Feeds:
Posts
Comments

Archive for the ‘Carotid Artery’ Category

Cardiovascular Complications: Death from Reoperative Sternotomy after prior CABG, MVR, AVR, or Radiation; Complications of PCI; Sepsis from Cardiovascular Interventions

Author, Introduction and Summary: Justin D Pearlman, MD, PhD, FACC

and

Article Curator: Aviva Lev-Ari, PhD, RN

The Curator recommends the e-Reader to read the following book on Surgical Complications:

Complications
“Essential Reading For Anyone Involved In Medicine”–Amazon.com –  2002

Cardiovascular Complications:

I. Reoperative Sternotomy after prior CABG, MVR, AVR, or radiation therapy

IIa. PCI, and

IIb. PAD Endovascular Interventions: Carotid Artery Endarterectomy

III. Incidence of Sepsis (circulation infection with serious consequences)

UPDATED 11/2/2013

As minimally interventional techniques improve, patients are offered a choice of invasive surgical remedies or less invasive procedures (video assisted, robotic, or percutaneous). The decision should not rest on the size of the scar or even the up front risk and discomfort, but rather should weigh all aspects of the risks and benefits. In addition to the risks and benefits for the current problem, one should also consider why the problem occurred and its likelihood of recurrence. Open chest surgery has a clear disadvantage when it comes to recurrences, as the scars from first surgery interfere with second surgery. Opening the chest (sternotomy) for a second or third time poses elevated risks analyzed herein. This article reviews data from major centers addressing the risks from repeat sternotomy and from minimally invasive cardiovascular surgeries. Any invasion of the body elevates risk of infection, which can lead to sepsis and possible death, so that risk is also addressed.

I. Risk of Injury During Repeat Sternotomy for CABG or Aortic Valve Replacement, Open Heart Surgery

II. Complications After Percutaneous Coronary intervention (PCI) and endovascular surgery for Peripheral Artery Disease (PAD)

  • (a) Post PCIand 
  • (b) PAD Endovascular Interventions: Carotid Artery Endarterectomy

III. Cardiac Failure During Systemic Sepsis

This article addresses specific reports of complications but does not cover numerous other complications that may occur, such as lung collapse, cardiogenic shock, blood loss, local infection, emboli, thrombus, stroke.

I. Risk of Injury During Open Heart Surgery after prior Coronary Artery Bypass Grafting (CABG), Aortic Valve Replacement, Mitral Valve Replacement, or Radiation Therapy 

Conclusions of a Study conducted @Mayo Clinic on Reoperative (Repeat) Sternotomy (opening of the chest through the sternum):

Chan B. Park, MD,a,b Rakesh M. Suri, MD,a Harold M. Burkhart, MD,a Kevin L. Greason, MD,a

Joseph A. Dearani, MD,a Hartzell V. Schaff, MD,a and Thoralf M. Sundt III, MDa

Identifying patients at particular risk of injury during repeat sternotomy: Analysis of 2555 cardiac reoperations

Authors Affiliations: From the Division of Cardiovascular Surgery,

a Mayo Clinic, Rochester, Minn; and the Department of Thoracic and Cardiovascular Surgery,

b St. Paul’s Hospital, The Catholic University of Korea, Seoul, Korea.

Disclosures: None.

Read at the 90th Annual Meeting of The American Association for Thoracic Surgery, Toronto, Ontario, Canada, May 1–5, 2010. Received for publication April 6, 2010; revisions received July 19, 2010; accepted for publication July 30, 2010.

doi:10.1016/j.jtcvs.2010.07.086

Particular attention to protective strategies should be considered during reoperative sternotomy among patients with multiple previous sternotomies, previous mediastinal radiotherapy, and those with patent internal thoracic artery grafts. (J Thorac Cardiovasc Surg 2010;140:1028-35)

Of the 2555 patients,

  • 1537 (60%) had undergone previous coronary artery bypass grafting,
  • 700 (27%) previous mitral valve surgery, and
  • 643 (25%) previous aortic valve replacement (AVR).
  • 61 (2%) had prior mediastinal radiotherapy, and
  • 424 (17%) had more than one previous sternotomy.

 Injury Analysis – 9% events in 231 Patient in the study

In 231 patients, 267 injuries (9.0%) occurred.

Injury occurred

  • during sternotomy in 87 patients (33%) and
  • during prepump dissection in 135 (51%).

Hospital mortality rate was

6.5% among those without injury and

18.5% among those with injury (P < .001);

25% when injury occurred during sternal division

Injuries were more common

1. after previous coronary artery bypass grafting

  • 11% with previous coronary artery bypass grafting vs
  • 7% without, (P = .0012)

but not

  • previous aortic valve surgery,
  • previous mitral valve surgery, or
  • previous aorta surgery.

2.  Injury was also more common when the current operation was aortic valve replacement (AVR)

  • 10% with AVR vs
  • 8% without, (P = .04) or

3.  aorta surgery

  • 14% vs
  • 8% (P = .004).

Predicted injury by multivariate analysis –

Injury was an independent risk factor of hospital death (odds ratio, 2.6).

4.   previous radiotherapy (odds ratio, 4.9)

5.  a greater number of previous sternotomies (odds ratio 1.7), and

6.  a patent internal thoracic artery (odds ratio, 1.8)

J Thorac Cardiovasc Surg. 2010 Nov;140(5):1028-35. doi: 10.1016/j.jtcvs.2010.07.086.

Identifying patients at particular risk of injury during repeat sternotomy: analysis of 2555 cardiac reoperations.

Source

Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN 55905, USA.

Abstract

OBJECTIVES:

A variety of protective strategies during repeat sternotomy been proposed; however, it remains unclear for which patients they are warranted.

METHODS:

We identified adults undergoing repeat median sternotomy for routine cardiac surgery at our institution between January 1, 1996, and December 31, 2007. The operative notes and perioperative outcomes were reviewed.

RESULTS:

Of the 2555 patients, 1537 (60%) had undergone previous coronary artery bypass grafting, 700 (27%) previous mitral valve surgery, and 643 (25%) previous aortic valve replacement (AVR). Sixty-one patients (2%) had prior mediastinal radiotherapy, and 424 (17%) had more than one previous sternotomy. In 231 patients, 267 injuries (9.0%) occurred. Injury occurred during sternotomy in 87 patients (33%) and during prepump dissection in 135 (51%). The hospital mortality rate was 6.5% among those without injury and 18.5% among those with injury (P < .001); when injury occurred during sternal division, the mortality rate was 25%. Injuries were more common after previous coronary artery bypass grafting (11% with previous coronary artery bypass grafting vs 7% without, P = .0012) but not previous AVR, mitral valve surgery, or aortic surgery. Injury was also more common when the current operation was AVR (10% with AVR vs 8% without, P = .04) or aortic surgery (14% vs 8%, P = .004). On multivariate analysis, previous radiotherapy (odds ratio, 4.9), a greater number of previous sternotomies (odds ratio 1.7), and a patent internal thoracic artery (odds ratio, 1.8) predicted injury. Injury was an independent risk factor of hospital death (odds ratio, 2.6).

CONCLUSIONS:

Particular attention to protective strategies should be considered during reoperative sternotomy among patients with multiple previous sternotomies, previous mediastinal radiotherapy, and those with patent internal thoracic artery grafts.

Copyright © 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

Comment in

TABLE 2. Hospital mortality according to Timing of Injury

Timing Mortality rate with injury P value

  • Re-entry 19/76 (25.0%) <.001
  • Prepump 20/121 (16.5%) <.001
  • Cardiopulmonary bypass (CPB)  3/14 (21.4%) .05
  • Aortic CrossClamp (ACC 1/11) (9.1%) .85
  • Closing 5/17 (29.4%) <.001

TABLE 1. Preoperative patient characteristics

Characteristic No injury (n 1/4 2324) Injury (n 1/4 231) P value

Age (y) 66.9  12.4 67.7  11.5 .509

Men 1583 (68.1%) 167 (72.3%) .192

Diabetes mellitus 499 (21.5%) 61 (26.4%) .084

Hypertension 1536 (66.2%) 158 (68.4%) .490

Hypercholesterolemia 1656 (71.4%) 171 (74.0%) .395

Myocardial infarction 633 (27.3%) 68 (29.4%) .480

Congestive heart failure 758 (32.6%) 89 (38.5%) .069

NYHA .064

I-II 492 (21.2%) 37 (16.0%)

III-IV 1830 (78.8%) 184 (84.0%)

Previous operation No injury (n 1/4 2324) Injury (n 1/4 231) P value

CABG 1375 (59.2%) 162 (70.1%) .001

Aortic valve surgery 586 (25.2%) 57 (24.7%) .857

Mitral valve surgery 645 (27.8%) 55 (23.8%) .200

Tricuspid valve surgery 64 (2.8%) 9 (3.9%) .320

Aorta surgery 167 (7.2%) 20 (8.7%) .413

Current operation No injury (n 1/4 2324) Injury (n 1/4 231) P value

CABG 897 (38.6%) 104 (45.0%) .056

Aortic valve surgery 1020 (43.9%) 118 (51.1%) .036

Mitral valve surgery 821 (35.3%) 80 (34.6%) .833

Tricuspid valve surgery 414 (17.8%) 52 (22.5%) .078

Aortic surgery 232 (10.0%) 37 (16.0%) .004

DISCUSSION

The results of the present study have confirmed the significant risk of cardiovascular injury during reoperative cardiac surgery. The death rate from such injury can be 10-30%, particularly  when occurring during division of the sternum. These risks are greatest among patients with multiple previous sternotomies or prior chest radiotherapy.

Current PROTOCOL at Virginia University, now suggested to be considered for adoption @Mayo Clinic:

The Mayo Clinic’s Authors write: Our findings are more consistent with those reported by Roselli and colleagues.2 The explanation of these institutional differences is unclear, although a number of practice differences are likely present between these institutions in terms of both patient substrate and surgical practice. Compared with the series from the University of Virginia, the Mayo series we have reported represents a greater percentage of total cases performed at the institution (13.5% vs 7.8%), with a somewhat greater percentage of those reoperations being for CABG (41% vs 60%). In the Mayo series, a lower percentage were first-time repeat sternotomies (83% vs 90%) and a greater percentage were the fourth time or more (2.7% vs 1.1%).

The incidence of previous radiotherapy in the University of Virginia series was not reported.

It is also unclear to what degree the differences in surgical practice, including the role of the assistant surgeons in performing the repeat sternotomy, could account for these differences. In the present retrospective study, we were unable to demonstrate an effect of experience or expertise in either the occurrence of injury or the outcome. However, it is clear to all practicing surgeons that, when injury occurs, the judgment and expertise of the operating surgeon is critical to expeditious institution of CPB or other ‘‘rescue’’ maneuvers.

Perhaps of more practical value and broad applicability, however, is the standardized approach to repeat sternotomy advocated by the group at the University of Virginia, including routine preoperative CT scanning if the procedure is the third or fourth sternotomy and insertion of a femoral arterial line by which emergent percutaneous arterial inflow cannulation can be accomplished, if necessary. In their series, emergent institution of CPB using the femoral route was instituted in 1.8% of reoperative patients, constituting 19% of the patients with injury. Most notably, in their series, no deaths occurred among these patients. Serious consideration should be given to adopting such protocols.

Our high mortality rate associated with SVG injury during sternotomy, however, supports the  recommendation by others to carefully assess the course of bypass grafts by preoperative angiography. Routine preoperative CT imaging of all patients with more than one previous sternotomy has been advocated by Morishita and colleagues,3 with a demonstrable reduction in operative complications. Roselli and colleagues2 identified a lack of preparative imaging as the most common ‘‘lapse’’ in the preventive strategy among patients with injury. Our data suggest that CT scanning might be particularly helpful in the subset of patients with multiple previous sternotomies or radiotherapy and would support the institution of a policy of routine scanning for these patients.

FIGURE 1. Hospital mortality according to emergent cardiopulmonary bypass (CPB) in The Journal of Thoracic and Cardiovascular Surgery c November 2010, pp. 1032

TABLE 5. Postoperative results

No injury (n 1/4 2324) —  Injury (n 1/4 231) — P value

Postoperative transfusion (U)

PRCs 4.5  7.2 6.5  8.9 .046

ICU stay (h) 102.3  228.6 146.3 +/- 346.9 <.001

Reoperation for bleeding 127 (5.5%) 21 (9.1%) .024

Sepsis 86 (3.7%) 16 (6.9%) .017

Stroke 56 (2.4%) 11 (4.8%) .033

Prolonged ventilation 505 (21.7%) 97 (42.0%) <.001

Pneumonia 123 (5.3%) 25 (10.8%) <.001

ARDS 32 (1.4%) 8 (3.5%) .015

Postoperative renal failure 237 (10.2%) 51 (22.1%) <.001

Multisystem failure 45 (1.9%) 13 (5.6%) <.001

Perioperative MI 9 (0.4%) 2 (0.9%) .289

Hospital death 151 (6.5%) 43 (18.6%) <.001

Abbreviations:

IABP, intra-aortic balloon pump; ICU, intensive care unit; ARDS, acute respiratory

distress syndrome; MI, myocardial infarction.

SOURCE
The Journal of Thoracic and Cardiovascular Surgery c November 2010, pp. 1032

Independent predictors for injury during repeat median sternotomy

The structures injured and the timing of injury in our study were similar to those reported by Roselli and colleagues.2  Bypass grafts were the most commonly injured and, perhaps in contrast to expectations, most injuries occurred during dissection, not during sternal division. Unlike their study, however, we found injury during sternal division to carry a greater mortality risk. We observed a remarkably high mortality rate associated with injury to the right ventricle, as did Roselli and colleagues.2  This may be particularly true in the presence of pulmonary hypertension, when attempts to repair the injury are hampered by inadequate access, progressive tearing of the ventricle secondary to traction injury, and what can be a relatively thin and friable free wall. The incidence of injury to the Internal thoracic artery (ITA) in our series (4.9%) was comparable to the 4.4%–5.3% reported by other investigators.11-14 Because the ITA was damaged more often during prepump dissection (20.7%) than during re-entry (11.5%), these data support the trend to avoid dissecting and isolating the ITA during AVR after previous CABG.12,13

FOUR CONCLUSIONS

1. On the basis of these data, we would advocate preoperative axial CT imaging to define the proximity of cardiovascular structures to the sternum of patients who have undergone more than one previous sternotomy and those who have undergone radiotherapy because these patients statistically have the greatest risk of injury.

2. We would also advocate considering percutaneous or open access of the femoral vessels, if not the institution of CPB, before sternotomy in these same patients, as well as those with significant pulmonary hypertension.

3. Because injury is common during prepump dissection, we support a philosophy of leaving patent ITA grafts undisturbed by attempts to gain control during AVR after previous CABG.

4. Finally, given the mortality rate associated with graft injury, patients with previous CABG should be considered for graft angiography or high-resolution CT.

Summary 

This is a very important study  on the Outcomes and the Complications involved in Cardiac Surgery @Mayo Clinic.

Study’s Objectives: A variety of protective strategies during repeat sternotomy been proposed; however, it remains unclear for which patients they are warranted.

Authors @Mayo Clinic reported:

We were unable to definitively assess the effect of any specific protective strategies on the incidence of injury. Because we do not have standardized or uniform prospective institutional policies in this regard, it was not possible to account for the confounding factor of the clinician’s judgment in the decision to use these strategies in particularly highrisk patients.

Our high mortality rate associated with saphenous vein graft (SVG) injury during sternotomy, however, supports the  recommendation by others to carefully assess the course of bypass grafts by preoperative angiography. Routine preoperative CT imaging of all patients with more than one previous sternotomy has been advocated by Morishita and colleagues,3 with a demonstrable reduction in operative complications.

The reader is advised to review another article Co-Curated by us on the following related study by Mayo Clinic researches, This article examines 10-year to 15-year survivals from arterial bypass grafts using arterial vs saphenous venous grafts.

CABG Survival in Multivessel Disease Patients: Comparison of Arterial Bypass Grafts vs Saphenous Venous Grafts

The conclusions in this article are:

In patients undergoing isolated coronary artery bypass graft surgery with LIMA to left anterior descending artery,

  • arterial grafting of the non-left anterior descending vessels conferred a survival advantage at 15 years compared with Saphenous Venous grafting (SVG).

It is still unproven whether these results apply to higher-risk subgroups of patients.

Related study

Coronary Artery Disease – Medical Devices Solutions: From First-In-Man Stent Implantation, via Medical Ethical Dilemmas to Drug Eluting Stents,

REFERENCES

1. Sabik JF III, Blackstone EH, Houghtaling PL,Walts PA, LytleBW. Is reoperation

still a risk factor in coronary artery bypass surgery? Ann Thorac Surg. 2005;80:

1719-27.

2. Roselli EE, Pettersson GB, Blackstone EH, Brizzio ME, Houghtaling PL,

Lauck R, et al. Adverse events during reoperative cardiac surgery: Frequency,

characterization, and rescue. J Thorac Cardiovasc Surg. 2008;135:316-23.

3. Morishita K, Kawaharada N, Fukada J, Yamada A, Masaru T, Kuwaki K, et al.

Three or more median sternotomies for patients with valve disease: Role of computed

tomography. Ann Thorac Surg. 2003;75:1476-81.

4. Luciani N, Anselmi A, De Geest R, Martinelli L, Perisano M, Possati G. Extracorporeal

circulation by peripheral cannulation before redo sternotomy: Indications

and results. J Thorac Cardiovasc Surg. 2008;136:572-7.

5. Potter DD, Sundt TM III, Zehr KJ, Dearani JA, Daly RC, Mullany CJ, et al. Risk

of repeat mitral valve replacement for failed mitral valve prostheses. Ann Thorac

Surg. 2004;78:67-72.

6. Potter DD, Sundt TM III, Zehr KJ, Dearani JA, Daly RC, Mullany CJ, et al. Operative

risk of reoperative aortic valve replacement. J Thorac Cardiovasc Surg.

2005;129:94-103.

7. Sundt TM III, Murphy SF, Barzilai B, Schuessler RB, Mendeloff EN,

Huddleston CB, et al. Previous coronary artery bypass grafting is not a risk factor

for aortic valve replacement. Ann Thorac Surg. 1997;64:651-7.

8. Ellman PI, Smith RL, Girotti ME, Thompson PW, Peeler BB, Kern JA, et al. Cardiac

injury during resternotomy does not affect perioperative mortality. JAm Coll

Surg. 2008;206:993-9.

9. Chang ASY, Smedira NG, Chang CL, Benavides MM, Myhre U, Feng J, et al.

Cardiac surgery after mediastinal radiation: Extent of exposure influences outcome.

J Thorac Cardiovasc Surg. 2007;133:404-13.

10. Schmuziger M, Christenson JT, Maurice J, Mosimann E, Simonet F, Velebit V.

Reoperative myocardial revascularization: An analysis of 458 reoperations and

2645 single operations. Cardiovasc Surg. 1994;2:623-9.

11. Gillinov AM, Casselman FP, Lytle BW, Blackstone EH, Parsons EM, Loop FD,

et al. Injury to a patent left internal thoracic artery graft at coronary reoperation.

Ann Thorac Surg. 1999;67:382-6.

12. Byrne JG, Karavas AN, Filsoufi F, Mihaljevic T, Aklog L, Adams DH, et al. Aortic

valve surgery after previous coronary artery bypass grafting with functioning

internal mammary artery grafts. Ann Thorac Surg. 2002;73:779-84.

13. Smith RL, Ellman PI, Thompson PW, Girotti ME, Mettler BA, Ailawadi G, et al.

Do you need to clamp a patent left internal thoracic artery—Left anterior descending

graft in reoperative cardiac surgery? Ann Thorac Surg. 2009;87:742-7.

14. Coltharp WH, Decker MD, Lea JWIV, Petracek MR, Glassford DM,

Thormas CS, et al. Internal mammary artery graft at reoperation: Risks, benefits,

and methods of preservation. Ann Thorac Surg. 1991;52:225-9.

15. O’Brien MF, Harrocks S, Clarke A, Garlick B, Barnett AG. How to do safe sternal

reentry and the risk factors of redo cardiac surgery: A 21-year review with

zero major cardiac injury. J Cardiac Surg. 2002;17:4-13.

16. Klein G. Naturalistic decision making. Human Factors. 2008;50:456-60.

II. Complications After Percutaneous Coronary intervention (PCI) and endovascular surgery for Peripheral Artery Disease (PAD)

(a) after prior PCI, and

(b) after prior PAD Endovascular Interventions: Carotid Artery Endarterectomy

II(a)  PCI  After Prior PCI – Major occurring Complications include the following:

 

  • Hematoma (a firm collection of blood greater than 2 cm around or in the proximity of the access site).
  • Pseudoaneurysm / dissection,
  • A-V fistula and ischemic leg were also considered along with
  • Retroperitoneal bleed. Retroperitoneal bleeding was defined by any amount of bleeding in the retroperitoneum diagnosed by computer tomography.
  • Inflammation of the Lower extremity on the side of the access site to the femoral artery

UPDATED 11/2/2013

VIEW VIDEO

Impact of Intra-procedural Stent Thrombosis during Percutaneous Coronary Intervention: Insights from the CHAMPION PHOENIX Trial ONLINE FIRST

Philippe Généreux, MD1; Gregg W. Stone, MD1; Robert A. Harrington, MD4; C. Michael Gibson, MD5; Ph. Gabriel Steg, MD6; Sorin J. Brener, MD10; Dominick J. Angiolillo, MD, PhD11; Matthew J. Price, MD12; Jayne Prats, PhD13; Laura LaSalle, MPH2; Tiepu Liu, MD, PhD12; Meredith Todd, B.Sc12; Simona Skerjanec, Pharm.D12; Christian W. Hamm, MD14; Kenneth W. Mahaffey, MD4; Harvey D. White, DSc15; Deepak L. Bhatt, MD, MPH16
J Am Coll Cardiol. 2013;():. doi:10.1016/j.jacc.2013.10.022

Abstract

Objective  We sought to evaluate the clinical impact of intra-procedural stent thrombosis (IPST), a relatively new endpoint.

Background  In the prospective, double-blind, active-controlled CHAMPION PHOENIX trial, cangrelor significantly reduced periprocedural and 30-day ischemic events in patients undergoing percutaneous coronary intervention (PCI), including IPST.

Methods  An independent core laboratory blinded to treatment assignment performed a frame-by-frame angiographic analysis in 10,939 patients for the development of IPST, defined as new or worsening thrombus related to stent deployment anytime during the procedure. Adverse events were adjudicated by an independent, blinded clinical events committee.

Results  IPST developed in 89 patients (0.8%), including 35/5470 (0.6%) and 54/5469 (1.0%) in the cangrelor and clopidogrel arms, respectively (OR [95%CI] = 0.65 [0.42,0.99], p=0.04). Compared to patients without IPST, IPST was associated with a marked increase in composite ischemia (death, myocardial infarction [MI], ischemia-driven revascularization, or new onset out-of-lab stent thrombosis [ARC]) at 48 hours and at 30 days (29.2% vs. 4.5% and 31.5% vs. 5.7%, P<0.0001 for both). After controlling for potential confounders, IPST remained a strong predictor of all adverse ischemic events at both time points.

Conclusion  In the large-scale CHAMPION PHOENIX trial, the occurrence of IPST was strongly predictive of subsequent adverse cardiovascular events. The potent intravenous ADP antagonist cangrelor substantially reduced IPST, contributing to its beneficial effects at 48 hours and 30 days.

Clinical trial info  CHAMPION PHOENIX; NCT01156571

Bleeding and Vascular Complications at the Femoral Access Site Following Percutaneous Coronary Intervention (PCI): An Evaluation of Hemostasis Strategies

Author(s):

Dale R. Tavris, MD, MPH1, Yongfei Wang, MS2, Samantha Jacobs, BS1, Beverly Gallauresi, MPH, RN1, Jeptha Curtis, MD2, John Messenger, MD3, Frederic S. Resnic, MD, MSc4, Susan Fitzgerald, MS, RN5

Authors Affiliation

From the 1US Food and Drug Administration (FDA), Silver Spring, Maryland, 2Yale University, New Haven, Connecticut, 3University of Colorado, Boulder, Colorado, 4Brigham and Women’s Hospital, Boston, Massachusetts, and 5the American College of Cardiology, Bethesda, Maryland.

Abstract: Background. Previous research found at least one vascular closure device (VCD) to be associated with excess vascular complications, compared to manual compression (MC) controls, following cardiac catheterization. Since that time, several more VCDs have been approved by the Food and Drug Administration (FDA). This research evaluates the safety profiles of current frequently used VCDs and other hemostasis strategies. Methods. Of 1089 sites that submitted data to the CathPCI Registry from 2005 through the second quarter of 2009, a total of 1,819,611 percutaneous coronary intervention (PCI) procedures performed via femoral access site were analyzed. Assessed outcomes included bleeding, femoral artery occlusion, embolization, artery dissection, pseudoaneurysm, and arteriovenous fistula. Seven types of hemostasis strategy were evaluated for rate of “any bleeding or vascular complication” compared to MC controls, using hierarchical multiple logistic regression analysis, controlling for demographic factors, type of hemostasis, several indices of co-morbidity, and other potential confounding variables. Rates for different types of hemostasis strategy were plotted over time, using linear regression analysis.Results. Four of the VCDs and hemostasis patches demonstrated significantly lower bleeding or vascular complication rates than MC controls: Angio-Seal (odds ratio [OR], 0.68; 95% confidence interval [CI], 0.65-0.70); Perclose (OR, 0.54; CI, 0.51-0.57); StarClose (OR, 0.77; CI, 0.72-0.82); Boomerang Closure Wire (OR, 0.63; CI, 0.53-0.75); and hemostasis patches (OR, 0.70; CI, 0.67-0.74). All types of hemostasis strategy, including MC, exhibited reduced complication rates over time. All trends were statistically significant except one. Conclusions. This large, nationally representative observational study demonstrated better safety profiles for most of the frequently used VCDs, compared to MC controls.

J INVASIVE CARDIOL 2012;24(7):328-334

Key words: hemostasis patch, mechanical compression, vascular closure device

Problems and Complications of the Transradial Approach for Coronary Interventions: A Review

The Journal of invasive Cardiology

Elizabeth Bazemore, BS and J. Tift Mann, III, MD

The benefits of the transradial approach have clearly been documented in numerous studies in the past ten years.1–9 Access site bleeding complication rates are lower and early ambulation results in a significant reduction in patient morbidity and a lower total procedure cost.3,4 Both patients undergoing the procedure and staff caring for these patients overwhelmingly prefer the transradial approach.10
As a result of these benefits, there has been an increase in the use of the radial artery for interventional procedures worldwide in the past several years. This experience has led to an understanding of the problems and complications that can result from the transradial approach. The purpose of the present manuscript is to review these issues.
Radial artery occlusion. Although this complication is a major concern, the consequences of radial artery occlusion are usually benign. The dual blood supply to the hand is an extremely protective mechanism (Figure 1). Hand ischemia with necrosis has occurred following prolonged cannulation of the radial artery for hemodynamic monitoring in critically ill patients; however, this complication has not been reported thus far after transradial coronary procedures.
The absence of ischemic complications is largely the result of the original recommendation by Kiemeneij that the transradial procedure be performed only in patients with a documented patent ulnar artery and palmar arch.1 This has traditionally been evaluated using the Allen’s test, but ultrasound, Doppler, and plethysmography prior to the procedure are more accurate methods.11
Plethysmography is probably the simplest and most effective method. A pulse oximetry test is performed with the probe placed on the patient’s thumb (Figure 2). The persistence of waveform and high oximetry readings after digital occlusion of the radial artery is very strong evidence that the patient will have sufficient collateral flow to prevent hand ischemia if the radial artery should become occluded as a result of the procedure. Barbeau has demonstrated the reappearance of the waveform and a high oximetry reading two minutes after initial negative results.11 This delayed recruitment of collaterals may be an additional explanation for the absence of hand ischemia with radial occlusion.
Several variables influence the incidence of radial artery occlusion. Adequate anticoagulation is extremely important. This is usually not an issue in patients undergoing interventional procedures, but the incidence of radial occlusion was as high as 30% in patients receiving only 1,000 units of heparin during diagnostic catheterization.12 The incidence of radial occlusion is reduced significantly by administering at least 5,000 units of heparin during the procedure.12,13 Due to this risk of radial occlusion, we tend to reserve the use of the radial artery for interventional procedures and “look-see” diagnostic catheterization. Elective diagnostic catheterizations are performed transradially only when there is an increased risk of femoral complications.
Catheter size has been shown to be an important predictor of post-procedure radial artery occlusion. Saito has studied the ratio of the radial artery internal diameter to the external diameter of the arterial sheath.14 The incidence of occlusion was 4% in patients with a ratio of greater than 1, as compared to 13% in those with a ratio of less than 1. Radial procedures have traditionally been performed using 6 Fr catheters, and most patients have an internal radial artery diameter larger than the 2.52 mm external 6 Fr sheath diameter.14 The incidence of radial occlusion following 6 Fr procedures is less than 5%, but the rate increases with larger sheath sizes.4,13 Virtually all interventional procedures can now be performed through large-bore, 6 Fr guide catheters, and larger-sized catheters are rarely necessary. For straightforward procedures, 5 Fr guide catheters may be utilized and are particularly useful in smaller women.
When the radial artery is utilized for hemodynamic monitoring in critically ill patients, the incidence of radial occlusion is significantly higher in patients with cannulation times greater than 24 hours, as compared to those under 20 hours.15 Since catheters are virtually always removed at the conclusion of a catheterization or interventional procedure, the time of cannulation may not be a factor. However, prolonged post-procedure compression times, particularly with high pressure using a mechanical device, may be a factor. We use sufficient pressure only to achieve hemostasis and try to remove the device as quickly as possible. Even in patients with intensive anticoagulation, it is rarely necessary to maintain mechanical compression for longer than one to two hours. A compression dressing using non-occlusive pressures can then be applied.
In summary, post-procedure radial occlusion occurs only in a small percentage of patients and is virtually always asymptomatic because of the dual blood supply to the hand. Patients with generalized vascular disease, diabetes mellitus, and those undergoing repeat procedures are more susceptible. The incidence can be minimized with appropriate anticoagulation, proper sheath selection, and avoiding prolonged high-pressure compression following the procedure.
Non-occlusive radial artery injury. Recent studies have demonstrated that permanent radial artery injury without occlusion may occur following transradial intervention in some patients. Mean radial artery internal diameter as measured by ultrasound was smaller in patients undergoing repeat transradial interventional procedures as compared to the initial procedure.16 This smaller diameter was not present on the day following the procedure, but developed during a mean follow up of 4.5 months. Wakeyama et al. demonstrated with intravascular ultrasound that this progressive narrowing is due to intimal hyperplasia, presumably induced by trauma from the cannulation sheath or catheter.17 The studies in our laboratory show that this hyperplasia is usually segmental rather than diffuse and is not present in all patients with a previous transradial procedure (Figure 3). The incidence of subsequent intimal hyperplasia in patients undergoing radial procedures is yet to be determined.
The ramifications of this injury are important not only in patients undergoing repeat interventional procedures, but also in patients in whom the radial artery may be used as a conduit for coronary artery bypass surgery. At our center, this is not an issue as most procedures are performed from the right radial artery and surgeons use the left radial artery for bypass graft purposes. At present, it would seem prudent not to use a radial artery that previously has been used for a catheterization as a bypass graft.
Radial artery spasm. Much of the morbidity of the transradial procedure is related to vasospasm induced by the introduction of a sheath or catheter into the radial artery. The vessel has a prominent medial layer that is largely dominated by alpha-1 adenoreceptor function.18 Thus, increased levels of circulating catecholamines are a cause of radial artery spasm. Local anesthesia and adequate sedation to control anxiety during catheter insertion are important preventative measures.
It has been demonstrated in isolated radial artery ring segments that nitroglycerin and verapamil are effective agents in preventing arterial spasm.19 Indeed, a vasodilator cocktail consisting of 3–6 mg of verapamil injected intra-arterially prior to sheath insertion is extremely effective in preventing radial artery spasm. The effect of the drug is immediate and significant arterial dilatation can be seen within minutes of its administration (Figure 4).
Intra-arterial verapamil and nitroglycerin have virtually eliminated vasospasm as a cause of significant morbidity of the procedure. It is now possible to perform transradial procedures using short sheaths and arm discomfort generally occurs only in patients with very small or tortuous radial arteries, particularly if guide catheter manipulation is excessive.
Spasm distal to the access site may be a cause of access failure. Occasionally, guide wire or guide catheter induced focal spasm may occur in a tortuous segment. Angiographic visualization of these areas is important as they generally respond to repeat verapamil administration and can be traversed with an angled hydrophilic coated guide wire. A soft-tipped coronary guide wire may also be used to cross these areas (Figure 5).
Sheath-induced spasm is also minimized by the use of sheaths with hydrophilic coating. Kiemeneij has documented that both patient discomfort and the force required to remove a sheath as measured by an automatic pull-back device was significantly less with hydrophilic coated sheaths as opposed to non-coated sheaths.20
Local access bleeding. The most important benefit of transradial procedures is the elimination of access site bleeding complications.1–4 The radial artery puncture site is located over bone and can easily be compressed with minimal pressure. Thus, bleeding from the radial access site can virtually always be prevented. Although manual pressure from an experienced operator is the ideal method to obtain hemostasis, several compression devices have been developed in an attempt to maximize operator and staff efficiency. Local hematomas may occur as a result of improper device application or device failure. It is important to emphasize that compression of the radial artery both proximally and distally to the puncture site must be performed because of retrograde flow from the palmar arch collaterals.
Forearm hematoma. Bleeding may occur from a site in the radial artery remote from the access site. The most common cause is perforation of a small side branch by the guide wire in patients receiving a platelet glycoprotein IIb/IIIa inhibitor (Figure 6). Avulsion of a small radial recurrent artery arising from a radial loop is another important cause of this syndrome.21,22 Hydrophilic guidewires preferentially select this small arterial remnant in patients with a radial loop and forceful advancement of the guide catheter can result in avulsion of the vessel. Radial artery perforation has been described in 1% of patients although in our experience the incidence is substantially lower. A low threshold to perform a radial artery arteriogram when any resistance to guide wire or catheter insertion is encountered will help prevent this complication.
Recognition of this bleeding remote from the access site is important as hemostatic pressure must be applied to an area other than the access site. Hemostasis is usually easily accomplished by the application of an Ace bandage to the forearm. A blood pressure sphygmomanometer may also be utilized. The latter is inflated to systolic pressure and then gradually released over a period of one to two hours. Sealing of a perforation with a long sheath is also an option, but this is rarely necessary.22
Compartment syndrome is the most dreaded complication of radial artery hemorrhage. A large hematoma causes hand ischemia due to pressure-induced occlusion of both the radial and ulnar arteries. Fasciotomy with hematoma evacuation must be performed as an emergency procedure to prevent chronic ischemic injury. This complication is rare, occurring only once in our early experience; it should always be preventable.

Access failure. Failure to cannulate the radial artery using a 20 gauge needle and a 0.025 mm straight Terumo guide wire occurs in less than 5% of patients with an experienced operator. The importance of adequate patient sedation and local anesthesia in the prevention of radial artery spasm has previously been emphasized. In addition, meticulous attention to detail is important as the probability of failure increases as the number of unsuccessful attempts to puncture the artery increases. It should be emphasized that the puncture site is proximal to the styloid process of the radius bone. The radial artery distally usually bifurcates and becomes less superficial and attempting to puncture the vessel too distally is a common cause of access failure (Figure 7).
The radial loop is the most common congenital anomaly of the radial artery and may be a cause of access failure. It occurs in 1–2% of patients and may be unilateral or bilateral.21 Wide loops can occasionally be traversed with hydrophilic guidewires and 5 Fr catheters without excessive patient discomfort.23 However, in most cases, it is preferable to consider an alternative access site.
Radial arteries that are smaller than 2 mm in diameter are difficult to access. These are generally seen in smaller women and patients with previous radial procedures. The use of a 5 Fr guide in this situation may be an option. However, complex or difficult procedures cannot be performed through a 5 Fr guide catheter.
Miscellaneous complications. Pseudoaneurysm formation may rarely occur at the radial artery access site. This is usually easily managed with thrombin injection and/or mechanical compression. However, surgery may be required. Radial artery avulsion due to intense spasm has been described but this complication should virtually never occur using contemporary techniques. Sterile abscesses rarely occur with the use of hydrophilic coated sheaths.24
Conclusion. The radial artery is an excellent access site for coronary interventions. Although technically more challenging with a definite learning curve, there are significant advantages to this approach. Complications are infrequent and many are preventable with careful technique.

 http://www.invasivecardiology.com/article/3821

J Invasive Cardiol. 2010 Apr;22(4):175-8.

Vascular complications after percutaneous coronary intervention following hemostasis with the Mynx vascular closure device versus the AngioSeal vascular closure device.

Source

Department Cardiology, New York Medical College, Macy Pavilion, Valhalla, NY 10595, USA.

Abstract

We investigated the prevalence of vascular complications after PCI following hemostasis in 190 patients (67% men and 33% women, mean age 64 years) treated with the AngioSeal vascular closure device (St. Jude Medical, Austin, Texas) versus 238 patients (67% men and 33% women, mean age 64 years) treated with the Mynx vascular closure device (AccessClosure, Mountain View, California).

RESULTS:

Death, myocardial infarction or stroke occurred in none of the 190 patients (0%) treated with the AngioSeal versus none of 238 patients (0%) treated with the Mynx. Major vascular complications occurred in 4 of 190 patients (2.1%) treated with the AngioSeal versus 5 of 238 patients (2.1%) treated with the Mynx (p not significant). Major vascular complications in patients treated with the AngioSeal included removal of a malfunctioning device (1.1%), hemorrhage requiring intervention (0.5%) and hemorrhage with a loss of > 3g Hgb (0.5%). The major vascular complications in patients treated with the Mynx included retroperitoneal bleeding requiring surgical intervention (0.8%), pseudoaneurysm with surgical repair (0.8%) and hemorrhage with a loss of > 3g Hgb (0.4%). These complications were not significantly different between the two vascular closure devices (p = 0.77). Minor complications included hematoma > 5 cm (0.5%, n = 1) within the AngioSeal group, as well as procedure failure requiring > 30 minutes of manual compression after device deployment, which occurred in 7 out of 190 patients (3.7%) treated with the AngioSeal versus 22 of 238 patients with the Mynx (9.2%) (p = 0.033).

CONCLUSIONS:

Major vascular complications after PCI following hemostasis with vascular closure devices occurred in 2.1% of 190 patients treated with the AngioSeal vascular closure device versus 2.1% of 238 patients treated with the Mynx vascular closure device (p not significant). The Mynx vascular closure device appears to have a higher rate of device failure.

Comment in

http://www.ncbi.nlm.nih.gov/pubmed/20351388

Z Kardiol. 2005 Jun;94(6):392-8.

Incications and complications of invasive diagnostic procedures and percutaneous coronary interventions in the year 2003. Results of the quality control registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausarzte (ALKK).

Source

Herzzentrum Ludwigshafen, Bremserstrasse 79, 67063 Ludwigshafen, Germany. Uwe.Zeymer@t-online.de

Abstract

BACKGROUND:

The ALKK registry contains about 20% of the invasive and interventional cardiological procedures performed in Germany.

METHODS:

In 2003 a total of 82,282 consecutive diagnostic invasive and 30,689 interventional procedures from 75 hospitals were centrally collected and analyzed.

RESULTS:

The main indication for an invasive diagnostic procedure was coronary artery disease in 92.5% of cases, myocardial disease in 1.6%, impaired left ventricular function in 4.0%, valve disease in 4% and other indications in 1.9%. An acute coronary syndrome was present in 25% of the patients. The rate of severe complications in patients with a lone diagnostic invasive procedure was low (<0.5%). The indication for percutaneous coronary intervention (n=30,689) was stable angina in 44.1%, ST elevation myocardial infarction in 22.3%, non ST elevation myocardial infarction in 14.8%, unstable angina in 10.0%, silent ischemia in 2.2%, prognostic in 5.2% of patients. The majority of interventions were performed directly after the diagnostic procedure (n=23,887=78.6%). The intervention was successful in 94.6% of cases. Stent implantation was performed in 77.2%, with 1 stent in 88.4%, two stents in 7.6% and 3 or more stents in 3.3%. A drug-eluting stent was implanted in 3.6% of the cases. The complication rate after PCI was influenced by the indication for the intervention. The in-hospital mortality in patients with cardiogenic shock was 33%, while in patients with stable angina, silent ischemia and prognostic indication only 0.2% died.

CONCLUSION:

There is an increase of invasive diagnostic and interventional procedures in patients with acute coronary syndromes, with 47% of PCIs performed in these patient. PCIs were performed in 75% of the cases directly after the diagnostic procedure. The rate of stent implantation seems to have reached a plateau at around 80%, while drug-eluting stents were implanted only in a minority of cases. The complication rate is mainly dependent on the clinical presentation of the patients and the indication for PCI.

http://www.ncbi.nlm.nih.gov/pubmed/15940439

Coronary arterial complications after percutaneous coronary intervention in Behçet’s disease

Authors: Kinoshita T, Fujimoto S, Ishikawa Y, Yuzawa H, Fukunaga S, Toda M, Wagatsuma K, Akasaka Y, Ishii T, Ikeda T

Published Date February 2013 Volume 2013:4 Pages 9 – 12

DOI: http://dx.doi.org/10.2147/RRCC.S41240,

Published: 05 February 2013
Toshio Kinoshita,1 Shinichiro Fujimoto,Yukio Ishikawa,2 Hitomi Yuzawa,1 Shunji Fukunaga,1Mikihito Toda,3 Kenji Wagatsuma,3 Yoshikiyo Akasaka,2 Toshiharu Ishii,2 Takanori Ikeda1
1Department of Cardiovascular Medicine, 2Department of Pathology, 3Division of Interventional Cardiology, Toho University Faculty of Medicine, Ohta City, Tokyo, Japan

Abstract: Behçet’s disease is a multisystemic vascular inflammatory disease, but concurrent cardiac diseases, such as acute myocardial infarction, are rare. Several complications may arise after coronary intervention for coronary lesions that interfere with treatment, and the incidence of coronary arterial complications due to invasive therapy remains unclear. Further, the long-term outcomes in patients with Behçet’s disease after stenting for acute myocardial infarction have not been described. The present report describes a 35-year-old Japanese man with Behçet’s disease who developed acute myocardial infarction. A coronary aneurysm developed at the stenting site of the left anterior descending coronary artery, along with stenosis in the left anterior descending segment proximal to the site. Although invasive therapy was considered, medication including immunosuppressants was selected because of the high risk of vascular complications after invasive therapy. The coronary artery disease has remained asymptomatic for the 4 years since the patient started medication. This case underscores the importance of considering the incidence of coronary arterial complications and of conservative treatment when possible.

Keywords: Behçet’s disease, myocardial infarction, coronary arterial complications, percutaneous coronary intervention, immunosuppressants

http://www.dovepress.com/coronary-arterial-complications-after-percutaneous-coronary-interventi-peer-reviewed-article-RRCC-recommendation1

REFERENCES

  1. Marso SP, Amin AP, House JA, et al; on behalf of the National Cardiovascular Data Registry. Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention. JAMA. 2010;303(21):2156-2164.
  2. Heart Disease and Stroke Statistics — 2011 Update. American Heart Association, 2011.
  3. Tavris DR, Gallauresi BA, Dey S, Brindis R, Mitchel K. Risk of local adverse events by gender following cardiac catheterization. Pharmacoepidemiol Drug Saf. 2007;16(2):125-131.
  4. United States Food and Drug Administration (US FDA). Manufacturer and user facility device experience; MAUDE Database, 2001: Accessed atwww.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/TextResults.cfm
  5. Tavris DR, Dey S, Gallauresi B, et al. Risk of local adverse events following cardiac catheterization by hemostasis device use — phase II. J Invasive Cardiol. 2005;17(12):644-650.
  6. An initiative of the American College of Cardiology Foundation, the NCDR, National Cardiovascular Data Registry, is a comprehensive, outcomes-based suite of registries focused on quality improvement. www.ncdr.com. 
  7. Applegate RJ, Sacrinty MT, Kutcher MA, et al. Propensity score analysis of vascular complications after diagnostic cardiac catheterization and percutaneous coronary intervention 1998-2003. Catheter Cardiovasc Interv. 2006;67(4):556-562.
  8. Applegate RJ, Sacrinty M, Kutcher MA, et al. Vascular complications with newer generations of Angio-Seal vascular closure devices. J Interv Cardiol. 2006;19(1):67-74.
  9. Applegate RJ, Sacrinty MT, Kutcher MA, et al. Propensity score analysis of vascular complications after diagnostic cardiac catheterization and percutaneous coronary intervention using thrombin hemostatic patch-facilitated manual compression. J Invasive Cardiol. 2007;19(4):164-170.
  10. Sulzbach-Hoke LM, Ratcliffe SJ, Kimmel SE, et al. Predictors of complications following sheath removal with percutaneous coronary intervention. J Cardiovasc Nurs. 2010;25(3):E1-E8.
  11. Legrand V, Doneux P, Martinez C, et al. Femoral access management: comparison between two different vascular closure devices after percutaneous coronary intervention. Acta Cardiol. 2005;60(5):482-488.
  12. Hermiller JB, Simonton C, Hinohara T, et al. The StarClose Vascular Closure System: interventional results from the CLIP study. Catheter Cardiovasc Interv. 2006;68(5):677-683.
  13. Martin JL, Pratsos A, Magargee E, et al. A randomized trial comparing compression, Perclose Proglide and Angio-Seal VIP for arterial closure following percutaneous coronary intervention: the CAP trial. Catheter Cardiovasc Interv. 2008;71(1):1-5.
  14. Deuling JH, Vermeulen RP, Anthonio RA, et al. Closure of the femoral artery after cardiac catheterization: a comparison of Angio-Seal, StarClose, and manual compression. Catheter Cardiovasc Interv. 2008;71(4):518-523.
  1. Wong SC, Bachinsky W, Cambier P, et al; ECLIPSE Trial Investigators. A randomized comparison of a novel bioabsorbable vascular closure device versus manual compression in the achievement of hemostasis after percutaneous femoral procedures: the ECLIPSE (Ensure’s Vascular Closure Device Speeds Hemostasis Trial). JACC Cardiovasc Interv. 2009;2(8):785-793.
  2. Arora N, Matheny ME, Sepke C, Resnic FS. A propensity analysis of the risk of vascular complications after cardiac catheterization procedures with the use of vascular closure devices. Am Heart J. 2007;153(4):606-611.
  3. Castillo-Sang M, Tsang AW, Almaroof B, et al. Femoral artery complications after cardiac catheterization: a study of patient profile. Ann Vasc Surg. 2010;24(3):328-335.
  4. Sanborn TA, Ebrahimi R, Manoukian SV, et al. Impact of femoral vascular closure devices and antithrombotic therapy on access site bleeding in acute coronary syndromes: the Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trial. Circ Cardiovasc Interv. 2010;3(1):57-62.
  5. Iqtidar AF, Li D, Mather J, McKay RG. Propensity matched analysis of bleeding and vascular complications associated with vascular closure devices vs standard manual compression following percutaneous coronary intervention. Conn Med. 2011;75(1):5-10.
  6. Marso SP, Amin AP, House JA, et al; National Cardiovascular Data Registry. Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention. JAMA. 2010;303(21):2156-2164.
  7. Ahmed B, Piper WD, Malenka D, et al. Significantly improved vascular complications among women undergoing percutaneous coronary intervention: a report from the Northern New England Percutaneous Coronary Intervention Registry. Circ Cardiovasc Interv. 2009;2(5):423-429.
  8. Trimarchi S, Smith DE, Share D, et al; BMC2 Registry. Retroperitoneal hematoma after percutaneous coronary intervention: prevalence, risk factors, management, outcomes, and predictors of mortality: a report from the BMC2 (Blue Cross Blue Shield of Michigan Cardiovascular Consortium) registry. JACC Cardiovasc Interv. 2010;3(8):845-850.
  9. Vaitkus PT. A meta-analysis of percutaneous vascular closure devices after diagnostic catheterization and percutaneous coronary intervention. J Invasive Cardiol. 2004;16(5):243-246.
  10. Koreny M, Riedmuller E, Nikfardjam M, et al. Arterial puncture closing devices compared with standard manual compression after cardiac catheterization — systematic review and meta-analysis. JAMA. 2004;291(3):350-357.
  11. Nikolsky E, Mehran R, Halkin A, et al. Vascular complications associated with arteriotomy closure devices in patients undergoing percutaneous coronary procedures: a meta-analysis. J Am Coll Cardiol. 2004;44(6):1200-1209.
  12. Biancari F, D’Andrea V, Di Marco C, et al. Meta-analysis of randomized trials on the efficacy of vascular closure devices after diagnostic angiography and angioplasty. Am Heart J. 2010;159(4):518-531.
  13. Tavris DR, Dey S, Gallauresi B, et al. Risk of local adverse events following cardiac catheterization by hemostasis device use — phase II. J Invasive Cardiol. 2005;17(12): 644-650.

Frequency and Costs of Ischemic and Bleeding Complications After Percutaneous Coronary Interventions: Rationale for New Antithrombotic Therapy

Journal of Invasive Cardiology

http://www.invasivecardiology.com/article/2489

Author(s):

Mauro Moscucci, MD

Recent advances in catheter technology and antithrombotic therapy have led to a continuous improvement in outcomes of percutaneous coronary intervention (PCI). These improved outcomes have been associated with broadening of the indications for PCI, with an exponential growth in number of procedures performed, but they have also been paralleled by incremental procedure costs. The estimated costs of PCI currently range from $8,000–$13,000.1 With over 800,000 cases performed each year in the United States (US) alone, this represents over $10 billion annually for the US Healthcare System.2 Roughly half of these costs are incurred by the Center for Medicare and Medicaid Services (CMS, formerly known as the Health Care Financing Administration).3 Total costs of PCI include disposable equipment used during the procedure (balloons, catheters, stents, etc.), cardiac catheterization laboratory overhead and depreciation, nursing and pharmacy costs, laboratory costs and physician services. In addition, factors that have been found to be associated with increased PCI costs include the use of special devices such as atherectomy or vascular closure devices, the use of multiple stents, the use of platelet glycoprotein (GP) IIb/IIIa inhibitors, and the presence of certain patient demographic characteristics including advanced age, gender and other comorbidities.1,4,5 Finally, complications related to the procedure have been identified in several studies as the single most significant contributor to increased costs of PC.5–7

Methods to reduce the cost of PCI include re-use of balloon catheters,8 percutaneous revascularization performed at the same time as diagnostic catheterization,9 reduced anticoagulation, the use of new devices or pharmacological interventions to reduce restenosis and complications, and the use of competitive bidding for cardiac cath lab supplies.10 For example, the evolution of anticoagulation therapy in stented patients from a regime of post-procedural heparin and warfarin to one of thienopyridines and aspirin,11 and the subsequent reduction of length of stay from 4 days in 1995 to 2 days in 2000, have helped keep total procedure costs down.12 In addition, a reduction in complication rates appears to be a key target for cost reduction efforts. In support of this statement, in the economic assessment of the Evaluation of 7E3 for the Prevention of Ischemic Complications (EPIC) trial in high-risk patients, Mark et al. identified bleeding complications, urgent and non-urgent coronary artery bypass graft surgery (CABG), and urgent and non-urgent percutaneous transluminal coronary angioplasty (PTCA) as important correlates of incremental costs.7 Unfortunately, standard aggressive antithrombotic therapy aimed toward a reduction of ischemic complications is often associated with an increase in bleeding complications. In the analysis of the EPIC trial, the benefits of abciximab in decreasing procedure costs through a reduction of ischemic complications were offset by drug acquisition costs and by an increase in bleeding complications.7 Thus, with ischemic complications becoming more rare as a result of improvement in PCI technology and more aggressive antithrombotic therapy, bleeding has become a rather common and costly complication of PCI, with a blood transfusion estimated to add up to $8,000 to the cost of care for the PCI patient.13

Based on these premises, it appears that the next challenge in the care of PCI patients will be to determine how to continue to prevent ischemic complications without increasing the risk of bleeding. This paper examines the frequency of PCI complications in both recent clinical trials and actual practice, discusses the costs of complications, and explores improvements in patient management and particularly changes in anticoagulation therapy that might impact total costs of PCI.

Complication rates in clinical trials

Ischemic complications in clinical trials. Despite advances in PCI technology and adjunctive pharmacotherapy, data from clinical trials indicate that ischemic complications still occur in 5–15% of patients.14–19 Typically, clinical trials define ischemic complications as a combination of death, myocardial infarction (MI; both Q-wave and non-Q wave) and either urgent or any target vessel revascularization (TVR). Different definitions of MI or revascularization can make comparisons across trials difficult. However, comparisons may still be possible through the application of strict meta-analysis methodology. A recent meta-analysis combined data from 6 double-blind PCI trials conducted predominantly in North America between 1993 and 1998.20 A total of 16,546 patients were enrolled in these trials (Table 1). Protocols and case report forms for trials included in the analysis were compared to ensure reasonable consistency of study methods, patient management, data reporting and data structure. Integration of the databases from the trials enabled a direct comparison of key event rates at 7 days, using standard classifications and criteria for severity. The meta-analysis showed that the use of high-dose heparin (175 U/kg) was associated with significantly less frequent clinical ischemic events (8.1%) than lower doses of heparin (100 U/kg; 10.3%). In this same meta-analysis, event rates in patients treated with low-dose heparin (70 U/kg) plus a GP IIb/IIIa inhibitor was 6.5%.20 Although not included in this meta-analysis, it is worth noting that the incidence of death, MI and revascularization in the ESPRIT trial was 9.3% in patients treated with low-dose heparin alone (60 U/kg).21

Bleeding complications in clinical trials. In clinical trials of antiplatelet and anti-thrombotic therapy in PCI, bleeding complications are generally defined using either thrombolysis in myocardial infarction (TIMI)22 or global utilization of streptokinase or tPA outcomes (GUSTO)23 criteria (Table 2). Rates of major bleeding in clinical trials using these criteria are generally less than 2% (Table 3).14–19,21,24,25 However, these restrictive definitions may not capture all clinically significant bleeding. For example, neither the TIMI nor the GUSTO major bleeding definition includes the need for a blood transfusion as part of the criteria. Thus, a broader measure of bleeding using a combination of both major and minor bleeding defined by TIMI or GUSTO criteria appears more likely to be representative of bleeding rates in clinical practice.

In the meta-analysis of contemporary PCI trials, TIMI criteria were used to classify hemorrhagic events, permitting direct comparisons between trials. In the high-dose heparin group, the combination of TIMI major and minor bleeding occurred in 10.5% of patients compared with a rate of 10.7% in the low-dose heparin group, while the bleeding rate was 14.3% in patients receiving a combination of GP IIb/IIIa inhibitors and low-dose heparin.

As shown in Table 3, when both TIMI major and minor bleeding are combined in contemporary PCI trials, bleeding complications average 4–14%, depending on patient characteristics and the drug regime used. In addition, when transfusions are included in the definition, the frequency of bleeding complications increases substantially. For example, in NICE-3, bleeding complications were 10.5% when transfusions were included in the criteria, but only 2% of the patients experienced TIMI major bleeding.26

Notably, the only adjunctive anti-thrombotic agent shown to reduce both ischemic and bleeding complications in PCI is bivalirudin. In the Bivalirudin Angioplasty Trial,27 the risk of bleeding was decreased 62% in the bivalirudin group compared with high-dose heparin. The combined rate of TIMI major and TIMI minor bleeding in bivalirudin patients (n = 2,161) was found to be 4.3% in the meta-analysis of contemporary PCI trials with a corresponding ischemic event rate of 6.6%.20

Complications in practice

Ischemic complications in practice. Rates of ischemic complications in clinical practice are difficult to determine. Although several investigators have published data from multicenter databases, these data tend to be 3–5 years old by the time manuscripts are in print. Since trends in the published literature do show continued reduction in PCI complications over time, the frequency of complications noted in these publications may overestimate the actual rate of complications in clinical practice today. In addition, rates of complications can vary widely across institutions due to differences in practice patterns, definitions, operator skills and resource utilization. For example, in the Society for Cardiac Angiography and Interventions (SCA&I) registry, stent use among laboratories varied from 29–95%.28 Others have found lower complication rates in patients whose procedure was performed by a high-volume operator or in a high-volume institution.29 We identified 6 published reports of PCI complications in clinical practice reporting a variety of ischemic outcomes.1,28–31

Saucedo et al. prospectively collected data on 900 patients undergoing successful elective stent placement in native coronary arteries between January 1994 and December 1995.30 The purpose of this study was to evaluate the incidence and long-term clinical consequences of patients with creatine kinase (CK) myocardial isoenzyme band (CK-MB) elevations after stenting. By design, all patients in this observational study had a successful procedure defined as an increase of > 20% in luminal diameter with final percent diameter stenosis of < 50%, without the occurrence of any major complications (death, Q-wave MI and CABG). Nevertheless, 26.4% of patients had CK-MB elevations 1–5 times the upper limit of normal (ULN) and 8.5% had CK-MB elevations > 5 times ULN. In total, 3.9% of patients required a repeat diagnostic catheterization for recurrent ischemia and 1.2% required urgent target vessel revascularization. In this study, patients requiring the use of GP IIb/IIIa inhibitors were excluded.

The Northern New England group (NNE) collected data on 14,498 patients undergoing PCI between 1994 and 1996.29 In this study, outcomes included the in-hospital occurrence of death; emergency CABG (eCABG) or non-eCABG; or new MI (defined as chest pain, diaphoresis, dyspnea or hypotension associated with the development of new Q-waves or ST-T wave changes and a rise in CK to at least twice normal with a positive CK-MB). Overall, death occurred in 1.2% of patients, CABG in 2.6% (0.8% eCABG and 1.8% non-eCABG), and MI in 2%. Stents were used in 22% of patients enrolled in this registry.

In the National Cardiovascular Network database (NCN), Batchelor et al. reported complications of PCI in 109,708 patients who underwent PCI between 1994 and 1997.31 In this observational study, in-hospital mortality was defined as the occurrence of death after the procedure, MI was defined as the appearance of new Q-waves in 2 contiguous leads on a 12-lead electrocardiogram (ECG) for up to 30 days post-PCI, and repeat revascularization was defined as the need for CABG or additional PCI prior to discharge. In this study, death occurred in 1.3% of patients, Q-wave MI in 1.4% and repeat revascularization in 4.5%. Half of the patients underwent stenting in this study. Notably, this database did not record myocardial enzymes or the use of GP IIb/IIIa inhibitors.

Aronow and colleagues observed outcomes in a cohort of consecutive registry patients undergoing coronary stent placement between 1995 and 1997.32 A total of 373 patients underwent PCI during this time period, with death occurring in 9 patients (2.4%), CABG in 3 (0.8%) and MI in 19 (5.1%, including both QWMI and NQWMI). Repeat diagnostic catheterization was performed in 3.2% of patients and repeat PCI in 0.8%.

The SCA&I registry evaluated outcomes in 16,811 patients undergoing either balloon angioplasty (n = 6,121) or stenting (n = 10,690) between July 1996 and December 1998.28 In this observational analysis, 12.9% of patients received a GP IIb/IIIa inhibitor, 87% of patients enrolled in the database underwent PCI between 1997 and 1998, and 60% of the stent patients were enrolled in 1998. Outcomes reported included in-hospital death (occurring at any time during the hospitalization) and eCABG, defined as CABG occurring immediately after PCI. Death occurred in 0.4% of patients and eCABG in 0.5%.

Finally, Cohen and others recorded in-laboratory complications in 26,421 patients at 70 different centers undergoing PCI in 1998.1 In-laboratory complications were rare, with death occurring in 0.17%, cardiac arrest in 0.32%, stroke in 0.03%, ventricular fibrillation or tachycardia in 0.94%, abrupt closure in 0.71%, and eCABG in 0.53%. Overall, 72% of patients received stents and 20% received GP IIb/IIIa inhibitors.

In addition to published reports of PCI complications, data from unpublished sources can be used to determine outcomes in a more contemporary cohort of patients undergoing PCI.33 The MQ-Profile (MQ-Pro) Database [Cardinal Information Corporation (CIC), Marlborough, Massachusetts] is maintained by CIC, which sells and distributes software to US acute-care hospitals for the collection of detailed clinical and administrative data. Data from 5,373 PCI procedures performed between July 1, 1998 and June 30, 1999 were obtained from the database using International Classification of Diseases 9th Edition (ICD-9) procedure codes for PCI (36.01, 36.02, 36.05). Demographic, clinical and economic data were collected on each patient using a combination of database retrieval and chart review. In this analysis, death was defined as discharge disposition of “deceased”, MI as the presence of ECG changes consistent with MI (new Q-waves or ST-segment changes) or an increase in CK-MB of at least 2 times the testing facility’s ULN. CABG was identified by the presence of ICD-9 procedure code 36.1 and repeat PCI by either code 36.01, 36.02, or 36.05. Failed PCI was defined by the term “failed PTCA” in chart notes (for patients without a previous history of PCI) and recurrent ischemia documented by ECG changes. Death occurred in 2.0% of patients, MI in 3.1%, CABG in 1.3% and repeat PCI in 5.5%. Translated into a combined endpoint similar to those used in clinical trials, the rate of death/MI/revascularization was 11.9%.

Data from these published and unpublished observations of contemporary PCI practice indicate that while in-laboratory ischemic complications are exceedingly rare, in-hospital ischemic complications still occur in a substantial number of patients. Using an approximation of outcomes from these published and unpublished reports, mortality averages 1%, Q-wave MI occurs in 2% of patients, NQWMI in 6%, CABG in 2% and repeat PCI occurs in 3–5% of patients. It is important to underscore that although most deaths following PCI are due to underlying comorbidities (i.e., acute MI, cardiogenic shock, etc.) rather than to the procedure itself, few deaths still occur as a complication of the procedure.34,35 Extrapolated to the estimated PCI population of 800,000 cases per year, then 8,000 people will die and 64,000 will experience an MI. In addition, approximately 16,000 will require CABG and as many as 40,000 will need a repeat PCI before hospital discharge.

II(b) PAD Endovascular Interventions: Carotid Artery Endarterectomy

  • Original Contributions

Medical Complications Associated With Carotid Endarterectomy

Stroke.1999; 30: 1759-1763  doi: 10.1161/​01.STR.30.9.1759

  1. Maurizio Paciaroni, MD;
  2. Michael Eliasziw, PhD;
  3. L. Jaap Kappelle, MD;
  4. Jane W. Finan, BScN;
  5. Gary G. Ferguson, MD;
  6. Henry J. M. Barnett, MD;
  7. for the North American Symptomatic Carotid Endarterectomy Trial (NASCET) Collaborators

+Author Affiliations


  1. From the John P. Robarts Research Institute (M.P., M.E., L.J.K., J.W.F., H.J.M.B) and the Departments of Epidemiology and Biostatistics (M.E.) and Clinical Neurological Sciences (M.E., G.G.F., H.J.M.B.), University of Western Ontario, London, Ontario, Canada.
  1. Correspondence to Dr H.J.M. Barnett, John P. Robarts Research Institute, PO Box 5015, 100 Perth Dr, London, ON N6A 5K8, Canada. E-mail barnett@rri.on.ca

Abstract

Background and Purpose—Carotid endarterectomy (CE) has been shown to be beneficial in patients with symptomatic high-grade (70% to 99%) internal carotid artery stenosis. To achieve this benefit, complications must be kept to a minimum. Complications not associated with the procedure itself, but related to medical conditions, have received little attention.

Methods—Medical complications that occurred within 30 days after CE were recorded in 1415 patients with symptomatic stenosis (30% to 99%) of the internal carotid artery. They were compared with 1433 patients who received medical care alone. All patients were in the North American Symptomatic Carotid Endarterectomy Trial (NASCET).

Results—One hundred fifteen patients (8.1%) had 142 medical complications: 14 (1%) myocardial infarctions, 101 (7.1%) other cardiovascular disorders, 11 (0.8%) respiratory complications, 6 (0.4%) transient confusions, and 10 (0.7%) other complications. Of the 142 complications, 69.7% were of short duration, and only 26.8% prolonged hospitalization. Five patients died: 3 from myocardial infarction and 2 suddenly. Medically treated patients experienced similar complications with one third the frequency. Endarterectomy was ≈1.5 times more likely to trigger medical complications in patients with a history of myocardial infarction, angina, or hypertension (P<0.05).

Conclusions—Perioperative medical complications were observed in slightly fewer than 1 of every 10 patients who underwent CE. The majority of these complications completely resolved. Most complications were cardiovascular and occurred in patients with 1 or more cardiovascular risk factors. In this selected population, the occurrence of perioperative myocardial infarction was uncommon.

Key Words:

The North American Symptomatic Carotid Endarterectomy Trial (NASCET) and the European Carotid Endarterectomy Trial showed unequivocal benefit of carotid endarterectomy (CE) in symptomatic patients with high-grade internal carotid artery (ICA) stenosis (70% to 99%).1 2 The parallel study dealing with symptomatic patients with moderate-grade stenosis (30% to 69%) showed benefits of CE only in a carefully selected group of patients.3 Currently, CE is the most common elective peripheral vascular procedure, which in 1997 was performed in ≈130 000 patients in the United States.4

Despite benefit in the long term, CE may cause complications either by the operation itself or by concomitant medical conditions. The challenge for the future is to reduce the perioperative risk as much as possible. The incidence and type of complications that are directly related to the surgical procedure have been the subject of many reports,5 6 7 8 910 whereas medical complications that are not directly caused by the procedure have received less attention. The aim of the present study is to describe the incidence and type of medical complications that occurred in patients randomized into NASCET and to determine their association with baseline risk factors.

Subjects and Methods

The methods of the NASCET have been described in detail elsewhere.1 11 Briefly, NASCET was a randomized clinical trial designed to compare the benefit of best medical therapy alone with best medical therapy plus CE in patients with recent transient or nondisabling neurological deficit caused by cerebral or retinal ischemia in the territory of the ICA. Among the exclusions were patients with recent history (6 months) of myocardial infarction, unstable angina pectoris, atrial fibrillation, recent congestive heart failure, and valvular heart disease. For inclusion, the ICA had to have a 30% to 99% stenosis as assessed by selective carotid angiography and to be technically suitable for CE. Baseline evaluations included a detailed medical history and complete physical and neurological examination.

Surgeons were invited to join NASCET if the center had a documented CE stroke and death rate of ≤6% in a minimum of 50 consecutive cases over a 2-year period. Surgery was completed at the earliest opportunity after randomization, and patients underwent a second complete physical and neurological examination 30 days after surgery. All medical and surgical complications that caused transient or permanent disability within the 30-day period were recorded.

Medical complications consisted of myocardial infarction (based on ECG and cardiac enzyme changes), arrhythmia (requiring antiarrhythmic medication), congestive heart failure, angina pectoris, hypertension (diastolic blood pressure >100 mm Hg requiring intravenous medication), hypotension (systolic pressure <90 mm Hg requiring administration of vasopressor agent), sudden death, respiratory problems (pneumonia, atelectasis, pulmonary edema, or exacerbation of chronic obstructive pulmonary disease), renal failure (doubling of preoperative urea and/or creatinine), depression, and confusion (requiring restraint). Complications were considered mild if they were transient and did not prolong hospital stay, moderate if they were transient but caused delay in hospital discharge, and severe if they were associated with permanent disability or death.

In the present study, patients were excluded from the analyses if they had serious complications that were directly attributable to the surgical procedure, such as those due to anesthesia, thrombosis at the operative site, wound hematomas requiring surgical intervention, or deficits from a vagus nerve injury interfering with swallowing. These surgical complications are described in detail elsewhere.12 For comparative purposes, a list of complications that occurred in the medically treated arm of NASCET was compiled for the 32-day period after randomization (ie, the 30-day period plus the average 2 days that lapsed from randomization to CE in the surgical arm). In both the surgical and medical arms, patients were censored at the time of a stroke, since the subsequent medical complications are commonly the result of the stroke.

Cox proportional hazards regression modeling was used to identify baseline factors that increased the risk of perioperative medical complications. Adjusted hazard rates and adjusted hazard ratios were used to summarize the results. The estimated hazard ratio (or relative hazard) is a measure of association that can be interpreted as a relative risk. Hazard ratios with corresponding probability value of <0.05 were considered statistically significant. Adjusted hazard rates were obtained from the regression model by using the mean value for a factor being adjusted.

The modeling strategy consisted of initially fitting a “full” model, which included all factors. A “final” model was determined by eliminating all factors that were not significantly predictive of the medical complications, using a backward selection approach. The “change-in-estimate” strategy was used to determine whether the remaining factors in the final model were independent risk factors. A factor was considered an independent risk factor if the change in hazard ratios between the full and final models was <10%.

Results

A total of 1436 eligible patients were randomized to the surgical arm and 1449 to the medical arm of the NASCET. In the surgical arm, 21 patients were not operated on for various reasons.12 In the medical arm 16 patients crossed over to surgical therapy within 30 days, leaving 1433 patients for analysis. CE was performed in 1415 patients (328 patients with severe stenosis and 1087 with moderate stenosis). Of the 1415, 59 (4.2%) patients had serious surgical complications that excluded them from further analyses, and 115 (8.1%) had medical complications (Table 1). Of the 142 complications, 69.7% were mild, 26.8% were moderate, and 3.5% were severe. Twenty patients had ≥2 complications. No patient had pulmonary embolus, renal failure, or depression requiring medication. Cardiovascular disorders were >4 times as common as all other conditions combined. All 5 severe complications were fatal and were caused by cardiovascular disorders: 3 patients had fatal myocardial infarction, and 2 patients died suddenly. Of the patients with fatal myocardial infarction, 2 patients had massive myocardial infarctions on the day of surgery. In the other patient, CE was prolonged (7 hours) because of intraoperative occlusion of the ICA. Twenty-four hours after CE, the patient had a myocardial infarction followed by cardiac arrest, leaving the patient in a vegetative state. The patient died 2 months later. Two patients died suddenly on days 3 and 6 after CE, and both had a history of previous myocardial infarction. All patients with fatal medical complications were male, and all had multiple cardiovascular risk factors.

http://stroke.ahajournals.org/content/30/9/1759.full

REFERENCES

  1. North American Symptomatic Carotid Endarterectomy Trial (NASCET). Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–453.
  2. European Carotid Surgery Trialists’ Collaborative Group. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet. 1991;337:1235–1243.
  3. Barnett HJM, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, Rankin RN, Clagett GP, Hachinski VC, Sackett DL, Thorpe KE, Meldrum HE, for the North American Symptomatic Carotid Endarterectomy Trial Collaborators. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med. 1998;339:1415–1425.
  4. Kozak LJ, Owings MF. Ambulatory and inpatient procedures in the United States, 1995. National Center for Health Statistics. Vital Health Stat 13. 1998;135:1–116.
  5. Hertzer NR. Early complications of carotid endarterectomy: incidence, diagnosis, and management. In: Moore WS, ed. Surgery for Cerebrovascular Disease. Philadelphia, Pa: WB Saunders Co; 1996:625–649.
  6. Fode NC, Sundt TM, Robertson JT, Peerless SJ, Shields CB. Multicenter retrospective review of results and complications of carotid endarterectomy in 1981.Stroke. 1986;17:370–375.
  7. Goldstein LB, Moore WS, Robertson JT, Chaturvedi S. Complication rates for carotid endarterectomy: a call to action. Stroke. 1997;28:889–890.
  8. Young B, Moore WS, Robertson JT, Toole JF, Ernst CB, Cohen SN, Broderick JP, Dempsey RJ, Hosking JD. An analysis of perioperative surgical mortality and morbidity in the Asymptomatic Carotid Atherosclerosis Study. Stroke.1996;27:2216–2224.
  9. McCrory DC, Goldstein LB, Samsa GP, Oddone EZ, Landsman PB, Moore WS, Matchar DB. Predicting complications of carotid endarterectomy. Stroke.1993;24:1285–1291.
  10. Rothwell PM, Slattery J, Warlow CP. Clinical and angiographic predictors of stroke and death from carotid endarterectomy: systemic review. BMJ.1997;315:1571–1517.
  11. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Steering Committee. North American Symptomatic Carotid Endarterectomy Trial: methods, patient characteristics, and progress. Stroke. 1991;22:711–720.
  12. Ferguson GG, Barnett HJM, Eliasziw M, Finan JW, Clagett GP, Barnes R, Barr H, Wallace C, for the North American Symptomatic Carotid Endarterectomy Trial (NASCET) Collaborators. North American Symptomatic Carotid Endarterectomy Trial (NASCET): surgical results in 1415 patients. Stroke. In press.
  13. Hertzer NR, Young JR, Beven EG, Graor RA, O’Hara PJ, Ruschaupt WF, deWolfe VG, Maljovec LC. Coronary angiography in 506 patients with extracranial cerebrovascular disease. Arch Intern Med. 1985;145:849–852.
  14. Mangano DT. Perioperative cardiac morbidity. Anesthesiology. 1990;72:153–184.
  15. Goldstein LB, McCrory DC, Landsman PB, Samsa GP, Auncukiewicz M, Oddone EZ, Matchar DB. Multicenter review of preoperative risk factors for carotid endarterectomy in patients with ipsilateral symptoms. Stroke. 1994;24:1116–1121.
  16. Musser DJ, Nicholas GG, Reed JF III. Death and adverse cardiac events after carotid endarterectomy. J Vasc Surg. 1994;19:615–622.
  17. Urbinati S, Di Pasquale G, Andreoli A, Lusa AM, Carini G, Grazi P, Labanti G, Passarelli P, Corbelli C, Pinelli G. Preoperative non-invasive coronary risk stratification in candidates for carotid endarterectomy. Stroke. 1994;25:2022–2027.
  18. Adams HP Jr, Brott TG, Crowell RM, Furlan AJ, Gomez CR, Grotta J, Helgason CM, Marler JR, Woolson RF, Zivin JA, Feinberg W, Mayberg M. Guidelines for the management of patients with acute ischemic stroke: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1994;25:1901–1914.
  19. Feinberg WM, Albers GW, Barnett HJ, Biller J, Caplan LR, Carter LP, Hart RG, Hobson RW II, Kronmal RA, Moore WS, Robertson JT, Adams HP, Mayberg M. Guidelines for the management of transient ischemic attacks: from the Ad Hoc Committee on Guidelines for the Management of Transient Ischemic Attacks of the Stroke Council of the American Heart Association. Circulation. 1994;89:2950–2965.
  20. Hankey GJ, Warlow CP. Cost-effective investigation of patients with suspected transient ischaemic attacks. J Neurol Neurosurg Psychiatry. 1992;55:171–176.
  21. Wong JH, Findlay JM, Suarez-Almazor ME. Regional performance of carotid endarterectomy: appropriateness, outcomes, and risk factors for complications.Stroke. 1997;28:891–898.
  22. Holton P, Wood JB. The effect of bilateral removal of the carotid bodies and denervation of the carotid sinuses in two human subjects. J Physiol (Lond).1965;181:365–378.
  23. Lilly MP, Brunner MJ, Wehberg KE, Rudolphi DM, Queral LA. Jugular venous vasopressin increases during carotid endarterectomy after cerebral reperfusion. J Vasc Surg. 1992;16:1–9.
  24. Smith BL. Hypertension following carotid endarterectomy: the role of cerebral renin production. J Vasc Surg. 1984;1:623–627.
  25. Eliasziw M, Spence JD, Barnett HJM. Carotid endarterectomy does not affect long-term blood pressure: observations from the NASCET. Cerebrovasc Dis.1998;8:20–24.
  26. Solomon RA, Loftus CM, Quest DO, Correll JW. Incidence and etiology if intracerebral hemorrhage following carotid endarterectomy. J Neurosurg.1986;64:29–34.
  27. Hafner DH, Smith RB, King OW, Perdue GD, Stewart MT, Rosenthal D, Jordan WD. Massive intracerebral hemorrhage following carotid endarterectomy. Arch Surg.1987;122:305–307.
  28. Piepgras DG, Morgan MK, Sundt TM, Yanagihara T, Mussman LM. Intracerebral hemorrhage after carotid endarterectomy. J Neurosurg. 1988;68:532–536.
  29. Jansen C, Sprengers AM, Moll FL, Vermeulen FE, Hamerlijnck RP, van Gijn J, Ackerstaff RG. Prediction of intracerebral hemorrhage after carotid endarterectomy by clinical criteria and intraoperative transcranial Doppler monitoring. Eur J Vasc Surg. 1994;8:303–308.
  30. Chambers BR, Smidt U, Koh O. Hyperperfusion post-endarterectomy.Cerebrovasc Dis. 1994;4:32–37.
  31. Penn AA, Schomer DF, Steinberg GK. Imaging studies of cerebral hyperperfusion after carotid endarterectomy: case report. J Neurosurg. 1995;83:133–137.
  32. Baptista MV, Maeder P, Dewarrat A, Bogousslavsky J. Conflicting images.Lancet. 1998;351:414.

Intraoperative use of dextran is associated with cardiac complications after carotid endarterectomy.

J Vasc Surg. 2013 Mar;57(3):635-41. doi: 10.1016/j.jvs.2012.09.017. Epub 2013 Jan 18.

Source

Section of Vascular and Endovascular Surgery, Boston University Medical Center, Boston, MA, USA. Alik.Farber@bmc.org

Abstract

OBJECTIVE:

Although dextran has been theorized to diminish the risk of stroke associated with carotid endarterectomy (CEA), variation exists in its use. We evaluated outcomes of dextran use in patients undergoing CEA to clarify its utility.

METHODS:

We studied all primary CEAs performed by 89 surgeons within the Vascular Study Group of New England database (2003-2010). Patients were stratified by intraoperative dextran use. Outcomes included perioperative death, stroke, myocardial infarction (MI), and congestive heart failure (CHF). Group and propensity score matching was performed for risk-adjusted comparisons, and multivariable logistic and gamma regressions were used to examine associations between dextran use and outcomes.

RESULTS:

There were 6641 CEAs performed, with dextran used in 334 procedures (5%). Dextran-treated and untreated patients were similar in age (70 years) and symptomatic status (25%). Clinical differences between the cohorts were eliminated by statistical adjustment. In crude, group-matched, and propensity-matched analyses, the stroke/death rate was similar for the two cohorts (1.2%). Dextran-treated patients were more likely to suffer postoperative MI (crude: 2.4% vs 1.0%; P = .03; group-matched: 2.4% vs 0.6%; P = .01; propensity-matched: 2.4% vs 0.5%; P = .003) and CHF (2.1% vs 0.6%; P = .01; 2.1% vs 0.5%; P = .01; 2.1% vs 0.2%; P < .001). In multivariable analysis of the crude sample, dextran was associated with a higher risk of postoperative MI (odds ratio, 3.52; 95% confidence interval, 1.62-7.64) and CHF (odds ratio, 5.71; 95% confidence interval, 2.35-13.89).

CONCLUSIONS:

Dextran use was not associated with lower perioperative stroke but was associated with higher rates of MI and CHF. Taken together, our findings suggest limited clinical utility for routine use of intraoperative dextran during CEA.

J Vasc Surg. 2008 Nov;48(5):1139-45. doi: 10.1016/j.jvs.2008.05.013. Epub 2008 Jun 30.

Factors associated with stroke or death after carotid endarterectomy in Northern New England.

Source

Section of Vascular Surgery Dartmouth-Hitchcock Medical Center, Lebanon, NH 03765, USA. philip.goodney@hitchcock.org

Abstract

OBJECTIVE:

This study investigated risk factors for stroke or death after carotid endarterectomy (CEA) among hospitals of varying type and size participating in a regional quality improvement effort.

METHODS:

We reviewed 2714 patients undergoing 3092 primary CEAs (excluding combined procedures or redo CEA) at 11 hospitals in Northern New England from January 2003 through December 2007. Hospitals varied in size (25 to 615 beds) and comprised community and teaching hospitals. Fifty surgeons reported results to the database. Trained research personnel prospectively collected >70 demographic and clinical variables for each patient. Multivariate logistic regression models were used to generate odds ratios (ORs) and prediction models for the 30-day postoperative stroke or death rate.

RESULTS:

Across 3092 CEAs, there were 38 minor strokes, 14 major strokes, and eight deaths (5 stroke-related) < or =30 days of the index procedure (30-day stroke or death rate, 1.8%). In multivariate analyses, emergency CEA (OR, 7.0; 95% confidence interval [CI], 1.8-26.9; P = .004), contralateral internal carotid artery occlusion (OR, 2.8; 95% CI, 1.3-6.2; P = .009), preoperative ipsilateral cortical stroke (OR, 2.4; 95% CI, 1.1-5.1; P = .02), congestive heart failure (OR, 1.6; 95% CI, 1.1-2.4, P = .03), and age >70 (OR, 1.3; 95% CI, 0.8-2.3; P = .315) were associated with postoperative stroke or death. Preoperative antiplatelet therapy was protective (OR, 0.4; 95% CI, 0.2-0.9; P = .02). Risk of stroke or death varied from <1% in patients with no risk factors to nearly 5% with patients with > or =3 risk factors. Our risk prediction model had excellent correlation with observed results (r = 0.96) and reasonable discriminative ability (area under receiver operating characteristic curve, 0.71). Risks varied from <1% in asymptomatic patients with no risk factors to nearly 4% in patients with contralateral internal carotid artery occlusion (OR, 3.2; 95% CI, 1.3-8.1; P = .01) and age >70 (OR, 2.9; 95% CI, 1.0-4.9, P = .05). Two hospitals performed significantly better than expected. These differences were not attributable to surgeon or hospital volume.

CONCLUSION:

Surgeons can “risk-stratify” preoperative patients by considering the variables (emergency procedure, contralateral internal carotid artery occlusion, preoperative ipsilateral cortical stroke, congestive heart failure, and age), reducing risk with antiplatelet agents, and informing patients more precisely about their risk of stroke or death after CEA. Risk prediction models can also be used to compare risk-adjusted outcomes between centers, identify best practices, and hopefully, improve overall results.

III. Cardiac Failure During Systemic Sepsis

CHANGES IN HEART FUNCTION DURING SEPSIS

The patient with sepsis has severely altered physiology in a number of ways, which can influence cardiac function. Firstly, there is a

  • Loss of intravascular volume due to excessive third space loss that results in a decrease in preload. Systemic vascular resistance is decreased which results in a fall in afterload. In addition,
  • end diastolic volumes often increase and
  • ejection fraction falls. However, many of these changes are overcome by an
  • increase in heart rate that may result in an increase in cardiac output. However, it should be remembered that even in the presence of high cardiac outputs it is usually always possible to demonstrate
  • ventricular dysfunction in patients with sepsis. Echocardiographic studies consistently confirm that there is decreased left ventricular systolic function in humans with sepsis.

In addition, there have been many studies in animals and a few in humans which have confirmed the presence of

  • diastolic dysfunction – particularly in those patients that go on to die from sepsis.

In the presence of adequate fluid resuscitation there is an increase in end diastolic volume and this is probably a normal response to a decrease in contractility. However, in the non-survivors of sepsis there is a normal or low end diastolic volume that is the result of a decrease in ventricular diastolic compliance. Thus, there is a decreased end diastolic volume at the same filling pressure.

During sepsis, a

  • decrease in contractility results in a shift to the right of the end-systolic pressure / volume curve and if this is not compensated for results in a
  • decrease in stroke volume and cardiac output.

When patients with sepsis are appropriately fluid resuscitated there is an

  • increase in end diastolic pressure that increases stroke volume. In addition, the
  • decrease in afterload will also increase stroke volume and will prevent a decrease in ejection fraction.

Alas, because there is a decrease in systolic contractility it would be expected that there would also be a decrease in diastolic stiffness which would allow cardiac output to be maintained despite the relatively low filling pressures. However, if this diastolic compliance change does not occur (as in the nonsurvivors of sepsis) then it is apparent  that the ability of the ventricle to generate a stroke volume is impaired at both ends of the curve.

The cause of the altered cardiac function in sepsis remains unknown although there are many theoretical explanations. Clearly, one of the most important mechanisms which can be readily corrected is hypovolaemia.

  • Myocardial oedema may contribute to a decrease in contractility.
  • Increased circulating catecholamines can result in a decrease in diastolic compliance, particularly important since these agents are often used to improve myocardial contractility.
  • Increased intrathoracic pressure caused by positive pressure ventilation can also result in decreased diastolic compliance. In addition, many of the
  • mediators of the inflammatory response, including products of activated endothelial cells and polymorphonuclear leucocytes (e.g. nitric oxide, tumour necrosis factor and interleukins 1 and 2) have all been postulated as negative inotropes and negative lusitropes.

Another, as yet, unidentified agent which is believed to be released from the splanchnic bed –

  • myocardial depressant factor – is postulated to play a role.

Treatments aimed at correcting the effects of these various inflammatory mediators may be eventually found but until these approaches have been proven to be beneficial the septic patient will continue to be managed according to the physiological principles outlined by Starling.

http://www.rcsed.ac.uk/RCSEDBackIssues/journal/vol46_1/4610005.htm

Sepsis and the Heart – Cardiovascular Involvement in General Medical Conditions

  1. M.W. Merx, MD;
  2. C. Weber, MD

+Author Affiliations


  1. From the Department of Medicine (M.W.M.), Division of Cardiology, Pulmonary Diseases and Vascular Medicine and the Institute of Molecular Cardiovascular Research (IMCAR) at the University Hospital (C.W.), RWTH Aachen University, Aachen, Germany.
  1. Correspondence to Marc W. Merx, MD, Medizinische Klinik I, Universitätsklinikum der RWTH Aachen, Pauwelstraße 30, 52057 Aachen, Germany (e-mailmmerx@ukaachen.de), or Christian Weber, MD, Institut für Kardiovaskuläre Molekularbiologie, Universitätsklinikum der RWTH Aachen, Pauwelstraße 30, 52057 Aachen, Germany (e-mail cweber@ukaachen.de).
Circulation.2007; 116: 793-802doi: 10.1161/​CIRCULATIONAHA.106.678359

Abstract

Sepsis is generally viewed as a disease aggravated by an inappropriate immune response encountered in the afflicted individual. As an important organ system frequently compromised by sepsis and always affected by septic shock, the cardiovascular system and its dysfunction during sepsis have been studied in clinical and basic research for more than 5 decades. Although a number of mediators and pathways have been shown to be associated with myocardial depression in sepsis, the precise cause remains unclear to date. There is currently no evidence supporting global ischemia as an underlying cause of myocardial dysfunction in sepsis; however, in septic patients with coexistent and possibly undiagnosed coronary artery disease, regional myocardial ischemia or infarction secondary to coronary artery disease may certainly occur.

A circulating myocardial depressant factor in septic shock has long been proposed, and potential candidates for a myocardial depressant factor include

  • cytokines,
  • prostanoids, and
  • nitric oxide, among others.
  • Endothelial activation and
  • induction of the coagulatory system also contribute to the pathophysiology in sepsis.

Prompt and adequate antibiotic therapy accompanied by surgical removal of the infectious focus, if indicated and feasible, is the mainstay and also the only strictly causal line of therapy. In the presence of severe sepsis and septic shock, supportive treatment in addition to causal therapy is mandatory. The purpose of this review is to delineate some characteristics of septic myocardial dysfunction, to assess the most commonly cited and reported underlying mechanisms of cardiac dysfunction in sepsis, and to briefly outline current therapeutic strategies and possible future approaches.

Key Words:

Sepsis, defined by consensus conference as “the systemic inflammatory response syndrome (SIRS) that occurs during infection,”1 is generally viewed as a disease aggravated by the inappropriate immune response encountered in the affected individual (for review, see Hotchkiss and Karl2 and Riedemann et al,3). The Table gives the current criteria for the establishment of the diagnosis of systemic inflammatory response syndrome, sepsis, and septic shock.1,4 Morbidity and mortality are high, resulting in sepsis and septic shock being the 10th most common cause of death in the United States.5 The incidence of sepsis and sepsis-related deaths appears to be increasing by 1.5% per year.6 In a recent study,6 the total national hospital cost invoked by severe sepsis in the United States was estimated at approximately $16.7 billion on the basis of an estimated severe sepsis rate of 751 000 cases per year with 215 000 associated deaths annually. A recent study from Britain documented a 46% in-hospital mortality rate for patients presenting with severe sepsis on admission to the intensive care unit.7

Current Criteria for Establishment of the Diagnosis of SIRS, Sepsis, and Septic Shock1,4

As an important organ system frequently affected by sepsis and always affected by septic shock, the cardiovascular system and its dysfunction during sepsis have been studied in clinical and basic research for more than 5 decades. In 1951, Waisbren was the first to describe cardiovascular dysfunction due to sepsis.8 He recognized a hyperdynamic state with full bounding pulses, flushing, fever, oliguria, and hypotension. In addition, he described a second, smaller patient group who presented clammy, pale, and hypotensive with low volume pulses and who appeared more severely ill. With hindsight, the latter group might well have been volume underresuscitated, and indeed, timely and adequate volume therapy has been demonstrated to be one of the most effective supportive measures in sepsis therapy.9

Under conditions of adequate volume resuscitation, the profoundly reduced systemic vascular resistance typically encountered in sepsis10 leads to a concomitant elevation in cardiac index that obscures the myocardial dysfunction that also occurs. However, as early as the mid-1980s, significant reductions in both stroke volume and ejection fraction in septic patients were observed despite normal total cardiac output.11 Importantly, the presence of cardiovascular dysfunction in sepsis is associated with a significantly increased mortality rate of 70% to 90% compared with 20% in septic patients without cardiovascular impairment.12 Thus, myocardial dysfunction in sepsis has been the focus of intense research activity. Although a number of mediators and pathways have been shown to be associated with myocardial depression in sepsis, the precise cause remains unclear.

The purpose of the present review is to delineate some characteristics of septic myocardial dysfunction, to assess the most commonly cited and reported underlying mechanisms of cardiac dysfunction in sepsis, and to briefly outline current therapeutic strategies and possible future approaches. This review is not intended to be all inclusive.

Characteristics of Myocardial Dysfunction in Sepsis

Using portable radionuclide cineangiography, Calvin et al13 were the first to demonstrate myocardial dysfunction in adequately volume-resuscitated septic patients with decreased ejection fraction and increased end-diastolic volume index. Adding pulmonary artery catheters to serial radionuclide cineangiography, Parker and colleagues11 extended these observations with the 2 major findings that (1) survivors of septic shock were characterized by increased end-diastolic volume index and decreased ejection fraction, whereas nonsurvivors typically maintained normal cardiac volumes, and (2) these acute changes in end-diastolic volume index and ejection fraction, although sustained for several days, were reversible. More recently, echocardiographic studies have demonstrated impaired left ventricular systolic and diastolic function in septic patients.14–16 These human studies, in conjunction with experimental studies ranging from the cellular level17 to isolated heart studies18,19 and to in vivo animal models,20–22 have clearly established decreased contractility and impaired myocardial compliance as major factors that cause myocardial dysfunction in sepsis.

Notwithstanding the functional and structural differences between the left and right ventricle, similar functional alterations, as discussed above, have been observed for the right ventricle, which suggests that right ventricular dysfunction in sepsis closely parallels left ventricular dysfunction.23–26 However, the relative contribution of the right ventricle to septic cardiomyopathy remains unknown.

Myocardial dysfunction in sepsis has also been analyzed with respect to its prognostic value. Parker et al,27 reviewing septic patients on initial presentation and at 24 hours to determine prognostic indicators, found a heart rate of <106 bpm to be the only cardiac parameter on presentation that predicted a favorable outcome. At 24 hours after presentation, a systemic vascular resistance index >1529 dyne · s−1 · cm−5 · m−2, a heart rate <95 bpm or a reduction in heart rate >18 bpm, and a cardiac index >0.5 L · min−1 · m−2 suggested survival.27 In a prospective study, Rhodes et al28 demonstrated the feasibility of a dobutamine stress test for outcome stratification, with nonsurvivors being characterized by an attenuated inotropic response. The well-established biomarkers in myocardial ischemia and heart failure, cardiac troponin I and T, as well as B-type natriuretic peptide, have also been evaluated with regard to sepsis-associated myocardial dysfunction. Although B-type natriuretic peptide studies have delivered conflicting results in septic patients (for review, see Maeder et al29), several small studies have reported a relationship between elevated cardiac troponin T and I and left ventricular dysfunction in sepsis, as assessed by echocardiographic ejection fraction30–33 or pulmonary artery catheter–derived left ventricular stroke work index.34 Cardiac troponin levels also correlated with the duration of hypotension35 and the intensity of vasopressor therapy.34In addition, increased sepsis severity, measured by global scores such as the Simplified Acute Physiology Score II (SAPS II) or the Acute Physiology And Chronic Health Evaluation II score (APACHE II), was associated with increased cardiac troponin levels,31,33 as was poor short-term prognosis.32,33,35,36 Despite the heterogeneity of study populations and type of troponin studied, the mentioned studies were univocal in concluding that elevated troponin levels in septic patients reflect higher disease severity, myocardial dysfunction, and worse prognosis. In a recent meta-analysis of 23 observational studies, Lim et al37 found cardiac troponin levels to be increased in a large percentage of critically ill patients. Furthermore, in a subset of studies that permitted adjusted analysis and comprised 1706 patients, this troponin elevation was associated with an increased risk of death (odds ratio, 2.5; 95% CI, 1.9 to 3.4, P<0.001)37; however, the underlying mechanisms clearly require further research.

Thus, it appears reasonable to recommend inclusion of cardiac troponins in the monitoring of patients with severe sepsis and septic shock to facilitate prognostic stratification and to increase alertness to the presence of cardiac dysfunction in individual patients. However, it remains to be shown whether risk stratification based on cardiac troponins can identify patients in whom aggressive therapeutic regimens might reap the greatest benefit and so translate into a survival benefit.

Mechanisms Underlying Myocardial Dysfunction in Sepsis

Cardiac depression during sepsis is probably multifactorial (Figure). Nevertheless, it is important to identify individual contributing factors and mechanisms to generate worthwhile therapeutic targets. As a consequence, a vast array of mechanisms, pathways, and disruptions in cellular homeostasis have been examined in septic myocardium.

Figure

View larger version:

Synopsis of potential underlying mechanisms in septic myocardial dysfunction. MDS indicates myocardial depressant substance.

Global Ischemia

An early theory of myocardial depression in sepsis was based on the hypothesis of global myocardial ischemia; however, septic patients have been shown to have high coronary blood flow and diminished coronary artery–coronary sinus oxygen difference.38 As in the peripheral circulation, these alterations can be attributed to disturbed flow autoregulation or disturbed oxygen utilization.39,40 Coronary sinus blood studies in patients with septic shock have also demonstrated complex metabolic alterations in septic myocardium, including increased lactate extraction, decreased free fatty acid extraction, and decreased glucose uptake.41 Furthermore, several magnetic resonance studies in animal models of sepsis have demonstrated the presence of normal high-energy phosphate levels in the myocardium.42,43 It has also been proposed that myocardial dysfunction in sepsis may reflect hibernating myocardium.44 To reach this conclusion, Levy et al44 studied a murine cecal ligation and double-puncture model and observed diminished cardiac performance, increased myocardial glucose uptake, and deposits of glycogen in a setting of preserved arterial oxygen tension and myocardial perfusion. Although all of the above-mentioned findings reflect important alterations in coronary flow and myocardial metabolism, mirroring effects observed in peripheral circulation during sepsis, there is no evidence supporting global ischemia as an underlying cause of myocardial dysfunction in sepsis. However, in septic patients with coexistent and possibly undiagnosed coronary artery disease (CAD), regional myocardial ischemia or infarction secondary to CAD may certainly occur. The manifestation of myocardial ischemia due to CAD might even be facilitated by the volatile hemodynamics in sepsis, as well as by the generalized microvascular dysfunction so frequently observed in sepsis.45 Additional CAD-aggravating factors encountered in sepsis encompass generalized inflammation and the activated coagulatory system. Furthermore, the endothelium plays a prominent role in sepsis (see below), but little is known of the impact of preexisting, CAD-associated endothelial dysfunction in this context. In a postmortem study of 21 fatal cases of septic shock, previously undiagnosed myocardial ischemia at least contributed to death in 7 of the 21 cases (all 21 patients were males, with a mean age of 60.4 years).46 It certainly appears prudent to remain wary of CAD complications while treating sepsis, especially in patients with identifiable risk factors and in view of the ever-increasing mean age of intensive care unit patients and including septic patients.

Myocardial Depressant Substance

A circulating myocardial depressant factor in septic shock was first proposed more than 50 years ago.47 Parrillo et al48 quantitatively linked the clinical degree of septic myocardial dysfunction with the effect the serum, taken from respective patients, had on rat cardiac myocytes, with clinical severity correlating well with the decrease in extent and velocity of myocyte shortening. These effects were not seen when serum from convalescent patients whose cardiac function had returned to normal was applied or when serum was obtained from other critically ill, nonseptic patients.48 In extension of these findings, ultrafiltrates from patients with severe sepsis and simultaneously reduced left ventricular stroke work index (<30 g · m−1 · m−2) displayed cardiotoxic effects and contained significantly increased concentrations of interleukin (IL)-1, IL-8, and C3a.49Recently, Mink et al50 demonstrated that lysozyme c, a bacteriolytic agent believed to originate mainly from disintegrating neutrophilic granulocytes and monocytes, mediates cardiodepressive effects during Escherichia coli sepsis and, importantly, that competitive inhibition of lysozyme c can prevent myocardial depression in the respective experimental sepsis model. Additional potential candidates for myocardial depressant substance include other cytokines, prostanoids, and nitric oxide (NO). Some of these will be discussed below.

Cytokines

Infusion of lipopolysaccharide (LPS, an obligatory component of Gram-negative bacterial cell walls) into both animals and humans51 partially mimics the hemodynamic effects of septic shock.51,52 However, only a minority of patients with septic shock have detectable LPS levels, and the prolonged time course of septic myocardial dysfunction and the chemical characteristics of LPS are not consistent with LPS representing the sole myocardial depressant substance.48,53 Tumor necrosis factor-α (TNF-α) is an important early mediator of endotoxin-induced shock.54 TNF-α is derived from activated macrophages, but recent studies have shown that TNF-α is also secreted by cardiac myocytes in response to sepsis.55 Although application of anti-TNF-α antibodies improved left ventricular function in patients with septic shock,56 subsequent studies using monoclonal antibodies directed against TNF-α or soluble TNF-α receptors failed to improve survival in septic patients.57–59 IL-1 is synthesized by monocytes, macrophages, and neutrophils in response to TNF-α and plays a crucial role in the systemic immune response. IL-1 depresses cardiac contractility by stimulating NO synthase (NOS).60 Transcription of IL-1 is followed by delayed transcription of IL-1 receptor antagonist (IL-1-ra), which functions as an endogenous inhibitor of IL-1. Recombinant IL-1-ra was evaluated in phase III clinical trials, which showed a tendency toward improved survival61 and increased survival time in a retrospective analysis of the patient subgroup with the most severe sepsis62; however, to date, this initially promising therapy has failed to deliver a statistically significant survival benefit. IL-6, another proinflammatory cytokine, has also been implicated in the pathogenesis of sepsis and is considered a more consistent predictor of sepsis than TNF-α because of its prolonged elevation in the circulation.63 Although cytokines may very well play a key role in the early decrease in contractility, they cannot explain the prolonged duration of myocardial dysfunction in sepsis, unless they result in the induction or release of additional factors that in turn alter myocardial function, such as prostanoids or NO.64,65

Prostanoids

Prostanoids are produced by the cyclooxygenase enzyme from arachidonic acid. The expression of cyclooxygenase enzyme-2 is induced, among other stimuli, by LPS and cytokines (cyclooxygenase enzyme-1 is expressed constitutively).66 Elevated levels of prostanoids such as thromboxane and prostacyclin, which have the potential to alter coronary autoregulation, coronary endothelial function, and intracoronary leukocyte activation, have been demonstrated in septic patients.67 Early animal studies with cyclooxygenase inhibitors such as indomethacin yielded very promising results.68,69Along with other positive results, these led to an important clinical study involving 455 septic patients who were randomized to receive intravenous ibuprofen or placebo.70Unfortunately, that study did not demonstrate improved survival for the treatment arm. Similarly, a more recent, smaller study on the effects of lornoxicam failed to provide evidence for a survival benefit through cyclooxygenase inhibition in sepsis.71 Animal studies aimed at elucidating possible benefits of isotype-selective cyclooxygenase inhibition have so far produced conflicting results.72,73

Endothelin-1

Endothelin-1 (ET-1; for an in-depth review of endothelin in sepsis, see Gupta et al74) upregulation has been demonstrated within 6 hours of LPS-induced septic shock.75Cardiac overexpression of ET-1 triggers an increase in inflammatory cytokines (among others, TNF-α, IL-1, and IL-6), interstitial inflammatory infiltration, and an inflammatory cardiomyopathy that results in heart failure and death.76 The involvement of ET-1 in septic myocardial dysfunction is supported by the observation that tezosentan, a dual endothelin-A and endothelin-B receptor antagonist, improved cardiac index, stroke volume index, and left ventricular stroke work index in endotoxemic shock.77 However, higher doses of tezosentan exhibited cardiotoxic effects and led to increased mortality.77Although ET-1 has been demonstrated to be of pathophysiological importance in a wide array of cardiac diseases through autocrine, endocrine, or paracrine effects, its biosynthesis, receptor-mediated signaling, and functional consequences in septic myocardial dysfunction warrant further investigation to assess the therapeutic potential of ET-1 receptor antagonists.

Nitric Oxide

NO exerts a plethora of biological effects in the cardiovascular system.78 It has been shown to modulate cardiac function under physiological and a multitude of pathophysiological conditions. In healthy volunteers, low-dose NO increases LV function, whereas inhibition of endogenous NO release by intravenous infusion of the NO synthase (NOS) inhibitor NG-monomethyl-L-arginine reduced the stroke volume index.79 Higher doses of NO have been shown to induce contractile dysfunction by depressing myocardial energy generation.80 The absence of the important NO scavenger myoglobin (Mb) in Mb knockout mice results in impaired cardiac function that is partially reversible by NOS inhibition.81 Endogenous NO contributes to hibernation in response to myocardial ischemia by reducing oxygen consumption and preserving calcium sensitivity and contractile function.82 NO also represents a potent modulator of myocardial ischemia/reperfusion injury. However, as in sepsis-related NO research, the reported effects of NO on ischemia/reperfusion injury are inconsistent owing to a multitude of confounding experimental factors.83

Sepsis leads to the expression of inducible NOS (iNOS) in the myocardium,84,85 followed by high-level NO production, which in turn importantly contributes to myocardial dysfunction, in part through the generation of cytotoxic peroxynitrite, a product of NO and superoxide (for an excellent review, see Pacher et al86). In iNOS-deficient mice, cardiac function is preserved after endotoxin challenge.87 Nonspecific NOS inhibition restores cardiac output and stroke volume after LPS injection.88 Strikingly, in septic patients, infusion of methylene blue, a nonspecific NOS inhibitor, improves mean arterial pressure, stroke volume, and left ventricular stroke work and decreases the requirement for inotropic support but, unfortunately, does not alter outcome.89 An interesting study comparing the inhibition of NO superoxide and peroxynitrite in cytokine-induced myocardial contractile failure found peroxynitrite to indeed be the most promising therapeutic target.90 It has also been proposed that the constitutively expressed mitochondrial isoform of NOS (mtNOS), the expression of which can be augmented by induction, controls rates of oxidative phosphorylation by inhibiting various steps of the respiratory chain.91 Although this hypothesis would provide a plausible explanation for the reduced coronary oxygen extraction observed during sepsis (see above), the effects of sepsis on expression of mtNOS and NO generation remain to be explored. Furthermore, the constitutively expressed endothelial NOS (eNOS), previously neglected in the context of sepsis, has been shown to be an important regulator of iNOS expression, resulting in a more stable hemodynamic status in eNOS-deficient mice after endotoxemia.92 Very recently, a functional NOS in red blood cells (rbcNOS) was identified that regulates deformability of erythrocyte membranes and inhibits activation of platelets.93 With both effect targets thus far demonstrated for rbcNOS lying at the core of microvascular dysfunction in sepsis, this discovery opens a whole new window to NO-related sepsis research. Given the existence of different NOS isoforms and their various modulating interactions, dose-dependent NO effects, and the precise balance of NO, superoxide, and thus peroxynitrite generated in subcellular compartments, further advances in our understanding of the complex NO biology and its derived reactive nitrogen species hold the promise of revealing new, more specific and effective therapeutic targets.

Adhesion Molecules

Surface-expression upregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 has been demonstrated in murine coronary endothelium and cardiomyocytes after LPS and TNF-α stimulation.94 After cecal ligation and double puncture, myocardial intercellular adhesion molecule-1 expression increases in rats.95Vascular cell adhesion molecule-1 blockade with antibodies has been shown to prevent myocardial dysfunction and decrease myocardial neutrophil accumulation,94,96 whereas both knockout and antibody blockade of intercellular adhesion molecule-1 ameliorate myocardial dysfunction in endotoxemia without affecting neutrophil accumulation.94 In addition, neutrophil depletion does not protect against septic cardiomyopathy, which suggests that the cardiotoxic potential of neutrophils infiltrating the myocardium is of lesser importance in this context.94 Other aspects of adhesion molecules are discussed in conjunction with possible statin effects below.

The e-Reader is advised to consider the following expansion on the subject matter carrying the discussion to additional related clinical issues:

Advanced Topics in Sepsis and the Cardiovascular System at its End Stage

Author: Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-sepsis-and-the-cardiovascular-system-at-its-end-stage/

Therapeutic Approaches: The Present and the Future

A detailed discussion of therapeutic options in septic patients would clearly be beyond the scope of this review, and readers are kindly referred to the multiple excellent reviews published on the subject (eg, Hotchkiss and Karl,2 Annane et al,4 and Dellinger et al97). Although a number of preventive measures, such as prophylactic antibiotics, maintenance of normoglycemia, selective digestive tract decontamination, vaccines, and intravenous immunoglobulin, have shown benefit in distinct patient populations, preventive strategies with a broader aim remain elusive. Once sepsis is manifest (see the Table for criteria), prompt and adequate antibiotic therapy accompanied by surgical removal of the infectious focus, if indicated and feasible, is the mainstay and also the only strictly causal line of therapy. In the presence of severe sepsis and septic shock, supportive treatment in addition to causal therapy is mandatory. Supportive therapy encompasses early and goal-directed fluid resuscitation,9 vasopressor and inotropic therapy, red blood cell transfusion, mechanical ventilation, and renal support when indicated. It is very likely beneficial to monitor cardiac performance in these patients. A wide array of techniques are available for this purpose, ranging from echocardiography to pulmonary catheters, thermodilution techniques, and pulse pressure analysis.98 Because none of these techniques have demonstrated superiority, physicians should use the method with which they are most familiar. Whichever method is chosen, it should be applied frequently to tailor supportive therapy to the individual patient and to achieve the “gold standard” of early goal-directed therapy. In recent years, several attempts have been made to therapeutically address myocardial dysfunction in sepsis. Although the combination of norepinephrine as vasopressor and dobutamine as inotropic agent is probably the most frequently applied in septic shock, there is currently no evidence to recommend one catecholamine over the other.97 In human endotoxemia, epinephrine has been demonstrated to inhibit proinflammatory pathways and coagulation activation, as well as to augment antiinflammatory pathways,99,100 whereas no immunomodulatory or coagulant effects could be demonstrated for dobutamine in a similar setting.101 Isoproterenol has recently been applied successfully in a small group of patients with septic shock, no known history of CAD, and inappropriate mixed venous oxygen concentration despite correction of hypoxemia and anemia.102 In a cecal ligation and double-puncture model of sepsis, the β-blocker esmolol given continuously after sepsis induction improved myocardial oxygen utilization and attenuated myocardial dysfunction,103 which suggests that therapeutic strategies proven in ischemic heart failure might also hold promise in septic cardiomyopathy. However, the optimal mode of β-receptor stimulation (or indeed inhibition) to limit myocardial dysfunction remains a wide-open field for inspired investigation.

Given the generally accepted view of sepsis as a disease largely propelled by an inappropriate immune response, numerous basic research and clinical trials have been undertaken to curb the lethal toll of sepsis through modulation of this uncontrolled immune response.2,3 To date, activated protein C104 and low-dose hydrocortisone105 have emerged as the only inflammation-modulating substances that have been confirmed to be of benefit in patients with severe sepsis and septic shock. Over the past years, increasing evidence has accumulated that suggests that inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, or statins, have therapeutic benefits independent of cholesterol lowering, termed “pleiotropic” effects. These have added a wide scope of potential targets for statin therapy that range from decreasing renal function loss106 and lowering mortality in patients with diastolic heart failure107 to prevention and treatment of stroke,108 to name just a few. These pleiotropic effects include antiinflammatory and antioxidative properties, improvement of endothelial function, and increased NO bioavailability and thus might contribute to the benefit observed with statin therapy. Notably, these important immunomodulatory effects of statins have been demonstrated to be independent of lipid lowering109 and appear to be mediated via interference with the synthesis of mevalonate metabolites (nonsteroidal isoprenoid products). Blockade of the mevalonate pathway has been shown to suppress T-cell responses,110 reduce expression of class II major histocompatibility complexes on antigen presenting cells,109 and inhibit chemokine synthesis in peripheral blood mononuclear cells.111 Furthermore, CD11b integrin expression and CD11b-dependent adhesion of monocytes have been found to be attenuated by the initiation of statin treatment in hypercholesterolemic patients.112 In this context, Yoshida et al113 have reported that statins reduce the expression of both monocytic and endothelial adhesion molecules, eg, the integrin leukocyte function-associated antigen-1 (LFA-1), via an inhibition of Rho GTPases, in particular their membrane anchoring by geranylation. In addition, mechanisms for antiinflammatory actions of statins have been revealed that are not related to the isoprenoid metabolism. For instance, Weitz-Schmidt et al114 have identified that some statins act as direct antagonists of LFA-1 owing to their capacity to bind to the regulatory site in the LFA-1 i-domain. In addition to these multifaceted antiinflammatory effects, statins may interfere with activation of the coagulation cascade, as illustrated by the suppression of LPS-induced monocyte tissue factor in vitro.115 Beyond their immunomodulatory functions, statins have been shown to exert direct antichlamydial effects during pulmonary infection with Chlamydia pneumoniae in mice,116 and a recent report suggests the benefit of statins may also extend to viral pathogens.117

Given the strong impact of statins on inflammation, statins might represent a welcome enforcement in the battle against severe infectious diseases such as sepsis. Consequently, several investigators have evaluated the role of statins in the prevention and treatment of sepsis. In a retrospective analysis, Liappis et al118 demonstrated a reduced overall and attributable mortality in patients with bacteremia who were treated concomitantly with statins. Pretreatment with simvastatin has been shown to profoundly improve survival in a polymicrobial murine model of sepsis by preservation of cardiovascular function and inhibition of inflammatory alterations.19 Encouraged by these findings, the same model was used to successfully treat sepsis in a clinically feasible fashion, ie, treatment was initiated several hours after the onset of sepsis. With different statins (atorvastatin, pravastatin, and simvastatin) being effective, the therapeutic potential of statins in sepsis appears to be a class effect.22 Recently, Steiner et al119observed that pretreatment with simvastatin can suppress the inflammatory response induced by LPS in healthy human volunteers. Furthermore, in a prospective observational cohort study in patients with acute bacterial infections performed by Almog et al,120previous treatment with statins was associated with a considerably reduced rate of severe sepsis and intensive care unit admissions. A total of 361 patients were enrolled in that study, and 82 of these patients had been treated with statins for at least 4 weeks before their admission. Severe sepsis developed in 19% of patients in the no-statin group compared with only 2.4% in patients who were taking statins. The intensive care unit admission rates were 12.2% for the no-statin group and 3.7% for the statin group. Because of the number of patients enrolled, the study was not powered to detect differences in mortality, although the large effect on sepsis rate and intensive care unit admission were at least suggestive. As the most recent development in this field, Hackam et al121 have produced an impressive observational study by initial evaluation of 141 487 cardiovascular patients, which resulted in a well-paired and homogenous study cohort of 69 168 patients after propensity-based matching. Drawing from this solid base, Hackam and coauthors were able to support the conclusion that statin therapy is associated with a considerably decreased rate of sepsis (hazard ratio, 0.81; 95% CI, 0.72 to 0.90), severe sepsis (hazard ratio, 0.83; 95% CI, 0.70 to 0.97), and fatal sepsis (hazard ratio, 0.75; 95% CI, 0.61 to 0.93). This protective effect prevailed at both high and low statin doses and for several clinically important subpopulations, such as diabetic and heart failure patients.

As has been suggested previously,122 statins might provide cumulative benefit by reducing mortality from cardiovascular and infectious diseases such as sepsis. However, statins may have detrimental effects in distinct subsets of patients. Therefore, caution should prevail, and the use of statins in patients with sepsis must be accompanied by meticulous monitoring of unexpected side effects and well-designed randomized, controlled clinical trials.

Beyond an apparent rationale for randomized trials on statins in sepsis, it is notable that the results with other immunomodulatory approaches in sepsis have yielded rather limited success. For instance, use of the anti-TNF antibody F(ab′)2 fragment afelimomab led to a significant but rather modest reduction in risk of death and to improved organ-failure scores in patients with severe sepsis and elevated IL-6 levels.123 Moreover, a selective inhibitor of group IIA secretory phospholipase A2 failed to improve clinical outcome for patients with severe sepsis, with a negative trend most pronounced among patients with cardiovascular failure.124 Hence, because none of the available strategies proven to be effective in sepsis are designed specifically to target myocardial dysfunction, one might conclude that strategies that preferentially address cardiac morbidity in sepsis may be a promising area for investigation. For instance, lipoteichoic acid, a major virulence factor in Gram-positive sepsis, causes cardiac depression by activating myocardial TNF-α synthesis via CD14 and induces coronary vascular disturbances by activating thromboxane 2 synthesis. It thus contributes to cardiac depression and may therefore be a worthwhile and cardiac-specific target.125 The implications of intensified efforts in the search for successful novel approaches to the treatment of myocardial dysfunction in sepsis may be considerable with regard to improved patient care that results in reduced mortality. This is of major significance in view of the substantial economic consequences of increasing sepsis morbidity in an aging population.

REFERENCES

in Circulation.2007; 116: 793-802 doi: 10.1161/​CIRCULATIONAHA.106.678359

  1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest1992; 101: 1644–1655.
  2. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med2003; 348: 138–150.
  3. Riedemann NC, Guo R, Ward PA. Novel strategies for the treatment of sepsis.Nat Med2003; 9: 517–524.
  4. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet2005; 365: 63–78.
  5. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med2003; 348: 1546–1554.
  6. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med2001; 29: 1303–1310.
  7. Padkin A, Goldfrad C, Brady AR, Young D, Black N, Rowan K. Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med2003; 31: 2332–2338.
  8. Waisbren BA. Bacteremia due to gram-negative bacilli other than the Salmonella: a clinical and therapeutic study. AMA Arch Intern Med1951; 88: 467–488.
  9. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med.2001; 345: 1368–1377.
  10. Bone RC. Gram-negative sepsis: background, clinical features, and intervention.Chest1991; 100: 802–808.
  11. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med1984; 100: 483–490.
  12. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, Ognibene FP. Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med1990; 113:227–242.
  13. Calvin JE, Driedger AA, Sibbald WJ. An assessment of myocardial function in human sepsis utilizing ECG gated cardiac scintigraphy. Chest1981; 80: 579–586.
  14. Jafri SM, Lavine S, Field BE, Bahorozian MT, Carlson RW. Left ventricular diastolic function in sepsis. Crit Care Med1990; 18: 709–714.
  15. Munt B, Jue J, Gin K, Fenwick J, Tweeddale M. Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med1998; 26: 1829–1833.
  16. Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med1997; 23: 553–560.
  17. Ren J, Ren BH, Sharma AC. Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock.2002; 18: 285–288.
  18. McDonough KH, Smith T, Patel K, Quinn M. Myocardial dysfunction in the septic rat heart: role of nitric oxide. Shock1998; 10: 371–376.
  19. Merx MW, Liehn EA, Janssens U, Lütticken R, Schrader J, Hanrath P, Weber C. HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation2004; 109: 2560–2565.
  20. Natanson C, Fink MP, Ballantyne HK, Mac Vittie TJ, Conklin JJ, Parrillo JE. Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest.1986; 78: 259–270.
  21. Stahl TJ, Alden PB, Ring WS, Madoff RC, Cerra FB. Sepsis-induced diastolic dysfunction in chronic canine peritonitis. Am J Physiol Heart Circ Physiol1990;258: H625–H633.
  22. Merx MW, Liehn EA, Graf J, van de Sandt A, Schaltenbrand M, Schrader J, Hanrath P, Weber C. Statin treatment after onset of sepsis in a murine model improves survival. Circulation2005; 112: 117–124.
  23. Vincent JL, Thirion M, Brimioulle S, Lejeune P, Kahn RJ. Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med1986; 12: 33–38.
  24. Dhainaut JF, Brunet F, Monsaillier JF, Villemant D, Devaux JY, Konno M, De Gournay JM, Armaganidis A, Iotti G, Huyghebaert MF. Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med1987; 15: 148–152.
  25. Dhainaut JF, Lanore JJ, de Gournay JM, Huyghebaert MF, Brunet F, Villemant D, Monsallier JF. Right ventricular dysfunction in patients with septic shock.Intensive Care Med1988; 14: 488–491.
  26. Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest1990; 97: 126–131.
  27. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med1987; 15: 923–929.
  28. Rhodes A, Lamb FJ, Malagon I, Newman PJ, Grounds RM, Bennett ED. A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit Care Med1999; 27: 2361–2366.
  29. Maeder M, Fehr T, Rickli H, Ammann P. Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest2006; 129: 1349–1366.
  30. Fernandes CJ, Akamine N, Knobel E. Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med1999; 25: 1165–1168.
  31. ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem2000; 46: 650–657.
  32. Ammann P, Fehr T, Minder EI, Gunter C, Bertel O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med2001; 27: 965–969.
  33. Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, Smith PR. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol.2004; 95: 13–17.
  34. Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med1999; 27: 1775–1780.
  35. Arlati S, Brenna S, Prencipe L, Marocchi A, Casella GP, Lanzani M, Gandini C. Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med2000; 26: 31–37.
  36. Spies C, Haude V, Fitzner R, Schroder K, Overbeck M, Runkel N, Schaffartzik W. Serum cardiac troponin T as a prognostic marker in early sepsis. Chest1998;113: 1055–1063.
  37. Lim W, Qushmag I, Devereaux PJ, Heels-Ansdell D, Lauzier F, Ismaila AS, Crowther MA, Cook DJ. Elevated cardiac troponin measurements in critically ill patients. Arch Intern Med2006; 166: 2446–2454.
  38. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. The coronary circulation in human septic shock. Circulation1986; 73: 637–644.
  39. Herbertson MJ, Werner HA, Russell JA, Iversen K, Walley KR. Myocardial oxygen extraction ratio is decreased during endotoxemia in pigs. J Appl Physiol.1995; 79: 479–486.
  40. Powell RJ, Machiedo GW, Rush BF, Dikdan G. Oxygen free radicals: effect on red cell deformability in sepsis. Crit Care Med1991; 19: 732–735.
  41. Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall’Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation1987; 75: 533–541.
  42. Solomon MA, Correa R, Alexander HR, Koev LA, Cobb JP, Kim DK, Roberts WC, Quezado ZM, Scholz TD, Cunnion RE, Hoffman WD, Bacher J, Yatsiv I, Danner RL, Banks SM, Ferrans VJ, Balaban RS, Natanson C. Myocardial energy metabolism and morphology in a canine model of sepsis. Am J Physiol Heart Circ Physiol1994; 266: H757–H768.
  43. Van Lambalgen AA, van Kraats AA, Mulder MF, Teerlink T, van den Bos GC. High-energy phosphates in heart, liver, kidney, and skeletal muscle of endotoxemic rats. Am J Physiol Heart Circ Physiol1994; 266: H1581–H1587.
  44. Levy RJ, Piel DA, Acton PD, Zhou R, Ferrari VA, Karp JS, Deutschman CS. Evidence of myocardial hibernation in the septic heart. Crit Care Med2005; 33:2752–2756.
  45. Hinshaw LB. Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med1996; 24: 1072–1078.
  46. Hoffmann R. Tissue Doppler echocardiography: already of clinical significance? Z Kardiol2002; 91: 677–684.
  47. Wiggers CJ. Myocardial depression in shock: a survey of cardiodynamic studies.Am Heart J1947; 33: 633–650.
  48. Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W. A circulating myocardial depressant substance in humans with septic shock: septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest1985; 76: 1539–1553.
  49. Hoffmann JN, Werdan K, Hartl WH, Jochum M, Faist E, Inthorn D. Hemofiltrate from patients with severe sepsis and depressed left ventricular contractility contains cardiotoxic compounds. Shock1999; 13: 174–180.
  50. Mink SN, Jacobs H, Duke K, Bose D, Cheng ZQ, Light RB. N,N′,N″-triacetylglucosamine, an inhibitor of lysozyme, prevents myocardial depression in Escherichia coli sepsis in dogs. Crit Care Med2004; 32: 184–193.
  51. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med1989; 321: 280–287.
  52. Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parrillo JE. Endotoxemia in human septic shock. Chest1991; 99: 169–175.
  53. Reilly JM, Cunnion RE, Burch-Whitman C, Parker MM, Shelhamer JH, Parrillo JE. A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest1989; 95: 1072–1080.
  54. Sharma AC, Motew SJ, Farias S, Alden KJ, Bosmann HB, Law WR, Ferguson JL. Sepsis alters myocardial and plasma concentrations of endothelin and nitric oxide in rats. J Mol Cell Cardiol1997; 29: 1469–1477.
  55. Horton JW, Maass D, White J, Sanders B. Nitric oxide modulation of TNF-alpha-induced cardiac contractile dysfunction is concentration dependent. Am J Physiol Heart Circ Physiol2000; 278: H1955–H1965.
  56. Vincent JL, Bakker J, Marecaux G, Schandene L, Kahn RJ, Dupont E. Administration of anti-TNF antibody improves left ventricular function in septic shock patients: results of a pilot study. Chest1992; 101: 810–815.
  57. Fisher CJ, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, Abraham E, Schein RM, Benjamin E; the Soluble TNF Receptor Sepsis Study Group. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. N Engl J Med1996; 334: 1697–1702.
  58. Abraham E, Glauser MP, Butler T, Garbino J, Gelmont D, Laterre PF, Kudsk K, Bruining HA, Otto C, Tobin E, Zwingelstein C, Lesslauer W, Leighton A; Ro 45-2081 Study Group. p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock: a randomized controlled multicenter trial. JAMA1997; 277: 1531–1538.
  59. Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, Dal Nogare A, Nasraway S, Berman S, Cooney R, Levy H, Baughman R, Rumbak M, Light RB, Poole L, Allred R, Constant J, Pennington J, Porter S; NORASEPT II Study Group. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. Lancet1998; 351: 929–933.
  60. Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol1998;30: 215–223.
  61. Opal SM, Fisher CJ Jr, Dhainaut JF, Vincent JL, Brase R, Lowry SF, Sadoff JC, Slotman GJ, Levy H, Balk RA, Shelly MP, Pribble JP, LaBrecque JF, Lookabaugh J, Donovan H, Dubin H, Baughman R, Norman J, DeMaria E, Matzel K, Abraham E, Seneff M; Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. Crit Care Med1997; 25: 1115–1124.
  62. Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL; Phase III rhIL-1ra Sepsis Syndrome Study Group. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome: results from a randomized, double-blind, placebo-controlled trial. JAMA1994; 271: 1836–1843.
  63. Damas P, Ledoux D, Nys M, Vrindts Y, De Groote D, Franchimont P, Lamy M. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity.Ann Surg1992; 215: 356–362.
  64. Schulz R, Nava E, Moncada S. Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol1992;105: 575–580.
  65. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide.Science1992; 257: 387–389.
  66. Liu SF, Newton R, Evans TW, Barnes PJ. Differential regulation of cyclo-oxygenase-1 and cyclo-oxygenase-2 gene expression by lipopolysaccharide treatment in vivo in the rat. Clin Sci (Lond)1996; 90: 301–306.
  67. Reines HD, Halushka PV, Cook JA, Wise WC, Rambo W. Plasma thromboxane concentrations are raised in patients dying with septic shock. Lancet1982; 2: 174–175.
  68. Fletcher JR, Ramwell PW. Modification, by aspirin and indomethacin, of the haemodynamic and prostaglandin releasing effects of E. coli endotoxin in the dog.Br J Pharmacol1977; 61: 175–181.
  69. Parratt JR, Sturgess RM. E. coli endotoxin shock in the cat; treatment with indomethacin. Br J Pharmacol1975; 53: 485–488.
  70. Bernard GR, Wheeler AP, Russel JA, Schein R, Summer WR, Steinberg KP, Fulkerson WJ, Wright PE, Christmann BW, Dupont WD, Higgins SB, Swindell BB; The Ibuprofen in Sepsis Study Group. The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med1997; 336: 912–918.
  71. Memis D, Karamanlioglu B, Turan A, Koyuncu O, Pamukcu Z. Effects of lornoxicam on the physiology of severe sepsis. Crit Care2004; 8: R474–R482.
  72. Tunctan B, Altug S, Uludag O, Demirkay B, Abacioglu N. Effects of cyclooxygenase inhibitors on nitric oxide production and survival in a mice model of sepsis. Pharmacol Res2003; 48: 37–48.
  73. Reddy RC, Chen GH, Tateda K, Tsai WC, Phare SM, Mancuso P, Peters-Golden M, Standiford TJ. Selective inhibition of COX-2 improves early survival in murine endotoxemia but not in bacterial peritonitis. Am J Physiol Lung Cell Mol Physiol.2001; 281: L537–L543.
  74. Gupta A, Brahmbhatt S, Kapoor R, Loken L, Sharma AC. Chronic peritoneal sepsis: myocardial dysfunction, endothelin and signaling mechanisms. Front Biosci.2005; 10: 3183–3205.
  75. Shindo T, Kurihara H, Kurihara Y, Morita H, Yazaki Y. Upregulation of endothelin-1 and adrenomedullin gene expression in the mouse endotoxin shock model. J Cardiovasc Pharmacol1998; 31: S541–S544.
  76. Yang LL, Gros R, Kabir MG, Sadi A, Gotlieb AI, Husain M, Stewart DJ. Conditional cardiac overexpression of endothelin-1 induces inflammation and dilated cardiomyopathy in mice. Circulation2004; 109: 255–261.
  77. Konrad D, Oldner A, Rossi P, Wanecek M, Rudehill A, Weitzberg E. Differentiated and dose-related cardiovascular effects of a dual endothelin receptor antagonist in endotoxin shock. Crit Care Med2004; 32: 1192–1199.
  78. Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther2005; 108: 225–256.
  79. Rassaf T, Poll LW, Brouzos P, Lauer T, Totzeck M, Kleinbongard P, Gharini P, Andersen K, Schulz R, Heusch G, Modder U, Kelm M. Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J2006; 27: 1699–1705.
  80. Kelm M, Schafer S, Dahmann R, Dolu B, Perings S, Decking UK, Schrader J, Strauer BE. Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovasc Res1997; 36: 185–194.
  81. Merx MW, Godecke A, Flogel U, Schrader J. Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function.FASEB J2005; 19: 1015–1017.
  82. Heusch G, Post H, Michel MC, Kelm M, Schulz R. Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res2000; 87: 146–152.
  83. Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res2004; 61: 402–413.
  84. Preiser JC, Zhang H, Vray B, Hrabak A, Vincent JL. Time course of inducible nitric oxide synthase activity following endotoxin administration in dogs. Nitric Oxide2001; 5: 208–211.
  85. Khadour FH, Panas D, Ferdinandy P, Schulze C, Csont T, Lalu MM, Wildhirt SM, Schulz R. Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol Heart Circ Physiol2002; 283: H1108–H1115.
  86. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev2007; 87: 315–424.
  87. Ullrich R, Scherrer-Crosbie M, Bloch KD, Ichinose F, Nakajima H, Picard MH, Zapol WM, Quezado ZM. Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation2000; 102:1440–1446.
  88. Hwang TL, Yeh CC. Hemodynamic and hepatic microcirculational changes in endotoxemic rats treated with different NOS inhibitors. Hepatogastroenterology.2003; 50: 188–191.
  89. Kirov MY, Evgenov OV, Evgenov NV, Egorina EM, Sovershaev MA, Sveinbjornsson B, Nedashkovsky EV, Bjertanaes LJ. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med2001; 29:1860–1867.
  90. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res2000;87: 241–247.
  91. Elfering SL, Sarkela TM, Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem2002; 277: 38079–38086.
  92. Connelly L, Madhani M, Hobbs AJ. Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived NO in vivo. J Biol Chem2005; 280: 10040–10046.
  93. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax TW, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch H-G, Gödecke A, Weber A-A, Robenek M, Robenek H, Bloch W, Rosen P, Kelm M. Red blood cells express a functional endothelial nitric oxide synthase. Blood2006; 107: 2943–2951.
  94. Raeburn CD, Calkins CM, Zimmerman MA, Song Y, Ao L, Banerjee A, Harken AH, Meng X. ICAM-1 and VCAM-1 mediate endotoxemic myocardial dysfunction independent of neutrophil accumulation. Am J Physiol Regul Integr Comp Physiol.2002; 283: R477–R486.
  95. Neviere R, Guery B, Mordon S, Zerimech F, Charre S, Wattel F, Chopin C. Inhaled NO reduces leukocyte-endothelial cell interactions and myocardial dysfunction in endotoxemic rats. Am J Physiol Heart Circ Physiol2000; 278:H1783–H1790.
  96. Raeburn CD, Calkins CM, Zimmerman MA, Song Y, Ao L, Banerjee A, Meng X, Harken AH. Vascular cell adhesion molecule-1 expression is obligatory for endotoxin-induced myocardial neutrophil accumulation and contractile dysfunction.Surgery2001; 130: 319–325.
  97. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med2004; 32: 858–873.
  98. Hollenberg SM, Ahrens TS, Annane D, Astiz ME, Chalfin DB, Dasta JF, Heard SO, Martin C, Napolitano LM, Susla GM, Totaro R, Vincent JL, Zanotti-Cavazzoni S. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med2004; 32: 1928–1948.
  99. van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest1996; 97: 713–719.
  100. van der Poll T, Levi M, Dentener M, Jansen PM, Coyle SM, Braxton CC, Buurman WA, Hack CE, ten Cate JW, Lowry SF. Epinephrine exerts anticoagulant effects during human endotoxemia. J Exp Med1997; 185: 1143–1148.
  101. Lemaire L, de Kruif M, Giebelen IA, Levi M, van der Poll T, Heesen M. Dobutamine does not influence inflammatory pathways during human endotoxemia.Crit Care Med2006; 34: 1365–1371.
  102. Leone M, Boyadjiev I, Boulos E, Antonini F, Visintini P, Albanese J, Martin C. A reappraisal of isoproterenol in goal-directed therapy of septic shock. Shock2006;26: 353–357.
  103. Suzuki T, Morisaki H, Serita R, Yamamoto M, Kotake Y, Ishizaka A, Takeda J. Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med2005; 33: 2294–2301.
  104. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr; Recombinant Human Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med2001; 344: 699–709.
  105. Annane D. Corticosteroids for septic shock. Crit Care Med2001; 29: S117–S120.
  106. Tonelli M, Isles C, Craven T, Tonkin A, Pfeffer MA, Shepherd J, Sacks FM, Furberg C, Cobbe SM, Simes J, West M, Packard C, Curhan GC. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation2005; 112: 171–178.
  107. Fukuta H, Sane DC, Brucks S, Little WC. Statin therapy may be associated with lower mortality in patients with diastolic heart failure: a preliminary report.Circulation2005; 112: 357–363.
  108. Zhang L, Zhang ZG, Ding GL, Jiang Q, Liu X, Meng H, Hozeska A, Zhang C, Li L, Morris D, Zhang RL, Lu M, Chopp M. Multitargeted effects of statin-enhanced thrombolytic therapy for stroke with recombinant human tissue-type plasminogen activator in the rat. Circulation2005; 112: 3486–3494.
  109. Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med2000; 6: 1399–1402.
  110. Kurakata S, Kada M, Shimada Y, Komai T, Nomoto K. Effects of different inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, pravastatin sodium and simvastatin, on sterol synthesis and immunological functions in human lymphocytes in vitro. Immunopharmacology1996; 34: 51–61.
  111. Romano M, Diomede L, Sironi M, Massimiliano L, Sottocorno M, Polentarutti N, Guglielmotti A, Albani D, Bruno A, Fruscella P, Salmona M, Vecchi A, Pinza M, Mantovani A. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest2000; 80: 1095–1100.
  112. Weber C, Erl W, Weber KS, Weber PC. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol1997; 30: 1212–1217.
  113. Yoshida M, Sawada T, Ishii H, Gerszten RE, Rosenzweig A, Gimbrone MA Jr, Yasukochi Y, Numano F. HMG-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler Thromb Vasc Biol2001; 21:1165–1171.
  114. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med2001; 7: 687–692.
  115. Colli S, Eligini S, Lalli M, Camera M, Paoletti R, Tremoli E. Vastatins inhibit tissue factor in cultured human macrophages: a novel mechanism of protection against atherothrombosis. Arterioscler Thromb Vasc Biol1997; 17: 265–272.
  116. Erkkila L, Jauhiainen M, Laitinen K, Haasio K, Tiirola T, Saikku P, Leinonen M. Effect of simvastatin, an established lipid-lowering drug, on pulmonary Chlamydia pneumoniae infection in mice. Antimicrob Agents Chemother2005; 49: 3959–3962.
  117. del Real G, Jimenez-Baranda S, Mira E, Lacalle RA, Lucas P, Gomez-Mouton C, Alegret M, Pena JM, Rodriguez-Zapata M, Alvarez-Mon M, Martinez A, Manes S. Statins inhibit HIV-1 infection by down-regulating Rho activity. J Exp Med2004;200: 541–547.
  118. Liappis AP, Kan VL, Rochester CG, Simon GL. The effect of statins on mortality in patients with bacteremia. Clin Infect Dis2001; 33: 1352–1357.
  119. Steiner S, Speidl WS, Pleiner J, Seidinger D, Zorn G, Kaun C, Wojta J, Huber K, Minar E, Wolzt M, Kopp CW. Simvastatin blunts endotoxin-induced tissue factor in vivo. Circulation2005; 111: 1841–1846.
  120. Almog Y, Shefer A, Novack V, Maimon N, Barski L, Eizinger M, Friger M, Zeller L, Danon A. Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation2004; 110: 880–885.
  121. Hackam DG, Mamdani M, Li P, Redelmeier DA. Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet2006; 367:413–418.
  122. Merx MW, Weber C. Statins: a preventive strike against sepsis in patients with cardiovascular disease? Lancet2006; 367: 372–373.
  123. Panacek EA, Marshall JC, Alberson TE, Johnson DH, Johnson S, MacArthur RD, Miller M, Barchuk WT, Fischkoff S, Kaul M, Teoh L, Van Meter L, Daum L, Lemeshow S, Hicklin G, Doig C. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab′)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med2004; 32: 2173–2182.
  124. Zeiher BG, Steingrub J, Laterre PF, Dmitrienko A, Fukiishi Y, Abraham E; EZZI Study Group. LY315920NA/S-5920, a selective inhibitor of group IIA secretory phospholipase A2, fails to improve clinical outcome for patients with severe sepsis.Crit Care Med2005; 33: 1741–1748.
  125. Grandel U, Hopf M, Buerke M, Hattar K, Heep M, Fink L, Bohle RM, Morath S, Hartung T, Pullamsetti S, Schermuly RT, Seeger W, Grimminger F, Sibelius U. Mechanisms of cardiac depression caused by lipoteichoic acids from Staphylococcus aureus in isolated rat hearts. Circulation2005; 112: 691–698.
    SOURCE

Circulation.2007; 116: 793-802doi: 10.1161/​CIRCULATIONAHA.106.678359

Other articles on Sepsis published on this Open Access Online Scientific Journal, include the following:

Advanced Topics in Sepsis and the Cardiovascular System at its End Stage

Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2013/08/18/advanced-topics-in-sepsis-and-the-cardiovascular-system-at-its-end-stage/

Nitric Oxide and Sepsis, Hemodynamic Collapse, and the Search for Therapeutic Options

Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2012/10/20/nitric-oxide-and-sepsis-hemodynamic-collapse-and-the-search-for-therapeutic-options/

Sepsis, Multi-organ Dysfunction Syndrome, and Septic Shock: A Conundrum of Signaling Pathways Cascading Out of Control

Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2012/10/13/sepsis-multi-organ-dysfunction-syndrome-and-septic-shock-a-conundrum-of-signaling-pathways-cascading-out-of-control/

Automated Inferential Diagnosis of SIRS, sepsis, septic shock

Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2012/08/01/automated-inferential-diagnosis-of-sirs-sepsis-septic-shock/

The role of biomarkers in the diagnosis of sepsis and patient management

Larry H Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2012/07/28/the-role-of-biomarkers-in-the-diagnosis-of-sepsis-and-patient-management/

Bernstein, HL, Pearlman, JD and A. Lev-Ari  Alternative Designs for the Human Artificial Heart: The Patients in Heart Failure – Outcomes of Transplant (donor)/Implantation (artificial) and Monitoring Technologies for the Transplant/Implant Patient in the Community

http://pharmaceuticalintelligence.com/2013/08/05/alternative-designs-for-the-human-artificial-heart-the-patients-in-heart-failure-outcomes-of-transplant-donorimplantation-artificial-and-monitoring-technologies-for-the-transplantimplant-pat/

Pearlman, JD and A. Lev-Ari 7/22/2013 Cardiac Resynchronization Therapy (CRT) to Arrhythmias: Pacemaker/Implantable Cardioverter Defibrillator (ICD) Insertion

http://pharmaceuticalintelligence.com/2013/07/22/cardiac-resynchronization-therapy-crt-to-arrhythmias-pacemakerimplantable-cardioverter-defibrillator-icd-insertion/

Lev-Ari, A. 7/19/2013 3D Cardiovascular Theater – Hybrid Cath Lab/OR Suite, Hybrid Surgery, Complications Post PCI and Repeat Sternotomy

http://pharmaceuticalintelligence.com/2013/07/19/3d-cardiovascular-theater-hybrid-cath-labor-suite-hybrid-surgery-complications-post-pci-and-repeat-sternotomy/

Pearlman, JD and A. Lev-Ari 7/17/2013 Emerging Clinical Applications for Cardiac CT: Plaque Characterization, SPECT Functionality, Angiogram’s and Non-Invasive FFR

http://pharmaceuticalintelligence.com/2013/07/17/emerging-clinical-applications-for-cardiac-ct-plaque-characterization-spect-functionality-angiograms-and-non-invasive-ffr/

Lev-Ari, A. 7/14/2013 Vascular Surgery: International, Multispecialty Position Statement on Carotid Stenting, 2013 and Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD

http://pharmaceuticalintelligence.com/2013/07/14/vascular-surgery-position-statement-in-2013-and-contributions-of-a-vascular-surgeon-at-peak-career-richard-paul-cambria-md-chief-division-of-vascular-and-endovascular-surgery-co-director-thoracic/

Lev-Ari, A. 7/9/2013 Heart Transplant (HT) Indication for Heart Failure (HF): Procedure Outcomes and Research on HF, HT @ Two Nation’s Leading HF & HT Centers

http://pharmaceuticalintelligence.com/2013/07/09/research-programs-george-m-linda-h-kaufman-center-for-heart-failure-cleveland-clinic/

Lev-Ari, A. 7/8/2013 Becoming a Cardiothoracic Surgeon: An Emerging Profile in the Surgery Theater and through Scientific Publications 

http://pharmaceuticalintelligence.com/2013/07/08/becoming-a-cardiothoracic-surgeon-an-emerging-profile-in-the-surgery-theater-and-through-scientific-publications/

Pearlman, JD and A. Lev-Ari  7/4/2013 Fractional Flow Reserve (FFR) & Instantaneous wave-free ratio (iFR): An Evaluation of Catheterization Lab Tools (Software Validation) for Ischemic Assessment (Diagnostics) – Change in Paradigm: The RIGHT vessel not ALL vessels

http://pharmaceuticalintelligence.com/2013/07/04/fractional-flow-reserve-ffr-instantaneous-wave-free-rario-ifr-an-evaluation-of-catheterization-lab-tools-for-ischemic-assessment/

Lev-Ari, A. 7/1/22013 Endovascular Lower-extremity Revascularization Effectiveness: Vascular Surgeons (VSs), Interventional Cardiologists (ICs) and Interventional Radiologists (IRs)

http://pharmaceuticalintelligence.com/2013/07/01/endovascular-lower-extremity-revascularization-effectiveness-vascular-surgeons-vss-interventional-cardiologists-ics-and-interventional-radiologists-irs/

Lev-Ari, A. 6/10/2013 No Early Symptoms – An Aortic Aneurysm Before It Ruptures – Is There A Way To Know If I Have it?

http://pharmaceuticalintelligence.com/2013/06/10/no-early-symptoms-an-aortic-aneurysm-before-it-ruptures-is-there-a-way-to-know-if-i-have-it/

Lev-Ari, A. 6/9/2013 Congenital Heart Disease (CHD) at Birth and into Adulthood: The Role of Spontaneous Mutations

http://pharmaceuticalintelligence.com/2013/06/09/congenital-heart-disease-at-birth-and-into-adulthood-the-role-of-spontaneous-mutations-the-genes-and-the-pathways/

Lev-Ari, A. 6/3/2013 Clinical Indications for Use of Inhaled Nitric Oxide (iNO) in the Adult Patient Market: Clinical Outcomes after Use, Therapy Demand and Cost of Care

http://pharmaceuticalintelligence.com/2013/06/03/clinical-indications-for-use-of-inhaled-nitric-oxide-ino-in-the-adult-patient-market-clinical-outcomes-after-use-therapy-demand-and-cost-of-care/

Lev-Ari, A. 6/2/2013 Inhaled Nitric Oxide in Adults: Clinical Trials and Meta Analysis Studies – Recent Findings

http://pharmaceuticalintelligence.com/2013/06/02/inhaled-nitric-oxide-in-adults-with-acute-respiratory-distress-syndrome/

Pearlman, JD and A. Lev-Ari 5/24/2013 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

http://pharmaceuticalintelligence.com/2013/05/24/imaging-biomarker-for-arterial-stiffness-pathways-in-pharmacotherapy-for-hypertension-and-hypercholesterolemia-management/

Pearlman, JD and A. Lev-Ari 5/22/2013 Acute and Chronic Myocardial Infarction: Quantification of Myocardial Perfusion Viability – FDG-PET/MRI vs. MRI or PET alone

http://pharmaceuticalintelligence.com/2013/05/22/acute-and-chronic-myocardial-infarction-quantification-of-myocardial-viability-fdg-petmri-vs-mri-or-pet-alone/

Lev-Ari, A. 5/17/2013 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

http://pharmaceuticalintelligence.com/2013/05/17/synthetic-biology-on-advanced-genome-interpretation-for-gene-variants-and-pathways-what-is-the-genetic-base-of-atherosclerosis-and-loss-of-arterial-elasticity-with-aging/

Justin D Pearlman, HL Bernstein and A. Lev-Ari 5/15/2013 Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems

http://pharmaceuticalintelligence.com/2013/05/15/diagnosis-of-cardiovascular-disease-treatment-and-prevention-current-predicted-cost-of-care-and-the-promise-of-individualized-medicine-using-clinical-decision-support-systems-2/

Pearlman, JD and A. Lev-Ari 5/11/2013 Hypertension and Vascular Compliance: 2013 Thought Frontier – An Arterial Elasticity Focus

http://pharmaceuticalintelligence.com/2013/05/11/arterial-elasticity-in-quest-for-a-drug-stabilizer-isolated-systolic-hypertension-caused-by-arterial-stiffening-ineffectively-treated-by-vasodilatation-antihypertensives/

Pearlman, JD and A. Lev-Ari 5/7/2013 On Devices and On Algorithms: Arrhythmia after Cardiac Surgery Prediction and ECG Prediction of Paroxysmal Atrial Fibrillation Onset

http://pharmaceuticalintelligence.com/2013/05/07/on-devices-and-on-algorithms-arrhythmia-after-cardiac-surgery-prediction-and-ecg-prediction-of-paroxysmal-atrial-fibrillation-onset/

Pearlman, JD and A. Lev-Ari 5/4/2013 Cardiovascular Diseases: Decision Support Systems for Disease Management Decision Making

http://pharmaceuticalintelligence.com/2013/05/04/cardiovascular-diseases-decision-support-systems-for-disease-management-decision-making/

Lev-Ari, A. 5/3/2013 Gene, Meis1, Regulates the Heart’s Ability to Regenerate after Injuries.

http://pharmaceuticalintelligence.com/2013/05/03/gene-meis1-regulates-the-hearts-ability-to-regenerate-after-injuries/

Lev-Ari, A. 4/30/2013 Prostacyclin and Nitric Oxide: Adventures in Vascular Biology – A Tale of Two Mediators

http://pharmaceuticalintelligence.com/2013/04/30/prostacyclin-and-nitric-oxide-adventures-in-vascular-biology-a-tale-of-two-mediators/

Lev-Ari, A. 4/28/2013 Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

http://pharmaceuticalintelligence.com/2013/04/28/genetics-of-conduction-disease-atrioventricular-av-conduction-disease-block-gene-mutations-transcription-excitability-and-energy-homeostasis/

Lev-Ari, A. 4/25/2013 Economic Toll of Heart Failure in the US: Forecasting the Impact of Heart Failure in the United States – A Policy Statement From the American Heart Association

http://pharmaceuticalintelligence.com/2013/04/25/economic-toll-of-heart-failure-in-the-us-forecasting-the-impact-of-heart-failure-in-the-united-states-a-policy-statement-from-the-american-heart-association/

Lev-Ari, A. 4/24/2013 Harnessing New Players in Atherosclerosis to Treat Heart Disease

http://pharmaceuticalintelligence.com/2013/04/25/harnessing-new-players-in-atherosclerosis-to-treat-heart-disease/

Lev-Ari, A. 4/25/2013 Revascularization: PCI, Prior History of PCI vs CABG

http://pharmaceuticalintelligence.com/2013/04/25/revascularization-pci-prior-history-of-pci-vs-cabg/

Lev-Ari, A. 4/7/2013 Cholesteryl Ester Transfer Protein (CETP) Inhibitor: Potential of Anacetrapib to treat Atherosclerosis and CAD

http://pharmaceuticalintelligence.com/2013/04/07/cholesteryl-ester-transfer-protein-cetp-inhibitor-potential-of-anacetrapib-to-treat-atherosclerosis-and-cad/

Lev-Ari, A. 4/4/2013 Hypertriglyceridemia concurrent Hyperlipidemia: Vertical Density Gradient Ultracentrifugation a Better Test to Prevent Undertreatment of High-Risk Cardiac Patients

http://pharmaceuticalintelligence.com/2013/04/04/hypertriglyceridemia-concurrent-hyperlipidemia-vertical-density-gradient-ultracentrifugation-a-better-test-to-prevent-undertreatment-of-high-risk-cardiac-patients/

Lev-Ari, A. 4/3/2013 Fight against Atherosclerotic Cardiovascular Disease: A Biologics not a Small Molecule – Recombinant Human lecithin-cholesterol acyltransferase (rhLCAT) attracted AstraZeneca to acquire AlphaCore

http://pharmaceuticalintelligence.com/2013/04/03/fight-against-atherosclerotic-cardiovascular-disease-a-biologics-not-a-small-molecule-recombinant-human-lecithin-cholesterol-acyltransferase-rhlcat-attracted-astrazeneca-to-acquire-alphacore/

Lev-Ari, A. 3/31/2013 High-Density Lipoprotein (HDL): An Independent Predictor of Endothelial Function & Atherosclerosis, A Modulator, An Agonist, A Biomarker for Cardiovascular Risk

http://pharmaceuticalintelligence.com/2013/03/31/high-density-lipoprotein-hdl-an-independent-predictor-of-endothelial-function-artherosclerosis-a-modulator-an-agonist-a-biomarker-for-cardiovascular-risk/

Lev-Ari, A. 3/10/2013 Acute Chest Pain/ER Admission: Three Emerging Alternatives to Angiography and PCI

http://pharmaceuticalintelligence.com/2013/03/10/acute-chest-painer-admission-three-emerging-alternatives-to-angiography-and-pci/

Lev-Ari, A. and L H Bernstein 3/7/2013 Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

http://pharmaceuticalintelligence.com/2013/03/07/genomics-genetics-of-cardiovascular-disease-diagnoses-a-literature-survey-of-ahas-circulation-cardiovascular-genetics-32010-32013/

Lev-Ari, A. 2/28/2013 The Heart: Vasculature Protection – A Concept-based Pharmacological Therapy including THYMOSIN

http://pharmaceuticalintelligence.com/2013/02/28/the-heart-vasculature-protection-a-concept-based-pharmacological-therapy-including-thymosin/

Lev-Ari, A. 2/27/2013 Arteriogenesis and Cardiac Repair: Two Biomaterials – Injectable Thymosin beta4 and Myocardial Matrix Hydrogel

http://pharmaceuticalintelligence.com/2013/02/27/arteriogenesis-and-cardiac-repair-two-biomaterials-injectable-thymosin-beta4-and-myocardial-matrix-hydrogel/

Lev-Ari, A. 12/29/2012. Coronary artery disease in symptomatic patients referred for coronary angiography: Predicted by Serum Protein Profiles

http://pharmaceuticalintelligence.com/2012/12/29/coronary-artery-disease-in-symptomatic-patients-referred-for-coronary-angiography-predicted-by-serum-protein-profiles/

Bernstein, HL and Lev-Ari, A. 11/28/2012. Special Considerations in Blood Lipoproteins, Viscosity, Assessment and Treatment

http://pharmaceuticalintelligence.com/2012/11/28/special-considerations-in-blood-lipoproteins-viscosity-assessment-and-treatment/

Lev-Ari, A. 11/13/2012 Peroxisome proliferator-activated receptor (PPAR-gamma) Receptors Activation: PPARγ transrepression for Angiogenesis in Cardiovascular Disease and PPARγ transactivation for Treatment of Diabetes

http://pharmaceuticalintelligence.com/2012/11/13/peroxisome-proliferator-activated-receptor-ppar-gamma-receptors-activation-pparγ-transrepression-for-angiogenesis-in-cardiovascular-disease-and-pparγ-transactivation-for-treatment-of-dia/

Lev-Ari, A. 10/19/2012 Clinical Trials Results for Endothelin System: Pathophysiological role in Chronic Heart Failure, Acute Coronary Syndromes and MI – Marker of Disease Severity or Genetic Determination?

http://pharmaceuticalintelligence.com/2012/10/19/clinical-trials-results-for-endothelin-system-pathophysiological-role-in-chronic-heart-failure-acute-coronary-syndromes-and-mi-marker-of-disease-severity-or-genetic-determination/

Lev-Ari, A. 10/4/2012 Endothelin Receptors in Cardiovascular Diseases: The Role of eNOS Stimulation

http://pharmaceuticalintelligence.com/2012/10/04/endothelin-receptors-in-cardiovascular-diseases-the-role-of-enos-stimulation/

Lev-Ari, A. 10/4/2012 Inhibition of ET-1, ETA and ETA-ETB, Induction of NO production, stimulation of eNOS and Treatment Regime with PPAR-gamma agonists (TZD): cEPCs Endogenous Augmentation for Cardiovascular Risk Reduction – A Bibliography

http://pharmaceuticalintelligence.com/2012/10/04/inhibition-of-et-1-eta-and-eta-etb-induction-of-no-production-and-stimulation-of-enos-and-treatment-regime-with-ppar-gamma-agonists-tzd-cepcs-endogenous-augmentation-for-cardiovascular-risk-reduc/

Lev-Ari, A. 8/29/2012 Positioning a Therapeutic Concept for Endogenous Augmentation of cEPCs — Therapeutic Indications for Macrovascular Disease: Coronary, Cerebrovascular and Peripheral

http://pharmaceuticalintelligence.com/2012/08/29/positioning-a-therapeutic-concept-for-endogenous-augmentation-of-cepcs-therapeutic-indications-for-macrovascular-disease-coronary-cerebrovascular-and-peripheral/

Lev-Ari, A. 8/28/2012 Cardiovascular Outcomes: Function of circulating Endothelial Progenitor Cells (cEPCs): Exploring Pharmaco-therapy targeted at Endogenous Augmentation of cEPCs

http://pharmaceuticalintelligence.com/2012/08/28/cardiovascular-outcomes-function-of-circulating-endothelial-progenitor-cells-cepcs-exploring-pharmaco-therapy-targeted-at-endogenous-augmentation-of-cepcs/

Lev-Ari, A. 8/27/2012 Endothelial Dysfunction, Diminished Availability of cEPCs, Increasing CVD Risk for Macrovascular Disease – Therapeutic Potential of cEPCs

http://pharmaceuticalintelligence.com/2012/08/27/endothelial-dysfunction-diminished-availability-of-cepcs-increasing-cvd-risk-for-macrovascular-disease-therapeutic-potential-of-cepcs/

Lev-Ari, A. 8/24/2012 Vascular Medicine and Biology: CLASSIFICATION OF FAST ACTING THERAPY FOR PATIENTS AT HIGH RISK FOR MACROVASCULAR EVENTS Macrovascular Disease – Therapeutic Potential of cEPCs

http://pharmaceuticalintelligence.com/2012/08/24/vascular-medicine-and-biology-classification-of-fast-acting-therapy-for-patients-at-high-risk-for-macrovascular-events-macrovascular-disease-therapeutic-potential-of-cepcs/

Lev-Ari, A. 7/19/2012 Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production

http://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/

Lev-Ari, A. 4/30/2012 Resident-cell-based Therapy in Human Ischaemic Heart Disease: Evolution in the PROMISE of Thymosin beta4 for Cardiac Repair

http://pharmaceuticalintelligence.com/2012/04/30/93/

Lev-Ari, A. 5/29/2012 Triple Antihypertensive Combination Therapy Significantly Lowers Blood Pressure in Hard-to-Treat Patients with Hypertension and Diabetes

http://pharmaceuticalintelligence.com/2012/05/29/445/

Lev-Ari, A. 7/2/2012 Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

http://pharmaceuticalintelligence.com/2012/07/02/macrovascular-disease-therapeutic-potential-of-cepcs-reduction-methods-for-cv-risk/

 

Read Full Post »

Vascular Surgery: International, Multispecialty Position Statement on Carotid Stenting, 2013 and Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD

Vascular Surgery: International, Multispecialty Position Statement on Carotid Stenting, 2013 and Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD

Author and Curator: Aviva Lev-Ari, PhD, RN

Article ID #66: Vascular Surgery: International, Multispecialty Position Statement on Carotid Stenting, 2013 and Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD. Published on 7/14/2013

WordCloud Image Produced by Adam Tubman

Part One:

Vascular Surgery International, Multispecialty Position Statement on Carotid Stenting, 2013

Part Two:

Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD, Chief, Division of Vascular and Endovascular Surgery Co-Director, Thoracic Aortic Center @ MGH

I. Recollection of a visit at Dr. Cambria’s Office, 2004

II. Shadowing Dr. Cambria in OR @MGH

III. Dr. Cambria: Selection of Contributions to Scientific Research on Vascular Surgery

IV. Cardiovascular Clinical Observational Experience – Aviva Lev-Ari, PhD, RN 

V. Cases with Complications: CEA and CAS

Part Three:

On 8/1/2013, Cleveland Clinic Reports Equivalence between carotid endarterectomy (CEA) and open-heart surgery (OHS) and carotid artery stenting (CAS) followed by coronary artery bypass graft (CABG) surgery or non-CABG cardiac surgery

 

 

 

Part One:

Vascular Surgery International, Multispecialty Position Statement on Carotid Stenting, 2013 Part

No other invasive intervention procedure in the history of Vascular Surgery has stormed the profession more than the two treatment options for carotid artery partial to complete blockage than Carotid endarterectomy (CEA) and Carotid angioplasty and stenting (CAS).

The debate required evidence based resolution for the two treatment options in terms of patient outcomes and adverse events. As the title of the Position statement explained below, the verdict is non equivocal: Routine Carotid Stenting is inferior to Carotid endarterectomy (CEA) from a patient safety and outcomes.

A special Report was published in

Stroke. 2013;44:1186-1190; originally published online March 19, 2013

Why Calls for More Routine Carotid Stenting Are Currently Inappropriate : An International, Multispecialty, Expert Review and Position Statement

Anne L. Abbott, MD, PhD, FRACP; Mark A. Adelman, MD; Andrei V. Alexandrov, MD;

P. Alan Barber, PhD, MBChB, FRACP; Henry J.M. Barnett, CC, MD; Jonathan Beard, FRCS, ChM, MEd;

Peter Bell, FRCS, MD, DSC, KBE; Martin Björck, MD, PhD; David Blacker, MD, FRACP;

Leo H. Bonati, MD; Martin M. Brown, MD, FRCP; Clifford J. Buckley, MD, FACS;

Richard P. Cambria, MD; John E. Castaldo, MD; Anthony J. Comerota, MD, FACS, RVT;

E. Sander Connolly, Jr, MD; Ronald L. Dalman, MD, FACS;

Alun H. Davies, MA, DM, FRCS, FHEA, FEBVS, FACPh; Hans‐Henning Eckstein, MD, PhD;

Rishad Faruqi, MD, FRCS (Eng), FRCS (Ed), FACS; Thomas E. Feasby, MD; Gustav Fraedrich, MD;

Peter Gloviczki, MD; Graeme J. Hankey, MD, FRACP; Robert E. Harbaugh, MD, FAANS, FACS;

Eitan Heldenberg, MD; Michael G. Hennerici, MD; Michael D. Hill, MD, MSc, FRCPC;

Timothy J. Kleinig, PhD FRACP, MBBS (Hons), BA;

Dimitri P. Mikhailidis, BSc, MSc, MD, FRSPH, FCP, FFPM, FRCP, FRCPath;

Wesley S. Moore, MD; Ross Naylor, MD, FRCS; Andrew Nicolaides, MS, FRCS, PhD (Hon);

Kosmas I. Paraskevas, MD, PhD; David M. Pelz, MD, FRCPC; James W. Prichard, MD;

Grant Purdie, MD, FRACP; Jean‐Baptiste Ricco, MD, PhD; Peter A. Ringleb, MD, PhD;

Thomas Riles, MD; Peter M. Rothwell, MD, PhD, FRCP, FMedSci;

Peter Sandercock, MA, DM, FRCPE, FMedSci; Henrik Sillesen, MD, DMSc;

J. David Spence, BA, MBA, MD, FRCPC, FCAHS; Francesco Spinelli, MD;

Jonathon Sturm, MBChB, PhD; Aaron Tan, MD, FRACP; Ankur Thapar, BSc, MBBS, MRCS;

Frank J. Veith, MD; Tissa Wijeratne, MD, FRACP; Wei Zhou, MD

[DISCLOSURE for Richard Cambria: He is co‐PI for a future Transcervical Carotid Stenting/Flow Reversal Trial (ROADSTER).]

Special Reports Main Points

Key Words: carotid angioplasty/stenting ◼ carotid endarterectomy ◼ carotid

stenosis ◼ health policy ◼ stroke prevention

In conclusion, current global evidence shows that, even in the best academic centers, CAS is less effective (causing more strokes) and more expensive than CEA. It is premature that some guidelines have recently added support for routine practice CAS as an alternative to CEA for

  • asymptomatic43,44 and
  • low/ average surgical risk symptomatic patients43–45

because CAS may easily be misinterpreted by readers as being equivalent for

  • stroke prevention46 and
  • historical procedural standards were cited.

CAS, for these patients, should still only be performed and paid for within well‐designed, adequately powered trials. The US Center for Medicare and Medicaid Services is doing its job and setting an excellent global example. It is protecting Medicare beneficiaries from routine practice procedures, which are currently more likely to harm them and waste finite resources47 that could be used for their advantage. Meanwhile, we need to reassess the current routine practice role of CEA and deliver optimal current medical treatment to all who need it.

 Clinical Trials Results

To avoid misguidance from calls for more routine practice (nontrial) carotid angioplasty/stenting (CAS), we need to distinguish relevant facts and patients’ best interests from all else (distractions). A recent editorial by White and Jaff1 is one publication which illustrates this need particularly well. First, these authors are correct in reminding us that the responsibility of physicians is to provide best patient care, putting aside personal interest. This is inherent in any profession.2 However, misconception, bias, and conflict of interest exist. Therefore, healthcare payment organizations, such as the US Center for Medicare and Medicaid Services are important gatekeepers to facilitate patient access to interventions that are likely to help them, as opposed to all others.

It is also true that CAS and carotid endarterectomy (CEA) result in better outcomes when patients are carefully selected and skilled operators perform the procedures in experienced centers.1 We would add that key indicators (such as 30‐day periprocedural stroke/death rates) must be accurately measured in routine (real‐world) practice, particularly as stroke and death rates here may be unacceptably higher than in trials. 3–5 Therefore, it is most appropriate, as suggested by White and Jaff,1 that coverage for carotid procedures be dependent on facility accreditation and audited measurement of key standards indicators in all practices performing these procedures.

This is a priority issue. White and Jaff1 also correctly state “a major change in evidence based stroke prevention strategies will require clinical trial data. ,7,8 meta‐analyses, and routine practice.9–14 Most of these data relate to low/average risk symptomatic patients and demonstrate that, for these patients, even in the best academic centers, CAS is consistently associated with significantly higher rates of stroke or death (during or after the periprocedural period) compared with CEA.

It is incorrect that CREST “failed to show a difference in overall stroke rate between CAS and CEA” as stated by White and Jaff.1 In CREST, for average surgical risk symptomatic patients, the periprocedural stroke and death rates were 6.0% for CAS versus 3.2% for CEA (hazard ratio, 1.89; 95% confidence interval, 1.11–3.21; P=0.02).8

The higher periprocedural risk of stroke or death with CAS is particularly evident in the most senior patients (>68–70 years),13,15,16 those undergoing the procedure <7 days of incident cerebral or retinal ischemic symptoms17 (when CEA has the highest stroke prevention potential),18 those undergoing CAS outside clinical trials,19 and those with certain anatomic features.20 No study has shown that CAS is more effective than CEA in preventing stroke. Further, most analyses show that CAS costs considerably more,21–24 despite calculations derived from CREST results.25 No randomized trial has been adequately powered to compare the procedural and longer term risk of CAS on stroke or death in low/average risk asymptomatic patients. However, in CREST, the direction of effect was toward nearly twice the risk (periprocedural stroke/death rate was 2.5% for CAS versus 1.4% for CEA; hazard ratio, 1.88; 95% confidence interval, 0.79–4.42; P=0.15).8 This was consistent with the significantly higher periprocedural stroke rates seen in CREST CAS‐treated symptomatic patients8 and nontrial CAS‐treated asymptomatic patients.9,26

Meanwhile, medical treatment for asymptomatic carotid disease has improved significantly since past randomized trials of medical treatment alone versus additional CEA.27–32 Medical treatment consists of identification of risk factors for heart and vascular disease and risk reduction using healthy lifestyles and appropriate drugs. Improvement in medical treatment is clear from robust analyses of all published comparable, quality stroke rate calculations (including from, and within, randomized surgical trials) of patients with 50% to 99% asymptomatic carotid stenosis. This knowledge is not, as claimed by White and Jaff,1 derived from short‐cut extrapolation from coronary artery trials. Using the same standardized rate calculations, we are now seeing an average annual rate of ipsilateral stroke of ≈0.5% with medical treatment alone.30,33,34 This is about 3X— lower than that of asymptomatic CREST CAS‐treated patients and about half the rate of asymptomatic CREST CEA‐treated patients.7,9 This low rate with medical treatment is likely to fall further with improvements in efficacy, definition, and implementation.

However, recently published rate calculations indicate that, at most, only ≈2.5% of low/average CEA risk patients with 50% to 99% asymptomatic carotid stenosis will receive a stroke prevention benefit from CEA or CAS during their remaining average 10‐year lifetime if they receive good, current medical treatment (assuming the procedural risk of stroke/death is always zero).35 This indicates that a one‐size‐fits‐all procedural approach for these asymptomatic patients is now unlikely to be beneficial overall. We need to be much more selective. Research is required to determine which asymptomatic subgroups now benefit from carotid procedures in addition to current optimal medical treatment.

We have found no direct information about the influence of current medical treatment in patients with low/average CEA risk symptomatic carotid stenosis. However, improving results for medically treated asymptomatic patients27–32 and procedural trial asymptomatic and symptomatic patients8 indicate that a 6% periprocedural risk of

  • stroke or
  • death (the current standard) is now too high.

New randomized and risk stratification studies are required using current optimal medical treatment and procedural methods.36 For example,

  • improved plaque37 and
  • thrombus identification38 or
  • embolic signal detection39 above and below the stenosis

may help better identify carotid plaques responsible for carotid territory ischemic symptoms. Further, the best approach for patients with high surgical risk carotid stenosis remains uncertain because risk of stroke or death has not been measured with any standard of medical treatment or adequate procedural trials. However, some registries show significantly higher risks of stroke/death with CAS compared with CEA in asymptomatic and symptomatic high surgical risk patients.40

 Incidence of MI

Calls from other authors for more routine CAS on the grounds of lower periprocedural myocardial infarction (MI) rates compared with CEA are distracting.41 MI is not a measure of stroke prevention efficacy, even though it is an important procedural complication. The inclusion of periprocedural MI with stroke and death in the primary outcome measure in CREST resulted in primary outcome equivalence between CAS and CEA. However, it did not result in efficacy equivalence. In CREST, 1.1% (14/1262) of CAS patients had periprocedural clinical MI (biomarkers plus chest pain/ECG evidence) compared with 2.3% (28/1240) of CEA patients7 (P=0.03). However, periprocedural stroke was nearly twice as common (81/2502; 3.2%)7 as periprocedural clinical MI (42/2502; 1.7%) and, as mentioned above, CAS caused almost twice as many of these strokes as CEA. Further, in CREST, the mortality rate up to 4 years was equally poor for CREST patients with periprocedural stroke (20%),42 periprocedural clinical MI (19%),41 or periprocedural biomarker‐positive only MI (25%).41 Finally, nonfatal stroke was associated with a poorer quality of life at 1 year than nonfatal MI.7 Therefore, MI is a measure of carotid procedural risk (not benefit) and must be considered separately from stroke risk.  Moreover, in CREST, CAS‐associated stroke was more troublesome for patients than CEA‐associated MI.

 Conclusion

Calls for More Routine Carotid Stenting Are Currently Inappropriate, 3/2013

SOURCE

Stroke. 2013;44:1186-1190

Carotid Artery Disease

What is carotid artery disease?

Carotid artery disease, also called carotid artery stenosis, occurs when the carotid arteries, the main blood vessels that carry oxygenated blood to the brain, become narrowed. The narrowing of the carotid arteries is most commonly related to atherosclerosis (a buildup of plaque, which is a deposit of fatty substances, cholesterol, cellular waste products, calcium, and fibrin in the inner lining of an artery). Atherosclerosis, or “hardening of the arteries,” is a vascular disease (disease of the arteries and veins). Carotid artery disease is similar to coronary artery disease, in which blockages occur in the arteries of the heart, and may cause a heart attack.

Illustration of a normal and diseased artery

Click Image to Enlarge

To better understand how carotid artery disease affects the brain, a basic review of the anatomy of the circulation system of the brain follows.

What are the carotid arteries?

The main supply of blood to the brain is carried by the carotid arteries. The carotid arteries branch off from the aorta (the largest artery in the body) a short distance from the heart, and extend upward through the neck carrying oxygen-rich blood to the brain.

There are four carotid arteries: the right and left internal carotid arteries and the right and left external carotid arteries. One pair (external and internal) is located on each side of the neck. Just as a pulse can be felt in the wrists, a pulse can also be felt on either side of the neck over the carotid arteries.

Illustration of the arteries in the brain

Click to Enlarge

Why are the carotid arteries important?

Because the carotid arteries deliver blood to the brain, carotid artery disease can have serious implications by reducing the flow of oxygen to the brain. The brain needs a constant supply of oxygen in order to function. Even a brief interruption in blood supply can cause problems. Brain cells begin to die after just a few minutes without blood or oxygen. If the narrowing of the carotid arteries becomes severe enough to block blood flow, or a piece of atherosclerotic plaque breaks off and obstructs blood flow to the brain, a stroke may occur.

What causes carotid artery disease?

Atherosclerosis is the most common cause of carotid artery disease. It is unknown exactly how atherosclerosis begins or what causes it. Atherosclerosis is a slow, progressive, vascular disease that starts as early as childhood. However, the disease has the potential to progress rapidly. It is generally characterized by the accumulation of fatty deposits along the innermost layer of the arteries. If the disease process progresses, plaque formation may take place. Plaque is made up of deposits of smooth muscle cells, fatty substances, cholesterol, calcium, and cellular waste products. This thickening narrows the arteries and can decrease blood flow or completely block the flow of blood to the brain.

Risk factors associated with atherosclerosis include:

  • Older age
  • Male
  • Family history
  • Race or ethnicity
  • Genetic factors
  • Hyperlipidemia (elevated fats in the blood)
  • Hypertension (high blood pressure)
  • Smoking
  • Diabetes
  • Obesity
  • Diet high in saturated fat
  • Lack of exercise

A risk factor is anything that may directly increase or be associated with a person’s chance of developing a disease. It may be an activity, such as smoking, diet, family history, or many other things. Different diseases have different risk factors.

Although these risk factors increase a person’s risk, they do not necessarily cause the disease. Some people with one or more risk factors never develop the disease, while others develop disease and have no known risk factors. Knowing your risk factors to any disease can help to guide you into the appropriate actions, including changing behaviors and being clinically monitored for the disease.

What are the symptoms of carotid artery disease?

Carotid artery disease may be asymptomatic (without symptoms) or symptomatic (with symptoms). Asymptomatic carotid disease is the presence of a significant amount of atherosclerotic buildup without obstructing enough blood flow to cause symptoms. However, a sufficiently tight stenosis will not always cause symptoms. Symptomatic carotid artery disease may result in either a transient ischemic attack (TIA) and/or a stroke (brain attack).

A transient ischemic attack (TIA) is a sudden or temporary loss of blood flow to an area of the brain, usually lasting a few minutes to one hour. Symptoms go away entirely within 24 hours, with complete recovery. Symptoms of a TIA may include, but are not limited to, the following:

  • Sudden weakness or clumsiness of an arm and/or leg on one side of the body
  • Sudden paralysis (inability to move) of an arm and/or leg on one side of the body
  • Loss of coordination or movement
  • Confusion, decreased ability to concentrate, dizziness, fainting, and/or headache
  • Numbness or loss of sensation (feeling) in the face
  • Numbness or loss of sensation in an arm and/or leg
  • Temporary loss of vision or blurred vision
  • Inability to speak clearly or slurred speech

TIA may be related to severe narrowing or blockage or from small pieces of an atherosclerotic plaque breaking off, traveling through the bloodstream, and lodging in small blood vessels in the brain. With TIA, there is rarely permanent brain damage.

Call for medical help immediately if you suspect a person is having a TIA, as it may be a warning sign that a stroke is about to occur. Not all strokes, however, are preceded by TIAs.

Stroke is another indicator of carotid artery disease. The symptoms of a stroke are the same as for a TIA. A stroke is loss of blood flow (ischemia) to the brain that continues long enough to cause permanent brain damage. Brain cells begin to die after just a few minutes without oxygen. The area of dead cells in tissues is called an infarct.

The area of the brain that suffered the loss of blood flow will determine what the physical or mental disability may be. This may include impaired ability with movement, speech, thinking and memory, bowel and bladder function, eating, emotional control, and other vital body functions. Recovery from the specific ability affected depends on the size and location of the stroke. A stroke may result in problems, such as weakness in an arm or leg or may cause paralysis, loss of speech, or even death.

The symptoms of carotid artery disease may resemble other medical conditions or problems. Always consult your doctor for a diagnosis.

How is carotid artery disease diagnosed?

In addition to a complete medical history and physical examination, diagnostic procedures for carotid artery disease may include any, or a combination, of the following:

  • Auscultation (listening to) of carotid arteries. Placement of a stethoscope over the carotid artery to listen for a particular sound called a bruit (pronounced brew-ee). A bruit is an abnormal sound that is produced by blood passing through a narrowed artery. A bruit is generally considered a sign of an atherosclerotic artery; however, an artery may be diseased without producing this sound.
  • Carotid artery duplex scan. A type of vascular ultrasound study performed to assess the blood flow of the carotid arteries. A carotid artery duplex scan is a noninvasive (the skin is not pierced) procedure. A probe called a transducer sends out ultrasonic sound waves at a frequency too high to be heard. When the transducer (like a microphone) is placed on the carotid arteries at certain locations and angles, the ultrasonic sound waves move through the skin and other body tissues to the blood vessels, where the waves echo off of the blood cells. The transducer picks up the reflected waves and sends them to an amplifier, which makes the ultrasonic sound waves audible. Absence or faintness of these sounds may indicate an obstruction to the blood flow.
  • Magnetic resonance imaging (MRI). A diagnostic procedure that uses a combination of large magnets, radiofrequencies, and a computer to produce detailed images of organs and structures within the body. To have this test done, you lie inside a big tube while magnets pass around your body. It is very loud. Sometimes it is done with IV contrast injected into your veins and sometimes not.
  • Magnetic resonance angiography (MRA). A noninvasive diagnostic procedure that uses a combination of magnetic resonance technology (MRI) and intravenous (IV) contrast dye to visualize blood vessels. Contrast dye causes blood vessels to appear opaque on the MRI image, allowing the doctor to visualize the blood vessels being evaluated.
  • Computed tomography scan (also called a CT or CAT scan). A diagnostic imaging procedure that uses a combination of X-rays and computer technology to produce horizontal, or axial, images (often called slices) of the body. A CT scan shows detailed images of any part of the body, including the bones, muscles, fat, and organs. CT scans are more detailed than general X-rays. Like an MRI, it is sometimes done with IV contrast injected into your veins and sometimes not.
  • Angiography. An invasive procedure used to assess the degree of blockage or narrowing of the carotid arteries by taking X-ray images while a contrast dye in injected. The contrast dye helps to visualize the shape and flow of blood through the arteries as X-ray images are made.

Treatment for carotid artery disease

Specific treatment for carotid artery disease will be determined by your doctor based on:

  • Your age, overall health, and medical history
  • Extent of the disease
  • Your signs and symptoms
  • Your tolerance of specific medications, procedures, or therapies
  • Expectations for the course of the disease
  • Your opinion or preference

Carotid artery disease (asymptomatic or symptomatic) in which the narrowing of the carotid artery is less than 50 percent is most often treated medically. Asymptomatic disease with less than 70 percent narrowing may also be treated medically, depending on the individual situation.

Medical treatment for carotid artery disease may include:

  • Modification of risk factors. Risk factors that may be modified include smoking, elevated cholesterol levels, elevated blood glucose levels, lack of exercise, poor dietary habits, and elevated blood pressure.
  • Medications. Medications that may be used to treat carotid artery disease include:
    • Antiplatelet medications. Medications used to decrease the ability of platelets in the blood to stick together and cause clots. Aspirin, clopidogrel, and dipyridamole are examples of antiplatelet medications.
    • Antihyperlipidemics. Medications used to lower lipids (fats) in the blood, particularly cholesterol. Statins are a group of antihyperlipidemic medications, and include simvastatin, atorvastatin, and pravastatin, among others. Studies have shown that certain statins can decrease the thickness of the carotid artery wall and increase the size of the lumen (opening) of the artery.
    • Antihypertensives. Medications used to lower blood pressure. There are several different groups of medications which act in different ways to lower blood pressure.

In people with narrowing of the carotid artery greater than 50 to 69 percent, a more aggressive treatment may be recommended, particularly in people with symptoms. Surgical treatment decreases the risk for stroke after symptoms such as TIA or minor stroke, especially in people with an occlusion (blockage) of more than 70 percent who are good candidates for surgery.

Surgical treatment of carotid artery disease includes:

Carotid endarterectomy (CEA). Carotid endarterectomy is a procedure used to remove plaque and clots from the carotid arteries, located in the neck. Endarterectomy may help prevent a stroke from occurring in people with symptoms with a carotid artery narrowing of 70 percent of more.

Illustration of Carotid Endarterectomy

Illustration of Carotid Endarterectomy (Click to Enlarge)

Carotid artery angioplasty with stenting (CAS). Carotid angioplasty with stenting is an option for patients who are high risk for carotid endarterectomy. This is a minimally invasive procedure in which a very small hollow tube, or catheter, is advanced from a blood vessel in the groin to the carotid arteries. Once the catheter is in place, a balloon may be inflated to open the artery and a stent is placed. A stent is a cylinder-like tube made of thin metal-mesh framework used to hold the artery open. Because there is a risk of stroke from bits of plaque breaking off during the procedure, an apparatus, called an embolic protection device, may be used. An embolic protection device is a filter (like a small basket) that is attached on a guidewire to catch any debris that may break off during the procedure.

Carotid artery angioplasty with stenting

Carotid Artery Angioplasty with Stenting (CAS) Click to Enlarge

 http://www.massgeneral.org/conditions/condition.aspx?id=82

VIEW VIDEO – 

Carotid Artery Disease and Stroke: Prevention and Treatment – John Hopkins

VIEW VIDEO –

Carotid Endarterectomy with Temporary Bypass – A Fifty year old procedure

Docteur Jean VALLA 
Chirurgien Cardiovasculaire et Thoracique
AIHR/ACCA – Ancien Chirurgien des Hôpitaux Universitaires.
Membre de la Société de Chirurgie Thoracique et Cardiovasculaire de Langue Française Conventionné

Carotid artery stenosis is the narrowing of the carotid arteries. These are the main arteries in the neck that supply blood to the brain. Carotid artery stenosis, also called carotid artery disease, is a major risk factor for ischemic stroke.The narrowing is usually caused by plaque in a blood vessel. Plaque forms when cholesterol, fat and other substances build up in the inner lining of an artery.Depending on the degree of stenosis and the patient’s overall condition, carotid artery stenosis can usually be treated with surgery. The procedure is called carotid endarterectomy. It removes the plaque that caused the carotid artery to narrow. Carotid endarterectomy has proven to benefit patients with arteries stenosed (narrowed) by 70 percent or more. For people with arteries narrowed less than 50 percent, anti-clotting medicine is usually prescribed to reduce the risk of ischemic stroke.

VIEW VIDEO –

Carotid angioplasty and stenting (CAS) – Mayo Clinic

In carotid angioplasty and stenting, a long hollow tube called a catheter is inserted in the femoral artery in the groin area. The catheter is then maneuvered through the arteries until it reaches the narrowing in the carotid artery in the neck. An umbrella-shaped filter is inserted beyond the narrowing to catch any plaque or debris that may break off during the procedure. Then, a tiny balloon at the end of the catheter is inflated to push the plaque to the side and widen the vessel. A small metal coil called a stent is inserted into the vessel. The stent serves as a scaffold to help prevent the artery from narrowing again.

Carotid Artery Stenting

Part Two:

Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD, Chief, Division of Vascular and Endovascular Surgery Co-Director, Thoracic Aortic Center @ MGH

I. Recollection of a visit at Dr. Cambria’s Office @MGH, 2004

The author arrived for a 4PM appointment @ MGH with a referral from NWH for a Carotid artery duplex scan that in 2004 was not performed at NWH. The consultation appointment with Dr. Kwolek CJ, a vascular surgeon trained under Dr. RP Cambria, took place in Dr. Cambria’s Office. Few minutes into the patient Medical History interview, Dr. Kwolek was called for an emergency in the OR and asked me to wait for him till he comes back. I looked around and found myself in a 14’x22′ Room, the Office of Dr. Richard Cambria @ MGH, Chief Vascular Surgery and among the Top ten in the World. Except for the glass entrance door and the wide window to the right of the entrance – 3 1/2 walls from the ceiling to one yard above the floor where completely covered with framed Awards, licenses, renewed licenses, Pictures with graduating Medical Students, Pictures with Faculty, with Patients and in the OR. I waited for Dr. Kwolek’s return for the completion of my Medical History Interview about 30 minutes. I used that time to walk along the walls in Dr. Cambria’s Office and read the framed Exhibits. It was clear to me that this Office will need, one day, in the future, to become a Museum @MGH, for most significant milestones in Vascular Surgery, a branch of Cardiothoracic Surgery. Dr. Kwolek returned and completed the interview, scheduled my Lab appointment and the next appointment to discuss the duplex scan results.

II. Shadowing Dr. Cambria in OR @MGH

Per section IV, below which described the author’s Cardiovascular Clinical Observational Experience, I recorded my Shadowing experience at the OR @MGH, including Dr. Cambria performing a CEA on a 84 year old women under going aorta valve replacement (performed by Dr. Walker) priot to a CEA performed by Dr. Cambria. It was all captivating to watch his double gloved hands performing sutures on a  >95% blocked carotid artery prior to incision.

The dexterity and the speed of  Dr. Cambria’s fingers’ movement, could only have reminded me of World #1 Harp Player: Nicanor Zabaleta, which I met in person, in the presence of my prominent Harp teacher, on his US Tour in 11/1989. He was awarded the Premio Nacional de Música of Spain in 1982 and six years later, in 1988, he was elected to the Real Academia de Bellas Artes de San Fernando. Dr. Cambria’s and Mr. Zabaleta’s fingers dexterity and eye hand coordination, both are of the rarest endowments in fine motor precision and perfection with Worldly finest outcomes in art, Surgery is Art, the mastering of the Harp is Art, too.

The Author in the OR — Mass General Hospital, Boston

Cardiac Surgery – Operating Room

Supervisor:             Dr. J. Walker, Cardiac Surgeon

Experience: Shadowing Open Heart Surgery at MGH

1/24/2005: Carotid Artery endarterectomy operation by Dr. Richard Cambria

1/24/2005: Mitral Valve Replacement by Dr. Jennifer Walker

1/26/2005: Aorta Valve Replacement and Coronary Artery Bypass Grafting by Dr. Jennifer Walker

[Saphenous vein harvested from the leg and Radial vein harvested from the right arm]

III. Dr. Cambria: Selection of Contributions to Scientific Research on Vascular Surgery

The Author covered In Part One, Dr. Cambria’s participation in and contribution to the International, Multispecialty Position Statement on Carotid Stenting, 2013.

In Part Two Section II, I share with the e-Reader watching Dr. Cambria in the Surgical Theater performing CEA

In Part Two Section III, I am carrying with me the heavy weight of my Recollections from a Visit to his Office in 2004, my experience shadowing Dr. Cambria in the OR @MGH on 1/24/2005. Now I am giving back.

I became aware that both events have impacted  favorably my 7/2013, Editorial decision, for a forthcoming book on Cardiovascular Disease in 2013. The Editorial decision is two fold:

  • the selection and representation of a prominent Vascular Surgery Center in the US, @MGH, and
  • my personal decision to select a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD @MGH.

The decision to focus on Peripheral Vascular Surgery @MGH as described in Dr. Richard P Cambria’s research had yielded one Sub-Chapter (5.5) in Chapter 5

Chapter 5

Invasive Procedures by Surgery versus Catheterization

in Volume Three in a forthcoming three volume Series of e-Books on Cardiovascular Diseases

Cardiovascular Diseases: Causes, Risks and Management

This very Sub-Chapter, 5.5, represents milestones in Dr. Cambria as a Vascular Surgeon. His eminent profile as a Vascular Surgery Researcher, is now in: 

 

Volume Three

Management of Cardiovascular Diseases

Justin D. Pearlman MD ME PhD MA FACC, Editor

Leaders in Pharmaceutical Business Intelligence, Los Angeles

Aviva Lev-Ari, PhD, RN

Editor-in-Chief BioMed E-Book Series

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

5.5 Peripheral Vascular Disease and Vascular Surgery 

5.5.1 Vascular Surgery: International, Multispecialty Position Statement on Carotid Stenting, 2013 and Contributions of a Vascular Surgeon at Peak Career – Richard Paul Cambria, MD @MGH

Aviva Lev-Ari, PhD, RN

5.5.2 Carotid Stenting: Vascular surgeons have pointed to more minor strokes in the stenting group and cardiologists to more myocardial infarctions in the CEA cohort.

Aviva Lev-Ari, PhD, RN

5.5.3 Carotid Endarterectomy (CAE) vs. Carotid Artery Stenting (CAS): Comparison of CMMS high-risk criteria on the Outcomes after Surgery:  Analysis of the Society for Vascular Surgery (SVS) Vascular Registry Data

Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

Similarly, catheter-based interventions offer less invasive alternatives to open surgery for the abdomenal aorta.

5.5.4 Open Abdominal Aortic Aneurysm (AAA) repair (OAR) vs. Endovascular AAA Repair (EVAR) in Chronic Kidney Disease (CKD) Patients –  Comparison of Surgery Outcomes

Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

5.5.5 Effect of Hospital Characteristics on Outcomes of Endovascular Repair of Descending Aortic Aneurysms in US Medicare Population

Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

5.5.6 Improved Results for Treatment of Persistent type 2 Endoleak after Endovascular Aneurysm Repair: Onyx Glue Embolization

Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN

5.5.7 Endovascular Lower-extremity Revascularization Effectiveness: Vascular Surgeons (VSs), Interventional Cardiologists (ICs) and Interventional Radiologists (IRs)

Aviva Lev-Ari, PhD, RN

IV. Cardiovascular Clinical Observational Experience – Aviva Lev-Ari, PhD, RN 

  • Brigham and Women’s Hospital, Boston. MA

Cardiac ICU, Coronary Care Unit, Medical Rounds [100 hours]            June 2006-November 2006

  • Brigham and Women’s Hospital, Boston. MA

CDIC – Cardiovascular Diagnostic and Interventional Center

Angiography & Interventional Radiology [100 hours]            March 2006-August 2006

Experience shadowing the daily activities of three Physician Assistants
1. attended consultation appointments with patient candidate for procedures: fibroid embolization
2. patient candidate for intra-vertebral cement injection in fractured vertebrae in spinal column, L-9 – Kyphoplasty vertebral augmentation
3. drainage of bile leakage – biliary duct obstruction
4. attended invasive procedures in the Angiography Lab
5. attended 7:30AM department meeting on all cases scheduled for procedures in the Lab for the day
6. discussed procedure outcomes and patient follow ups with PAs
7. Shadowing PAs and Interventional Radiologists performing angiography.
– VENOUS ACCESS PROCEDURES – TUNNELED CATHETER AND PORT PLACEMENT
– DIALYSIS ACCESS MANAGEMENT – ARTERIOVENOUS FISTULA/GRAFT.
ANGIOGRAMS/ANGIOPLASTIES

Mass General Hospital, Boston

  • Cardiac Catheterization Lab

Supervisor:             Dr. Igor Palacios, Director, Cath Lab

Experience Shadowing in the Cath Lab at MGH

1/19/2005: stenting – MI case, mitral valve opening with balloon

1/20/2005: multiple stenting case, Mitral valve opening, circumflex artery opening with catheter

1/25/2005: stenting case

1/25/2005: Vascular case: Saphenous vein plaque removal (Room 5)

Mass General Hospital, Boston

  • Cardiac Surgery – Operating Room

Supervisor:             Dr. J. Walker, Cardiac Surgeon

Experience: Shadowing Open Heart Surgery at MGH

1/24/2005: Carotid Artery endarterectomy operation by Dr. Richard Cambria

1/24/2005: Mitral Valve Replacement by Dr. Jennifer Walker

1/26/2005: Aorta Valve Replacement and Coronary Artery Bypass Grafting by Dr. Jennifer Walker

[Saphenous vein harvested from the leg and Radial vein harvested from the right arm]

  • Texas Heart Institute, Houston, TX

Cardiac Surgery – Operating Room at THI

Supervisor:             Terry Crane

Experience: Shadowing Open Heart Surgery at THI

Scheduled for an Interview at THI in the Perfusion Program.

Spent 6 hours in the dome above the Cardiac OR when open-heart surgery on pump was performed, 2/19/2005.

  • Faulkner Hospital – BWH, Boston, MA — ICU Unit

Practicum Staff Nurse, Clinical Comprehensive Practicum, Sept 2007 – December 2007

V. Cases with Complications: CEA and CAS

#1: Case on Cerebral Hyperperfusion Syndrome following Protected Carotid Artery Stenting

Case Reports in Vascular Medicine
Volume 2013 (2013), Article ID 207602, 4 pages
http://dx.doi.org/10.1155/2013/207602

Cerebral Hyperperfusion Syndrome following Protected Carotid Artery Stenting

Department of Cardiology and Angiology, Allgemeines Krankenhaus Viersen, Hoserkirchweg 63, 47147 Viersen, Germany

Received 2 May 2013; Accepted 26 June 2013

Academic Editors: K. A. Filis and N. Papanas

Copyright © 2013 Rainer Knur. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The cerebral hyperperfusion syndrome is a very rare complication after revascularization of the carotid artery and accompanied by postoperative or postinterventional hypertension in almost all patients. We report a case of a 77-year-old man who developed a complete aphasia and increased right-sided weakness following endovascular treatment of severe occlusive disease of the left internal carotid artery. We discuss the risk and management of cerebral hyperperfusion syndrome after carotid artery stenting.

Introduction

Neurological complications following carotid artery stenting (CAS) are usually ischemic in nature, due to embolization or occlusion of the carotid artery. However, in a small subset of patients, cerebral hyperperfusion causes postinterventional neurological dysfunction, characterized by ipsilateral headache, focal seizure activity, focal neurological deficit, and ipsilateral intracerebral edema or hemorrhage. A high clinical suspicion and early diagnosis will allow early initiation of therapy and preventing fatal brain swelling or bleeding in patients with peri- and postinterventional cerebral hyperperfusion syndrome (CHS).

Discussion

In 1981, Sundt et al. [1] described a triad of complications that included atypical migrainous phenomena, transient focal seizure activity, and intracerebral hemorrhage after CEA and used the term cerebral hyperperfusion syndrome (CHS). The first report on CHS after CAS was published by Schoser et al. [2]. They described a 59-year-old woman with ipsilateral putaminal hemorrhage that was diagnosed on the 3rd day after CAS of a high-grade stenosis of the left ICA. Outcome in this case was not fatal. The patient recovered with a mild upper limb paresis. McCabe et al. [3] were the first to report the occurrence of fatal ICH soon after CAS. Only a few hours after the procedure, neurological symptoms occurred without any prodromata (severe headache, nausea, and seizures) postulated by Sundt et al. [1] to be an obligate component of CHS. CT of the brain revealed extensive ICH and the patient died 18 days later. Abou-Chebl et al. [4] reported a retrospective single-center study on 450 patients who had been treated with CAS. Three patients (0.67%) developed ICH after the intervention. Further reports on results and complications after CAS have been published [5]. Nearly all reports on CHS after carotid revascularizations in general and CAS in particular have in common patients who had high-grade stenoses in the treated vessel.

CHS following surgical or endovascular treatment of severe carotid occlusive disease is thought to be the result of impaired cerebral autoregulation, hypertension, ischemia-reperfusion injury, oxygen-derived free radicals, baroreceptor-dysfunction, and intraprocedural ischemia [6]. Chronic cerebral hypoperfusion due to critical stenosis leads to production of vasodilatory substances. Autoregulatory failure results in the cerebral arterioles being maximally dilated over a long period of time, with subsequent loss of their ability to constrict when normal perfusion pressure is restored. The degree of microvascular dysautoregulation is proportional to the duration and severity of ischemia determined by the severity of ipsilateral stenosis and poor collateral flow.

Hypertension plays an important role in the development of CHS. In the absence of cerebral autoregulation, cerebral blood flow is directly dependent on the systemic blood pressure. The restoration of normal blood flow to chronically underperfused brain can result in edema, capillary breakthrough, and perivascular and macroscopic hemorrhages aggravated by peri- and postinterventional hypertension [67]. The risk factors for CHS after CAS are summarized in Table 1.

tab1
Table 1: Risk factors for CHS [68].

The classic clinical presentation includes ipsilateral headache, seizures or focal neurological deficit, and ipsilateral intracerebral edema or hemorrhage. The diagnosis can be made readily with color Doppler ultrasound of the carotid artery and especially with transcranial Doppler (TCD) of the middle cerebral artery [9]. An increase in peak blood flow velocity of >100% is predictive of postinterventional hyperperfusion. Diffusion weighted MRI or single photon emission computed tomography (SPECT) could also be performed for diagnosis [10]. Angiography normally shows normal findings.

The prognosis of CHS depends on timely recognition of hyperperfusion and adequate treatment of hypertension before cerebral edema or hemorrhage develops. The prognosis following intracerebral bleeding is very poor, with mortality over 50% and significant morbidity of 80% in the survivors [46]. The prognosis of CHS in patients without cerebral edema or hemorrhage is clearly better especially when they are identified and treated early. The most important aspects in preventing and treating this syndrome are early identification, careful monitoring, and control of blood pressure ideally in a high-dependency unit setting. In our special case, early diagnosis of CHS and immediate intensive medical treatment of blood pressure could prevent devastating cerebral edema or hemorrhage following CAS.

Conclusion

CHS, which is characterized by ipsilateral headache, hypertension, seizures, and focal neurological deficits, is a rare but devastating complication following carotid artery stenting. Hypertension is the most important risk factor. The diagnosis can be confirmed quickly by TCD, DWI, or SPECT. Especially peri- or postinterventional TCD monitoring should be available to identify patients with hyperperfusion who may benefit from intensive blood pressure management ideally in a specialized intensive care unit.

Abbreviations

CAS: Carotid artery stenting
CCA: Common carotid artery
CEA: Carotid endarterectomy
CHS: Cerebral hyperperfusion syndrome
CT: Computed tomography
CVR: Cerebrovascular reactivity
DWI: Diffusion-weighted imaging
ICA: Internal carotid artery
ICH: Intracerebral haemorrhage
MRI: Magnetic resonance imaging
SPECT: Single photon emission computed tomography
TCD: Transcranial Doppler.

REFERENCES

  1. T. M. Sundt Jr., F. W. Sharbrough, and D. G. Piepgras, “Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy. With results of surgery and hemodynamics of cerebral ischemia,” Mayo Clinic Proceedings, vol. 56, no. 9, pp. 533–543, 1981.View at Scopus
  2. B. G. H. Schoser, C. Heesen, B. Eckert, and A. Thie, “Cerebral hyperperfusion injury after percutaneous transluminal angioplasty of extracranial arteries,” Journal of Neurology, vol. 244, no. 2, pp. 101–104, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. H. McCabe, M. M. Brown, and A. Clifton, “Fatal cerebral reperfusion hemorrhage after carotid stenting,” Stroke, vol. 30, no. 11, pp. 2483–2486, 1999. View at Scopus
  4. A. Abou-Chebl, J. S. Yadav, J. P. Reginelli, C. Bajzer, D. Bhatt, and D. W. Krieger, “Intracranial hemorrhage and hyperperfusion syndrome following carotid artery stenting: risk factors, prevention, and treatment,” Journal of the American College of Cardiology, vol. 43, no. 9, pp. 1596–1601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-H. Buhk, L. Cepek, and M. Knauth, “Hyperacute intracerebral hemorrhage complicating carotid stenting should be distinguished from hyperperfusion syndrome,” American Journal of Neuroradiology, vol. 27, no. 7, pp. 1508–1513, 2006. View at Scopus
  6. V. Adhiyaman and S. Alexander, “Cerebral hyperperfusion syndrome following carotid endarterectomy,” QJM, vol. 100, no. 4, pp. 239–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. W. F. Morrish, S. Grahovac, A. Douen et al., “Intracranial hemorrhage after stenting and angioplasty of extracranial carotid stenosis,” American Journal of Neuroradiology, vol. 21, no. 10, pp. 1911–1916, 2000. View at Scopus
  8. R. Gupta, A. Abou-Chebl, C. T. Bajzer, H. C. Schumacher, and J. S. Yadav, “Rate, predictors, and consequences of hemodynamic depression after carotid artery stenting,” Journal of the American College of Cardiology, vol. 47, no. 8, pp. 1538–1543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Sánchez-Arjona, G. Sanz-Fernández, E. Franco-Macias, and A. Gil-Peralta, “Cerebral hemodynamic changes after carotid angioplasty and stenting,” American Journal of Neuroradiology, vol. 28, pp. 640–644, 2007.
  10. Y. Kaku, S. I. Yoshimura, and J. Kokuzawa, “Factors predictive of cerebral hyperperfusion after carotid angioplasty and stent placement,” American Journal of Neuroradiology, vol. 25, pp. 1403–1408, 2004.

SOURCE

http://www.hindawi.com/crim/vasmed/2013/207602/?goback=%2Egde_1503357_member_256054772%2Egde_1503357_member_257761884

#2: Case Narrative: Carotid Artery Duplex

Patient came to her appointment as part of a standard pre-operative evaluation for removal of a uterine myoma. She had a history of stroke with residual slurred speech, making it difficult to understand her. Accordingly, I assumed I would see some carotid stenosis, but her ultrasound showed a stunning 70-99% stenosis in her right internal carotid artery and full occlusion of her left internal carotid artery.

Flow in the common carotid arteries looked fine. The plaque itself in the internal carotid arteries was relatively hypoechoic and not easily visualized in brightness mode, so bidirectional color flow at the proximal internal carotid arteries was surprising. Adding power Doppler allowed me to conclude that there was presence of flow on the right, though minimal, and absolutely no flow in the left internal carotid artery.

Upon completion of the exam, I called the ER and spoke with the doctor, who asked me to bring Rose to the ER. Unfortunately, due to the location of the right internal carotid artery stenosis in the bony canal and total occlusion of the left internal carotid artery, surgery was not an option for clearing out the carotid plaque, but doctors believed she could continue functioning well with collateral vasculature carrying blood to her brain.

Thankfully, the patient passed her other pre-operative tests, consented to her surgery, and underwent general anesthesia with no complications. An 8-cm malignant mass was removed from her uterus and her prognosis is good.

 

case-study-carotid-artery-02

case-study-carotid-artery-03
case-study-carotid-artery-04

SOURCE

http://mintmedicaleducation.com/portfolio-view/carotid-artery-duplex/

REFERENCES

1. White CJ, Jaff MR. Catch-22: Carotid stenting is safe and effective (Food

and Drug Administration) but is it reasonable and necessary (Centers for

Medicare and Medicaid Services)? J Am Coll Cardiol Cardiovasc Interv.

2012;5:694–696.

2. Australian Consumer Competition and Consumer Commission Website.

Definition of a profession. Australian Council of Professions: http://

http://www.accc.gov.au/content/index.phtml/itemId/277772. Last accessed 8

Jan, 2013.

3. Abbott AL, Bladin CF, Levi CR, Chambers BR. What should we do with

asymptomatic carotid stenosis? Int J Stroke. 2007;2:27–39.

4. Björck M, Bergqvist D, Eliasson K, Jansson I, Karlstrom L, Kragsterman

B, et al. Twenty years with the Swedvasc Registry. Eur J Vasc Endovasc

Surg. 2008;35:129–130.

5. Nallamothu BK, Gurm HS, Ting HH, Goodney PP, Rogers MA, Curtis

JP, et al. Operator experience and carotid stenting outcomes in Medicare

beneficiaries. JAMA. 2011;306:1338–1343.

6. Centers for Medicare & Medicaid Services. National Coverage

Determination (NDC) for Percutaneous Transluminal Angioplasty

(PTA) (20.7), 2010. US Department of Health & Human Services:

http://www.cms.gov/medicare-coverage-database/details/ncd-details.

aspx?NCDId=201&ver=9. Last accessed Jan 8, 2013.

7. Brott TG, Hobson RW II, Howard G, Roubin GS, Clark WM, Brooks W,

et al.; CREST Investigators. Stenting versus endarterectomy for treatment

of carotid-artery stenosis. N Engl J Med. 2010;363:11–23.

8. Silver FL, Mackey A, Clark WM, Brooks W, Timaran CH, Chiu D,

et al. Safety of stenting and endarterectomy by symptomatic status in

the Carotid Revascularization Endarterectomy versus Stenting Trial

(CREST). Stroke. 2011;42:675–680

9. Abbott AL, Adelman MA, Alexandrov AV, Barnett HJ, Beard J, Bell P,

et al. Why the United States Center for Medicare and Medicaid Services

(CMS) should not extend reimbursement indications for carotid

artery angioplasty/stenting. Eur J Vasc Endovasc Surg. 2012;43:

247–251.

10. Meier P, Knapp G, Tamhane U, Chaturvedi S, Gurm HS. Short term

and intermediate term comparison of endarterectomy versus stenting

for carotid artery stenosis: systematic review and meta-analysis of randomised

controlled clinical trials. BMJ. 2010;340:c467.

11. Murad MH, Shahrour A, Shah ND, Montori VM, Ricotta JJ. A systematic

review and meta-analysis of randomized trials of carotid endarterectomy

vs stenting. J Vasc Surg. 2011;53:792–797.

12. Bangalore S, Kumar S, Wetterslev J, Bavry AA, Gluud C, Cutlip DE,

et al. Carotid artery stenting vs carotid endarterectomy: meta-analysis

and diversity-adjusted trial sequential analysis of randomized trials. Arch

Neurol. 2011;68:172–184.

13. Bonati LH, Lyrer P, Ederle J, Featherstone R, Brown MM. Percutaneous

transluminal balloon angioplasty and stenting for carotid artery stenosis.

Cochrane Database Syst Rev. 2012;12:CD000515.

14. Brown MM, Dobson J, Doig D, Featherstone RL, Turner EL; ICSS

Collaborators. Primary analysis of the International Carotid Stenting

Study: A randomised comparison of the effectiveness of carotid stenting

and endarterectomy in preventing long-term stroke in patients with

symptomatic carotid stenosis. Abstract. Cerebrovasc Dis 2012;33:15–16.

15. Bonati LH, Fraedrich G. Age modifies the relative risk of stenting versus

endarterectomy for symptomatic carotid stenosis: a pooled analysis

of EVA-3s, SPACE and ICSS. Eur J Vasc Endovasc Surg. 2011;41:

153–158.

16. Economopoulos KP, Sergentanis TN, Tsivgoulis G, Mariolis AD,

Stefanadis C. Carotid artery stenting versus carotid endarterectomy: a

comprehensive meta-analysis of short-term and long-term outcomes.

Stroke. 2011;42:687–692.

17. Carotid Stenting Trialists’ Collaboration. The risk of carotid artery stenting

compared with carotid endarterectomy is greatest in patients treated

within 7 days of symptoms. J Vasc Surg. 2012: Published online ahead

of print, Dec 10, 2012.

18. Rothwell PM, Eliasziw M, Gutnikov SA, Warlow CP, Barnett HJ.

Endarterectomy for symptomatic carotid stenosis in relation to clinical

subgroups and timing of surgery. Lancet. 2004;363:915–924.

19. Qureshi AI, Chaudhry SA, Hussein HM, Majidi S, Khatri R, Rodriguez

GJ, et al. A comparison of outcomes associated with carotid artery stent

placement performed within and outside clinical trials in the United

States. J Vasc Surg. 2012;56:317–323.

20. Naggara O, Touze E, Beyssen B, Trinquart L, Chatellier G, Meder JF,

et al. Anatomical and technical factors associated with stroke or death

during carotid angioplasty and stenting: Results from the endarterectomy

versus angioplasty in patients with symptomatic severe carotid stenosis

(EVA-3S) trial and systematic review. Stroke. 2011;42:380–388.

21. Eslami MH, McPhee JT, Simons JP, Schanzer A, Messina LM. National

trends in utilization and postprocedure outcomes for carotid artery revascularization

2005 to 2007. J Vasc Surg. 2011;53:307–315.

22. Khan AA, Chaudhry SA, Sivagnanam K, Hassan AE, Suri MF, Qureshi

AI. Cost-effectiveness of carotid artery stent placement versus endarterectomy

in patients with carotid artery stenosis. J Vasc Surg.

2012;117:89–93.

23. Sternbergh WC III, Crenshaw GD, Bazan HA, Smith TA. Carotid endarterectomy

is more cost-effective than carotid artery stenting. J Vasc Surg.

2012;55:1623–1628.

24. McDonald RJ, Kallmes DF, Cloft HJ. Comparison of hospitalization

costs and Medicare payments for carotid endarterectomy and carotid

stenting in asymptomatic patients. Am J Neuroradiol. 2012;33:420–425.

25. Vilain KR, Magnuson EA, Li H, Clark WM, Begg RJ, Sam AD, II,

et al. Costs and cost-effectiveness of carotid stenting versus endarterectomy

for patients at standard surgical risk: Results from the Carotid

Revascularization Endarterectomy versus Stenting Trial (CREST).

Stroke. 2012;43:2408–2416.

26. McPhee JT, Schanzer A, Messina LM, Eslami MH. Carotid artery stenting

has increased rates of postprocedure stroke, death, and resource utilization

than does carotid endarterectomy in the United States, 2005. J

Vasc Surg. 2008;48:1442–1450.

27. Abbott AL. Medical (nonsurgical) intervention alone is now best for prevention

of stroke associated with asymptomatic severe carotid stenosis:

results of a systematic review and analysis. Stroke. 2009;40:e573–e583.

28. Naylor AR, Gaines PA, Rothwell PM. Who benefits most from intervention

for asymptomatic carotid stenosis: patients or professionals? Eur J

Vasc Endovasc Surg. 2009;37:625–632.

29. Spence JD, Coates V, Li H, Tamayo A, Muñoz C, Hackam DG, et al.

Effects of intensive medical therapy on microemboli and cardiovascular

risk in asymptomatic carotid stenosis. Arch Neurol. 2010;67:180–186.

30. Marquardt L, Geraghty OC, Mehta Z, Rothwell PM. Low risk of ipsilateral

stroke in patients with asymptomatic carotid stenosis on best

medical treatment: a prospective, population-based study. Stroke.

2010;41:e11–e17.

31. Naylor AR. Time to rethink management strategies in asymptomatic

carotid artery disease. Nat Rev Cardiol. 2011;9:116–124.

32. Raman G, Kitsios GD, Moorthy D, Hadar N, Dahabreh IJ, O’Donnell

TF, et al. Management of asymptomatic carotid stenosis: Technology

Assessment Report. Tufts Evidence-based Practice Center: Project ID:

CRDT0510. Available at http://www.ahrq.gov/clinic/ta/carotidstenosis.

pdf. Last accessed 8 Jan, 2013.

33. Goessens BM, Visseren FL, Kappelle LJ, Algra A, van der Graaf Y.

Asymptomatic carotid artery stenosis and the risk of new vascular events

in patients with manifest arterial disease: the SMART study. Stroke.

2007;38:1470–1475.

34. Markus HS, King A, Shipley M, Topakian R, Cullinane M, Reihill

S, et al. Asymptomatic embolisation for prediction of stroke in the

Asymptomatic Carotid Emboli Study (ACES): a prospective observational

study. Lancet Neurol. 2010;9:663–671.

35. Abbott AL. Proximal internal carotid artery stenosis: Time to capitalise

on current knowledge. In: Davies AH, ed. Fast Facts. 2012.

36. European Carotid Surgery Trial 2 (ECST‐2) website. 2012. Available at

http://www.ecst2.com. Last accessed 8 Jan, 2013.

37. Nicolaides AN, Kakkos SK, Kyriacou E, Griffin M, Sabetai M, Thomas

DJ, et al. Asymptomatic internal carotid artery stenosis and cerebrovascular

risk stratification. J Vasc Surg. 2010;52:1486–1496 e1481–1485

38. Wang X, Hagemeyer CE, Hohmann JD, Leitner E, Armstrong PC,

Jia F, et al. Novel single-chain antibody-targeted microbubbles for

molecular ultrasound imaging of thrombosis: validation of a unique

noninvasive method for rapid and sensitive detection of thrombi and

monitoring of success or failure of thrombolysis in mice. Circulation.

2012;125:3117–3126.

39. Abbott AL. Transcranial doppler and risk stratification in patients

with internal carotid stenosis. . In: Nicolaides A, Beech K, Pattichis C,

Kyriacou E, eds. Ultrasound and Carotid Bifurcation Atherosclerosis.

London: Springer; 2011.

40. Giles KA, Hamdan AD, Pomposelli FB, Wyers MC, Schermerhorn ML.

Stroke and death after carotid endarterectomy and carotid artery stenting

with and without high risk criteria. J Vasc Surg. 2010;52:1497–1504.

41. Blackshear JL, Cutlip DE, Roubin GS, Hill MD, Leimgruber PP, Begg

RJ, et al.; CREST Investigators. Myocardial infarction after carotid stenting

and endarterectomy: results from the carotid revascularization endarterectomy

versus stenting trial. Circulation. 2011;123:2571–2578.

42. Brooks W, Mohr JP, Voeks JH, Clark WM, Silver FL, Mackey A, et al; for

the CREST Investigators. Stroke type, laterality and severity following

carotid artery stenting (CAS) and carotidendarterectomy (CEA) in the

carotid revascularization endarterectomy versus stenting trial (CREST).

Stroke. 2011;42:e42–e110 (abstract).

43. Brott TG, Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, et al.

2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/

SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial

carotid and vertebral artery disease. Stroke. 2011;42:e420–463.

44. Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clément D, Collet

JP, et al.; European Stroke Organisation; ESC Committee for Practice

Guidelines. ESC Guidelines on the diagnosis and treatment of peripheral

artery diseases: Document covering atherosclerotic disease of extracranial

carotid and vertebral, mesenteric, renal, upper and lower extremity

arteries: the Task Force on the Diagnosis and Treatment of Peripheral

Artery Diseases of the European Society of Cardiology (ESC). Eur

Heart J. 2011;32:2851–2906.

45. Furie KL, Kasner SE, Adams RJ, Albers GW, Bush RL, Fagan SC, et

al. Guidelines for the prevention of stroke in patients with stroke or

transient ischemic attack: A guideline for healthcare professionals from

the American Heart Association/American Stroke Association. Stroke.

2011;42:227–276.

46. Paraskevas KI, Veith FJ, Riles TS, Moore WS. Is carotid artery stenting a

fair alternative to carotid endarterectomy for symptomatic carotid artery

stenosis? A commentary on the AHA/ASA guidelines. J Vasc Surg.

2011;54:541–543; discussion 543.

47. Redberg RF. Squandering medicare’s money. New York Times.

25th May 2011. Available at http://www.nytimes.com/2011/05/26/

opinion/26redberg.html. Last accessed Jan 8, 2013.

Part Three:

Cleveland Clinic Reports Equivalence between carotid endarterectomy (CEA) and open-heart surgery (OHS) and carotid artery stenting (CAS) followed by coronary artery bypass graft (CABG) surgery or non-CABG cardiac surgery

Stent first, then heart surgery, for patients with severe carotid/coronary disease

AUGUST 1, 2013

Cleveland, OH – With the absence of randomized, controlled clinical trials to address the optimal management of patients with severe carotid and coronary artery disease, a new retrospective study suggests the best tactic is a staged approach that sees the patient undergo carotid artery stenting (CAS) followed by coronary artery bypass graft (CABG) surgery or non-CABG cardiac surgery [1].

Investigators report that a combined approach that includes carotid endarterectomy (CEA) and open-heart surgery (OHS) is equivalent in terms of short-term outcomes with the staged CAS-OHS procedure. Beyond one year, however, the staged CAS-OHS approach resulted in the lowest risk of all-cause mortality, stroke, and MI when compared with a combined CEA-OHS procedure and staged CEA-OHS.

“The surgeons get very worried about doing operations on these patients because they don’t want to do a beautiful job on the bypass only to have the patient have a stroke,” lead investigator Dr Mehdi Shishehbor(Cleveland Clinic, OH) told heartwire.

Shishehbor said that when patients are undergoing open-heart surgery, whether it’s CABG or valve surgery, they are screened for carotid artery disease, given the heightened risk of stroke when undergoing heart surgery. As a result, various teams from neurology, vascular surgery, and interventional cardiology are called to address the safety of the surgery in the setting of severe carotid disease, said Shishehbor.

“These patients are the sickest of the sick in the sense that they have two conditions that are occurring concomitantly,” he said. “These are not patients who just have carotid disease. There are many patients who have moderate or mild carotid disease who undergo open-heart surgery with no problem. These are people with severe disease, those with more than 80% stenosis in one of their carotid arteries or maybe both. They also have severe coronary artery disease. These are people with left-main or three-vessel disease who are destined to undergo bypass.”

The whole point is to prevent stroke

In the study, published this week in the Journal of the American College Cardiology, the investigators reported data on 350 patients who underwent carotid revascularization and cardiac surgery. These included 45 patients who were treated with a staged CEA-OHS approach (OHS performed a median of 14 days after CEA), 110 who were treated with a staged CAS-OHS procedure (OHS performed a median of 47 days after CEA), and 195 patients treated with a combined CEA-OHS procedure. OHS is defined as CABG, CABG plus other cardiac procedures, or non-CABG cardiac surgery (isolated valve or aortic-repair surgery). In total, just 8% of procedures were non-CABG surgeries.

In a propensity-adjusted analysis analyzed by intention-to-treat, the 30-day risk of death, stroke, and MI was similar between the staged CAS-OHS and combined CEA-OHS procedures. The highest risk of the composite end point was observed in patients who underwent staged CEA-OHS.

At one year and beyond (median follow-up was 3.7 years), the staged CAS-OHS patients had the lowest risk of death, stroke, and MI. Compared with staged CEA-OHS, those treated with CAS-OHS had a 67% lower risk of death, stroke, and MI and a 65% lower risk compared with combined CEA-OHS.

Unadjusted comparison of primary/secondary end points

Event Staged CEA-OHS,n=45 (%) Combined CEA-OHS,n=195 (%) Staged CAS-OHS,n=110 (%) p
Overall 30-d risk post-OHS  31 10 10 0.003
Death 7 5 6 0.75
Stroke 2 7 2 0.11
MI 24 0.5 3 <0.001
Overall composite risk 1 y and beyond 27 39 12 <0.001
Death 38 39 11 <0.001
Stroke 2.2 1.5 0 0.37
MI 0 3.1 2.7 0.5

“In the long term, stenting [followed by OHS] definitely did better than the combined approach,” said Shishehbor. “What’s also important is that with the combined approach, the reason they didn’t do very well is because they had a higher rate of stroke in the perioperative period. . . . Remember the whole point of doing this is to prevent stroke. This is why we feel the combined approach is a little bit inferior to the staged CAS/open-heart-surgery approach. If you have a 7% risk of stroke in the 30-day perioperative period, that doesn’t appear to be the best option for the majority of patients.”

To heartwire, Shishehbor said that while the patients were well matched, the patients undergoing stenting tended to be sicker. For example, they were more likely to have symptomatic carotid stenosis and were more likely to have undergone a previous carotid revascularization. Shishehbor also said that clinical events occurring between the initial carotid artery revascularization procedure and OHS were included in the analysis. These deaths, strokes, and MIs were identified and accounted for in the data.

In an editorial accompanying the study [2], Drs Ehtisham Mahmud and Ryan Reeves (University of California, San Diego) say the work by the Cleveland Clinic group is strengthened by the propensity-adjusted analysis and long follow-up beyond the perioperative period. Most important, they say the study provides clarity for the management of patients with carotid and coronary disease.

  • “For patients presenting with an acute coronary syndrome requiring urgent coronary revascularization in whom waiting three to four weeks is not safe, combined CEA-OHS is the optimum revascularization strategy, though associated with higher neurological ischemic events,” write Mahmud and Reeves.
  • “However, for patients with a stable or an accelerating anginal syndrome who can wait three to four weeks to complete dual antiplatelet therapy [DAPT] after carotid stenting, staged CAS followed by OHS leads to superior early and long-term outcomes.”

Since completing the analysis, Shishehbor said there have been discussions with colleagues in vascular surgery, vascular medicine, cardiac surgery, and cardiology to establish the optimum way to treat patients with severe carotid and coronary disease. “The bottom line is that there will never be a randomized, clinical trial in this setting,” he told heartwire. “I hope there would be, but I doubt it. So I think papers like this are critical because we’re doing these procedures to prevent stroke. It’s important that we pick the right procedure for the right patient.”

Confounded by registry requirements
Shishehbor is also concerned about the scrutiny carotid stenting is under from the Centers for Medicare & Medicaid Services (CMS). Currently, the CMS reimburses procedures for asymptomatic patients only if they are included in one of the industry-funded and -maintained registries. He believes the scrutiny has led to a dwindling number of clinicians with the expertise capable of doing the procedure, and this is concerning, since the present analysis shows there are cohorts of asymptomatic patients who would benefit from the treatment.In addition, to be included in a registry, an asymptomatic patient must receive DAPT with aspirin andclopidogrel for four weeks. If the patient does not meet the DAPT requirements, they can’t be included in the registry. However, Shishehbor said, many of these patients have significant coronary disease and can’t wait four weeks. As a result, they are treated with a combined CEA-OHS approach, an approach that is associated with a higher risk of stroke.
Shishehbor reports serving as a speaker and consultant for Abbot VascularMedtronicand Gore but waives all compensation for his work. Mahmud reports trial support from Boston Scientific and Abbott Vascular. In addition,he consults for Cordis and the Medicines Company and serves on the speakers bureau for Medtronic. Disclosures for the coauthors are listed in the paper.

 Sources

  1. Shishehbor MH, Venkatachalam S, Sun Z, et al. A direct comparison of early and late outcomes with three approaches to carotid revascularization and open heart surgery. J Am Coll Cardiol 2013; available at: http://content.onlinejacc.org.
  2. Mahmud E, Reeves R. Carotid revascularization prior to open heart surgery: The data driven treatment strategy. J Am Coll Cardiol 2013; available at: http://content.onlinejacc.org.

Related links

 

Read Full Post »

Improved Results for Treatment of Persistent type 2 Endoleak after Endovascular Aneurysm Repair: Onyx Glue Embolization

Writer, Curator: Larry H Bernstein, MD, FCAP

and

Curator: Aviva Lev-Ari, PhD, RN 

 

 

This report is an evaluation of onyx glue use in endovascular aneurysm repair. Onyx® is a non-adhesive liquid embolic agent used for the pre-surgical embolization of brain Arteriovenous malformations (bAVM).
Onyx is comprised of EVOH (ethylene vinyl alcohol) copolymer dissolved in DMSO (dimethyl sulfoxide), and suspended micronized tantalum powder to provide contrast for visualization under fluoroscopy.
A DMSO compatible delivery micro catheter that is indicated for use in the neuro vasculature (e.g. Marathon™, Rebar® or UltraFlow™ HPC catheters) is used to access the embolization site.
Onyx is available in two product formulations, Onyx 18 (6% EVOH) and Onyx 34 (8% EVOH).
ONYX glue

Improved results using Onyx glue for the treatment of persistent type 2 endoleak after endovascular aneurysm repair. 

Abularrage CJ, Patel VI, Conrad MF, Schneider EB, Cambria RP, Kwolek CJ
Division of Vascular and Endovascular Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Mass 02114, USA.
J Vasc Surg. 2012 Sep;56(3):630-6.  http://dx.doi.org/10.1016/j.jvs.2012.02.038.  Epub 2012 May 8.
Persistent type 2 (PT2) endoleaks (present ≥ 6 months) after endovascular aneurysm repair are associated with adverse outcomes, and
  • selective secondary intervention is indicated in those patients with an expanding aneurysm sac.

This study evaluated the outcomes of secondary intervention for PT2.

From 1999 to 2007, 136 patients who underwent endovascular aneurysm repair developed PT2 and comprised the study cohort. Primary end points included
  • PT2 resolution (secondary interventional success) and
  • survival
 both  were evaluated using multiple logistic regression and Kaplan-Meier analyses
Fifty-one patients underwent a total of 68 secondary interventions for PT2 with expanding aneurysm sacs
  • with a median postsecondary interventional follow-up of 13.7 months.

Secondary interventions included

  • 20 inferior mesenteric artery coil embolizations,
  • 17 Onyx glue embolizations,
  • 11 aneurysm sac coil embolizations,
  • 10 non-Onyx glue embolizations,
  • 7 lumbar artery coil embolizations,
  • 2 open lumbar ligations, and 1 graft explant.
The overall secondary interventional success rate was 43% (29 of 68). Onyx glue embolization was associated with
  • a greater success rate when used as the initial secondary intervention (odds ratio, 59.61; 95% confidence interval, 4.78-742.73; P < .001). 
There was no difference in success between the different techniques when multiple secondary interventions were required. Five-year survival was 72% ± 0.08% and
  • was unrelated to any of the secondary interventional techniques.
Secondary intervention for PT2 is associated with success in less than half of all cases. Onyx glue embolization was associated with greater long-term success
  • when used as the initial secondary intervention.
Competition in the Ecosystem of Medical Devices in Cardiac and Vascular Repair: Heart Valves, Stents, Catheterization Tools and Kits for Open Heart and Minimally Invasive Surgery (MIS)  (Aviva Lev-Ari)
Vascular Repair: Stents and Biologically Active Implants (larryhbern)
Drug Eluting Stents: On MIT’s Edelman Lab’s Contributions to Vascular Biology and its Pioneering Research on DES  (larryhbern)
Coronary Artery Disease – Medical Devices Solutions: From First-In-Man Stent Implantation, via Medical Ethical Dilemmas to Drug Eluting Stents  (Aviva Lev-Ari)
Trans-apical Transcatheter Aortic Valve Replacement in a Patient with Severe and Complex Left Main Coronary Artery Disease (LMCAD) (larryhbern)
Transcatheter Aortic Valve Replacement (TAVR): Postdilatation to Reduce Paravalvular Regurgitation During TAVR with a Balloon-expandable Valve  (larryhbern)
Svelte Medical Systems’ Drug-Eluting Stent: 0% Clinically-Driven Events Through 12-Months in First-In-Man Study  (Aviva Lev-Ari)
Acute and Chronic Myocardial Infarction: Quantification of Myocardial Perfusion Viability – FDG-PET/MRI vs. MRI or PET alone  (Justin Pearlman, Aviva Lev-Ari)
Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization (larryhbern)
Revascularization: PCI, Prior History of PCI vs CABG  (A Lev-Ari)
The ACUITY-PCI score: Will it Replace Four Established Risk Scores — TIMI, GRACE, SYNTAX, and Clinical SYNTAX  (A Lev-Ari)
Absorb™ Bioresorbable Vascular Scaffold: An International Launch by Abbott Laboratories (Aviva Lev-Ari)
Carotid Stenting: Vascular surgeons have pointed to more minor strokes in the stenting group and cardiologists to more myocardial infarctions in the CEA cohort. (A Lev-Ari)
Endovascular repair of cerebral aneurysm.

Endovascular repair of cerebral aneurysm. (Photo credit: Wikipedia)

Read Full Post »

Carotid Endarterectomy (CEA) vs. Carotid Artery Stenting (CAS): Comparison of CMMS high-risk criteria on the Outcomes after Surgery:  Analysis of the Society for Vascular Surgery (SVS) Vascular Registry Data

Writer and Curator: Larry H. Bernstein, MD, FCAP

and

Curator: Aviva Lev-Ari, PhD, RN 

UPDATED on 1/30/2024

The Texas Heart Institute

WATCH Video

https://youtu.be/KobPZLWmLfQ?si=LUxy1gD9fCptj1E7

This week on Inside the Studio, both Dr. Joseph Rogers and Dr. Zvonimir Krajcer sit down with the 2024 Ray C. Fish Award Recipient Dr. Gary S. Roubin to discuss “Carotid Stenting: State of the Art.” Don’t miss out on our upcoming live talks, or catch up on previous recordings at https://www.texasheart.org/grandrounds.

Show the Transcript

UPDATED on 9/25/2021

1-Year Results From a Prospective Experience on CAS Using the CGuard Stent System: The IRONGUARD 2 Study

Peripheral

J Am Coll Cardiol Intv, 14 (17) 1917–1923

Abstract

Objectives

The aim of this study was to evaluate the 1-year safety and efficacy of a dual-layered stent (DLS) for carotid artery stenting (CAS) in a multicenter registry.

Background

DLS have been proved to be safe and efficient during short-term follow-up. Recent data have raised the concern that the benefit of CAS performed with using a DLS may be hampered by a higher restenosis rate at 1 year.

Methods

From January 2017 to June 2019, a physician-initiated, prospective, multispecialty registry enrolled 733 consecutive patients undergoing CAS using the CGuard embolic prevention system at 20 centers. The primary endpoint was the occurrence of death and stroke at 1 year. Secondary endpoints were 1-year rates of transient ischemic attack, acute myocardial infarction, internal carotid artery (ICA) restenosis, in-stent thrombosis, and external carotid artery occlusion.

Results

At 1 year, follow-up was available in 726 patients (99.04%). Beyond 30 days postprocedure, 1 minor stroke (0.13%), four transient ischemic attacks (0.55%), 2 fatal acute myocardial infarctions (0.27%), and 6 noncardiac deaths (1.10%) occurred. On duplex ultrasound examination, ICA restenosis was found in 6 patients (0.82%): 2 total occlusions and 4 in-stent restenoses. No predictors of target ICA restenosis and/or occlusion could be detected, and dual-antiplatelet therapy duration (90 days vs 30 days) was not found to be related to major adverse cardiovascular event or restenosis occurrence.

Conclusions

This real-world registry suggests that DLS use in clinical practice is safe and associated with minimal occurrence of adverse neurologic events up to 12-month follow-up.

SOURCE

UPDATED on 8/5/2020

USPSTF advises against carotid artery stenosis screening

By Theresa Pablos, AuntMinnie staff writer

August 5, 2020 — The U.S. Preventive Services Task Force (USPSTF) is poised to once again recommend against screening for asymptomatic carotid artery stenosis. The task force reaffirmed its D rating in a draft recommendation statement published on August 4.

The USPSTF last weighed in on the topic in 2014, concluding with moderate certainty that the harms of screening for carotid artery stenosis in the general population outweighed the benefits. In its new draft recommendation statement, the agency reaffirmed that position, stating there was not enough new evidence to change its previous recommendation against screening with either carotid duplex ultrasound, CT angiography, or MR angiography.

“The USPSTF found no new substantial evidence that could change its recommendation and therefore reaffirms its recommendation,” the task force wrote.

In theory, screening the general population for stenosis could lead to early detection of narrowed blood vessels, thus enabling medical professionals to conduct potentially life-saving interventions, such as carotid endarterectomy (CEA) and carotid artery stenting (CAS). But the USPSTF concluded that the evidence it reviewed didn’t readily support that hypothesis.

The task force has consistently found limited evidence in favor of asymptomatic carotid artery stenosis screening, especially when compared with other medical therapies, such as statins and antihypertensive agents. And the evidence has been particularly lacking since the USPSTF’s last review in 2014.

USPSTF draft recommendation rationale for asymptomatic carotid artery stenosis
Detection Ultrasonography has reasonable sensitivity and specificity for detecting clinically relevant carotid artery stenosis, but it also yields many false-positive results in the general population.
Scanning the neck for carotid bruits has poor accuracy for clinically relevant carotid artery stenosis.
Benefits Direct evidence does not indicate that screening for asymptomatic carotid artery stenosis can improve stroke, mortality, or other adverse health outcomes.
Carotid endarterectomy (CEA) or carotid artery angioplasty and stenting (CAS) provides little or no benefit for improving stroke, myocardial infarction, mortality, or other adverse outcomes compared with current medical therapy.
Harms While direct evidence does not show that screening for asymptomatic carotid artery stenosis can cause harm, there are known harms with confirmatory testing and interventions.
Direct evidence supports that treating asymptomatic patients with CEA or CAS could cause harms, including stroke or death.
Harms related to screening and treating asymptomatic carotid artery stenosis have small-to-moderate magnitude.

After searching the scientific literature, USPSTF investigators found no recent eligible studies that directly investigated the benefits or harms of asymptomatic carotid artery stenosis screening. The two studies that were conducted on the topic in the past six years were both prematurely terminated and produced mixed results.

When looking at the benefits and harms of CEA or CAS, the authors found an additional two national datasets and three surgical registries that met their inclusion criteria. Rates of 30-day postoperative stroke or death after CEA ranged from 1.4% to 3.5% depending on the registry or database. Similarly, 30-day stroke or death after CAS ranged from 2.6% to 5.1%.

Based on the evidence — or lack thereof — the investigators concluded there wasn’t enough new information to change the D rating for asymptomatic carotid artery stenosis screening. However, they pointed out that two clinical trials are currently underway, which may shed light on the topic in the future.

“There were few new trials, all with methodologic concerns, examining the important question of the comparative effectiveness and harms of revascularization plus best medical treatment compared with best medical treatment alone,” they wrote. “The ongoing CREST-2 and ECST-2 trials will be the largest trials to address this issue.”

The draft recommendation is available for public comment through August 31. After the comment period has ended, the task force will publish its final recommendation.

USPSTF opens review of carotid stenosis screening
The U.S. Preventive Services Task Force (USPSTF) has posted a draft research plan on screening for asymptomatic carotid artery stenosis, an exam that…
USPSTF still against US carotid artery stenosis screening
The U.S. Preventive Services Task Force (USPSTF) has finalized its draft recommendation advising against the use of widespread ultrasound screening for…
USPSTF advises against carotid artery screening
The U.S. Preventive Services Task Force (USPSTF) has issued a draft recommendation against ultrasound screening for asymptomatic carotid artery stenosis…
USPSTF to revisit carotid artery stenosis screening
The U.S. Preventive Services Task Force (USPSTF) plans to review its guidelines on the use of imaging to screen patients for asymptomatic carotid artery…

SOURCE

https://www.auntminnie.com/index.aspx?sec=sup&sub=ult&pag=dis&ItemID=129787

UPDATED on 8/20/2018

Transcarotid Artery Revascularization Shows Favorable Outcomes in Patients With Carotid Artery Disease

First large body of real-world clinical evidence showing benefits of TCAR versus surgery presented at SVS 2018 Annual Meeting

Transcarotid Artery Revascularization Shows Favorable Outcomes in Patients With Carotid Artery Disease

July 30, 2018 — Silk Road Medical Inc. recently announced the presentation of real-world data for the treatment of patients with carotid artery disease at risk for stroke at the Society for Vascular Surgery 2018 Vascular Annual Meeting (VAM), June 20-23 in Boston. In a headline presentation, Marc Schermerhorn, M.D., of Beth Israel Deaconess Medical Center (Boston) shared, for the first time, results from the ongoing TransCarotid Artery Revascularization (TCAR) Surveillance Project, a key initiative of the Society for Vascular Surgery’s Vascular Quality Initiative (VQI).

The trial evaluated patients over a two-year period, with 1,182 patients receiving TCAR compared to 10,797 patients receiving carotid endarterectomy (CEA).

“Our overall findings showed that while patients receiving TCAR were sicker and more likely to be symptomatic with a higher degree of stenosis, the stroke and death rate compared to CEA was the same,” Schermerhorn said. “With TCAR, there were significantly lower cranial nerve injuries, less time spent in the operating room and fewer patients with a prolonged length of stay. I believe that clinicians should more widely adopt the TCAR technology as it has demonstrated both safety and efficacy and is an excellent alternative to CEA.”

Significant findings from the study showed TCAR to have:

  • Comparable rates of in-hospital stroke or death to CEA (TCAR, 1.6 percent; CEA, 1.4 percent, p=.33);
  • Lower rates of acute cranial nerve injury (TCAR, 0.6 percent; CEA, 1.8 percent, p<.001);
  • Shorter operative times (TCAR, 78 min; CEA, 111 min, p<.001); and
  • Shorter hospital stays, despite patients being older and sicker (percent of hospitals stays longer than one night: TCAR, 27%; CEA, 30%, p=0.046).

TCAR is a clinically proven procedure combining surgical principles of neuroprotection with minimally invasive endovascular techniques to treat blockages in the carotid artery at risk of causing a stroke. The TCAR Surveillance Project is the largest single body of evidence reported since the launch of TCAR in 2016.

Additional TCAR presentations highlighted at SVS VAM 2018 demonstrated similar results:

“Vascular Live: Latest Stroke Prevention Data Signals Standard of Care Potential in Carotid Revascularization” provided an interim update on the ROADSTER 2 Per Protocol data set. The ROADSTER 2 trial is a post-market study intended to enroll a minimum of 600 patients and with at least 70 percent enrollment completed by newly trained operators. Peter Schneider, M.D., of Kaiser Permanente (Honolulu) and co-principal investigator for the ROADSTER 2 trial, presented interim results on 470 patients. Schneider highlighted a 30-day stroke rate of 0.6 percent and a stroke/death rate of 0.9 percent, consistent with the outcomes seen in the pivotal ROADSTER trial.

“A Multi-Institutional Analysis of Contemporary Outcomes after TransCarotid Artery Revascularization versus Carotid Endarterectomy” compared outcomes of TCAR to CEA across four institutions. Alex King of University Hospitals Cleveland Medical Center (Ohio) presented results showing that patients undergoing TCAR (n=292), had similar 30-day stroke rates (TCAR, 1 percent; CEA, 1.1 percent, p=1.00) compared with patients undergoing CEA (n=371), despite being more likely to have significant comorbidities. Acute (TCAR, 0.3 percent; CEA, 4.1 percent, p<.01) and six-month cranial nerve injury rates (TCAR, 0 percent; CEA: 1.9 percent, p=0.02) were shown to be lower with TCAR vs CEA.

The Enroute Transcarotid Stent is intended to be used in conjunction with the Enroute Transcarotid Neuroprotection System (NPS) during the TCAR procedure. The Enroute Transcarotid NPS is used to directly access the common carotid artery and initiate high rate temporary blood flow reversal to protect the brain from stroke while delivering and implanting the Enroute Transcarotid Stent.

For more information: www.silkroadmed.com

This is a review of the impact of the Centers for Medair and Medicaid Services on carotid artery endovascular outcomes carried out by the Division of Vascular and Endovascular Surgery at Harvard Medical School, Partners.

The impact of Centers for Medicare and Medicaid Services high-risk criteria on outcome after carotid endarterectomy and carotid artery stenting in the SVS Vascular Registry.

Schermerhorn ML, Fokkema M, Goodney P, Dillavou ED, Jim J, Kenwood CT, Siami FS, White RA; SVS Outcomes Committee.
 J Vasc Surg. 2013 May;57(5):1318-24.   http://dx.doi.org/10.1016/j.jvs.2012.10.107. Epub 2013 Feb 11.
The Centers for Medicare and Medicaid Services (CMS) require high-risk (HR) criteria for carotid artery stenting (CAS) reimbursement. The impact of these criteria on outcomes after carotid endarterectomy (CEA) and CAS remains uncertain. Additionally, if these HR criteria are associated with more adverse events after CAS, then existing comparative effectiveness analysis of CEA vs CAS may be biased. We sought to elucidate this using data from the SVS Vascular Registry.
We analyzed 10,107 patients undergoing CEA (6370) and CAS (3737), stratified by CMS HR criteria. The primary endpoint was composite death, stroke, and myocardial infarction (MI) (major adverse cardiovascular event [MACE]) at 30 days. We compared baseline characteristics and outcomes using univariate and multivariable analyses.
CAS patients were more likely than CEA to have
  • preoperative stroke (26% vs 21%) or
  • transient ischemic attack (23% vs 19%) .
Although age ≥ 80 years was similar, CAS patients were more likely to have all other HR criteria.
For CEA, HR patients had higher MACEs than normal risk in both
  • symptomatic (7.3% vs 4.6%; P < .01) and
  • asymptomatic patients (5% vs 2.2%; P < .0001).
For CAS, HR status was not associated with a significant increase in MACE for
  • symptomatic (9.1% vs 6.2%; P = .24) or
  • asymptomatic patients (5.4% vs 4.2%; P = .61).
All CAS patients had MACE rates similar to HR CEA. After multivariable risk adjustment, CAS had higher rates than CEA
  • for MACE (odds ratio [OR], 1.2; 95% confidence interval [CI], 1.0-1.5),
  • death (OR, 1.5; 95% CI, 1.0-2.2), and
  • stroke (OR, 1.3; 95% CI,1.0-1.7),
whereas there was no difference in MI (OR, 0.8; 95% CI, 0.6-1.3).
Among CEA patients, MACE was predicted by:
  • age ≥ 80 (OR, 1.4; 95% CI, 1.02-1.8),
  • congestive heart failure (OR, 1.7; 95% CI, 1.03-2.8),
  • EF <30% (OR, 3.5; 95% CI, 1.6-7.7),
  • angina (OR, 3.9; 95% CI, 1.6-9.9),
  • contralateral occlusion (OR, 3.2; 95% CI, 2.1-4.7), and
  • high anatomic lesion (OR, 2.7; 95% CI, 1.33-5.6).
Among CAS patients, recent MI (OR, 3.2; 95% CI, 1.5-7.0) was predictive, and
  • radiation (OR, 0.6; 95% CI, 0.4-0.8) and
  • restenosis (OR, 0.5; 95% CI, 0.3-0.96) …..were protective for MACE
Although CMS HR criteria can successfully discriminate a group of patients at HR for adverse events after CEA, certain CMS HR criteria are more important than others. However, CEA appears safer for the majority of patients with carotid disease. Among patients undergoing CAS, non-HR status may be limited to restenosis and radiation.
This study was preceded by another publication 5-years earlier involving ML Schermerhorn, of the study above.

Risk-adjusted 30-day outcomes of carotid stenting and endarterectomy: results from the SVS Vascular Registry.

Sidawy AN, Zwolak RM, White RA, Siami FS, Schermerhorn ML, Sicard GA; Outcomes Committee for the Society for Vascular Surgery.
Department of Surgery, Washington VA Medical Center, Washington, DC, USA.
J Vasc Surg. 2009 Jan;49(1):71-9. http:/dx.doi.org/10.1016/j.jvs.2008.08.039. Epub 2008 Nov 22.
As of December 26, 2007, 6403 procedures with discharge data were entered by 287 providers at 56 centers on 2763 CAS patients (1450 with 30-day outcomes, 52.5%) and 3259 CEA patients (1368 with 30-day outcomes, 42%).
Of the total cohort, 98% of CEA and 70.7% of CAS (P < .001) were performed for atherosclerotic disease.
  • Restenosis accounted for 22.3% and
  • post-radiation induced stenosis in 4.5% of CAS patients.
Preprocedure lateralizing neurologic symptoms were present in a greater proportion of – CAS patients (49.2%) than CEA patients (42.4%, P < .001).
CAS patients also had higher preprocedure prevalence of
  1. coronary artery disease (CAD),
  2. MI,
  3. congestive heart failure (CHF),
  4. chronic obstructive pulmonary disease (COPD), and
  5. cardiac arrhythmia.
For CAS, death/stroke/MI at 30 days was
  • 7.13% for symptomatic patients and 4.60% for asymptomatic patients (P = .04).
For CEA, death/stroke/MI at 30 days was
  • 3.75% in symptomatic patients and 1.97% in asymptomatic patients (P = .05).
After risk-adjustment for age, history of stroke, diabetes, and American Society of Anesthesiologists (ASA) grade (ie, factors found to be significant confounders in outcomes using backwards elimination),
logistic regression analysis suggested better outcomes following CEA.
When CAS and CEA were compared in the treatment of atherosclerotic disease only, the difference in outcomes between the two procedures was more pronounced, with
  • death/stroke/MI 6.42% after CAS vs 2.62% following CEA, P < .0001.
With continued enrollment and follow-up, analysis of SVS-VR will supplement randomized trials by providing real-world comparisons of CAS and CEA with sufficient numbers to serve as an outcome assessment tool of important patient subsets and across the spectrum of peripheral vascular procedures.
J Vasc Surg. 2012 May;55(5):1313-20; discussion 1321. doi: 10.1016/j.jvs.2011.11.128. Epub 2012 Mar 28.

Society for Vascular Surgery (SVS) Vascular Registry evaluation of comparative effectiveness of carotid revascularization procedures stratified by Medicare age.

Jim JRubin BGRicotta JJ 2ndKenwood CTSiami FSSicard GASVS Outcomes Committee.

Source

Washington University School of Medicine, St. Louis, Mo., USA.

Abstract

OBJECTIVE:

Recent randomized controlled trials have shown that age significantly affects the outcome of carotid revascularization procedures. This study used data from the Society for Vascular Surgery Vascular Registry (VR) to report the influence of age on the comparative effectiveness of carotid endarterectomy (CEA) and carotid artery stenting (CAS).

METHODS:

VR collects provider-reported data on patients using a Web-based database. Patients were stratified by age and symptoms. The primary end point was the composite outcome of death, stroke, or myocardial infarction (MI) at 30 days.

RESULTS:

As of December 7, 2010, there were 1347 CEA and 861 CAS patients aged < 65 years and 4169 CEA and 2536 CAS patients aged ≥ 65 years. CAS patients in both age groups were more likely to have a disease etiology of radiation or restenosis, be symptomatic, and have more cardiac comorbidities. In patients aged <65 years, the primary end point (5.23% CAS vs 3.56% CEA; P = .065) did not reach statistical significance. Subgroup analyses showed that CAS had a higher combined death/stroke/MI rate (4.44% vs 2.10%; P < .031) in asymptomatic patients but there was no difference in the symptomatic (6.00% vs 5.47%; P = .79) group. In patients aged ≥ 65 years, CEA had lower rates of death (0.91% vs 1.97%; P < .01), stroke (2.52% vs 4.89%; P < .01), and composite death/stroke/MI (4.27% vs 7.14%; P < .01). CEA in patients aged ≥ 65 years was associated with lower rates of the primary end point in symptomatic (5.27% vs 9.52%; P < .01) and asymptomatic (3.31% vs 5.27%; P < .01) subgroups. After risk adjustment, CAS patients aged ≥ 65 years were more likely to reach the primary end point.

CONCLUSIONS:

Compared with CEA, CAS resulted in inferior 30-day outcomes in symptomatic and asymptomatic patients aged ≥ 65 years. These findings do not support the widespread use of CAS in patients aged ≥ 65 years.

Related articles

Other related articles published in this Open Access Online Scientific Journal

Abdominal Aortic Aneurysm: Endovascular repair and open repair resulted in similar long-term survival  (Aviva Lev-Ari)
Competition in the Ecosystem of Medical Devices in Cardiac and Vascular Repair: Heart Valves, Stents, Catheterization Tools and Kits for Open Heart and Minimally Invasive Surgery (MIS)  (Aviva Lev-Ari)
Bioabsorbable Drug Coating Scaffolds, Stents and Dual Antiplatelet Therapy (Aviva Lev-Ari)
Vascular Repair: Stents and Biologically Active Implants (larryhbern)
Drug Eluting Stents: On MIT’s Edelman Lab’s Contributions to Vascular Biology and its Pioneering Research on DES  (larryhbern)
Transcatheter Aortic Valve Replacement (TAVR): Postdilatation to Reduce Paravalvular Regurgitation During TAVR with a Balloon-expandable Valve  (larryhbern)
Acute and Chronic Myocardial Infarction: Quantification of Myocardial Perfusion Viability – FDG-PET/MRI vs. MRI or PET alone  (Justin Pearlman, Aviva Lev-Ari)
Biomaterials Technology: Models of Tissue Engineering for Reperfusion and Implantable Devices for Revascularization (larryhbern)
Revascularization: PCI, Prior History of PCI vs CABG  (A Lev-Ari)
Accurate Identification and Treatment of Emergent Cardiac Events (larryhbern)
FDA Pending 510(k) for The Latest Cardiovascular Imaging Technology (A Lev-Ari)
The ACUITY-PCI score: Will it Replace Four Established Risk Scores — TIMI, GRACE, SYNTAX, and Clinical SYNTAX  (A Lev-Ari)
http://pharmaceuticalintelligence.com/2013/01/03/the-acuity-pci-score-will-it-replace-four-established-risk-scores-timi-grace-syntax-and-clinical-syntax/
Absorb™ Bioresorbable Vascular Scaffold: An International Launch by Abbott Laboratories (Aviva Lev-Ari)
Carotid Stenting: Vascular surgeons have pointed to more minor strokes in the stenting group and cardiologists to more myocardial infarctions in the CEA cohort. (A Lev-Ari)
Global Supplier Strategy for Market Penetration & Partnership Options (Niche Suppliers vs. National Leaders) in the Massachusetts Cardiology & Vascular Surgery Tools and Devices Market for Cardiac Operating Rooms and Angioplasty Suites (A Lev-Ari)
English: FIG. 513 – The internal carotid and v...

English: FIG. 513 – The internal carotid and vertebral arteries. Right side. Deutsch: Rechte Arteria carotis (Photo credit: Wikipedia)

Carotid Plaque Atherosclerotic plaque from a c...

Carotid Plaque Atherosclerotic plaque from a carotid endarterectomy specimen. This shows the bifurcation of the common into the internal and external carotid arteries. (Photo credit: Wikipedia)

Right common carotid artery - The Anatomy of t...

Right common carotid artery – The Anatomy of the Arteries Visual Guide, page 5 (of 57) (Photo credit: Rob Swatski)

Read Full Post »

CVD Core

CVD Core

Reporter: Aviva Lev-Ari, PhD, RN

Article ID #62: CVD Core. Published on 6/26/2013

WordCloud Image Produced by Adam Tubman

When this post will be ready it needs be place

under below link 

http://pharmaceuticalintelligence.com/biomed-e-books/cardiovascular-diseases-causes-risks-and-management/introduction-to-the-three-volume-series-core-research-on-cardiovascular-diseases/

See in red my comments, below

Cardiovascular Diseases: Causes, Risks and Management

Justin D. Pearlman MD PhD MA FACC, Editor

Cardiovascular diseases comprise problems of the heart and blood vessels, including rhythm, blood supply, blood pressure, birth defects, or damage from cholesterol, tobacco, street drugs, radiation, viruses, bacteria, or fungi.

Thus the category includes heart failure (inadequate pump function), heart or vessel infection (endocarditis, vasculitis), birth defects (congenital heart disease)

Cardiovascular Diseases: Causes, Risks and Management

Justin D. Pearlman MD ME PhD MA FACC, Editor

 

Leaders in Pharmaceutical Business Intelligence

Aviva Lev-Ari, PhD, RN

Director and Founder

Editor-in-Chief

Other e-Books  in the  BioMedicine Series

Perspectives on Nitric Oxide in Disease Mechanisms

Human Immune System in Health and in Disease

Metabolic Genomics & Pharmaceutics

Infectious Disease & New Antibiotic Targets

Cancer Biology and Genomics for Disease Diagnosis

Nanotechnology in Drug Delivery

Genomics Orientations for Personalized Medicine 

This book is a comprehensive review of Innovations in Cardiovascular Medicine, including the latest discoveries in

  • Cardiac Medical Imaging,
  • Regenerative Medicine,
  • Pharmacotherapy,
  • Medical Devices for Cardiac Repair,
  • Genomics, and opportunities for Targeted Therapy.

It is written by experts in their respective subspecialties. The e-Book’s articles have been published on the Open Access Online Scientific Journal, since April 2012.  All new articles on this subject will continue to be incorporated with periodical updates.

http://www.pharmaceuticalIntelligence.com

The Journal is a scientific, medical and business, multi-expert authoring environment for information syndication in domains of Life Sciences, Medicine, Pharmaceutical and Healthcare Industries, BioMedicine, Medical Technologies & Devices. Scientific critical interpretations and original articles are written by PhDs, MDs, MD/PhDs, PharmDs, Technical MBAs as Experts, Authors, Writers (EAWs) on an Equity Sharing basis.

The Editor, Justin D. Pearlman MD ME PhD MA FACC, has many different perspectives developed during the years, including:

  • Chief of Cardiology,
  • non-invasive imaging,
  • molecular biology,
  • mathematics,
  • imaging research

contributed a number of firsts:

  • non-endemic Chagas diagnosis,
  • intensity projection angiography,
  • magnetization tagging,
  • myocardial injury mapping by magnetic resonance contrast retention,
  • myocardial viability by MRI,
  • atheroma lipid liquid crystal characterization,
  • outpatient inotropic infusion therapy,
  • angiogenesis imaging,
  • multimodal in vivo stem cell imaging,
  • real-time velocity beam MRI,
  • in vivo microscopic MRI,
  • dobutamine stress echocardiography for low gradient valve disease,
  • alternative stress tests,
  • diagnostic electrocardiography in magnetic environments,
  • statistical methods to solve error propagation of large array genomics,
  • discovery of monocyte role in native coronary collateral development,
  • image tracked stem cell treatment of  heart attacks,
  • singularity editing in differential topology.

 

Preface to the Three Volume Series

Cardiovascular disease has been a leading cause of death and disability and so it has also been a major focus for intense research, development, and progress. Knowledge of the causes, risks, and best practices for management continually change. That is why a dynamic electronic living textbook presents an exciting opportunity to help you keep current with the ephemeral leading edge. This book is an outgrowth of the commitment of Leaders in Pharmaceutical Business Intelligence to present the most exciting timely and pertinent advances of our day, in a continual medium to stay fresh and up to date. We hope diverse multispecialty perspectives will help you in your quest to understand, adapt and advance the leading edge of cardiovascular disease causes, risks and best practices management.

On the Diagnosis of Cardiovascular Disease: causes, manifestations, consequences and priorities

Doctors aim to spend their time on prevention, diagnosis, and disease management. More and more the time is diverted to expanding demands for documentation and bureaucratic navigation. This article focuses on the art of diagnosis, with examples based on cardiovascular diseases. Diagnosis cannot be achieved without a knowledge of the causes (etiology) of ailments, a necessary but not sufficient component of diagnosis. The causes broadly relate to nature and nurture, how our biological system develops and functions (nature), and its interactions with the outside world driven in part by behavior, diet, exposures, and activities (nurture). The nature of our individuality has been traced to the human genome, a map of code for protein products that build our structures and mediate our body part functions. Numerous blood tests have been devised to check the expression and activity level of such genomic products to identify disease and characterize its stage. The role of diet, behavior, exposures, activities or lack thereof is well established as a complicit factor in disease development and progression.

The art of diagnosis is designed to find out what is wrong. Literally, it is a flow of knowing, based on knowledge of causes of ailments, probabilities (prevalence), consequences, manifestations, priorities (which would be most urgent) and tests: CPCMPT. Review of those elements generates a list of concerns, often expressed as a “differential diagnosis” which is  a prioritized list of plausible explanations for the observations, patient’s report of symptoms and findings from patient examination. The second stage of diagnosis, called the “work-up,” selects and applies tests to stratify the list of possibilities further as well as to characterize the manifestations and stage of disease. Technically, analysis of biological samples, imaging studies and intervention trials each represent tests; however, they are often viewed as distinct tools with just the former labeled as tests (biological samples include blood tests, urine tests, sputum or saliva samples, and biopsies). The primary goal of the work-up is to establish one or more specific diagnoses as the cause of ailment. The secondary goal of the work-up is to characterize the manifestations and stage of disease to define expectations and clarify options for the disease management. The third goal is to develop a management a plan to slow or stop the ailment, decrease risks of complications, slow or stop progression of disease manifestations or otherwise minimize functional impairment.

The manifestations of disease are categorized as signs and symptoms.

  • Signs are observable evidence of consequences,
  • Symptoms are subjective complaints.

A major component of diagnostic skill is the ability to identify and characterize correctly signs and symptoms of all relevant disease conditions. A second major component of diagnostic skill is the ability to select appropriate tests and interpret their significance in context, in keeping with the patient’s presentation.

When someone sees a doctor about chest pain, coronary artery disease is a prominent consideration. The most common causes of chest pain are mechanical (muscle and bone, e.g., muscle spasms, muscle and bone inflammation), but those conditions are not generally life-threatening. The consequences of blocked arteries – arrhythmia, permanent weakness of the heart, blood clots, pulmonary emboli, stroke, cardiogenic shock, death – raise the stakes and push coronary disease high in priority even when the probabilities are low. The prioritization of the differential diagnosis list has multiple considerations: urgency (how quickly it can worsen), severity of consequences, and the probabilities of a macrovascualar event (prevalence, risk factors). A ten percent risk of coronary disease typically takes precedence over a 70% likelihood of muscle spasm in terms of diagnostic testing.

The road map for the construction of our individuality as humans has been fully mapped: the human genome. Genetic variation means we are not fully determined by the mix of genes inherited from our parents. In addition to the genetic material on our 48 chromosomes, and the genetic material in mitochondria inherited from the mother, there are spontaneous changes in the genetic code, and there are modifications that affect gene expression (which codes produce gene products, quantities, rates, and post-production modifications).

The causes of cardiovascular disease are defined by Murphy’s law: what can go wrong will. However, on the nature side, most malfunctions are too severe to reach the light of day, so there is a limited list of disease mechanisms associated with sufficient viability to reach medical attention. Those mechanisms can be summarized by a mnemonic: diseases can develop new metals in-flame, a-fact externs generated (disease mechanisms: congenital, developmental, neoplastic, metabolic, inflammatory, infectious, extrinsic (e.g. stab wound), and degenerative). A taxonomy of cardiovascular diseases can be constructed in various ways: (1) itemize the major cardiovascular functions and subclassify the dysfunctions, (2) itemize by principle anatomic involvement and subclassify by pathology, (3) classify by mechanism of disease, etiology. Compendiums of cardiovascular disease may be found in: (1) French’s Differential Diagnosis, (2) Robbins and Angel Pathology, (3) Guyton’s Textbook of Physiology, as well as cardiovascular disease textbooks such as Hurst, Braunwald, Mayo Clinic, Cleveland Clinic…

Diagnosis takes many forms. The paranoid inclusive approach, manifested as “medical student syndrome”, considers any semblance of a sign or symptom vaguely similar to a disease manifestation as a frightening prospect worthy of detailed pursuit. The minimalist pragmatic approach commonly attributed to general practitioners focuses on reassurance, and pursuit of persisting complaints that match a common ailment. That approach has been summarized by the advice: when you hear hoof beats think of horses, not zebras. Specialists, on the other hand, are taught to consider all possibilities, with due consideration to urgency and treatability, so that zebras are not punished.

The healthcare system promotes the idea of generalists serving as the front line, identifying who can be managed simply, with specialists serving as finishers for more complex cases or cases requiring special skills. A flaw in that model is the need for detailed knowledge of zebras and subtle findings that may represent an urgent issue at the front line for triage. If the generalist does not know that mild symptoms from mitral valve disease or aortic valve disease may require urgent detailed assessment, patients may be referred to a specialist too late to prevent consequences that requires an earlier intervention.

Parsimony in diagnosis refers to identifying the fewest number of diagnoses that explain all the findings. The concept has been attributed to Osler, and it builds on a guiding procedure voiced in the middle ages by Occum, known as Occum’s razor: when deciding between two explanations, favor the one that requires the fewest assumptions. Parsimony is a useful guide for diagnosis of a previously healthy patient who develops a number of findings that are temporally coherent. After age 65 (official geriatrics age), physicians are taught to abandon parsimony and expect more diagnoses than findings.

A study of difficult diagnoses lead to the concept of a pivotal finding as one that has a narrow differential list. The diagnostic process is prone to errors, including cognitive biases, which may benefit from computer assistance. Intuition and analytics can be applied to reduce cognitive bias. The author developed a just-in-time social networking system within a software package called Missive(c) that enables rapid access to such tools, combining efficiency in documentation with improved quality of analysis and reports (faster and better).

Among older Americans, more are hospitalized for heart failure than for any other medical condition (diastolic failure=stiff heart, systolic failure= inadequate pumping).

Genomics – the study of the genetic basis for disease – is rapidly expanding knowledge about etiology (cause of disease), and it helps identify opportunities for accurate diagnosis and treatment. The American Heart Association journal CIRCULATION has published 348 relevant articles related to cardiovascular genomics from 2010-2013.  For example, just on the subtopic of atherosclerosis (hardening of arteries), genomics offers major progress. The genetic factors that affect arterial stiffness are strongly related to a very common underlying health concern, hypertension (high blood pressure). The counterpart to genetics is environment (nature versus nurture), but genetics carries the trump cards because it determines the sensitivities to environment.

anatomy

physiology

laboratory tests

interventional trials

Boundaries of the Domain: Cardiovascular Diseases: Causes, Risks and Management – Volume 1,2,3

 

The scope of cardiovascular disease scholarly contributions will grow to include: anatomy, surgery, molecular biology, ethics, imaging (echo, nuclear, PET, MRI, OCT, CT), congenital, stress tests, ECG, electrophysiology/rhythm/channelopathies, pacing, resynchronizing, AICD, cardiomyopathies, syncope, valve disease, aorta, renal artery, thrombosis, venous diseases, vasculitis, endothelium, metabolic syndrome, dyslipidemia, risk factors, biomarkers, hypertension, embolism, pulmonary hypertension, cardiac tumors, women’s health, CAD, Angina,  Stem cells, complications of MI, thrombolysis, rehabilitation, reflexes, hormones, diastology, pharmaceuticals, myocarditis, hypertrophy, failure, shock, hemodynamics, interventions, contrast nephropathy, and contrast systemic fibrosis, as well as other relevant topics you may suggest.

An overview of the Core Research on Cardiovascular Diseases is based on the following NINE articles: 

Have only the article title as a live link of the following 9 [originally were on CVD Zero, title and links, now only links]

  1. http://pharmaceuticalintelligence.com/2013/05/15/diagnosis-of-cardiovascular-disease-treatment-and-prevention-current-predicted-cost-of-care-and-the-promise-of-individualized-medicine-using-clinical-decision-support-systems-2/ 
  2. http://pharmaceuticalintelligence.com/2013/05/04/cardiovascular-diseases-decision-support-systems-for-disease-management-decision-making/ 
  3. http://pharmaceuticalintelligence.com/2013/03/07/genomics-genetics-of-cardiovascular-disease-diagnoses-a-literature-survey-of-ahas-circulation-cardiovascular-genetics-32010-32013/
  4. http://pharmaceuticalintelligence.com/2013/05/17/synthetic-biology-on-advanced-genome-interpretation-for-gene-variants-and-pathways-what-is-the-genetic-base-of-atherosclerosis-and-loss-of-arterial-elasticity-with-aging/ 
  5. http://pharmaceuticalintelligence.com/2013/05/11/arterial-elasticity-in-quest-for-a-drug-stabilizer-isolated-systolic-hypertension-caused-by-arterial-stiffening-ineffectively-treated-by-vasodilatation-antihypertensives/ 
  6. http://pharmaceuticalintelligence.com/2013/05/24/imaging-biomarker-for-arterial-stiffness-pathways-in-pharmacotherapy-for-hypertension-and-hypercholesterolemia-management/ 
  7. http://pharmaceuticalintelligence.com/2013/04/28/genetics-of-conduction-disease-atrioventricular-av-conduction-disease-block-gene-mutations-transcription-excitability-and-energy-homeostasis/
  8. http://pharmaceuticalintelligence.com/2013/05/07/on-devices-and-on-algorithms-arrhythmia-after-cardiac-surgery-prediction-and-ecg-prediction-of-paroxysmal-atrial-fibrillation-onset/ 
  9. http://pharmaceuticalintelligence.com/2013/05/22/acute-and-chronic-myocardial-infarction-quantification-of-myocardial-viability-fdg-petmri-vs-mri-or-pet-alone

The main points are

[bring here ONLY the INTRODUCTION and the Summary of each, THEN The EDITOR will provide perspective on the Research and the current STate of Cardiology in the US in 2013/2014]

A. Now you provide ONLY links to 

Volume #

Contributors to Volume #

eTOCS in Volume #

REPEAT A. for each Volume

Volume One: Causes of Cardiovascular Diseases

Table of Contents

Hardening of the arteries is described as atherosclerosis, or porridge-like wall changes with scarring, which leads to heart attacks, high blood pressure, stroke, and organ injury mediated by ischemia (insufficient nutrient blood supply). The causes are both nature (genetic) and nurture (behavior, diet). Specifics of the causes guide diagnosis and management.

Chapter 1.2: Genomics

The completion of the human genome map was a major accomplishment, as gene products make signals, receptors and building blocks that establish health and disease. However, it is just a stepping stone, not explaining why, where, or how the gene products are regulated and  interact.

Chapter 1.3: Cardiovascular Imaging

Imaging applies a principle of physics (light transmission, sound transmission, xray transmission, magnetic resonance, radioactivity) to provide a map of interior structures and/or activities. Image processing (computing) derives further information than simple display of an observed tissue-sensitive parameter. In the case of computed tomography (CT), magnetic resonance (MRI), positron-emission tomography (PET), and single-photon emission tomography (SPECT),  computer reformatting of image data is essential.

Volume Two: Risk Assessment of Cardiovascular Diseases

Contributors

Table of Contents

Cardiovascular disease is the leading cause of death and disability, affecting more than four times as many people as all forms of cancer combined.

Chapter  2.2: Testing for cardiovascular risk

The volunteer population of Framingham Massachusetts provided decades of data clarifying determinants of risk for cardiovascular diseases. That data helped establish the usefulness of cholesterol screening, and lead to the search for additional tests to identify risk and guide management.

Chapter 2.3: Biomarkers

Biomarkers are chemistry levels (concentrations in the blood) that identify injury or risk for injury.

Volume Three: Management of Cardiovascular Diseases

Contributors

Chapter  3.1: Therapeutic Genomics

As the mysteries of the human genome products are unraveled, we get closer to identifying key components. One of them is Thymosin beta 4 (Tβ4) , which plays an essential role in cardiac and blood vessel development and regeneration. It may lead to breakthroughs in angiogenesis and vasculogenesis, or new vessel development, mimicking the behavior of the lucky few who develop new vessels, or collaterals, as a natural bypass system, without requiring a surgeon to provide a blood supply to avoid or limit heart attacks.

Chapter 3.2: Image guidance of Therapy

The US government is helping to sponsor new imaging methods, while they also inhibit it by adding new taxes.

Chapter 3.3: Drug therapy

Emerging new therapies are presented, along with the biological basis.

Chapter 3.4: Cardiovascular Interventions

Technological advances enable minimally invasive solutions to problems previously addressed by surgery or autopsy.

Introduction 

 

Contributors above, need a LINK to the appropriate contributors in each volume. Table of Contents of each volume above need a LINK to the eTOCS of each volume.  

Please UPDATE all links ABOVE to the appropriate locations in the respective volumes, after implementing the carry over, remove links below EXCEPT CVD1,2,3 and remove this comment of mine in RED, here

REFERENCES for CVD CORE

A.  Diagnosis of Cardiovascular Disease and Cost of Care

Bernstein, HL and A. Lev-Ari 5/15/2013 Diagnosis of Cardiovascular Disease, Treatment and Prevention: Current & Predicted Cost of Care and the Promise of Individualized Medicine Using Clinical Decision Support Systems

http://pharmaceuticalintelligence.com/2013/05/15/diagnosis-of-cardiovascular-disease-treatment-and-prevention-current-predicted-cost-of-care-and-the-promise-of-individualized-medicine-using-clinical-decision-support-systems-2/ 

B. Cardiovascular DiseasesDisease Management Decision Making – use of CDSS

Pearlman, JD and A. Lev-Ari 5/4/2013 Cardiovascular Diseases: Decision Support Systems for Disease Management Decision Making

http://pharmaceuticalintelligence.com/2013/05/04/cardiovascular-diseases-decision-support-systems-for-disease-management-decision-making/ 

C. Genomics & Genetics of Cardiovascular Disease Diagnoses

Lev-Ari, A. and L H Bernstein 3/7/2013 Genomics & Genetics of Cardiovascular Disease Diagnoses: A Literature Survey of AHA’s Circulation Cardiovascular Genetics, 3/2010 – 3/2013

http://pharmaceuticalintelligence.com/2013/03/07/genomics-genetics-of-cardiovascular-disease-diagnoses-a-literature-survey-of-ahas-circulation-cardiovascular-genetics-32010-32013/

D.  Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

Lev-Ari, A. 5/17/2013 Synthetic Biology: On Advanced Genome Interpretation for Gene Variants and Pathways: What is the Genetic Base of Atherosclerosis and Loss of Arterial Elasticity with Aging

http://pharmaceuticalintelligence.com/2013/05/17/synthetic-biology-on-advanced-genome-interpretation-for-gene-variants-and-pathways-what-is-the-genetic-base-of-atherosclerosis-and-loss-of-arterial-elasticity-with-aging/ 

E.  Hypertension and Vascular Compliance: 2013 Thought Frontier – An Arterial Elasticity Focus

Pearlman, JD and A. Lev-Ari 5/11/2013 Hypertension and Vascular Compliance: 2013 Thought Frontier – An Arterial Elasticity Focus

http://pharmaceuticalintelligence.com/2013/05/11/arterial-elasticity-in-quest-for-a-drug-stabilizer-isolated-systolic-hypertension-caused-by-arterial-stiffening-ineffectively-treated-by-vasodilatation-antihypertensives/ 

F.  Arterial Stiffness: Pharmacotherapy for Hypertension and Hypercholesterolemia Management

Pearlman, JD and A. Lev-Ari 5/24/2013 Imaging Biomarker for Arterial Stiffness: Pathways in Pharmacotherapy for Hypertension and Hypercholesterolemia Management

http://pharmaceuticalintelligence.com/2013/05/24/imaging-biomarker-for-arterial-stiffness-pathways-in-pharmacotherapy-for-hypertension-and-hypercholesterolemia-management/ 

G. Genetics of Conduction Disease

Lev-Ari, A. 4/28/2013 Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis

http://pharmaceuticalintelligence.com/2013/04/28/genetics-of-conduction-disease-atrioventricular-av-conduction-disease-block-gene-mutations-transcription-excitability-and-energy-homeostasis/

H.  Arrhythmia after Cardiac Surgery Prediction and ECG Prediction of Paroxysmal Atrial Fibrillation Onset

Pearlman, JD and A. Lev-Ari 5/7/2013 On Devices and On Algorithms: Arrhythmia after Cardiac Surgery Prediction and ECG Prediction of Paroxysmal Atrial Fibrillation Onset

http://pharmaceuticalintelligence.com/2013/05/07/on-devices-and-on-algorithms-arrhythmia-after-cardiac-surgery-prediction-and-ecg-prediction-of-paroxysmal-atrial-fibrillation-onset/ 

I.  Myocardial Infarction: Quantification of Myocardial Perfusion Viability

Pearlman, JD and A. Lev-Ari 5/22/2013 Acute and Chronic Myocardial Infarction: Quantification of Myocardial Perfusion Viability – FDG-PET/MRI vs. MRI or PET alone

http://pharmaceuticalintelligence.com/2013/05/22/acute-and-chronic-myocardial-infarction-quantification-of-myocardial-viability-fdg-petmri-vs-mri-or-pet-alone/

Read Full Post »

« Newer Posts