Feeds:
Posts
Comments

Posts Tagged ‘Gleevec’


 Live Notes from @AACR’s #cbi16 Meeting on Precision Medicine: 3:45PM Big Idea Dr. Hait and Premalignancy

Big Idea: Interception: Search for therapies that can tackle pre-malignancies to prevent cancer by Dr. Williams Hait, Global Head Drug Discovery Jansenn

Reporter: Stephen J. Williams, Ph.D.

  • We accumulate diseases over our lifetime
  • Jannsen decided to come up with the term “immorbidity” living longer without fear of disease
  • genetic complexity of cancers increase over time Nature 2012 paper
  • with Gleevec different relapse picture with early than advanced disease (see my post on Gleevec resistance)
  • cancer prevention screens have been important (Pap smears, colonoscopies)
  • MGuS (myeloma precursor) to SMM then full blown disease
  • huge knowledge gap in premalignant myeloma disease and karyotypic changes
  • Jannsen is focusing on disease prevention

 

 

Read Full Post »


Development of Chemoresistance to Targeted Therapies: Alterations of Cell Signaling, & the Kinome [11.4.1.2]

 

Curator, Reporter: Stephen J. Williams, Ph.D.

The advent of molecular targeted therapies like Imatinib (Gleevec), and other tyrosine kinase inhibitors (TKI) has been transformative to cancer therapy. However, as with all chemotherapeutics, including radiation therapy, the development of chemo-resistance toward personalized, molecular therapies has been disastrous to the successful treatment of cancer. The fact that chemo-resistance develops to personalized therapies was a serious disappointment to clinicians (although most expected this to be the case) but more surprisingly it was the rapidity of onset and speed of early reported cases which may have been the biggest shocker.

A post on resistance to other TKIs (to EGFR and ALK) can be seen here: https://pharmaceuticalintelligence.com/2013/11/01/resistance-to-receptor-of-tyrosine-kinase/

History of Development of Resistance to Imatinib (Gleevec)

The Melo group published a paper in Blood showing that short exposure to STI571 (imatinib; trade name Gleevec®) could result in drug resistant clones

Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000 Aug 1;96(3):1070-9.

Mahon FX1, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV.

Abstract

Targeting the tyrosine kinase activity of Bcr-Abl with STI571 is an attractive therapeutic strategy in chronic myelogenous leukemia (CML). A few CML cell lines and primary progenitors are, however, resistant to this compound. We investigated the mechanism of this resistance in clones of the murine BaF/3 cells transfected with BCR-ABL and in 4 human cell lines from which sensitive (s) and resistant (r) clones were generated by various methods. Although the resistant cells were able to survive in the presence of STI571, their proliferation was approximately 30% lower than that of their sensitive counterparts in the absence of the compound. The concentration of STI571 needed for a 50% reduction in viable cells after a 3-day exposure was on average 10 times higher in the resistant (2-3 micromol/L) than in the sensitive (0.2-0.25 micromol/L) clones. The mechanism of resistance to STI571 varied among the cell lines. Thus, in Baf/BCR-ABL-r, LAMA84-r, and AR230-r, there was up-regulation of the Bcr-Abl protein associated with amplification of the BCR-ABL gene. In K562-r, there was no Bcr-Abl overexpression, but the IC(50) for the inhibition of Bcr-Abl autophosphorylation was increased in the resistant clones. Sequencing of the Abl kinase domain revealed no mutations. The multidrug resistance P-glycoprotein (Pgp) was overexpressed in LAMA84-r, indicating that at least 2 mechanisms of resistance operate in this cell line. KCL22-r showed neither Bcr-Abl up-regulation nor a higher threshold for tyrosine kinase inhibition by STI571. We conclude that BCR-ABL-positive cells can evade the inhibitory effect of STI571 by different mechanisms, such as Bcr-Abl overexpression, reduced intake mediated by Pgp, and, possibly, acquisition of compensatory mutations in genes other than BCR-ABL.

mellobcrablresistamplification

FISH analysis of AR230 and LAMA84 sensitive and resistant clones, with probes for the ABL (red signal) and theBCR (green signal) genes. BCR-ABL is identified as a red–green or yellow fused signal. Adapted from Mahon et al., Blood 2000; 96(3):1070-9.

This rapid onset of imatinib resistance also see in the clinic and more prominent in advance disease

From NCCN 2nd Annual Congress: Hematologic Malignancies – Update on Primary Therapy, Second-Line Therapy, and New Agents for Chronic Myelogenous Leukemia (Slides with Transcript)

http://www.medscape.org/viewarticle/564097

There is some evidence that even looking earlier makes some sense in determining what the prognosis is. This is from Timothy Hughes’ group in Adelaide, and he is looking at an earlier molecular time point, 3 months after initiation of therapy. And what you have done here is you have taken the 3-month mark and you have said, “Well, based on your response at 3 months, what is your likelihood that in the future you will either get a major molecular response or become resistant?”

3monthimitanibresist

If you look at the accumulation of imatinib resistance to find if it is either initially not responding or becoming resistant after a good response, it goes up with type of disease and phase of disease. So if you look at patients who have early chronic phase disease — that is, they start getting imatinib less than a year from the diagnosis — their chance of failure is pretty low. With later disease — they are in a chronic phase but they have had disease more than a year before they get imatinib — it is higher. If you see patients with accelerated phase or blast crisis, the chances are that they will fail sometime in the future.

speed of imitinib resistance

Therefore, because not all resistant samples show gene amplification of Bcr/Abl and the rapidity of onset of resistance, many feel that there are other mechanisms of resistance at play, like kinome plasticity.

Kinome Plasticity Contributes to TKI resistance

Beyond gene amplification, other mechanisms of imitanib and other tyrosine kinase inhibitors (TKI) include alterations in compensatory signaling pathways. This can be referred to as kinome plasticity and is explained in the following abstracts from the AACR 2015 meeting.

Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML

Georg E Winter, Uwe Rix, Scott M Carlson, Karoline V Gleixner, Florian Grebien, Manuela Gridling, André C Müller, Florian P Breitwieser, Martin Bilban, Jacques Colinge, Peter Valent, Keiryn L Bennett, Forest M White & Giulio Superti-Furga. Nature Chemical Biology 8,905–912(2012)

Occurrence of the BCR-ABLT315I gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABLT315I. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABLT315I CML cells on c-Myc through nonobvious off targets.

nchembio.1085-F2kinomegleevecresistance

Please see VIDEO and SLIDESHARE of a roundtable Expert Discussion on CML

Curated Content From the 2015 AACR National Meeting on Drug Resistance Mechanisms and tyrosine kinase inhibitors

Session Title: Mechanisms of Resistance: From Signaling Pathways to Stem Cells
Session Type: Major Symposium
Session Start/End Time: Tuesday, Apr 21, 2015, 10:30 AM -12:30 PM
Location: Terrace Ballroom II-III (400 Level), Pennsylvania Convention Center
CME: CME-Designated
CME/CE Hours: 2
Session Description: Even the most effective cancer therapies are limited due to the development of one or more resistance mechanisms. Acquired resistance to targeted therapies can, in some cases, be attributed to the selective propagation of a small population of intrinsically resistant cells. However, there is also evidence that cancer drugs themselves can drive resistance by triggering the biochemical- or genetic-reprogramming of cells within the tumor or its microenvironment. Therefore, understanding drug resistance at the molecular and biological levels may enable the selection of specific drug combinations to counteract these adaptive responses. This symposium will explore some of the recent advances addressing the molecular basis of cancer cell drug resistance. We will address how tumor cell signaling pathways become rewired to facilitate tumor cell survival in the face of some of our most promising cancer drugs. Another topic to be discussed involves how drugs select for or induce the reprogramming of tumor cells toward a stem-like, drug resistant fate. By targeting the molecular driver(s) of rewired signaling pathways and/or cancer stemness it may be possible to select drug combinations that prevent the reprogramming of tumors and thereby delay or eliminate the onset of drug resistance.
Presentations:
Chairperson
Tuesday, Apr 21, 2015, 10:30 AM -12:30 PM
David A. Cheresh. UCSD Moores Cancer Center, La Jolla, CA
Introduction
Tuesday, Apr 21, 2015, 10:30 AM -10:40 AM
Resistance to tyrosine kinase inhibitors: Heterogeneity and therapeutic strategies.
Tuesday, Apr 21, 2015, 10:40 AM -10:55 AM
Jeffrey A. Engelman. Massachusetts General Hospital, Boston, MA
Discussion
Tuesday, Apr 21, 2015, 10:55 AM -11:00 AM
NG04: Clinical acquired resistance to RAF inhibitor combinations in BRAF mutant colorectal cancer through MAPK pathway alterations
Tuesday, Apr 21, 2015, 11:00 AM -11:15 AM
Ryan B. Corcoran, Leanne G. Ahronian, Eliezer Van Allen, Erin M. Coffee, Nikhil Wagle, Eunice L. Kwak, Jason E. Faris, A. John Iafrate, Levi A. Garraway, Jeffrey A. Engelman. Massachusetts General Hospital Cancer Center, Boston, MA, Dana-Farber Cancer Institute, Boston, MA
Discussion
Tuesday, Apr 21, 2015, 11:15 AM -11:20 AM
SY27-02: Tumour heterogeneity and therapy resistance in melanoma
Tuesday, Apr 21, 2015, 11:20 AM -11:35 AM
Claudia Wellbrock. Univ. of Manchester, Manchester, United Kingdom
Discussion
Tuesday, Apr 21, 2015, 11:35 AM -11:40 AM
SY27-03: Breast cancer stem cell state transitions mediate therapeutic resistance
Tuesday, Apr 21, 2015, 11:40 AM -11:55 AM
Max S. Wicha. University of Michigan, Comprehensive Cancer Center, Ann Arbor, MI
Discussion
Tuesday, Apr 21, 2015, 11:55 AM -12:00 PM
SY27-04: Induction of cancer stemness and drug resistance by EGFR blockade
Tuesday, Apr 21, 2015, 12:00 PM -12:15 PM
David A. Cheresh. UCSD Moores Cancer Center, La Jolla, CA
Discussion
Tuesday, Apr 21, 2015, 12:15 PM -12:20 PM
General Discussion
Tuesday, Apr 21, 2015, 12:20 PM -12:30 PM

Targeting Macromolecular Signaling Complexes 
Room 115, Pennsylvania Convention Center

Drug Resistance 
Hall A (200 Level), Pennsylvania Convention Center
Resistance to Pathway-Targeted Therapeutics 1 
Section 33

Molecular Mechanisms of Sensitivity or Resistance to Pathway-Targeted Agents 
Room 118, Pennsylvania Convention Center

Targeting Signaling Pathways in Cancer 
Room 204, Pennsylvania Convention Center
Exploiting the MAPK Pathway in Cancer 
Room 115, Pennsylvania Convention Center

PLEASE see the attached WORD file which includes ALL abstracts, posters, and talks on this subject from the AACR 2015 national meeting BELOW

 AACR2015resistancekinome

Other posts related to, Cancer, Chemotherapy, Gleevec and Resistance on this Open Access Journal Include

Imatinib (Gleevec) May Help Treat Aggressive Lymphoma: Chronic Lymphocytic Leukemia (CLL)

Treatments for Acute Leukemias [2.4.4A]

Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’

Hematologic Malignancies [6.2]

Overview of Posttranslational Modification (PTM)

Novel Modeling Methods for Genomic Data Analysis & Evolutionary Systems Biology to Design Dosing Regimens to Minimize Resistance

Mechanisms of Drug Resistance

Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia

An alternative approach to overcoming the apoptotic resistance of pancreatic cancer

Resistance to Receptor of Tyrosine Kinase

Read Full Post »


Notes On Tumor Heterogeneity: Targets and Mechanisms, from the 2015 AACR Meeting in Philadelphia PA

Reporter: Stephen J. Williams, Ph.D.

The following contain notes from the Sunday April 19, 2015 AACR Meeting (Pennsylvania Convention Center, Philadelphia PA) 1 PM Major Symposium Session on Tumor Heterogeneity: Targets and Mechanism chaired by Dr. Charles Swanton.

Speakers included: Mark J. Smyth, Charles Swanton, René H. Medema, and Catherine J. Wu

Tumor heterogeneity is a common feature of many malignancies, especially the solid tumors and can drive the evolution and adaptation of the growing tumor, complicating therapy and resulting in therapeutic failure, including resistance. This session at AACR described the mechanisms, both genetic and epigenetic, which precipitate intratumor heterogeneity and how mutational processes and chromosomal instability may impact the tumor progression and the origin of driver events during tumor evolution. Finally the session examined possible therapeutic strategies to take advantage of, and overcome, tumor evolution. The session was chaired by Dr. Charles Swanton. For a more complete description of his work, tumor heterogeneity, and an interview on this site please click on the link below:

Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

and

Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

 

Notes from Charles Swanton, Cancer Research UK; Identifying Drivers of Cancer Diversity

Dr. Swanton’s lecture focused on data from two recent papers from his lab by Franseco Favero and Nicholas McGranahan:

  1. Glioblastoma adaptation Traced Through Decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome (Annals of Oncology, 2015)[1]

This paper described the longitudinal Whole Genome Sequencing (WGS) study of a 35 year old female whose primary glioblastoma (GBM) was followed through temozolomide treatment and ultimately recurrence.

  • In 2008 patient was diagnosed with primary GBM (three biopsies of unrelated sites were Grade II and Grade IV; temozolomide therapy for three years then relapse in 2011
  • WGS of 2 areas of primary tumor showed extensive mutational and copy number heterogeneity; was able to identify clonal TP53 mutations and clonal IDH1 mutation in primary tumor with different patterns of clonality based on grade
  • Amplifications on chromosome 4 and 12 (PDGFRA, KIT, CDK4)
  • After three years of temozolomide multiple translocations found in chromosome 4 and 12 (6 translocations)
  • Clonal IDH1 R132H mutation in primary tumor only at very low frequency in recurrent tumor
  • The WGS on recurrent tumor (sequencing took ONLY 9 days from tumor resection to sequence results) showed mutation cluster in KIT/PDGFRA.PI3K.mTOR axis so patient treated with imatinib
  • However despite rapid sequencing and a personalized approach based on WGS results, tumor progressed and patient died shortly: tumor evolution is HUGE hurdle for personalized medicine

As Dr. Swanton stated:

“we are underestimating the frequency of polyclonal evolution”

  1. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution (Science Translational Medicine, 2015)[2]
  • analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions.
  • identified later subclonal “actionable” mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches.
  • > 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)–AKT–mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal
  • Mutations in the RAS–MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling

Branched chain can converge on single resistance mechanism; clonal resistance (for example to PI3K inhibitors can get multiple PTEN mutations in various metastases

Targeting Tumor Heterogeneity

  • Identify high risk occupants (have to know case history)
  • Mutational landscape interferes with anti-PD1 therapies
  • Low frequency mutations affect outcome

Notes from Dr. Catherine J. Wu, Dana-Farber Cancer Institute: The evolutionary landscape of CLL: Therapeutic implications

  • Clonal evolution a key feature of cancer progression and relapse
  • Hypothesis: evolutionary dynamics (heterogeneity) in chronic lymphocytic leukemia (CLL) contributes to variations in response and disease “tempo”
  • Used whole exome sequencing and copy number data of 149 CLL cases to discover early and late cancer drivers: clonal patterns (Landau et. al, Cell 2013); some drivers correspond to poor clinical outcome
  • Methylation studies suggest that there is epigenetic heterogeneity which may drive CLL clonal evolution
  • Developing methodology to integrate WES to determine mutations with immunogenic potential for development of personalized immunotherapy for CLL and other malignancies

References

  1. Favero F, McGranahan N, Salm M, Birkbak NJ, Sanborn JZ, Benz SC, Becq J, Peden JF, Kingsbury Z, Grocok RJ et al: Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2015, 26(5):880-887.
  2. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C: Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Science translational medicine 2015, 7(283):283ra254.

 

Other related articles on Tumor Heterogeneity were published in this Open Access Online Scientific Journal, include the following:

 

Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

CANCER COMPLEXITY: Heterogeneity in Tumor Progression and Drug Response – 2015 Annual Symposium @Koch Institute for Integrative Cancer Research at MIT – W34, 6/12/2015 9:00 AM EDT – 4:30 PM EDT

My Cancer Genome from Vanderbilt University: Matching Tumor Mutations to Therapies & Clinical Trials

Tumor Imaging and Targeting: Predicting Tumor Response to Treatment: Where we stand?

Mitochondrial Isocitrate Dehydrogenase and Variants

War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert

Read Full Post »


Reporter: Aviva Lev-Ari, PhD, RN

Based on the results of a new study, researchers are developing a clinical trial to test imatinib(Gleevec) in patients with anaplastic large cell lymphoma (ALCL), an aggressive type of non-Hodgkin lymphoma that primarily affects children and young adults.

The researchers found that a protein called PDGFRB is important to the development of a common form of ALCL. PDGFRB, a growth factor receptor protein, is a target of imatinib. Imatinib had anticancer effects in both a mouse model of ALCL and a patient with the disease, Dr. Lukas Kenner of the Medical University of Vienna in Austria and his colleagues reported October 14 in Nature Medicine.

http://www.cancer.gov/ncicancerbulletin/103012/page3#b

VIEW VIDEO by  Mayo Clinic Dr. Tim Call describes Chronic Lymphocytic Leukemia (CLL), its diagnosis, and treatment options for patients with CLL.

http://www.youtube.com/watch?v=GCMuizn980c&feature=related

VIEW VIDEO  by Leading CLL researcher Dr. Thomas Kipps discusses the latest in the course of the disease including: symptoms, causes, and risk factors. Dr. Kipps also highlights discoveries made in his lab that may lead to developing new therapies to treat this disease. Series: “Stein Institute for Research on Aging” [9/2010] [Health and Medicine] [Show ID: 19345]

http://www.youtube.com/watch?v=QToR46370OI&feature=related

Understanding the Molecular Basis of Imatinib Mesylate Therapy in Chronic Myelogenous Leukemia and the Related Mechanisms of Resistance1

Commentary re: A. N. Mohamed et al., The Effect of Imatinib Mesylate on Patients with Philadelphia Chromosome-positive Chronic Myeloid Leukemia with Secondary Chromosomal Aberrations. Clin. Cancer Res., 9: 1333–1337, 2003.

  1. Guido Marcucci2,
  2. Danilo Perrotti, and
  3. Michael A. Caligiuri

+Author Affiliations


  1. Division of Hematology and Oncology, Department of Internal Medicine [G. M., M. A. C.], Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics [G. M., D. P., M. A. C.], The James Cancer Hospital and The Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio 43210

Introduction

CML3 is a myeloproliferative disorder with an incidence of approximately 1–1.5 cases/100,000 population/year, a slight male predominance, and a peak between 50 and 60 years of age (1) . This condition arises from a transformed pluripotent hematopoietic precursor associated with t(9;22)(q34;q11.2) that gives rise to the Ph′ chromosome. At the molecular level, this cytogenetic aberration results in the fusion of the ABL gene at chromosome band 9q34 with the BCR gene at chromosome band 22q11.2. The resultantBCR/ABL fusion gene encodes a chimeric protein necessary and sufficient to confer the leukemic phenotype. In a minority of the cases, despite absence of the Ph′ chromosome, molecular methodologies (i.e., fluorescence in situ hybridization, Southern, or RT-PCR) can still detect BCR/ABL as the product of complex cytogenetic aberrations involving other chromosomes in addition to 9q34 and 22q11.2, or cryptic genomic rearrangements of the BCR and ABL genes. Taken all together, >95% of the CML cases are associated with BCR/ABL expression that, therefore, represents the hallmark of this condition.

CML is a bi- or triphasic disease (2) . Patients usually present in a chronic proliferative phase characterized by splenomegaly and accumulation of neutrophils in their various stages of maturation. Basophils and blasts are normally <20% and 10%, respectively, in CP CML. Evolution to the BP (or blast crisis) is defined by an increase (≥20%) in myeloid or lymphoid blasts in blood, BM, or extramedullary locations. In many cases, the transformation is characterized by a passage through an AP, in which the failure of a patient to respond to therapy is accompanied by an increase in percentage of blasts (10–19%); a ≥20% increase in basophils, uncontrolled thrombocytosis, or thrombocytopenia; and acquisition of new cytogenetic abnormalities such as trisomy 8, isochromosome 17q, or a second Ph chromosome and/or genetic inactivation of the p53 gene.

The ultimate goal of treatment for CML is prevention of blast crisis, because, once this occurs, the prognosis is dismal. Although a rapid reduction of the white cell count can be achieved with chemotherapy (i.e., busulfan or hydroxyurea) in CP CML, these drugs usually fail to prevent disease progression. IFN-α was the first agent proven capable of modifying the biological history of CML by prolonging survival in patients who achieved CHR and MCR (<35% of Ph′+cells; Ref. 3 ). A second breakthrough in the treatment of CML occurred when 60–80% of patients undergoing alloBMT in CP were reported to be disease free at 5 years (456) . However, both IFN-α and alloBMT have considerable treatment-induced toxicity that attenuated the initial enthusiasm for these results, and novel, less toxic therapeutic strategies are being explored. In 2001, Druker et al. (7)reported the first Phase I study with imatinib mesylate (STI571, Gleevec), a specific inhibitor of BCR/ABL oncogenic activity. In this study, the authors demonstrated that high rates of CHR and MCR were achieved with relatively few side effects in patients with CML refractory or intolerant to IFN-α, opening new avenues for molecularly targeted therapies in this disease. Subsequently, encouraging results were also obtained for CML patients in BP (8) .

Is BCR/ABLthe Driving Force for Leukemogenesis in CML?

The transforming activity of BCR/ABL has long been demonstrated using in vitro and in vivo models. In initial studies, transfection of the BCR/ABL gene fusion resulted in malignant transformation of normal fibroblasts, and induced independent survival and proliferation in growth factor-dependent cell lines. Expression of BCR/ABL was also shown to be necessary and sufficient to induce leukemogenesis in animal models (reviewed in Ref. 9 ). Expression of BCR/ABL in mice was achieved by either introduction (“knock-in”) of the fusion gene in the mouse genome or by infecting murine stem cells with BCR/ABL-containing retroviral vectors. In knock-in transgenic mice with conditionalBCR/ABL expression, a low penetrance phenotype of acute B- or T-cell leukemia was reported. In contrast, in mice sublethally radiated and transplanted with syngeneic retrovirally transfected BCR/ABL+ stem cells, a condition mimicking human myeloproliferative disorders with neutrophil increase, BM expansion, hepatosplenomegaly, extramedullary hematopoiesis, and pulmonary leukostasis was observed.

How Does BCR/ABL Transform Cells?

The fusion partner ABL is a member of the nonreceptor tyrosine kinase family (10) . This gene encodes a protein containing a tyrosine kinase activity domain (SH1) in addition to two other regulatory domains (SH2 and SH3) that mediate protein-protein interaction and modulate activation of signal transduction. A nuclear localization domain is also present, supporting a shuttling activity of the ABL protein between cytoplasm and nucleus. Genetic disruption of ABL in mice results in lymphopenia, runting, and perinatal mortality. The other fusion partner, BCR, is a protein with multiple functional domains involved in oligomerization, SH-2 binding, serine/threonine kinase activity, and activation of members of the Rho small GTP-ase family of proteins (10) . Structural analysis of this gene suggests a role as a mediator of signaling transduction. With targeted disruption of BCR, mice have increased susceptibility to septic shock, but normal hematopoiesis.

In CML, each of the two partner genes are disrupted at specific breakpoints and fuse to create the chimeric BCR/ABL gene (11) . The most common rearrangements give rise to fusion transcripts identified as b2a2 or b3a2, which, in turn, are translated into a 210 kDa protein. Alternative BCR breakpoints can be located in minor cluster (m-BCR) or micro (μ) cluster (μ-BCR) regions and result in fusion transcripts that encode smaller (190 kDa) or larger (230 kDa) products, respectively. Although usually associated with Ph′+ acute lymphoblastic PiQO leukemia, the protein can also be detected in ≥90% of the CML patients from alternative splicing of p210. p230 is instead usually associated with CML patients presenting with an unusual predominance of neutrophils, resembling chronic neutrophilic leukemia. In each of these BCR/ABL variants, the ABL tyrosine kinase domain autophosphorylates and becomes constitutionally activated. Such BCR/ABLderegulated tyrosine kinase activity is, in fact, responsible for transformation of the hematopoietic stem cell and maintenance of the leukemic phenotype by recruiting and activating transducing signal pathways (i.e., RAS, RAF, extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, phosphatidylinositol 3′-kinase, cCbl, CRKL, Janus-activated kinase-signal transducers and activators of transcription, PKC and PLCγ) involved in: (a) enhanced gene transcription (i.e., c-myc, c-Jun, reviewed in Ref. 12 ); (b) altered mRNA processing, nuclear export, and translation (i.e., bcl-xL, CAAT/enhancer binding protein α, and p53; reviewed in Ref. 13 , 14 ); and (c) increased or decreased protein stability (i.e., Abi proteins; DNA-PKcs; FUS, and hnRNP A1; reviewed in Ref. 13). This, in turn, leads to enhanced proliferative potential and survival, altered motility and trafficking, and suppression of granulocytic differentiation (1 , 13 , 15 , 16) .

Mechanisms of Action of Imatinib Mesylate

BCR/ABL is an ideal target for molecular targeted therapy, because this fusion protein is present in all of the CML cells, is absent from nonmalignant cells, and is necessary and sufficient to induce leukemia. Imatinib mesylate is a 2-phenylaminopyrimidine tyrosine kinase inhibitor with specific activity for ABL, platelet derived growth factor receptor, c-kit, and Albeson-related gene (17) . The pharmacological basis of this interaction has been elucidated by crystallographic studies. Imatinib mesylate binds to the amino acids of the BCR/ABL tyrosine kinase ATP binding site and stabilizes the inactive, non-ATP-binding form of BCR/ABL, thereby preventing tyrosine autophosphorylation and, in turn, phosphorylation of its substrates. This process ultimately results in “switching-off” the downstream signaling pathways that promote leukemogenesis. Preclinical in vitro and in vivo data indicated an impressive selective activity of imatinib mesylate on cells expressing BCR/ABL, and supported a rapid transition of this compound from the bench to the clinic.

To date, imatinib mesylate has been evaluated in several Phase I and II clinical trials of patients with IFN-α-resistant chronic, accelerated, or BP CML (7 , 8 , 181920) . From the collective analysis of these studies, imatinib mesylate appears to effectively induce high CHR and cytogenetic response rates with relatively few side effects. In patients with CP CML who have failed IFN-α the CHR was 95%, MCR 60%, and complete cytogenetic remission 46%. Notably, in these patients achievement of MCR at the 3-month time point correlated with improved progression-free survival. In AP and in blast crisis, the CHRs were 34% and 8%, MCRs were 24% and 16%, and complete cytogenetic remissions were 17%, and 7%, respectively. Disease progression was 11% at 18 months for CP, 40% at 12 months for AP, and 80% at 18 months for BP. Finally, preliminary data from an interim analysis of a phase III study of untreated CML patients randomized between imatinib mesylate versus IFN-α and ARA-C indicate a significantly better CHR, complete cytogenetic remission, and progression-free survival for the imatinib mesylate group after a median follow-up of 14 months (21) . However, a longer follow-up will be necessary to assess whether this compound can also impact on the natural history of the disease and prevent or delay transformation to blast crisis.

Mechanisms of Resistance to Imatinib Mesylate

During disease progression, CML progenitor cells acquire a number of genetic alterations, most probably because of increased genomic instability, that may explain the aggressive phenotype, chemotherapeutic drug resistance, and poor prognosis of CML in BP. Despite the exciting results obtained with imatinib mesylate noted above, CML patients eventually show resistance at a rate of 80% in BP, 40–50% in AP, and 10% in CP post-IFNα failure, at 2 years (19) . Identification of the molecular basis of resistance is important, because it could provide insight into disease progression and into the design of novel therapeutic strategies to prevent and overcome treatment resistance.

CML patients with imatinib mesylate resistance can be stratified into those with primary refractory disease, most frequently in accelerated or BPs, and those who relapse after initial response, who are most frequently in CP. On the basis of the presence or absence of BCR/ABL tyrosine kinase activity in leukemia cells, it is also possible to discriminate between cases with BCR/ABL-dependent and -independent mechanisms of imatinib mesylate resistance. Notably, because the BCR/ABL enzymatic activity cannot be easily measured in blood or BM patient samples, levels of phosphorylation of the BCR/ABL substrate CRKL have been used as a surrogate end point for the tyrosine kinase activity(22) .

In patients with higher levels of CRKL phosphorylation despite treatment with imatinib mesylate, resistance has been found to result from at least three different BCR/ABL-dependent mechanisms: BCR/ABL gene amplification, BCR/ABL mutations, and high plasma levels of AGP (reviewed in Ref. 23 ).

The association of BCR/ABL gene amplification with resistance to imatinib mesylate is consistent with the reliance of CML blast crisis cells on BCR/ABL expression/activity for their proliferation and survival, and with the reported enhanced expression of BCR/ABL in these cells (24) . Indeed, high levels of BCR/ABL expression, which are detected frequently in CML-blast crisis but not CP cells, appear to be required for suppression of myeloid differentiation and increased resistance to chemotherapy-induced apoptosis ofBCR/ABL-expressing cells. Specifically, high levels of BCR/ABL kinase activity are required for hnRNP E2-dependent inhibition of CAAT/enhancer binding protein α, the major regulator of granulocytic differentiation (25) , and for the La-dependent enhancement of MDM2 expression, which, in turn, results in functional inactivation of p53(14) , also required for myeloid blastic transformation (26 , 27) Although the mechanisms underlying such an increase of BCR/ABL expression are unclear, a double Ph′ chromosome is likely to be responsible for the enhanced BCR-ABL levels in some cases.

Other mechanisms of imatinib mesylate resistance involve mutations in the BCR/ABLgene itself. Several different mutations have been detected in at least 13 amino acids of the ATP-binding site or other regions of the tyrosine kinase domain, and the list is growing (23 , 28 , 29) . These mutations usually prevent imatinib mesylate from binding to BCR/ABL, thereby resulting in lack of inhibition of the tyrosine kinase activity. Among these mutations, substitution of a threonine to isoleucine at position 315 of ABL that prevents imatinib mesylate from binding to the ATP-binding domain, is the first described and one of the most frequent (22) .

A third mechanism of resistance relies on plasma levels of AGP. It has been shown that AGP binds imatinib mesylate at physiological concentrations in vitro and in vivo, and blocks the ability of imatinib mesylate to inhibit BCR/ABL kinase activity in a dose-dependent manner (reviewed in Ref. 23 ). Finally, in patients with primary refractoriness to imatinib mesylate, resistance more often occurs in absence of significant CRKL phosphorylation, suggesting activation of BCR/ABL-independent leukemogenic pathways.

In this issue, Mohamed et al. (30) hypothesized that clonal evolution, defined as acquisition of additional cytogenetic abnormalities other than t(9;22)(q34;q11), is a marker for genomic instability, and thereby, in this setting, additional “hits” can occur to activate BCR/ABL-independent leukemogenic mechanisms. Given this premise, CML patients with a more complex karyotype were expected to be more resistant to imatinib mesylate. To test their hypothesis, these authors analyzed 58 BCR/ABL-positive patients with IFN-α-resistant CP (n = 13), AP (n = 24), or BP (n = 21) CML with additional cytogenetic abnormalities who were each treated with imatinib mesylate. Of the 58 patients, 15 (CP = 46%; AP = 25%; BP = 14%) achieved a cytogenetic response, and 12 had a complete cytogenetic remission. With a follow-up of 17–30 months, 7 (12%) remained in complete remission on imatinib mesylate, supporting the notion that a subset of CML patients with t(9;22)(q34;q11) and additional cytogenetic abnormalities can achieve a sustained response. Because the molecular mechanisms of resistance in these patients were not fully evaluated, the contribution of additional cytogenetic abnormalities as an independent predictor of resistance to imatinib mesylate could not be directly addressed. Similar results were also reported in the imatinib mesylate initial studies (18 , 20) , and more recently by Schoch et al. (31) . These authors reported on 31 patients with additional chromosomal abnormalities present before the start of imatinib mesylate therapy. Additional cytogenetic abnormalities were less frequent in chronic than other phases of the disease (35.5% versus 68.8%; P = 0.0008), and when corrected for the difference in disease stage, they did not influence response to imatinib mesylate. These results have been confirmed recently by a larger study reported by Cortes et al. (32) where 498 CML patients in CP or AP were treated with imatinib mesylate. Of the 498, 121 had additional cytogenetic abnormalities. In a multivariate analysis at the 3-month time point, lack of cytogenetic response, but not presence of additional cytogenetic abnormalities, was found to be a negative prognostic factor for survival

Although a longer follow-up is necessary to draw definitive conclusions, these findings suggest that additional cytogenetic aberrations do not appear to impact on disease response, and, therefore, karyotype analysis should not be used to stratify patients for therapeutic alternatives to imatinib mesylate. Furthermore, despite clonal evolution, the oncogenic potential of BCR/ABL appears to remain the driving force for leukemogenesis, and, therefore, may continue to serve as a therapeutic target. Finally, in patients with additional cytogenetic abnormalities who are resistant to imatinib mesylate, evaluation for levels of CRKL-phosphorylation should be done to sort out the nature of the resistance to this treatment and to understand the interplay between BCR/ABL-dependent and -independent mechanisms in disease progression.

Concluding Remarks

The results obtained with imatinib mesylate to date are truly impressive, but longer follow-up will be necessary to establish whether prevention or delay of blast crisis can be achieved and whether an improved overall survival for the majority of patients with CML can be obtained. It is clear that complete cytogenetic remission is achievable in most patients with CP CML, and that those who do not achieve this important end point between 3 and 6 months are likely to have a poor outcome. However, in patients with complete cytogenetic remission, other challenges remain. In these patients, for instance, molecular remission defined as the absence of BCR/ABL fusion transcript by RT-PCR is usually not achieved. The reasons for persistent low levels of residual disease after imatinib mesylate and the prognostic significance of these findings are unknown. It is possible that small numbers of mutated and resistant BCR/ABL-positive subclones remain essentially unaffected by this treatment, and if a proliferation advantage is subsequently acquired in these cells, they may drive disease recurrence. Therefore, in patients with complete cytogenetic remission, monitoring of the BCR/ABL fusion transcript levels by quantitative RT-PCR has been suggested to predict impending relapse, and if rising levels of BCR/ABL expression are detected, consideration could be given to alternative strategies including alloBMT.

However, emerging data support the notion that hematologic or cytogenenetic remission can be achieved in imatinib-relapsed CP CML patients with higher doses of this agent. Kantarjian et al. reported on 54 patients with CML in CP who were initially treated with 400 mg of imatinib mesylate and, subsequently, with a higher dose (i.e., 800 mg) when hematologic or cytogenetic resistance or relapse developed (33) . Among 20 patients treated for hematologic resistance or relapse, 13 (65%) achieved CHR without complete cytogenetic remission, and among 34 patients treated for cytogenetic resistance or relapse, 19 (56%) achieved a complete cytogenetic remission or MCR. However, the mechanisms of resistance to standard dose were not evaluated in these patients and, therefore, correlation of these mechanisms with clinical response to the higher doses was not possible. Nevertheless, these data are intriguing and pose the question of whether a higher dose of imatinib mesylate could be used at the time of the initial diagnosis or during molecular relapse to prevent overt leukemia recurrence or blast transformation. Future studies will no doubt address these important issues. Regardless, it is undeniable that imatinib mesylate has changed our approach to CML and paved the way for additional molecular targeted strategies in leukemia.

Footnotes

  • 1 Supported in part by P30-CA16058, and K08-CA90469 Grants from the National Cancer Institute, Bethesda, MD, The Elsa U. Pardee Cancer Research Foundation, and The Coleman Leukemia Research Foundation.

  • 2 To whom requests for reprints should be addressed, at The Ohio State University, 458A Starling-Loving Hall, 320 West 10th Avenue, Columbus, OH 43210. Phone: (614) 293-7597; Fax: (614) 293-7527; E-mail: marcucci-1@medctr.osu.edu.

  • 3 The abbreviations used are: CML, chronic myelogenous leukemia; Ph′, Philadelphia; ABL, Abelson; RT-PCR, reverse transcription-PCR; BM, bone marrow; CHR, complete hematologic remission; MCR, major cytogenetic response; alloBMT, allogeneic bone marrow transplantation; AGP, α1 glycoprotein; CP, chronic phase; AP, accelerated phase; BP, blastic phase.

  • Received March 3, 2003.
  • Accepted March 3, 2003.

Imatinib May Help Treat Aggressive Lymphoma

Based on the results of a new study, researchers are developing a clinical trial to test imatinib (Gleevec) in patients with anaplastic large cell lymphoma (ALCL), an aggressive type of non-Hodgkin lymphoma that primarily affects children and young adults.

The researchers found that a protein called PDGFRB is important to the development of a common form of ALCL. PDGFRB, a growth factor receptor protein, is a target of imatinib. Imatinib had anticancer effects in both a mouse model of ALCL and a patient with the disease, Dr. Lukas Kenner of the Medical University of Vienna in Austria and his colleagues reported October 14 in Nature Medicine.

The authors decided to investigate the effect of imatinib after finding a link between PDGFRB and a genetic abnormality that is found in many patients with ALCL. Previous work had shown that this genetic change—a translocation that leads to the production of an abnormal fusion protein called NPM-ALK—stimulates the production of two proteins, transcription factors called JUN and JUNB.

In the new study, experiments in mice revealed that these proteins promote lymphoma development by increasing the levels of PDGFRB.

Because imatinib inhibits PDGFRB, the authors tested the effect of the drug in mice with the NPM-ALK change and found that it improved their survival. They also found that imatinib given together with the ALK inhibitor crizotinib (Xalkori) greatly reduced the growth of NPM-ALK-positive lymphoma cells in mice.

To test the treatment strategy in people, they identified a terminally ill patient with NPM-ALK-positive ALCL who had no other treatment options and agreed to try imatinib. The patient began to improve within 10 days of starting the therapy and has been free of the disease for 22 months, the authors reported.

The observation that inhibiting both ALK and PDGFRB “reduces lymphoma growth and alleviates relapse rates” led the authors to suggest that the findings might be relevant to lymphomas with PDGFRB but without the NPM-ALK protein. “Our findings suggest that imatinib is a potential therapeutic option for patients with crizotinib-resistant lymphomas.”

A planned clinical trial will be based on the expression of PDGFRB in tumors.

SOURCE:

http://www.cancer.gov/ncicancerbulletin/103012/page3#b

References

  1. Sawyers C. L. Chronic myeloid leukemia. N. Engl. J. Med., 340: 1330-1340,1999.
  2. Vardiman J. W., Harris N. L., Brunning R. D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 100: 2292-2302, 2002.
  3. Chronic Myeloid Leukemia Trialists’ Collaborative Group Interferon α versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials. J. Natl. Cancer Inst., 89: 1616-1620, 1997.
  4. Horowitz M. M., Rowlings P. A., Passweg J. R. Allogeneic bone marrow transplantation for CML: a report from the International Bone Marrow Transplant Registry. Bone Marrow Transplant, 17 (Suppl.3): S5-S6, 1996.
  5. Clift R. A., Radich J., Appelbaum F. R., Martin P., Flowers M. E., Deeg H. J., Storb R., Thomas E. D. Long-term follow-up of a randomized study comparing cyclophosphamide and total body irradiation with busulfan and cyclophosphamide for patients receiving allogenic marrow transplants during chronic phase of chronic myeloid leukemia. Blood, 94: 3960-3962, 1999.
  6. van Rhee F., Szydlo R. M., Hermans J., Devergie A., Frassoni F., Arcese W., de Witte T., Kolb H. J., Niederwiser D., Jacobsen N., Gahrton G., Bandini G., Carreras E., Bacigalupo A., Michallet M., Ruutu T., Reiffers J., Goldman J. M., Apperley J., Gratwohl A. Long-term results after allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic phase: a report from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant, 20: 553-560, 1997.
  7. Druker B. J., Talpaz M., Resta D. J., Peng B., Buchdunger E., Ford J. M., Lydon N. B., Kantarjian H., Capdeville R., Ohno-Jones S., Sawyers C. L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 344: 1031-1037, 2001.
  8. Druker B. J., Sawyers C. L., Kantarjian H., Resta D. J., Reese S. F., Ford J. M., Capdeville R., Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 344: 1038-1042,2001.
  9. Van Etten R. A. Studying the pathogenesis of BCR-ABL+ leukemia in mice.Oncogene, 21: 8643-8651, 2002.
  10. Pane F., Intrieri M., Quintarelli C., Izzo B., Muccioli G. C., Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene, 21: 8652-8667, 2002.
  11. Faderl S., Talpaz M., Estrov Z., O’Brien S., Kurzrock R., Kantarjian H. M. The biology of chronic myeloid leukemia. N. Engl. J. Med., 341: 164-172, 1999.
  12. Zou X., Calame K. Signaling pathways activated by oncogenic forms of Abl tyrosine kinase. J. Biol. Chem., 274: 18141-18144, 1999.
  13. Perrotti D., Calabretta B. Post-transcriptional mechanisms in BCR/ABL leukemogenesis: role of shuttling RNA-binding proteins. Oncogene, 21: 8577-8583,2002.
  14. Trotta R., Vignudelli T., Candini C., Intine R., Pecorari L., Guerzoni C., Santilli G., Byrom B., Goldoni G., Ford L., Caligiuri M., Maraia R., Perrotti D., Calabretta B. BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell, 3:145-160, 2003.
  15. Osarogiagbon U. R., McGlave P. B. Chronic myelogenous leukemia. Curr. Opin. Hematol., 6: 241-246, 1999.
  16. Gordon M. Y. Biological consequences of the BCR/ABL fusion gene in humans and mice. J. Clin. Pathol., 52: 719-722, 1999.
  17. Druker B. J. Imatinib alone and in combination for chronic myeloid leukemia.Semin. Hematol., 40: 50-58, 2003.
  18. Sawyers C. L., Hochhaus A., Feldman E., Goldman J. M., Miller C. B., Ottmann O. G., Schiffer C. A., Talpaz M., Guilhot F., Deininger M. W., Fischer T., O’Brien S. G., Stone R. M., Gambacorti-Passerini C. B., Russell N. H., Reiffers J. J., Shea T. C., Chapuis B., Coutre S., Tura S., Morra E., Larson R. A., Saven A., Peschel C., Gratwohl A., Mandelli F., Ben-Am M., Gathmann I., Capdeville R., Paquette R. L., Druker B. J. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood, 99: 3530-3539, 2002.
  19. Kantarjian H., Sawyers C., Hochhaus A., Guilhot F., Schiffer C., Gambacorti-Passerini C., Niederwieser D., Resta D., Capdeville R., Zoellner U., Talpaz M., Druker B., Goldman J., O’Brien S. G., Russell N., Fischer T., Ottmann O., Cony-Makhoul P., Facon T., Stone R., Miller C., Tallman M., Brown R., Schuster M., Loughran T., Gratwohl A., Mandelli F., Saglio G., Lazzarino M., Russo D., Baccarani M., Morra E. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med., 346: 645-652, 2002.
  20. Talpaz M., Silver R. T., Druker B. J., Goldman J. M., Gambacorti-Passerini C., Guilhot F., Schiffer C. A., Fischer T., Deininger M. W., Lennard A. L., Hochhaus A., Ottmann O. G., Gratwohl A., Baccarani M., Stone R., Tura S., Mahon F. X., Fernandes-Reese S., Gathmann I., Capdeville R., Kantarjian H. M., Sawyers C. L. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 99:1928-1937, 2002.
  21. Druker B. J., O’Brien S. G., Cortes J., Radich J. Chronic myelogenous leukemia. Hematology (Am. Soc. Hematol. Educ. Program), : 111-135, 2002.
  22. Gorre M. E., Ellwood-Yen K., Chiosis G., Rosen N., Sawyers C. L. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood, 100: 3041-3044, 2002.
  23. Gambacorti-Passerini C. B., Gunby R. H., Piazza R., Galietta A., Rostagno R., Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol., 4: 75-85, 2003.
  24. Elmaagacli A. H., Beelen D. W., Opalka B., Seeber S., Schaefer U. W. The amount of BCR-ABL fusion transcripts detected by the real-time quantitative polymerase chain reaction method in patients with Philadelphia chromosome positive chronic myeloid leukemia correlates with the disease stage. Ann. Hematol., 79: 424-431, 2000.
  25. Perrotti D., Cesi V., Trotta R., Guerzoni C., Santilli G., Campbell K., Iervolino A., Condorelli F., Gambacorti-Passerini C., Caligiuri M. A., Calabretta B. BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2. Nat. Genet., 30: 48-58, 2002.
  26. Honda H., Ushijima T., Wakazono K., Oda H., Tanaka Y., Aizawa S., Ishikawa T., Yazaki Y., Hirai H. Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML. Blood, 95: 1144-1150, 2000.
  27. Skorski T., Nieborowska-Skorska M., Wlodarski P., Perrotti D., Martinez R., Wasik M. A., Calabretta B. Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc. Natl. Acad. Sci. USA, 93: 13137-13142,1996.
  28. Hochhaus A., Kreil S., Corbin A. S., La Rosee P., Muller M. C., Lahaye T., Hanfstein B., Schoch C., Cross N. C., Berger U., Gschaidmeier H., Druker B. J., Hehlmann R. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia (Baltimore), 16: 2190-2196, 2002.
  29. O’Dwyer M. E. Chronic myelogenous leukemia. Curr. Opin. Oncol., 15: 10-15,2003.
  30. Mohamed A. N., Pemberton P., Zonder J., Schiffer C. A. The effect of imatinib mesylate on patients with philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clin. Cancer Res., 9: 00-00,2003.
  31. Schoch C., Haferlach T., Kern W., Schnittger S., Berger U., Hehlmann R., Hiddemann W., Hochhaus A. Occurrence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia (Baltimore), 17: 461-463, 2003.
  32. Cortes J. E., Talpaz M., Giles F., O’Brien S., Rios M. B., Shan J., Garcia-Manero G., Faderl S., Thomas D. A., Wierda, W., Ferrajoli A., Jeha S., Kantarjian H. M. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood, : 2003.
  33. Kantarjian H. M., Talpaz M., O’Brien S., Giles F., Garcia-Manero G., Faderl S., Thomas D., Shan J., Rios M. B., Cortes J. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood, 101: 473-475, 2003.

SOURCE:

Clin. Cancer Res., 9: 1333–1337, 2003.

Related Research on the Open Source On-Line Scientific Journal

Acute Myeloid Leukemia (AML): Role of Chromatin Accessibility during Hematopoiesis, Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/31/acute-myeloid-leukemia-aml-role-of-chromatin-accessibility-during-hematopoiesis/

RNA Sequencing led to Targeting FLT3 Gene on Chromosome 13 for Receptor Blockage causing REMISSION in Adult Acute Lymphoblastic Leukemia (ALL), Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/07/10/rna-sequencing-led-to-targeting-flt3-gene-on-chromosome-13-for-receptor-blockage-causing-remission-in-adult-acute-lymphoblastic-leukemia-all/

Read Full Post »