Feeds:
Posts
Comments

Posts Tagged ‘NO’


Calcium Dependent NOS Induction by Sex Hormones: Estrogen

Reporter and Curator:  Sudipta Saha, Ph.D.

Nitric oxide (NO) synthases (NOSs) constitute a family of isozymes that catalyze the oxidation of L-arginine to NO and citrulline. First identified in the vascular endothelium, NO synthesis has subsequently been shown to play important roles in:

  • the regulation of vascular and gastrointestinal tone,
  • in cell-mediated cytotoxicity against bacteria and tumors, and
  • in a variety of central and peripheral nervous system activities.

NOSs can be divided into three functional classes based on their sensitivity to calcium.

  • The cytokine- or bacterial product-inducible isoenzyme iNOS binds calmodulin tightly at resting intracellular calcium concentrations.
  • The constitutive forms, isozymes eNOS (originally described in endothelial cells) and
  • nNOS (originally described in neuronal tissue), bind calmodulin in a reversible and calcium-dependent fashion.

The mechanisms by which their synthesis is controlled are unknown. The cDNA species encoding the rat, mouse, and human nNOS, the human and bovine eNOS, and iNOS from several species and cell types have been cloned and sequenced. The three human isozymes characterized to date are distinct, with their deduced protein sequences showing only 50-60%o amino acid identity. nNOS, which in rats and humans localizes to neurons in the central and peripheral nervous system and colocalizes with NADPHdiaphorase activity, has also been shown to be widely distributed in several non-neuronal tissues including human skeletal muscle.

It had been thought that both nNOS and eNOS were purely constitutive enzymes, although studies suggest eNOS may be induced by shear stress. Studies demonstrate that these NOSs can be induced in several tissues during pregnancy and in nonpregnant female and male animals by estradiol and that in skeletal muscle it is accompanied by an increase in NOS-specific mRNA.

Evidences emerging from various laboratories showed that there is an increase in the release of NO from the vasculature during pregnancy. Furthermore, treatment of pregnant animals at the end of gestation with tamoxifen reduced NOS activity in the cerebellum, an organ where tamoxifen acts as a pure estrogen-receptor antagonist. Thus, the increase in calcium-dependent NOS activity during pregnancy is mediated by estrogen. This conclusion is supported by the fact that treatment of nonpregnant females and male animals with estradiol also increased calcium-dependent NOS activity in all tissues studied.

Interestingly, testosterone treatment also increased cerebellar NOS activity without affecting other tissues. However, testosterone may increase brain NOS by directly binding estrogen receptors as has been reported. Furthermore, the cerebellum was the only tissue in the male to respond to a 5-day course of estradiol, suggesting that it may have a larger number and/or a greater availability of estrogen receptors than other tissues. In addition, the brain is rich in aromatase, which converts testosterone into estradiol. This, together with the observation that progesterone does not induce NOS, indicates that the induction of both nNOS and eNOS is specific for estrogen and not a characteristic of all sex steroids. These experiments do not exclude the possibility that the addition of progesterone might modify the estradiol effect.

The increases in NOS activity are the result of augmented enzyme synthesis (enzyme induction) since they are accompanied by increases in the specific mRNAs for both eNOS and nNOS. It is not, however, possible to tell whether the increases in mRNA are caused by an upregulation of mRNA synthesis (transcriptional induction) or decreased mRNA breakdown.

Although calcium-dependent NOS activity was increased by estradiol in tissues obtained from both female and male guinea pigs, a longer duration of treatment was necessary in the male. The most likely explanation for this observation is that the number or availability of estrogen receptors is initially too low in most tissues of the male and requires a period of estrogen priming. Although other factors may play a role, the duration of exposure may well explain the observation that the effect of pregnancy on NOS-specific mRNA is greater than estradiol alone.

The observation that estradiol induces calcium-dependent NOSs has several important implications:

  • An increase in release of NO from the endothelium would decrease vascular tone and contractility, events that are characteristic in pregnancy.
  • Heterogeneity among tissue endothelium regarding the effects of estrogen on basal NO release could explain the selective redistribution of maternal cardiac output to organs important for a successful pregnancy.
  • Consistent with this possibility is the observation that the effect of pregnancy on endothelium-derived NO is greatest in the uterine artery, followed by the mesenteric artery and then renal arteries.
  • An alternative hypothesis to explain the adaptation of smooth muscle to pregnancy is that it is caused by prostacyclin. Prostacyclin is increased during pregnancy and contributes to the observed reduced contractility of the ovine uterine artery to angiotensin II.

However, estradiol does not increase the synthesis of prostacyclin by the endothelium, nor does inhibition of prostacyclin synthesis prevent the effects of pregnancy on smooth muscle. In addition, both the incidence of esophageal reflux and the gastrointestinal transit time are increased during pregnancy. Although this phenomenon has previously been attributed to a direct effect of progesterone, NO is a powerful dilator of the gastrointestinal smooth muscle. If the increase in NOS activity observed in the esophagus applies to the bowel, enhanced NO might be the mechanism underlying both increased esophageal reflux and transit time.

The biological signifcance of an estradiol-dependent increase in the NOS in the central nervous system is of great interest and deserves further investigation. Furthermore, an estradiol-mediated increase in NOS in the vasculature could be the mechanism whereby premenopausal women are protected from coronary artery disease since increased NOS may slow the development of atherosclerosis and reduce the contractile response to acute thrombosis. Finally, the induction of calcium-dependent NOS enzymes by estradiol suggests that the present classification of this family of enzymes into constitutive and inducible types needs to be revised, since eNOS and nNOS enzymes at least are both constitutive and inducible.

Source References:

http://www.ncbi.nlm.nih.gov/pubmed?term=Calcium%20dependent%20NOS%20induction%20by%20sex%20hormones

Other research published on Nitric Oxide on this Scientific Web Site include the following:

Nitric Oxide in bone metabolism July 16, 2012

Author: Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/07/16/nitric-oxide-in-bone-metabolism/?goback=%2Egde_4346921_member_134751669

 

Nitric Oxide production in Systemic sclerosis July 25, 2012

Curator: Aviral Vatsa, PhD, MBBS

https://pharmaceuticalintelligence.com/2012/07/25/nitric-oxide-production-in-systemic-sclerosis/?goback=%2Egde_4346921_member_138370383

Nitric Oxide Signalling Pathways August 22, 2012 by

Curator/ Author: Aviral Vatsa, PhD, MBBS

https://pharmaceuticalintelligence.com/2012/08/22/nitric-oxide-signalling-pathways/?goback=%2Egde_4346921_member_151245569

Nitric Oxide: a short historic perspective August 5, 2012

Author/Curator: Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/08/05/nitric-oxide-a-short-historic-perspective-7/

 

Nitric Oxide: Chemistry and function August 10, 2012

Curator/Author: Aviral Vatsa PhD, MBBS

https://pharmaceuticalintelligence.com/2012/08/10/nitric-oxide-chemistry-and-function/?goback=%2Egde_4346921_member_145137865

Nitric Oxide and Platelet Aggregation August 16, 2012 by

Author: Dr. Venkat S. Karra, Ph.D.

https://pharmaceuticalintelligence.com/2012/08/16/no-and-platelet-aggregation/?goback=%2Egde_4346921_member_147475405

 

The rationale and use of inhaled NO in Pulmonary Artery Hypertension and Right Sided Heart Failure August 20, 2012

Author: Larry Bernstein, MD

https://pharmaceuticalintelligence.com/2012/08/20/the-rationale-and-use-of-inhaled-no-in-pulmonary-artery-hypertension-and-right-sided-heart-failure/

Nitric Oxide: The Nobel Prize in Physiology or Medicine 1998 Robert F. Furchgott, Louis J. Ignarro, Ferid Murad August 16, 2012

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/16/nitric-oxide-the-nobel-prize-in-physiology-or-medicine-1998-robert-f-furchgott-louis-j-ignarro-ferid-murad/

 

Coronary Artery Disease – Medical Devices Solutions: From First-In-Man Stent Implantation, via Medical Ethical Dilemmas to Drug Eluting Stents August 13, 2012

Author: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/08/13/coronary-artery-disease-medical-devices-solutions-from-first-in-man-stent-implantation-via-medical-ethical-dilemmas-to-drug-eluting-stents/

Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production July 19, 2012

Curator and Research Study Originator: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2012/07/19/cardiovascular-disease-cvd-and-the-role-of-agent-alternatives-in-endothelial-nitric-oxide-synthase-enos-activation-and-nitric-oxide-production/

Macrovascular Disease – Therapeutic Potential of cEPCs: Reduction Methods for CV Risk

An Investigation of the Potential of circulating Endothelial Progenitor Cells (cEPCs) as a Therapeutic Target for Pharmacological Therapy Design for Cardiovascular Risk Reduction: A New Multimarker Biomarker Discovery

Curator: Aviva Lev-Ari, PhD, RN, July 12, 2012

https://pharmaceuticalintelligence.com/2012/07/02/macrovascular-disease-therapeutic-potential-of-cepcs-reduction-methods-for-cv-risk/

 

Bone remodelling in a nutshell June 22, 2012

Author: Aviral Vatsa, Ph.D., MBBS

https://pharmaceuticalintelligence.com/2012/06/22/bone-remodelling-in-a-nutshell/

Targeted delivery of therapeutics to bone and connective tissues: current status and challenges – Part 1

AuthorL Aviral Vatsa, PhD, September 23, 2012

https://pharmaceuticalintelligence.com/2012/09/23/targeted-delivery-of-therapeutics-to-bone-and-connective-tissues-current-status-and-challenges-part-i/

Calcium dependent NOS induction by sex hormones: Estrogen

Curator: S. Saha, PhD, October 3, 2012

https://pharmaceuticalintelligence.com/2012/10/03/calcium-dependent-nos-induction-by-sex-hormones/

 

Nitric Oxide and Platelet Aggregation

Author V. Karra, PhD, August 16, 2012

https://pharmaceuticalintelligence.com/2012/08/16/no-and-platelet-aggregation/

Bystolic’s generic Nebivolol – positive effect on circulating Endothelial Progenitor Cells endogenous augmentation

Curator: Aviva Lev-Ari, PhD, July 16, 2012

https://pharmaceuticalintelligence.com/?s=Nebivolol

 

Read Full Post »


Curated/reported by : Aviral Vatsa PhD, MBBS

Based on : S Moncada et al

It was in 1980 that Furchgott & Zawadzki first described endothelium- dependent relaxation of the blood vessels by acetylcholine. Further studies in 1984 revealed that other factors such as bradykinin, histamine and 5-hydroxytryptamine release endothelium derived relaxing factor (EDRF), which can modulate vessel tone. EDRF was shown to stimulate soluble guanylate cyclase and was inhibited by haemoglobin. In 1986 it was demonstrated that superoxide (O2) anions mediated EDRF inactivation and that the inhibitors of EDRF generated superoxide (O2) anions in solution as a mean to inhibit EDRF. It was later established that all compounds that inhibit EDRF have one property in common, redox activity, which accounted for their inhibitory action on EDRF. One exception was haemoglobin, which inactivates EDRF by binding to it. In 1987 Furchgott proposed that EDRF might be nitric oxide (NO) based on a study of the transient relaxations of endothelium-denuded rings of rabbit aorta to ‘acidified’ inorganic nitrite (NO) solutions and the observations that superoxide dismutase (SOD, which removes O2) protected EDRF. Till then NO was not known to be produced in mammalian cells. In 1988 Palmer et al could detect NO production both biologically and chemically by chemiluminescence. The following year in 1989 the enzyme responsible for NO production, NO synthase, was discovered and L-arginine:NO pathway was proposed.

Roles of L-arginine:NO pathway

By 1987 it was proposed that NO is generated in tissues other than endothelium. Hibbs et al and Marletta et al proposed that NO was generated by macrophages. Moreover release of EDRF was demonstrated in cerebellar cells following activation with N-methyl-D- aspartate (NMDA ). Both noradrenergic and cholinergic responses are ‘controlled’ by the nitrergic system so that the release of NO (e.g., during electrical field stimulation) counteracts and dominates the response to the noradrenergic or cholinergic stimulus (Cellek & Moncada, 1997). Mechanism of penile erection was unveiled by the studies on nitrergic neurotransmission that led to therapeutic intervention. Selective damage of nitrergic nerves in disease states was proposed as a potent mechanism of pathophysiology. Broadly three areas of research based on three isoforms of NOS came into being;

  • cardiovascular
  • nervous
  • immunology

Identification of NG-monomethyl-L-arginine (L-NMMA) as an inhibitor of the synthesis of NO lay the basis of future research into investigating the role of NO in biological systems. In 1989 it was demonstrated that intravenous infusion of L-NMMA resulted in increase in blood pressure that was reversible by infusing L-arginine. NO was thus implicated in constantly maintaining blood vessel tone. eNOS knockout studies showed a hypertensive phenotypes in the animal models and over expression of eNOS led to lowering of the blood pressure. Furthermore, eNOS activation was attributed to phosphorylation of a specific tyrosine residue in the enzyme.

NO and Mitochondria 

https://pharmaceuticalintelligence.com/2012/09/16/nitric-oxide-has-a-ubiquitous-role-in-the-regulation-of-glycolysis-with-a-concomitant-influence-on-mitochondrial-function/

NO reacts with some of the complexes of the respiratory chain, and inhibits mitochondrial respiration – this is a well accepted notion. Initially it was believed that the target for NO was soluble guanylate cyclase, which in vasculature would lead to elevation of cGMP that eventually results in NO mediated vasodilatation and platelet aggregation inhibition. In 1994, another potential target, cytochrome c oxidase, for inhibitory effects of NO was discovered. This was a reversible effect, in competition with oxygen concentrations. Increases in NO production were also shown to inhibit cellular respiration irreversibly by selectively inhibiting complex I . Hence in 2002 it was proposed that this might be a mechanism through which cell pathology was initiated in certain conditions. Furthermore, NO was proposed to be implicated in the activation of the grp78-dependent stress response , via modulating calcium-related interaction between mitochondria and endoplasmic reticulum . This host defence mechanism might also have role in vasculature. Further evidence was provided in 2003 to link the role of NO in mitochondrogenesis and thus indicating that NO might be involved in the regulation of the balance between glycolysis and oxidative phosphorylation in cells.

NO and Pathophysiology

Lack of NO: By 2000, NO was established as a haemostatic regulator in the vasculature. Its absence was implicated in pathological states such as hypertension and vasospasm. These pathophysiological states share a common beginning of endothelial dysfunction, which has low NO production as one of its characterstic features. This dysfunction has been observed prior to the appearance of cardiovascular disease in predisposed subjects with family history of essential hypertension and atherosclerosis. The most likely mechanism for endothelial dysfunction is that of a reduced bioavailability of NO . The mechanism of this aspect is discussed elsewhere on this site. Protection against reduction of NO bio-availability in the vasculature is a vital therapeutic target and is extensively explored. This can be achieved by the use of antioxidants and/or augmentation of eNOS expression. In 2003 statins were shown to increase the production of endothelial NO in endothelial cell cultures and in animals by the reduction of oxidative stress or by increasing the coupling of the eNOS. It was way back in 1994 that oestrogen was shown to increase both the activity and expression of eNOS. In addition, more recently in 2003, oestrogen was shown to reduce the breakdown of available NO.

Excess of NO: In 2000 it was shown that NO produced from iNOS in vasculature is involved in extensive vasodilatation in septic shock. Later it was demonstrated that inhibition of mitochondrial respiration is an important component of the NO-induced tissue damage. This inhibition of respiration, which is initially NO-dependent and reversible, becomes persistent with time as a result of oxidative stress . Such metabolic hypoxic states where in tissues cannot utilise available oxygen due to NO, could also contribute to other inflammatory and degenerative conditions. An obvious therapeutic target for reducing NO production in such conditions would be L-NMMA. L-NMM was tested in a clinical trial for septic shock in 2004. The results were however disappointing probably due to the blanket reduction in NO production from other NOS enzymes there by having deleterious effects on the treatment group. More specific inhibitors for NOS forms are being investigated for in different disease states.

In conclusion, the L-arginine: NO pathway has had a major impact in many areas of research, specially vascular biology. A lot has been understood about this pathway and its interactions, therapeutic targets are being aggressively investigated, but further investigations are required to delineate further the role of NO in human health and disease.

Further Reading

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1760731/?tool=pubmed

Nitric Oxide and Platelet Aggregation

Inhaled NO in Pulmonary Artery Hypertension and Right Sided Heart Failure

Cardiovascular Disease (CVD) and the Role of agent alternatives in endothelial Nitric Oxide Synthase (eNOS) Activation and Nitric Oxide Production

Nitric Oxide in bone metabolism

Nitric oxide and signalling pathways

Rationale of NO use in hypertension and heart failure

Interaction of Nitric Oxide and Prostacyclin in Vascular Endothelium

Nitric Oxide has a ubiquitous role in the regulation of glycolysis -with a concomitant influence on mitochondrial function

Read Full Post »


 

Author: Larry Bernstein, MD

 

Creagh-BrownBC, Griffiths MJD, Evans TW. “Bench-to-bedside review: Inhaled nitric oxide therapy in adults”. Crit Care.  2009;  13(3): 221. Published online 2009 May 29. doi:  10.1186/cc7734. PMCID: PMC2717403.

This article is modified from a review series on Gaseous mediators, edited by Peter Radermacher.  Other articles in the series can be found online athttp://ccforum.com/series/gaseous_mediators

 

Part I.   Basic and downstream effects of inhaled NO

Inhaled nitric oxide (NO), a mediator of vascular tone produces pulmonary vasodilatation with low pulmonary vascular resistance. The route of administration delivers NO selectively improving oxygenation. Developments in our understanding of the cellular and molecular actions of NO may help to explain the results of randomised controlled trials of inhaled NO.

Introduction

Nitric oxide (NO), a determinant of local blood flow is formed by the action of NO synthase (NOS) on L-arginine in the presence of molecular oxygen. Inhaled NO results in preferential pulmonary vasodilatation it lowers pulmonary vascular resistance (PVR), correcting hypoxic pulmonary vasoconstriction (HPV). However, in the therapeutic use of gaseous NO to patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), and related conditions, evidence of a benefit is disappointing.

Administration of inhaled nitric oxide to adults

The licensed indication of inhaled NO is restricted to persistent pulmonary hypertension in neonates. Pharma-ceutical NO is costly, and raises concerns over potential adverse effects of NO. Therefore, an advisory board under the auspices of the European Society of Intensive Care Medicine and the European Association of Cardiothoracic Anaesthesiologists published recommendations in 2005 [1]. The sponsor had no authorship or editorial control over the content of the meetings or any subsequent publication.

The NO is administered as a NO/nitrogen mixture to the tubing of ventilated patients, and the NO and NO2 concen-trations are monitored, with methemoglobin levels measured regularly. Even though rapid withdrawal induces rebound pulmonary hypertension, it is avoided by gradual withdrawal [2]. There is variation in vasodilatory response to administered NO between patients [2] and in the same patient, and there is a leftward shift in the dose-response curve with use. Toxicity and loss of the therapeutic effect is a risk of excessive NO administration [3]. A survey of 54 intensive care units in the UK as well as results of a European survey revealed that the most common usage was in treating ARDS, followed by pulmonary hypertension [4], [5]. The only use of therapeutic inhaled NO usage in US adult patients reported from a single medical site (2000 to 2003) reveals that the most common application was in the treatment of RVF in patients after cardiac surgery and then, in surgical and medical patients for refractory hypoxemia[6].

Inhaled nitric oxide in acute lung injury and acute respiratory distress syndrome

ALI and ARDS are characterised by hypoxemia despite high inspired oxygen (PaO2/FiO[arterial partial pressure of oxygen/fraction of inspired oxygen] ratios of less than 300 mm Hg [40 kPa] and less than 200 mm Hg [27 kPa], respectively) in the context of evidence of pulmonary edema, and the absence of left atrial hypertension suggestive of a cardiogenic mechanism [7]. Pathologically, there is alveolar inflammation and injury leading to increased pulmonary capillary permeability and a serous alveolar fluid with inflammatory infiltrate. This is manifest clinically as hypoxemia, inadequate alveolar perfusion, venous-arterial shunting, atelectasis, and reduced compliance.

Since 1993, when the first investigation on the effects of NO on adult patients with ARDS was published [8], there have been several randomised controlled trials (RCTs) examining the effect in ALI/ARDS  ​(Table 1). The first systematic review and meta-analysis [9] found no beneficial effect on mortality or ventilator-free days. A more recent meta-analysis that considered 12 RCTs with a total of 1,237 patients [10] concluded: [1] no mortality benefit, [2] improved oxygenation at 24 hours (13% improvement in PaO2/FiOratio) at the cost of increased risk of renal dysfunction (relative risk 1.50, 95% confidence interval 1.11 to 2.02). Based on a trend to increased mortality in patients receiving NO, the authors suggested that it not be used in ALI/ARDS.  Why the NO fails to improve patient outcomes requires clarifying the effects of inhaled NO that occur outside the pulmonary vasculature.

From:

Published online 2009 May 29. doi: 10.1186/cc7734

Table 1

Studies of inhaled nitric oxide in adult patients with acute lung injury/acute respiratory distress syndrome

The biological action of inhaled nitric oxide

NO was first identified as an endothelium-derived growth factor (EDGF) and an important determinant of local blood flow [11]. NO reacts very rapidly with free radicals, certain amino acids, and transition metal ions. The action of NOS on the semi-essential amino acid L-arginine in the presence of molecular oxygen and its identity with EDGF was the basis for the Nobel discovery of Furthgott and others [12]. Three isoforms of NO are: neuronal NOS, inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS or NOS3). Calcium-independent iNOS generates higher concentrations of NO [13] than the other isoforms and its role has been implicated in the pathogenesis septic shock.

Exogenous NO is administered by controlled inhalation or through intravenous administration of NO donors. It was thought to have no remote or non-pulmonary effects. The effect NO has on circulating targets is shown. (Figure 1).

From:

Published online 2009 May 29. doi: 10.1186/cc7734

Figure 1

New paradigm of inhaled nitric oxide (NO) action. Figure 1 illustrates the interactions between inhaled NO and the contents of the pulmonary capillaries. Although NO was considered to be inactivated by hemoglobin (Hb), proteins including Hb and albumin contain reduced sulphur (thiol) groups that react reversibly with NO causing it to lose its vasodilating properties. A stable derivate, in the presence of oxyhemoglobin, is formed by a reaction resulting in nitrosylation of a cysteine residue of the β subunit of Hb.  The binding of NO to the heme iron predominates in the deoxygenated state [14]. If circulating erythrocytes store and release NO peripherally in areas of low oxygen tension, this augments peripheral blood flow and oxygen delivery via decreased systemic vascular resistance [15]. Thus, NO can act as an autocrine or paracrine mediator but when stabilised may exert endocrine influences [16]. In addition to de novo synthesis, supposedly inert anions nitrate (NO3) and nitrite (NO2) can be recycled to form NO, and nitrite might mediate extra-pulmonary effects of inhaled NO [17]. In the hypoxic state, NOS cannot produce NO and deoxy-hemoglobin catalyses NO release from nitrite, potentially providing a hypoxia-specific vasodilatory effect. Given that effects of inhaled NO are mediated in part by S-nitrolysation of circulating proteins, therapies aiming at directly increasing S-nitrosothiols have been developed.

Introduce another effect. When inhaled with high concentrations of oxygen, gaseous NO slowly forms the toxic product NO2, but other potential reactions include nitration (addition of NO2+), nitrosation (addition of NO+), or nitrosylation (addition of NO), and reaction with reactive oxygen species such as superoxide to form reactive nitrogen species (RNS) such as peroxynitrite (ONOO). These reactions of NO, potentially cytotoxic NO2 , and covalent nitration of tyrosine in proteins by RNS lead to measures of oxidative stress.

In a small observational study, inhaled ethyl nitrite safely reduced PVR without systemic side effects in persistent pulmonary hypertension of the newborn [18]. In animal models, pulmonary vasodilatation was maximal in hypoxia and had prolonged duration of action after cessation of administration [19].

References

  1. Germann P, Braschi A, Della Rocca G, Dinh-Xuan AT, et al. Inhaled nitric oxide therapy in adults: European expert recommendations.  Intensive Care Med. 2005;31:1029–1041. [PubMed]
  2. Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353:2683–2695. [PubMed]
  3. Gerlach H, Keh D, Semmerow A, Busch T, et al. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: a prospective, randomized, controlled study. Am J Respir Crit Care Med. 2003;167:1008–1015. [PubMed]
  4. Cuthbertson BH, Stott S, Webster NR. Use of inhaled nitric oxide in British intensive therapy units. Br J Anaesth. 1997;78:696–700.[PubMed]
  5. Beloucif S. A European survey of the use of inhaled nitric oxide in the ICU. Working Group on Inhaled NO in the ICU of the European Society of Intensive Care Medicine. Intensive Care Med. 1998;24:864–877.[PubMed]
  6. George I, Xydas S, Topkara VK, Ferdinando C, et al. Clinical indication for use and outcomes after inhaled nitric oxide therapy. Ann Thorac Surg. 2006;82:2161–2169. [PubMed]
  7. Bernard GR, Artigas A, Brigham KL, Carlet J,et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824. [PubMed]
  8. Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med.1993;328:399–405. [PubMed]
  9. Sokol J, Jacobs SE, Bohn D. Inhaled nitric oxide for acute hypoxic respiratory failure in children and adults: a meta-analysis. Anesth Analg. 2003;97:989–998. [PubMed]
  10. Adhikari NK, Burns KE, Friedrich JO, Granton JT, Cook DJ, Meade MO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis.  BMJ. 2007;334:779.[PMC free article] [PubMed]
  11. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.  Nature. 1987;327:524–526. [PubMed]
  12. Nitric Oxide: The Nobel Prize in Physiology or Medicine 1998 Robert F. Furchgott, Louis J. Ignarro, Ferid Murad. Leaders in Pharmacutical Intelligence.  A blog specializing in Pharmaceutical Intelligence and Analytics
  13. McCarthy HO, Coulter JA, Robson T, Hirst DG. Gene therapy via inducible nitric oxide synthase: a tool for the treatment of a diverse range of pathological conditions. J Pharm Pharmacol. 2008;60:999–1017. [PubMed]
  14. Coggins MP, Bloch KD. Nitric oxide in the pulmonary vasculature.   Arterioscler Thromb Vasc Biol. 2007;27:1877–1885. [PubMed]
  15. McMahon TJ, Doctor A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proc Am Thorac Soc. 2006;3:153–160. [PMC free article] [PubMed]
  16. Cokic VP, Schechter AN. Effects of nitric oxide on red blood cell development and phenotype. Curr Top Dev Biol. 2008;82:169–215. [PubMed]
  17. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 2008; 7:156–167. [PubMed]
  18. Moya MP, Gow AJ, Califf RM, Goldberg RN, Stamler JS. Inhaled ethyl nitrite gas for persistent pulmonary hypertension of the newborn. Lancet  2002; 360:141–143. [PubMed]

Creagh-BrownBC, Griffiths MJD, Evans TW. “Bench-to-bedside review: Inhaled nitric oxide therapy in adults”. Crit Care.  2009;  13(3): 221. Published online 2009 May 29. doi:  10.1186/cc7734. PMCID: PMC2717403.

This article is modified from a review series on Gaseous mediators, edited by Peter Radermacher.

Other articles in the series can be found online athttp://ccforum.com/series/gaseous_mediators

Part II. Application of inhaled NO and circulatory effects

Cardiovascular effects

NO activates soluble guanylyl cyclase by binding to its heme group to form cyclic guanosine 3’5′-monophosphate (cGMP)   activating a protein kinase. Consequently, myosin sensitivity to calcium-induced contraction is reduced lowering the intracellular calcium concentration as a result of activating calcium-sensitive potassium channels and inhibiting release of calcium. The smooth muscle cell (SMC) relaxation with decrease in pulmonary vascular resistance (PVR) and decreased RV after load could improve cardiac output. However, left ventricular impairment associated with decrease in PVR allows increased RV output to a greater extent than the left ventricle can accommodate and the increase in left atrial pressure reinforces pulmonary edema.

Inhaled NO augments the normal physiological mechanism of hypoxic pulmonary ventilation (HPV) and improves systemic oxygenation ​(Figure 2). The effects of inhaled NO on systemic oxygenation are limited. Experiments show that intravenously administered vasodilators counteract HPV [3]. However, the non-pulmonary effects of inhaled NO include increased renal and hepatic blood flow and oxygenation [14].

From:

Published online 2009 May 29. doi: 10.1186/cc7734

Figure 2

Hypoxic pulmonary vasoconstriction (HPV).       (a) Normal ventilation-perfusion (VQ) matching. (b) HPV results in VQ matching despite variations in ventilation and gas exchange between lung units. (c) Inhaled nitric oxide (NO) augmenting VQ matching by vasodilating.

Non-cardiovascular effects relevant to lung injury

Neutrophils are important cellular mediators of ALI. Limiting neutrophil production of oxidative species and proteolysis reduces lung injury. In neonates, prolonged administration of NO diminished neutrophil-mediated oxidative stress [19]. Neutrophil deformability and CD18 expression were reduced in animal models [20] accomp-anied by decreases in adhesion and migration [21]. These changes limit damage to the alveolar-capillary membrane and the accumulation of protein-rich fluid within the alveoli. Platelet activation and aggregation, intra-alveolar thrombi, contribute to ALI. Inhaled NO attenuates the procoagulant activity in animal models of ALI [22] and a similar effect is seen in patients with ALI [23], but also in healthy volunteers [23,24]. In patients with ALI, decreased surfactant activity in the alveoli and noncompliance, as we recall is hyaline membrane disease accompanied by impaired pulmonary function [25].  The deleterious effects of the NO damages the alveolar wall with loss of surfactant by reactions with RNS [26]. Finally, prolonged exposure to NO in experimental models impairs cellular respiration [27].

The failure of inhaled NO to improve outcome in ALI/ARDS is therefore potentially due to several factors. First, patients with ALI/ARDS die of multi-organ failure, as the actions of NO are not expected to improve the outcome of multi-organ failure, which is a cytokine driven process leading to circulatory collapse. Indeed, the expected beneficial effect of inhaled NO is abrogated by detrimental downstream systemic effects discussed. Second, ALI/ARDS is a heterogeneous condition with diverse causes. Finally, using inhaled NO without frequent dose titration risks unwanted systemic effects without the expected benefits.

Other clinical uses of inhaled nitric oxide

Pulmonary hypertension and acute right ventricular failure

RVF may develop when there is abnormally elevated PVR and/or impaired RV perfusion.  ​Table 2 lists common causes of acute RVF. The RV responds poorly to inotropic agents but is exquisitely sensitive to after load reduction.

From:

Published online 2009 May 29. doi: 10.1186/cc7734

Table 2

Reducing PVR will have beneficial effects on cardiac output and therefore oxygen delivery. In the context of high RV afterload with low systemic pressures or when there is a limitation of flow within the right coronary artery [28], RV failure triggers a backward failure of venous return, as diagrammatically represented in  ​Figure 3.

From:

Published online 2009 May 29. doi: 10.1186/cc7734

Figure 3

Pathophysiology of right ventricular failure. CO, cardiac output; LV, left ventricle; PAP, pulmonary artery pressure; PVR, pulmonary vascular resistance; RV, right ventricle.

Inhaled NO is used when RV failure complicates cardiac surgery, as cardiopulmonary bypass per se causes diminished endogenous NO production [29]. There is marked variation in response to inhaled NO between patients [30] and in the same patient over time. After prolonged use, there is a leftward shift in the dose-response curve.  The risk of excessive NO administration is associated with toxicity and loss of the therapeutic effect without regular titration against a therapeutic goal [31].  Further, cardiac transplantation may be complicated by pulmonary hypertension and RVF that are improved with NO [32]. Early ischemia-reperfusion injury after lung transplantation manifests clinically as pulmonary edema and is a cause of significant morbidity and mortality [33,34]. Although NO has been administered in this circumstance [35], it hasn’t prevented ischemia-reperfusion injury in clinical lung transplantation [36]. Inhaled NO has been used successfully in patients with cardiogenic shock and RVF associated with acute myocardial infarction [37,38,46], and in patients with acute RVF following acute pulmonary venous thrombo-emboli [39, 47].  An explanation is needed in view of the downstream effects of systemic vasoconstriction and MOF previously identified. No systematic evaluation of inhaled NO and its effect on clinical outcome has been conducted in these conditions.

Acute chest crises of sickle cell disease

Acute chest crises are the second most common cause of hospital admission in patients with sickle cell disease (SCD) and are responsible for 25% of all related deaths [40]. Acute chest crises are manifest by fever, respiratory symptoms or chest pain, and new pulmonary infiltrate on chest  x-ray. The major contributory factors are related to vaso-occlusion. Hemolysis of sickled erythrocytes releasing Hb into the circulation generates reactive oxygen species and reacts with NO [41]. In SCD, the free Hb depletes NO. In addition arginase 1 is released, depleting the arginine needed for NO production, [42]. While secondary PVH is common in adults with SCD the physiological rationale for the use of inhaled NO needs to be considered, except for the complication just referred to. Thus far, iNO has failed to demonstrate either persistent improvements in physiology or beneficial effects on any accepted measure of outcome in clinical trials (other than its licensed indication in neonates). Therefore, inhaled NO is usually reserved for refractory hypoxemia.

Potential problems in designing and conducting RCTs in the efficacy of inhaled NO are numerous. Blinded trials will be difficult to conduct as the effects of inhaled NO are immediately apparent. Recruitment is limited as there is little time for consent/assent or randomization. Finally, industry funding might cast doubt on the independence of the trial results.

Inhaled NO is an unproved tool in the intensivist’s armamentarium of rescue therapies for refractory hypoxemia even though it has an established role in managing complications of cardiac surgery and in heart/lung transplantation. The current place for inhaled NO in the management of ALI/ARDS, acute sickle chest crisis, acute RV failure, and acute pulmonary embolism is a rescue therapy.

Abbreviations

ALI: acute lung injury; ARDS: acute respiratory distress syndrome; Hb: haemoglobin; HPV: hypoxic pulmonary vasoconstriction; iNO: inhaled nitric oxide; iNOS: inducible nitric oxide synthase; NO: nitric oxide; NO2: nitrogen dioxide; NOS: nitric oxide synthase; PaO2/FiO2: arterial partial pressure of oxygen/fraction of inspired oxygen; PVR: pulmonary vascular resistance; RCT: randomised controlled trial; RNS: reactive nitrogen species; RV: right ventricle; RVF: right ventricular failure; SCD: sickle cell disease; SMC: smooth muscle cell.

  1. Hunter CJ. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med 2004; 10:1122–1127. [PubMed]
  2. Gessler P, Nebe T, Birle A, Mueller W, Kachel W. A new side effect of inhaled nitric oxide in neonates and infants with pulmonary hypertension: functional impairment of the neutrophil respiratory burst. Intensive Care Med 1996; 22:252–258. [PubMed]
  3. Sato Y, Walley KR, Klut ME, English D, D’yachkova Y, et al. Nitric oxide reduces the sequestration of polymorphonuclear leukocytes in lung by changing deformability and CD18 expression. Am J Respir Crit Care Med 1999; 159:1469–1476. [PubMed]
  4. Bloomfield GL, Holloway S, Ridings PC, Fisher BJ, et al. Pretreatment with inhaled nitric oxide inhibits neutrophil migration and oxidative activity resulting in attenuated sepsis-induced acute lung injury. Crit Care Med 1997; 25:584–593. [PubMed]
  5. Kermarrec N, Zunic P, Beloucif S, Benessiano J, et al. Impact of inhaled nitric oxide on platelet aggregation and fibrinolysis in rats with endotoxic lung injury. Role of cyclic guanosine 5′-monophosphate. Am J Respir Crit Care Med. 1998;158:833–839.[PubMed]
  6. Gries A, Bode C, Peter K, Herr A, Böhrer H, et al. Inhaled nitric oxide inhibits human platelet aggregation, P-selectin expression, and fibrinogen binding in vitro and in vivo. Circulation. 1998;97:1481–1487. [PubMed]
  7. Gries A, Herr A, Motsch J, Holzmann A, Weimann J, et al. Randomized, placebo-controlled, blinded and cross-matched study on the antiplatelet effect of inhaled nitric oxide in healthy volunteers. Thromb Hemost 2000; 83:309–315. [PubMed]
  8. Cheng IW, Ware LB, Greene KE, Nuckton TJ, et al. Prognostic value of surfactant proteins A and D in patients with acute lung injury. Crit Care Med 2003; 31:20–27. [PubMed]
  9. Robbins CG, Davis JM, Merritt TA, Amirkhanian JD et al. Combined effects of nitric oxide and hyperoxia on surfactant function and pulmonary inflammation. Am J Physiol 1995; 269(4 Pt 1):L545–550. [PubMed]
  10. Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitro-sylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 1998; 95:7631–7636. [PMC free article] [PubMed]
  11. Vlahakes GJ. Right ventricular failure following cardiac surgery. Coron Artery Dis 2005; 16:27–30. [PubMed]
  12. Morita K, Ihnken K, Buckberg GD, Sherman MP, Ignarro LJ. Pulmonary vasoconstriction due to impaired nitric oxide production after cardiopulmonary bypass. Ann Thorac Surg 1996; 61:1775–1780.[PubMed]
  13. Wessel DL, Adatia I, Giglia TM, Thompson JE, Kulik TJ. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation 1993; 88 (5 Pt 1):2128–2138. [PubMed]
  14. Solina A, Papp D, Ginsberg S, Krause T, et al. A comparison of inhaled nitric oxide and milrinone for the treatment of pulmonary hypertension in adult cardiac surgery patients. J Cardiothorac Vasc Anesth 2000; 14:12–17. [PubMed]
  15. Ardehali A, Hughes K, Sadeghi A, Esmailian F, et al. Inhaled nitric oxide for pulmonary hypertension after heart transplantation. Transplantation 2001; 72:638–641. [PubMed]
  16. King RC, Binns OA, Rodriguez F, Kanithanon RC, et al. Reperfusion injury significantly impacts clinical outcome after pulmonary transplantation. Ann Thorac Surg 2000; 69:1681–1685. [PubMed]
  17. de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167:490–511. [PubMed]
  18. Kemming GI, Merkel MJ, Schallerer A, Habler OP, et al. Inhaled nitric oxide (NO) for the treatment of early allograft failure after lung transplantation. Munich Lung Transplant Group.  Intensive Care Med 1998; 24:1173–1180. [PubMed]
  19. Meade MO, Granton JT, Matte-Martyn A, McRae K, aet al. Toronto Lung Transplant Program A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med 2003; 167:1483–1489.[PubMed]
  20. Fujita Y, Nishida O, Sobue K, Ito H, et al.  Nitric oxide inhalation is useful in the management of right ventricular failure caused by myocardial infarction.  Crit Care Med 2002; 30:1379–1381. [PubMed]
  21. Inglessis I, Shin JT, Lepore JJ, Palacios IF, et al. Hemodynamic effects of inhaled nitric oxide in right ventricular myocardial infarction and cardiogenic shock. J Am Coll Cardiol 2004; 44:793–798. [PubMed]
  22. Szold O, Khoury W, Biderman P, Klausner JM,  et al. Inhaled nitric oxide improves pulmonary functions following massive pulmonary embolism: a report of four patients and review of the literature.  Lung 2006; 184:1–5. [PubMed]
  23. SiddiquiAK, Ahmed S. Pulmonary manifestations of sickle cell disease. Postgrad Med J 2003; 79:384–390. [PMC free article] [PubMed]
  24. Reiter CD, GladwinMT. An emerging role for nitric oxide in sickle cell disease vascular homeostasis and therapy. Curr Opin Hematol 2003; 10:99–107. [PubMed]
  25. GladwinMT, Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med 2008; 359:2254–2265. [PubMed]
  26. GladwinMT, Schechter AN. Nitric oxide therapy in sickle cell disease. Semin Hematol  2001; 38:333–342. [PubMed]
  27. Atz AM, Wessel DL. Inhaled nitric oxide in sickle cell disease with acute chest syndrome. Anesthesiology 1997; 87:988–990. [PubMed]
  28. Sullivan KJ, Goodwin SR, Evangelist J, Moore RD, Mehta P. Nitric oxide successfully used to treat acute chest syndrome of sickle cell disease in a young adolescent.  Crit Care Med 1999; 27:2563–2568. [PubMed]
  29. Al Hajeri A, Serjeant GR, Fedorowicz Z. Inhaled nitric oxide for acute chest syndrome in people with sickle cell disease. Cochrane Database Syst Rev 2008;(1):CD006957. [PubMed]
  30. Bigatello LM, Stelfox HT, Hess D. Inhaled nitric oxide therapy in adults – opinions and evidence. Intensive Care Med. 2005;31:1014–1016. [PubMed]
  31. Dellinger RP, Zimmerman JL, Taylor RW, Straube RC, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med 1998; 26:15–23. [PubMed]
  32. Michael JR, Barton RG, Saffle JR, Mone M, et al.  Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS. Am J Respir Crit Care Med 1998; 157 (5 Pt 1): 1372–1380. [PubMed]
  33. Troncy E, Collet JP, Shapiro S, Guimond JG, et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med 1998; 157 (5 Pt 1):1483–1488. [PubMed]
  34. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med 1999; 25:911–919. [PubMed]
  35. Park KJ, Lee YJ, Oh YJ, Lee KS, Sheen SS, Hwang SC. Combined effects of inhaled nitric oxide and a recruitment maneuver in patients with acute respiratory distress syndrome. Yonsei Med J 2003; 44:219–226.[PubMed]
  36. Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, et al.  Inhaled Nitric Oxide in ARDS Study Group. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial.  JAMA  2004; 291:1603–1609.[PubMed]

Related articles

 

Read Full Post »


Curator/Author: Aviral Vatsa PhD, MBBS

Nitric oxide is one of the smallest molecules involved in physiological functions in the body. It is a diatom and thus seeks formation of chemical bonds with its targets rather than structure-function configuration of say protein receptors. Nitric oxide can exert its effects principally by two ways:

  • Direct
  • Indirect

Direct actions, as the name suggests, result from direct chemical interaction of NO with its targets e.g. with metal complexes, radical species. These actions occur at relatively low NO concentrations (<200 nM)

Indirect actions result from the effects of reactive nitrogen species (RNS) such as NO2 and N2O3. These reactive species are formed by the interaction of NO with superoxide or molecular oxygen. RNS are generally formed at relatively high NO concentrations (>400 nM)

Credits: Nitric Oxide: Biology and Pathobiology By Louis J. Ignarro

Credits: Nitric Oxide: Biology and Pathobiology By Louis J. Ignarro

Although it can be tempting for scientists to believe that RNS will always have deleterious effects and NO will have anabolic effects, this is not entirely true as certain RNS mediated actions mediate important signalling steps e.g. thiol oxidation and nitrosation of proteins mediate cell proliferation and survival, and apoptosis respectively. As depicted in the figure above, NO concentration determines the action it exerts on different proteins. This is highlighted in the following examples from different studies:

  • Cells subjected to NO concentration between 10-30 nM were associated with cGMP dependent phosphorylation of ERK
  • Cells subjected to NO concentration between 30-60 nM were associated with Akt phosphorylation
  • Concentration nearing 100 nM resulted in stabilisation of hypoxia inducible factor-1
  • At nearly 400 nM NO, p53 can be modulated
  • >1μM NO, it nhibits mitochondrial respiration

Besides the concentration, duration of NO exposure also determines how proteins respond to NO. Hence proteins can be ‘immediate’ responders or ‘delayed’ responders. The response can be either ‘transient’ (short lived) or ‘sustained’ (prolonged). Different proteins fall into these different categories. These are not rigid categories rather a functional ‘classification’.

Endogenously generated NO concentration ranges from 2 nM as in endothelial cell to >1 μM in a fully activated macrophage. This wide range, along with the unique chemical reactivity of NO offers immense versatility to the physiological effects that it can exert in different cellular milieu in the body.

In addition to the concentration-dependent effects, other factors that determine the local cellular/tissue milieu add to the complexities involved with signal transduction undertaken by NO. These factors are

  • rate of NO production
  • diffusion distance
  • rates of consumption
  • reactivity of RNS with molecular targets.

These kinetic determinants play vital role in physiological functions and disease states.

Although it is not possible to detail the modes of modulation of biological functions by NO in a short post, but I hope the post gives a taste of the intricacies involved with NO functions and that there are various parameters that determine the exact role of NO in a biological milieu.

Sources

http://www.pnas.org/content/101/24/8894.short

http://onlinelibrary.wiley.com/doi/10.1002/ijc.22336/full

http://cancerres.aacrjournals.org/content/67/1/289.short

http://www.sciencedirect.com/science/article/pii/S0005272806000417

http://goo.gl/eVXFh

Read Full Post »

« Newer Posts