Feeds:
Posts
Comments

Posts Tagged ‘Nutrition and Metabolism Disorders’

Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)


Pathophysiological Effects of Diabetes on Ischemic-Cardiovascular Disease and on Chronic Obstructive Pulmonary Disease (COPD)

Curator:  Larry H. Bernstein, MD, FCAP

This is a multipart article that develops the pathological effects of type-2 diabetes in the progression of a systemic inflammatory disease with a development of neuropathy, and fully developing into cardiovascular disease.  It also identifies a systemic relationship to the development of chronic obstructive pulmonary disease (COPD).

The more we learn about diabetes, we learn about its generalized systemic effects.

This article has the following SIX Parts:

Part 1. Role of Autonomic Cardiovascular Neuropathy in Pathogenesis of ischemic heart disease in patients with diabetes mellitus

Part 2. A Longitudinal Cohort Study of the Cardiovascular Experience of Individuals at High Risk for Diabetes

Part 3.  Clinical significance of cardiovascular dysmetabolic syndrome

Part 4.   Waist circumference a good indicator of future risk for type 2 diabetes and cardiovascular disease

Part 5.   How to use C-reactive protein in acute coronary care

Part 6.  Chronic obstructive pulmonary disease and glucose metabolism: a bitter sweet symphony

INTRODUCTION

Type 2 diabetes mellitus is a common chronic disease which develops insidiously over time, and is associated with obesity, nutritional imbalance (high fructose beverages, high starch and processed foods, carbohydrate excess intake, and an imbalance of proinflammatory to anti-inflammatory polyunsaturated  fatty acids), which makes it an acquired and manageable disease.  The long term effects of T2DM is played out on cardiovascular disease and stroke-risk, obstructive sleep apnea, progressive renal insufficiency, development of neuropathy, congestive heart failure and chronic obstructive pulmonary disease, all of which are occuring related to an systemic inflammatory condition that proceeds for some time prior to the identification of overt diabetes.
A detailed story of a significant part of these associations continues in the SIX Part series.

Part 1. Role of Autonomic Cardiovascular Neuropathy in Pathogenesis of ischemic heart disease in patients with diabetes mellitus

This article is an abstract only of a related publication of the pathogenesis of autonomic neuropathy in diabetics leading to ischemic heart disease.

Subjects: Medicine (General), Medicine, Medicine (General),
Health Sciences Authors: Popović-Pejičić Snježana, Todorović-Đilas Ljiljana, Pantelinac Pavle
Publisher: Društvo lekara Vojvodine Srpskog lekarskog društva
Publication: Medicinski Pregled 2006; 59(3-4): Pp 118-123 (2006) ISSN(s): 0025-8105  Added to DOAJ: 2010-11-11
http://dx.doi.org/10.2298/MPNS0604118P  http://www.doiserbia.nb.rs/img/doi/0025-8105/2006/0025-81050604118P.pdf

Keywords: diabetes mellitus, autonomic nervous system diseases, heart diseases, myocardial ischemia, comorbidity

Introduction.

Diabetes is strongly associated with macrovascular complications, among which

  • ischemic heart disease is the major cause of mortality.

Autonomic neuropathy increases the risk of complications, which calls for an early diagnosis. The aim of this study was to determine

  • both presence and extent of cardiac autonomic neuropathy,

in regard to the type of diabetes mellitus, as well as

  • its correlation with coronary disease and
  • major cardiovascular risk factors.

Material and methods. We have examined 90 subjects, classified into three groups, with 30 patients each: those with type 1 diabetes, type 2 diabetes and control group of healthy subjects. All patients underwent

  • cardiovascular tests (Valsalva maneuver, deep breathing test, response to standing, blood pressure response to standing sustained, handgrip test),
  • electrocardiogram,
  • treadmill exercise test and
  • filled out a questionnaire referring to major cardiovascular risk factors: smoking, obesity, hypertension, and dyslipidemia.

Results. Our results showed that cardiovascular autonomic neuropathy was

  • more frequent in type 2 diabetes,
  • manifesting as autonomic neuropathy.

In patients with autonomic neuropathy, regardless of the type of diabetes,

  • the treadmill test was positive, i.e. strongly correlating with coronary disease.

In regard to coronary disease risk factors,

  • the most frequent correlation was found for obesity and hypertension.

Discussion

Cardiovascular autonomic neuropathy is considered to be the principal cause of arteriosclerosis and coronary disease. Our results showed that the occurrence of cardiovascular autonomic neuropathy increases the risk of coronary disease due to dysfunction of autonomic nervous system.

Conclusions

Cardiovascular autonomic neuropathy is a common complication of diabetes that significantly correlates with coronary disease. Early diagnosis of cardiovascular autonomic neuropathy points to increased cardiovascular risk, providing a basis for preventive and therapeutic measures.

Part 2. A Longitudinal Cohort Study of the Cardiovascular Experience of Individuals at High Risk for Diabetes

This second part is a description of a longitudinal cohort study of individuals at high-risk for diabetes.  Unlike the SSA study, the study is not focused on protein-energy malnutrition.

Protocol for ADDITION-PRO: a longitudinal cohort study of the cardiovascular experience of individuals at high risk for diabetes recruited from Danish primary care

Subjects: Public aspects of medicine, Medicine, Public Health, Health Sciences
Authors: Johansen NB, Hansen Anne-Louise S, Jensen TM, Philipsen A, Rasmussen SS, Jørgensen ME, Simmons RK, Lauritzen T, Sandbæk A, Witte DR
Publisher: BioMed Central    Date of publication: 2012 Dec Published in: BMC Public Health 2012; 12(1): 1078    ISSN(s): 1471-2458   Added to DOAJ: 2013-03-12 http://dx.doi.org/10.1186/1471-2458-12-1078       http://www.biomedcentral.com/1471-2458/12/1078

Keywords: Diabetes, Cardiovascular disease, Primary care, Complications, Microvascular, Impaired fasting glucose, Impaired glucose intolerance, Aortic stiffness, Physical activity, Body composition

Background

Screening programmes for type 2 diabetes inevitably find more individuals at high risk for diabetes than people with undiagnosed prevalent disease. While well established guidelines for the treatment of diabetes exist, less is known about treatment or prevention strategies for individuals found at high risk following screening. In order to make better use of the opportunities for primary prevention of diabetes and its complications among this high risk group, it is important to

  • quantify diabetes progression rates and to examine
  • the development of early markers of cardiovascular disease and
  • microvascular diabetic complications.

We also require a better understanding of the

  • mechanisms that underlie and drive early changes in cardiometabolic physiology.

The ADDITION-PRO study was designed to address these issues among individuals at different levels of diabetes risk recruited from Danish primary care.

Methods/Design

ADDITION-PRO is a population-based, longitudinal cohort study of individuals at high risk for diabetes. 16,136 eligible individuals were identified at high risk following participation in a stepwise screening programme in Danish general practice between 2001 and 2006.

  • All individuals with impaired glucose regulation at screening,
  • those who developed diabetes following screening, and
  • a random sub-sample of those at lower levels of diabetes risk

were invited to attend a follow-up health assessment in 2009–2011 (n = 4,188), of whom 2,082 (50%) attended. The health assessment included

  • detailed measurement of anthropometry,
  • body composition,
  • biochemistry,
  • physical activity and
  • cardiovascular risk factors including aortic stiffness and central blood pressure.

All ADDITION-PRO participants are being followed for incident cardiovascular disease and death.

Discussion

The ADDITION-PRO study is designed to increase

  • understanding of cardiovascular risk and
  • its underlying mechanisms among individuals at high risk of diabetes.

Key features of this study include

  • (i) a carefully characterised cohort at different levels of diabetes risk;
  • (ii) detailed measurement of cardiovascular and metabolic risk factors;
  • (iii) objective measurement of physical activity behaviour; and
  • (iv) long-term follow-up of hard clinical outcomes including mortality and cardiovascular disease.

Results will inform policy recommendations concerning cardiovascular risk reduction and treatment among individuals at high risk for diabetes. The detailed phenotyping of this cohort will also allow a number of research questions concerning early changes in cardiometabolic physiology to be addressed.

Part 3.  Clinical significance of cardiovascular dysmetabolic syndrome

This study also addresses the issue of diabetes insulin resistance leading to cardiovascular dysmetabolic syndrome.

Subjects: Diseases of the circulatory (Cardiovascular) system,
Specialties of internal medicine, Internal medicine, Medicine, Cardiovascular, Medicine (General), Health Sciences
Authors: Deedwania Prakash C Publisher: BioMed Central            Date of publication: 2002 Jan
Published in: Trials 2002; 3: 1(2)   ISSN(s): 1468-6708  Added to DOAJ: 2004-06-03
http://dx.doi.org/10.1186/1468-6708-3-2   http://cvm.controlled-trials.com/content/3/1/2

Keywords: cardiovascular dysmetabolic syndrome, coronary heart disease, diabetes mellitus, hyperinsulinemia, insulin resistance

Although diabetes mellitus is predominantly a metabolic disorder,

  • recent data suggest that it is as much a vascular disorder.
  • Cardiovascular complications are the leading cause
    • of death and disability in patients with diabetes mellitus.

A number of recent reports have emphasized that

  • many patients already have atherosclerosis in progression
  • at the time they are diagnosed with clinical evidence of diabetes mellitus.

The increased risk of atherosclerosis and cardiovascular complications in diabetic patients is related to

  • the frequently associated dyslipidemia, hypertension, hyperglycemia, hyperinsulinemia, and endothelial dysfunction.

The evolving knowledge regarding the variety of

  • metabolic,
  • hormonal, and
  • hemodynamic abnormalities in patients with diabetes mellitus

has led to efforts designed for early identification of individuals at risk of subsequent disease. It has been suggested that

  • insulin resistance, the key abnormality in type II diabetes,
  • often precedes clinical features of diabetes by 5–6 years.

Careful attention to the criteria described for the cardiovascular dysmetabolic syndrome

  • should help identify those at risk at an early stage.

The application of nonpharmacologic as well as newer emerging pharmacologic therapies can have beneficial effects

  • in individuals with cardiovascular dysmetabolic syndrome and/or diabetes mellitus
  • by improving insulin sensitivity and related abnormalities.

Early identification and implementation of appropriate therapeutic strategies would be necessary

  • to contain the emerging new epidemic of cardiovascular disease related to diabetes.

Part 4.   Waist circumference a good indicator of future risk for type 2 diabetes and cardiovascular disease

Subjects: Public aspects of medicine, Medicine, Public Health, Health Sciences
Authors: Siren Reijo, Eriksson Johan G, Vanhanen Hannu
Publisher: BioMed Central      Date of publication: 2012 Aug
Published in: BMC Public Health 2012; 12: 1(631)    ISSN(s): 1471-2458   Added to DOAJ: 2013-03-12
http://dx.doi.org/10.1186/1471-2458-12-631    http://www.biomedcentral.com/1471-2458/12/631

Keywords: Waist circumference, Type 2 diabetes, Cardiovascular disease, Middle-aged men

Background

Abdominal obesity is a more important risk factor than overall obesity in

  • predicting the development of type 2 diabetes and cardiovascular disease.

From a preventive and public health point of view it is crucial that

  • risk factors are identified at an early stage,
  • in order to change and modify behaviour and lifestyle in high risk individuals.

Methods

Data from a community based study was used to assess

  • the risk for type 2 diabetes,
  • cardiovascular disease and
  • prevalence of metabolic syndrome in middle-aged men.

In order to identify those with increased risk for type 2 diabetes and/or cardiovascular disease

  • sensitivity and specificity analysis were performed, including
  • calculation of positive and negative predictive values, and
  • corresponding 95% CI for eleven different cut-off points,
    • with 1 cm intervals (92 to 102 cm), for waist circumference.

Results

A waist circumference ≥94 cm in middle-aged men,

  • identified those with increased risk for type 2 diabetes
  • and/or for cardiovascular disease

with a sensitivity of 84.4% (95% CI 76.4% to 90.0%), and a specificity of 78.2% (95% CI 68.4% to 85.5%). The positive predictive value was 82.9% (95% CI 74.8% to 88.8%), and negative predictive value 80.0% (95% CI 70.3% to 87.1%), respectively .

Conclusions

Measurement of waist circumference in middle-aged men

  • is a reliable test to identify individuals at increased risk for type 2 diabetes and cardiovascular disease.

This measurement should be used more frequently in daily practice in primary care

  • in order to identify individuals at risk and when planning health counselling and interventions.

Part 5.  How to use C-reactive protein in acute coronary care

Luigi M. Biasucci, Wolfgang Koenig, Johannes Mair, Christian Mueller, Mario Plebani, Bertil Lindahl, Nader Rifai,Per Venge,Christian Hamm, and the Study Group on Biomarkers in Cardiology of the Acute Cardiovascular Care Association of the European Society of Cardiology
Department of Cardiology B, Aarhus University Hospital, Tage Hansens Gade2, Aarhus DK-8000,Denmark; Germany, U.K., U.S., Italy
European Heart Journal Advance Access published Nov 7, 2013.  Current Opinion.  http://dx.doi.org/10.1093/eurheartj/eht435

Introduction

 C-reactive protein (CRP) is an acute phase protein and an established marker for detection, risk stratification, and monitoring of infections, and inflammatory and necrotic processes.. Because C-reactive protein is sensitive but not specific, its values must be nterpreted  in the clinical context. Inpatients with acute myocardial infarction (AMI), CRP increases within 4–6h of symptoms, peaks 2–4 days later,and returns to baseline after 7–10 days.

CRP has gained interest recently as a marker for risk stratification in acute coronary syndrome (ACS) when measured by high-sensitivity CRP assays. These assays have greater analytical sensitivity and reliably measure CRP concentrations within the reference range with low imprecision (5–10%). Because of evidence that atherosclerosis is an inflammatory disease, high-sensitivity CRP can be used as a biomarker of risk
in primary prevention and in patients with known cardiovascular disease. The aim of this review is to evaluate the use of CRP in patients with acute coronary disease.

The in-vitro stability of high-sensitivity C-reactive protein is excellent. Specific blood sampling conditions aren’t necessary.  However, retesting may be necessary with some assays if there is marked lipaemia.  Baseline and subsequent measures are in good for agreement for risk stratification despite biological variability of 30–60%.

The upper reference limit is method-dependent but usually 8mg/L for standard assays. The distribution of high-sensitivity CRP concentrations is skewed in both genders with a 50th percentile of_1.5mg/L (excluding women on hormone replacement therapy). Race differences have been reported. Most studies have reported no relationship with age,  but to circadian and seasonal variation. CRP concentrations are increased by smoking, obesity, and hormone replacement therapy and reduced by exercise, moderate alcohol drinking, and statin use. Correction for these factors is essential in reference range studies. CRP assays are not standardized. We recommend  the use of third-generation high-sensitivity CRP assays that combine features of standard and high-sensitivity CRP assays.  Required assay precision should be < 10% in the range of 3 and 10 mg/L.

Biochemical and analytical issues

Critical clinical concepts

(1) CRP concentrations are reported in mg/L
(2) CRP test results are method-dependent

  •  classification of patients into risk categories is usually comparable
(3) Third generation CRP assay are recommended
(4) No specific patient preparation before blood sampling is necessary
(5) The in-vitro stability of CRP is high

This is only a portion of the published concensus document. What is relevant to this discussion is that the hs-CRP is an extremely valuable marker for inflammatory disease.  It is not ordered often enough because of the broad range of values that we have become accustomed to for years, and it is elevated in rheumatologic conditions, but even then, it is widely used in pediatrics because children may present with rapidly emergent sepsis with very minimal sympoms.
The hs-CRP has opened a window to subliminal inflammatory disease that is diabetes, with accompanied arteriolar endothelial inflammation.

Part 6.  Chronic obstructive pulmonary disease and glucose metabolism: a bitter sweet symphony

Subjects: Diseases of the circulatory (Cardiovascular) system,
Specialties of internal medicine, Internal medicine, Medicine, Cardiovascular, Medicine (General), Health Sciences
Authors: Mirrakhimov Aibek E
Publisher: BioMed Central      Date of publication: Oct 2012   ISSN(s): 1475-2840
Published in: Cardiovascular Diabetology 2012; 11(1):132   Added to DOAJ: 2013-03-12
http://dx.doi.org/10.1186/1475-2840-11-132      http://www.cardiab.com/content/11/1/132

Keywords: COPD, Dysglycemia, Insulin resistance, Obesity, Metabolic syndrome, Diabetes mellitus endothelial dysfunction, Vasculopathy

Chronic obstructive pulmonary disease, metabolic syndrome and diabetes mellitus

  • are common and underdiagnosed medical conditions.

It was predicted that chronic obstructive pulmonary disease

  • will be the third leading cause of death worldwide by 2020.

The healthcare burden of this disease is even greater

  • if we consider the significant impact of chronic obstructive pulmonary disease on
    • the cardiovascular morbidity and mortality.

Chronic obstructive pulmonary disease

  • may be considered as a novel risk factor for new onset type 2 diabetes mellitus via

multiple pathophysiological alterations such as:

  1. inflammation and oxidative stress,
  2. insulin resistance,
  3. weight gain and
  4. alterations in metabolism of adipokines.

On the other hand, diabetes may act as an independent factor,

  • negatively affecting pulmonary structure and function.

Diabetes is associated with an increased risk of

  1. pulmonary infections,
  2. disease exacerbations and
  3. worsened COPD outcomes.

On the top of that, coexistent OSA

  • may increase the risk for type 2 DM in some individuals.

The current scientific data necessitate a greater outlook on chronic obstructive pulmonary disease and

  • chronic obstructive pulmonary disease may be viewed as a risk factor for
  • the new onset type 2 diabetes mellitus.

Conversely, both types of diabetes mellitus should be viewed as

  • strong contributing factors for the development of obstructive lung disease.

Such approach can potentially improve the outcomes and medical control for both conditions,

  • and, thus, decrease the healthcare burden of these major medical problems.

CONCLUSIONS

This discussion  presents a spectrum of cardiovascular risk associated with type 2 diabetes mellitus, with high risk for CVD, stroke, endothelial dysfunction, and an association with obesity, measured by waist circumference, and an underlying proinflammatory state that can be measured by CRP.

Read Full Post »


β-amyloid fibrils.

β-amyloid fibrils. (Photo credit: Wikipedia)

Extracellular deposition of insoluble fibrillar proteins in tissues and organs lead to a condition known as amyloidosis which is thought to be caused by misfolding of proteins. There are several types of amyloidosis, but the unifying feature of the amyloidoses is that the deposits share a common ß-pleated sheet structural conformation that confers unique staining properties.

There are several types of amyloidosis and the most common form is the primary amyloidosis (AL) for amyloid of light chain composition. Symptoms can occur in any organ of the body and the organs most often involved include the heart, kidneys, nervous system, and gastrointestinal tract.

Amyloid deposits in these organs can cause

shortness of breath,

fatigue,

edema (swelling of ankles and legs),

dizziness upon standing,

a feeling of fullness in the stomach (especially after eating),

diarrhea,

weight loss,

enlarged tongue,

numbness of the legs and arms,

protein in the urine (proteinurea) and

enlarged liver (hepatomegaly).

Primary amyloidosis (AL) is an acquired plasma cell disorder in which a monoclonal immunoglobulin light chain is produced in the bone marrow and usually found in the blood or urine. AL amyloidosis occasionally occurs with multiple myeloma. The amyloid fibrils in this type of amyloidosis are made up of immunoglobulin light chain proteins (kappa or lambda).

Amyloidosis caused by infection or inflammation is known as Secondary Amyloidosis (also known as AA amyloidosis) in which elevation of an acute phase protein, SAA, a portion of which (AA protein) deposits as amyloid fibrils. AA amyloidosis usually begins as disease in the kidneys, but other organs can be affected, and may cause protein in the urine, edema, and fatigue.

Medical or surgical treatment of the underlying chronic infection or inflammatory disease can slow down or stop the progression of this type of amyloid where as in case of AL chemotherapy is the standard practice.

Other forms of amyloidosis are familial amyloidosis (ATTR) a most common form of inherited amyloidoses caused by a mutation in the transthyretin (TTR) gene that produces abnormal transthyretin protein which deposits as amyloid fibrils. Symptoms of disease are usually neuropathy (numbness and tingling in the arms and legs, dizziness upon standing, and diarrhea) and cardiomyopathy and occur in mid to late life. The standard treatment is liver transplantation since the transthyretin protein which causes familial amyloidosis is made in the liver, replacing this organ removes the source of mutant protein production. A new liver will make only normal transthyretin. Each family has its own pattern of organ involvement and associated symptoms and the mode of transmission is autosomal dominant.

Other rare forms of inherited amyloidosis include apolipoprotein A-I (AApoAI), apolipoprotein A-II (AApoAII) gelsolin (AGel), fibrinogen (AFib), and lysozyme (ALys).

Beta-2 microglobulin amyloidosis is caused by chronic renal failure and often occurs in patients who are on dialysis for many years. Amyloid deposits are made of the beta-2 microglobulin protein that accumulated in tissues, particularly around joints, when it cannot be excreted by the kidney because of renal failure.

There are many types of localized amyloidoses. The most common and best known is Alzheimer’s disease.

Localized amyloid deposits in the airway (trachea or bronchus), eye, or urinary bladder are made up of light chain proteins, similar to those in AL amyloidosis. However, in localized amyloidosis the abnormal plasma cells producing the amyloid light chains are in the tissues, not in the bone marrow. Other localized types of amyloidosis are associated with hormone proteins, aging, or specific areas of the body, and have not been found to develop into systemic amyloidosis

Diagnosis of this disease is sometimes difficult as many of the sysmptoms are general and can occur in other diseases. Symptoms in each patient depend on the type of amyloidosis and on the type of involved organ systems.

Amyloidosis can only be diagnosed by a positive biopsy (i.e., an identification of the amyloid deposits in a piece of tissue). Initial biopsies are most commonly obtained from the abdominal fat. image from BMCIf amyloid is suspected in other organs, however, a biopsy may be needed from these specific areas. Tissue biopsies must be stained properly with Congo red, a dye which will color the amyloid if it is present and cause it to have a unique appearance when viewed under a special microscope. If amyloid is present in a tissue biopsy, further tests can be done to determine the type of the amyloid.

The Amyloid Treatment & Research Program (ATRP) at Boston Medical Center (BMC) is an international referral center that treats amyloidosis with stem cell transplantation. The Program offers a multi-disciplinary approach to diagnosis and treatment of this multi-organ disorder. Amyloid doctors specializing in cardiology, pulmonary, nephrology, gastroenterology, neurology, and other systems participate in patient evaluation and care.

The ATRP at BMC studies the systemic types of amyloidoses defined under amyloid types. Other forms of amyloidosis include Alzheimer’s and other neurodegenerative diseases, prion diseases, serpinopathies, some of the cystic fibroses, and others.

They have developed Amyloid Light Chain Database, called ALBase, with the support of an NHLBI P01 award, HL68705. ALBase is a curated database and collection of analytical and graphical tools designed to facilitate the analysis of amyloidogenic immunoglobulin (Ig) light chains (LC) occurring in patients with AL amyloidosis. ALBase is designed to compile and analyze Ig LC sequences from patients with AL amyloidosis, to compare their predicted protein sequence and structure to non-amyloidogenic LC sequences from patients with multiple myeloma or health controls. The hypothesis underlying this is that the primary sequence of the LC is likely to be a major determinant of secondary structure and of propensity to unfold, oligomerize, and form fibrils.

“ALBase is available to the scientific community for research purposes. Please reference the site if you make use of it.”

Two patients of Dr. David Seldin are diagnosed with systemic amyloidosis and they shared their experiences from diagnosis to treatment and recovery (You can listen to an audio of this broadcast by clicking here: Rare Disease Feature (WAER 88.3 FM)).

Both patients credit their physicians for investigating abnormal tests and nonspecific symptoms, and for referring them to amyloid specialists early in the disease course.

http://www.bu.edu/amyloid/david-c-seldin-m-d-ph-d/

http://www.bu.edu/amyloid/2012/03/08/npr-interview/

http://www.bmc.org/amyloid.htm#2012gala

Curated by: Dr. Venkat S. Karra, Ph.D

Read Full Post »