Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Thrombus’


The Golden Hour of Stroke Intervention

Reporter: Irina Robu, PhD

The removal of thrombus under the image guidance, endovascular thrombectomy is preferred for an arterial embolism which is characteristic for an arterial blockage frequently caused by atrial fibrillation, a heart rhythm disorder. An arterial embolism causes restricted blood supply which leads to pain in the affected area. A thrombectomy can too be used to treat conditions in your organs which is usually associated with less benefit and more risk, a large retrospective study found.

Alejandro Spiotta, MD from Medical University of South Carolina in Charleston stated that functional independence rates were 45% for those treated in less than 30 minutes, 33% with procedures 30 to 60 minutes long, and 27% when procedures took more than 60 minutes. The results indicate that complications double after 50 minutes and the mortality risk is significantly for the over 60-minute group than in those treated in 30 to 60 minutes.

Earlier research has shown that when it comes to mechanical thrombectomy, procedure time has a noteworthy effect on patient outcomes. Based on these findings, it seems reasonable to conclude that at 60 minutes, one should consider the futility of continuing the procedure. However, procedures that last longer were connected with increased cost, worse outcomes, and increased incidence of complications, the investigators noted. Yet, the findings underscore the importance of timely recanalization and suggest there’s a point at which continuing to manipulate the intracranial artery may not be helpful for the patient.

Spiotta’s group evaluated 1,357 participants at seven U.S. medical centers, but only 12% out of the patients showed signs of posterior circulation stroke and 46% of cases received IV tissue-type plasminogen activator. The scientists use a prospectively-maintained database which consists of clinical and technical outcomes and baseline variables and can evaluate patients that underwent endovascular thrombectomy with direct aspiration as first pass technique or a stent retriever.

They collected their experience with the benefit of hindsight and joint it together, so there’s always a chance of case ascertain bias or other bias in the collection of the cases. One limitation is the fact that these are quality, busy centers, and the results might even worse if less experienced centers were included. It’s a little bit like getting the cream of the crop and analyzing their data. Upcoming studies should gather data on the relationship between specific thrombectomy devices and techniques and the success of recanalization procedures for patients with AIS.

SOURCE
https://www.medpagetoday.com/cardiology/strokes/78251

 

 

Advertisements

Read Full Post »


Treatment Options for Left Ventricular Failure  –  Temporary Circulatory Support: Intra-aortic balloon pump (IABP)Impella Recover LD/LP 5.0 and 2.5, Pump Catheters (Non-surgical) vs Bridge Therapy: Percutaneous Left Ventricular Assist Devices (pLVADs) and LVADs (Surgical) 

Author: Larry H Bernstein, MD, FCAP
And
Curator: Justin D Pearlman, MD, PhD, FACC

 

UPDATED on 12/2/2013 – HeartMate II – LVAD

http://www.nytimes.com/2013/11/28/business/3-hospital-study-links-heart-device-to-blood-clots.html?pagewanted=1&_r=0&emc=eta1

Hospital Studies Link Heart Device to Clots

David Maxwell for The New York Times

Dr. Randall Starling, right, said that he could only speculate about the reason for the rapid rise in early blood clots.

By 
Published: November 27, 2013

Doctors at the Cleveland Clinic began to suspect in 2012 that something might be wrong with a high-tech implant used to treat patients with advanced heart failure like former Vice President Dick Cheney.

Thoratec Corportation

The HeartMate II is a left ventricular assist device, which contains a pump that continuously pushes blood through the heart.

The number of patients developing potentially fatal blood clots soon after getting the implant seemed to be rising. Then early this year, researchers completed a check of hospital records and their concern turned to alarm.

The data showed that the incidence of blood clots among patients who got the device, called the HeartMate II, after March 2011 was nearly four times that of patients who had gotten the same device in previous years. Patients who developed pump-related clots died or needed emergency steps like heart transplants or device replacements to save them.

“When we got the data, we said, ‘Wow,’ ” said Dr. Randall C. Starling, a cardiologist at Cleveland Clinic.

On Wednesday, The New England Journal of Medicineposted a study on its website detailing the findings from the Cleveland Clinic and two other hospitals about the device. The HeartMate II belongs to a category of products known as a left ventricular assist device and it contains a pump that continuously pushes blood through the heart.

The abrupt increase in pump-related blood clots reported in the study is likely to raise questions about whether its manufacturer, Thoratec Corporation, modified the device, either intentionally or accidentally. By March, the Cleveland Clinic had informed both Thoratec and the Food and Drug Administration about the problems seen there, Dr. Starling said.

Officials at Thoratec declined to be interviewed. But in a statement, the company, which is based in Pleasanton, Calif., said that the HeartMate II had been intensively studied and used in more 16,000 patients worldwide with excellent results. It added that the six-month survival rate of patients who received the device had remained consistently high.

“Individual center experience with thrombosis varies significantly, and Thoratec actively partners with clinicians at all centers to minimize this risk,” the company said in a statement.

Thoratec and other cardiologists also pointed to a federally funded registry that shows a smaller rise in the rate of blood clots, or thrombosis, among patients getting a HeartMate II than the one reported Wednesday by the three hospitals. In the registry, which is known as Intermacs, the rate of pump-related blood clot associated with the HeartMate II rose to about 5 percent in devices implanted after May 2011 compared with about 2 percent in previous years.

The data reported on Wednesday in The New England Journal of Medicine found rates of clot formation two months after a device’s implant had risen to 8.4 percent after March 2011 from 2.2 percent in earlier years. Researchers also suggested in the study that the Intermacs registry might not capture all cases of pump-related blood clots, such as when patients gets emergency heart transplants after a clot forms.

Not only did the rate of blood clots increase, but the clots also occurred much sooner than in the past, according to the study. After March 2011, the median time before a clot was 2.7 months, compared with 18.6 months in previous years. In addition to the Cleveland Clinic, the report on Wednesday included data from Duke University and Washington University in St. Louis.

All mechanical heart implants are prone to producing blood clots that can form on a device’s surface. And experts say that the rate of blood clot formation can be affected by a variety of factors like changes in the use of blood-thinning drugs or the health of a patient.

In a telephone interview, Dr. Starling described the Thoratec officials as cooperative, adding that they have been looking into the problem since March to understand its cause. He said that he could only speculate about the reason for the rapid rise in early blood clots but believed it was probably device-related.

“My belief is that it is something as subtle as a change in software that affects pump flow or heat dissipation near a bearing,” said Dr. Starling, who is a consultant to Thoratec.

Asked about his comments, Thoratec responded that it had yet to determine the reason for even the smaller rise in blood clots seen in the federally funded database. “We have performed extensive analysis on HeartMate II and have not identified any change that would cause the increase observed in the Intermacs registry,” the company said.

In a statement, the F.D.A. said that it was reviewing the findings of the study. “The agency shares the authors concerns about the possibility of increased pump thrombosis,” the F.D.A. said in a statement.

The fortunes of Thoratec, which has been a favorite of Wall Street investors, may depend on its ability to find an answer to the apparent jump in pump-related blood clots. Over the last two years, the company’s stock has climbed from about $30 a share to over $43 a share. In trading Wednesday, Thoratec stock closed at $42.12 a share, up 61 cents. (The New England Journal of Medicine article was released after the stock market closed.)

The HeartMate II has been a lifesaver for many patients like Mr. Cheney in the final stages of heart failure, who got his device in 2010, sustaining them until they get a heart transplant or permanently assisting their heart. Dr. Starling said that he planned to keep using the HeartMate II in appropriate patients at the Cleveland Clinic because those facing death from heart failure had few options.

But the company has also been pushing to expand the device’s use beyond patients who face imminent death from heart failure. For example, the F.D.A. approved a clinical trial for patients with significant, but less severe, heart failure to receive a HeartMate II to compare their outcomes with patients who take drugs for the same condition. Researchers at the University of Michigan Medical Center who are leading the trial said on Wednesday that, based on the lower rates of blood clots seen in the Intermacs registry, they are planning to move forward with the trial.

Dr. Starling and researchers at the Cleveland Clinic tried this spring to get The New England Journal of Medicine to publish a report about the findings at that hospital, but the publication declined, saying the data might simply represent the experience of one facility. As a result, Dr. Starling contacted Duke University and Washington University for their data. When analyzed, it mirrored events at the Cleveland Clinic, he said.

The problems seen with the HeartMate II at the three hospitals were continuing as recently as this summer, when researchers paused the collection of data to prepare Wednesday’s study. The study also noted that a preliminary analysis of data provided by a fourth hospital, the University of Pennsylvania, showed the same pattern of blood clot formation, but that the data had been submitted too late for full analysis.

 SOURCE

 

This article presents the following four Sections:

I.     Impella LD – ABIOMED, Inc.

II.   IABP VS. Percutaneous LVADS

III. Use of the Impella 2.5 Catheter in High-Risk Percutaneous Coronary Intervention

IV.  PROTECT II Study – Experts Discussion

This account is a vital piece of recognition of very rapid advances in cardiothoracic interventions to support cardiac function mechanically by pump in the situation of loss of contractile function and circulatory output sufficient to sustain life, as can occur with the development of cardiogenic shock.  This has been mentioned and its use has been documented in other portions of this series.   On the one hand, PCI has a long and steady history in the development of interventional cardiology. This necessitated the availability of thoracic-surgical operative support. The situation is changed, and is more properly, conditional.

I. Impella LD – ABIOMED, Inc.

This micro-axial blood pump can be inserted into the left ventricle via open chest procedures. The Impella LD device has a 9 Fr catheter-based platform and a 21 Fr micro-axial pump and is  inserted through the ascending aorta, across the aortic and mitral valves and into the left ventricle.  It requires minimal bedside support and a 9 Fr single-access point  requires no priming outside the body.

Impella.LD_

Impella Recover LD/LP 5.0

The Impella Recover miniaturized impeller pump located within a catheter. The Impella Recover LD/LP 5.0 Support System has been developed to address the need for ventricular support in patients who develop heart failure after heart surgery (called cardiogenic shock) and who have not responded to standard medical therapy. The system is designed to provide immediate support and restore hemodynamic stability for a period of up to 7 days. Used as a bridge to therapy, it allows time for developing a definitive treatment strategy.

The Pump

The Impella Recover LD 5.0 showing implantation via direct placement into the left ventricle.
 Insert B – location in LV
imeplla-LD-video
The Impella Recover system is a miniaturized impeller pump located within a catheter. The device can provide support for the left side of the heart using either the
  • Recover LD 5.0 (implanted via direct placement into the left ventricle) or the
  • Recover LP 5.0 LV (placed percutaneously through the groin and positioned in the left ventricle).
The microaxial pump of the Recover LP/LD 5.0 can pump up to 4.5 liters per minute at a speed of 33,000 rpm. The pump is located at the distal end of a 9 Fr catheter.

II.   IABP VS. Percutaneous LVADS

An intra-aortic balloon pump (IABP) remains the method of choice for mechanical assistance1 in patients experiencing LV failure because of its

  • proven hemodynamic capabilities,
  • prompt time to therapy, and
  • low complication rates.

Percutaneous left ventricular assist devices (pLVADs), such as described above, represent an emerging option for partial or total circulatory support2 and several studies have compared the and efficacy of these devices with intra-aortic balloon pump (IABP) (IABP.)

Despite some randomized controlled trials demonstrating better hemodynamic profiles for pLVADs compared with IABP, there is no difference in  30-day survival or trend toward a reduced 30-day mortality rate associated with pLVADs.  Patients treated with pLVADs tended to have a
  • higher incidence of leg ischemia and
  • device related bleeding.3
Further, no differences have been detected in the overall use of
  • positive inotropic drugs or
  • vasopressors in patients with pLVADs.4,5
However, pLVADs may increase their use for patients not responding to
  • PCI,
  • fluids,
  • inotropes, and
  • IABP
Therefore, the decision making process on how to treat requires an integrated stepwise approach. A pLVAD might be considered on the basis of
  • anticipated individual risk,
  • success rates, and for
  • postprocedural events.6

Potential Algorithm for Device Selection during High-Risk PCI

PADS_HRPCI cardiac assist device selection

Potential Algorithm for Device Selection during Cardiogenic Shock
device_selection_CS
Until an alternative modality, characterized by improved efficacy and safety features compared with IABP, is developed, IABP remains the cornerstone of temporary circulatory support.2

Device Comparison for Treatment of Cardiogenic Shocktraditional intra-aortic balloon therapy with Impella 2.5 percutaneous ventricular assist device

 
1. Percutaneous LVADs in AMI complicated by cardiogenic shock. H Thiele, et al. EHJ 2007;28:2057-2063
2. Cardiogenic shock current concepts and improving outcomes. H R Reynolds et al. Circulation 2008 ;117 :686-697
3. Percutaneous left ventricular assist devices vs. IABP counterpulsation for treatment of cardiogenic shock. J M Cheng, et al. EHJ doi:10.1093/eurheart/ehp292
4. A randomized clinical trial to evaluate the safety and efficacy of a pLVAD vs. IABP for treatment of cardiogenic shock caused by MI. M Seyfarth, et al. JACC 2008;52:1584-8
5. A randomized multicenter clinical study to evaluate the safety and efficacy of the tandem heart pLVAD vs. conventional therapy with IABP for treatment of cardiogenic shock.
6. Percutaneous LVADs in AMI complicated by cardiogenic shock. H Thiele, et al. EHJ 2007;28:2057-2063

III. Use of the Impella 2.5 Catheter in High-Risk Percutaneous Coronary Intervention

Brenda McCulloch, RN, MSN
Sutter Heart and Vascular Institute, Sutter Medical Center, Sacramento, California
Crit Care Nurse 2011; 31(1): e1-e16    http://dx.doi.org/10.4037/ccn2011293
Abstract
The Impella 2.5 is a percutaneously placed partial circulatory assist device that is increasingly being used in high-risk coronary interventional procedures to provide hemodynamic support. The Impella 2.5 is able to unload the left ventricle rapidly and effectively and increase cardiac output more than an intra-aortic balloon catheter can. Potential complications include bleeding, limb ischemia, hemolysis, and infection. One community hospital’s approach to establishing a multidisciplinary program for use of the Impella 2.5 is described.
Patients who undergo high-risk percutaneous coronary intervention (PCI), such as procedures on friable saphenous vein grafts or the left main coronary artery, may have an intra-aortic balloon catheter placed if they require hemodynamic support during the procedure. Currently, the intra-aortic balloon pump (IABP) is the most commonly used device for circulatory support. A newer option that is now available for select patients is the Impella 2.5, a short-term partial circulatory support device or percutaneous ventricular assist device (VAD).
In this article, I discuss the Impella 2.5, review indications and contraindications for its use, delineate potential complications of the Impella 2.5, and discuss implications for nursing care for patients receiving extended support from an Impella 2.5. Additionally, I share our experiences as we developed our Impella program at our community hospital. Routine management of patients after PCI is not addressed.

IABP Therapy: Background

  • decreases after-load,
  • decreases myocardial oxygen consumption,
  • increases coronary artery perfusion, and
  • modestly enhances cardiac output.1,2
The IABP cannot provide total circulatory support. Patients must have some level of left ventricular function for an IABP to be effective.
Optimal hemodynamic effect from the IABP is dependent  on:
  • the balloon’s position in the aorta,
  • the blood displacement volume,
  • the balloon diameter in relation to aortic diameter,
  • the timing of balloon inflation in diastole and deflation in systole, and
  • the patient’s own blood pressure and vascular resistance.3,4

Impella 2.5 Catheter – ABIOMED, Inc.

Effect
  • reduces myocardial oxygen consumption,
  • improves mean arterial pressure, and
  • reduces pulmonary capillary wedge pressure.2

The Impella 2.5 has been used for

  • hemodynamic support during high-risk PCI and for
  • hemodynamic support of patients with
  1. myocardial infarction complicated by cardiogenic shock or ventricular septal defect,
  2. cardiomyopathy with acute decompensation,
  3. postcardiotomy shock,
  4. off-pump coronary artery bypass grafting surgery, or
  5. heart transplant rejection and
  6. as a bridge to the next decision.9
The Impella provides a greater increase in cardiac output than the other IABP provides. In one trial5 in which an IABP was compared with an Impella in cardiogenic shock patients, after 30 minutes of therapy, the cardiac index (calculated as cardiac output in liters per minute divided by body surface area in square meters) increased by 0.5 in the patients with the Impella compared with 0.1 in the patients with an IABP.
Unlike the IABP, the Impella does not require timing, nor is a trigger from an electrocardiographic rhythm or arterial pressure needed (Table 1). The device received 510(k) clearance from the Food and Drug Administration in June 2008 for providing up to 6 hours of partial circulatory support. In Europe, the Impella 2.5 is approved for use up to 5 days. Reports of longer duration of therapy in both the United States and Europe have been published.8,9
Table IABT vs Impella

Clinical Research and Registry Findings

Abiomed has sponsored several trials, including PROTECT I, PROTECT II, RECOVER I, RECOVER II, and ISAR-SHOCK.
The PROTECT I study was done to assess the safety and efficacy of device placement in patients undergoing high-risk PCI.10

Twenty patients who had

  • poor ventricular function (ejection fraction =35%) and had
  • PCI on an unprotected left main coronary artery or the
  • last remaining patent coronary artery or graft.

The device was successfully placed in all patients, and the duration of support ranged from 0.4 to 2.5 hours. Following this trial, the Impella 2.5 device received its 510(k) approval from the Food and Drug Administration.

The ISAR-SHOCK trial was done to evaluate the safety and efficacy of the Impella 2.5 versus the IAPB in patients with cardiogenic shock due to acute myocardial infarction.5 Patients were randomized to support from an IABP (n=13) or an Impella (n=12).

The trial’s primary end point of hemodynamic improvement was defined as improved cardiac index at 30 minutes after implantation.

  1. Improvements in cardiac index were greater with the Impella (P=.02).
  2. The diastolic pressure increased more with Impella (P=.002).
  3. There was a nonsignificant difference in the MAP (P=.09), as was the use of inotropic agents and vasopressors similar in both groups of patients.

Device Design: Impella 2.5 Catheter

The Impella 2.5 catheter contains a nonpulsatile microaxial continuous flow blood pump that pulls blood from the left ventricle to the ascending aorta, creating increased forward flow and increased cardiac output. An axial pump is one that is made up of impellar blades, or rotors, that spin around a central shaft; the spinning of these blades is what moves blood through the device.13

The Impella 2.5 catheter has 2 lumens. A tubing system called the Quick Set-Up has been developed for use in the catheterization laboratory. It is a single tubing system that bifurcates and connects to each port of the catheter. This arrangement allows rapid initial setup of the console so that support can be initiated quickly. When the Quick Set-Up is used, the 10% to 20% dextrose solution used to purge the motor is not heparinized. One lumen carries fluid to the impellar blades and continuously purges the motor to prevent the formation of thrombus. The proximal port of this lumen is yellow. The second lumen ends near the motor above the level of the aortic valve and is used to monitor aortic pressure.
The components required to run the device are assembled on a rolling cart and include the power source, the Braun Vista infusion pump, and the Impella console. The Impella console powers the microaxial blood pump and monitors the functioning of the device, including the purge pressure and several other parameters. The console can run on a fully charged battery for up to 1 hour.

Placement of the Device

The Impella 2.5 catheter is placed percutaneously through the common femoral artery and advanced retrograde to the left ventricle over a guidewire. Fluoroscopic guidance in the catheterization laboratory or operating room is required. After the device is properly positioned, it is activated and blood is rapidly withdrawn by the microaxial blood pump from the inlet valve in the left ventricle and moved to the aorta via the outlet area, which sits above the aortic valve in the aorta.
If the patient tolerates the PCI procedure and hemodynamic instability does not develop, the Impella 2.5 may be removed at the end of the case, or it can be withdrawn, leaving the arterial sheath in place, which can be removed when the patient’s activated clotting time or partial thromboplastin time has returned to near normal levels. For patients who become hemodynamically unstable or who have complications during the PCI (eg, no reflow, hypotension, or lethal arrhythmias), the device can remain in place for continued partial circulatory support, and the patient is transported to the critical care setting.

Potential Complications of Impella Therapy

The most commonly reported complications of Impella 2.5 placement and support include

  • limb ischemia,
  • vascular injury, and
  • bleeding requiring blood transfusion.6,9
Hemolysis is an inherent risk of the axial construction, and results in transfusions.5,10
Hemolysis can be mechanically induced when red blood cells are damaged as they pass through the microaxial pump. Other potential complications include
  • aortic valve damage,
  • displacement of the distal tip of the device into the aorta,
  • infection, and
  • sepsis.
  • Device failure, although not often reported, can occur.
Patients on Impella 2.5 support who may require
  • interrogation of a permanent pacemaker or
  • implantable cardioverter defibrillator
present an interesting situation. In order for the interrogator to connect with the permanent pacemaker or implantable cardioverter defibrillator, the Impella console must be turned off for a few seconds while the signal is established. As soon as the signal has been established, Impella support is immediately restarted.

Impella 2.5 Console Management

The recommended maximum performance level for continuous use is P8. At P8, the flow rate is 1.9 to 2.6 L/min and the motor is turning at 50000 revolutions per minute. When activated, the console is silent. No sound other than alarms is audible during Impella support, unlike the sound heard with an IABP. Ten different performance levels ranging from P0 to P9 are available. As the performance level increases, the flow rate and number of revolutions per minute increase. At maximum performance (P9), the pump rotates at 50000 revolutions per minute and delivers a flow rate of 2.1 to 2.6 L/min. P9 can be activated only for 5-minute intervals when the Impella 2.5 is in use.

IV.  PROTECT II Study – Experts Discussion

the use of the Impella support device and the intraortic balloon pump for high-risk percutaneous coronary intervention
 
DR. SMALLING: Well, the idea about the PROTECT trial is that it would show that using the Impella device to support high-risk angioplasty was not inferior to utilizing the balloon pump for the same patient subset. Ejection fraction’s were in the 30%–35% range. Supposedly last remaining vessel or left main disease or left-main plus three-vessel disease and low EF; so I think that was the screening for entry into the trial.
major adverse cardiac event endpoints
  1. Acute myocardial infarction,
  2. mortality,
  3. bleeding,
mortality was the same. Their endpoints really didn’t show that much difference. In subgroup analysis, they felt that they Impella may have had a little advantage over balloon pump.
DR. KERN: So do you think this study would tip the interventionalist to move in one direction or the other for high-risk angioplasty?
DR. SMALLING: That’s an interesting concept, you know? One has to get to: What is really a high-risk angioplasty. I think you and I are both old enough to remember that back in the mid-’80s, we determined that high-risk angioplasty was a patient with an ejection fraction of 25% or less, with a jeopardy score over 6. The EFs were a little higher. And, I guess, based on our prior experience with other support devices — like, for instance, CPS and then, later on, the Tandem Heart — there really was not an advantage of so-called more vigorous support systems. And so, the balloon pump served as well.
DR. SMALLING:
Those of us that have looked carefully at what it can really do, I think it may get one liter a minute at most, maybe more.1-6 But I think, for all intents and purposes, it doesn’t support at a very vigorous level. So I think personally, if I had someone I was really worried about, I would opt for something more substantial like, for instance, a Tandem Heart device.
DR. KERN: I think this is a really good summary of the study and the. Are there any final thoughts for those of us who want to read the PROTECT II study when it comes out?
DR. SMALLING: We have to consider a $20,000, $25,000 device. Is that really necessary to do something that we could often do without any support at all, or perhaps with a less costly device like a balloon pump.
DR. KERN: We’re going to talk for a few minutes about the PROTECT II study results that were presented here in their form. And Ron, I know you’ve been involved with following the work of the PROTECT II investigators. Were you a trial site for this study?
DR. WAKSMAN: No, actually, we were not, but we have a lot of interest in high-risk PCI and using devices to make this safe — mainly safe — and also effective. We were not investigators, but we did try to look, based on the inclusion/exclusion criteria, on our own accord with the balloon pump. If you recall, this study actually was comparing balloon time to the Impella device for patients who are high-risk PCI.
The composite endpoint was very complicated. They added like probably nine variables there, which is unusual for a study design. … They basically estimated that the event rate on the balloon pump would be higher than what we thought it should be. So we looked at our own data, and we found out that the actual — if you go by the inclusion/exclusion criteria and their endpoints — the overall event rate in the balloon pump would be much lower than they predicted and built in their sample size.
DR. KERN: And, so, the presentation of the PROTECT II trial, was it presented as a positive study or a negative study.
DR. WAKSMAN: Overall the study did not meet the endpoint. So the bottom line, you can call it the neutral study, which is a nice way to say it.
if you go and do all those analyses, you may find some areas that you can tease a P value, but I don’t think that this has any scientific value, and people should be very careful. We’re not playing now with numbers or with statistics, this is about patient care. You’re doing a study — the study, I think, has some flaws in the design to begin with — and we actually pointed that out when we were asked to participate in the study. But if the study did not meet the endpoint, then I think all those subanalyses, subgroups, you extract from here, you add to there, and you get a P value, that means nothing. So we have to be careful when we interpret this, other than as a neutral study that you basically cannot adopt any of the … it did not meet the hypothesis, that’s the bottom line.

A first-in-man study of the Reitan catheter pump for circulatory support in patients undergoing high-risk percutaneous coronary intervention.

Smith EJ, Reitan O, Keeble T, Dixon K, Rothman MT.
Department of Cardiology, London Chest Hospital, United Kingdom.
Catheter Cardiovasc Interv. 2009 Jun 1;73(7):859-65.
http://dx.doi.org/10.1002/ccd.21865.

To investigate the safety of a novel percutaneous circulatory support device during high-risk percutaneous coronary intervention (PCI).

BACKGROUND:

The Reitan catheter pump (RCP) consists of a catheter-mounted pump-head with a foldable propeller and surrounding cage. Positioned in the descending aorta the pump creates a pressure gradient, reducing afterload and enhancing organ perfusion.

METHODS:

Ten consecutive patients requiring circulatory support underwent PCI; mean age 71 +/- 9; LVEF 34% +/- 11%; jeopardy score 8 +/- 2.3. The RCP was inserted via the femoral artery. Hemostasis was achieved using Perclose sutures. PCI was performed via the radial artery. Outcomes included in-hospital death, MI, stroke, and vascular injury. Hemoglobin (Hb), free plasma Hb (fHb), platelets, and creatinine (cre) were measured pre PCI and post RCP removal.

RESULTS:

The pump was inserted and operated successfully in 9/10 cases (median 79 min). Propeller rotation at 10,444 +/- 1,424 rpm maintained an aortic gradient of 9.8 +/- 2 mm Hg.  Although fHb increased,

  • there was no significant hemolysis (4.7 +/- 2.4 mg/dl pre vs. 11.9 +/- 10.5 post, P = 0.04, reference 20 mg/dl).
  • Platelets were unchanged (pre 257 +/- 74 x 10(9) vs. 245 +/- 63, P = NS).
  • Renal function improved (cre pre 110 +/- 27 micromol/l vs. 99 +/- 28, P = 0.004).

All PCI procedures were successful with no deaths or strokes, one MI, and no vascular complications following pump removal.

14F RCP first in man mechanical device post PCI LVEF 25% JS 10

CONCLUSIONS:

The RCP can be used safely in high-risk PCI patients.

(c) 2009 Wiley-Liss, Inc.  PMID: 19455649

Todd J. Brinton, MD and Peter J. Fitzgerald, MD, PhD, Chapter 14: VENTRICULAR ASSIST TECHNOLOGIES

http://www.sis.org/docs/2006Yearbook_Ch14.pdf

Other related articles published on this Open Access Online Scientific Journal include the following:

A coronary angiogram that shows the LMCA, LAD ...

A coronary angiogram that shows the LMCA, LAD and LCX. (Photo credit: Wikipedia)

English: Simulation of a wave pump human ventr...

English: Simulation of a wave pump human ventricular assist device (Photo credit: Wikipedia)

English: Figure A shows the structure and bloo...

English: Figure A shows the structure and blood flow in the interior of a normal heart. Figure B shows two common locations for a ventricular septal defect. The defect allows oxygen-rich blood from the left ventricle to mix with oxygen-poor blood in the right ventricle. (Photo credit: Wikipedia)

 

Read Full Post »


Biochemistry of the Coagulation Cascade and Platelet Aggregation: Nitric Oxide: Platelets, Circulatory Disorders, and Coagulation Effects

Curator/Editor/Author: Larry H. Bernstein, MD, FCAP 

 

 

Subtitle: Nitric Oxide: Platelets, Circulatory Disorders, and Coagulation Effects.  (Part I)

Summary: This portion of the Nitric Oxide series on PharmaceuticalIntelligence(wordpress.com) is the first of a two part treatment of platelets, the coagulation cascade, and protein-membrane interactions with low flow states, local and systemic inflammatory disease, and hematologic disorders.  It is highly complex as the lines separating intrinsic and extrinsic pathways become blurred as a result of endothelial shear stress, distinctly different than penetrating or traumatic injury.  In addition, other factors that come into play are also considered.  The 2nd piece will be concerned with oxidative stress and the diverse effects on NO on the vasoactive endothelium, on platelet endothelial interaction, and changes in blood viscosity.

Coagulation Pathway

The workhorse tests of the modern coagulation laboratory, the prothrombin time (PT) and the activated partial thromboplastin time (aPTT), are the basis for the published extrinsic and intrinsic coagulation pathways.  This is, however, a much simpler model than one encounters delving into the mechanism and interactions involved in hemostasis and thrombosis, or in hemorrhagic disorders.

We first note that there are three components of the hemostatic system in all vertebrates:

  • Platelets,
  • vascular endothelium, and
  • plasma proteins.

The liver is the largest synthetic organ, which synthesizes

  • albumin,
  • acute phase proteins,
  • hormonal and metal binding proteins,
  • albumin,
  • IGF-1, and
  • prothrombin, mainly responsible for the distinction between plasma and serum (defibrinated plasma).

According to WH Seegers [Seegers WH,  Postclotting fates of thrombin.  Semin Thromb Hemost 1986;12(3):181-3], prothrombin is virtually all converted to thrombin in clotting, but Factor X is not. Large quantities of thrombin are inhibited by plasma and platelet AT III (heparin cofactor I), by heparin cofactor II, and by fibrin.  Antithrombin III, a serine protease, is a main inhibitor of thrombin and factor Xa in blood coagulation. The inhibitory function of antithrombin III is accelerated by heparin, but at the same time antithrombin III activity is also reduced. Heparin retards the thrombin-fibrinogen reaction, but otherwise the effectiveness of heparin as an anticoagulant depends on antithrombin III in laboratory experiments, as well as in therapeutics. The activation of prothrombin is inhibited, thereby inactivating  any thrombin or other vulnerable protease that might otherwise be generated. [Seegers WH, Antithrombin III. Theory and clinical applications. H. P. Smith Memorial Lecture. Am J Clin Pathol. 1978;69(4):299-359)].  With respect to platelet aggregation, platelets aggregate with thrombin-free autoprothrombin II-A. Aggregation is dependent on an intact release mechanism since inhibition of aggregation occurred with adenosine, colchicine, or EDTA. Autoprothrombin II-A reduces the sensitivity of platelets to aggregate with thrombin, but enhances epinephrine-mediated aggregation. [Herman GE, Seegers WH, Henry RL. Autoprothrombin ii-a, thrombin, and epinephrine: interrelated effects on platelet aggregation. Bibl Haematol 1977;44:21-7.]

A tetrapeptide, residues 6 to 9 in normal prothrombin, was isolated from the NH(2)-terminal, Ca(2+)-binding part of normal prothrombin. The peptide contained two residues of modified glutamic acid, gamma-carboxyglutamic acid. This amino acid gives normal prothrombin the Ca(2+)-binding ability that is necessary for its activation.

Abnormal prothrombin, induced by the vitamin K antagonist, dicoumarol, lacks these modified glutamic acid residues and that this is the reason why abnormal prothrombin does not bind Ca(2+) and is nonfunctioning in blood coagulation. [Stenflo J, Fernlund P, Egan W, Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombinProc Natl Acad Sci U S A. 1974;71(7):2730-3.]

Interestingly, a murine monoclonal antibody (H-11) binds a conserved epitope found at the amino terminal of the vitamin K-dependent blood proteins prothrombin, factors VII and X, and protein C. The sequence of polypeptide recognized contains 2 residues of gamma-carboxyglutamic acid, and binding of the antibody is inhibited by divalent metal ions.  The antibody bound specifically to a synthetic peptide corresponding to residues 1-12 of human prothrombin that was synthesized as the gamma-carboxyglutamic acid-containing derivative, but binding to the peptide was not inhibited by calcium ion. This suggested that binding by divalent metal ions is not due simply to neutralization of negative charge by Ca2+. [Church WR, Boulanger LL, Messier TL, Mann KG. Evidence for a common metal ion-dependent transition in the 4-carboxyglutamic acid domains of several vitamin K-dependent proteins. J Biol Chem. 1989;264(30):17882-7.]

Role of vascular endothelium.

I have identified the importance of prothrombin, thrombin, and the divalent cation Ca 2+ (1% of the total body pool), mention of heparin action, and of vitamin K (inhibited by warfarin).  Endothelial functions are inherently related to procoagulation and anticoagulation. The subendothelial matrix is a complex of many materials, most important related to coagulation being collagen and von Willebrand factor.

What about extrinsic and intrinsic pathways?  Tissue factor, when bound to factor VIIa, is the major activator of the extrinsic pathway of coagulation. Classically, tissue factor is not present in the plasma but only presented on cell surfaces at a wound site, which is “extrinsic” to the circulation.  Or is it that simple?

Endothelium is the major synthetic and storage site for von Willebrand factor (vWF).  vWF is…

  • secreted from the endothelial cell both into the plasma and also
  • abluminally into the subendothelial matrix, and
  • acts as the intercellular glue binding platelets to one another and also to the subendothelial matrix at an injury site.
  • acts as a carrier protein for factor VIII (antihemophilic factor).
  • It  binds to the platelet glycoprotein Ib/IX/V receptor and
  • mediates platelet adhesion to the vascular wall under shear. [Lefkowitz JB. Coagulation Pathway and Physiology. Chapter I. in Hemostasis Physiology. In ( ???), pp1-12].

Ca++ and phospholipids are necessary for all of the reactions that result in the activation of prothrombin to thrombin. Coagulation is initiated by an extrinsic mechanism that

  • generates small amounts of factor Xa, which in turn
  • activates small amounts of thrombin.

The tissue factor/factorVIIa proteolysis of factor X is quickly inhibited by tissue factor pathway inhibitor (TFPI).The small amounts of thrombin generated from the initial activation feedback

  • to create activated cofactors, factors Va and VIIIa, which in turn help to
  • generate more thrombin.
  • Tissue factor/factor VIIa is also capable of indirectly activating factor X through the activation of factor IX to factor IXa.
  • Finally, as more thrombin is created, it activates factor XI to factor XIa, thereby enhancing the ability to ultimately make more thrombin.

 

Coagulation Cascade

The procoagulant plasma coagulation cascade has traditionally been divided into the intrinsic and extrinsic pathways. The Waterfall/Cascade model consists of two separate initiations,

  • intrinsic (contact) and
    • The intrinsic pathway is initiated by a complex activation process of the so-called contact phase components,
      • prekallikrein,
      •  high-molecular weight kininogen (HMWK) and
      • factor XII

Activation of the intrinsic pathway is promoted by non-biological surfaces, such as glass in a test tube, and is probably not of physiological importance, at least not in coagulation induced by trauma.

Instead, the physiological activation of coagulation is mediated exclusively via the extrinsic pathway, also known as the tissue factor pathway.

  • extrinsic pathways,

Tissue factor (TF) is a membrane protein which is normally found in tissues. TF forms a procoagulant complex with factor VII, which activates factor IX and factor X.

  • which ultimately merge at the level of Factor Xa (common pathway).

Regulation of thrombin generation. Coagulation is triggered (initiation) by circulating trace amounts of fVIIa and locally exposed tissue factor (TF). Subsequent formations of fXa and thrombin are regulated by a tissue factor pathway inhibitor (TFPI) and antithrombin (AT). When the threshold level of thrombin is exceeded, thrombin activates platelets, fV, fVIII, and fXI to augment its own generation (propagation).

Activated factors IX and X (IXa and Xa) will activate prothrombin to thrombin and finally the formation of fibrin. Several of these reactions are much more efficient in the presence of phospholipids and protein cofactors factors V and VIII, which thrombin activates to Va and VIIIa by positive feedback reactions.

We depict the plasma coagulation emphasizing the importance of membrane surfaces for the coagulation processes. Coagulation is initiated when tissue factor (TF), an integral membrane protein, is exposed to plasma. TF is expressed on subendothelial cells (e.g. smooth muscle cells and fibroblasts), which are exposed after endothelium damage. Activated monocytes are also capable of exposing TF.

A small amount, approximately 1%, of activated factor VII (VIIa) is present in circulating blood and binds to TF. Free factor VIIa has poor enzymatic activity and the initiation is limited by the availability of its cofactor TF. The first steps in the formation of a blood clot is the specific activation of factor IX and X by the TF-VIIa complex. (Initiation of coagulation: Factor VIIa binds to tissue factor and activates factors IX and X). Coagulation is propagated by procoagulant enzymatic complexes that assemble on the negatively charged membrane surfaces of activated platelets. (Propagation of coagulation: Activation of factor X and prothrombin).  Once thrombin has been formed it will activate the procofactors, factor V and factor VIII, and these will then assemble in enzyme complexes. Factor IXa forms the tenase complex together with its cofactor factor VIIIa, and factor Xa is the enzymatic component of the prothrombinase complex with factor Va as cofactor.

Activation of protein C takes place on the surface of intact endothelial cells. When thrombin (IIa) reaches intact endothelium it binds with high affinity to a specific receptor called thrombomodulin. This shifts the specific activity of thrombin from being a procoagulant enzyme to an anticoagulant enzyme that activates protein C to activated protein C (APC).  The localization of protein C to the thrombin-thrombomodulin complex can be enhanced by the endothelial protein C receptor (EPCR), which is a transmembrane protein with high affinity for protein C.  Activated protein C (APC) binds to procoagulant surfaces such as the membrane of activated platelets where it finds and degrades the procoagulant cofactors Va and VIIIa, thereby shutting down the plasma coagulation.  Protein S (PS) is an important nonenzymatic  cofactor to APC in these reactions. (Degradation of factors Va and VIIIa).

The common theme in activation and regulation of plasma coagulation is the reduction in dimensionality. Most reactions take place in a 2D world that will increase the efficiency of the reactions dramatically. The localization and timing of the coagulation processes are also dependent on the formation of protein complexes on the surface of membranes. The coagulation processes can also be controlled by certain drugs that destroy the membrane binding ability of some coagulation proteins – these proteins will be lost in the 3D world and not able to form procoagulant complexes on surfaces.

Assembly of proteins on membranes – making a 3D world flat

• The timing and efficiency of coagulation processes are handled by reduction in dimensionality

– Make 3 dimensions to 2 dimensions

• Coagulation proteins have membrane binding capacity

• Membranes provide non-coagulant and procoagulant surfaces

– Intact cells/activated cells

• Membrane binding is a target for anticoagulant drugs

– Anti-vitamin K (e.g. warfarin)

Modern View

It can be divided into the phases of initiation, amplification and propagation.

  • In the initiation phase, small amounts of thrombin can be formed after exposure of tissue factor to blood.
  • In the amplification phase, the traces of thrombin will be inactivated or used for amplification of the coagulation process.

At this stage there is not enough thrombin to form insoluble fibrin. In order to proceed further thrombin  activates platelets, which provide a procoagulant surface for the coagulation factors. Thrombin will also activate the vital cofactors V and VIII that will assemble on the surface of activated platelets. Thrombin can also activate factor XI, which is important in a feedback mechanism.

In the final step, the propagation phase, the highly efficient tenase and prothrombinase complexes have been assembled on the membrane surface. This yields large amounts of thrombin at the site of injury that can cleave fibrinogen to insoluble fibrin. Factor XI activation by thrombin then activates factor IX, which leads to the formation of more tenase complexes. This ensures enough thrombin is formed, despite regulation of the initiating TF-FVIIa complex, thus ensuring formation of a stable fibrin clot. Factor XIII stabilizes the fibrin clot through crosslinking when activated by thrombin.

English: Gene expression pattern of the VWF gene.

English: Gene expression pattern of the VWF gene. (Photo credit: Wikipedia)

Coagulation cascade

Coagulation cascade (Photo credit: Wikipedia)

Blood Coagulation (Thrombin) and Protein C Pat...

Fibrinolytic pathway

Fibrinolysis is the physiological breakdown of fibrin to limit and resolve blood clots. Fibrin is degraded primarily by the serine protease, plasmin, which circulates as plasminogen. In an auto-regulatory manner, fibrin serves as both the co-factor for the activation of plasminogen and the substrate for plasmin.

In the presence of fibrin, tissue plasminogen activator (tPA) cleaves plasminogen producing plasmin, which proteolyzes the fibrin. This reaction produces the protein fragment D-dimer, which is a useful marker of fibrinolysis, and a marker of thrombin activity because fibrin is cleaved from fibrinogen to fibrin.

Bleeding after Coronary Artery bypass Graft

Cardiac surgery with concomitant CPB can profoundly alter haemostasis, predisposing patients to major haemorrhagic complications and possibly early bypass conduit-related thrombotic events as well. Five to seven percent of patients lose more than 2 litres of blood within the first 24 hours after surgery, between 1% and 5% require re-operation for bleeding. Re-operation for bleeding increases hospital mortality 3 to 4 fold, substantially increases post-operative hospital stay and has a sizeable effect on health care costs. Nevertheless, re-exploration is a strong risk factor associated with increased operative mortality and morbidity, including sepsis, renal failure, respiratory failure and arrhythmias.

(Gábor Veres. New Drug Therapies Reduce Bleeding in Cardiac Surgery. Ph.D. Doctoral Dissertation. 2010. Semmelweis University)

Read Full Post »


Author: Dr. Venkat S. Karra, Ph.D.

Platelets are a natural source of growth factors and they circulate in the blood. They are involved in hemostasis, leading to the formation of blood clots. Platelets, otherwise known as thrombocytes, are small, irregularly shaped clear cell fragments derived from fragmentation of precursor megakaryocytes. The average lifespan of a platelet is 5 to 9 days. An abnormality or disease of the platelets leads to a condition called thrombocytopathy.

For example:
1. If the number of platelets is too low (called thrombocytopenia), excessive bleeding can occur.

Disorders leading to a reduced platelet count are:
Thrombocytopenia
Idiopathic thrombocytopenic purpura – also known as immune thrombocytopenic purpura (ITP)
Thrombotic thrombocytopenic purpura
Drug-induced thrombocytopenic purpura (for example heparin-induced thrombocytopenia (HIT))
Gaucher’s disease
Aplastic anemia
Onyalai
Alloimmune disorders
Fetomaternal alloimmune thrombocytopenia

2. If the number of platelets is too high (called thrombocytosis), blood clots (thrombosis) can form. Such clots in the blood may obstruct blood vessels and result in events like stroke, myocardial infarction, pulmonary embolism or the blockage of blood vessels to other parts of the body (e.g., arms, legs).

Disorders featuring an elevated count are:
Thrombocytosis, including essential thrombocytosis (elevated counts, either reactive or as an expression of myeloproliferative disease).

3. Thrombasthenia is a condition in which a decrease in function of platelets is observed.

Disorders leading to platelet dysfunction or reduced count are:
HELLP syndrome
Hemolytic-uremic syndrome
Chemotherapy
Dengue

Platelets play a significant role in the repair and regeneration of connective tissues. They release a multitude of growth factors, which have been used as an adjunct to wound healing, include:

Platelet-derived growth factor (PDGF), a potent chemotactic agent,
TGF beta, which stimulates the deposition of extracellular matrix.
Fibroblast growth factor,
Insulin-like growth factor 1,
Platelet-derived epidermal growth factor,
Vascular endothelial growth factor.

As said earlier, the function of platelets is the maintenance of hemostasis (the opposite of hemostasis is hemorrhage). This is achieved primarily by the formation of thrombi. When a damage to the endothelium of blood vessels occurs, the endothelial cells stop secretion of coagulation and aggregation inhibitors and instead secrete von Willebrand factor which initiate the maintenance of hemostasis after injury.

Hemostasis has three major steps: 1) vasoconstriction, 2) temporary blockage of a break by a platelet plug, and 3) blood coagulation, or formation of a clot that seals the hole until tissues are repaired.

The platelets get activated when a damage occurs to the blood vessel and the platelets clump at the site of blood vessel injury as a protective mechanism – a process that precedes the formation of a blood clot. This is the case if there is a damage to the endothelium otherwise thrombus formation should be considered seriously and must be inhibited immediately.

Vascular spasm is the first response as the blood vessels constrict to allow less blood to be lost during the injury to the blood vessel. In the second step – platelet plug formation – platelets stick together to form a temporary seal to cover the break in the vessel wall. The third and last step is called coagulation or blood clotting. Coagulation reinforces the platelet plug with fibrin threads that act as a “molecular glue”

Disorders of platelet adhesion or aggregation are:
Bernard-Soulier syndrome
Glanzmann’s thrombasthenia
Scott’s syndrome
von Willebrand disease
Hermansky-Pudlak Syndrome
Gray platelet syndrome

In normal hemostasis a thin layer of endothelial cells, that are lined with the inner surface of blood vessels, act to inhibit platelet activation by producing nitric oxide, endothelial-ADPase (which clears away the platelet activator, ADP – this activator otherwise can be blocked by the famous blockbuster clopidogrel), and PGI2 (also known as prostacyclin or eicosanoids, like PGD2, PGI2 is an inflammatory product that inhibits the aggregation of platelets). Intact blood vessels are central to moderating blood’s tendency to clot because the endothelial cells of intact vessels prevent blood clotting with a heparin-like molecule and thrombomodulin and prevent platelet aggregation with
1. Nitric oxide (NO), and
2. Prostacyclin (PGI2) – a member of eicosanoids family.

In this post, nitric oxide role in inhibiting platelet aggregation will be presented. Similarly Interaction of NO and prostacyclin (PGI2) in vascular endothelium will be presented as a separate post.

Nitric oxide (NO) and its role in inhibiting platelet aggregation:

Nitric oxide (NO) is known as the ‘endothelium-derived relaxing factor’, or ‘EDRF’. The endothelium (inner lining) of blood vessels uses NO to signal the surrounding smooth muscle to relax, thus resulting in vasodilation and increasing blood flow. NO is biosynthesized endogenously from L-arginine, oxygen and NADPH by various nitric oxide synthase (NOS) enzymes. Nitric oxide is highly reactive and yet diffuses freely across membranes that makes it ideal for a transient paracrine (between adjacent cells) and autocrine (within a single cell) signaling molecule.

This is an important cellular signaling molecule involved in many physiological and pathological processes. It is a powerful vasodilator with a short half-life of a few seconds in the blood. Low levels of nitric oxide production are important in protecting organs such as the liver from ischemic damage. Nitric oxide is considered an antianginal drug as it causes vasodilation, which can help with ischemic pain, known as angina, by decreasing the cardiac workload. By dilating the veins, nitric oxide lowers arterial pressure and left ventricular filling pressure. This vasodilation does not decrease the volume of blood the heart pumps, but rather it decreases the force the heart muscle must exert to pump the same volume of blood.

Chronic expression of NO is associated with various carcinomas and inflammatory conditions including Type-1 diabetes, multiple sclerosis, arthritis and ulcerative colitis.

Endothelium-derived relaxing factor (EDRF), the best-characterized is nitric oxide (NO), is produced and released by the endothelium to promote smooth muscle relaxation. EDRF was discovered and characterized by Robert F. Furchgott, a winner of the Nobel Prize in Medicine in 1998 with his co-researchers Louis J. Ignarro and Ferid Murad.

According to Furchgott’s website at SUNY Downstate Medical Center, “…we are investigating whether the endothelium-derived relaxing factor (EDRF) is simply nitric oxide or a mixture of substances”.

Although there is strong evidence that nitric oxide elicits vasodilation, there is some evidence tying this effect to neuronal rather than endothelial reactions. http://www.nature.com/jhh/journal/v15/n4/abs/1001165a.html.

The article says that “The possibility that neuronal rather than endothelial production of NO might play a significant role in the aetiology of essential hypertension is a promising area for future human research”.

Mechanism of Platelet Aggregation:

Platelets aggregate, or clump together, using fibrinogen and von Willebrand factor (vWF) as a connecting agent. The most abundant platelet aggregation receptor is glycoprotein IIb/IIIa (gpIIb/IIIa) which is a calcium-dependent receptor for fibrinogen, fibronectin, vitronectin, thrombospondin, and vWF. Other receptors include GPIb-V-IX complex (vWF) and GPVI (collagen).

Activated platelets will adhere, via glycoprotein (GP) Ia, to the collagen that is exposed by endothelial damage. Aggregation and adhesion act together to form the platelet plug. Myosin and actin filaments in platelets are stimulated to contract during aggregation, further reinforcing the plug. Platelet aggregation is stimulated by ADP, thromboxane, and α2 receptor-activation, and further enhanced by exogenous administration of anabolic steroids.

In an injury to the blood vessel, once the blood clot takes control of the bleeding, the aggregated platelets help the healing process by secreting chemicals that promote the invasion of fibroblasts from surrounding connective tissue into the wounded area to completely heal the wound or form a scar. The obstructing clot is slowly dissolved by the fibrinolytic enzyme, plasmin, and the platelets are cleared by phagocytosis.

Possible usefulness of measuring GP IIb-IIIa content as a marker of increased platelet reactivity is discussed in the following very recent (2011) reveiw article: “Glycoprotein IIb-IIIa content and platelet aggregation in healthy volunteers and patients with acute coronary syndrome”. http://www.ncbi.nlm.nih.gov/pubmed/21329420

Further readings:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3134593/?tool=pubmed

http://www.ncbi.nlm.nih.gov/pubmed/2620689

https://pharmaceuticalintelligence.com/2012/07/25/nitric-oxide-production-in-systemic-sclerosis/

https://pharmaceuticalintelligence.com/2012/08/10/nitric-oxide-chemistry-and-function/

https://pharmaceuticalintelligence.com/2012/08/05/nitric-oxide-a-short-historic-perspective-7/

https://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/

https://pharmaceuticalintelligence.com/2012/07/16/nitric-oxide-in-bone-metabolism/

https://pharmaceuticalintelligence.com/2012/06/22/bone-remodelling-in-a-nutshell/

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717403/?tool=pubmed

http://www.ncbi.nlm.nih.gov/pubmed/7605019

Related Articles

http://tginnovations.wordpress.com/2012/08/16/nano-postman-delivers-a-targeted-drug-directly-to-a-site/

Read Full Post »