Feeds:
Posts
Comments

Posts Tagged ‘merck’

Live Conference Coverage @Medcitynews Converge 2018 @Philadelphia: Promising Drugs and Breaking Down Silos

Reporter: Stephen J. Williams, PhD

Promising Drugs, Pricing and Access

The drug pricing debate rages on. What are the solutions to continuing to foster research and innovation, while ensuring access and affordability for patients? Can biosimilars and generics be able to expand market access in the U.S.?

Moderator: Bunny Ellerin, Director, Healthcare and Pharmaceutical Management Program, Columbia Business School
Speakers:
Patrick Davish, AVP, Global & US Pricing/Market Access, Merck
Robert Dubois M.D., Chief Science Officer and Executive Vice President, National Pharmaceutical Council
Gary Kurzman, M.D., Senior Vice President and Managing Director, Healthcare, Safeguard Scientifics
Steven Lucio, Associate Vice President, Pharmacy Services, Vizient

What is working and what needs to change in pricing models?

Robert:  He sees so many players in the onStevencology space discovering new drugs and other drugs are going generic (that is what is working).  However are we spending too much on cancer care relative to other diseases (their initiative Going Beyond the Surface)

Steven:  the advent of biosimilars is good for the industry

Patrick:  large effort in oncology, maybe too much (750 trials on Keytruda) and he says pharma is spending on R&D (however clinical trials take large chunk of this money)

Robert: cancer has gotten a free ride but cost per year relative to benefit looks different than other diseases.  Are we overinvesting in cancer or is that a societal decision

Gary:  maybe as we become more specific with precision medicines high prices may be a result of our success in specifically targeting a mutation.  We need to understand the targeted drugs and outcomes.

Patrick: “Cancer is the last big frontier” but he says prices will come down in most cases.  He gives the example of Hep C treatment… the previous only therapeutic option was a very toxic yearlong treatment but the newer drugs may be more cost effective and safer

Steven: Our blockbuster drugs could diffuse the expense but now with precision we can’t diffuse the expense over a large number of patients

President’s Cancer Panel Recommendation

Six recommendations

  1. promoting value based pricing
  2. enabling communications of cost
  3. financial toxicity
  4. stimulate competition biosimilars
  5. value based care
  6. invest in biomedical research

Patrick: the government pricing regime is hurting.  Alot of practical barriers but Merck has over 200 studies on cost basis

Robert:  many concerns/impetus started in Europe on pricing as they are a set price model (EU won’t pay more than x for a drug). US is moving more to outcomes pricing. For every one health outcome study three studies did not show a benefit.  With cancer it is tricky to establish specific health outcomes.  Also Medicare gets best price status so needs to be a safe harbor for payers and biggest constraint is regulatory issues.

Steven: They all want value based pricing but we don’t have that yet and there is a challenge to understand the nuances of new therapies.  Hard to align all the stakeholders together so until some legislation starts to change the reimbursement-clinic-patient-pharma obstacles.  Possibly the big data efforts discussed here may help align each stakeholders goals.

Gary: What is the data necessary to understand what is happening to patients and until we have that information it still will be complicated to determine where investors in health care stand at in this discussion

Robert: on an ICER methods advisory board: 1) great concern of costs how do we determine fair value of drug 2) ICER is only game in town, other orgs only give recommendations 3) ICER evaluates long term value (cost per quality year of life), budget impact (will people go bankrupt)

4) ICER getting traction in the public eye and advocates 5) the problem is ICER not ready for prime time as evidence keeps changing or are they keeping the societal factors in mind and they don’t have total transparancy in their methodology

Steven: We need more transparency into all the costs associated with the drug and therapy and value-based outcome.  Right now price is more of a black box.

Moderator: pointed to a recent study which showed that outpatient costs are going down while hospital based care cost is going rapidly up (cost of site of care) so we need to figure out how to get people into lower cost setting

Breaking Down Silos in Research

“Silo” is healthcare’s four-letter word. How are researchers, life science companies and others sharing information that can benefit patients more quickly? Hear from experts at institutions that are striving to tear down the walls that prevent data from flowing.

Moderator: Vini Jolly, Executive Director, Woodside Capital Partners
Speakers:
Ardy Arianpour, CEO & Co-Founder, Seqster @seqster
Lauren Becnel, Ph.D., Real World Data Lead for Oncology, Pfizer
Rakesh Mathew, Innovation, Research, & Development Lead, HealthShareExchange
David Nace M.D., Chief Medical Officer, Innovaccer

Seqster: Seqster is a secure platform that helps you and your family manage medical records, DNA, fitness, and nutrition data—all in one place. Founder has a genomic sequencing background but realized sequence  information needs to be linked with medical records.

HealthShareExchange.org :

HealthShare Exchange envisions a trusted community of healthcare stakeholders collaborating to deliver better care to consumers in the greater Philadelphia region. HealthShare Exchange will provide secure access to health information to enable preventive and cost-effective care; improve quality of patient care; and facilitate care transitions. They have partnered with multiple players in healthcare field and have data on over 7 million patients.

Innovacer

Data can be overwhelming, but it doesn’t have to be this way. To drive healthcare efficiency, we designed a modular suite of products for a smooth transition into a data-driven world within 4 weeks. Why does it take so much money to move data around and so slowly?

What is interoperatibility?

Ardy: We knew in genomics field how to build algorithms to analyze big data but how do we expand this from a consumer standpoint and see and share your data.

Lauren: how can we use the data between patients, doctors, researchers?  On the research side genomics represent only 2% of data.  Silos are one issue but figuring out the standards for data (collection, curation, analysis) is not set. Still need to improve semantic interoperability. For example Flatiron had good annotated data on male metastatic breast cancer.

David: Technical interopatabliltiy (platform), semantic interopatability (meaning or word usage), format (syntactic) interopatibility (data structure).  There is technical interoperatiblity between health system but some semantic but formats are all different (pharmacies use different systems and write different prescriptions using different suppliers).  In any value based contract this problem is a big issue now (we are going to pay you based on the quality of your performance then there is big need to coordinate across platforms).  We can solve it by bringing data in real time in one place and use mapping to integrate the format (need quality control) then need to make the data democratized among players.

Rakesh:  Patients data should follow the patient. Of Philadelphia’s 12 health systems we had a challenge to make data interoperatable among them so tdhey said to providers don’t use portals and made sure hospitals were sending standardized data. Health care data is complex.

David: 80% of clinical data is noise. For example most eMedical Records are text. Another problem is defining a patient identifier which US does not believe in.

 

 

 

 

Please follow on Twitter using the following #hash tags and @pharma_BI

#MCConverge

#cancertreatment

#healthIT

#innovation

#precisionmedicine

#healthcaremodels

#personalizedmedicine

#healthcaredata

And at the following handles:

@pharma_BI

@medcitynews

Read Full Post »

Merck Might End DPP-4 Drug Development Program Due to Serious Adverse Events

Stephen J. Williams, PhD.: Reporter/Curator

As Reported From FiercePharma

Read Full Post »

Larry H Bernstein, MD, FCAP, Reporter and curator

αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics

http://phrmaceuticalintelligence.com/2013-10-12/larryhbern_BS-Coller/αllbβ3 Antagonists As An Example of Translational Medicine Therapeutics

by Barry S. Coller, MD
Rockefeller University

Introduction

This article is a segment in several articles about platelets, platelet function, and advances in applying the surge of knowledge to therapy.  In acute coronary syndromes, plaque rupture leads to thrombotic occlusion.  We have also seen that the development of a plaque occurs in 3 stages, only the last of which involves plaque rupture.  Platelets interact with the vascular endothelium, and platelet-endothelial as well as platelet-platelet interactions are known to be important in atherogenesis.  We learned that platelets are derived from megakaryocytes that break up and these elements are released into the blood stream.  It has recently been discovered that platelets can replicate in the circulation.  The turnover of platelets is rapid, and platelets sre stored at room temperature with shaking, and are viable for perhaps only 3-4 days once they are received in the blood bank for use.  In cardiology, the identification, isolation, and characterization of GPIIb/IIIa from the platelet was a huge advance in the potential for coronary intervention, and that potential became of paramount importance with the introduction of GPIIb/IIIa inhibitors as a standard in coronary vascular therapeutic procedures.   The following manuscript by Barry Coller, at Rockefeller University,  is a presentation of the GPIIb/IIIa story as an excellent example of Translational Medicine.

Search for GPIIb/IIIa inhibitor of the (anti-αIIb133 (GPIIb/IIIa) receptor)

The deliberate search for drugs to inhibit the αIIb133 (GPIIb/IIIa) receptor ushered in the era of rationally designed antiplatelet therapy and thus represents an important milestone in the evolution of antiplatelet drug development. The selection of the αIIb133 receptor as a therapeutic target rested on a broad base of basic and clinical research conducted by many investigators in the 1960s and 1970s working in the fields of platelet physiology, the rare bleeding disorder Glanzmann thrombasthenia, platelet membrane glycoproteins, integrin receptors, coronary artery pathology, and experimental thrombosis. Thus, αIIb133 was found to mediate platelet aggregation by virtually all of the physiology agonists (e.g., ADP, epinephrine, and thrombin) through a mechanism in which platelet activation by these agents results in a change in the conformation of the receptor. This is followed by increased affinity of the receptor for the multivalent ligands fibrinogen and von Willebrand factor, both of which are capable of binding to receptors on two platelets simultaneously, producing platelet crosslinking and aggregation. At about the same time, experimental studies demonstrated platelet thrombus formation at sites of vascular injury, and biochemical studies in humans demonstrated evidence of platelet activation during acute ischemic cardiovascular events.

Our own studies initially focused on platelet-fibrinogen interactions using an assay in which normal platelets agglutinated fibrinogen-coated beads. The agglutination was enhanced with platelet activators. Platelets from patients with Glanzmann thrombasthenia, who lack the αIIb133 receptor, did not agglutinate the beads. We adapted this assay to a microtiter plate system to identify monoclonal antibodies that inhibited platelet-fibrinogen interactions and then demonstrated that these antibodies bound to αIIb133. They were also more potent inhibitors of platelet aggregation than any known antiplatelet agent and produced a pattern of aggregation that was virtually identical to that found using platelets from patients with Glanzmann thrombasthenia.

I recognized the theoretical potential of using an antibody to inhibit platelets in vivo but also recognized the challenges and limitations. Since experimental models of thrombosis had been developed in the dog, and since the antibody we initially worked with did not react with dog platelets, we had to go back to our original samples to identify an antibody (7E3) that reacted with dog platelets in addition to human platelets. Since coating platelets with immunoglobulins results in their rapid elimination of the platelets from the circulation, and since the clearance is mediated by the immunoglobulin Fc region, we prepared F(ab’)2 fragments of 7E3 for our in vivo studies. Additional challenges included preparing large quantities of antibody on a very limited budget and purifying the antibodies so they contained only minimal amounts of endotoxin. With the small amount of 7E3-F(ab’)2 we initially prepared, we were able to show dose response inhibition of platelet aggregation in three dogs, achieving greater inhibition than with aspirin or ticlopidine, the only antiplatelet agents approved for human use at that time. We also devised an assay using radiolabeled 7E3 to quantify the percentage of platelet αIIbβ3 receptors that were blocked when a specific dose of 7E3-F(ab’)2 was administered in vivo. This allowed us to directly measure the effect of the agent on its target receptor on its target cell.

I considered two criteria most important in selecting the initial animal models in which to test the efficacy and safety of administering 7E3-F(ab’)2:

  • 1) the model had to convincingly simulate a human vascular disease, and
  • 2) aspirin had to have failed to produce complete protection from thrombosis.

The latter criterion was particularly important because I planned to stop this line of research if the 7E3-F(ab’)2 was not more efficacious than aspirin.

Ultimately, we collaborated with Dr. John Folts of the University of Wisconsin, who had developed a dog model of unstable angina by attaching a short cylindrical ring to partially occlude a coronary artery and using a hemostat to induce vascular injury. Pretreatment of the animal with 7E3-F(ab’)2 was more effective than aspirin or any other compound Dr. Folts had previously tested in preventing platelet thrombus formation, as judged by its effects on the characteristic repetitive cycles of platelet deposition and embolization. Electron microscopy of the vessels confirmed the reduction in platelet thrombi by 7E3-F(ab’)2, with only a monolayer of platelets typically deposited.

Dr. Chip Gold and his colleagues at Massachusetts General Hospital had developed a dog model to assess the effects of tissue plasminogen activator (t-PA) on experimental thrombi induced in the dog coronary artery. Although t-PA was effective in lysing the thrombi, the blood vessels rapidly reoccluded with new thrombi that were rich in platelets. Aspirin could not prevent reocclusion, whereas 7E3-F(ab’)2 not only prevented reocclusion, but also increased the speed of reperfusion by t-PA.

The next steps in drug development could not be performed in my laboratory because they required resources far in excess of those in my grant from the National Heart, Lung, and Blood Institute to study basic platelet physiology. As a result, in 1986 the Research Foundation of the State University of New York licensed the 7E3 antibody to Centocor, Inc., a new biotechnology company specializing in the diagnostic and therapeutic application of monoclonal antibodies.

Subsequent Development of 7E3

The subsequent development of 7E3 as a therapeutic agent required extensive collaboration among myself, a large number of outstanding scientists at Centocor, and many leading academic cardiologists. Many decisions and hurdles remained for us, including the decision to develop a mouse/human chimeric 7E3 Fab (c7E3 Fab); the design and execution of the toxicology studies; the assessment of the potential toxicity of 7E3 crossreactivity with αVβ3; the development of sensitive and specific assays to assess immune responses to c7E3 Fab; the design, execution, and analysis of the Phase I, II, and III studies; and the preparation, submission, and presentation of the Product Licensing  Application to the Food and Drug Administration, and comparable documents to European and Scandinavian agencies.

Based on the results of the 2,099 patient EPIC trial, in which conjunctive treatment with a bolus plus infusion of c7E3 Fab significantly reduced the risk of developing an ischemic complication (death, myocardial infarction, or need for urgent intervention) after coronary artery angioplasty or atherectomy in patients at high risk of such complications, the Food and Drug Administration approved the conjunctive use of c7E3 Fab (generic name, abciximab) in high-risk angioplasty and atherectomy on December 22, 1994. Since then it has been administered to more than 2.5 million patients in the U.S., Europe, Scandinavia, and Asia. Its optimal role in treating cardiovascular disease continues to evolve in response to the introduction of new anticoagulants, antiplatelet agents, stents, and procedures.

Extended Investigations

We have also been able to apply the monoclonal antibodies we prepared to αIIb33 to the prenatal detection of Glanzmann thrombasthenia, and have used the antibodies as probes for characterizing both the biogenesis of the receptor and the conformational changes that the receptor undergoes with activation. We have been able to precisely map the 7E3 epitope on 33, providing additional insights into the mechanism by which it prevents ligand binding. We have also exploited the ability of another antibody to αIIb33 to stabilize the receptor complex in order to facilitate production of crystals of the αIIb33 headpiece; the x-ray diffraction properties of these crystals were studied in collaboration with Dr. Timothy Springer’s group at Harvard and provide the first structural information on the receptor.

In landmark studies in the 1980s, Pierschbacher and Ruoslahti demonstrated the importance of the arginine-aspartic acid (RGD) sequence in the interaction of the integrin α531 with fibronectin, and they went on to show that peptides with the RGD sequence could inhibit this interaction. Subsequent studies by many groups demonstrated that these peptides could also inhibit the interaction of platelet αIIb33 with fibrinogen and von Willebrand factor. Dr. David Phillip and Dr. Robert Scarbrough led the team at Cor Therapeutics that made a cyclic pentapeptide with high selectivity for αIIb33 over αV33 by patterning their compound on the KGD sequence in the snake venom barbourin. The resulting antiplatelet agent, eptifibatide, received FDA approval in May 1998. At Merck, Dr. Robert Gould led the team that developed the nonpeptide RGD-mimetic tirofiban, which also is selective for αIIb33 compared to αV33. It also received FDA approval in May 1998. Our recent x-ray crystallographic studies in collaboration with Dr. Springer’s group provided structural information on the mechanisms and sites of binding of these drugs with αIIb33.

Translation of Basic Science into Therapy

Many important elements and an enormous amount of good fortune were needed for the translation of the basic science information about platelet aggregation into the drug abciximab, including, but not limited to:

  • 1) the support of basic studies of platelet physiology by the National Institutes of Health in my laboratory and many other laboratories,
  • 2) the creation and ongoing funding of a core facility available to all faculty members to prepare monoclonal antibodies at the State University of New York at Stony Brook under the direction of Dr. Arnold Levine,
  • 3) the 1988 Bayh-Dole Act and its subsequent amendments, and the expertise of the Technology Transfer Office at Stony Brook in licensing 7E3 to Centocor, which then provided the capital and additional expertise required for its development, and
  • 4) the expert and enthusiastic collaboration by two large and disciplined cooperative groups of interventional cardiologists (TAMI, EPIC) under the dynamic leadership of Drs. Eric Topol and Rob Califf,

tirofiban, that were eager to test the safety and efficacy of the 7E3 derivatives. Although the translation of each new scientific discovery into improved health via novel preventive, diagnostic, or therapeutic strategies requires the blazing of a unique path, optimizing these elements and similar ones may allow the path to be shorter and/or to be traversed more easily, at a lower cost, or in a shorter period of time.

 

Related articles in Pharmaceutical Intelligence:

Platelets in Translational Research – 1   Larry H. Bernstein, MD, FCAP
http://pharmaceuticalintelligence.com/10-6-2013/larryhbern/Platelets_in_Translational_Research-1
Platelets in Translational Research – 2  Larry H. Bernstein, MD, FCAP
http://phramaceuticalintelligence.com/2013-10-7/larryhbern/Platelets-in-Translational-Research-2/

Do Novel Anticoagulants Affect the PT/INR? The Cases of XARELTO (rivaroxaban) and PRADAXA (dabigatran)
Vivek Lal, MBBS, MD, FCIR, Justin D Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN
http://pharmaceuticalintelligence.com/2013/09/23/do-novel-anticoagulants-affect-the-ptinr-the-cases-of-xarelto-rivaroxaban-and-pradaxa-dabigatran/

 

Read Full Post »

Reporter: Aviva Lev-Ari, PhD, RN

BACE1 Inhibition role played in the underlying Pathology of Alzheimer’s Disease

Merck Presents Findings from Phase 1b Study of Investigational BACE Inhibitor, MK-8931, in Patients with Alzheimer’s Disease

Sunday, July 14, 2013 8:30 am EDT
“Further evaluation of MK-8931 continues in our EPOCH study, a Phase II/III trial in patients with mild to moderate Alzheimer’s.”

Merck, known as MSD outside the United States and Canada, today announced the presentation of results from a Phase Ib study showing a dose-dependent decrease in β amyloid levels in cerebral spinal fluid (CSF) following administration of MK-8931, Merck’s investigational oral β-site amyloid precursor protein cleaving enzyme (BACE1 or β secretase) inhibitor, in patients with mild to moderate Alzheimer’s disease (AD). In the study, β amyloid levels were analyzed as a measure of BACE activity. The data were presented during an oral session at the Alzheimer’s Association International Conference (AAIC) in Boston, July 13-18 (Abstract O1-06-05).

“The amyloid β reduction observed with MK-8931 may offer an opportunity to further understand the role BACE1 inhibition plays in the underlying pathology of Alzheimer’s disease,” said Darryle Schoepp, Ph.D., vice president of Neuroscience Early Development and Discovery Sciences, Merck. “Further evaluation of MK-8931 continues in our EPOCH study, a Phase II/III trial in patients with mild to moderate Alzheimer’s.”

Results of MK-8931 Phase Ib Study

The randomized, double-blind, placebo-controlled multiple dose study evaluated the safety and tolerability, pharmacokinetics and pharmacodynamic profile of MK-8931 in patients with mild to moderate AD (n=32). Patients were randomized to receive one of three doses (12 mg, 40 mg and 60 mg) orally of MK-8931 or placebo once-daily for seven days. Samples of CSF were collected via a lumbar catheter and analyzed for levels of amyloid β 40 (Aβ40), amyloid β 42 (Ab42) and soluble amyloid precursor protein β (sAPPb) as biomarkers of BACE1 activity.

In this study, administration of MK-8931 at doses of 12, 40 and 60 mg resulted in a dose-dependent and sustained reduction in the levels of Ab40, a measure of BACE1 activity, in CSF from baseline of 57, 79 and 84 percent, respectively. The mean percentage of baseline in biomarkers Aβ40, Aβ42 and sAPPβ for each dose of MK-8931 as measured following a seven day dosing period is shown in the table.

Dose MK-8931

*Ab40

[TWA 0-24hrs (90% CI)]

*Ab42

[TWA 0-24hrs (90% CI)]

*sAPPb

[TWA 0-24hrs (90% CI)]

12 mg

(n=8)

43%

(37-49%)

47%

(39-54%)

37%

(32-41%)

40 mg

(n=8)

21%

(15-27%)

29%

(21-36%)

17%

(13-22%)

60 mg

(n=8)

16%

(10-22%)

19%

(11-26%)

12%

(7-17%)

*Percentage concentration relative to baseline averaged over 24 hours following administration of MK-8931 for 7 days (time weighted average from 0-24 hours post dose, (TWA 0-24hrs).

CI=confidence interval

No serious adverse events or study discontinuations due to adverse events were recorded. Analysis of vital signs and laboratory assessments, including liver function tests, showed no statistically significant changes related to the administration of MK-8931. Adverse events reported in two or more subjects in at least one dose group included: headache, dizziness, nausea, vomiting, insomnia and back pain. All adverse events were generally mild to moderate in intensity and transient in duration. No dose-dependent increase in the incidence of adverse events was observed.

Previously, Merck researchers presented findings of a single dose Phase I study at the 2012 American Academy of Neurology (AAN) Annual Meeting, which demonstrated that administration of MK-8931 to healthy volunteers resulted in a reduction of Ab40 CSF levels of greater than 90 percent from baseline.

Other MK-8931 Presentations at AAIC 2013

  • Consistency of BACE1-mediated Brain Amyloid Production Inhibition by MK-8931 in Alzheimer’s Patients and Healthy Young Adults (Oral Session; July 17, 2013; 2:15 PM; Presentation #O4-05-05)

About the EPOCH Study

EPOCH (NCT01739348) is a 78-week, randomized, placebo-controlled, parallel-group, double-blind Phase II/III clinical trial to evaluate the efficacy and safety of three oral doses of MK-8931 (12, 40 or 60 mg) administered daily versus placebo in patients with mild to moderate AD. The study is currently enrolling the 200 patient Phase II portion of the study and is anticipated to enroll up to 1,700 patients in the main Phase III cohort. The primary efficacy outcomes of the study are the change from baseline in Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-Cog) score and the change from baseline in the Alzheimer’s Disease Cooperative Study – Activities of Daily Living (ADCS-ADL) score.

About BACE Inhibition and MK-8931

The amyloid hypothesis asserts that the formation of amyloid peptides that lead to amyloid plaque deposits in the brain is a primary contributor to the underlying cause of Alzheimer’s disease. BACE is believed to be a key enzyme in the production of amyloid β peptide. Evidence suggests that inhibiting BACE decreases the production of amyloid β peptide and may therefore reduce amyloid plaque formation and modify disease progression.

Merck is advancing several innovative mechanisms in Alzheimer’s disease, including candidates designed to modify disease progression and improve symptom control. Merck’s major effort in disease modification is our lead BACE inhibitor, MK-8931, and Merck is continuing to develop other BACE inhibitor candidates.

About Merck

Today’s Merck is a global healthcare leader working to help the world be well. Merck is known as MSD outside the United States and Canada. Through our prescription medicines, vaccines, biologic therapies, and consumer care and animal health products, we work with customers and operate in more than 140 countries to deliver innovative health solutions. We also demonstrate our commitment to increasing access to healthcare through far-reaching policies, programs and partnerships. For more information, visit www.merck.com and connect with us on Twitter,Facebook and YouTube.

Merck Forward-Looking Statement

This news release includes “forward-looking statements” within the meaning of the safe harbor provisions of the United States Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of Merck’s management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; Merck’s ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of Merck’s patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

Merck undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in Merck’s 2012 Annual Report on Form 10-K and the company’s other filings with the Securities and Exchange Commission (SEC) available at the SEC’s Internet site (www.sec.gov).

# # #

Merck
Media Contacts:
Caroline Lappetito, 267-305-7639
or
Investor Contacts:
Carol Ferguson, 908-423-4465
or
Justin Holko, 908-423-5088

 

Read Full Post »

Curator: Ritu Saxena, Ph.D.

Reporters: Ritu Saxena, Ph.D. and Dr. Venkat S. Karra, Ph.D.

Merck & Co. declared yesterday, July 12 2012, that it is ending a last-stage clinical trial of the osteoporosis drug Odanacatib based on the results demonstrating the effectively in reducing the post-menopausal fracture risk.

Safety and effectiveness of the drug were being evaluated in the trial enrolling more than 16,000 post-menopausal women and there was clear evidence that the drug was working. Hence, an independent committee decided to end the trial before completion. It was expected to continue until hip fractures had been reported in 237 patients. Merck said the interim analysis was conducted when around 70 percent of the targeted number of hip fractures had been reported. Merck said that it expects to target regulatory approval in the U.S., European Union and Japan in the first half of next year.

Odanacatib is designed to block cathepsin K, the major enzyme in osteoclasts that is responsible for breakdown of existing bone tissue. Osteoclasts, bone “eroding” cells along with bone forming cells, osteoblasts, are involved in bone turnover. In post menopausal osteoporosis, there is a decrease in bone turnover. Blocking the activity of osteoclasts would shift the equilibrium towards bone formation by relative increase in osteoblasts.

Earlier studies have performed 2-3 year long clinical trials showing its effectiveness in treating post-menopausal osteoporosis with a progressive increase in the bone mineral density, increase in bone formation markers expression in molecular studies and that it was generally well tolerated.. The oral drug, taken weekly, is considered more convenient than an older class of osteoporosis drugs known as bisphosphonates. Bisphosphonates, target osteoclasts and have shown to increase the risk of a severe bone disease, osteonecrosis of the jaw. Other safety concerns have also lead to the decline in the use of bisphosphonates.

Sales of Merck’s bisphosphonate drug Fosamax reached $3 billion in 2007, but that revenue has plunged since emergence of generic competition in early 2008. Wall Street analysts, on average, have forecast annual sales of odanacatib at $402 million by 2016, according to Thomson Pharma.

Source: http://www.dddmag.com/news/2012/07/merck-ends-odanacatib-study-early?et_cid=2744025&et_rid=45527476&linkid=http%3a%2f%2fwww.dddmag.com%2fnews%2f2012%2f07%2fmerck-ends-odanacatib-study-early

http://www.huffingtonpost.com/2012/07/12/odanacatib-osteoporosis-drug-fracture-bone_n_1666631.html

http://www.ncbi.nlm.nih.gov/pubmed/20740685

http://www.ncbi.nlm.nih.gov/pubmed/19874198

Read Full Post »

%d bloggers like this: