Feeds:
Posts
Comments

Posts Tagged ‘Regulatory science’

The Vibrant Philly Biotech Scene: Focus on Vaccines and Philimmune, LLC

Curator: Stephen J. Williams, Ph.D

Article ID #163: The Vibrant Philly Biotech Scene: Focus on Vaccines and Philimmune, LLC. Published on 12/10/2014

WordCloud Image Produced by Adam Tubman

I am intending to do a series of posts highlighting interviews with Philadelphia area biotech startup CEO’s and show how a vibrant biotech startup scene is evolving in the city as well as the Delaware Valley area. Philadelphia has been home to some of the nation’s oldest biotechs including Cephalon, Centocor, hundreds of spinouts from a multitude of universities as well as home of the first cloned animal (a frog), the first transgenic mouse, and Nobel laureates in the field of molecular biology and genetics. Although some recent disheartening news about the fall in rankings of Philadelphia as a biotech hub and recent remarks by CEO’s of former area companies has dominated the news, biotech incubators like the University City Science Center and Bucks County Biotechnology Center as well as a reinvigorated investment community (like PCCI and MABA) are bringing Philadelphia back. And although much work is needed to bring the Philadelphia area back to its former glory days (including political will at the state level) there are many bright spots such as the innovative young companies as outlined in these posts.

First up I got to talk with Florian Schodel, M.D., Ph.D., CEO of Philimmune, which provides expertise in medicine, clinical and regulatory development and analytical sciences to support successful development and registration of vaccines and biologics. Before founding Philimmune, Dr. Schodel was VP in Vaccines Clinical Research of Merck Research Laboratories and has led EU vaccine clinical trials and the clinical development of rotavirus, measles, mumps, hepatitis B, and rubella vaccines. In addition Dr. Schodel and Philimmune consult on several vaccine development efforts at numerous biotech companies including:

 

\His specialties and services include: vaccines and biologics development strategy, clinical development, clinical operations, strategic planning and alliances, international collaborations, analytical and assay development, project and portfolio integration and leadership.

Successful development of vaccines and biologics poses some unique challenges: including sterile manufacturing and substantial early capital investment before initiated clinical trials, assay development for clinical trial support, and unique trail design. Therefore vaccines and biologics development is a highly collaborative process between several disciplines.

The Philadelphia area has a rich history in vaccine development including the discovery and development of the rubella, cytomegaolovirus, a rabies, and the oral polio vaccine at the Wistar Institute. Dr. Schodel answered a few questions on the state of vaccine development and current efforts in the Philadelphia area, including recent efforts by companies such as GSK’s efforts and Inovio’s efforts developing an Ebola vaccine.

In his opinion, Dr. Schodel believes our biggest hurdle in vaccine development in a societal issue, not a preclinic development issue. Great advances have been made to speed the discovery process and enhance quality assurance of manufacture capabilities like

however there has not been a great history or support for developing vaccines for the plethora of infectious diseases seen in the developing world. As Dr. Schodel pointed out, there are relatively few players in the field, and tough to get those few players excited for investing in new targets.

 

However, some companies are rapidly expanding their vaccine portfolios including

 

 

Why haven’t 3rd world countries developed their own vaccine programs?

 

  1. Hard to find partners willing to invest and support development
  2. Developing nations don’t have the money or infrastructure to support health programs
  3. Doctors in these countries need to be educated on how to conduct trials, conduct vaccine programs like Gates Foundation does. For more information see Nature paper on obstacles to vaccine introduction in third world countries.

 

Lastly, Dr. Schodel touched on a growing area, cancer vaccine development. Recent advances in bladder cancer vaccine, cervical, and promising results in an early phase metastatic breast cancer vaccine trial and phase I oral cancer vaccine trial have reinvigorated this field of cancer vaccinology.

 

Historic Timeline of Vaccine Development

vaccine development timeline

Graphic from http://en.pedaily.cn/Item.aspx?id=194125

 

Other posts on this site related to Biotech Startups in Philadelphia and some additional posts on infectious disease include:

 

RAbD Biotech Presents at 1st Pitch Life Sciences-Philadelphia

LytPhage Presents at 1st Pitch Life Sciences-Philadelphia

Hastke Inc. Presents at 1st Pitch Life Sciences-Philadelphia

1st Pitch Life Science- Philadelphia- What VCs Really Think of your Pitch

The History of Infectious Diseases and Epidemiology in the late 19th and 20th Century

 

 

 

Read Full Post »

FDA Pending 510(k) for The Latest Cardiovascular Imaging Technology

Curator: Aviva Lev-Ari, PhD, RN

 

UPDATED on 11/22/2018

  • Device Approvals, Denials and Clearances

https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/default.htm

  • FDA clears AI technology that evaluates echocardiograms – Ultrasound Images

https://www.healthdatamanagement.com/news/fda-clears-ai-technology-that-evaluates-echocardiograms

  • Heart Murmur Detection done by AI Algorithm (Eko Core and Eko Duo) Devices Outperform most Auscultatory Skills of Cardiologists

https://pharmaceuticalintelligence.com/2018/11/21/heart-murmur-detection-done-by-ai-algorithm-eko-core-and-eko-duo-devices-outperform-most-auscultatory-skills-of-cardiologists/

  • FDA Clears Remote Multichannel ECG Compared to Holter

https://www.cardiovascularbusiness.com/topics/electrophysiology-arrhythmia/fda-clears-remote-multichannel-ecg-compared-holter

  • Arterys Cardio AI – MR Images

Arterys CEO Fabien Beckers, along with Michael Poon, MD, Northwell Health cardiologist, will present “The Potential of a Web Platform to Transform Medical Imaging with AI and Cloud Computation” in the 2018 RSNA Machine Learning Showcase, Tuesday November 27 at 11:30am CST. Arterys will provide demonstrations of its AI-powered, web-based solutions, including:

Arterys Cardio AIMR combines the power of deep learning and cloud computing to automate analysis of cardiac MR images. By eliminating many tedious, manual tasks, Arterys Cardio AI enables clinicians to quickly and easily identify, determine treatment for and track heart problems. It is the first and only commercial solution to offer deep learning-based semi-quantitative perfusion and quantitative delayed enhancement analysis*.

https://www.marketwatch.com/press-release/arterys-to-demonstrate-suite-of-ai-powered-cloud-based-medical-image-analysis-solutions-at-rsna-2018-2018-11-21/print

  • AI software for detecting brain bleeds receives FDA approval – CT Images

The FDA recently administered 510(k) clearance to software developed by MaxQ AI that uses AI to detect brain bleeds on CT images, according to a report published Nov. 8 by AI in Healthcare.  

“The Accipio Ix Intracranial Hemorrhage platform uses AI technology to automatically analyze non-contrast head CT images, and can do so without impacting a physician’s workflow, altering the original series or storing protected health information,” according to the article.

The clinical diagnostics intelligence platform company hopes that the software can help physicians prioritizes patients who show symptoms of brain bleeds.

With FDA approval, the AI software can be sold for commercial use within the U.S. and will be on display during this year’s Radiological Society of North America (RSNA) Annual Meeting in Chicago.

https://www.healthimaging.com/topics/artificial-intelligence/ai-detection-software-brain-bleeds-fda-approved

 

  • More in Artificial Intelligence

SOURCE

https://www.healthimaging.com/topics/artificial-intelligence/ai-detection-software-brain-bleeds-fda-approv

Cardiovascular Medical Devices in the News

March 13, 2018 — Determining the best occluder device size necessary to properly seal the left atrial appendage (LAA) before implanting the device may be feasible with the assistance of 3D printing, according to two separate presentations at ECR 2018 in Vienna.

SOURCE

https://www.auntminnieeurope.com/index.aspx?sec=sup&sub=car&pno=2

  • Machine learning can help assess atherosclerosis
    February 7, 2018 — Machine-learning techniques analyze imaging measurements to automatically stratify patients by the level of atherosclerotic burden, offering the potential of personalized prediction of disease progression and more effective treatment for individual patients, according to researchers from Italy.  Discuss

SOURCE

https://www.auntminnieeurope.com/index.aspx?sec=sup&sub=car&pno=3

  • CCTA biomarker may predict mortality from heart disease
    August 28, 2018 — The use of coronary CT angiography (CCTA) to measure fatty tissue around arteries could help predict the risk of mortality from heart disease, according to research published online on 28 August in the Lancet and being presented at the European Society of Cardiology congress in Munich.  Discuss

SOURCE

https://www.auntminnieeurope.com/index.aspx?sec=sup&sub=car&pno=1

  • SCOT-HEART: CCTA cuts risk of heart attack, death by 41%
    August 25, 2018 — Patients with chest pain who underwent coronary CT angiography (CCTA) with standard care had a markedly lower rate of myocardial infarction or death from coronary artery disease than those who only received standard care in a new study, published on August 25 in theNew England Journal of Medicine.  Discuss

SOURCE

https://www.auntminnieeurope.com/index.aspx?sec=sup&sub=car&pno=1

 

 

SOURCE

https://www.healthdatamanagement.com/tag/cardiovascular-disease

FDA’s Medical Devices Frontier in 2013

Michelle McMurry-Heath

Office of the Center Director, Center for Devices and

Radiological Health, U.S. Food and Drug Administration (FDA)

and

Margaret A. Hamburg

Office of the Commissioner, FDA

In their article Creating a Space for Innovative Device Development stated that the FDA announces a partnership with a new nonprofit organization—the Medical Device Innovation Consortium (MDIC) —to advance regulatory science in the medical technology arena.

The promise of MDIC is to eliminate the currently existing shortfalls in applied research in areas such as health-related engineering and regulatory science, which comprises the development of new tools, standards, and approaches to assess a product’s safety, efficacy, quality, and performance.

MDIC will foster regulatory science breakthroughs in the medical technology space with the ultimate goal of improving human health.

FDA and LifeScience Alley (LSA; https://www.lifesciencealley.org)—a biomedical science trade association—have worked together to develop the first medical device public-private partnership (PPP) whose sole objective is to advance the entire spectrum of regulatory science in this sector. MDIC will facilitate this groundbreaking collaboration among federal agencies, nonprofit organizations, industry, academic institutions, and other trade associations such as MassMedic (www.massmedic.com) and the California Healthcare Institute (www.chi.org). Key goals:

(1) encourage members to leverage their resources by focusing jointly on precompetitive

(2) early-stage technology development ef orts that otherwise would not take place because of the organizational structure of the device sector.

About 75% of the more than 5,000 device manufacturers in the United States are small companies with fewer than 20 employees (3).

Start-up device companies have limited capital, and a startup’s future of en depends on the success of one complex device. Advances in regulatory science would speed the translation of these next-generation technologies.

Medical Devices sector lacks the resources to support regulatory science research, as well as mechanisms for working together to pool their resources to solve scientific issues.

MDIC members will make it a priority to develop regulatory methods and tools that can be adopted by the medical device community and will provide a forum for medical device stakeholders to securely share proprietary precompetitive data. Each advance achieved by medical device stakeholders through the sharing and leveraging of resources will assist industry in developing new REGULATORY SCIENCE Creating a Space for Innovative Device Development.

GOALS OF PARTNERING WITH MDIC

MDIC was designed with f exibility in mind, so that it can adapt to address the most pressing needs of patients and of the device industry as they evolve over time.

In keeping with the goal of stakeholder engagement, MDIC is currently recruiting founding members who will work jointly with FDA to determine research priorities for the endeavor.

Much like other successful PPPs in the pharmaceutical space, such as the Foundation for NIH or Critical Path Institute, the founding members will be asked to represent their stakeholder communities in

(i) suggesting the most promising areas for research collaboration,

(ii) raising funds to support these areas of investigation, and then

(iii) issuing requests for grant proposals.

Researchers and engineers from all sectors—industry, government, academia, or nonprofit organizations—will be encouraged to apply, and preference will be given to research consortia that cross sectors and take interdisciplinary approaches to problems.

MDIC strives to support science conducted by research teams that have innovative ideas for the development of tools and methods for medical device design, testing, and regulatory approval.

MDIC’s potential to improve patient care is computational modeling and simulation of human pathophysiology, which can be used to augment in vitro and animal disease models in the preclinical stages of device development.

FDA’s Center for Devices and Radiological Health (CDRH) expects computational modeling to accelerate and streamline the regulatory review process but first needs to develop a strategy for assessing the technology’s credibility—its usefulness, quality, and reproducibility. CDRH has begun to develop a technological framework called the Virtual Physiological Patient (4), which, once completed, will provide a model for the human body as a single complex system. 

However, cross-sector research teams are required to develop the normal and diseased reference models that will serve as benchmarks for device performance and safety. Using computational modeling and simulation, device designs can potentially be ref ned even before they enter clinical trials, improving safety for patients and reducing the cost of device development for companies, computational modeling and simulation, device designs can potentially be ref ned even before they enter clinical trials, improving safety for patients and reducing the cost of device development for companies.

Another emerging research area is medical device interoperability—the development of devices that seamlessly operate with other medical devices and information systems (5). MDIC could establish a framework to identify gaps in the interoperability field, prioritize the gaps, and then fund research accordingly.

MDIC also could help prioritize the development of standards for innovative interoperable medical devices and build test beds for these technologies. is research will help to ensure that interoperability issues do not pose a hazard to patients.

With the emergence of new materials in medical devices, FDA must develop updated biocompatibility standards based on the most recent scientific advances.

MDIC could support the development of new preclinical biocompatibility assays that predict potential adverse health responses in people exposed to biomaterials or nanoparticles (6).

INNOVATION INFRASTRUCTURE With today’s fiscal realities, FDA cannot rely on government-funded “Manhattan projects” to bridge the funding gap for regulatory science. Partnerships bring together private-sector expertise, academic science ingenuity, and federal regulatory knowledge, and new structures are needed to promote these multifaceted collaborations.

It would be convenient if such partnerships formed organically, but all too of en, bureaucratic red tape gets in the way of sensible scientif c collaboration. MDIC will serve as a collaborative freeway to biomedical discovery and development by forming a foundation that makes it easy for industry, academia, and government to come together to set research priorities; to pool their distinct intellectual capital; and then to work together to advance knowledge that modernizes regulatory science and improves patient access to high-quality medical technology.

Sci. Transl. Med. 4, 163fs43 (2012)

[ScienceTranslationalMedicine.org 5 December 2012 Vol 4 Issue 163 163fs43]

Statistics on Device use — Number of procedures in the United States (2009)

Number of domestic inpatient procedures (N = 48 million per year)

  • Insertion of coronary artery stent: 528,000
  • Diagnostic ultrasound: 902,000
  • CT scan: 497,000
  • Arteriography and angiocardiography: 1.9 million
  • Cardiac catheterization: 1.1 million
  • Total hip replacement: 327,000
  • Total knee replacement: 676,000

Source:

U.S. Centers of Disease Control www.cdc.gov/nchs/fastats/insurg.htm

This sector is best known for

  • surgical instruments,
  • cardiology devices, and
  • orthopedic implants, it also includes all of the
  • diagnostic tests and
  • imaging equipment currently used to pinpoint disease 
  • companion diagnostics, which are needed to fulfill the promise of personalized medicine (1).

FDA 510 (k) Pending for the Latest Cardiovascular Imaging Technology

Editor’s choice of the most innovative technology at RSNA 2012
By:

Dave Fornell

December 11, 2012
Toshiba is developing a radiation dose alert to show interventionalists how much dose they have delivered to their patient from X-ray angiography.
 The latest advances in cardiovascular imaging are usually shown first at the Radiological Society of North America (RSNA) annual meeting, the largest radiology show in the world, held the last week of November in Chicago. After spending five days walking three expo halls filled with more than 600 product vendors, the following is my editor’s choice for the most innovative new cardiovascular imaging technology.

New Angiography Systems

Siemens unveiled two new 510(k)-pending angiography systems, the Artis Q and Artis Q.zen, which incorporate new X-ray tube, detector and imaging software technology that can help reduce dose significantly, while offering improved image quality.

The new X-ray tube is intended to help physicians identify small vessels up to 70 percent better than conventional X-ray tube technology. The Artis Q.zen combines this innovative X-ray source with a new detector technology designed to support interventional imaging in ultra low-dose ranges to patients, doctors and medical staff, particularly during more complex, longer interventions.

The second generation of Siemens’ flat emitter technology replaced the coiled filaments used in conventional X-ray tubes to emit electrons. Flat emitters are designed to enable smaller quadratic focal spots that lead to improved visibility of small vessels.

The Artis Q.zen combines the X-ray tube with a detector technology that allows detection at ultra-low radiation levels. It can image with doses as low as half the standard levels applied in angiography. Instead of detectors based on amorphous silicon, a new crystalline silicon structure of the Artis Q.zen detector is designed to be more homogenous, allowing for more effective amplification of the signal, greatly reducing the electronic noise.

Siemens also introduced new software applications for interventional imaging. Clear Stent Live freezes an enhanced image of a stent during deployment with the balloon radio-opaque markers and uses it as an overlay on live fluoroscopy. Siemens says the main application will be for better visualization when implanting overlapping stents or stenting bifurcation lesions. It also helps suppress and stabilize heart motion on the image.

Other new 3-D applications are designed to image the smallest structures inside the head. Their high spatial resolution is crucial for imaging intracranial stents or other miniscule structures such as the cochlea in the inner ear. Moving organs such as the lungs can be imaged in 3-D in less than three seconds, reducing motion artifacts and the required amount of contrast agent.

GE Healthcare showcased its IGS (Image Guided System) 750 hybrid OR angiography system. It was displayed at RSNA 2011, but did not receive FDA clearance until earlier this year. It offers the mobility of a mobile C-arm, but the image quality and software features of a ceiling or floor mounted fixed system. It uses laser guidance for very accurate positioning. It can rove around the room on a powered caster system to enable different positioning around the table, or be parked out of the way during open surgical procedures.

Hands-Free Physician Control of Images

GestSure displayed a new, FDA-cleared system that allows interventionalists in the cath lab, or surgeons in the operating room, to pick reference images to display on the overhead screens in the room and manipulate the images all hands-free. It allows physicians to pick and enlarge the images they need for better procedural navigation, while maintaining the sterile field.

A video sensor detects all the people in the work area and displays their outlines on a separate screen, with each person assigned a specific color. When one of those people raises their arms in the “hands up” pose, the system detects this and allows the person control of the system. Using the right arm/hand, they can scroll through images and use the left arm/hand as a mouse click by a pushing motion forward. The system detects the motions and translates them in real time to mouse actions on the overhead screen.

The software works as a vendor-neutral layer on top of existing PACS or advanced visualization software.

Outpatient, Office-Based Catheter Interventions

Outpatient, office-based peripheral vascular procedures are an increasing trend, according to GE healthcare, which showcased a new “mobile hybrid OR” solution. The trend includes setting up an outpatient cath lab in an office setting to reduce the costs of using hospital ORs or cath labs. The room system GE highlighted centers around its OEC 9900 Elite mobile C-arm and Venue 40, which is combined with a ultrasound system in an all-in-one unit. The GE Venue 40 tablet ultrasound system is mounted within the OEC 9900 Elite C-arm’s workstation to reduce the floor space required.

Wireless Ultrasound Transducer

Siemens introduced the world’s first wireless transducer ultrasound system, the Acuson Freestyle. It eliminates the impediment of cables in ultrasound imaging by using a battery-powered transducer, about the size of a large TV controller. The transducer can be submerged for cleaning. It is capable of 90 minutes of continuous scanning before the battery needs to be recharged.

The Freestyle is a point-of-care system that will expand ultrasound’s use in interventional and therapeutic applications. The transducer can be used to image up to 10 feet from the console. Siemens said it hopes to refine and expand the wireless transducer technology to its other systems in the coming years.

Engineers had to overcome several issues to create a wireless transducer. For example, a cardiac echo requires about 40 frames per second and each frame is equal to about 1 megabyte of data. To accommodate the amount of data and speed the computer processing involved, some of the electronics are placed in the transducer rather than processing the data in the machine console. The wireless system transmits the data over an 8 GHz ultrawideband radio frequency to the console. The amount of data and the bandwidth transmitted by the transducer is equal to about 10 4G smart phones working continuously.

Noiseless MRI

GE Healthcare introduced its 510(k)-pending noiseless MRI Silent Scan technology that it hopes to introduce in 2013 for its MR450W 1.5T system. The technology addresses one of the most significant impediments to patient comfort — excessive noise generated during the exam that can be in excess of 110 decibels. A combination of software and a pulse sequence lowers the noise level to that of a chirping bird outside a window.

Historically, acoustic noise mitigation techniques have focused on insulating components and muffling sound as opposed to treating the noise at the source. With Silent Scan, acoustic noise is essentially eliminated by employing a new advanced 3-D acquisition and reconstruction technique called Silenz, in combination with GE Healthcare’s proprietary design of the high-fidelity MR gradient and RF system electronics. Silent Scan is designed to eliminate the noise at its source.

640-Slice CT Scanner

Toshiba unveiled its 640-slice Aquilion One Vision edition CT scanner. The vendor already offers the highest-slice system on the market, the 320-slice Aquilion One. The new system is equipped with a gantry rotation of 0.275 seconds, a 100 kw generator and 320 detector rows (640 unique slices) covering 16 cm in a single rotation, with the industry’s thinnest slices at 500 microns (0.5 mm). The system can accommodate larger patients with its 78 cm bore and fast rotation, including bariatric and patients with high heart rates.

FFR-Like CT Culprit Vessel Analysis

TeraRecon released new research software in response to fractional flow reserve (FFR)-CT analysis being developed by HeartFlow. The HeartFlow software uses a supercomputing algorithm to look at the fluid dynamics of the iodine contrast flow in coronary vessels to calculate a virtual a FFR number, similar to invasive pressure wire based FFR in the cath lab. TeraRecon’s Lesion Specific Analysis software cannot calculate FFR, but uses the same principle of tracking contrast flow in the myocardium. It uses lobular decomposition to look at each vessel segment to determine the tissue it feeds to show areas of ischemia and the expected culprit vessel segment. It shows a color contrast level maps on a 3-D model of the heart and in a coronal view of the left ventricle. Automated detection boxes highlight suspected ischemic areas of interest and identifies the vessel responsible for supplying blood to the region.

Radiation Dose Monitoring

Radiation dose monitoring solutions have been shown at previous RSNAs, but were highlighted by several companies this year as several states began implementing requirements for radiology departments to record patient dose. Dose records will have the most application with CT systems, especially for longer duration, higher dose cardiac exams, and catheter based angiography. Angiography is becoming an increasing issue due to the longer duration of more complex transcatheter interventions.

Toshiba demonstrated a work-in-progress dose tracking software for its Infinix-i angiography system. It can be displayed on a screen in the cath lab to show the approximate radiation dose that has been delivered cumulatively to specific areas of a patient. It takes into consideration the amount of time, power setting used and orientation of the C-arm to show a color-coded map of radiation delivery projected on a human figure. The colors change in real time as X-ray imaging continues. It is designed to be a visual reminder to physicians about the dose the patient has received and that they may want to change the location of the C-arm.

Sectra demonstrated 510(k)-pending Dose Track software, which radiology or cardiology departments can use to track radiation dose by patient, machine, physician, technologist, procedure type and room. The system can be set up to create alerts if a reasonable amount of dose if exceeded for a particular exam, or if certain physicians or technologists are using higher than average doses.

OLED Displays

Flat panel display technology migrated from CRT screens to LCDs over the past decade. The next major innovation in display technology is OLED, which offers even smaller components, faster response time than LCD, and the ability to display quick motion with virtually no blur. Sony showed the new PVM-2551MD OLED medical-grade monitor, which incorporates technology to achieve pure black, faithful to the source signal. By providing superb color reproduction, especially for dark images, surgeons can observe very subtle details such as the faint color difference between various tissues and blood vessels.

Aesthetically Pleasing Cath Labs

Philips Healthcare displayed video of its recent install of the Ambient Experience in a cath lab. The system uses colored lighting, subtle room design details and projected image visual effects to calm patients and make procedure rooms look less clinical. The installation highlighted allowed doctors or patients to choose a theme, such as a tropical rainforest, where diffused, indirect lighting would take a green hue and a photo projection on the ceiling of a tropical scene. Philips said at facilities that have installed these type of labs, patient satisfaction rose, as did staff morale. They say doctors and staff compete to use these rooms at some facilities.

Single Detector Spectral CT Imaging

Philips introduced an innovative work-in-progress CT system that uses new detector technology to simplify spectral imaging, offering soft tissue image quality similar to MRI. Currently, CT special imaging can be performed using systems with two X-ray tubes and two detectors. The new system in development uses a single X-ray source and a single detector that has two layers of detectors, one on top of the other, for high and low energy.

Better Transcatheter Mitral Valve Repair Guidance

Philips’ showed its new Echo Navigator system, designed to synchronize views from TEE ultrasound with the orientation on live angiography. The primary application is to aid navigation during transcatheter mitral valve procedures, which require very accurate 3-D echo navigation to deploy devices like the Abbott MitraClip.

3-D Sculptures From 3-D Datasets

Taking 3-D images shown on 2-D display screens to a true physical 3-D form, Vidar Systems/3D Systems displayed the new Z Printer 450. It takes any 3-D advanced visualization dataset and can print the image in true 3-D using gypsum powder (the same material used to make drywall), standard color ink jet printer cartridges and a binding agent. The image is saved as an STL file and sent to the printer, which prints 1/10th of a millimeter each pass, up to 2 cm per hour.

The 3-D sculptures it created can be printed in color, eliminating the need to paint the models.

The printer offers a new way to create 3-D anatomical models for medical education, complex surgical planning and cosmetic reconstruction. Another application suggested at RSNA was to print sculptures for sale to the patients, such as fetal faces taken from 3-D obstetrics ultrasound exams.

The company printed a full-sized, 3-D, color heart during the show using a cardiac CT dataset on a thumb drive provided by one of the advanced visualization vendors in the same hall.

  • Siemens unveiled the world’s first wireless ultrasound transducer at RSNA 2012.

http://www.dicardiology.com/article/latest-cardiovascular-imaging-technology

REFERENCES

1. S. Desmond-Hellmann, Toward precision medicine: A new

social contract? Sci. Transl. Med. 4, ed3 (2012).

2. J. S. Altshuler, E. Balogh, A. D. Barker, S. L. Eck, S. H. Friend,

G. S. Ginsburg, R. S. Herbst, S. J. Nass, C. M. Streeter, J. A.

Wagner, Opening up to precompetitive collaboration. Sci.

Transl. Med. 2, 52cm26 (2010).

3. U.S. commerce department study; www.ita.doc.gov/td/

health/Medical%20Device%20Industry%20Assessment%

20FINAL%20II%203-24-10.pdf.

4. Regulatory science in FDA’s Center for Devices and

Radiological Health: A vital framework for protecting

and promoting public healthwww.fda.gov/AboutFDA/

CentersOffices/OfficeofMedicalProductsandTobacco/

CDRH/CDRHReports/ucm274152.htm#.

5. Driving Biomedical Innovation: Initiatives for Improving

Products for Patients; www.fda.gov/AboutFDA/

ReportsManualsForms/Reports/ucm274333.htm.

6. G. D. Prestwich, S. Bhatia, C. K. Breuer, S. L. Dahl, C. Mason,

R. McFarland, D. J. McQuillan, J. Sackner-Bernstein, J. Schox,

W. E. Tente, A. Trounson, What is the greatest regulatory

challenge in the translation of biomaterials to the clinic?

Sci. Transl. Med. 4, 60cm14 (2012).

7. Between Invention and Innovation. NIST GRC 02-841;

www.atp.nist.gov/eao/gcr02-841/contents.htm.

8. Justin D Pearlman, MD, ME, PhD, FACC, MA; Chief Editor: Eugene C Lin, MD

Imaging in Coronary Artery Disease, Nov 13, 2012

http://emedicine.medscape.com/article/349040-overview

9. Markus Schwaiger, MD; Sibylle Ziegler, PhD; and Stephan G. Nekolla, PhD

PET/CT: Challenge for Nuclear Cardiology

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 46 • No. 10 • October 2005

 

Other articles related to this topic Published on this Open Access Online Scientific Journal include the following:

New Definition of MI Unveiled, Fractional Flow Reserve (FFR) CT for Tagging Ischemia

http://pharmaceuticalintelligence.com/2012/08/27/new-definition-of-mi-unveiled-fractional-flow-reserve-ffrct-for-tagging-ischemia/

FDA: Strengthening Our National System for Medical Device Post-market Surveillance

http://pharmaceuticalintelligence.com/2012/09/07/fda-strengthening-our-national-system-for-medical-device-post-market-surveillance/

Gaps, Tensions, and Conflicts in the FDA Approval Process: Implications for Clinical Practice

http://pharmaceuticalintelligence.com/2012/07/31/gaps-tensions-and-conflicts-in-the-fda-approval-process-implications-for-clinical-practice/

To Stent or Not? A Critical Decision

http://pharmaceuticalintelligence.com/2012/10/23/to-stent-or-not-a-critical-decision/

Read Full Post »