading to reduced blood pressure and ventricular preload. ANP and BNP are released as prohormones and then cleaved into the active peptide and an inactive N-terminal fragment (43).

Natriuretic peptide precursors are released in response to atrial and ventricular stretch, cleaved into active molecules and inactive precursors and convert guanosine 59-triphosphate (GTP) to cyclic guanosine monophosphate (cGMP), leading to their various physiological actions.

There are a number of confounding factors in the interpretation of natriuretic peptide levels, including left heart disease, sex, age and renal dysfunction. Since most studies exclude patients with left heart disease and renal dysfunction, it becomes problematic extrapolating these results to an unselected population (43).

Endothelin-1 (ET-1) is a peptide found in abundance in the human lung and, through action of endothelin receptors (ETA and ETB) on vascular smooth muscle cells, is implicated in the pathogenesis of PAH. Endothelin receptor antagonists are approved for the treatment of PAH. Levels of circulating ET-1 and related molecules are logical biomarkers of interest in PAH. ET-1 is elevated in PAH compared to controls, and correlates with pulmonary hemodynamic parameters. In addition, higher ET-1 levels are associated with increased mortality in patients treated for PAH. ET-1’s precursor, big-ET-1, has a longer half-life and hence is more stable than ET-1.

Endothelin-1 ET-1 is a potent endogenous vasoconstrictor and proliferative cytokine. The ET-1 gene is translated to prepro-ET-1 which is then cleaved, by the action of an intracellular endopeptidase, to form the biologically inactive big ET-1. ET-converting enzymes further cleave this to form functional ET-1 . There are two ET receptor isoforms, termed type A (ETA), located predominantly on vascular smooth muscle cells, and type B (ETB), predominantly expressed on vascular endothelial cells but also on arterial smooth muscle. Activation of both receptor subtypes, when located on vascular smooth muscle, results in vasoconstriction and cell proliferation. In addition, the endothelial ETB receptor mediates vasodilatation and clearance of ET-1 (43).

Prepro-ET-1 is cleaved to inactive big ET-1 and then further cleaved to form active ET-1. This acts on vascular smooth muscle via the ETA and ETB receptors, causing vasoconstriction and cell proliferation, and on endothelial cells via ETB receptors, releasing nitric oxide (NO) and prostacyclin (PGI2), causing vasorelaxation.

As a biomarker, ADMA has been evaluated in several different classes of PH (43, 44). In IPAH, plasma levels are significantly higher than in healthy, matched controls. In such patients, plasma ADMA correlates positively with right atrial pressure, and negatively with mixed venous oxygen saturation, stroke volume, cardiac index and survival. On stepwise multiple regression analysis, ADMA is an independent predictor of mortality and, using Kaplan–Meier survival curves, patients with supramedian ADMA levels have significantly worse survival than those with inframedian levels.

Patients with idiopathic PAH, plasma levels of Ang-1 and Ang-2 were higher in PAH patients as compared to healthy controls.  Moreover, higher plasma levels of Ang-2 were associated with lower CI and mixed venous oxygen saturation (SvO2) and higher PVR, and, with therapy initiation, changes in Ang-2 correlated with changes in hemodynamics (45, 46).

Endostatin is an antiangiogenic peptide. It is synthesized by myocardium, is detectable in the peripheral circulation of patients with decompensated heart failure, and predicts mortality.48 In PAH, reduced RV myocardial oxygen delivery is felt to contribute to a transition from RV adaptation to failure (46).

Cyclic guanosine monophosphate (cGMP) is an intracellular second messenger of nitric oxide and an indirect marker of natriuretic peptide production (46).

Human pentraxin 3 (PTX3) is a protein synthesized by vascular cells that regulates angiogenesis, inflammation, and cell proliferation (46).

N-terminal propeptide of procollagen III (PIIINP), carboxy-terminal telopeptide of collagen I (CITP), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase I (TIMP-1)(46).

Osteopontin (OPN) is a matricellular protein that mediates cell migration, adhesion, remodeling, and survival of the vascular and inflammatory cells (46).

F2-isoprostane is a marker of lipid peroxidation of arachidonic acid, which stimulates endothelial cell proliferation and ET-1 synthesis and may play a role in the pathogenesis of PAH (46).

Circulating fibrocytes are bone marrow-derived cells (CD45 /collagen I ) that contribute to organ fibrosis and extracellular matrix deposition (46).

Circulating miRs (46)

Despite many other substances being investigated as potential biomarkers in PAH, more research is needed to validate the results of small studies and assess their clinical utility. Widespread clinical use of current investigational biomarkers will require validated clinical laboratory techniques and increased knowledge of levels in the healthy population as well as other disease states.

Here are important tests in clinical practice (47):

 

6-min walk distance

Cardiac index

WHO FC

PIIINP

Higher tertiles associated with worse disease

worse renal function

higher right atrial pressure (RAP)

CITP – vascular remodeling

 

Recent guidelines (17, 18) encourage the use of screening examinations, such as an echocardiogram (UCG), in high-risk populations for the early detection of PAH . To detect PAH in patients with connective tissue disease (CTD), the obvious screening tests are an UCG and spirometry, including assessment of the diffusing capacity of the lung for carbon monoxide (DLCO). Previous studies have suggested that B-type natriuretic peptide (BNP) and its N-terminal prohormone (NT-proBNP) are potential biomarkers for PAH. However, neither BNP nor NT-pro BNP are specific biomarkers of the degeneration of the pulmonary artery; rather, they are biomarkers of cardiac burden resulting from right heart failure.

Human pentraxin 3 (PTX3) is a specific biomarker for PAH, reflecting pulmonary vascular proteins. They are divided into short and long pentraxins on the basis of their primary structure.
C-Reactive protein (CRP) and serum amyloid P are the classic short pentraxins that are produced in the liver in response to systemic inflammatory cytokines (48). In contrast, PTX3 is one of the long pentraxins. It is synthesized by local vascular cells, such as smooth muscle cells, endothelial cells and fibroblasts, as well as innate immunity cells at sites of inflammation. PTX3 plays a key role in the regulation of cell proliferation and angiogenesis (49).

Increased plasma PTX3 levels have been reported in patients with acute myocardial injury in the
24 h after admission to hospital, with levels returning to normal after 3 days. Similarly, PTX3 levels are higher in patients with unstable angina pectoris, with the changes in PTX3 levels found to be independent of other coronary risk factors, such as obesity and diabetes mellitus. Finally, high serum PTX3 levels have been reported in patents with vasculitis, such as small-vessel vasculitis  and Takayasu aortitis.

Mean plasma PTX3 concentrations in the CTD-PAH and CTD patients were 5.02+0.69 ng/mL (range 1.82–12.94 ng/mL) and 2.40+0.14 ng/mL (range 0.70–4.29 ng/mL), respectively (Table 2). Log transformation of the data revealed significantly higher PTX3 levels in CTD-PAH than in CTD patients (1.49+0.12 vs. 0.82+0.06 log ng/mL, respectively; P = 0.001).(not shown)(50)

Figure 1. Serum pentraxin 3 (PTX3) concentrations in 50 patients with pulmonary arterial hypertension (PAH) and 100 healthy controls, and their correlation with serum concentrations of other biomarkers. A: Comparison of PTX3 concentrations in PAH patients and healthy controls. Mean plasma PTX3 concentrations were 4.4060.37 and 1.94+0.09 ng/mL in the controls and PAH patients, respectively. B: Distribution of log-transformed PTX3 concentrations in PAH patients and healthy controls. C: Log-transformed PTX3 concentrations were significantly higher in patients with PAH than in healthy controls (1.34+0.07 vs. 0.55+0.05 log ng/mL, respectively; P,0.001). D, E: There was no correlation between plasma concentrations of PTX3 and either B-type natriuretic peptide (BNP; r=0.33, P=0.02) or C-reactive protein (CRP; r=0.21, P=0.14) in PAH patients. (not shown) (50)

 

Table 2. Clinical characteristics and biomarkers in patients with connective tissue disease, with or without pulmonary arterial hypertension.

CTD-PAH ( n =17)                CTD alone ( n =34)       P -value

Age (years)                                 56.3+4.6                                 56.3+2.7               0.990

No. women (%)                         15 (88)                                      31(91)                  0.745

No. with SSc (%)                       10 (59)                                      20 (59)                    1

No. with heart failure (%)          1 (6)                                         0                            –

No. being treated for PAH (%)   17 (100)                                  0                           –

Serum PTX3 (mg/dL)                   5.02+0.69                          2.40+0.14             0.001

Serum CRP (mg/dL)                   0.24+0.09                            0.22+0.04             0.936

Serum BNP (pg/mL)                 189.3+74.                            4 49.3+12.1            0.014

…..  CTD, connective tissue disease; PAH, pulmonary arterial hypertension; SSc, scleroderma;

Figure 3. Receiver operating characteristic (ROC) curves for pentraxin 3 (PTX3) and other biomarkers in patients with connective tissue disease (CTD). The areas under the ROC curve (AUCROC) for PTX3 was 0.866 (95% confidence interval (CI) 0.757–0.974). The star indicates the threshold concentration of 2.85 ng/mL PTX3 that maximized true-positive and false-negative results (sensitivity 94.1%, specificity 73.5%). The AUCROC for C-reactive protein (CRP) was 0.518 (95% CI 0.333–0.704), whereas that for B-type natriuretic peptide (BNP) was 0.670 (95% CI 0.497–0.842). (50)  http://dx.doi.org:/10.1371/journal.pone.0045834.g003

This study was to determine whether PTX3, the regulation of which is independent of that of the systemic inflammatory marker CRP, is a useful biomarker for diagnosing PAH. The investigators found that PTX3 may be a more sensitive biomarker for PAH than BNP, which is, to date, the most established biomarker for PAH, especially in patients with CTD-PAH. Their findings suggest that PTX3 does not reflect the cardiac burden due to the pulmonary hypertension, but rather the activity of pulmonary vascular degeneration because PTX3 levels were significantly decreased after active treatment specifically for PAH (50). PLoS ONE 7(9): e45834. http://dx.doi.org:/10.1371/journal.pone.0045834.

Pharmacologic treatment for pulmonary arterial hypertension (PAH) remains suboptimal and mortality rates are still high, even with pulmonary vasodilator therapy. In addition, we have only an incomplete understanding of the pathobiology of PAH, which is characterized at the tissue level by fibrosis, hypertrophy and plexiform remodeling of the distal pulmonary arterioles. Novel therapeutic approaches that might target pulmonary vascular remodeling, rather than pulmonary vaso-reactivity, require precise patient phenotyping both in terms of clinical status and disease subtype. However, current risk stratification models are cumbersome and not precise enough for choosing or assessing the results of therapeutic intervention. Biomarkers used in patients with left heart failure, such as troponin-T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) are elevated in PAH patients but tend to simply reflect increased circulating plasma volumes and elevated right heart pressure, rather than conveying information about disease mechanism.

In this issue of Heart, Calvier and colleagues (see page 390) (51)propose galectin-3 as a useful biomarker in PAH. The rationale for this hypothesis is that elevated aldosterone levels induce an increase in serum levels of galectin-3, a β-galactoside-binding lectin expressed by circulating myocytes, endothelial cells and other cardiovascular cell types. Among other effects, activation of the aldosterone/galactin-3 pathway promotes fibrosis (51), suggesting that elevated levels will correlate with the severity of PAH due to increased pulmonary arteriolar remodeling. To test this hypothesis, serum levels were measured in a total of 57 patients – 41 with idiopathic PAH (iPAH) and 16 with PAH associated with a connective tissue disorder (CTD). The magnitude of elevation in serum levels of aldosterone, galectin-3 and NT-proBNP each correlated with the severity of PAH. However, as shown in figure 1, although serum levels of galectin-3 were elevated in both iPAH and PAH-CTD patients, aldosterone was elevated only in those with iPAH.

In addition, elevated vascular cell adhesion molecule 1 (VCAM-1) and proinflammatory, anti-angiogenic interleukin 12 (IL-12) in were elevated only in PAH-CTD patients, not in those in iPAH. These data suggest that aldosterone and galectin-3 can be used as biomarkers “in tandem” that reflect both the severity and cause of PAH (52).

In the accompanying editorial, Maron (see page 335) summarizes the knowledge gaps in PAH and concludes: “Taken together, Calvier and colleagues provide a key contribution to an underdeveloped area of pulmonary vascular medicine and in doing so identify galectin-3/aldosterone as promising biomarker(s) for informing both disease pathobiology and clinical status in PAH. The rationale of this pursuit in PAH was based, in part, on lessons earned from left heart failure in which the importance of systemically circulating vasoactive factors to clinical trajectory is well established. In this regard, the current work not only develops a novel scientific avenue worthy of further investigation, but also adds to the evolving body of evidence implicating a role for neurohumoral activation in the pathophysiology of PAH”.

Rheumatoid arthritis (RA) affects about 1% of the population and is known to be a significant risk factor for cardiovascular disease, with a 3-fold increased risk of myocardial infarction, a 2-fold increased risk of sudden death and a 50% increase in cardiovascular mortality rates. However, outcomes after PCI in RA patients have not been well characterized and there is little data on the possible effects of disease modifying therapy for RA on risk of restenosis after percutaneous coronary intervention (PCI). In a single center retrospective cohort study, Sintek and colleagues (53)(see page 363) compared the primary endpoint of repeat target vessel revascularization (TVR) in 143 RA patients matched to 541 other.

Pathophysiological targets of differing imaging modalities, demonstrate targets for tracers/contrast agents/pharmacotherapy used in SPECT, PET, MRI and echocardiography to assess myocardial viability.  (Not shown. Adapted from Schuster et al., J Am Coll Cardiol 2012; 59:359–70.)

Ischemic cardiomyopathy implies significant left ventricular systolic dysfunction with an underlying pathophysiology that includes myocardial scarring, hibernation and stunning, or a combination of these disease states. The role of imaging in assessment of myocardial viability is emphasized (not shown) (54) with brief summaries of the role of echocardiography, single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). The effects of revascularization in patients with ischemic cardiomyopathy remain controversial. Instead, the key elements of evidence based therapy for ischemic cardiomyopathy are standard medical therapy for heart failure combined with implantable cardiac defibrillation (ICD) and/or biventricular pacing device therapy in appropriate patients.

The relationship between the heart and the kidney in hypertension and heart failure

Hypertension is undoubtedly a factor in the treatment of chronic kidney disease because of the relationship between kidney function and BP components that have been studied in people with CKD, diabetes, and hypertension.  Cystatin C was used to evaluate the association between kidney function and both SBP and DBP and 24-h creatinine clearance (CrCl) among 906 participants in the Heart and Soul Study.  (56).  The study investigators hypothesized that although both creatinine and cystatin C are freely filtered at the glomerulus, a major difference between them is that creatinine is secreted by renal tubules, whereas cystatin C is metabolized by the proximal tubule and only a small fraction appears in the urine. In addition, Cystatin C has also been shown to be a stronger predictor of adverse outcomes than serum creatinine. Based on the more linear relationship of cystatin C with GFR, they hypothesized that cystatin C would have a stronger association with SBP than conventional measures of kidney function. Their results found that SBP was linearly associated with cystatin C concentrations (1.19 ± 0.55 mm Hg increase per 0.4 mg/L cystatin C, P = .03) across the range of kidney functions, but only in subjects with CrCl <60 mL/min (6.4 ± 2.13 mm Hg increase per 28 mL/min, P = .003), not >60 mL/min. Further, the DBP was not associated with cystatin C or CrCl. However, PP was linearly associated with both cystatin C (1.28 ± 0.55 mm Hg per 0.4 mg/L cystatin, P = .02) and CrCl <60 mL/min (7.27 ± 2.16 mm Hg per 28 mL/min, P = .001). The relationship between SBP and cystatin C by decile is shown in Figure 7 and Table 3.

Figure 7.

Mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) by decile of kidney function measured as cystatin C. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771570/bin/nihms-153474-f0001.jpg

 

 

Table 3

Linear regression of systolic blood pressure by kidney function (N = 906)

Age-adjusted Multivariable adjusted*
Measure N β coefficient P β coefficient P
Cystatin-C (per 0.4 mg/L [SD] increase) 1.75 ± 0.72 .01 1.19 ± 0.55 .03
    Overall
    >1.0 551 2.23 ± 0.07 .03 1.23 ± 0.03 .04
    <1.0 355 1.59 ± 0.04 .71 0.54 ± 0.01 .87
Spline P value for difference in slopes .85
24-h CrCl (per 28 mL/min [SD] decrease)
    Overall 1.96 ± 0.76 .01 0.91 ± 0.61 .14
    <60 222 11.20 ± 2.74 <.001 6.40 ± 2.13 .003
    >60 684 0.31 ± 0.99 .42 0.36 ± 0.77 .64
    Spline P-value for difference in slopes .01

The results for both Cystatin C and for eGFR are in agreement with incidence rates for heart failure (57)categorized by ejection fraction (EF) and kidney function over 1992−2000 in the Cardiovascular Health Study. Estimated glomerular filtration rate (mL/min per 1.73 m2) is labeled as “eGFR”. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258307/bin/nihms-39968-f0002.jpg).

The association of cystatin C with risk for SHF appeared linear across quartiles of cystatin C (57) and slightly stronger at the highest categories of cystatin C, whereas the lower three quartiles of cystatin C had similar risks for DHF. Participants with an estimated GFR ≥ 60 mL/min per 1.73 m2 had an equal likelihood of developing DHF or SHF, whereas participants with an estimated GFR < 60 mL/min per 1.73 m2 had a greater likelihood of developing SHF.

When an interaction term for HF type (SHF or DHF) was inserted into a fully adjusted standard Cox proportional hazards model with HF with either type of EF as the outcome, the association of continuous cystatin C with SHF was significantly greater than the association of cystatin C with DHF ( P value for interaction < 0.001). The association of estimated GFR and SHF compared with DHF was weaker (P value for interaction = 0.06 for the fully adjusted model).

Ascending quartiles of cystatin C were associated with increasing adjusted risk for the development of “unclassified” HF, defined by the absence of a point-of-care EF measurement. The magnitude of the fully adjusted hazard ratios for the association between cystatin C and risk of unclassified HF were intermediate between those described for DHF and SHF [hazard ratios (95% confidence intervals) for each higher quartile of cystatin C 1.00 (reference), 1.12 (0.80−1.57), 1.84 (1.34−2.51), 2.18 (1.58−3.00)]. The authors state that increased left atrial filling pressures trigger the release of atrial natriuretic peptide and inhibition of vasopressin, which leads to decreased renal sympathetic tone and diuresis early in the pathogenesis of HF (57).  They suggest that even relatively small decrements in k58idney function contribute to the risk of SHF.

Aldosterone plays a key role in homeostatic control and maintenance of blood pressure (BP) by regulation of extracellular volume, vascular tone, and cardiac output. Taking this assumption further, a study unrelated to that above explored the magnitude of the effect of relative aldosterone excess in predicting peripheral as well as aortic blood pressure in a cohort of patients undergoing coronary angiography.  (58) They found that mean peripheral systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the entire cohort were 141 ± 24 mm Hg and 81 ± 11 mm Hg, respectively. Median SBP and aortic SBP increased steadily and significantly from aldosterone/renin ratio (ARR), respectively; p < 0.0001 for both) after multivariate adjustment for parameters potentially influencing BP. ARR emerged as the second most significant independent predictor (after age) of mean SBP and as the most important predictor of mean DBP in this patient cohort.  The authors stress the importance of the ARR in modulating BP over a much wider range than is currently appreciated, as it was already known that the ARR was positively associated with pulse wave velocity in young normotensive healthy adults, indicating that relative aldosterone excess might affect arterial remodeling and precede BP rise as a result of increased vascular stiffness. In this study the ARR was calculated as the PAC/PRC ratio (pg/ml/pg/ml). An ARR >50 pg/ml had a sensitivity and specificity of ARR of 89% and 96%, respectively, for primary aldosteronism. The ARR was modeled as a continuous ratio (with log-transformed values).  The study carried out a multivariate stepwise regression analysis for predictors of BP (not shown). They illustrate (not shown) that marked increases in PRC are a major characteristic of lower ARR categories, and that  across a broad range of ARR values, inappropriately elevated aldosterone levels exert a strong effect on BP values and constitute the most important and second-most important predictor of DBP and SBP, respectively.

Cystatin C may be ordered when a health practitioner is not satisfied with the results of other tests, such as a creatinine or creatinine clearance, or wants to check for early kidney dysfunction, particularly in the elderly, and/or wants to monitor known impairment over time. In diverse populations it has been found to improve the estimate of GFR when combined in an equation with blood creatinine. A high level in the blood corresponds to a decreased glomerular filtration rate (GFR) and hence to kidney dysfunction. Since cystatin C is produced throughout the body at a constant rate and removed and broken down by the kidneys, it should remain at a steady level in the blood if the kidneys are working efficiently and the GFR is normal.

Chronic kidney disease (CKD) is defined as the presence of: persistent and usually progressive reduction in GFR (GFR <60 mL/min/1.73 m2) and/or albuminuria (>30 mg of urinary albumin per gram of urinary creatinine), regardless of GFR. Cystatin C is an index of GFR, especially in patients where serum creatinine may be misleading (eg, very obese, elderly, or malnourished patients); for such patients, use of CKD-EPI cystatin C equation is recommended to estimate GFR. Cystatin C eGFR may have advantages over creatinine eGFR in certain patient groups in whom muscle mass is abnormally high or low (for example quadriplegics, very elderly, or malnourished individuals). Blood levels of cystatin C also equilibrate more quickly than creatinine, and therefore, serum cystatin C may be more accurate than serum creatinine when kidney function is rapidly changing (59) (for example amongst hospitalized individuals).

It is a low molecular weight (13,250 kD) cysteine proteinase inhibitor that is produced by all nucleated cells and found in body fluids, including serum. Since it is formed at a constant rate and freely filtered by the kidneys, its serum concentration is inversely correlated with the glomerular filtration rate (GFR); that is, high values indicate low GFRs while lower values indicate higher GFRs, similar to creatinine. While both cystatin C and creatinine are freely filtered by glomeruli, cystatin C is reabsorbed and metabolized by proximal renal tubules. Thus, under normal conditions, cystatin C does not enter the final excreted urine to any significant degree, and the serum concentration is unaffected by infections, inflammatory or neoplastic states, or by body mass, diet, or drugs.  GFR can be estimated (eGFR) from serum cystatin C utilizing an equation which includes the age and gender of the patient (CKD-EPI cystatin C equation, developed by Inker et al. (59) It demonstrated good correlation with measured iothalamate clearance in patients with all common causes of kidney disease, including kidney transplant recipients.

According to the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K/DOQI) classification, among patients with CKD, irrespective of diagnosis, the stage of disease should be assigned based on the level of kidney function:

Table 4

Stage Description GFR mL/min/BSA
1 Kidney damage with normal or  increased GFR 90
2 Kidney damage with mild decrease in  GFR 60-89
3 Moderate decrease in GFR 30-59
4 Severe decrease in GFR 15-29
5 Kidney failure <15 (or dialysis)

(http://www2.kidney.org/professionals/kdoqi/guidelines_ckd/p4_class_g1.htm)

In a study to evaluate cystatin C as a measure of renal function in comparison to serum creatinine, 500 patients had cystatin C measured by nephelometry and glomerular filtration rate (GFR) measured by nonradiolabeled iothalamate clearance (59). In addition, serum creatinine was measured and the patients’ medical records reviewed. The correlation of 1/cystatin C with GFR (r=0.90) was significantly superior than 1/creatinine (r=0.82, p<0.05) with GFR. The superior correlation of 1/cystatin C with GFR was observed in the various clinical subgroups of patients studied (ie, subjects with no suspected renal disease, renal transplant patients, recipients of some other transplant, patients with glomerular disease, and patients with non-glomerular renal disease). The findings indicated that cystatin C may be superior to serum creatinine for the assessment of GFR in a wide spectrum of patients (59). Others have similarly found that cystatin C correlates better than serum creatinine for assessment of GFR. (60)

Patients were screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438)(61).   GFR was measured by using urinary clearance of iodine125-iothalamate in the US studies and chromium51-EDTA in the Paris study. GFR was calculated using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study.

Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m2 (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine (62, 63). Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. It is concluded that Serum cystatin C level alone provides GFR estimates not linked to muscle mass, and that an equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
The authors report that absence of urinary excretion has made it difficult to rigorously evaluate cystatin C as a filtration marker and to examine its non-GFR determinants. They also point out that a high level of variation in the cystatin C assay (64, 65), and standardization and calibration of clinical laboratories will be important to obtain accurate GFR estimation using cystatin C, as has been shown for creatinine.

The study reported above was followed by a major study by Inker LA, et al. (59). Their findings are summarized as follows. Mean measured GFRs were 68 and 70 ml per minute per 1.73 m2 of body-surface area in the development and validation data sets, respectively. In the validation data set, the creatinine–cystatin C equation performed better than equations that used creatinine or cystatin C alone. Bias was similar among the three equations, with a median difference between measured and estimated GFR of 3.9 ml per minute per 1.73 m2 with the combined equation, as compared with 3.7 and 3.4 ml per minute per 1.73 m2 with the creatinine equation and the cystatin C equation (P=0.07 and P=0.05), respectively. Precision was improved with the combined equation (interquartile range of the difference, 13.4 vs. 15.4 and 16.4 ml per minute per 1.73 m2, respectively [P=0.001 and P<0.001]), and the results were more accurate (percentage of estimates that were >30% of measured GFR, 8.5 vs. 12.8 and 14.1, respectively [P<0.001 for both comparisons]). In participants whose estimated GFR based on creatinine was 45 to 74 ml per minute per 1.73 m2, the combined equation improved the classification of measured GFR as either less than 60 ml per minute per 1.73 m2 or greater than or equal to 60 ml per minute per 1.73 m2 (net reclassification index, 19.4% [P<0.001]) and correctly reclassified 16.9% of those with an estimated GFR of 45 to 59 ml per minute per 1.73 m2 as having a GFR of 60 ml or higher per minute per 1.73 m2.

Other studies have established the importance of cystatin C levels(66, 67) and the factors influencing cystatin C levels on renal function measurement (68), including an implication that cystatin C, an alternative measure of kidney function, was a stronger predictor of the risk of cardiovascular events and death than either creatinine or the estimated GFR (69). This includes the Dallas Heart Study (30) finding that cystatin C was independently associated with a specific cardiac phenotype of concentric hypertrophy, including increased LV mass, concentricity, and wall thickness, but it was not associated with LV systolic function or volume. This association was particularly robust in hypertensives and blacks. The Cystatin C concentrations within stages of CKD are shown in Table 5 (70).

Table 5

      Cystatin C level
Stage a Description GFR range a (ml/min/1.73 m2) Native kidney disease b Transplant recipient c
1 Normal or increased GFR 90 0.80 0.87
2 Mildly decreased GFR 60 to 89 0.80 to 1.09 0.87 to 1.23
3 Moderately decreased GFR 30 to 59 1.10 to 1.86 1.24 to 2.24
4 Severely decreased GFR 15 to 29 1.87 to 3.17 2.25 to 4.10
5 Kidney Failure <15 >3.17 >4.10

a GFR estimates and CKD stage will be inaccurate if there is a calibration difference with the Dade-Behring BN II Nephelometer assay used in this study.

b Using the prediction equation: GFR=66.8 (cystatin C)-1.30.

c Using the prediction equation: GFR=76.6 (cystatin C)-1.16.

 

Copeptin, a novel marker

Urinary albumin excretion is a powerful predictor of progressive cardiovascular and renal disease. Copeptin is the inactive C-terminal fragment of the vasopressin precursor. It is a reliable marker of vasopressin secretion serves as a useful substitute for circulating vasopressin concentration. This allows  for the indirect measurement of vasopressin in epidemiological studies. Moreover, it has been shown that copeptin is a candidate biomarker for pneumonia 32), a predictor of outcome in heart failure, and is a powerful predictor of renal disease associated with albumin excretion (71).  Figure 8 shows the association between copeptin and 24-hour urinary volume, 24-h urinary osmolality and osmolality (71).

 

Figure 8

 

Association between quintiles of copeptin and median 24-h UAE (upper panel) and prevalence of microalbuminuria (lower panel) for males and females. Differences between the quintiles were tested by Kruskal–Wallis test. UAE, urinary albumin excretion.

 

 

Table 6 shows the association between copeptin concentration and urinary albumin excretion (UAE) in a log-log plot (71).

 

Model Corrected for β 95% CI for β P
Males        
 1 − (Crude) 0.25 0.20–0.30 <0.001
 2 As 1+age 0.21 0.16–0.26 <0.001
 3 As 2+MAP, BMI, smoking, glucose, cholesterol, CRP, and eGFR 0.10 0.05–0.16 <0.001
 4 As 3+diuretics and ACEi/ARB. 0.09 0.04–0.15 0.001
         
Females
 1 − (Crude) 0.19 0.15–0.23 <0.001
 2 As 1+age 0.17 0.14–0.22 <0.001
 3 As 2+MAP, BMI, smoking, glucose, cholesterol, CRP, and eGFR 0.16 0.11–0.21 <0.001
 4 As 3+diuretics and ACEi/ARB. 0.17 0.12–0.21 <0.001

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin-II-receptor blocker; BMI, body mass index; CHD, coronary heart disease; CI, confidence interval; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; MAP, mean arterial pressure.

Log copeptin concentration was entered in the regression analyses as independent and log UAE as the dependent variable. Copeptin was associated with UAE in all age groups, but this association is the strongest when subjects are older. Twenty-four-hour urinary volume and 24-h urinary osmolarity were significantly different, with 24-h urinary volume being higher and 24-h urinary osmolarity being lower in the oldest age group when compared with the youngest age group. In both males and females, high copeptin concentration (a surrogate for vasopressin) is associated with low 24-h urinary volume and high 24-h urinary osmolarity. However, urinary osmolarity was independently associated with UAE, but it was weaker than that between copeptin and UAE.  This might indicate that induction of specific glomerular hyperfiltration or decreased tubular albumin reabsorption are associated with this relationship. In addition, subjects with higher levels of copeptin had lower renal function.  These investigators concluded that copeptin (a reliable substitute for vasopressin) is associated with UAE and microalbuminuria, consistent with the hypothesis that vasopressin induces UAE (72).  Other studies indicated that copeptin levels are increased in patients with pulmonary artery hypertension (73), and
higher serum copeptin levels, a surrogate for arginine vasopressin (AVP) release, are associated not only with systolic and diastolic blood pressure but also with several components of metabolic syndrome (74) including obesity, elevated concentration of triglycerides, albuminuria, and serum uric acid level.

 

 

Natriuretic peptides in the evaluation of heart failure

The brain type natriuretic peptide (BNP) and the N-terminal pro B-type natriuretic peptide (NT proBNP), but not yet the atrial natriuretic peptide have gained prominence in the evaluation of patients with CHF, which may be with or without preserved ejection fraction . Richards et al. (75)  make the following points.

 

  • Threshold values of B-type natriuretic peptide (BNP) and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) validated for diagnosis of undifferentiated acutely decompensated heart failure (ADHF) remain useful in patients with heart failure with preserved ejection fraction (HFPEF), with minor loss of diagnostic performance.

 

  • BNP and NT-proBNP measured on admission with ADHF are powerfully predictive of in-hospital mortality in both HFPEF and heart failure with reduced EF (HFREF), with similar or greater risk in HFPEF as in HFREF associated with any given level of either peptide.

 

  • In stable treated heart failure, plasma natriuretic peptide concentrations often fall below cut-point values used for the diagnosis of ADHF in the emergency department; in HFPEF, levels average approximately half those in HFREF.

 

  • BNP and NT-proBNP are powerful independent prognostic markers in both chronic HFREF and chronic HFPEF, and the risk of important clinical adverse outcomes for a given peptide level is similar regardless of left ventricular ejection fraction.

 

  • Serial measurement of BNP or NT-proBNP to monitor status and guide treatment in chronic heart failure may be more applicable in HFREF than in HFPEF.

 

In addition, they point out the following:

 

BNP and NT-proBNP fall below ADHF thresholds in stable HFREF in approximately 50% and 20% of cases, respectively. Levels in stable HFPEF are even lower, approximately half those in HFREF.

 

Whereas BNPs have 90% sensitivity for asymptomatic LVEF of less than 40% in the community (a precursor state for HFREF), they offer no clear guide to the presence of early community based HFPEF.

 

Guidelines recommend BNP and NT-proBNP as adjuncts to the diagnosis of acute and chronic HF and for risk stratification. Refinements for application to HFPEF are needed.

 

The prognostic power of NPs is similar in HFREF and HFPEF. Defined levels of BNP and NT-proBNP correlate with similar short-term and long-term risks of important clinical adverse outcomes in both HFREF and HFPEF.

 

They provide a diagnostic algorithm for suspected heart failure (75)(Figure 9).

 

Figure 9

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely

 

 

Diagnostic algorithm for suspected heart failure presenting either acutely or nonacutely. a In the acute setting, mid-regional pro–atrial natriuretic peptide may also be used (cutoff point 120 pmol/L; ie, <120 pmol/L 5 heart failure unlikely). b Other causes of elevated natriuretic peptide levels in the acute setting are an acute coronary syndrome, atrial or ventricular arrhythmias, pulmonary embolism, and severe chronic obstructive pulmonary disease with elevated right heart pressures, renal failure, and sepsis. Other causes of an elevated natriuretic level in the nonacute setting are old age (>75 years), atrial arrhythmias, left ventricular hypertrophy, chronic obstructive pulmonary disease, and chronic kidney disease. c Exclusion cutoff points for natriuretic peptides are chosen to minimize the false-negative rate while reducing unnecessary referrals for echocardiography. Treatment may reduce natriuretic peptide concentration, and natriuretic peptide concentrations may not be markedly elevated in patients with heart failure with preserved ejection fraction.

 

Patients with acute pulmonary symptoms and with acute myocardial infarct present with dyspnea to the Emergency Department.  The evaluation is made particularly difficult in a patient for whom there is no prior history. Maisel et al. (76) presented the utility of the midregion proadrenomedullin (MR-proADM) in all patients presenting with acute shortness of breath.  They found that MR-proADM was superior to BNP or troponin for predicting 90-day all-cause mortality in patients presenting with acute dyspnea (c index = 0.755, p < 0.0001). Furthermore, MR-proADM added significantly to all clinical variables (all adjusted hazard ratios: HR=3.28), and it was also superior to all other biomarkers.

 

There is a large body of recent work that has enlarged our view of hypertension, kidney disease, cardiovascular disease, including heart failure with (HFpEF) or without preserved ejection fraction. I shall here refer to my review in Leaders in Pharmaceutical Innovation  (78).  The piece contains a study that I published  (79) with collaborators in Brooklyn, Bridgeport and Philadelphia that is no longer available from the publisher.

 

The natriuretic peptides, B-type natriuretic peptide (BNP) and NT-proBNP that have emerged as tools for diagnosing congestive heart failure (CHF) are affected by age and renal insufficiency (RI).  NTproBNP is used in rejecting CHF and as a marker of risk for patients with acute coronary syndromes. This observational study was undertaken to evaluate the reference value for interpreting NT-proBNP concentrations. The hypothesis is that increasing concentrations of NT-proBNP are associated with the effects of multiple co-morbidities, not merely CHF,

resulting in altered volume status or myocardial filling pressures.

 

NT-proBNP was measured in a population with normal trans-thoracic echocardiograms
(TTE) and free of anemia or renal impairment. Exclusion conditions were the following
co-morbidities:

 

 

  • anemia as defined by WHO,
  • atrial fibrillation (AF),
  • elevated troponin T exceeding 0.070 mg/dl,
  • systolic or diastolic blood pressure exceeding 140 and 90 respectively,
  • ejection fraction less than 45%,
  • left ventricular hypertrophy (LVH),
  • left ventricular wall relaxation impairment, and
  • renal insufficiency (RI) defined by creatinine clearance < 60ml/min using
    the MDRD formula .

Study participants were seen in acute care for symptoms of shortness of breath suspicious for CHF requiring evaluation with cardiac NTproBNP assay. The median NT-proBNP for patients under 50 years is 60.5 pg/ml with an upper limit of 462 pg/ml, and for patients over 50 years the median was 272.8 pg/ml with an upper limit of 998.2 pg/ml.

We suggested that NT-proBNP levels can be more accurately interpreted only after removal of the major co-morbidities that affect an increase in this  peptide in serum. The PRIDE study guidelines (http://www.pridestudy.org/)  should be applied until presence or absence of comorbidities is diagnosed. With no comorbidities, the reference range for normal over 50 years of age remains steady at ~1000 pg/ml. The effect shown in previous papers likely is due to increasing concurrent comorbidity with age.

We observed the following changes with respect to NTproBNP and age:

(i) Sharp increase in NT-proBNP at over age 50

(ii) Increase in NT-proBNP at 7% per decade over 50

(iii) Decrease in eGFR at 4% per decade over 50

(iv) Slope of NT-proBNP increase with age is related to proportion of patients with eGFR less than 90

(v) NT-proBNP increase can be delayed or accelerated based on disease comorbidities

The mean and 95% CI of NTproBNP (CHF removed) by the National Kidney Foundation staging for eGFR interval (eGFR scale: 0, > 120; 1, 90 to 119;2, 60 to 89; 3, 40 to 59; 4, 15 to 39; 5, under 15 ml/min). We created a new variable to minimize the effects of age and eGFR variability by correcting these large effects in the whole sample population.

Adjustment of the NT-proBNP for  both eGFR and for age over 50 differences. We have carried out a normalization to adjust for both eGFR and for age over 50:

(i) Take Log of NT-proBNP and multiply by 1000
(ii) Divide the result by eGFR (using MDRD9 or Cockroft Gault10)
(iii) Compare results for age under 50, 50-70, and over 70 years
(iv) Adjust to age under 50 years by multiplying by 0.66 and 0.56.

Figure 10

 

 

NKF staging by GFRe interval and NT-proBNP (CHF removed).

 

 

The equation does not require weight because the results are reported normalized

to 1.73 m2 body surface area, which is an accepted average adult surface area.

 

This is illustrated in Figure 11.

Figure 11

 

Plot of 1000*log (NT-proBNP)/GFR vs age at  eGFR over 90  and 60 ml/min

Figure 12 compares the reference ranges for NTproBNP before and after adjustment.

  • before adjustment; b) after adjustment. c) the scatterplot for 1000xlog(NT proBNP) versus 1000xlog(NT-proBNP/eGFR). Superimposed scatterplot and regression line with centroid and

confidence interval for 1000*log(NT-proBNP)/eGFR vs age (anemia removed)

at eGFR over 40 and 90 ml/min. (Black: eGFR > 90, Blue:  eGFR > 40)

 

More recent work is enlightening.  Hijazi et al. (80) studied the incremental value of measuring N-terminal pro–B-type natriuretic peptide (NT-proBNP) levels in addition to established risk factors (including the CHA2DS2VASc [heart failure, hypertension, age 75 years and older, diabetes, and previous stroke or transient ischemic attack, vascular disease, age 65 to 74 years, and sex category) for the prediction of cardiovascular and bleeding events. They concluded that NT-proBNP levels are often elevated in atrial fibrillation (AF) and it is independently associated with an increased risk for stroke and mortality. NT-proBNP improves risk stratification beyond the CHA2DS2VASc score and might be a novel tool for improved stroke prediction in AF. The

efficacy of apixaban compared with warfarin was independent of the NT-proBNP level. Moreover, natriuretic peptides are regulatory hormones associated with cardiac remodeling, namely, left ventricular hypertrophy and systolic/diastolic dysfunction. Another study reported that the risk of death of patients with plasma NT-proBNP 133 pg/mL (third tertile of the distribution) was 3.3 times that of patients with values 50.8 pg/mL (first tertile; hazard ratio: 3.30 [95% CI: 0.90 to 12.29]). This predictive value was independent of, and superior to, that of 2 ECG indexes of left ventricular hypertrophy, the Sokolov-Lyon index and the amplitude of the R wave in lead aVL and it persisted in patients without ECG left ventricular hypertrophy (81).
Many patients presenting with acute dyspnea (including those with ADHF) have multiple coexisting medical disorders that may complicate their diagnosis and management. These patients presenting with acute dyspnea may have longer hospital length of stay and are at high risk for repeat hospitalization or death. In this presentation testing for brain natriuretic peptide (BNP) or NT-proBNP has been shown to be valuable for an accurate and efficient diagnosis and prognostication of HF (82).

 

The biological activity of BNP, the product of an intracellular peptide (proBNP108) that is converted to NT-proBNP, includes stimulation of natriuresis and vasorelaxation; inhibition of renin, aldosterone, and sympathetic nervous activity; inhibition of fibrosis; and improvement in myocardial relaxation.

 

Figure 13

 

Biology of the natriuretic peptide system. BNP indicates brain natriuretic peptide; NT-proBNP, amino-terminal pro-B-type natriuretic peptide; and DPP-IV, dipeptidyl peptidase-4.

The authors remind us that approximately 20% of patients with acute dyspnea have BNP or NT-proBNP levels that are above the cutoff point to exclude HF but too low to definitively identify it (82). Knowledge of the differential diagnosis of non-HF elevation of NP, as well as interpretation of the BNP or NT-proBNP value in the context of a clinical assessment is essential.  Across all stages of HF, elevated BNP or NT-proBNP concentrations are at least comparable prognostic predictors of mortality and cardiovascular events relative to traditional predictors of outcome in this setting, with increasing NP concentrations predicting worse prognosis in a linear fashion. This prognostic value may be used to stratify patients at the highest risk of adverse outcomes (see Figure 2 In this page). Age-adjusted Kaplan-Meier survival curve of mortality at 1 year associated with an elevated amino-terminal pro-B-type natriuretic peptide    (NT-proBNP) concentration at emergency department presentation with dyspnea in those with acutely decompensated heart failure. Reproduced from Januzzi et al22. (82)

The importance of determining diastolic and systolic function and for measurement of pulmonary artery pressure by echocardiography is clear, as NT-proBNP levels may be increased with increase in pulmonary pressure as well as conditions that increase cardiac output. Although Hijazi et al. used the Cockcroft-Gault (CG) equation to determine the glomerular filtration rate (GFR) the CG equation may find higher eGFR in older individuals (80). In addition, elevated NT-proBNP independently predicts all-cause mortality and morbidity of patients with AF. A prominent disease with elevated NT-proBNP is a respiratory system disease, such as chronic obstructive pulmonary disease, pulmonary embolism, and interstitial lung disease, in which B-type natriuretic peptide levels are elevated in response to the pressure of the right side of the heart. The authors conclude that one should keep in mind that NT-proBNP alone may be inadequate.

NT-proBNP level is used for the detection of acute CHF and as a predictor of survival. However, a number of factors, including renal function, may affect the NT-proBNP levels. This study aims to provide a more precise way of interpreting NT-proBNP levels based on GFR, independent of age. This study includes 247 pts in whom CHF and known confounders of elevated NT-proBNP were excluded, to show the relationship of GFR in association with age. The effect of eGFR on NT-proBNP level was adjusted by dividing 1000 x log(NT-proBNP) by eGFR then further adjusting for age in order to determine a normalized NT-proBNP value. The normalized NT-proBNP levels were affected by eGFR independent of the age of the patient. A normalizing function based on eGFR eliminates the need for an age-based reference ranges for NT-proBNP (79).

The routine use of natiuretic peptides in severely dyspneic patients has recently been called into question. We hypothesized that the diagnostic utility of Amino Terminal pro Brain Natiuretic Peptide (NT-proBNP) is diminished in a complex elderly population (83)

We studied 502 consecutive patients in whom NT-proBNP values were obtained to evaluate severe dyspnea in the emergency department (84). The diagnostic utility of NT-proBNP for the diagnosis of congestive heart failure (CHF) was assessed utilizing several published guidelines, as well as the manufacturer’s suggested age dependent cut-off points. The area under the receiver operator curve (AUC) for NT-proBNP was 0.70. Using age-related cut points, the diagnostic accuracy of NT-proBNP for the diagnosis of CHF was below prior reports (70% vs. 83%). Age and estimated creatinine clearance correlated directly with NT-proBNP levels, while hematocrit correlated inversely. Both age > 50 years and to a lesser extent hematocrit < 30% affected the diagnostic accuracy of NT-proBNP, while renal function had no effect. In multivariate analysis, a prior history of CHF was the best predictor of current CHF, odds ratio (OR) = 45; CI: 23-88.

The diagnostic accuracy of NT-proBNP for the evaluation of CHF appears less robust in an elderly population with a high prevalence of prior CHF. Age and hematocrit levels, may adversely affect the diagnostic accuracy off NT-proBNP (85).

Obesity and hypertension.

Obesity is associated with an increased risk of hypertension. In the past 5 years there have been dramatic advances into the genetic and neurobiological mechanisms of obesity with the discovery of leptin and novel neuropeptide pathways regulating appetite and metabolism. In this brief review, we argue that these mounting advances into the neurobiology of obesity have and will continue to provide new insights into the regulation of arterial pressure in obesity. We focus our comments on the sympathetic, vascular, and renal mechanisms of leptin and melanocortin receptor agonists and on the regulation of arterial pressure in rodent models of genetic obesity. Three concepts are proposed (86).

First, the effect of obesity on blood pressure may depend critically on the genetic-neurobiological mechanisms underlying the obesity. Second, obesity is not consistently associated with increased blood pressure, at least in rodent models. Third, the blood pressure response to obesity may be critically influenced by modifying alleles in the genetic background.

Leptin plays an important role in regulation of body weight through regulation of food intake and sympathetically mediated thermogenesis. The hypothalamic melanocortin system, via activation of the melanocortin-4 receptor (MC4-R), decreases appetite and weight, but its effects on sympathetic nerve activity (SNA) are unknown. In addition, it is not known whether sympathoactivation to leptin is mediated by the melanocortin system.

The following study (87) tested the interactions between these systems in regulation of brown adipose tissue (BAT) and renal and lumbar SNA in anesthetized Sprague-Dawley rats. Intracerebroventricular administration of the MC4-R agonist MT-II (200 to 600 pmol) produced a dose-dependent sympathoexcitation affecting BAT and renal and lumbar beds. This response was completely blocked by the MC4-R antagonist SHU9119 (30 pmol ICV). Administration of leptin (1000 m g/kg IV) slowly increased BAT SNA (baseline, 4166 spikes/s; 6 hours, 196628 spikes/s; P50.001) and renal SNA (baseline, 116616 spikes/s; 6 hours, 169626 spikes/s; P50.014).

Intracerebroventricular administration of SHU9119 did not inhibit leptin-induced BAT sympathoexcitation (baseline, 3567 spikes/s; 6 hours, 158634 spikes/s; P50.71 versus leptin alone). However, renal sympathoexcitation to leptin was completely blocked by SHU9119 (baseline, 142617 spikes/s; 6 hours, 146625 spikes/s; P50.007 versus leptin alone). The study (87) demonstrates that the hypothalamic melanocortin system can act to increase sympathetic nerve traffic to thermogenic BAT and other tissues. Our data also suggest that leptin increases renal SNA through activation of hypothalamic melanocortin receptors. In contrast, sympathoactivation to thermogenic BAT by leptin appears to be independent of the melanocortin system.

Troponins

The introduction of the first generation troponins T and I was an important event leading to the declining use of creatine kinase isoenzyme MB because of the short half-life in the circulation of CKMB and the possibility of missing a late presenting ACS. The situation then would call for the measurement of lactate dehydrogenase isoenzyme 1 (H-type), which had a decline in use.  The troponins T and I are proteins associated with the muscle contractile element with high specificity for the cardiomyocyte apparatus, which increased rapidly after ACS and which had estimated diagnostic cutoffs of 0.08 mg/dl and 1 mg/dl respectively.  The choice of marker was largely dependent of the instrument platform.  These biomarkers went through several generations of improvement to improve the diagnostic sensitivity to a cutoff at 2 SD of the lower limit of detection, magnifying confusion in interpretation that had always existed. These cardiospecific markers are elevated in patients with hypertension and specifically, long term CKD. This was clarified by introducing the terms Type 1 and Type 2 myocardial infarct, designating the classic ACS due to plaque rupture as Type 1.  However, the type 2 class might well be non-homogeneous. In any case, these are the best we have in detecting myocardial ischemic damage with biomarker release.

 

Discussion

This discussion has covered a large body of research involving hypertension, the kidney, and cardiovascular humoral mechanisms of control with a broad brush.  The work that has been done is far more than is cited.  There are several biomarkers that we have considered. They are not only laboratory based measurements.  They are: PWV, cystatin C, eGFR, copeptin, BNP or NT-BNP, Midregional prohormone adrenomedullin (MR-ADM), urinary albumin excretion, and the aldosterone/renin ratio.

The preceding discussion reminds us of the story of the blind men palpating an elephant, set in a poem by John Godfrey Saxe. These blind men were asked to tell of their experiences palpating different parts of an elephant, without seeing the entire animal Figure 1. Each of the blind men was able to palpate one part of the elephant, and thus was able to describe it in terms that were “partly in the right.” However, because none of them was able to encompass the entire elephant in their hands, they were also “in the wrong,” in that they failed to identify the whole elephant (88).
The blind men and the elephant. Poem by John Godfrey Saxe (Cartoon originally copyrighted by the authors (88); G. Renee Guzlas, artist). http://www.nature.com/ki/journal/v62/n5/thumbs/4493262f1bth.gif

These authors advanced the “elephant” as the increased oxidative burden in the uremic milieu of patients with chronic kidney disease. I introduce the concept in the diagnostic dilemma about what biomarkers are diagnostically informative in hypertension and ischemic CVD poses a conundrum. In reviewing the full gamut of biomarkers, we have a replay of the Lone Ranger and the silver bullet.  The problem is that there is no “silver” bullet.  We are accustomed to rely on clinical observations that are themselves weak covariates in actual experience.  The studies that have been done to validate the effectiveness of key biomarkers are well designed and show relevance in the populations studied.  However, they are insufficient by themselves in the emergent care population.
 

Impediments to a solution to the problem

Tests are ordered by physicians based on the findings in a clinical history and physical examination. Test that are ordered are reimbursed by insurance carriers, Medicare and Medicaid based on a provisional diagnosis.  The provisional diagnosis generates an ICD10 code, which has been most recently revised with a weighted input from the insurers that is not in favor of considered clinical evidence.  Moreover, the provider of care is graded based on the number of patients seen and the tests performed on a daily basis over any period.  Given this situation, and in addition, the requirement to interact with an outmoded information system that is more helpful to the insurer and less helpful to the provider, it is not surprising that there is a large burnout of the nursing and physician practitioner workforce.  If the diagnosis is inconclusive at the time of patient examination, then the work is not reimbursable based on ICD10 coding requirements that are disease specific.   This problem breaks down into a workload and a reimbursement inconsistency, neither of which makes sense in terms of the original studies on Diagnosis Related Groups (89) at Yale by Robert Fetter’s group.  The problem is made worse by the design and selection of healthcare information systems.

Many have pointed out the flaws in current EHR design that impede the optimum use of data and hinder workflow. Researchers have suggested that EHRs can be part of a learning health system to better capture and use data to improve clinical practice, create new evidence, educate, and support research efforts. The health care system suffers from both inefficient and ineffective use of data. Data are suboptimally displayed to users, undernetworked, underutilized, and wasted. Errors, inefficiencies, and increased costs occur on the basis of unavailable data in a system that does not coordinate the exchange of information, or adequately support its use (90). Clinicians’ schedules are stretched to the limit and yet the system in which they work exerts little effort to streamline and support carefully engineered care processes. Information for decision-making is difficult to access in the context of hurried real-time workflows(91)

 

 

The solution to the problem

The current design of the Electronic Medical Record (EMR) is a linear presentation of portions of the record by services, by diagnostic method, and by date, to cite examples.  This allows perusal through a graphical user interface (GUI) that partitions the information or necessary reports in a workstation entered by keying to icons.  This requires that the medical practitioner finds the history, medications, laboratory reports, cardiac imaging and EKGs, and radiology in different workspaces.  The introduction of a DASHBOARD has allowed a presentation of drug reactions, allergies, primary and secondary diagnoses, and critical information about any patient the care giver needing access to the record.  The advantage of this innovation is obvious.  The startup problem is what information is presented and how it is displayed, which is a source of variability and a key to its success.

Gil David and Larry Bernstein have developed, in consultation with Prof. Ronald Coifman, in the Yale University Applied Mathematics Program, a software system that is the equivalent of an intelligent Electronic Health Records Dashboard (92)( that provides empirical medical reference and suggests quantitative diagnostics options.

The most commonly ordered test used for managing patients worldwide is the hemogram that often incorporates the review of a peripheral smear.  While the hemogram has undergone progressive modification of the measured features over time the subsequent expansion of the panel of tests has provided a window into the cellular changes in the production, release or suppression of the formed elements from the blood-forming organ to the circulation.  In the hemogram one can view data reflecting the characteristics of a broad spectrum of medical conditions.

How we frame our expectations is so important that it determines the data we collect to examine the process.   In the absence of data to support an assumed benefit, there is no proof of validity at whatever cost.   This has meaning for hospital operations, for nonhospital laboratory operations, for companies in the diagnostic business, and for planning of health systems.

In 1983, a vision for creating the EMR was introduced by Lawrence Weed, expressed by McGowan and Winstead-Fry (93)

The data presented has to be comprehended in context with vital signs, key symptoms, and an accurate medical history.  Consequently, the limits of memory and cognition are tested in medical practice on a daily basis.  We deal with problems in the interpretation of data presented to the physician, and how through better design of the software that presents this data the situation could be improved.  The computer architecture that the physician uses to view the results is more often than not presented as the designer would prefer, and not as the end-user would like.

Eugene Rypka contributed greatly to clarifying the extraction of features (94) in a series of articles, which set the groundwork for the methods used today in clinical microbiology.  The method he describes is termed S-clustering, and will have a significant bearing on how we can view hematology data.  He describes S-clustering as extracting features from endogenous data that amplify or maximize structural information to create distinctive classes.  The method classifies by taking the number of features with sufficient variety to map into a theoretic standard. The mapping is done by a truth table, and each variable is scaled to assign values for each: message choice.  The number of messages and the number of choices forms an N-by N table.  He points out that the message choice in an antibody titer would be converted from 0 + ++ +++ to 0 1 2 3.

Bernstein and colleagues had a series of studies using Kullback-Liebler Distance  (effective information) for clustering to examine the latent structure of the elements commonly used for diagnosis of myocardial infarction (95-97)(CK-MB, LD and the isoenzyme-1 of LD),  protein-energy malnutrition (serum albumin, serum transthyretin, condition associated with protein malnutrition (see Jeejeebhoy and subjective global assessment), prolonged period with no oral intake), prediction of respiratory distress syndrome of the newborn (RDS), and prediction of lymph nodal involvement of prostate cancer, among other studies.   The exploration of syndromic classification has made a substantial contribution to the diagnostic literature, but has only been made useful through publication on the web of calculators and nomograms (such as Epocrates and Medcalc) accessible to physicians through an iPhone.  These are not an integral part of the EMR, and the applications require an anticipation of the need for such processing.

Gil David et al. (90, 92) introduced an AUTOMATED processing of the data available to the ordering physician and can anticipate an enormous impact in diagnosis and treatment of perhaps half of the top 20 most common causes of hospital admission that carry a high cost and morbidity.  For example: anemias (iron deficiency, vitamin B12 and folate deficiency, and hemolytic anemia or myelodysplastic syndrome); pneumonia; systemic inflammatory response syndrome (SIRS) with or without bacteremia; multiple organ failure and hemodynamic shock; electrolyte/acid base balance disorders; acute and chronic liver disease; acute and chronic renal disease; diabetes mellitus; protein-energy malnutrition; acute respiratory distress of the newborn; acute coronary syndrome; congestive heart failure; disordered bone mineral metabolism; hemostatic disorders; leukemia and lymphoma; malabsorption syndromes; and cancer(s)[breast, prostate, colorectal, pancreas, stomach, liver, esophagus, thyroid, and parathyroid]. The same approach has also been applied to the problem of hospital malnutrition, but it has not been sufficiently applied to hypertension, cardiovascular diseases, acute coronary syndrome, chronic renal failure.

We have developed (David G, Bernstein L, and Coifman) (92) a software system that is the equivalent of an intelligent Electronic Health Records Dashboard that provides empirical medical reference and suggests quantitative diagnostics options. The primary purpose is to gather medical information, generate metrics, analyze them in realtime and provide a differential diagnosis, meeting the highest standard of accuracy. The system builds its unique characterization and provides a list of other patients that share this unique profile, therefore utilizing the vast aggregated knowledge (diagnosis, analysis, treatment, etc.) of the medical community. The main mathematical breakthroughs are provided by accurate patient profiling and inference methodologies in which anomalous subprofiles are extracted and compared to potentially relevant cases. As the model grows and its knowledge database is extended, the diagnostic and the prognostic become more accurate and precise. We anticipate that the effect of implementing this diagnostic amplifier would result in higher physician productivity at a time of great human resource limitations, safer prescribing practices, rapid identification of unusual patients, better assignment of patients to observation, inpatient beds, intensive care, or referral to clinic, shortened length of patients ICU and bed days.

The main benefit is a real time assessment as well as diagnostic options based on comparable cases, flags for risk and potential problems as illustrated in the following case acquired on 04/21/10. The patient was diagnosed by our system with severe SIRS at a grade of 0.61 .

Method for data organization and classification via characterization metrics.

The database is organized to enable linking a given profile to known profiles. This is achieved by associating a patient to a peer group of patients having an overall similar profile, where the similar profile is obtained through a randomized search for an appropriate weighting of variables. Given the selection of a patients’ peer group, we build a metric that measures the dissimilarity of the patient from its group. This is achieved through a local iterated statistical analysis in the peer group.

This characteristic metric is used to locate other patients with similar unique profiles, for each of whom we repeat the procedure described above. This leads to a network of patients with similar risk condition. Then, the classification of the patient is inferred from the medical known condition of some of the patients in the linked network.

How do we organize the data and linkages provided in the first place?

Predictors: PWV, cystatin C, creatinine, urea, eGFR, copeptin, BNP or NT-BNP, TnI or TnT, Midregional prohormone adrenomedullin (MR-ADM), urinary albumin excretion, and the aldosterone/renin ratio, homocysteine, transthyretin, glucose, albumin, chol/LDL, LD, Na+, K+,  Cl, HCO3, pH.

Conditions: AMI, CRF, ARF, hypertension, HFpEF, HFcEF, ADHF, obesity, PHT, RVHF, pulmonary edema, PEM

Other variables: sex (M,F), age, BMI. …

Conditioning data: take log transform for large ascending values, OR take deciles of variables, if necessary.  This could apply to NT-proBNP, BNP, TnI, TnT, CK and LD.

Arrange predictor variables in columns and patient-sequence in rows.  This is a bidimentional table.  The problem is to assign diagnoses to each patient-in sequence. There can be more than one diagnosis.

In reality the patient-sequence or identifier is not relevant. Only the condition assignment is.  The condition assignments are made in a column adjacent to the patient, and they fall into rows.
The construct appears to be a 2×2, but it is actually an n-dimensional  matrix.  Each patient position has one or more diagnoses.

Multivariate statistical analysis is used to extend this analysis to two or more predictors.   In this case a multiple linear regression or a linear discriminant function would be used to predict a dependent variable from two or more independent variables.   If there is linear association dependency of the variables is assumed and the test of hypotheses requires that the variances of the predictors are normally distributed.  A method using a log-linear model circumvents the problem of the distributional dependency in a method called ordinal regression.    There is also a relationship of analysis of variance, a method of examining differences between the means of  two or more groups.  Then there is linear discriminant analysis, a method by which we examine the linear separation between groups rather than the linear association between groups.  Finally, the neural network is a nonlinear, nonparametric model for classifying data with several variables into distinct classes. In this case we might imagine a curved line drawn around the groups to divide the classes. The focus of this discussion will be the use of linear regression  and explore other methods for classification purposes (98).

The real issue is how a combination of variables falls into a table with meaningful information.  We are concerned with accurate assignment into uniquely variable groups by information in test relationships. One determines the effectiveness of each variable by its contribution to information gain in the system.  The reference or null set is the class having no information.  Uncertainty in assigning to a classification is only relieved by providing sufficient information.  One determines the effectiveness of each variable by its contribution to information gain in the system.  The possibility for realizing a good model for approximating the effects of factors supported by data used for inference owes much to the discovery of Kullback-Liebler distance or “information” (99), and Akaike (100) found a simple relationship between K-L information and Fisher’s maximized log-likelihood function. A solid foundation in this work was elaborated by Eugene Rypka (101).  Of course, this was made far less complicated by the genetic complement that defines its function, which made more accessible the study of biochemical pathways.  In addition, the genetic relationships in plant genetics were accessible to Ronald Fisher for the application of the linear discriminant function.    In the last 60 years the application of entropy comparable to the entropy of physics, information, noise, and signal processing, has been fully developed by Shannon, Kullback, and others,  and has been integrated with modern statistics, as a result of the seminal work of Akaike, Leo Goodman, Magidson and Vermunt, and unrelated work by Coifman. Dr. Magidson writes about Latent Class Model evolution:

The recent increase in interest in latent class models is due to the development of extended algorithms which allow today’s computers to perform LC analyses on data containing more than just a few variables, and the recent realization that the use of such models can yield powerful improvements over traditional approaches to segmentation, as well as to cluster, factor, regression and other kinds of analysis.

Perhaps the application to medical diagnostics had been slowed by limitations of data capture and computer architecture as well as lack of clarity in definition of what are the most distinguishing features needed for diagnostic clarification.  Bernstein and colleagues (102-104) had a series of studies using Kullback-Liebler Distance  (effective information) for clustering to examine the latent structure of the elements commonly used for diagnosis of myocardial infarction (CK-MB, LD and the isoenzyme-1 of LD),  protein-energy malnutrition (serum albumin, serum transthyretin, condition associated with protein malnutrition (see Jeejeebhoy and subjective global assessment), prolonged period with no oral intake), prediction of respiratory distress syndrome of the newborn (RDS), and prediction of lymph nodal involvement of prostate cancer, among other studies.   The exploration of syndromic classification has made a substantial contribution to the diagnostic literature, but has only been made useful through publication on the web of calculators and nomograms (such as Epocrates and Medcalc) accessible to physicians through an iPhone.  These are not an integral part of the EMR, and the applications require an anticipation of the need for such processing.

Gil David et al. introduced an AUTOMATED processing of the data (104) available to the ordering physician and can anticipate an enormous impact in diagnosis and treatment of perhaps half of the top 20 most common causes of hospital admission that carry a high cost and morbidity.  For example: anemias (iron deficiency, vitamin B12 and folate deficiency, and hemolytic anemia or myelodysplastic syndrome); pneumonia; systemic inflammatory response syndrome (SIRS) with or without bacteremia; multiple organ failure and hemodynamic shock; electrolyte/acid base balance disorders; acute and chronic liver disease; acute and chronic renal disease; diabetes mellitus; protein-energy malnutrition; acute respiratory distress of the newborn; acute coronary syndrome; congestive heart failure; disordered bone mineral metabolism; hemostatic disorders; leukemia and lymphoma; malabsorption syndromes; and cancer(s)[breast, prostate, colorectal, pancreas, stomach, liver, esophagus, thyroid, and parathyroid].

Our database organized to enable linking a given profile to known profiles(102-104). This is achieved by associating a patient to a peer group of patients having an overall similar profile, where the similar profile is obtained through a randomized search for an appropriate weighting of variables. Given the selection of a patients’ peer group, we build a metric that measures the dissimilarity of the patient from its group. This is achieved through a local iterated statistical analysis in the peer group.

We then use this characteristic metric to locate other patients with similar unique profiles, for each of whom we repeat the procedure described above. This leads to a network of patients with similar risk condition. Then, the classification of the patient is inferred from the medical known condition of some of the patients in the linked network. Given a set of points (the database) and a newly arrived sample (point), we characterize the behavior of the newly arrived sample, according to the database. Then, we detect other points in the database that match this unique characterization. This collection of detected points defines the characteristic neighborhood of the newly arrived sample. We use the characteristic neighborhood in order to classify the newly arrived sample. This process of differential diagnosis is repeated for every newly arrived point.   The medical colossus we have today has become a system out of control and beset by the elephant in the room – an uncharted complexity.

 

References

  1. http://www.geronet.ucla.edu/research/researchers/385

 

  1. Chronic Kidney Disease and Hypertension: A Destructive Combination. Buffet L, Ricchetti C.  http://www.medscape.com/viewarticle/766696

 

  1. Frank O. Zur Dynamik des Herzmuskels. J Biol. 1895;32:370-447. Translation from German: Chapman CP, Wasserman EB. On the dynamics of cardiac muscle. Am Heart J. 1959; 58:282-317.

 

  1. Starling EH. Linacre Lecture on the Law of the Heart. London, England: Longmans; 1918.

 

  1. ftp://www.softchalk.com/Step1softchalksyllabus/starlings%20Law%20.pdf

 

  1. https://youtu.be/5SO58NndlPI

 

  1. Lakatta EG. Starling’s Law of the Heart Is Explained by an Intimate Interaction of Muscle Length and Myofilament Calcium Activation. J Am Coll Cardiol 1987; 10:1157-64.

 

  1. Lakatta EG, DiFrancesco D. J Mol Cell Cardiol. 2009 Aug; 47(2):157-70.
    http://dx.doi.org:/10.1016/j.yjmcc.2009.03.022. What keeps us ticking: a funny current, a calcium clock, or both?

 

  1. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the time keeping mechanism of the heart’s pacemaker. Circ Res.2010 Mar 5; 106(4):659-73. http://dx.doi.org:/10.1161/CIRCRESAHA.109.206078.

 

  1. NHLBI, NIH, Health. http://www.nhlbi.nih.gov/health/health-topics/topics/hbp/causes
  1. Clark CE and Powell RJ. The differential blood pressure sign in general practice: prevalence and prognostic value. Family Practice 2002; 19:439–441.
  2. Madhur  MS. Medscape. http://emedicine.medscape.com/article/241381-treatment
  3. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012 Jan 3. 125(1):e2-e220. [Medline].
  4. Institute for Clinical Systems Improvement (ICSI). Hypertension diagnosis and treatment. Bloomington, Minn: Institute for Clinical Systems Improvement (ICSI); 2010.
  5. Whelton PK, Appel LJ, Sacco RL, Anderson CA, Antman EM, Campbell N, et al. Sodium, Blood Pressure, and Cardiovascular Disease: Further Evidence Supporting the American Heart Association Sodium Reduction Recommendations. Circulation. 2012 Nov 2. [Medline].
  6. O’Riordan M. New European Hypertension Guidelines Released: Goal Is Less Than 140 mm Hg for All. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/806367. Accessed: June 24, 2013.
  7. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003 Dec. 42(6):1206-52. [Medline].
  8. [Guideline] James PA, Oparil S, Carter BL, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2013 Dec 18. [Medline][Full Text].
  9. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001 May; 37(5):1236-41.
    http://hyper.ahajournals.org/content/37/5/1236.long  http://dx.doi.org:/10.1161/01.HYP.37.5.1236

 

  1. Shahmirzadi D, Li RX, Konofagou EE. Pulse-Wave Propagation in Straight-Geometry Vessels

for Stiffness Estimation: Theory, Simulations, Phantoms and In Vitro Findings. J Biomechanical Engineering Oct 26, 2012; 134(114502): 1-7. http://dx.doi.org:/10.1115/1.4007747

 

  1. Najjar SS, Scuteri A, Shetty V, …, Lakatta EG. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol.2008 Apr 8; 51(14):1377-83. http://dx.doi.org:/10.1016/j.jacc.2007.10.065

 

  1. Lim HS and Lip GYH. Arterial stiffness: beyond pulse wave velocity and its measurement. Journal of Human Hypertension (2008) 22, 656–658; http://dx.doi.org:/10.1038/jhh.2008.4
  2. Payne RA, Wilkinson IB, Webb DJ. Arterial Stiffness and Hypertension – Emerging Concepts. Hypertension.2010; 55: 9-14.   http://dx.doi.org:/10.1161/HYPERTENSIONAHA.107.090464
  3. http://www.nature.com/jhh/journal/v22/n10/images/jhh200847f1.gif
  4. O’Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension. 1990 Apr; 15(4):339-47. http://www.fac.org.ar/scvc/llave/hbp/arnett/arnetti.htm
  5. Arnett DK1, Tyroler HA, …., Howard G, Heiss G. Hypertension and subclinical carotid artery atherosclerosis in blacks and whites. The Atherosclerosis Risk in Communities Study. ARIC Investigators. Arch Intern Med. 1996 Sep 23; 156(17):1983-9. http://archinte.jamanetwork.com/article.aspx?articleid=622453
  6. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovascular Disease July 2012; 1(4):11 http://cvd.sagepub.com/content/1/4/11.full
  7. Peralta CA, Whooley MA, Ix JH, and Shlipak MG .  Kidney Function and Systolic Blood Pressure New Insights from Cystatin C: Data from the Heart and Soul Study. Am J Hypertens. 2006 Sep; 19(9):939–946.   http://dx.doi.org:/10.1016/j.amjhyper.2006.02.007
  8. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM , Target R, Levy BI.
    Assessment of Arterial Distensibility by Automatic Pulse Wave Velocity Measurement: Validation and Clinical Application Studies. Hypertension. 1995; 26: 485-490. http://dx.doi.org:/10.1161/01.HYP.26.3.485
  9. Ioannidis JPA, Tzoulaki I. Minimal and null predictive effects for the most popular blood biomarkers of cardiovascular disease. Circ Res. 2012; 110:658–662.
  1. Giles T. Biomarkers, Cardiovascular Disease, and Hypertension. J Clin Hypertension 2013; 15(1)   http://dx.doi.org:/10.1111/jch.12014

 

  1. Bielecka-Dabrowa A, Gluba-Brzózka A, Michalska-Kasiczak M, Misztal M, Rysz J and Banach M.   The Multi-Biomarker Approach for Heart Failure in Patients with Hypertension. Int. J. Mol. Sci. 2015; 16: 10715-10733;  http://dx.doi.org:/10.3390/ijms160510715

 

  1. Barbaro N, Moreno H. Inflammatory biomarkers associated with arterial stiffness in resistant hypertension.  Inflamm Cell Signal 2014; 1: e330. http://dx.doi.org:/10.14800/ics.330.

 

  1. Chao J, Schmaier A, Chen LM, Yang Z, Chao L. Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med. 1996 Jun; 127(6):612-20. http://www.ncbi.nlm.nih.gov/pubmed/8648266

 

  1. Chao J, Chao L. Functional Analysis of Human Tissue Kallikrein in Transgenic Mouse Models. Hypertension. 1996; 27: 491-494. http://dx.doi.org://10.1161/01.HYP.27.3.491

 

  1. Chao J, Bledsoe G and Chao L. Kallistatin: A Novel Biomarker for Hypertension, Organ Injury and Cancer. Austin Biomark Diagn. 2015; 2(2): 1019).

 

  1. Touyz RM , Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem, Cell Biol Oct 2004; 122(4):339-352.  http://link.springer.com/article/10.1007/s00418-004-0696-7

 

  1. Nozik-Grayck E1, Stenmark KR. Role of reactive oxygen species in chronic hypoxia-induced pulmonary hypertension and vascular remodeling. Adv Exp Med Biol. 2007; 618:101-12.
    http://www.ncbi.nlm.nih.gov/pubmed/18269191

 

  1. Paravicin TM and Touyz RM. NADPH Oxidases, Reactive Oxygen Species, and Hypertension. Diabetes Care 2008 Feb; 31(Supplement 2): S170-S180. http://dx.doi.org/10.2337/dc08-s247

 

  1. Schiffrin EL. Endothelin: role in hypertension. Biol Res. 1998; 31(3):199-208. Review.

 

  1. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens. 2001 Jun;14(6 Pt 2):83S-89S. Review.

 

  1. Schiffrin EL. Endothelin and endothelin antagonists in hypertension. J Hypertens. 1998 Dec; 16(12 Pt 2):1891-5. Review.

 

  1. Warwick G, Thomas PS and Yates DH. Biomarkers in pulmonary hypertension.
    Eur Respir J 2008; 32: 503–512 http://dx.doi.org:/10.1183/09031936.00160307

 

  1. Zhang S, Yang T, Xu X, Wang M, Zhong L, et al. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: a case control study. BMC Pulm Med. 2015; 15: 50.    http://dx.doi.org:/1186/s12890-015-0045-8

 

  1. Kierszniewska-Stępień D, Pietras T, Ciebiada M, Górski P, and Stępień H. Concentration of angiopoietins 1 and 2 and their receptor Tie-2 in peripheral blood in patients with chronic obstructive pulmonary disease. Postepy Dermatol Alergol. 2015 Dec; 32(6): 443–448. http://dx.doi.org:/5114/pdia.2014.44008

 

  1. Circulating Biomarkers in Pulmonary Arterial Hypertension. Al-Zamani M, Trammell AW,  Safdar Z.  Adv Pulm Hypertension 2015; 14(1):21-27.

 

  1. Safdar et al. Hea rt  Fai lure  JACC 2014; 2(4): 412– 21.

 

 

  1. Camozzi M, Zacchigna S, Rusnati M, Coltrini D, et al. Pentraxin 3 Inhibits Fibroblast Growth Factor 2–Dependent Activation of Smooth Muscle Cells In Vitro and Neointima Formation In Vivo. Arterioscler Thromb Vasc Biol. 2005; 25:1837-1842. http://atvb.ahajournals.org/content/25/9/1837.full.pdf

 

  1. Presta M, Camozzi M, Salvatori G, and Rusnatia M. Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med. 2007 Jul; 11(4): 723–738.
    http://dx.doi.org:/1111/j.1582-4934.2007.00061.x

 

  1. Tamura Y, Ono T, Kuwana M, Inoue K, Takei M, Yamamoto T, Kawakami T, et al. Human pentraxin 3 (PTX3) as a novel biomarker for the diagnosis of pulmonary arterial hypertension.
    PLoS One. 2012;7(9):e45834. http://dx.doi.org:/10.1371/journal.pone.0045834.

 

  1. Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD, Schroeder C, et al. Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart. 2016 Mar 1; 102(5):390-6. http://dx.doi.org:/10.1136/heartjnl-2015-308365

 

  1. Otto CM. Heart 2016; 102:333–334. Heartbeat: Biomarkers and pulmonary artery hypertension. http://dx.doi.org:/10.1136/heartjnl-2015-309220

 

  1. Sintek MA, Sparrow CT, Mikuls TR, Lindley KJ, Bach RG, et al. Repeat revascularisation outcomes after percutaneous coronary intervention in patients with rheumatoid arthritis. Heart. 2016 Mar 1; 102(5):363-9. http://dx.doi.org:/10.1136/heartjnl-2015-308634.

 

  1. Camici PG, Wijns W, Borgers M, De Silva R, et al. Pathophysiological Mechanisms of Chronic Reversible Left Ventricular Dysfunction due to Coronary Artery Disease (Hibernating Myocardium). Circulation. 1997; 96: 3205-3214. http://dx.doi.org:/10.1161/01.CIR.96.9.3205

 

  1. Rahimtoola SH, Dilsizian V, Kramer CM, Marwick TH, and Jean-Louis J. Vanoverschelde.
    Chronic Ischemic Left Ventricular Dysfunction: From Pathophysiology to Imaging and its Integration into Clinical Practice. JACC Cardiovasc Imaging. 2008 Jul 7; 1(4): 536–555.

http://dx.doi.org:/10.1016/j.jcmg.2008.05.009

 

  1. Peralta CA, Whooley MA, Ix JH, Shlipak MG. Kidney function and systolic blood pressure new insights from cystatin C: data from the Heart and Soul Study. Am J Hypertens. 2006 Sep; 19(9):939-46. http://dx.doi.org:/10.1016/j.amjhyper.2006.02.007

 

  1. Moran A, Katz R, Nicolas L. Smith NL, Fried LF, Sarnak MJ, …, Shlipak, MG. Cystatin C Concentration as a Predictor of Systolic and Diastolic Heart Failure. J Card Fail. 2008 Feb; 14(1): 19–26. http://dx.doi.org:/10.1016/j.cardfail.2007.09.002

 

  1. Tomaschitz A, Maerz W, Pilz S, at al. Aldosterone/Renin Ratio Determines Peripheral and Blood Pressure Values Over a Broad Range. J Am Coll Cardiol 2010-5-11; 55(19):2171-2180.
  2. Inker LA, Schmid CH, Tighiouart H, et al: Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012 Jul; 367(1):20-29.   http://dx.doi.org:/10.1056/NEJMoa1114248
  3. Buehrig CK, Larson TS, Bergert JH, et al: Cystatin C is superior to serum creatinine for the assessment of renal function. J Am Soc Nephrol 2001; 12:194A
  4. Grubb AO: Cystatin C – properties and use as a diagnostic marker. Adv Clin Chem 2000; 35:63-99
  5. Stevens LA, Coresh J, Schmid CH, Feldman H, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.
    Am J Kidney Dis. 2008 Mar; 51(3):395-406. http://dx.doi.org:/10.1053/j.ajkd.2007.11.018
  6. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–254.
  7. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med. 2006; 354:2473–2483.
  8. Grubb A, Nyman U, Bjork J, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the Modification of Diet in Renal Disease Prediction Equation for adults and the Schwartz and the Counahan-Barratt Prediction Equations for children. Clin Chem. 2005; 51:1420–1431.
  9. Weir MR.  Improving the Estimating Equation for GFR — A Clinical Perspective. N Engl J Med 2012; 367:75-76.    http://dx.doi.org:/10.1056/NEJMe1204489
  10. Shlipak MG, Sarnak MJ, Katz R, Fried LF, et al. Cystatin C and the Risk of Death and Cardiovascular Events among Elderly Persons. http://journal.9med.net/qikan/article.php?id=216331
  11. Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurementKidney International 2004; 65:1416–1421;  http://dx.doi.org:/10.1111/j.1523-1755.2004.00517.x
  12. Parag C. Patel, Colby R. Ayers, Sabina A. Murphy, et al. Association of Cystatin C with Left Ventricular Structure and Function (The Dallas Heart Study). Circulation: Heart Failure. 2009; 2: 98-104.  http://dx.doi.org:/10.1161/CIRCHEARTFAILURE.108.807271.
  13. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtraton rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006; 69:399–405. http://dx.doi.org:/10.1038/sj.ki.5000073
  14. Muller B, Morgenthaler N, Stolz D, et al. Circulating levels of copeptin, a novel biomarker, in lower respiratory tract infections. Eur J Clin Invest 2007;37, 145–152.
  15. Stoiser B, Mortl D, Hulsmann M, et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure.  Eur J Clin Invest Nov 2006; 36(11):771–778.
    http://dx.doi.org:/10.1111/j.1365-2362.2006.01724.x
  16. Meijer E, Bakker SJL, Helbesma N, et al. Copeptin, a surrogate marker of vasopressin, is associated with microalbuminuria in a large population cohort.  Kidney Intl 2010; 77:29–36.
    http://dx.doi.org:/10.1038/ki.2009.397
  17. Nickel NP, Lichtinghagen R, Golpon H, et al. Circulating levels of copeptin predict outcome in patients with pulmonary arterial hypertension. Respir Res. Nov 19, 2013; 14:130. http://dx.doi.org:/10.1186/1465-9921-14-130
  18. Tenderenda-Banasiuk E,  Wasilewska A, Filonowicz R, et al. Serum copeptin levels in adolescents with primary hypertension. Pediatr Nephrol. 2014; 29(3): 423–429.    doi:  10.1007/s00467-013-2683-5
  19. Richards M, Januzzi JL, and Troughton RW. Natriuretic Peptides in Heart Failure with Preserved Ejection Fraction.  Heart Failure Clin 2014; 10:453–470. http://dx.doi.org/10.1016/j.hfc.2014.04.006
  20. Maisel A, Mueller C, Nowak M and Peacock WF, et al. Midregion Prohormone Adrenomedullin and Prognosis in Patients Presenting with Acute Dyspnea Results from the BACH (Biomarkers in Acute Heart Failure) Trial. J Am Coll Cardiol 2011; 58(10):1057–67.  http://dx.doi.org:/10.1016/j.jacc.2011.06.006.
  21. Bernstein LH. Heart-Lung-Kidney: Essential Ties. Leaders in Pharmaceutical Innovation. http://pharmaceuticalinnovations.com
  22. Bernstein LH, Zions MY, Alam ME, et al.  What is the best approximation of reference normal for NT-proBNP? Clinical levels for enhanced assessment of NT-proBNP (CLEAN). J Med Lab and Diag 04/2011; 2:16-21. http://www.academicjournals.org/jmld
  23. Hijazi  Z., Wallentin  L., Siegbahn  A., et al; N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE trial (Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation. J Am Coll Cardiol. 2013; 61:2274-2284
  24. Paget V, Legedz L, Gaudebout N, et al. N-Terminal Pro-Brain Natriuretic Peptide A Powerful Predictor of Mortality in Hypertension. Hypertension. 2011; 57:702-709   http://hyper.ahajournals.org/content/57/4/702.full.pdf]
  25. Kim Han-Naand  Januzzi JL.  Natriuretic Peptide Testing in Heart Failure. Circulation 2011;  123: 2015-2019. http://dx.doi.org:/10.1161/CIRCULATIONAHA.110.979500
  26. Balta S, Demirkol S, Aydogan M, and Celik T. Higher N-Terminal Pro–B-Type Natriuretic Peptide May Be Related to Very Different Conditions.  J Am Coll Cardiol. 2013; 62(17):1634-1635.   http://dx.doi.org:/10.1016/j.jacc.2013.04.093
  27. Bernstein LH1, Zions MY, Haq SA, et al. Effect of renal function loss on NT-proBNP level variations. Clin Biochem. 2009 Jul; 42(10-11): 1091-8. http://dx.doi.org:/10.1016/j.clinbiochem.2009.02.027
  28. Afaq MA, Shoraki A, Oleg I, Bernstein L, and Stuart W. Zarich.  Validity of Amino Terminal pro-Brain Natiuretic Peptide in a Medically Complex Elderly Population. J Clin Med Res. 2011 Aug; 3(4): 156–163.   doi:  10.4021/jocmr606w
  29. Mark AL, Correia M, MorganDA, et al. New Concepts From the Emerging Biology of Obesity. Hypertension. 1999; 33[part II]:537-541.
  30. Himmelfarb J, Stenvinkel P, Ikizler TA and Hakim RM. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney International (2002) 62, 1524–1538; http://dx.doi.org:/10.1046/j.1523-1755.2002.00600.x  http://www.nature.com/ki/journal/v62/n5/full/4493262a.html
  31. The blind men and the elephant. Poem by John Godfrey Saxe (Cartoon originally copyrighted by the authors; G. Renee Guzlas, artist). http://www.nature.com/ki/journal/v62/n5/thumbs/4493262f1bth.gif
  32. Fetter RB. Diagnosis Related Groups: Understanding Hospital Performance. Interfaces Jan. – Feb., 1991; 21(1), Franz Edelman Award Papers: 6-26
  33. Bernstein LH. Inadequacy of EHRs. Pharmaceutical Intelligence. http://pharmaceuticalintelligence.com/2015/11/05/inadequacy-of-ehrs/
  34. Celi LA,  Marshall JD, Lai Y, Stone DJ. Disrupting Electronic Health Records Systems: The Next Generation.  JMIR  Med Inform 2015 (23.10.15);  3(4) :e34
    http://dx.doi.org:/10.2196/medinform.4192
  35. Realtime Clinical Expert Support. Pharmaceutical Intelligence.  http://pharmaceuticalintelligence.com/2015/05/10/realtime-clinical-expert-support/
  36. McGowan JJ and Winstead-Fry P. Problem Knowledge Couplers: reengineering evidence-based medicine through interdisciplinary development, decision support, and research. Bull Med Libr Assoc. 1999 October;  87(4):462–470.)
  37. Rypka EW and Babb R. Automatic construction and use of an identification scheme. In MEDICAL RESEARCH ENGINEERING Apr 19709; (2):9-19. https://www.researchgate.net/publication/17720773_Automatic_construction_and_use_of_an_identification_scheme
  38. Rudolph, R. A., Bernstein, L. H. and Babb, J. Information induction for predicting acute myocardial infarction. Clinical Chemistry 1988; 34: 2031-2038.
  39. Bernstein LH, Qamar A, McPherson C, Zarich S. Evaluating a new graphical ordinal logit method (GOLDminer) in the diagnosis of myocardial infarction utilizing clinical features and laboratory data. Yale J Biol Med 1999; 72:259-268.
  40. Bernstein LH, Good IJ, Holtzman, Deaton ML, Babb J. Diagnosis of acute myocardial infarction from two measurements of creatine kinase isoenzyme MB with use of nonparametric probability estimation. Clin Chem 1989; 35(3):444-447.
  41. Bernstein LH. Regression: A richly textured method for comparison and classification of predictor variables. http://pharmaceuticalintelligence.com/2012/08/14/regression-a-richly-textured-method-for-comparison-and-classification-of-predictor-variables/
  42. Posada D and Buckley TR. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Syst. Biol. 200; 53(5):793–808. http://dx.doi.org:/10.1080/10635150490522304
  1. Kullback S. and Leibler R. On Information and Sufficiency. Ann Math Statistics. Mar 1951; 22(1):79-86. http://www.csee.wvu.edu/~xinl/library/papers/math/statistics/Kullback_Leibler_1951.pdf
  2. Bernstein LH, David G, Rucinski J, Coifman RR. Converting Hematology Based Data Into an Inferential Interpretation. In INTECH Open Access Publisher, 2012. https://books.google.com/books/about/Converting_Hematology_Based_Data_Into_an.html
  3. Bernstein LH, David G, Coifman RR. Generating Evidence Based Interpretation of Hematology Screens via Anomaly Characterization. Open Clin Chem J 2011; 4:10-16
  4. Bernstein LH. Automated Inferential Diagnosis of SIRS, sepsis, septic shock. Medical Informatics View. http://pharmaceuticalintelligence.com/2012/08/01/automated-inferential-diagnosis-of-sirs-sepsis-septic-shock/
  5. Bernstein LH, David G, Coifman RR. The Automated Nutritional Assessment. Nutrition  2013; 29: 113-121

 

Other related articles published in this Open Access Online Scientific Journal include the following: 

Biomarkers and risk factors for cardiovascular events, endothelial dysfunction, and thromboembolic complications

Commentary on Biomarkers for Genetics and Genomics of Cardiovascular Disease: Views by Larry H Bernstein, MD, FCAP

Summary – Volume 4, Part 2: Translational Medicine in Cardiovascular Diseases

Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)

Assessing Cardiovascular Disease with Biomarkers

Endothelial Function and Cardiovascular Disease

Adenosine Receptor Agonist Increases Plasma Homocysteine

Inadequacy of EHRs

Innervation of Heart and Heart Rate

Biomarker Guided Therapy

Pharmacogenomics

The Union of Biomarkers and Drug Development

Natriuretic Peptides in Evaluating Dyspnea and Congestive Heart Failure

Epilogue: Volume 4 – Translational, Post-Translational and Regenerative Medicine in Cardiology

Atherosclerosis Independence: Genetic Polymorphisms of Ion Channels Role in the Pathogenesis of Coronary Microvascular Dysfunction and Myocardial Ischemia (Coronary Artery Disease (CAD))

Erythropoietin (EPO) and Intravenous Iron (Fe) as Therapeutics for Anemia in Severe and Resistant CHF: The Elevated N-terminal proBNP Biomarker

Biomarkers: Diagnosis and Management, Present and Future

Genetic Analysis of Atrial Fibrillation

Landscape of Cardiac Biomarkers for Improved Clinical Utilization

Fractional Flow Reserve (FFR) & Instantaneous wave-free ratio (iFR): An Evaluation of Catheterization Lab Tools for Ischemic Assessment

Dealing with the Use of the High Sensitivity Troponin (hs cTn) Assays

Cardiotoxicity and Cardiomyopathy Related to Drugs Adverse Effects

Amyloidosis with Cardiomyopathy

Accurate Identification and Treatment of Emergent Cardiac Events

The potential contribution of informatics to healthcare is more than currently estimated

Realtime Clinical Expert Support

Metabolomics is about Metabolic Systems Integration

Automated Inferential Diagnosis of SIRS, sepsis, septic shock

Read Full Post »

Consuming Risk Free Food & Beverages

Author: Debashree Chakrabarti, MSc., Biological Sciences, UMass Lowell (Expected May 2016)

Leading researchers and medical health professionals have raised their concern about the over all declining status of health and well being world wide. A rising trend in childhood obesity, cardiovascular diseases, clinical depression syndrome in young adults is reason enough to try and broaden the scope of plausible agents which result in people making bad health decisions.  As a witness to the emerging dietary trends adopted by children and young adults, it is natural to question the ethics of processed food and beverages industry. Does it seem reasonable the 2L bottles of soda cost $2 USD? There are more people claiming to not like water since it is flavorless. 100% fresh juices are subject to scrutiny for their lack of adequate fiber content and excess presence of sugars. Products with high fructose corn syrups, added preservatives in processed meat, ‘read to eat’ meals are agreeably cost effective and saves a lot of time, however the over riding damage is in the long run with deficient immune system and gain of unnatural toxins which the body finds hard to eliminate. Another marketing frenzy is visible in the neutraceuticals range of instant energy drinks, protein shakes and over the counter pills. The focus is towards having the visibly attractive, muscular body regardless of the compromised health. The companies do their bit of limiting the usage by adding a precaution statement and dosage remarks on the product labels. This is however not translated as useful information to the young consumers who do not foresee the detrimental outcomes in advance.

As the prices of insurance packages and medical aid is negotiated, the same effort needs invested in the regulation of consumer dietary products. We do not want a ban on Colas however, we do not also need them to be sold at prices cheaper than water. Fresh fruits and vegetables need not be price tagged astronomically driving population to adopt a risk driven lifestyle. Taking initiatives to promote urban farming and local gardens, reaching out to the people about their choices and how it impacts the global financial predicament is a need of the hour. We are ok with the attitude of “Don’t tell me how to live my life” in a world relying heavily on subsidized medicines. This has to change. Subsidized medicine is a privilege and should be benefited to those responsible. Researchers and big pharma companies are not the only stake holders in this fight against an exponentially growing illness of misinformed decisions. People need to be brought in and educated. This includes strong arming anyone who feels they have a right to abuse their health or the health of the world.

92ab5dd0-9921-4c26-9a7c-cdf20397cb42.jpg

Another paradigm to this discussion is the need for more extensive research hubs world wide and making the accessibility of advanced medicines available to the dense population regions in Asia, Africa and Middle East Arab countries which host the majority of the population and have the least of the resources. We need 100 Massachusetts world wide with cutting edge researchers deep diving and venture capitalists backing them up. A vision for 2050 must encompass every individual being aware of what it takes to damage a human body which is a very robust machine. Eating right and being able to afford health must not be difficult. Choices available in the stores must be rational to the level where the most ignorant of the lot is still consuming risk free substances. Given the fantastic evolutionary armaments we have, it takes a lot to be unwell and yet we seem to making it fairly easy to catch cold. Healthy people translate to healthy economy.

Read Full Post »

Insulin, Heat from Sugar, and Research on Diabetes for a Cure

Author: Danut Dragoi, PhD

Insulin

Insulin is a complex molecule, discovered in early 1916 by Paulescu. It is a relative large molecule that has a molecular mass of 5807.57 amu, that corresponds to the following chemical formula C257H383N65O77S6 .

Beyond its well known role in human being, insulin have many interesting structural features.

The picture below shows the structure of the molecule of the insulin. The colored spheres represent the atoms C, H, N, O, and S. This arrangements of atoms results from x-ray proteins crystallography of single crystals obtained from pure insulin.

Insulin molec structure

Image SOURCE: http://pdb101.rcsb.org/motm/14

The yellow spheres in the picture correspond to sulfur atoms that somehow are getting in the structure from a certain source, probably from foods like eggs. It is important to mention that if one component atom is missing in our body, for example Sulfur, the pancreas will not produce the insulin molecule we needed.

Next picture below shows single crystals grown in the lab on Earths as well as in outer space.

Insulin crystals NASA

Image SOURCE: http://science.nasa.gov/science-news/science-at-nasa/1998/notebook/msad22jul98_1/

As we see high quality crystals were obtained in low gravity conditions by NASA. The preferred instrument for producing high quality x-ray diffraction measurements is the synchrotron diffractometer, see link in here.

Heat source from sugar

Metabolic processes require an optimal temperature. . At temperatures higher or lower than 37 °C, enzymes will not function optimally. Too high – they denature opens in a new window, too low – they will slow down the rate at which metabolic processes proceed. A rise of just 2 °C will cause disruption to the internal functioning of a human and should the temperature rise between 43 °C and 45 °C, death may occur. Our tolerance to lower temperatures is much greater. The temperature needs to fall below 23 °C to cause death. So it is important to know about the thermal source generator in our body and its estimated environmental temperature.

The idea of calculating the temperature of human body impose serious computational barriers, but measuring it is not a problem. A simplified approach on this topic can be an approximation with reasonable assumptions. Complex biochemical reactions occur every second in our body. An exact consideration of all chemical reactions in human body is a complicated task, but a simplification can be done using the oxidation of sugar reaction.

Assuming an average body of 70 kg and all sugar from the blood, to be about 5 grams in 5 liters of blood, and considering the density of all blood close to 1g/cubic cm, we can consider the reaction of glucose, Equation (1):

342 g ———————–    2870 kJ

C6H12O6 + 6O2 –> 6CO2 + 6H2O + 2870 kJ ————— (1)

70 g ————————       q=?

The numbers above the chemical reaction of sugar (1) are the molecular mass in grams and the energy released in kJ. Below are the actual amount of sugar in a 70 kg human body and the q, the actual heat generated. Knowing the total amount of sugar in our body, which is approximated as 5 g/5kg (in blood)*5 kg (blood) + 5 g/5 kg *65 kg=70 g sugar and the molecular mass of sugar as 342.2965 g/mol, we have the amount of heat reduced from 2870 kJ* 70/342= 587.4 kJ which represents the heat q in Equation (1). An equation for variable q is shown in Equation (2):

q=mc(T-T’) —————————————–(2)

where we describe the thermal energy needed to raise the body temperature from T’ to T (T'<T). For body temperature T=37 C deg, normal temperature of human body,  m=70 kg-0.15*70 kg-0.15*70 kg=49 kg (where the first factor 0.15 represents the bones and second 0.15 is for the fat in which sugar is assumed not to react with Oxygen as in equation (1) and c= 2624 J/kg/C deg is the minimum specific heat of muscles . Since T’, could be the temperature of the environment in which the human body dissipates the thermal energy, is the only unknown in Equation (1), we can solve for T’, and find T’= 32.4 C deg. The value obtained is in a safe range, above room temperature with some C degrees. The modeling captures well the effect of sugar as an important source of energy for human body.

A study on diabetes indicates that heat treatment improves glucose tolerance. The structure of insulin as a protein suggests the link between our DNA programmed to producing specific proteins needed in our body including insulin. This is a promising avenue for future solutions for a cure of diabetes.

Genetics for a Cure

A recent research on converting fatty tissue into mature beta cells, shows that insulin can be produced by newly created beta like cells raising new expectations for cure of the diabetes.

An interesting posting, discusses in detail the findings of scientists at the Swiss Federal Institute of Technology (ETH) in Zurich, where the investigators added a highly complex synthetic network of genes to the stem cells to recreate precisely the key growth factors involved in this maturation process.

Source

https://en.wikipedia.org/wiki/Nicolae_Paulescu

https://pubchem.ncbi.nlm.nih.gov/compound/16132418

http://pdb101.rcsb.org/motm/14

http://science.nasa.gov/science-news/science-at-nasa/1998/notebook/msad22jul98_1/

http://tle.westone.wa.gov.au/content/file/ea6e15c5-fe5e-78a3-fd79-83474fe5d808/1/hum_bio_science_3a.zip/content/003_homeostasis/page_06.htm

http://hypertextbook.com/facts/LenaWong.shtml

http://sciencelearn.org.nz/Contexts/Digestion-Chemistry/Looking-Closer/Mitochondria-cell-powerhouses

http://hyperphysics.phy-astr.gsu.edu/hbase/organic/sugar.html

https://www.google.com/#q=density+of+blood

http://sciencelearn.org.nz/Contexts/Digestion-Chemistry/Looking-Closer/Mitochondria-cell-powerhouses

https://www.google.com/#q=molecular+mass+of+sugar

https://www.google.com/#q=percent+of+weight+bones+in+human+body

http://www.itis.ethz.ch/virtual-population/tissue-properties/database/heat-capacity/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646055/

A New Use for Love Handles, Insulin-Producing Beta Cells

 

 

 

Read Full Post »

Fat Cells Reprogrammed to Make Insulin

Curator: Larry H. Bernstein, MD, FCAP

 

A New Use for Love Handles, Insulin-Producing Beta Cells

http://www.genengnews.com/gen-news-highlights/a-new-use-for-love-handles-insulin-producing-beta-cells/81252612/

http://www.genengnews.com/Media/images/GENHighlight/112856_web9772135189.jpg

 

Scientists at the Swiss Federal Institute of Technology (ETH) in Zurich have found an exciting new use for the cells that reside in the undesirable flabby tissue—creating pancreatic beta cells. The ETH researchers extracted stem cells from a 50-year-old test subject’s fatty tissue and reprogrammed them into mature, insulin-producing beta cells.

The findings from this study were published recently in Nature Communications in an article entitled “A Programmable Synthetic Lineage-Control Network That Differentiates Human IPSCs into Glucose-Sensitive Insulin-Secreting Beta-Like Cells.”

The investigators added a highly complex synthetic network of genes to the stem cells to recreate precisely the key growth factors involved in this maturation process. Central to the process were the growth factors Ngn3, Pdx1, and MafA; the researchers found that concentrations of these factors change during the differentiation process.

For instance, MafA is not present at the start of maturation. Only on day 4, in the final maturation step, does it appear, its concentration rising steeply and then remaining at a high level. The changes in the concentrations of Ngn3 and Pdx1, however, are very complex: while the concentration of Ngn3 rises and then falls again, the level of Pdx1 rises at the beginning and toward the end of maturation.

Senior study author Martin Fussenegger, Ph.D., professor of biotechnology and bioengineering at ETH Zurich’s department of biosystems science and engineering stressed that it was essential to reproduce these natural processes as closely as possible to produce functioning beta cells, stating that “the timing and the quantities of these growth factors are extremely important.”

The ETH researchers believe that their work is a real breakthrough, in that a synthetic gene network has been used successfully to achieve genetic reprogramming that delivers beta cells. Until now, scientists have controlled such stem cell differentiation processes by adding various chemicals and proteins exogenously.

“It’s not only really hard to add just the right quantities of these components at just the right time, but it’s also inefficient and impossible to scale up,” Dr. Fussenegger noted.

While the beta cells not only looked very similar to their natural counterparts—containing dark spots known as granules that store insulin—the artificial beta cells also functioned in a very similar manner. However, the researchers admit that more work needs to be done to increase the insulin output.

“At the present time, the quantities of insulin they secrete are not as great as with natural beta cells,” Dr. Fussenegger stated. Yet, the key point is that the researchers have for the first time succeeded in reproducing the entire natural process chain, from stem cell to differentiated beta cell.

In future, the ETH scientists’ novel technique might make it possible to implant new functional beta cells in diabetes sufferers that are made from their adipose tissue. While beta cells have been transplanted in the past, this has always required subsequent suppression of the recipient’s immune system—as with any transplant of donor organs or tissue.

“With our beta cells, there would likely be no need for this action since we can make them using endogenous cell material taken from the patient’s own body,” Dr. Fussenegger said. “This is why our work is of such interest in the treatment of diabetes.”

A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells

Pratik SaxenaBoon Chin HengPeng BaiMarc FolcherHenryk Zulewski & Martin Fussenegger
Nature Communications7,Article number:11247
         doi:10.1038/ncomms11247

Synthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets. Synthetic lineage-control networks may provide the missing link to genetically programme somatic cells into autologous cell phenotypes for regenerative medicine.

Cell-fate decisions during development are regulated by various mechanisms, including morphogen gradients, regulated activation and silencing of key transcription factors, microRNAs, epigenetic modification and lateral inhibition. The latter implies that the decision of one cell to adopt a specific phenotype is associated with the inhibition of neighbouring cells to enter the same developmental path. In mammals, insights into the role of key transcription factors that control development of highly specialized organs like the pancreas were derived from experiments in mice, especially various genetically modified animals1, 2, 3, 4. Normal development of the pancreas requires the activation of pancreatic duodenal homeobox protein (Pdx1) in pre-patterned cells of the endoderm. Inactivating mutations of Pdx1 are associated with pancreas agenesis in mouse and humans5, 6. A similar cell fate decision occurs later with the activation of Ngn3 that is required for the development of all endocrine cells in the pancreas7. Absence of Ngn3 is associated with the loss of pancreatic endocrine cells, whereas the activation of Ngn3 not only allows the differentiation of endocrine cells but also induces lateral inhibition of neighbouring cells—via Delta-Notch pathway—to enter the same pancreatic endocrine cell fate8. This Ngn3-mediated cell-switch occurs at a specific time point and for a short period of time in mice9. Thereafter, it is silenced and becomes almost undetectable in postnatal pancreatic islets. Conversely, Pdx1-positive Ngn3-positive cells reduce Pdx1 expression, as Ngn3-positive cells are Pdx1 negative10. They re-express Pdx1, however, as they go on their path towards glucose-sensitive insulin-secreting cells with parallel induction of MafA that is required for proper differentiation and maturation of pancreatic beta cells11. Data supporting these expression dynamics are derived from mice experiments1, 11, 12. A synthetic gene-switch governing cell fate decision in human induced pluripotent stem cells (hIPSCs) could facilitate the differentiation of glucose-sensitive insulin-secreting cells.

In recent years, synthetic biology has significantly advanced the rational design of synthetic gene networks that can interface with host metabolism, correct physiological disturbances13 and provide treatment strategies for a variety of metabolic disorders, including gouty arthritis14, obesity15 and type-2 diabetes16. Currently, synthetic biology principles may provide the componentry and gene network topologies for the assembly of synthetic lineage-control networks that can programme cell-fate decisions and provide targeted differentiation of stem cells into terminally differentiated somatic cells. Synthetic lineage-control networks may therefore provide the missing link between human pluripotent stem cells17 and their true impact on regenerative medicine18, 19, 20. The use of autologous stem cells in regenerative medicine holds great promise for curing many diseases, including type-1 diabetes mellitus (T1DM), which is characterized by the autoimmune destruction of insulin-producing pancreatic beta cells, thus making patients dependent on exogenous insulin to control their blood glucose21, 22. Although insulin therapy has changed the prospects and survival of T1DM patients, these patients still suffer from diabetic complications arising from the lack of physiological insulin secretion and excessive glucose levels23. The replacement of the pancreatic beta cells either by pancreas transplantation or by transplantation of pancreatic islets has been shown to normalize blood glucose and even improve existing complications of diabetes24. However, insulin independence 5 years after islet transplantation can only be achieved in up to 55% of the patients even when using the latest generation of immune suppression strategies25, 26. Transplantation of human islets or the entire pancreas has allowed T1DM patients to become somewhat insulin independent, which provides a proof-of-concept for beta-cell replacement therapies27, 28. However, because of the shortage of donor pancreases and islets, as well as the significant risk associated with transplantation and life-long immunosuppression, the rational differentiation of stem cells into functional beta-cells remains an attractive alternative29, 30. Nevertheless, a definitive cure for T1DM should address both the beta-cell deficit and the autoimmune response to cells that express insulin. Any beta-cell mimetic should be able to store large amounts of insulin and secrete it on demand, as in response to glucose stimulation29, 31. The most effective protocols for the in vitro generation of bonafide insulin-secreting beta-like cells that are suitable for transplantation have been the result of sophisticated trial-and-error studies elaborating timely addition of complex growth factor and small-molecule compound cocktails to human pancreatic progenitor cells32, 33, 34. The differentiation of pancreatic progenitor cells to beta-like cells is the most challenging part as current protocols provide inconsistent results and limited success in programming pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells35, 36, 37. One of the reasons for these observations could be the heterogeneity in endocrine differentiation and maturation towards a beta cell phenotype. Here we show that a synthetic lineage-control network programming the dynamic expression of the transcription factors Ngn3, Pdx1 and MafA enables the differentiation of hIPSC-derived pancreatic progenitor cells to glucose-sensitive insulin-secreting beta-like cells (Supplementary Fig. 1).

 

Vanillic acid-programmable positive band-pass filter

The differentiation pathway from pancreatic progenitor cells to glucose-sensitive insulin-secreting pancreatic beta-cells combines the transient mutually exclusive expression switches of Ngn3 (OFF-ON-OFF) and Pdx1 (ON-OFF-ON) with the concomitant induction of MafA (OFF-ON) expression10,11. Since independent control of the pancreatic transcription factors Ngn3, Pdx1 and MafA by different antibiotic transgene control systems responsive to tetracycline, erythromycin and pristinamycin did not result in the desired differential control dynamics (Supplementary Fig. 2), we have designed a vanillic acid-programmable synthetic lineage-control network that programmes hIPSC-derived pancreatic progenitor cells to specifically differentiate into glucose-sensitive insulin-secreting beta-like cells in a seamless and self-sufficient manner. The timely coordination of mutually exclusive Ngn3 and Pdx1 expression with MafA induction requires the trigger-controlled execution of a complex genetic programme that orchestrates two overlapping antagonistic band-pass filter expression profiles (OFF-ON-OFF and ON-OFF-ON), a positive band-pass filter for Ngn3 (OFF-ON-OFF) and a negative band-pass filter, also known as band-stop filter, for Pdx1 (ON-OFF-ON), the ramp-up expression phase of which is linked to a graded induction of MafA (OFF-ON).

The core of the synthetic lineage-control network consists of two transgene control devices that are sensitive to the food component and licensed food additive vanillic acid. These devices are a synthetic vanillic acid-inducible (ON-type) signalling cascade that is gradually induced by increasing the vanillic acid concentration and a vanillic acid-repressible (OFF-type) gene switch that is repressed in a vanillic acid dose-dependent manner (Fig. 1a,b). The designer cascade consists of the vanillic acid-sensitive mammalian olfactory receptor MOR9-1, which sequentially activates the G protein Sα (GSα) and adenylyl cyclase to produce a cyclic AMP (cAMP) second messenger surge38 that is rewired via the cAMP-responsive protein kinase A-mediated phospho-activation of the cAMP-response element-binding protein 1 (CREB1) to the induction of synthetic promoters (PCRE) containing CREB1-specific cAMP response elements (CRE; Fig. 1a). The co-transfection of pCI-MOR9-1 (PhCMV-MOR9-1-pASV40) and pCK53 (PCRE-SEAP-pASV40) into human mesenchymal stem cells (hMSC-TERT) confirmed the vanillic acid-adjustable secreted alkaline phosphatase (SEAP) induction of the designer cascade (>10nM vanillic acid; Fig. 1a). The vanillic acid-repressible gene switch consists of the vanillic acid-dependent transactivator (VanA1), which binds and activates vanillic acid-responsive promoters (for example, P1VanO2) at low and medium vanillic acid levels (<2μM). At high vanillic acid concentrations (>2μM), VanA1 dissociates from P1VanO2, which results in the dose-dependent repression of transgene expression39 (Fig. 1b). The co-transfection of pMG250 (PSV40-VanA1-pASV40) and pMG252 (P1VanO2-SEAP-pASV40) into hMSC-TERT corroborated the fine-tuning of the vanillic acid-repressible SEAP expression (Fig. 1b).

Figure 1: Design of a vanillic acid-responsive positive band-pass filter providing an OFF-ON-OFF expression profile.

Design of a vanillic acid-responsive positive band-pass filter providing an OFF-ON-OFF expression profile.

http://www.nature.com/ncomms/2016/160411/ncomms11247/images_article/ncomms11247-f1.jpg

a) Vanillic acid-inducible transgene expression. The constitutively expressed vanillic acid-sensitive olfactory G protein-coupled receptor MOR9-1 (pCI-MOR9-1; PhCMV-MOR9-1-pA) senses extracellular vanillic acid levels and triggers G protein (Gs)-mediated activation of the membrane-bound adenylyl cyclase (AC) that converts ATP into cyclic AMP (cAMP). The resulting intracellular cAMP surge activates PKA (protein kinase A), whose catalytic subunits translocate into the nucleus to phosphorylate cAMP response element-binding protein 1 (CREB1). Activated CREB1 binds to synthetic promoters (PCRE) containing cAMP-response elements (CRE) and induces PCRE-driven expression of human placental secreted alkaline phosphatase (SEAP; pCK53, PCRE-SEAP-pA). Co-transfection of pCI-MOR9-1 and pCK53 into human mesenchymal stem cells (hMSC-TERT) grown for 48h in the presence of increasing vanillic acid concentrations results in a dose-inducible SEAP expression profile. (b) Vanillic acid-repressible transgene expression. The constitutively expressed, vanillic acid-dependent transactivator VanA1(pMG250, PSV40-VanA1-pA, VanA1, VanR-VP16) binds and activates the chimeric promoter P1VanO2 (pMG252, P1VanO2-SEAP-pA) in the absence of vanillic acid. In the presence of increasing vanillic acid concentrations, VanA1 is released from P1VanO2, and transgene expression is shut down. Co-transfection of pMG250 and pMG252 into hMSC-TERT grown for 48h in the presence of increasing vanillic acid concentrations results in a dose-repressible SEAP expression profile. (c) Positive band-pass expression filter. Serial interconnection of the synthetic vanillic acid-inducible signalling cascade (a) with the vanillic acid-repressible transcription factor-based gene switch (b) by PCRE-mediated expression of VanA1 (pSP1, PCRE-VanA1-pA) results in a two-level feed-forward cascade. Owing to the opposing responsiveness and differential sensitivity to vanillic acid, this synthetic gene network programmes SEAP expression with a positive band-pass filter profile (OFF-ON-OFF) as vanillic acid levels are increased. Medium vanillic acid levels activate MOR9-1, which induces PCRE-driven VanA1 expression. VanA1remains active and triggers P1VanO2-mediated SEAP expression in feed-forward manner, which increases to maximum levels. At high vanillic acid concentrations, MOR9-1 maintains PCRE-driven VanA1 expression, but the transactivator dissociates from P1VanO2, which shuts SEAP expression down. Co-transfection of pCI-MOR9-1, pSP1 and pMG252 into hMSC-TERT grown for 48h in the presence of increasing vanillic acid concentrations programmes SEAP expression with a positive band-pass profile (OFF-ON-OFF). Data are the means±s.d. of triplicate experiments (n=9).

The opposing responsiveness and differential sensitivity of the control devices to vanillic acid are essential to programme band-pass filter expression profiles. Upon daisy-chaining the designer cascade (pCI-MOR9-1; PhCMV-MOR9-1-pASV40; pSP1, PCRE-VanA1-pASV40) and the gene switch (pSP1, PCRE-VanA1-pASV40; pMG252, P1VanO2-SEAP-pASV40) in the same cell, the network executes a band-pass filter SEAP expression profile when exposed to increasing concentrations of vanillic acid (Fig. 1c). Medium vanillic acid levels (10nM to 2μM) activate MOR9-1, which induces PCRE-driven VanA1 expression. VanA1 remains active within this concentration range and, in a feed-forward amplifier manner, triggers P1VanO2-mediated SEAP expression, which gradually increases to maximum levels (Fig. 1c). At high vanillic acid concentrations (2μM to 400μM), MOR9-1 maintains PCRE-driven VanA1 expression, but the transactivator is inactivated and dissociates from P1VanO2, which results in the gradual shutdown of SEAP expression (Fig. 1c).

Vanillic acid-programmable lineage-control network

For the design of the vanillic acid-programmable synthetic lineage-control network, constitutive MOR9-1 expression and PCRE-driven VanA1 expression were combined with pSP12 (pASV40-Ngn3cm←P3VanO2right arrowmFT-miR30Pdx1g-shRNA-pASV40) for endocrine specification and pSP17(PCREm-Pdx1cm-2A-MafAcm-pASV40) for maturation of developing beta-cells (Fig. 2a,b). ThepSP12-encoded expression unit enables the VanA1-controlled induction of the optimized bidirectional vanillic acid-responsive promoter (P3VanO2) that drives expression of a codon-modified Ngn3cm, the nucleic acid sequence of which is distinct from its genomic counterpart (Ngn3g) to allow for quantitative reverse transcription–PCR (qRT–PCR)-based discrimination. In the opposite direction, P3VanO2 transcribes miR30Pdx1g-shRNA, which exclusively targets genomicPdx1 (Pdx1g) transcripts for RNA interference-based destruction and is linked to the production of a blue-to-red medium fluorescent timer40 (mFT) for precise visualization of the unit’s expression dynamics in situ. pSP17 contains a dicistronic expression unit in which the modified high-tightness and lower-sensitivity PCREm promoter (see below) drives co-cistronic expression of Pdx1cm andMafAcm, which are codon-modified versions producing native transcription factors that specifically differ from their genomic counterparts (Pdx1g, MafAg) in their nucleic acid sequence. After individual validation of the vanillic acid-controlled expression and functionality of all network components (Supplementary Figs 2–9), the lineage-control network was ready to be transfected into hIPSC-derived pancreatic progenitor cells. These cells are characterized by high expression of Pdx1g and Nkx6.1 levels and the absence of Ngn3g and MafAg production32, 33, 34 (day 0:Supplementary Figs 10–16).

 

Figure 2: Synthetic lineage-control network programming differential expression dynamics of pancreatic transcription factors.

Synthetic lineage-control network programming differential expression dynamics of pancreatic transcription factors.

 

http://www.nature.com/ncomms/2016/160411/ncomms11247/images/ncomms11247-f2.jpg

(a) Schematic of the synthetic lineage-control network. The constitutively expressed, vanillic acid-sensitive olfactory G protein-coupled receptor MOR9-1 (pCI-MOR9-1; PhCMV-MOR9-1-pA) senses extracellular vanillic acid levels and triggers a synthetic signalling cascade, inducing PCRE-driven expression of the transcription factor VanA1 (pSP1, PCRE-VanA1-pA). At medium vanillic acid concentrations (purple arrows), VanA1 binds and activates the bidirectional vanillic acid-responsive promoter P3VanO2 (pSP12, pA-Ngn3cm←P3VanO2right arrowmFT-miR30Pdx1g-shRNA-pA), which drives the induction of codon-modified Neurogenin 3 (Ngn3cm) as well as the coexpression of both the blue-to-red medium fluorescent timer (mFT) for precise visualization of the unit’s expression dynamics and miR30pdx1g-shRNA (a small hairpin RNA programming the exclusive destruction of genomic pancreatic and duodenal homeobox 1 (Pdx1g) transcripts). Consequently, Ngn3cm levels switch from low to high (OFF-to-ON), and Pdx1g levels toggle from high to low (ON-to-OFF). In addition, Ngn3cm triggers the transcription of Ngn3g from its genomic promoter, which initiates a positive-feedback loop. At high vanillic acid levels (orange arrows), VanA1 is inactivated, and both Ngn3cm and miR30pdx1g-shRNA are shut down. At the same time, the MOR9-1-driven signalling cascade induces the modified high-tightness and lower-sensitivity PCREm promoter that drives the co-cistronic expression of the codon-modified variants of Pdx1 (Pdx1cm) and V-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafAcm; pSP17, PCREm-Pdx1cm-2A-MafAcm-pA). Consequently, Pdx1cm and MafAcm become fully induced. As Pdx1cm expression ramps up, it initiates a positive-feedback loop by inducing the genomic counterparts Pdx1g and MafAg. Importantly, Pdx1cm levels are not affected by miR30Pdx1g-shRNA because the latter is specific for genomic Pdx1g transcripts and because the positive feedback loop-mediated amplification of Pdx1gexpression becomes active only after the shutdown of miR30Pdx1g-shRNA. Overall, the synthetic lineage-control network provides vanillic acid-programmable, transient, mutually exclusive expression switches for Ngn3 (OFF-ON-OFF) and Pdx1 (ON-OFF-ON) as well as the concomitant induction of MafA (OFF-ON) expression, which can be followed in real time (Supplementary Movies 1 and 2). (b) Schematic illustrating the individual differentiation steps from human IPSCs towards beta-like cells. The colours match the cell phenotypes reached during the individual differentiation stages programmed by the lineage-control network shown in a.

Following the co-transfection of pCI-MOR9-1 (PhCMV-MOR9-1-pASV40), pSP1 (PCRE-VanA1-pASV40), pSP12 (pASV40-Ngn3cm←P3VanO2right arrowmFT-miR30Pdx1g-shRNA-pASV40) and pSP17(PCREm-Pdx1cm-2A-MafAcm-pASV40) into hIPSC-derived pancreatic progenitor cells, the synthetic lineage-control network should override random endogenous differentiation activities and execute the pancreatic beta-cell-specific differentiation programme in a vanillic acid remote-controlled manner. To confirm that the lineage-control network operates as programmed, we cultivated network-containing and pEGFP-N1-transfected (negative-control) cells for 4 days at medium (2μM) and then 7 days at high (400μM) vanillic acid concentrations and profiled the differential expression dynamics of all of the network components and their genomic counterparts as well as the interrelated transcription factors and hormones in both whole populations and individual cells at days 0, 4, 11 and 14 (Figs 2 and 3 and Supplementary Figs 11–17).

 

Figure 3: Dynamics of the lineage-control network.

Dynamics of the lineage-control network.

http://www.nature.com/ncomms/2016/160411/ncomms11247/images/ncomms11247-f3.jpg

(a,b) Quantitative RT–PCR-based expression profiling of the pancreatic transcription factors Ngn3cm/g, Pdx1cm/g and MafAcm/g in hIPSC-derived pancreatic progenitor cells containing the synthetic lineage-control network at days 4 and 11. Data are the means±s.d. of triplicate experiments (n=9). (cg) Immunocytochemistry of pancreatic transcription factors Ngn3cm/g, Pdx1cm/g and MafAcm/g in hIPSC-derived pancreatic progenitor cells containing the synthetic lineage-control network at days 4 and 11. hIPSC-derived pancreatic progenitor cells were co-transfected with the lineage-control vectors pCI-MOR9-1 (PhCMV-MOR9-1-pA), pSP1 (PCRE-VanA1-pA), pSP12 (pA-Ngn3cm←P3VanO2right arrowmFT-miR30Pdx1g-shRNA-pA) and pSP17 (PCREm-Pdx1cm-2A-MafAcm) and immunocytochemically stained for (c) VanA1 and Pdx1 (day 4), (d) VanA1 and Ngn3 (day 4), (e) VanA1 and Pdx1 (day 11), (f) MafA and Pdx1 (day 11) as well as (g) VanA1 and insulin (C-peptide) (day 11). The cells staining positive for VanA1 are containing the lineage-control network. DAPI, 4′,6-diamidino-2-phenylindole. Scale bar, 100μm.

…….

Multicellular organisms, including humans, consist of a highly structured assembly of a multitude of specialized cell phenotypes that originate from the same zygote and have traversed a preprogrammed multifactorial developmental plan that orchestrates sequential differentiation steps with high precision in space and time19, 51. Because of the complexity of terminally differentiated cells, the function of damaged tissues can for most medical indications only be restored via the transplantation of donor material, which is in chronically short supply52.

Despite significant progress in regenerative medicine and the availability of stem cells, the design of protocols that replicate natural differentiation programmes and provide fully functional cell mimetics remains challenging29, 53. For example, efforts to generate beta-cells from human embryonic stem cells (hESCs) have led to reliable protocols involving the sequential administration of growth factors (activin A, bone morphogenetic protein 4 (BMP-4), basic fibroblast growth factor (bFGF), FGF-10, Noggin, vascular endothelial growth factor (VEGF) and Wnt3A) and small-molecule compounds (cyclopamine, forskolin, indolactam V, IDE1, IDE2, nicotinamide, retinoic acid, SB−431542 and γ-secretase inhibitor) that modulate differentiation-specific signalling pathways31, 54, 55. In vitro differentiation of hESC-derived pancreatic progenitor cells into beta-like cells is more challenging and has been achieved recently by a complex media formulation with chemicals and growth factors32, 33, 34.

hIPSCs have become a promising alternative to hESCs; however, their use remains restricted in many countries56. Most hIPSCs used for directed differentiation studies were derived from a juvenescent cell source that is expected to show a higher degree of differentiation potential compared with older donors that typically have a higher need for medical interventions37, 57, 58. We previously succeeded in producing mRNA-reprogrammed hIPSCs from adipose tissue-derived mesenchymal stem cells of a 50-year-old donor, demonstrating that the reprogramming of cells from a donor of advanced age is possible in principle59.

Recent studies applying similar hESC-based differentiation protocols to hIPSCs have produced cells that release insulin in response to high glucose32, 33, 34. This observation suggests that functional beta-like cells can eventually be derived from hIPSCs32, 33. In our hands, the growth-factor/chemical-based technique for differentiating human IPSCs resulted in beta-like cells with poor glucose responsiveness. Recent studies have revealed significant variability in the lineage specification propensity of different hIPSC lines35, 60 and substantial differences in the expression profiles of key transcription factors in hIPSC-derived beta-like cells33. Therefore, the growth-factor/chemical-based protocols may require further optimization and need to be customized for specific hIPSC lines35. Synthetic lineage-control networks providing precise dynamic control of transcription factor expression may overcome the challenges associated with the programming of beta-like cells from different hIPSC lines.

Rather than exposing hIPSCs to a refined compound cocktail that triggers the desired differentiation in a fraction of the stem cell population, we chose to design a synthetic lineage-control network to enable single input-programmable differentiation of hIPSC-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells. In contrast with the use of growth-factor/chemical-based cocktails, synthetic lineage-control networks are expected to (i) be more economical because of in situ production of the required transcription factors, (ii) enable simultaneous control of ectopic and chromosomally encoded transcription factor variants, (iii) tap into endogenous pathways and not be limited to cell-surface input, (iv) display improved reversibility that is not dependent on the removal of exogenous growth factors via culture media replacement, (v) provide lateral inhibition, thereby reducing the random differentiation of neighbouring cells and (vi) enable trigger-programmable and (vii) precise differential transcription factor expression switches.

The synthetic lineage-control network that precisely replicates the endogenous relative expression dynamics of the transcription factors Pdx-1, Ngn3 and MafA required the design of a new network topology that interconnects a synthetic signalling cascade and a gene switch with differential and opposing sensitivity to the food additive vanillic acid. This differentiation device provides different band-pass filter, time-delay and feed-forward amplifier topologies that interface with endogenous positive-feedback loops to orchestrate the timely expression and repression of heterologous and chromosomally encoded Ngn3, Pdx1 and MafA variants. The temporary nature of the engineering intervention, which consists of transient transfection of the genetic lineage-control components in the absence of any selection, is expected to avoid stable modification of host chromosomes and alleviate potential safety concerns. In addition, the resulting beta-cell mass could be encapsulated inside vascularized microcontainers28, a proven containment strategy in prototypic cell-based therapies currently being tested in animal models of prominent human diseases14, 15, 16, 61, 62 as well as in human clinical trials28.

The hIPSC-derived beta-like cells resulting from this trigger-induced synthetic lineage-control network exhibited glucose-stimulated insulin-release dynamics and capacity matching the human physiological range and transcriptional profiling, flow cytometric analysis and electron microscopy corroborated the lineage-controlled stem cells reached a mature beta-cell phenotype. In principle, the combination of hIPSCs derived from the adipose tissue of a 50-year-old donor59 with a synthetic lineage-control network programming glucose-sensitive insulin-secreting beta-like cells closes the design cycle of regenerative medicine63. However, hIPSCs that are derived from T1DM patients, differentiated into beta-like cells and transplanted back into the donor would still be targeted by the immune system, as demonstrated in the transplantation of segmental pancreatic grafts from identical twins64. Therefore, any beta-cell-replacement therapy will require complementary modulation of the immune system either via drugs30, 65, engineering or cell-based approaches66, 67 or packaging inside vascularizing, semi-permeable immunoprotective microcontainers28.

Capitalizing on the design principles of synthetic biology, we have successfully constructed and validated a synthetic lineage-control network that replicates the differential expression dynamics of critical transcription factors and mimicks the native differentiation pathway to programme hIPSC-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells that compare with human pancreatic islets at a high level. The design of input-triggered synthetic lineage-control networks that execute a preprogrammed sequential differentiation agenda coordinating the timely induction and repression of multiple genes could provide a new impetus for the advancement of developmental biology and regenerative medicine.

Other related articles published in this Open Access Online Scientific Journal include the following:

Adipocyte Derived Stroma Cells: Their Usage in Regenerative Medicine and Reprogramming into Pancreatic Beta-Like Cells

Curator: Evelina Cohn, Ph.D.

https://pharmaceuticalintelligence.com/2016/03/03/adipocyte-derived-stroma-cells-their-usage-in-regenerative-medicine-and-reprogramming-into-pancreatic-beta-like-cells/

Read Full Post »

Protein profiling in cancer and metabolic diseases

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Deep Protein Profiling Key

Company has encouraged by two recent reports that emphasise the importance of protein profiling to improve outcomes in cancer treatment.

http://www.technologynetworks.com/Proteomics/news.aspx?ID=190145

Proteome Sciences plc has strongly encouraged by two recent reports that emphasise the importance of protein profiling to improve outcomes in cancer treatment. These highlight the growing need for more detailed, personal assessment of protein profiles to improve the management of cancer treatment.

In the first study two groups from University College London and Cancer Research UK demonstrated that genetic mutations in cancer can lead to changes in the proteins on the cell surface1. These are new sequences which are seen as foreign by the body’s immune system and, with appropriate immunotherapy, the level of response in lung cancer was greatly enhanced.

However many of the patients with these types of mutations unfortunately still did not respond which highlighted the need for deeper analysis of the protein expression in tumours in order to better appreciate the mechanisms that contribute to treatment failure.

The second study, led by Professor Nigel Bundred of Manchester University, reported that use of two drugs that act on the same breast cancer target, an over-expressing protein called Her-2, were able to eradicate detectable tumours in around 10% of those treated in just 11 days, with 87% of those treated having a proteomic change indicating cells had stopped growing and/or cell death had increased2.

Whilst these results appear very promising it is worth noting that the over-expressing Her-2 target is only present in about 20% of breast tumours meaning this combination therapy was successful in clearing tumours in just 2% of the total breast cancer population.

Dr. Ian Pike, Chief Operating Officer of Proteome Sciences commented, “Both these recent studies should rightly be recognised as important steps forward towards better cancer treatment. However, in order to overcome the limitations of current drug therapy programs, a much deeper and more comprehensive analysis of the complex protein networks that regulate tumour growth and survival is required and will be essential to achieve a major advance in the battle to treat cancer.

“Our SysQuant® workflows provide that solution. As an example, in pancreatic cancer3 we have successfully mapped the complex network of regulatory processes and demonstrate the ability to devise personalised treatment combinations on an individual basis for each patient. A retrospective study with SysQuant® to predict response to the targeted drug Sorafenib in liver cancer is in process and we are planning further prospective trials to guide personalised treatment selection in liver cancer.

“We are already delivering systems-wide biology solutions through SysQuant® and TMTcalibrator™ programs to our clients that are generating novel biological data and results using more sensitive profiling that are helping them to better understand their drug development programs and to provide new biomarkers for tracking patient response in clinical trials.

“We are strongly positioned to deliver more comprehensive analysis of proteins and cellular pathways across other areas of disease and in particular to extend the use of SysQuant® with other leading cancer research groups in liver and other cancers.”

Proteome Sciences has also expanded its offering in personalised medicine through the use of its TMTcalibrator™ technology to uniquely identify protein biomarkers that reveal active cancer and other disease processes in body fluid samples. The importance of these ‘mechanistic’ biomarkers is that they are essential to monitor that drugs are being effective and that they can be used as early biomarkers of disease recurrence.

Using SysQuant® and TMTcalibrator™, Proteome Sciences can deliver more comprehensive analysis and provide unparalleled levels of sensitivity and breadth of coverage of the proteome, enabling faster, more efficient drug development and more accurate disease diagnosis.

 

Discovering ‘Outlier’ Enzymes

Researchers at TSRI and Salk Institute have discovered ‘Outlier’ enzymes that could offer new targets to treat type 2 diabetes and inflammatory disorders.

A team led by scientists at The Scripps Research Institute (TSRI) and the Salk Institute for Biological Studies have discovered two enzymes that appear to play a role in metabolism and inflammation—and might someday be targeted with drugs to treat type 2 diabetes and inflammatory disorders. The discovery is unusual because the enzymes do not bear a resemblance—in their structures or amino-acid sequences—to any known class of enzymes.

The team of scientists nevertheless identified them as “outlier” members of the serine/threonine hydrolase class, using newer techniques that detect biochemical activity. “A huge fraction of the human ‘proteome’ remains uncharacterized, and this paper shows how chemical approaches can be used to uncover proteins of a given functionality that have eluded classification based on sequence or predicted structure,” said co-senior author Benjamin F. Cravatt, chair of TSRI’s Department of Chemical Physiology.

“In this study, we found two genes that control levels of lipids with anti-diabetic and anti-inflammatory activity, suggesting exciting targets for diabetes and inflammatory diseases,” said co-senior author Alan Saghatelian, who holds the Dr. Frederik Paulsen Chair at the Salk Institute. The study, which appeared as a Nature Chemical Biology Advance Online Publication on March 28, 2016, began as an effort in the Cravatt laboratory to discover and characterize new serine/threonine hydrolases using fluorophosphonate (FP) probes—molecules that selectively bind and, in effect, label the active sites of these enzymes.

Pulling FP-binding proteins out of the entire proteome of test cells and identifying them using mass spectrometry techniques, the team matched nearly all to known hydrolases. The major outlier was a protein called androgen-induced gene 1 protein (AIG1). The only other one was a distant cousin in terms of sequence, a protein called ADTRP. “Neither of these proteins had been characterized as an enzyme; in fact, there had been little functional characterization of them at all,” said William H. Parsons, a research associate in the Cravatt laboratory who was co-first author of the study.

Experiments on AIG1 and ADTRP revealed that they do their enzymatic work in a unique way. “It looks like they have an active site that is novel—it had never been described in the literature,” said Parsons. Initial tests with panels of different enzyme inhibitors showed that AIG1 and ADTRP are moderately inhibited by inhibitors of lipases—enzymes that break down fats and other lipids. But on what specific lipids do these newly discovered outlier enzymes normally work?

At the Salk Institute, the Saghatelian laboratory was investigating a class of lipids it had discovered in 2014. Known as fatty acid esters of hydroxy fatty acids (FAHFAs), these molecules showed strong therapeutic potential. Saghatelian and his colleagues had found that boosting the levels of one key FAHFA lipid normalizes glucose levels in diabetic mice and also reduces inflammation.

“[Ben Cravatt’s] lab was screening panels of lipids to find the ones that their new enzymes work on,” said Saghatelian, who is a former research associate in the Cravatt laboratory. “We suggested they throw FAHFAs in there—and these turned out to be very good substrates.” The Cravatt laboratory soon developed powerful inhibitors of the newly discovered enzymes, and the two labs began working together, using the inhibitors and genetic techniques to explore the enzymes’ functions in vitro and in cultured cells.

Co-first author Matthew J. Kolar, an MD-PhD student, performed most of the experiments in the Saghatelian lab. The team concluded that AIG1 and ADTRP, at least in the cell types tested, appear to work mainly to break down FAHFAs and not any other major class of lipid. In principle, inhibitors of AIG1 and ADTRP could be developed into FAHFA-boosting therapies.

“Our prediction,” said Saghatelian, “is that if FAHFAs do what we think they’re doing, then using an enzyme inhibitor to block their degradation would make FAHFA levels go up and should thus reduce inflammation as well as improve glucose levels and insulin sensitivity.” The two labs are now collaborating on further studies of the new enzymes—and the potential benefits of inhibiting them—in mouse models of diabetes, inflammation and autoimmune disease.

“One of the neat things this study shows,” said Cravatt, “is that even for enzyme classes as well studied as the hydrolases, there may still be hidden members that, presumably by convergent evolution, arrived at that basic enzyme mechanism despite sharing no sequence or structural homology.”

Other co-authors of the study, “AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs,” were Siddhesh S. Kamat, Armand B. Cognetta III, Jonathan J. Hulce and Enrique Saez, of TSRI; and co-senior author Barbara B. Kahn of Beth Israel Deaconess Medical Center and Harvard Medical School

 

New Weapon Against Breast Cancer

Molecular marker in healthy tissue can predict a woman’s risk of getting the disease, research says.

Harvard Stem Cell Institute (HSCI) researchers at Dana-Farber Cancer Institute (DFCI) and collaborators at Brigham and Women’s Hospital (BWH) have identified a molecular marker in normal breast tissue that can predict a woman’s risk for developing breast cancer, the leading cause of death in women with cancer worldwide.

The work, led by HSCI principal faculty member Kornelia Polyak and Rulla Tamimi of BWH, was published in an early online release and in the April 1 issue of Cancer Research.

The study builds on Polyak’s earlier research finding that women already identified as having a high risk of developing cancer — namely those with a mutation called BRCA1 or BRCA2 — or women who did not give birth before their 30s had a higher number of mammary gland progenitor cells.

In the latest study, Polyak, Tamimi, and their colleagues examined biopsies, some taken as many as four decades ago, from 302 participants in the Nurses’ Health Study and the Nurses’ Health Study II who had been diagnosed with benign breast disease. The researchers compared tissue from the 69 women who later developed cancer to the tissue from the 233 women who did not. They found that women were five times as likely to develop cancer if they had a higher percentage of Ki67, a molecular marker that identifies proliferating cells, in the cells that line the mammary ducts and milk-producing lobules. These cells, called the mammary epithelium, undergo drastic changes throughout a woman’s life, and the majority of breast cancers originate in these tissues.

Doctors already test breast tumors for Ki67 levels, which can inform decisions about treatment, but this is the first time scientists have been able to link Ki67 to precancerous tissue and use it as a predictive tool.

“Instead of only telling women that they don’t have cancer, we could test the biopsies and tell women if they were at high risk or low risk for developing breast cancer in the future,” said Polyak, a breast cancer researcher at Dana-Farber and co-senior author of the paper.

“Currently, we are not able to do a very good job at distinguishing women at high and low risk of breast cancer,” added co-senior author Tamimi, an associate professor at the Harvard T.H. Chan School of Public Health and Harvard Medical School. “By identifying women at high risk of breast cancer, we can better develop individualized screening and also target risk reducing strategies.”

To date, mammograms are the best tool for the early detection, but there are risks associated with screening. False positive and negative results and over-diagnosis could cause psychological distress, delay treatment, or lead to overtreatment, according to the National Cancer Institute (NCI).

Mammography machines also use low doses of radiation. While a single mammogram is unlikely to cause harm, repeated screening can potentially cause cancer, though the NCI writes that the benefits “nearly always outweigh the risks.”

“If we can minimize unnecessary radiation for women at low risk, that would be good,” said Tamimi.

Screening for Ki67 levels would “be easy to apply in the current setting,” said Polyak, though the researchers first want to reproduce the results in an independent cohort of women.

 

AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs

William H ParsonsMatthew J Kolar, …., Barbara B KahnAlan Saghatelian & Benjamin F Cravatt

Nature Chemical Biology 28 March 2016                    http://dx.doi.org:/10.1038/nchembio.2051

Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural, relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty acid esters of hydroxy fatty acids (FAHFAs) but not other major classes of lipids. We identify multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent or parallel protein evolution that defy conventional sequence- and structure-based predictions.

Figure 1: Discovery and characterization of AIG1 and ADTRP as FP-reactive proteins in the human proteome.

 

http://www.nature.com/nchembio/journal/vaop/ncurrent/carousel/nchembio.2051-F1.jpg

(a) Competitive ABPP-SILAC analysis to identify FP-alkyne-inhibited proteins, in which protein enrichment and inhibition were measured in proteomic lysates from SKOV3 cells treated with FP-alkyne (20 μM, 1 h) or DMSO using the FP-biotin…

 

  1. Willems, L.I., Overkleeft, H.S. & van Kasteren, S.I. Current developments in activity-based protein profiling. Bioconjug. Chem. 25, 11811191 (2014).
  2. Niphakis, M.J. & Cravatt, B.F. Enzyme inhibitor discovery by activity-based protein profiling.Annu. Rev. Biochem. 83, 341377 (2014).
  3. Berger, A.B., Vitorino, P.M. & Bogyo, M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4,371381 (2004).
  4. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases.Proc. Natl. Acad. Sci. USA 96, 1469414699 (1999).
  5. Simon, G.M. & Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 1105111055 (2010).
  6. Bachovchin, D.A. et al. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl. Acad. Sci. USA 107, 2094120946 (2010).
  7. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691697 (2005).
  8. Higa, H.H., Diaz, S. & Varki, A. Biochemical and genetic evidence for distinct membrane-bound and cytosolic sialic acid O-acetyl-esterases: serine-active-site enzymes. Biochem. Biophys. Res. Commun. 144, 10991108 (1987).

Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesteras-1 inhibitors

Proc Natl Acad Sci U S A. 2011 Apr 26; 108(17): 6811–6816.    doi:  10.1073/pnas.1015248108
National Institutes of Health (NIH)-sponsored screening centers provide academic researchers with a special opportunity to pursue small-molecule probes for protein targets that are outside the current interest of, or beyond the standard technologies employed by, the pharmaceutical industry. Here, we describe the outcome of an inhibitor screen for one such target, the enzyme protein phosphatase methylesterase-1 (PME-1), which regulates the methylesterification state of protein phosphatase 2A (PP2A) and is implicated in cancer and neurodegeneration. Inhibitors of PME-1 have not yet been described, which we attribute, at least in part, to a dearth of substrate assays compatible with high-throughput screening. We show that PME-1 is assayable by fluorescence polarization-activity-based protein profiling (fluopol-ABPP) and use this platform to screen the 300,000+ member NIH small-molecule library. This screen identified an unusual class of compounds, the aza-β-lactams (ABLs), as potent (IC50 values of approximately 10 nM), covalent PME-1 inhibitors. Interestingly, ABLs did not derive from a commercial vendor but rather an academic contribution to the public library. We show using competitive-ABPP that ABLs are exquisitely selective for PME-1 in living cells and mice, where enzyme inactivation leads to substantial reductions in demethylated PP2A. In summary, we have combined advanced synthetic and chemoproteomic methods to discover a class of ABL inhibitors that can be used to selectively perturb PME-1 activity in diverse biological systems. More generally, these results illustrate how public screening centers can serve as hubs to create spontaneous collaborative opportunities between synthetic chemistry and chemical biology labs interested in creating first-in-class pharmacological probes for challenging protein targets.

Protein phosphorylation is a pervasive and dynamic posttranslational protein modification in eukaryotic cells. In mammals, more than 500 protein kinases catalyze the phosphorylation of serine, threonine, and tyrosine residues on proteins (1). A much more limited number of phosphatases are responsible for reversing these phosphorylation events (2). For instance, protein phosphatase 2A (PP2A) and PP1 are thought to be responsible together for > 90% of the total serine/threonine phosphatase activity in mammalian cells (3). Specificity is imparted on PP2A activity by multiple mechanisms, including dynamic interactions between the catalytic subunit (C) and different protein-binding partners (B subunits), as well as a variety of posttranslational chemical modifications (2, 4). Within the latter category is an unusual methylesterification event found at the C terminus of the catalytic subunit of PP2A that is introduced and removed by a specific methyltransferase (leucine carbxoylmethyltransferase-1 or LCMT1) (5, 6) and methylesterase (protein phosphatase methylesterase-1 or PME-1) (7), respectively (Fig. 1A). PP2A carboxymethylation (hereafter referred to as “methylation”) has been proposed to regulate PP2A activity, at least in part, by modulating the binding interaction of the C subunit with various regulatory B subunits (810). A predicted outcome of these shifts in subunit association is the targeting of PP2A to different protein substrates in cells. PME-1 has also been hypothesized to stabilize inactive forms of nuclear PP2A (11), and recent structural studies have shed light on the physical interactions between PME-1 and the PP2A holoenzyme (12).

There were several keys to the success of our probe development effort. First, screening for inhibitors of PME-1 benefited from the fluopol-ABPP technology, which circumvented the limited throughput of previously described substrate assays for this enzyme. Second, we were fortunate that the NIH compound library contained several members of the ABL class of small molecules. These chiral compounds, which represent an academic contribution to the NIH library, occupy an unusual portion of structural space that is poorly accessed by commercial compound collections. Although at the time of their original synthesis (23) it may not have been possible to predict whether these ABLs would show specific biological activity, their incorporation into the NIH library provided a forum for screening against many proteins and cellular targets, culminating in their identification as PME-1 inhibitors. We then used advanced chemoproteomic assays to confirm the remarkable selectivity displayed by ABLs for PME-1 across (and beyond) the serine hydrolase superfamily. That the mechanism for PME-1 inhibition involves acylation of the enzyme’s conserved serine nucleophile (Fig. 3) suggests that exploration of a more structurally diverse set of ABLs might uncover inhibitors for other serine hydrolases. In this way, the chemical information gained from a single high-throughput screen may be leveraged to initiate probe development programs for additional enzyme targets.

Projecting forward, this research provides an example of how public small-molecule screening centers can serve as a portal for spawning academic collaborations between chemical biology and synthetic chemistry labs. By continuing to develop versatile high-throughput screens and combining them with a small-molecule library of expanding structural diversity conferred by advanced synthetic methodologies, academic biologists and chemists are well-positioned to collaboratively deliver pharmacological probes for a wide range of proteins and pathways in cell biology.

 

New weapon against breast cancer

Molecular marker in healthy tissue can predict a woman’s risk of getting the disease, research says

April 6, 2016 | Popular
BRC_Cancer605

 

New Group of Aging-Related Proteins Discovered

http://www.genengnews.com/gen-news-highlights/new-group-of-aging-related-proteins-discovered/81252599/

Scientists have discovered a group of six proteins that may help to divulge secrets of how we age, potentially unlocking new insights into diabetes, Alzheimer’s, cancer, and other aging-related diseases.

The proteins appear to play several roles in our bodies’ cells, from decreasing the amount of damaging free radicals and controlling the rate at which cells die to boosting metabolism and helping tissues throughout the body respond better to insulin. The naturally occurring amounts of each protein decrease with age, leading investigators to believe that they play an important role in the aging process and the onset of diseases linked to older age.

The research team led by Pinchas Cohen, M.D., dean and professor of the University of Southern California Leonard Davis School of Gerontology, identified the proteins and observed their origin from mitochondria and their game-changing roles in metabolism and cell survival. This latest finding builds upon prior research by Dr. Cohen and his team that uncovered two significant proteins, humanin and MOTS-c, hormones that appear to have significant roles in metabolism and diseases of aging.

Unlike most other proteins, humanin and MOTS-c are encoded in mitochondria. Dr. Cohen’s team used computer analysis to see if the part of the mitochondrial genome that provides the code for humanin was coding for other proteins as well. The analysis uncovered the genes for six new proteins, which were dubbed small humanin-like peptides, or SHLPs, 1 through 6 (pronounced “schlep”).

After identifying the six SHLPs and successfully developing antibodies to test for several of them, the team examined both mouse tissues and human cells to determine their abundance in different organs as well as their functions. The proteins were distributed quite differently among organs, which suggests that the proteins have varying functions based on where they are in the body. Of particular interest is SHLP 2, according to Dr. Cohen.  The protein appears to have insulin-sensitizing, antidiabetic effects as well as neuroprotective activity that may emerge as a strategy to combat Alzheimer’s disease. He added that SHLP 6 is also intriguing, with a unique ability to promote cancer cell death and thus potentially target malignant diseases.

Proteins That May Protect Against Age Related Illnesses Discovered

 

The cell proliferation antigen Ki-67 organises heterochromatin

 Michal Sobecki, 

Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression.

 

A protein called Ki-67 is only produced in actively dividing cells, where it is located in the nucleus – the structure that contains most of the cell’s DNA. Researchers often use Ki-67 as a marker to identify which cells are actively dividing in tissue samples from cancer patients, and previous studies indicated that Ki-67 is needed for cells to divide. However, the exact role of this protein was not clear. Before cells can divide they need to make large amounts of new proteins using molecular machines called ribosomes and it has been suggested that Ki-67 helps to produce ribosomes.

Now, Sobecki et al. used genetic techniques to study the role of Ki-67 in mice. The experiments show that Ki-67 is not required for cells to divide in the laboratory or to make ribosomes. Instead, Ki-67 alters the way that DNA is packaged in the nucleus. Loss of Ki-67 from mice cells resulted in DNA becoming less compact, which in turn altered the activity of genes in those cells.

Read Full Post »

BET Proteins Connect Diabetes and Cancer

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

New Proteins Discovered That Link Obesity-Driven Diabetes to Cancer

http://www.dddmag.com/news/2016/03/new-proteins-discovered-link-obesity-driven-diabetes-cancer

 Killer T cells surround a cancer cell. Credit: NIH

Killer T cells surround a cancer cell. Credit: NIH

 

For the first time, researchers have determined how bromodomain (BRD) proteins work in type 2 diabetes, which may lead to a better understanding of the link between adult-onset diabetes and certain cancers.

The findings, which appear in PLOS ONE, show that reducing levels in pancreatic beta cells of individual BRDs, called BET proteins, previously shown to play a role in cancer, may also help patients who are obese and diabetic.

The research was led by Gerald V. Denis, PhD, associate professor of pharmacology and medicine at Boston University School of Medicine, who was the first to show that BET protein functions are important in cancer development.

Adult-onset diabetes has been known for decades to increase the risk for specific cancers. The three main members of the BET protein family, BRD2, BRD3 and BRD4, are closely related to each other and often cooperate. However at times, they work independently and sometimes against each other.

According to the researchers new small molecule BET inhibitors have been developed that block all three BET proteins in cancer cells, but they interfere with too many functions.

“The BET proteins provide a new pathway to connect adult-onset diabetes with cancer, so properly targeting BET proteins may be helpful for both,” explained Denis, who is the corresponding author of the study.

He believes this discovery shows the need for deeper analysis of individual BET proteins in all human cell types, starting with boosting insulin and improving metabolism in the pancreas of adults who are obese.

“Without better targeted drugs, some ongoing cancer clinical trials for BET inhibitors are premature. These new results offer useful insight into drug treatments that have failed so far to appreciate the complexities in the BET family.”

 

Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells

eLife. 2014; 3: e04631.     doi:  10.7554/eLife.04631

Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a ‘combination therapy’ currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration.

DOI:http://dx.doi.org/10.7554/eLife.04631.001

eLife digest

The DNA inside a cell is often tightly wrapped around proteins to form a compact structure called chromatin. Chemical groups added to the chromatin can encourage nearby genes to either be switched on or off; and several enzymes and other proteins help to read, add, or remove these marks from the chromatin. If these chromatin modifications (or the related enzymes and proteins) are disturbed it can lead to diseases like cancer. It has also been suggested that similar changes may influence autoimmune diseases, in which the immune system attacks the body’s own tissues.

Drugs that target the proteins that read, add, or remove these chromatin modifications are currently being developed to treat cancer. For example, drugs that inhibit one family of these proteins called BET have helped to treat tumors in mice that have cancers of the blood or lymph nodes. However, because these drugs target pathways involved in the immune system they may also be useful for treating autoimmune diseases.

Now Fu et al. have tested whether a BET inhibitor might be a useful treatment for type-1 diabetes. In patients with type-1 diabetes, the cells in the pancreas that produce the insulin hormone are killed off by the immune system. Without adequate levels of insulin, individuals with type-1 diabetes may experience dangerous highs and lows in their blood sugar levels and must take insulin and sometimes other medications.

Using mice that spontaneously develop type-1 diabetes when still relatively young, Fu et al. tested what would happen if the mice received a BET inhibitor for just 2 weeks early on in life. Treated mice were protected from developing type-1 diabetes for the rest of their lives. Specifically, the treatment protected the insulin-producing cells and allowed them to continue producing insulin. The drug reduced inflammation in the pancreas and increased the expression of genes that promote the regeneration of insulin-producing cells.

Diabetes researchers have been searching for drug combinations that protect the insulin-producing cells and boost their regeneration. As such, Fu et al. suggest that these findings justify further studies to see if BET inhibitors may help to treat or prevent type-1 diabetes in humans.

Introduction

Acetylation of lysine residues on histones and non-histone proteins is an important epigenetic modification of chromatin (Kouzarides, 2000). Multiple ‘writers’, ‘erasers’, and ‘readers’ of this modification have been identified: histone acetyltransferases (HATs) that introduce acetyl groups, histone deacetylases (HDACs) that remove them, and bromodomain (BRD)-containing proteins that specifically recognize them. Chromatin acetylation impacts multiple fundamental cellular processes, and its dysregulation has been linked to a variety of disease states, notably various cancers (Dawson and Kouzarides, 2012). Not surprisingly, then, drugs that modulate the activities of HATs or HDACs or, most recently, that block acetyl-lysine:BRD interactions are under active development in the oncology field.

BRDs, conserved from yeast to humans, are domains of approximately 110 amino-acids that recognize acetylation marks on histones (primarily H3 and H4) and certain non-histone proteins (e.g., the transcription factor, NF-κB), and serve as scaffolds for the assembly of multi-protein complexes that regulate transcription (Dawson et al., 2011; Prinjha et al., 2012). The BET subfamily of BRD-containing proteins (BRDs 2, 3, 4 and T) is distinguished as having tandem bromodomains followed by an ‘extra-terminal’ domain. One of its members, Brd4, is critical for both ‘bookmarking’ transcribed loci post-mitotically (Zhao et al., 2011) and surmounting RNA polymerase pausing downstream of transcription initiation (Jang et al., 2005; Hargreaves et al., 2009; Anand et al., 2013; Patel et al., 2013).

Recently, small-molecule inhibitors of BET proteins, for example, JQ1 and I-BET, were found to be effective inhibitors of multiple types of mouse tumors, including a NUT midline carcinoma, leukemias, lymphomas and multiple myeloma (Filippakopoulos et al., 2010; Dawson et al., 2011; Delmore et al., 2011; Zuber et al., 2011). A major, but not the unique, focus of inhibition was the Myc pathway (Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 2011; Lockwood et al., 2012). In addition, BET-protein inhibitors could prevent or reverse endotoxic shock induced by systemic injection of bacterial lipopolysaccharide (LPS) (Nicodeme et al., 2010; Seal et al., 2012; Belkina et al., 2013). The primary cellular focus of action was macrophages, and genes induced by the transcription factor NF-κB were key molecular targets (Nicodeme et al., 2010; Belkina et al., 2013).

Given several recent successes at transposing drugs developed for cancer therapy to the context of autoimmunity, it was logical to explore the effect of BET-protein inhibitors on autoimmune disease. We wondered how they might impact type-1 diabetes (T1D), hallmarked by specific destruction of the insulin-producing β cells of the pancreatic islets (Bluestone et al., 2010). NOD mice, the ‘gold standard’ T1D model (Anderson and Bluestone, 2005), spontaneously and universally develop insulitis at 4–6 weeks of age, while overt diabetes manifests in a subset of individuals beginning from 12–15 weeks, depending on the particular colony. NOD diabetes is primarily a T-cell-mediated disease, but other immune cells—such as B cells, natural killer cells, macrophages (MFs) and dendritic cells (DCs)—also play significant roles. We demonstrate that a punctual, 2-week, treatment of early- or late-stage prediabetic NOD mice with I-BET151 affords long-term protection from diabetes. Mechanistic dissection of this effect revealed important drug influences on both MFs and β cells, in particular on the NF-κB pathway. On the basis of these findings, we argue that epigenetic modifiers are an exciting, emerging option for therapeutic intervention in autoimmune diabetes.

I-BET151 protects NOD mice from development of diabetes

T1D progresses through identifiable phases, which are differentially sensitive to therapeutic intervention (Bluestone et al., 2010). Therefore, we treated NOD mice with the BET-protein inhibitor, I-BET151 (GSK1210151A [Dawson et al., 2011;Seal et al., 2012]) according to three different protocols: from 3–5 weeks of age (incipient insulitis), from 12–14 weeks of age (established insulitis), or for 2 weeks beginning within a day after diagnosis of hyperglycemia (diabetes). Blood-glucose levels of insulitic mice were monitored until 30 weeks of age, after which animals in our colony generally do not progress to diabetes.

I-BET151 prevented diabetes development, no matter whether the treated cohort had incipient (Figure 1A) or established (Figure 1B) insulitis. However, the long-term protection afforded by a 2-week treatment of pre-diabetic mice was only rarely observed with recent-onset diabetic animals. Just after diagnosis, individuals were given a subcutaneous insulin implant, which lowers blood-glucose levels to the normal range within 2 days, where they remain for only about 7 days in the absence of further insulin supplementation (Figure 1C, upper and right panels). Normoglycemia was significantly prolonged in mice treated for 2 weeks with I-BET151; but, upon drug removal, hyperglycemia rapidly ensued in most animals (Figure 1C, lower and right panels). The lack of disease reversal under these conditions suggests that β-cell destruction had proceeded to the point that dampening the autoinflammatory attack was not enough to stem hyperglycemia. However, there was prolonged protection from diabetes in a few cases, suggesting that it might prove worthwhile to explore additional treatment designs in future studies.

I-BET151 inhibits diabetes and insulitis in NOD mice.

…..

BET protein inhibition has a minimal effect on T cells in NOD mice

Given that NOD diabetes is heavily dependent on CD4+ T cells (Anderson and Bluestone, 2005), and that a few recent reports have highlighted an influence of BET-protein inhibitors on the differentiation of T helper (Th) subsets in induced models of autoimmunity (Bandukwala et al., 2012; Mele et al., 2013), we explored the effect of I-BET151 treatment on the transcriptome of CD4+ T cells isolated from relevant sites; that is, the infiltrated pancreas, draining pancreatic lymph nodes (PLNs), and control inguinal lymph nodes (ILNs). Microarray analysis of gene expression revealed surprisingly little impact of the 2-week treatment protocol on any of these populations, similar to what was observed when comparing randomly shuffled datasets (Figure 2A). It is possible that the above protocol missed important effects on T cells because those remaining after prolonged drug treatment were skewed for ‘survivors’. Therefore, we also examined the transcriptomes of pancreas-infiltrating CD4+ T cells at just 12, 24 or 48 hr after a single administration of I-BET151. Again, minimal, background-level, differences were observed in the gene-expression profiles of drug- and vehicle-treated mice (Figure 2B).

Little impact of BET-protein inhibition on CD4+T cells in NOD mice.

I-BET151 induces a regulatory phenotype in the pancreatic macrophage population

I-BET151 treatment promotes an MF-like, anti-inflammatory transcriptional program in pancreatic CD45+ cells.
The NF-κB signaling pathway is a major focus of I-BET151’s influence on NOD leukocytes.

BET-protein inhibition promotes regeneration of NOD β cells

BET-protein inhibition promotes regeneration of islet β cells

The studies presented here showed that treatment of NOD mice with the epigenetic modifier, I-BET151, for a mere 2 weeks prevented the development of NOD diabetes life-long. I-BET151 was able to inhibit impending insulitis as well as clear existing islet infiltration. The drug had a dual mechanism of action: it induced the pancreatic MF population to adopt an anti-inflammatory phenotype, primarily via the NF-κB pathway, and promoted β-cell proliferation (and perhaps differentiation). These findings raise a number of intriguing questions, three of which we address here.

First, why do the mechanisms uncovered in our study appear to be so different from those proposed in the only two previous reports on the effect of BET-protein inhibitors on autoimmune disease? Bandukwala et al. found that I-BET762 (a small-molecule inhibitor similar to I-BET151) altered the differentiation of Th subsets in vitro, perturbing the typical profiles of cytokine production, and reducing the neuropathology provoked by transfer of in-vitro-differentiated Th1, but not Th17, cells reactive to a peptide of myelin oligodendrocyte glycoprotein (Bandukwala et al., 2012). Unfortunately, with such transfer models, it is difficult to know how well the in vitro processes reflect in vivo events, and to distinguish subsidiary effects on cell survival and homing. Mele et al. reported that JQ1 primarily inhibited the differentiation of and cytokine production by Th17 cells, and strongly repressed collagen-induced arthritis and experimental allergic encephalomyelitis (Mele et al., 2013). However, with adjuvant-induced disease models such as these, it is difficult to discriminate influences of the drug on the unfolding of autoimmune pathology vs on whatever the adjuvant is doing. Thus, the very different dual mechanism we propose for I-BET151’s impact on spontaneously developing T1D in NOD mice may reflect several factors, including (but not limited to): pathogenetic differences in induced vs spontaneous autoimmune disease models; our broader analyses of immune target cell populations; and true mechanistic differences between T1D and the other diseases. As concerns the latter, it has been argued that T1D is primarily a Th1-driven disease, with little, or even a negative regulatory, influence by Th17 cells (discussed in [Kriegel et al., 2011]).

Second, how does I-BET151’s effect, focused on MFs and β cells, lead to life-long protection from T1D? MFs seem to play a schizophrenic role in the NOD disease. They were shown long ago to be an early participant in islet infiltration (Jansen et al., 1994), and to play a critical effector role in diabetes pathogenesis, attributed primarily to the production of inflammatory cytokines and other mediators, such as iNOS (Hutchings et al., 1990; Jun et al., 1999a, 1999b; Calderon et al., 2006). More recently, there has been a growing appreciation of their regulatory role in keeping diabetes in check. For example, the frequency of a small subset of pancreatic MFs expressing the complement receptor for immunoglobulin (a.k.a. CRIg) at 6–10 weeks of age determined whether or not NOD diabetes would develop months later (Fu et al., 2012b), and transfer of in-vitro-differentiated M2, but not M1, MFs protected NOD mice from disease development (Parsa et al., 2012).

One normally thinks of immunological tolerance as being the purview of T and B cells, but MFs seem to be playing the driving role in I-BET151’s long-term immunologic impact on T1D. Chronic inflammation (as is the insulitis associated with T1D) typically entails three classes of participant: myeloid cells, in particular, tissue-resident MFs; lymphoid cells, including effector and regulatory T and B cells; and tissue-target cells, that is, islet β cells in the T1D context. The ‘flavor’ and severity of inflammation is determined by three-way interactions amongst these cellular players. One implication of this cross-talk is that a perturbation that targets primarily one of the three compartments has the potential to rebalance the dynamic process of inflammation, resetting homeostasis to a new level either beneficial or detrimental to the individual. BET-protein inhibition skewed the phenotype of pancreatic MFs towards an anti-inflammatory phenotype, whether this be at the population level through differential influx, efflux or death, or at the level of individual cells owing to changes in transcriptional programs. The ‘re-educated’ macrophages appeared to be more potent at inhibiting T cell proliferation. In addition, it is possible that MFs play some role in the I-BET151 influences on β-cell regeneration. The findings on Rag1-deficient mice ruled out the need for adaptive immune cells in the islet infiltrate for I-BET151’s induction of β-cell proliferation, but MFs are not thought to be compromised in this strain. Relatedly, the lack of a consistent I-BET151 effect on cultured mouse and human islets might result from a dearth of MFs under our isolation and incubation conditions (e.g., [Li et al., 2009]). Several recent publications have highlighted a role for MFs, particularly M2 cells, in promoting regeneration of β cells in diverse experimental settings (Brissova et al., 2014; Xiao et al., 2014), a function foretold by the reduced β-cell mass in MF-deficient Csf1op/op mice reported a decade ago (Banaei-Bouchareb et al., 2004).

Whether reflecting a cell-intrinsic or -extrinsic impact of the drug, several pro-regenerative pathways appear to be enhanced in β-cells from I-BET151-treated mice. Increased β-cell proliferation could result from up-regulation of the genes encoding Neurod1 (Kojima et al., 2003), GLP-1R (De Leon et al., 2003), or various of the Reg family members (Unno et al., 2002; Liu et al., 2008), the latter perhaps a consequence of higher IL-22R expression (Hill et al., 2013) (see Figure 6B and Supplementary file 4). Protection of β-cells from apoptosis is likely to be an important outcome of inhibiting the NF-κB pathway (Takahashi et al., 2010), but could also issue from enhanced expression of other known pro-survival factors, such as Cntfr (Rezende et al., 2007) and Tox3 (Dittmer et al., 2011) (see Figures 4 and 6B). Lastly, β-cell differentiation and function should be fostered by up-regulation of genes encoding transcription factors such as Neurod1, Pdx1, Pax6, Nkx6-1 and Nkx2-2. The significant delay in re-onset of diabetes in I-BET151-treated diabetic mice suggests functionally relevant improvement in β-cell function. In brief, the striking effect of I-BET151 on T1D development in NOD mice seems to reflect the fortunate concurrence of a complex, though inter-related, set of diabetes-protective processes.

Lastly, why does a drug that inhibits BET proteins, which include general transcription factors such as Brd4, have such circumscribed effects? A 2-week I-BET151 treatment might be expected to provoke numerous side-effects, but this regimen seemed in general to be well tolerated in our studies. This conundrum has been raised in several contexts of BET-inhibitor treatment, and was recently discussed at length (Shi and Vakoc, 2014). The explanation probably relates to two features of BET-protein, in particular Brd4, biology. First: Brd4 is an important element of so-called ‘super-enhancers’, defined as unusually long transcriptional enhancers that host an exceptionally high density of TFs—both cell-type-specific and general factors, including RNA polymerase-II, Mediator, p300 and Brd4 (Hnisz et al., 2013). They are thought to serve as chromatin depots, collecting TFs and coordinating their delivery to transcriptional start-sites via intra-chromosome looping or inter-chromosome interactions. Super-enhancers are preferentially associated with loci that define and control the biology of particular cell-types, notably developmentally regulated and inducible genes; intriguingly, disease-associated, including T1D-associated, nucleotide polymorphisms are especially enriched in the super-enhancers of disease-relevant cell-types (Hnisz et al., 2013;Parker et al., 2013). Genes associated with super-enhancers show unusually high sensitivity to BET-protein inhibitors (Chapuy et al., 2013; Loven et al., 2013;Whyte et al., 2013). Second: although the bromodomain of Brd4 binds to acetyl-lysine residues on histone-4, and I-BET151 was modeled to inhibit this interaction, it is now known to bind to a few non-histone chromosomal proteins as well, notably NF-κB, a liaison also blocked by BET-protein inhibitors (Huang et al., 2009; Zhang et al., 2012; Zou et al., 2014). Abrogating specific interactions such as these, differing according to the cellular context, might be the dominant impact of BET inhibitors, a scenario that would be consistent with the similar effects we observed with I-BET151 and BAY 11–7082 treatment. Either or both of these explanations could account for the circumscribed effect of I-BET151 on NOD diabetes. Additionally, specificity might be imparted by different BET-family members or isoforms—notably both Brd2 and Brd4 are players in MF inflammatory responses (Belkina et al., 2013). According to either of these explanations, higher doses might unleash a broader array of effects.

 

Islet inflammation: A unifying target for diabetes treatment?

In the last decade, islet inflammation has emerged as a contributor to the loss of functional β cell mass in both type 1 (T1D) and type 2 diabetes (T2D). Evidence supports that over-nutrition and insulin resistance result in the production of proinflammatory mediators by β cells. In addition to compromising β cell function and survival, cytokines may recruit macrophages into islets, thus augmenting inflammation. Limited, but intriguing, data implies a role of adaptive immune response in islet dysfunction in T2D. Clinical trials validated anti-inflammatory therapies in T2D, while immune therapy for T1D remains challenging. Further research is required to improve our understanding of islet inflammatory pathways, and to identify more effective therapeutic targets for T1D and T2D.
Islet inflammation: an emerging and unifying target for diabetes treatment

The current epidemic of T2D is closely associated with increases in obesity [1]. Excessive energy balance results in insulin resistance that is compensated for by increasing insulin secretion. However, insufficient compensation results in T2D, which is characterized by the reduction in islet mass and function. In recent years, overwhelming evidence defines insulin resistance as a state of chronic inflammation involving both innate and adaptive immune responses [1]. Although the presence of islet inflammation is acknowledged for autoimmune destruction of β cells in T1D, new data implicates overlapping pathogenesis between T1D and T2D. Epidemiologic studies suggest that obesity modifies the risk of T1D development [2, 3]. Importantly, small but seminal human studies have also provided evidences that anti-inflammatory therapy can improve glycemia and β cell function in T2D [4, 5]. Here, we focus on recent discoveries (past five years) to discuss the contribution of inflammatory pathways to islet dysfunction in T2D, and to provide updates on the pathogenesis of T1D.

What triggers inflammation in islets under insulin resistance?

Ample evidence from rodent and human studies indicates that in obesity, adipose tissue (AT) inflammation is a major source of pro-inflammatory mediators, and a primary response to excessive caloric intake. AT contributes to inflammation in obesity by means of increased mass, modified adipocyte phenotype, and increased infiltration of immune cells, which affects islet function through humoral and neuronal pathways [1, 6, 7]. In addition, it is noteworthy that pancreatic islets are under similar stress as adipocytes in T2D. The chronic inflammatory state of T2D is reflected in the elevation of circulatory cytokines that potentially affect islets as well as adipocytes [6, 8]. Both islets and adipocytes are exposed to excess glucose and lipids, especially free fatty acids (FFA). Over-nutrition forces adipose tissue to remodel and accommodate enlarged adipocytes, which results in endoplasmic reticulum (ER) stress, hypoxia, and mechanical stresses [911]. Under insulin resistance, insulin production increases to meet the high demand, resulting in the expansion of islet mass [12]. Recent findings revealed that obesity is associated with the activation of inflammatory pathway in the hypothalamus, which may alter functions of AT and islets through neuronal regulation [13]. Considering the multiple stressors potentially shared by AT and islets, it is plausible that islets exist also in a chronic inflammatory state, in T2D.

Adipose tissue dysfunction in obesity: a contributor to β cell inflammation in T2D?

The relationship between the pancreatic islet and AT was thought to be unidirectional, by placing insulin secretion as the major determinant of adipocyte glucose uptake and triglyceride storage. However, several recent studies suggest that insulin resistance in AT significantly contributes to β cell failure, through altered secretion of humoral factors from adipocytes and signals from the adipocyte sensory nerve (Figure. 1) [6, 7]. Of particular interest are adipocytokines that are uniquely produced by adipocytes, such as leptin, adiponectin, omentin, resistin, and visfatin, which may contribute to β cell dysfunction during insulin resistance (Box 1). Circulating cytokines may also connect AT inflammation to β cell dysfunction. Overnight exposure of mouse islets to tumor necrosis factor-alpha (TNFα), Interleukin beta (IL-1β), plus Interferon-gamma (IFNγ), at levels comparable to those seen in human obesity, disrupts the regulation of intracellular calcium [8]. Although glucose stimulated insulin secretion (GSIS) was maintained in this study, circulating cytokines might contribute to islet dysfunction after a prolonged period of exposure and when combined with other stresses [8]. TNFα, a cytokine implicated in insulin resistance, reportedly increased islet amyloid polypeptide (IAPP, amylin) expression in β cells with no concurrent expression of proinsulin. This may lead to amyloid production and β cell death [14]. Recent findings showed that the enzyme dipeptidyl peptidase-4 (DPPIV) is secreted by human adipocytes, and therefore may reduce the half-life of DPPIV substrate glucagon-like peptide-1 (GLP-1) with important implications on the insulinotropic effects of this gut peptide on the β cells [15]. Although it is not clear if obesity is associated with increased levels of DPPIV, inhibition of the latter by sitagliptin in a rodent model of obesity and insulin resistance reduced inflammatory cytokine production both in islets and in AT, and improved glucose-stimulated insulin secretion (GSIS) in islets in vitro [16]. Collectively, dysfunctional AT in obesity produces cytokines and peptides that affect islet health and potentially contribute to islet inflammation in T2D.

Read Full Post »

Diabetes Mellitus: new insight into genetic role

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

New Study May Lead to Improved Type 2 Diabetes Treatment

http://www.dddmag.com/news/2016/03/new-study-may-lead-improved-type-2-diabetes-treatment

 

Genetic cause found for loss of beta cells during diabetes development.

Worldwide, 400 million people live with diabetes, with rapid increases projected. Patients with diabetes mostly fall into one of two categories, type 1 diabetics, triggered by autoimmunity at a young age, and type 2 diabetics, caused by metabolic dysfunction of the liver. Despite being labeled a “lifestyle disease”, diabetes has a strong genetic basis. New research under the direction of Adrian Liston (VIB/KU Leuven) has discovered that a common genetic defect in beta cells may underlie both forms of diabetes. This research was published in the international scientific journal Nature Genetics.

Adrian Liston (VIB/University of Leuven): “Our research finds that genetics is critical for the survival of beta cells in the pancreas – the cells that make insulin. Thanks to our genetic make-up, some of us have beta cells that are tough and robust, while others have beta cells that are fragile and can’t handle stress. It is these people who develop diabetes, either type 1 or type 2, while others with tougher beta cells will remain healthy even in if they suffer from autoimmunity or metabolic dysfunction of the liver.”

Different pathways to diabetes development

Diabetes is a hidden killer. One out of every 11 adults is suffering from the disease, yet half of them have not even been diagnosed. Diabetes is caused by the inability of the body to lower blood glucose, a process normally driven by insulin. In patients with type 1 diabetes (T1D), this is caused by the immune system killing off the beta cells that produce insulin. In patients with type 2 diabetes (T2D), a metabolic dysfunction prevents insulin from working on the liver. In both cases, left untreated, the extra glucose in the blood can cause blindness, cardiovascular disease, diabetic nephropathy, diabetic neuropathy and death.

In this study, an international team of researchers investigated how genetic variation controls the development of diabetes. While most previous work has focused on the effect of genetics in altering the immune system (in T1D) and metabolic dysfunction of the liver (in T2D), this research found that genetics also affected the beta cells that produce insulin. Mice with fragile beta cells that were poor at repairing DNA damage would rapidly develop diabetes when those beta cells were challenged by cellular stress. Other mice, with robust beta cells that were good at repairing DNA damage, were able to stay non-diabetic for life, even when those islets were placed under severe cellular stress. The same pathways for beta cell survival and DNA damage repair were also found to be altered in diabetic patient samples, indicating that a genetic predisposition for fragile beta cells may underlie who develops diabetes.

Adrian Liston (VIB/University of Leuven): “While genetics are really the most important factor for developing diabetes, our food environment can also play a deciding role. Even mice with genetically superior beta cells ended up as diabetic when we increased the fat in their diet.”

A new model for testing type 2 diabetes treatments

Current treatments for T2D rely on improving the metabolic response of the liver to insulin. These antidiabetic drugs, in conjunction with lifestyle interventions, can control the early stages of T2D by allowing insulin to function on the liver again. However during the late stages of T2D, the death of beta cells means that there is no longer any insulin being produced in the pancreas. At this stage, antidiabetic drugs and lifestyle interventions have poor efficacy, and medical complications arise.

Dr Lydia Makaroff (International Diabetes Federation, not an author of the current study): “The health cost for diabetes currently exceeds US$600 billion, 12 percent of the global health budget, and will only increase as diabetes becomes more common. Much of this health care burden is caused by late-stage type 2 diabetes, where we do not have effective treatments, so we desperately need new research into novel therapeutic approaches. This discovery dramatically improves our understanding of type 2 diabetes, which will enable the design of better strategies and medications for diabetes in the future”.

Adrian Liston (VIB/University of Leuven): “The big problem in developing drugs for late-stage T2D is that, until now, there has not been an animal model for the beta cell death stage. Previously, animal models were all based on the early stage of metabolic dysfunction in the liver, which has allowed the development of good drugs for treating early-stage T2D. This new mouse model will allow us, for the first time, to test new antidiabetic drugs that focus on preserving beta cells. There are many promising drugs under development at life sciences companies that have just been waiting for a usable animal model. Who knows, there may even be useful compounds hidden away in alternative or traditional medicines that could be found through a good testing program. If a drug is found that stops late-stage diabetes, it would really be a major medical breakthrough!”

New Method Measures Type 2 Diabetes Risk in Blood

http://www.dddmag.com/news/2016/04/new-method-measures-type-2-diabetes-risk-blood

Researchers at Lund University in Sweden have found a new type of biomarker that can predict the risk of type 2 diabetes, by detecting epigenetic changes in specific genes through a simple blood test. The results are published today in Nature Communications.

“This could motivate a person at risk to change their lifestyle”, said Karl Bacos, researcher in epigenetics at Lund University.

Predicting the onset of diabetes is already possible by measuring the blood glucose level average, HbA1C, over time. However, the predictive potential of this method is modest and new methods are needed.

The discoveries made by the research group at Lund University have now made it possible to measure the presence of so-called DNA methylations in four specific genes, and thereby predict who is at risk of developing type 2 diabetes, long before the disease occurs. Methylations are chemical changes that control gene activity, that is, whether they are active or not.

“The hope is that this will be developed into a better way to predict the disease”, said Karl Bacos, first author of the study.

The researchers started by studying insulin-producing beta cells from deceased persons. They found that the DNA methylations in the four genes in question increased, depending on the donor’s age. This in turn affected the activity of the genes.

When these changes were copied in cultured beta cells, they proved to have a positive effect on insulin secretion.

“We could then see the same DNA methylation changes in the blood which was really cool”, said Karl Bacos.

The blood samples from the participants of two separate research projects – one Danish and one Finnish – were then studied and compared with blood samples taken from the same participants ten years later. The Finnish participants, who had exhibited higher levels of DNA methylation in their first sample, had a lower risk of type 2 diabetes ten years later. In the Danish participants, higher DNA methylation in their first sample was associated with higher insulin secretion ten years later. All of the Danish participants were healthy on both occasions, whereas approximately one-third of the Finnish participants had developed type 2 diabetes.

“Increased insulin secretion actually protects against type 2 diabetes. It could be the body’s way of protecting itself when other tissue becomes resistant to insulin, which often happens as we get older”, said professor and research project manager Charlotte Ling.

The studies were based on a relatively small number of participants, and a selection of genes. The researchers therefore now want to continue with finding markers with a stronger predictive potential by implementing so-called epigenetic whole-genome sequencing when analysing a person’s entire genetic make-up and all the DNA methylations that come with it, in a larger population group.

The research group has previously shown that age, diet and exercise affect the so-called epigenetic risk of type 2 diabetes.

“You cannot change your genes and the risks that they entail, but epigenetics means that you can affect the DNA methylations, and thereby gene activity, through lifestyle choices”, said Charlotte Ling.

 

Read Full Post »

Metformin and vitamin B12 deficiency?

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Years of taking popular diabetes drug tied to risk of B12 deficiency

 

Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study

 

Metformin linked to vitamin B12 deficiency

David Holmes   Nature Reviews Endocrinology(2016)    http://dx.doi.org:/10.1038/nrendo.2016.39

Secondary analysis of data from the Diabetes Prevention Program Outcomes Study (DPPOS), one of the largest and longest studies of metformin treatment in patients at high risk of developing type 2 diabetes mellitus, shows that long-term use of metformin is associated with vitamin B12deficiency.

Aroda, V. R. et al. Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program Outcomes Study. J. Clin. Endocrinol. Metab. http://dx.doi.org/10.1210/jc.2015-3754 (2016)

 

Long-term Follow-up of Diabetes Prevention Program Shows Continued Reduction in Diabetes Development

http://www.diabetes.org/newsroom/press-releases/2014/long-term-follow-up-of-diabetes-prevention-program-shows-reduction-in-diabetes-development.html

San Francisco, California
June 16, 2014

Treatments used to decrease the development of type 2 diabetes continue to be effective an average of 15 years later, according to the latest findings of the Diabetes Prevention Program Outcomes Study, a landmark study funded by the National Institutes of Health (NIH).

The results, presented at the American Diabetes Association’s 74th Scientific Sessions®, come more than a decade after the Diabetes Prevention Program, or DPP, reported its original findings. In 2001, after an average of three years of study, the DPP announced that the study’s two interventions, a lifestyle program designed to reduce weight and increase activity levels and the diabetes medicinemetformin, decreased the development of type 2 diabetes in a diverse group of people, all of whom were at high risk for the disease, by 58 and 31 percent, respectively, compared with a group taking placebo.

The Diabetes Prevention Program Outcomes Study, or DPPOS, was conducted as an extension of the DPP to determine the longer-term effects of the two interventions, including further reduction in diabetes development and whether delaying diabetes would reduce the development of the diabetes complications that can lead to blindness, kidney failure, amputations and heart disease. Funded largely by the NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the new findings show that the lifestyle intervention and metformin treatment have beneficial effects, even years later, but did not reduce microvascular complications.

Delaying Type 2 Diabetes

Participants in the study who were originally assigned to the lifestyle intervention and metformin during DPP continued to have lower rates of type 2 diabetes development than those assigned to placebo, with 27 percent and 17 percent reductions, respectively, after 15 years.

“What we’re finding is that we can prevent or delay the onset of type 2 diabetes, a chronic disease, through lifestyle intervention or with metformin, over a very long period of time,” said David M. Nathan, MD, Chairman of the DPP/DPPOS and Professor of Medicine at Harvard Medical School. “After the initial randomized treatment phase in DPP, all participants were offered lifestyle intervention and the rates of diabetes development fell in the metformin and former placebo groups, leading to a reduction in the treatment group differences over time.  However, the lifestyle intervention and metformin are still quite effective at delaying, if not preventing, type 2 diabetes,” Dr. Nathan said. Currently, an estimated 79 million American adults are at high-risk for developing type 2 diabetes.

Microvascular Complications
The DPPOS investigators followed participants for an additional 12 years after the end of the DPP to determine both the extent of diabetes prevention over time and whether the study treatments would also decrease the small vessel -or microvascular- complications, such as eye, nerve and kidney disease. These long-term results did not demonstrate significant differences among the lifestyle intervention, metformin or placebo groups on the microvascular complications, reported Kieren Mather, MD, Professor of Medicine at Indiana University School of Medicine and a study investigator.

“However, regardless of type of initial treatment, participants who didn’t develop diabetes had a 28 percent lower occurrence of the microvascular complications than those participants who did develop diabetes. These findings show that intervening in the prediabetes phase is important in reducing early stage complications,” Dr. Mather noted. The absence of differences in microvascular complications among the intervention groups may be explained by the small differences in average glucose levels among the groups at this stage of follow-up.

Risk for Cardiovascular Disease

The DPP population was relatively young and healthy at the beginning of the study, and few participants had experienced any severe cardiovascular events, such as heart attack or stroke, 15 years later. The relatively small number of events meant that the DPPOS researchers could not test the effects of interventions on cardiovascular disease. However, the research team did examine whether the study interventions, or a delay in the onset of type 2 diabetes, improved cardiovascular risk factors.

“We found that cardiovascular risk factors, such as hypertension, are generally improved by the lifestyle intervention and somewhat less by metformin,” said Ronald Goldberg, MD, Professor of Medicine at the University of Miami and one of the DPPOS investigators. “We know that people with type 2 diabetes are at much higher risk for heart disease and stroke than those who do not have diabetes, so a delay in risk factor development or improvement in risk factors may prove to be beneficial.”

Long-term Results with Metformin

The DPP/DPPOS is the largest and longest duration study to examine the effects of metformin, an inexpensive, well-known and generally safe diabetes medicine, in people who have not been diagnosed with diabetes. For DPPOS participants, metformin treatment was associated with a modest degree of long-term weight loss. “Other than a small increase in vitamin B-12 deficiency, which is a recognized consequence of metformin therapy, it has been extremely safe and well-tolerated over the 15 years of our study,” said Jill Crandall, MD, Professor of Medicine at Albert Einstein College of Medicine and a DPPOS investigator. “Further study will help show whether metformin has beneficial effects on heart disease and cancer, which are both increased in people with type 2 diabetes.”

Looking to the Future

In addition to the current findings, the DPPOS includes a uniquely valuable population that can help researchers understand the clinical course of type 2 diabetes.  Since the participants did not have diabetes at the beginning of the DPP, for those who have developed diabetes, the data show precisely when they developed the disease, which is rare in previous studies. “The DPP and DPPOS have given us an incredible wealth of information by following a very diverse group of people with regard to race and age as they have progressed from prediabetes to diabetes,” said Judith Fradkin, MD, Director of the NIDDK Division of Diabetes, Endocrinology and Metabolic Diseases. “The study provides us with an opportunity to make crucial discoveries about the clinical course of type 2 diabetes.”

Dr. Fradkin noted that the study population held promise for further analyses because researchers would now be able to examine how developing diabetes at different periods of life may cause the disease to progress differently. “We can look at whether diabetes behaves differently if you develop it before the age of 50 or after the age of 60,” she said. “Thanks to the large and diverse population of DPPOS that has remained very loyal to the study, we will be able to see how and when complications first develop and understand how to intervene most effectively.”

She added that NIDDK had invited the researchers to submit an application for a grant to follow the study population for an additional 10 years.

The Diabetes Prevention Program Outcomes Study was funded under NIH grant U01DK048489 by the NIDDK; National Institute on Aging; National Cancer Institute; National Heart, Lung, and Blood Institute; National Eye Institute; National Center on Minority Health and Health Disparities; and the Office of the NIH Director; Eunice Kennedy Shriver National Institute of Child Health and Human Development; Office of Research on Women’s Health; and Office of Dietary Supplements, all part of the NIH, as well as the Indian Health Service, Centers for Disease Control and Prevention and American Diabetes Association. Funding in the form of supplies was provided by Merck Sante, Merck KGaA and LifeScan.

The American Diabetes Association is leading the fight to Stop Diabetes® and its deadly consequences and fighting for those affected by diabetes. The Association funds research to prevent, cure and manage diabetes; delivers services to hundreds of communities; provides objective and credible information; and gives voice to those denied their rights because of diabetes. Founded in 1940, our mission is to prevent and cure diabetes and to improve the lives of all people affected by diabetes. For more information please call the American Diabetes Association at 1-800-DIABETES (1-800-342-2383) or visit http://www.diabetes.org. Information from both these sources is available in English and Spanish.

Association of Biochemical B12Deficiency With Metformin Therapy and Vitamin B12Supplements  

The National Health and Nutrition Examination Survey, 1999–2006

Lael ReinstatlerYan Ping QiRebecca S. WilliamsonJoshua V. Garn, and Godfrey P. Oakley Jr.
Diabetes Care February 2012 vol. 35 no. 2 327-333 
     http://dx.doi.org:/10.2337/dc11-1582

OBJECTIVE To describe the prevalence of biochemical B12deficiency in adults with type 2 diabetes taking metformin compared with those not taking metformin and those without diabetes, and explore whether this relationship is modified by vitamin B12supplements.

RESEARCH DESIGN AND METHODS Analysis of data on U.S. adults ≥50 years of age with (n = 1,621) or without type 2 diabetes (n = 6,867) from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Type 2 diabetes was defined as clinical diagnosis after age 30 without initiation of insulin therapy within 1 year. Those with diabetes were classified according to their current metformin use. Biochemical B12 deficiency was defined as serum B12concentrations ≤148 pmol/L and borderline deficiency was defined as >148 to ≤221 pmol/L.

RESULTS Biochemical B12 deficiency was present in 5.8% of those with diabetes using metformin compared with 2.4% of those not using metformin (P = 0.0026) and 3.3% of those without diabetes (P = 0.0002). Among those with diabetes, metformin use was associated with biochemical B12 deficiency (adjusted odds ratio 2.92; 95% CI 1.26–6.78). Consumption of any supplement containing B12 was not associated with a reduction in the prevalence of biochemical B12deficiency among those with diabetes, whereas consumption of any supplement containing B12 was associated with a two-thirds reduction among those without diabetes.

CONCLUSIONS Metformin therapy is associated with a higher prevalence of biochemical B12 deficiency. The amount of B12recommended by the Institute of Medicine (IOM) (2.4 μg/day) and the amount available in general multivitamins (6 μg) may not be enough to correct this deficiency among those with diabetes.

It is well known that the risks of both type 2 diabetes and B12deficiency increase with age (1,2). Recent national data estimate a 21.2% prevalence of diagnosed diabetes among adults ≥65 years of age and a 6 and 20% prevalence of biochemical B12 deficiency (serum B12<148 pmol/L) and borderline deficiency (serum B12 ≥148–221 pmol/L) among adults ≥60 years of age (3,4).

The diabetes drug metformin has been reported to cause a decrease in serum B12 concentrations. In the first efficacy trial, DeFronzo and Goodman (5) demonstrated that although metformin offers superior control of glycosylated hemoglobin levels and fasting plasma glucose levels compared with glyburide, serum B12 concentrations were lowered by 22% compared with placebo, and 29% compared with glyburide therapy after 29 weeks of treatment. A recent, randomized control trial designed to examine the temporal relationship between metformin and serum B12 found a 19% reduction in serum B12 levels compared with placebo after 4 years (6). Several other randomized control trials and cross-sectional surveys reported reductions in B12ranging from 9 to 52% (716). Although classical B12 deficiency presents with clinical symptoms such as anemia, peripheral neuropathy, depression, and cognitive impairment, these symptoms are usually absent in those with biochemical B12 deficiency (17).

Several researchers have made recommendations to screen those with type 2 diabetes on metformin for serum B12 levels (6,7,1416,1821). However, no formal recommendations have been provided by the medical community or the U.S. Prevention Services Task Force. High-dose B12 injection therapy has been successfully used to correct the metformin-induced decline in serum B12 (15,21,22). The use of B12supplements among those with type 2 diabetes on metformin in a nationally representative sample and their potentially protective effect against biochemical B12 deficiency has not been reported. It is therefore the aim of the current study to use the nationally representative National Health and Nutrition Examination Survey (NHANES) population to determine the prevalence of biochemical B12deficiency among those with type 2 diabetes ≥50 years of age taking metformin compared with those with type 2 diabetes not taking metformin and those without diabetes, and to explore how these relationships are modified by B12 supplement consumption.

Design overview

NHANES is a nationally representative sample of the noninstitutionalized U.S. population with targeted oversampling of U.S. adults ≥60 years of age, African Americans, and Hispanics. Details of these surveys have been described elsewhere (23). All participants gave written informed consent, and the survey protocol was approved by a human subjects review board.

Setting and participants

Our study included adults ≥50 years of age from NHANES 1999–2006. Participants with positive HIV antibody test results, high creatinine levels (>1.7 mg/dL for men and >1.5 mg/dL for women), and prescription B12 injections were excluded from the analysis. Participants who reported having prediabetes or borderline diabetes (n = 226) were removed because they could not be definitively grouped as having or not having type 2 diabetes. We also excluded pregnant women, those with type 1 diabetes, and those without diabetes taking metformin. Based on clinical aspects described by the American Diabetes Association and previous work in NHANES, those who were diagnosed before the age of 30 and began insulin therapy within 1 year of diagnosis were classified as having type 1 diabetes (24,25). Type 2 diabetes status in adults was dichotomized as yes/no. Participants who reported receiving a physician’s diagnosis after age 30 (excluding gestational diabetes) and did not initiate insulin therapy within 1 year of diagnosis were classified as having type 2 diabetes.

Outcomes and follow-up

The primary outcome was biochemical B12 deficiency determined by serum B12 concentrations. Serum B12 levels were quantified using the Quantaphase II folate/vitamin B12 radioassay kit from Bio-Rad Laboratories (Hercules, CA). We defined biochemical B12 deficiency as serum levels ≤148 pmol/L, borderline deficiency as serum B12 >148 to ≤221 pmol/L, and normal as >221 pmol/L (26).

The main exposure of interest was metformin use. Using data collected in the prescription medicine questionnaire, those with type 2 diabetes were classified as currently using metformin therapy (alone or in combination therapy) versus those not currently using metformin. Length of metformin therapy was used to assess the relationship between duration of metformin therapy and biochemical B12 deficiency. In the final analysis, two control groups were used to allow the comparison of those with type 2 diabetes taking metformin with those with type 2 diabetes not taking metformin and those without diabetes.

To determine whether the association between metformin and biochemical B12 deficiency is modified by supplemental B12 intake, data from the dietary supplement questionnaire were used. Information regarding the dose and frequency was used to calculate average daily supplemental B12 intake. We categorized supplemental B12 intake as 0 μg (no B12 containing supplement), >0–6 μg, >6–25 μg, and >25 μg. The lower intake group, >0–6 μg, includes 6 μg, the amount of vitamin B12 typically found in over-the-counter multivitamins, and 2.4 μg, the daily amount the IOM recommends for all adults ≥50 years of age to consume through supplements or fortified food (1). The next group, >6–25 μg, includes 25 μg, the amount available in many multivitamins marketed toward senior adults. The highest group contains the amount found in high-dose B-vitamin supplements.

 

In the final analysis, there were 575 U.S. adults ≥50 years of age with type 2 diabetes using metformin, 1,046 with type 2 diabetes not using metformin, and 6,867 without diabetes. The demographic and biological characteristics of the groups are shown in Table 1. Among metformin users, mean age was 63.4 ± 0.5 years, 50.3% were male, 66.7% were non-Hispanic white, and 40.7% used a supplement containing B12. The median duration of metformin use was 5 years. Compared with those with type 2 diabetes not taking metformin, metformin users were younger (P < 0.0001), reported a lower prevalence of insulin use (P < 0.001), and had a shorter duration of diabetes (P = 0.0207). Compared with those without diabetes, metformin users had a higher proportion of nonwhite racial groups (P< 0.0001), a higher proportion of obesity (P < 0.0001), a lower prevalence of macrocytosis (P = 0.0017), a lower prevalence of supplemental folic acid use (P = 0.0069), a lower prevalence of supplemental vitamin B12 use (P = 0.0180), and a lower prevalence of calcium supplement use (P = 0.0002). There was a twofold difference in the prevalence of anemia among those with type 2 diabetes versus those without, and no difference between the groups with diabetes.    

Association of Biochemical B12Deficiency With Metformin Therapy and Vitamin B12Supplements

Demographic and biological characteristics of U.S. adults ≥50 years of age: NHANES 1999–2006

Table 1
The geometric mean serum B12 concentration among those with type 2 diabetes taking metformin was 317.5 pmol/L. This was significantly lower than the geometric mean concentration in those with type 2 diabetes not taking metformin (386.7 pmol/L; P = 0.0116) and those without diabetes (350.8 pmol/L; P = 0.0011). As seen in Fig. 1, the weighted prevalence of biochemical B12 deficiency adjusted for age, race, and sex was 5.8% for those with type 2 diabetes taking metformin, 2.2% for those with type 2 diabetes not taking metformin (P = 0.0002), and 3.3% for those without diabetes (P = 0.0026). Among the three aforementioned groups, borderline deficiency was present in 16.2, 5.5, and 8.8%, respectively (P < 0.0001). Applying the Fleiss formula for calculating attributable risk from cross-sectional data (27), among all of the cases of biochemical B12 deficiency, 3.5% of the cases were attributable to metformin use; and among those with diabetes, 41% of the deficient cases were attributable to metformin use. When the prevalence of biochemical B12 deficiency among those with diabetes taking metformin was analyzed by duration of metformin therapy, there was no notable increase in the prevalence of biochemical B12 deficiency as the duration of metformin use increased. The prevalence of biochemical B12 deficiency was 4.1% among those taking metformin <1 year, 6.3% among those taking metformin ≥1–3 years, 4.1% among those taking metformin >3–10 years, and 8.1% among those taking metformin >10 years (P = 0.3219 for <1 year vs. >10 years). Similarly, there was no clear increase in the prevalence of borderline deficiency as the duration of metformin use increased (15.9% among those taking metformin >10 years vs. 11.4% among those taking metformin <1 year; P = 0.4365).
Figure 1
Weighted prevalence of biochemical B12 deficiency and borderline deficiency adjusted for age, race, and sex in U.S. adults ≥50 years of age: NHANES 1999–2006. Black bars are those with type 2 diabetes on metformin, gray bars are those with type 2 diabetes not on metformin, and the white bars are those without diabetes. *P = 0.0002 vs. type 2 diabetes on metformin. †P < 0.0001 vs. type 2 diabetes on metformin. ‡P = 0.0026 vs. type 2 diabetes on metformin.
Table 2 presents a stratified analysis of the weighted prevalence of biochemical B12 deficiency and borderline deficiency by B12supplement use. For those without diabetes, B12 supplement use was associated with an ∼66.7% lower prevalence of both biochemical B12deficiency (4.8 vs. 1.6%; P < 0.0001) and borderline deficiency (16.6 vs. 5.5%; P < 0.0001). A decrease in the prevalence of biochemical B12deficiency was seen at all levels of supplemental B12 intake compared with nonusers of supplements. Among those with type 2 diabetes taking metformin, supplement use was not associated with a decrease in the prevalence of either biochemical B12 deficiency (5.6 vs. 5.3%; P= 0.9137) or borderline deficiency (15.5 vs. 8.8%; P = 0.0826). Among the metformin users who also used supplements, those who consumed >0–6 μg of B12 had a prevalence of biochemical B12 deficiency of 14.1%. However, consumption of a supplement containing >6 μg of B12 was associated with a prevalence of biochemical B12 deficiency of 1.8% (P = 0.0273 for linear trend). Similar trends were seen in the association of supplemental B12 intake and the prevalence of borderline deficiency. For those with type 2 diabetes not taking metformin, supplement use was also not associated with a decrease in the prevalence of biochemical B12 deficiency (2.1 vs. 2.0%; P = 0.9568) but was associated with a 54% reduction in the prevalence of borderline deficiency (7.8 vs. 3.4%; P = 0.0057 for linear trend).
Table 2
Comparison of average daily B12 supplement intake by weighted prevalence of biochemical B12 deficiency (serum B12 ≤148 pmol/L) and borderline deficiency (serum B12 >148 to ≤221 pmol/L) among U.S. adults ≥50 years of age: NHANES 1999–2006.
Table 3 demonstrates the association of various risk factors with biochemical B12 deficiency. Metformin therapy was associated with biochemical B12 deficiency (odds ratio [OR] 2.89; 95% CI 1.33–6.28) and borderline deficiency (OR 2.32; 95% CI 1.31–4.12) in a crude model (results not shown). After adjusting for age, BMI, and insulin and supplement use, metformin maintained a significant association with biochemical B12 deficiency (OR 2.92; 95% CI 1.28–6.66) and borderline deficiency (OR 2.16; 95% CI 1.22–3.85). Similar to Table 2, B12 supplements were protective against borderline (OR 0.43; 95% CI 0.23–0.81), but not biochemical, B12 deficiency (OR 0.76; 95% CI 0.34–1.70) among those with type 2 diabetes. Among those without diabetes, B12 supplement use was ∼70% protective against biochemical B12 deficiency (OR 0.26; 95% CI 0.17–0.38) and borderline deficiency (OR 0.27; 95% CI 0.21–0.35).
Table 3
Polytomous logistic regression for potential risk factors of biochemical B12 deficiency and borderline deficiency among U.S. adults ≥50 years of age: NHANES 1999–2006, OR (95% CI)

The IOM has highlighted the detection and diagnosis of B12 deficiency as a high-priority topic for research (1). Our results suggest several findings that add to the complexity and importance of B12 research and its relation to diabetes, and offer new insight into the benefits of B12 supplements. Our data confirm the relationship between metformin and reduced serum B12 levels beyond the background prevalence of biochemical B12 deficiency. Our data demonstrate that an intake of >0–6 μg of B12, which includes the dose most commonly found in over-the-counter multivitamins, was associated with a two-thirds reduction of biochemical B12 deficiency and borderline deficiency among adults without diabetes. This relationship has been previously reported with NHANES and Framingham population data (4,29). In contrast, we did not find that >0–6 μg of B12 was associated with a decrease in the prevalence of biochemical B12 deficiency or borderline deficiency among adults with type 2 diabetes taking metformin. This observation suggests that metformin reduces serum B12 by a mechanism that is additive to or different from the mechanism in older adults. It is also possible that metformin may exacerbate the deficiency among older adults with low serum B12. Our sample size was too small to determine which amount >6 μg was associated with maximum protection, but we did find a dose-response trend.

We were surprised to find that those with type 2 diabetes not using metformin had the lowest prevalence of biochemical B12 deficiency. It is possible that these individuals may seek medical care more frequently than the general population and therefore are being treated for their biochemical B12 deficiency. Or perhaps, because this population had a longer duration of diabetes and a higher proportion of insulin users compared with metformin users, they have been switched from metformin to other diabetic treatments due to low serum B12 concentrations or uncontrolled glucose levels and these new treatments may increase serum B12 concentrations. Despite the observed effects of metformin on serum B12 levels, it remains unclear whether or not this reduction is a public health concern. With lifetime risks of diabetes estimated to be one in three and with metformin being a first-line intervention, it is important to increase our understanding of the effects of oral vitamin B12 on metformin-associated biochemical deficiency (20,21).

The strengths of this study include its nationally representative, population-based sample, its detailed information on supplement usage, and its relevant biochemical markers. This is the first study to use a nationally representative sample to examine the association between serum B12 concentration, diabetes status, and metformin use as well as examine how this relationship may be modified by vitamin B12 supplementation. The data available regarding supplement usage provided specific information regarding dose and frequency. This aspect of NHANES allowed us to observe the dose-response relationship in Table 2 and to compare it within our three study groups.

This study is also subject to limitations. First, NHANES is a cross-sectional survey and it cannot assess time as a factor, and therefore the results are associations and not causal relationships. A second limitation arises in our definition of biochemical B12 deficiency. There is no general consensus on how to define normal versus low serum B12levels. Some researchers include the functional biomarker methylmalonic acid (MMA) in the definition, but this has yet to be agreed upon (3034). Recently, an NHANES roundtable discussion suggested that definitions of biochemical B12 deficiency should incorporate one biomarker (serum B12 or holotranscobalamin) and one functional biomarker (MMA or total homocysteine) to address problems with sensitivity and specificity of the individual biomarkers. However, they also cited a need for more research on how the biomarkers are related in the general population to prevent misclassification (34). MMA was only measured for six of our survey years; one-third of participants in our final analysis were missing serum MMA levels. Moreover, it has recently been reported that MMA values are significantly greater among the elderly with diabetes as compared with the elderly without diabetes even when controlling for serum B12 concentrations and age, suggesting that having diabetes may independently increase the levels of MMA (35). This unique property of MMA in elderly adults with diabetes makes it unsuitable as part of a definition of biochemical B12 deficiency in our specific population groups. Our study may also be subject to misclassification bias. NHANES does not differentiate between diabetes types 1 and 2 in the surveys; our definition may not capture adults with type 2 diabetes exclusively. Additionally, we used responses to the question “Have you received a physician’s diagnosis of diabetes” to categorize participants as having or not having diabetes. Therefore, we failed to capture undiagnosed diabetes. Finally, we could only assess current metformin use. We cannot determine if nonmetformin users have ever used metformin or if they were not using it at the time of the survey.

Our data demonstrate several important conclusions. First, there is a clear association between metformin and biochemical B12 deficiency among adults with type 2 diabetes. This analysis shows that 6 μg of B12 offered in most multivitamins is associated with two-thirds reduction in biochemical B12 deficiency in the general population, and that this same dose is not associated with protection against biochemical B12 deficiency among those with type 2 diabetes taking metformin. Our results have public health and clinical implications by suggesting that neither 2.4 μg, the current IOM recommendation for daily B12 intake, nor 6 μg, the amount found in most multivitamins, is sufficient for those with type 2 diabetes taking metformin.

This analysis suggests a need for further research. One research design would be to identify those with biochemical B12 deficiency and randomize them to receive various doses of supplemental B12chronically and then evaluate any improvement in serum B12concentrations and/or clinical outcomes. Another design would use existing cohorts to determine clinical outcomes associated with biochemical B12 deficiency and how they are affected by B12supplements at various doses. Given that a significant proportion of the population ≥50 years of age have biochemical B12 deficiency and that those with diabetes taking metformin have an even higher proportion of biochemical B12 deficiency, we suggest that support for further research is a reasonable priority.

 

Discussion:
One research design would be to identify those with biochemical B12 deficiency and randomize them to receive various doses of supplemental B12chronically and then evaluate any improvement in serum B12concentrations and/or clinical outcomes. Another design would use existing cohorts to determine clinical outcomes associated with biochemical B12 deficiency and how they are affected by B12supplements at various doses.
This is of considerable interest.  As far as I can see, there is insufficient data presented to discern all of the variables entangled.  In a study of 8000 hemograms several years ago, it was of some interest that there were a large percentage of patients who were over age 75 years having a MCV of 94 – 100, not considered indicative of macrocytic anemia.  It would have been interesting to explore that set of the data further.
UPDATED 3/17/2020
 2019 May 7;11(5). pii: E1020. doi: 10.3390/nu11051020.

Monitoring Vitamin B12 in Women Treated with Metformin for Primary Prevention of Breast Cancer and Age-Related Chronic Diseases.

Abstract

Metformin (MET) is currently being used in several trials for cancer prevention or treatment in non-diabetics. However, long-term MET use in diabetics is associated with lower serum levels of total vitamin B12. In a pilot randomized controlled trial of the Mediterranean diet (MedDiet) and MET, whose participants were characterized by different components of metabolic syndrome, we tested the effect of MET on serum levels of B12, holo transcobalamin II (holo-TC-II), and methylmalonic acid (MMA). The study was conducted on 165 women receiving MET or placebo for three years. Results of the study indicate a significant overall reduction in both serum total B12 and holo-TC-II levels according with MET-treatment. In particular, in the MET group 26 of 81 patients and 10 of the 84 placebo-treated subjects had B12 below the normal threshold (<221 pmol/L) at the end of the study. Considering jointly all B12, Holo-TC-II, and MMA, 13 of the 165 subjects (10 MET and 3 placebo-treated) had at least two deficits in the biochemical parameters at the end of the study, without reporting clinical signs. Although our results do not affect whether women remain in the trial, B12 monitoring for MET-treated individuals should be implemented.

ntroduction

Metformin (MET) is the first-line treatment for type-2 diabetes and has been used for decades to treat this chronic condition [1]. Given its favorable effects on glycemic control, weight patterns, insulin requirements, and cardiovascular outcomes, MET has been recently proposed in addition to lifestyle interventions to reduce metabolic syndrome (MS) and age-related chronic diseases [2]. Observational studies have also suggested that diabetic patients treated with MET had a significantly lower risk of developing cancer or lower cancer mortality than those untreated or treated with other drugs [3,4]. For this reason, a number of clinical trials are in progress in different solid cancers.
One of the limitations in implementing long-term use of MET to prevent chronic conditions in healthy subjects relates to its potential lowering effect on vitamin B12 (B12). The aim of the present study was to assess the effect of three years of MET treatment in a randomized, controlled trial considering both B12 levels and biomarkers of its metabolism and biological effectiveness.
Cobalamin, also known as B12, is a water-soluble, cobalt-containing vitamin. All forms of B12 are converted intracellularly into adenosyl-Cbl and methylcobalamin—the biologically active forms at the cellular level [5]. Vitamin B12 is a vital cofactor of two enzymes: methionine synthase and L-methyl-malonyl-coenzyme. A mutase in intracellular enzymatic reactions related to DNA synthesis, as well as in amino and fatty acid metabolism. Vitamin B12, under the catalysis of the enzyme l-methyl-malonyl-CoA mutase, synthesizes succinyl-CoA from methylmalonyl-CoA in the mitochondria. Deficiency of B12, thus results in elevated methylmalonic acid (MMA) levels.
Dietary B12 is normally bound to proteins. Food-bound B12 is released in the stomach under the effect of gastric acid and pepsin. The free vitamin is then bound to an R-binder, a glycoprotein in gastric fluid and saliva that protects B12 from the highly acidic stomach environment. Pancreatic proteases degrade R-binder in the duodenum and liberate B12; finally, the free vitamin is then bound by the intrinsic factor (IF)—a glycosylated protein secreted by gastric parietal cells—forming an IF-B12 complex [6]. The IF resists proteolysis and serves as a carrier for B12 to the terminal ileum where the IF-B12 complex undergoes receptor (cubilin)-mediated endocytosis [7]. The vitamin then appears in circulation bound to holo-transcobalamin-I (holo-TC-I), holo-transcobalamin-II (holo-TC-II), and holo-transcobalamin-III (holo-TC-III). It is estimated that 20–30% of the total circulating B12 is bound to holo-TC-II and only this form is available to the cells [7]. Holo-TC-I binds 70–80% of circulating B12, preventing the loss of the free unneeded portion [6]. Vitamin B12 is stored mainly in the liver and kidneys.
Many mechanisms have been proposed to explain how MET interferes with the absorption of B12: diminished absorption due to changes in bacterial flora, interference with intestinal absorption of the IF–B12 complex (and)/or alterations in IF levels. The most widely accepted current mechanism suggests that MET antagonizes the calcium cation and interferes with the calcium-dependent IF–B12 complex binding to the ileal cubilin receptor [8,9]. The recognition and treatment of B12 deficiency is important because it is a cause of bone marrow failure, macrocytic anemia, and irreversible neuropathy [10].
In general, previous studies on diabetics have observed a reduction in serum levels of B12 after both short- and long-term MET treatment [1]. A recent review on observational studies showed significantly lower levels of B12 and an increased risk of borderline or frank B12 deficiency in patients on MET than not on MET [1]. The meta-analysis of four trials (only one double-blind) found a significant overall mean B12 reducing effect of MET after six weeks to three months of use [1]. A secondary analysis (13 years after randomization) of the Diabetes Prevention Program Outcomes Study, which randomized over 3000 persons at high risk for type 2 diabetes to MET or placebo, showed a 13% increase in the risk of B12 deficiency per year of total MET use [3]. In this study, B12 levels were measured from samples obtained in years 1 and 9. Stored serum samples from other time points, including baseline, were not available, and potentially informative red blood cell indices that might have demonstrated the macrocytic anemia, typical of B12 deficiency, were not recorded [3]. The HOME (Hyperinsulinaemia: the Outcome of its Metabolic Effects) study, a large randomized controlled trial investigating the long-term effects of MET versus placebo in patients with type 2 diabetes treated with insulin, showed that the addition of MET improved glycemic control, reduced insulin requirements, prevented weight gain but lowered serum B12 over time, and raised serum homocysteine, suggesting tissue B12 deficiency [4]. A recent analysis of 277 diabetics from the same trial showed that serum levels of MMA, the specific biomarker for tissue B12 deficiency [5], were significantly higher in people treated with MET than those receiving placebo after four years (on average) [4].
The risk of MET-associated B12 deficiency may be higher in older individuals and those with poor dietary habits. Prospective studies have found negative associations between obesity and B12 in numerous ethnicities [11,12]. An energy-dense but micronutrient-insufficient diet consumed by individuals who are overweight or obese might explain this [12]. Furthermore, obesity is associated with low-grade inflammation and these physiological changes have been shown to be associated, in several studies, with elevated C-reactive protein and homocysteine and with low concentrations of B12 and other vitamins [13,14].
As part of a pilot randomized controlled trial of the Mediterranean diet (MedDiet) and MET for primary prevention of breast cancer and other chronic age-related diseases in healthy women with tracts of MS [15] we tested the effect of MET on serum levels of B12, holo-TC-II, and MMA.

Other articles of note on the Mediterranean Diet in this Online Open Access Scientific Journal Include

Read Full Post »

Adipocyte Derived Stroma Cells: Their Usage in Regenerative Medicine and Reprogramming into Pancreatic Beta-Like Cells

Curator: Evelina Cohn, Ph.D.

The following presentation can be dowloaded in PowerPoint form by clicking on the link below:

adipocytes (1)

 

In Summary:

There are different results related to betatrophin and its characteristic to induce insulin and/or expand the pancreas beta cells. All the experiments so far were performed in mice. Some of the authors like Elisabeth Kugelberg from Harvard University agrees that betatrophin can induce insulin and expansion of secreting beta cells in mice (E. Kugelberg , 2014). Levitsky et al., 2014, come to the conclusion that betatrophin stimulate growth of beta cells in mice, while Gusarova et al., 2014, said that Betatrophin doesn’t control cell expansion in mice ( Gusarova et al., 2014) All three results are based on experiments on mice.

To make sure what are the characteristics of betatrophin in human pancreatic beta cells I suggest to try to determine the concentration and effect on those concentrations on immortal beta cells from human, CM cell line (insulinoma-obtained from ascitic fluid of cancer patients ) ( they are not producing any insulin under the glucose stimulation, therefore they may be a good for our model if they respond to betatrophin) TRM-1 (foetal Human SV40 T antigen)-Express small amount of insulin, not responsive to glucose stimulation) and finally Blox5 ( foetal Human SV40 T –antigen) which Exhibit glucose responsive. and Low insulin content. Blox5 may be the second good cell line to experiment, because they are responsive to glucose and they may be responsive to betatrophin as well.

If we found that those cell lines are inducing insulin then we may try primary beta cells. There is an article of 2013 (Ilie and Ilie, 2013) in which there is a possibility of regeneration of beta cells in vivo by neogenesis from adult pancreas. We can use their model to see if betatrophin indeed induce insulin in those cells. ( see the article attached)

On the other hand there are possibilities of growing beta cells directly onto pancreatic duct as it shows below:

pharmacoogicalapproaches to islet regeneration

 

 

 

 

 

 

 

 

 

 

From: https://infodiabet.wordpress.com/2010/08/31/new-sources-of-pancreatic-beta-cells/

Therefore, I suggest of producing pancreatic duct by using 3D printing and grow the cells by neogenesis

directly on the pancreatic duct.

References:

Gusarova V, Alexa CA, Na E, Stevis PE, Xin Y, Bonner-Weir S,

Cohen JC, Hobbs HH, Murphy AJ, Yancopoulos GD, Gromada J (2014), ANGPTL8/Betatrophin Does Not Control Pancreatic Beta Cell Expansion. Cell 159: 691-696.

Kugelberg E. (2013) Diabetes: Betatrophin—inducing β-cell expansion to treat diabetes mellitus? Nature Reviews Endocrinology 9: 379

Levitsky LL, Ardestani G, Rhoads DB (2014). Role of growth factors in control of pancreatic beta cell mass: focus on betatrophin. Curr Opin Pediatr. August 26 (4):475-9

 

 

 

Slide1Slide2Slide3Slide4Slide5Slide6Slide7Slide8Slide9Slide10Slide11Slide12Slide13Slide14

 

 

 

 

 

Read Full Post »

« Newer Posts - Older Posts »