Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘Foundation Medicine’


Reporter: Stephen J. Williams, PhD

10:00-10:45 AM The Davids vs. the Cancer Goliath Part 1

Startups from diagnostics, biopharma, medtech, digital health and emerging tech will have 8 minutes to articulate their visions on how they aim to tame the beast.

Start Time End Time Company
10:00 10:08 Belong.Life
10:09 10:17 Care+Wear
10:18 10:26 OncoPower
10:27 10:35 PolyAurum LLC
10:36 10:44 Seeker Health

Speakers:
Karthik Koduru, MD, Co-Founder and Chief Oncologist, OncoPower
Eliran Malki, Co-Founder and CEO, Belong.Life
Chaitenya Razdan, Co-founder and CEO, Care+Wear @_crazdan
Debra Shipley Travers, President & CEO, PolyAurum LLC @polyaurum
Sandra Shpilberg, Founder and CEO, Seeker Health @sandrashpilberg

Belong Life

  • 10,000 cancer patients a month helping patients navigate cancer care with Belong App
  • Belong Eco system includes all their practitioners and using a trigger based content delivery (posts, articles etc)
  • most important taking unstructured health data (images, social activity, patient compilance) and converting to structured data

Care+Wear

personally design picc line cover for oncology patients

partners include NBA Major league baseball, Oscar de la Renta,

designs easy access pic line gowns and shirts

OncoPower :Digital Health in a Blockchain Ecosystem

problems associated with patient adherence and developed a product to address this

  1. OncoPower Blockchain: HIPAA compliant using the coin Oncopower security token to incentiavize patients and oncologists to consult with each other or oncologists with tumor boards; this is not an initial coin offering

PolyArum

  • spinout from UPENN; developing a nanoparticle based radiation therapy; glioblastoma muse model showed great response with gold based nanoparticle and radiation
  • they see enhanced tumor penetration, and retention of the gold nanoparticles
  • however most nanoparticles need to be a large size greater than 5 nm to see effect so they used a polymer based particle; see good uptake but excretion past a week so need to re-dose with Au nanoparticles
  • they are looking for capital and expect to start trials in 2020

Seeker Health

  • tying to improve the efficiency of clinical trial enrollment
  • using social networks to find the patients to enroll in clinical trials
  • steps they use 1) find patients on Facebook, Google, Twitter 2) engage patient screen 3) screening at clinical sites
  • Seeker Portal is a patient management system: patients referred to a clinical site now can be tracked

11:00- 11:45 AM Breakout: How to Scale Precision Medicine

The potential for precision medicine is real, but is limited by access to patient datasets. How are government entities, hospitals and startups bringing the promise of precision medicine to the masses of oncology patients

Moderator: Sandeep Burugupalli, Senior Manager, Real World Data Innovation, Pfizer @sandeepburug
Speakers:
Ingo ​Chakravarty, President and CEO, Navican @IngoChakravarty
Eugean Jiwanmall, Senior Research Analyst for Medical Policy & Technology Evaluation , Independence Blue Cross @IBX
Andrew Norden, M.D., Chief Medical Officer, Cota @ANordenMD
Ankur Parikh M.D, Medical Director of Precision Medicine, Cancer Treatment Centers of America @CancerCenter

Ingo: data is not ordered, only half of patients are tracked in some database, reimbursement a challenge

Eugean: identifying mutations as patients getting more comprehensive genomic coverage, clinical trials are expanding more rapidly as seen in 2018 ASCO

Ingo: general principals related to health outcomes or policy or reimbursement.. human studies are paramount but payers may not allowing for general principals (i.e. an Alk mutation in lung cancer and crizotanib treatment may be covered but maybe not for glioblastoma or another cancer containing similar ALK mutation; payers still depend on clinical trial results)

Andrew: using gene panels and NGS but only want to look for actionable targets; they establish an expert panel which reviews these NGS sequence results to determine actionable mutations

Ankur:  they have molecular tumor boards but still if want to prescribe off label and can’t find a clinical trial there is no reimbursement

Andrew: going beyond actionable mutations, although many are doing WES (whole exome sequencing) can we use machine learning to see if there are actionable data from a WES

Ingo: we forget in datasets is that patients have needs today and we need those payment systems and structures today

Eugean: problem is the start from cost (where the cost starts at and was it truly medically necessary)

Norden: there are not enough data sharing to make a decision; an enormous amount of effort to get businesses and technical limitations in data sharing; possibly there are policies needed to be put in place to assimilate datasets and promote collaborations

Ingo: need to take out the middle men between sequencing of patient tumor and treatment decision; middle men are taking out value out of the ‘supply chain’;

Andrew: PATIENTS DON’T OWN their DATA but MOST clinicians agree THEY SHOULD

Ankur: patients are willing to share data but the HIPAA compliance is a barrier

 

11:50- 12:30 AM Fireside Chat with Michael Pellini, M.D.

Building a Precision Medicine Business from the Ground Up: An Operating and Venture Perspective

Dr. Pellini has spent more than 20 years working on the operating side of four companies, each of which has pushed the boundaries of the standard of care. He will describe his most recent experience at Foundation Medicine, at the forefront of precision medicine, and how that experience can be leveraged on the venture side, where he now evaluates new healthcare technologies.

Speaker:
Michael Pellini, M.D., Managing Partner, Section 32 and Chairman, Foundation Medicine @MichaelPellini

Roche just bought Foundation Medicine for $2.5 billion.  They negotiated over 7 months but aside from critics they felt it was a great deal because it gives them, as a diagnostic venture, the international reach and biotech expertise.  Foundation Medicine offered Roche expertise on the diagnostic space including ability to navigate payers and regulatory aspects of the diagnostic business.  He feels it benefits all aspects of patient care and the work they do with other companies.

Moderatore: Roche is doing multiple deals to ‘own’ a disease state.

Dr. Pellini:  Roche is closing a deal with Flatiron just like how Merck closed deals with genomics companies.  He feels best to build the best company on a stand alone basis and provide for patients, then good things will happen.  However the problem of achieving scale for Precision Medicine is reimbursement by payers.  They still have to keep collecting data and evolving services to suit pharma.  They didn’t know if there model would work but when he met with FDA in 2011 they worked with Precision Medicine, said collect the data and we will keep working with you,

However the payers aren’t contributing to the effort.  They need to assist some of the young companies that can’t raise the billion dollars needed for all the evidence that payers require.  Precision Medicine still have problems, even though they have collected tremendous amounts of data and raised significant money.  From the private payer perspective there is no clear roadmap for success.

They recognized that the payers would be difficult but they had a plan but won’t invest in companies that don’t have a plan for getting reimbursement from payers.

Moderator: What is section 32?

Pellini:  Their investment arm invests in the spectrum of precision healtcare companies including tech companies.  They started with a digital path imaging system that went from looking through a scope and now looking at a monitor with software integrated with medical records. Section 32 has $130 million under management and may go to $400 Million but they want to stay small.

Pellini: we get 4-5 AI pitches a week.

Moderator: Are you interested in companion diagnostics?

Pellini:  There may be 24 expected 2018 drug approvals and 35% of them have a companion diagnostic (CDX) with them.  however going out ten years 70% may have a CDX associated with them.  Payers need to work with companies to figure out how to pay with these CDXs.

 

 

Advertisements

Read Full Post »


 

Mutation D538G – a novel mechanism conferring acquired Endocrine Resistance causes a change in the Estrogen Receptor and Treatment of Breast Cancer with Tamoxifen

Reporter: Aviva Lev-Ari, PhD, RN

 

Mutation Linked to Resistance in Breast Cancer

Published: Nov 12, 2013

By Charles Bankhead, Staff Writer, MedPage Today
Reviewed by F. Perry Wilson, MD, MSCE; Instructor of Medicine, Perelman School of Medicine at the University of Pennsylvania and Dorothy Caputo, MA, BSN, RN, Nurse Planner

 

A mutation on the estrogen receptor altered tamoxifen bindings and conferred tumor cell resistance to the breast cancer agent, suggesting a pathway to treatment resistance, investigators reported.

The D538G mutation appeared in liver metastases but not primary breast tumors of women treated with hormonal therapy, according to Ido Wolf, MD, of the University of Tel Aviv in Israel, and colleagues.

Laboratory studies suggested that D538Gcauses a change in the estrogen receptor that “disrupts the interaction between the receptor and either estrogen or tamoxifen, bur mimics the conformation of the activated receptor,” they wrote online inCancer Research. “Studies in cell lines confirmed ligand-independent, constitutive activity of the mutated receptor.”

“Taken together, these data indicate the mutation D538G as a novel mechanism conferring acquired endocrine resistance.”

About three-fourths of all breast cancers express estrogen receptor-alpha. Targeting the receptor with tamoxifen, or another hormonal therapy, disrupts signaling that reduces levels of the functional protein produced that binds to the receptor or inhibits the receptor.

Some patients with metastatic breast cancer do not respond to any form of endocrine treatment (primary resistance). Almost all patients who initially respond to endocrine therapy eventually develop resistance to the therapy (acquired resistance).

Several mechanisms of acquired resistance have been identified, including reduced expression of estrogen receptor alpha, altered activity of regulatory proteins, and increased activity of growth factor signaling pathways that help drive tumor growth and progression, the authors noted.

Protein mutation occurs with some regularity in tumorigenesis, but fewer than 1% of primary breast tumors develop mutations in estrogen receptor-alpha. No previous studies had shown that acquired mutations in estrogen receptor-alpha might play a role in the development of resistance to hormonal therapy.

As part of their search for cancer-related genes, Wolf and colleagues examined tumor specimens from 13 patients with metastatic breast cancer that had proven unresponsive to multiple lines of therapy. Genetic analysis showed that metastases from five patients had developed mutations in estrogen receptor-alpha, resulting in the substitution of aspartic acid to glycine at position 538 of the receptor gene.

“Importantly, the mutation was not detected in the primary tumors obtained prior to endocrine treatment,” the authors noted in their discussion of the findings.

Two previous activating mutations of estrogen receptor-alpha have been identified, but neither has been linked to resistance to hormonal therapy for breast cancer. Moreover, no acquired mutations (not present in the primary tumor) had been identified previously.

A limitation of this study was that the women were “highly selected, heavily pretreated patients and may not represent the general population of patients with breast cancer,” the authors pointed out.

“The actual prevalence of the D538G mutation needs to be determined in large cohorts of patients,” Wolf and colleagues concluded. “If indeed the mutation is identified in a significant proportion of patients, direct testing of it may be an easy and cheap method to predict response to hormonal therapy.”

The study was supported by the Israel Cancer Association, Margaret Stultz Foundation, Sackler Faculty of Medicine, and the Israel Science Foundation.

Wolf reported no conflicts of interest. One or more co-authors reported relationships with Oncotest-Teva Pharmaceuticals, Foundation Medicine, and Novartis.

SOURCE

http://www.medpagetoday.com/HematologyOncology/BreastCancer/42863?xid=nl_mpt_guptaguide_2013-11-12&utm_source=guptaguide&utm_medium=email&utm_content=mpt&utm_campaign=11%7C12%7C2013&userid=99985&eun=g5099207d10r&email=avivalev-ari@alum.berkeley.edu&mu_id=5099207

 

Read Full Post »


Curator:  Aviva Lev-Ari, PhD,RN

Cancer Diagnostics by Genomic Sequencing: ‘No’ to Sequencing Patient’s DNA, ‘No’ to Sequencing Patient’s Tumor, ‘Yes’ to focus on Gene Mutation Aberration & Analysis of Gene Abnormalities

How to Tailor Cancer Therapy to the particular Genetics of a patient’s Cancer

THIS IS A SERIES OF FOUR POINTS OF VIEW IN SUPPORT OF the Paradigm Shift in Human Genomics

‘No’ to Sequencing Patient’s DNA, ‘No’ to Sequencing Patient’s Tumor, ‘Yes’ to focus on Gene Mutation Aberration & Analysis of Gene Abnormalities

PRESENTED in the following FOUR PARTS. Recommended to be read in its entirety for completeness and arrival to the End Point of Present and Future Frontier of Research in Genomics

Part 1:

Research Paradigm Shift in Human Genomics – Predictive Biomarkers and Personalized Medicine

https://pharmaceuticalintelligence.com/2013/01/13/paradigm-shift-in-human-genomics-predictive-biomarkers-and-personalized-medicine-part-1/

Part 2:

LEADERS in the Competitive Space of Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment

https://pharmaceuticalintelligence.com/2013/01/13/leaders-in-genome-sequencing-of-genetic-mutations-for-therapeutic-drug-selection-in-cancer-personalized-treatment-part-2/

Part 3:

Personalized Medicine: An Institute Profile – Coriell Institute for Medical Research

https://pharmaceuticalintelligence.com/2013/01/13/personalized-medicine-an-institute-profile-coriell-institute-for-medical-research-part-3/

Part 4:

The Consumer Market for Personal DNA Sequencing

https://pharmaceuticalintelligence.com/2013/01/13/consumer-market-for-personal-dna-sequencing-part-4/

 

Part 2:

LEADERS in the Competitive Space of Genome Sequencing of Genetic Mutations for Therapeutic Drug Selection in Cancer Personalized Treatment

 

  • Foundation Medicine, a Cambridge, Mass.-based company that sells a $5,800 diagnostic test that uses DNA sequencing to help doctors guess which cancer drugs would be helpful in fighting a particular patient’s tumor.

CAMBRIDGE, Mass., January 8, 2013 – Foundation Medicine, Inc. today announced an expansion of its Series B financing, raising an additional $13.5 million and bringing the total raised in the round to $56 million. The new investors include Bill Gates, Evan Jones and Yuri Milner.

“Advances in understanding the human genome are having a dramatic impact on almost every area of medicine,” said Bill Gates. “Foundation Medicine’s approach in harnessing the power of genomic data to improve care for cancer patients could represent an extremely important step forward in improving routine cancer care. I’m happy to be supporting this quite promising approach.”

http://www.foundationmedicine.com/pdf/news-releases/2013_01_08_FMI_Series_B_Ext_FINAL.pdf

Foundation, which previously listed Kleiner Perkins Caulfield & Byers and Google Ventures, raised $13.5 million in the series B round in which Gates participated, bringing its total take to $56 million. The other investors were Facebook billionaire Yuri Milner, who also recently invested in the personal genomics company 23andMe, and Evan Jones, the diagnostics industry legend who founded DiGene, which was sold to Qiagen for $1.6 billion in 2007. Jones will also join Foundation’s board.

http://www.forbes.com/sites/matthewherper/2013/01/08/bill-gates-invests-in-cancer-dna-sequencing-firm/

It now costs as little as $1,000 to get a fairly accurate readout of the 6 billion letters of DNA code for any single person.

In cancer, the approach right now is usually not to sequence all a patient’s DNA or that of his tumor, but instead to focus on particular genetic mutations in the tumor that might provide clues as to what medicines to try. Major cancer centers are using this approach with patients for whom it’s not obvious which medicine represents the best bet. Foundation’s approach has been to provide that kind of testing to a larger audience. To do so, it uses the DNA sequencing machines made by Illumina and other companies.

“What we want to do is take this testing to the community practices to treat patients where they live,” Michael Pellini, Foundation’s chief executive, 2011.

There is some evidence backing up that test. In a study conducted with the Dana-Farber Cancer Institute and published in Nature Medicine, found that more than half of patients with lung and colon cancer might benefit from the test.  from high-speed tests that detect DNA flaws doctors can target with existing medicines, a study found.

Researchers used a gene test made by closely held Foundation Medicine Inc. to sequence 145 cancer-associated genes in 40 colon tumor samples and 24 lung tumors.

They found that

53 percent of colon tumors and

71 percent of lung tumors

had mutations that may be attacked with cancer medicines on the market or in human trials, according to the study published in Nature Medicine. In some cases, the results revealed what drugs wouldn’t work against the tumors.

The study from researchers at Foundation Medicine and the Dana-Farber Cancer Institute in Boston, shows the value of using DNA sequencing machines to optimize treatment by matching drugs against specific gene abnormalities inside a patient’s tumor, said Pasi Janne, a study co-author.

Finding Gene Abnormalities

Maureen Cronin, a study co-author and molecular pharmacologist at Cambridge, Massachusetts-based Foundation Medicine, said her company was finding new gene abnormalities at a much higher rate than they expected as it performs DNA scans on tumors.

“We expected to find new things, but not at the frequency we are finding them,” she said in a telephone interview. The results “are very surprising.

The study also suggests cancer researchers may need to rethink the way they classify and treat the disease, Cronin said. The particular genetic abnormality inside tumor DNA may matter as much as what organ the tumor came from, she said.

Pfizer is aware of the new lung cancer gene finding and “believes the data are interesting,” said Jenifer Antonacci, a company spokeswoman, in an e-mail.

Laura Woodin, a spokeswoman for London-based AstraZeneca, said the company “is constantly alert to new developments and research in the science of oncology and we review relevant, peer reviewed studies for what they might mean for patients and drug development.”

Foundation Medicine performs a $5,800 test that takes tumor samples and sequences DNA from 200 genes relevant to cancer. It is funded with $33.5 million in venture capital from Third Rock Ventures, Kleiner Perkins Caufield & Byers and Google Ventures, according to its website. $56 Millions on January 8, 2013.

It is difficult to analyze DNA data, Foundation’s test is anything but a full genome, it’s a $6,000 .02% of the genome, showing how much of the problem of using genetic information will need to coming from solving computational and analytical problems — exactly the kind of thing that Bill Gates has always been interested in both at Microsoft and in his work getting lifesaving vaccines to children all around the world.

http://www.bloomberg.com/news/2012-02-12/high-speed-dna-scans-help-most-lung-cancer-patients-study-finds.html

Physicians need to incorporate the latest molecular diagnostic tests to help guide treatment of cancer patients due to the growing number of molecular subtypes that are understood across tumor types.

As more targeted therapies are approved for new molecular subtypes, the number of tests that need to be performed on each patient to determine their subtype increases and very quickly exhausts the very small amount of tumor tissue that is available in routine, clinical samples

Importantly, as patients’ molecular subtypes are more broadly incorporated into physician treatment decisions, we continue to further our understanding of a pathway view of cancer. Patients with different tumor types can have same molecular subtype – often, these therapies are applicable across tumor types since they are targeting the same pathway.

Comprehensive cancer genome analysis to routine cancer care. The company’s initial clinical assay, FoundationOneTM, is a fully informative genomic profile to identify a patient’s individual molecular alterations and match them with relevant targeted therapies and clinical trials.

http://www.foundationmedicine.com/diagnostics.php

The DNA sequencing field has drawn increased interest from pharmaceutical makers focused on developing gene-targeted therapies. Roche Holding AG (ROG), the world’s biggest maker of cancer medicines, last month began a $5.7 billion hostile takeover offer for Illumina Inc., the maker of gene sequencing machines that Foundation Medicine uses in its tests.

  • Pfizer’s Sutent

The researchers also spotted a previously unknown genetic flaw in 2 percent of 561 lung tumors tested. The flaw activates a growth-boosting protein targeted by Pfizer Inc. (PFE)’s kidney- cancer drug Sutent, hinting that the treatment from the New York-based drugmaker may also work in these lung patients, said Janne. He wants to begin a trial of Sutent in lung-cancer patients with the gene change by year end, he said.

Lev-Ari, A. (2012N). Sunitinib (Sutent) brings Adult acute lymphoblastic leukemia (ALL) to Remission – RNA Sequencing – FLT3 Receptor Blockade

https://pharmaceuticalintelligence.com/2012/07/09/sunitinib-brings-adult-all-to-remission-rna-sequencing/

Pfizer’s Kidney Cancer Drug Sutent Effectively caused REMISSION to Adult Acute Lymphoblastic Leukemia (ALL)

https://pharmaceuticalintelligence.com/2012/07/10/pfizers-kidney-cancer-drug-sutent-effectively-caused-remission-to-adult-acute-lymphoblastic-leukemia-all/REMISSION to Adult Acute Lymphoblastic Leukemia (ALL)

REMISSION to Adult Acute Lymphoblastic Leukemia (ALL): Pfizer’s Sutent blocks FLT3 Gene Receptors

https://pharmaceuticalintelligence.com/?s=Pfizer

Researchers in Japan also reported finding the same new genetic change in a fraction of lung tumors, according to two other studies published today in Nature Medicine. Until the three new studies, the genetic change had never been seen in any cancer, said Dr. Pasi Janne.

The change fuses two unrelated genes together to form KIF5B-RET, turning on a growth-driving protein called RET that is usually not active in lung cells.

When Pasi Janne and his collaborators treated cells with the aberrant gene using Pfizer’s Sutent or AstraZeneca Plc (AZN)’s thyroid-cancer drug Caprelsa, the cells died. Both drugs block RET.

http://www.google.com/search?q=pasi+janne+lab&hl=en&tbo=u&tbm=isch&source=univ&sa=X&ei=GzXzUMCyHYSK0QGouoCoAw&ved=0CD8QsAQ&biw=1140&bih=731

Pasi Antero Janne, M.D.,Ph.D.

Harvard Catalyst Profiles

http://connects.catalyst.harvard.edu/profiles/profile/person/711

  1. Yuen HF, Abramczyk O, Montgomery G, Chan KK, Huang YH, Sasazuki T, Shirasawa S, Gopesh S, Chan KW, Fennell D, Janne P, El-Tanani M, Murray JT. Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells. Biosci Rep. 2012 Aug 1; 32(4):413-22.
    View in: PubMed
  2. Tanizaki J, Okamoto I, Takezawa K, Sakai K, Azuma K, Kuwata K, Yamaguchi H, Hatashita E, Nishio K, Janne PA, Nakagawa K. Combined effect of ALK and MEK inhibitors in EML4-ALK-positive non-small-cell lung cancer cells. Br J Cancer. 2012 Feb 14; 106(4):763-7.
    View in: PubMed
  3. Vogelzang NJ, Benowitz SI, Adams S, Aghajanian C, Chang SM, Dreyer ZE, Janne PA, Ko AH, Masters GA, Odenike O, Patel JD, Roth BJ, Samlowski WE, Seidman AD, Tap WD, Temel JS, Von Roenn JH, Kris MG. Clinical cancer advances 2011: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol. 2012 Jan 1; 30(1):88-109.
    View in: PubMed
  4. Yuen HF, Chan KK, Grills C, Murray JT, Platt-Higgins A, Eldin OS, O’Byrne K, Janne P, Fennell DA, Johnston PG, Rudland PS, El-Tanani M. Ran Is a Potential Therapeutic Target for Cancer Cells with Molecular Changes Associated with Activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK Pathways. Clin Cancer Res. 2012 Jan 15; 18(2):380-91.
    View in: PubMed
  5. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, Brace LE, Woods BA, Lin W, Zhang J, Deng X, Lim SM, Heynck S, Peifer M, Simard JR, Lawrence MS, Onofrio RC, Salvesen HB, Seidel D, Zander T, Heuckmann JM, Soltermann A, Moch H, Koker M, Leenders F, Gabler F, Querings S, Ansén S, Brambilla E, Brambilla C, Lorimier P, Brustugun OT, Helland A, Petersen I, Clement JH, Groen H, Timens W, Sietsma H, Stoelben E, Wolf J, Beer DG, Tsao MS, Hanna M, Hatton C, Eck MJ, Janne PA, Johnson BE, Winckler W, Greulich H, Bass AJ, Cho J, Rauh D, Gray NS, Wong KK, Haura EB, Thomas RK, Meyerson M. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011 Jun; 1(1):78-89.
    View in: PubMed
  6. Weisberg E, Choi HG, Ray A, Barrett R, Zhang J, Sim T, Zhou W, Seeliger M, Cameron M, Azam M, Fletcher JA, Debiec-Rychter M, Mayeda M, Moreno D, Kung AL, Janne PA, Khosravi-Far R, Melo JV, Manley PW, Adamia S, Wu C, Gray N, Griffin JD. Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases: novel type II inhibitor of gatekeeper mutants. Blood. 2010 May 27; 115(21):4206-16.
    View in: PubMed
  7. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. The landscape of somatic copy-number alteration across human cancers. Nature. 2010 Feb 18; 463(7283):899-905.
    View in: PubMed
  8. Qin W, Kozlowski P, Taillon BE, Bouffard P, Holmes AJ, Janne P, Camposano S, Thiele E, Franz D, Kwiatkowski DJ. Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet. 2010 Mar; 127(5):573-82.
    View in: PubMed
  9. Rodig SJ, Mino-Kenudson M, Dacic S, Yeap BY, Shaw A, Barletta JA, Stubbs H, Law K, Lindeman N, Mark E, Janne PA, Lynch T, Johnson BE, Iafrate AJ, Chirieac LR. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009 Aug 15; 15(16):5216-23.
    View in: PubMed
  10. Lynch TJ, Blumenschein GR, Engelman JA, Espinoza-Delgado I, Govindan R, Hanke J, Hanna NH, Heymach JV, Hirsch FR, Janne PA, Lilenbaum RC, Natale RB, Riely GJ, Sequist LV, Shapiro GI, Shaw A, Shepherd FA, Socinski M, Sorensen AG, Wakelee HA, Weitzman A. Summary statement novel agents in the treatment of lung cancer: Fifth Cambridge Conference assessing opportunities for combination therapy. J Thorac Oncol. 2008 Jun; 3(6 Suppl 2):S107-12.
    View in: PubMed

Read Full Post »


Reporter: Aviva Lev-Ari, PhD, RN

presented from our Research Category on 

Interviews with Scientific Leaders

 

Inspiration From Dr. Maureen Cronin’s Achievements in Applying Genomic Sequencing to Cancer Diagnostics

Posted by: Patrick Terry on October 18, 2011
Related to: Healthcare TrendsIn Vitro Diagnostics

LinkedIn Facebook Twitter Delicious

The Tale of Two Tests

“It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to heaven, we were all going direct the other way – in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.” —Opening paragraph of A Tale of Two Cities by Charles Dickens

During a presentation last week at Scientia by Dr. Maureen Cronin, Sr. VP of Product Development at Foundation Medicine, I was awakened again to what wonderful people I have worked with in my career in the age of the genome.

When I step back and ponder what makes me passionate about the technological innovation that permits us to quantitate biology using advanced measurement science to optimize the practice of medicine and improve patient outcomes, I get fired up and energized to be an agent of change. I am compelled to be purposely disruptive; I get impatient and want to force the legacy systems of evidence review, pricing and reimbursement, regulatory policy, and established health care practice into obsolescence. I want to make the situation clear, stark in contrast – so we can all easily recognize, in the age of wisdom, what foolishness we have allowed to continue to operate to our own detriment. When medical need and the suffering of patients demand a new level of urgency and responsiveness from us all, how is it that we allow an ever increasingly refractory system of health care delivery to exist? How is it that, while truly compelling scientific advancements are taking place, we continue to construct more and more obstacles in their path to helping patients. We need to recognize that the revolution is upon us!

When I look back on my small role in the life science arena, or dare to be introspective about my own aspirations and that of like-minded individuals striving to tackle the daunting challenge of alleviating the burden of disease by creating companies, products, and services, I am filled with a sense of hopefulness. I come to the revelation that true innovation, inspiration, activism, and even zealotry by a small handful of people will enable us to tear down the perverse legacy systems, the misaligned incentives and disincentives that prevent us from doing the right thing for those living with disease, and especially the losing battles we are waging against cancer and rare diseases.

I was lucky to be associated with two companies and two molecular tests that resemble the multilevel tensions and opportunities that Charles Dickens so eloquently described in his novel. Dr. Cronin’s contributions toGenomic Health, Inc., which I co-founded, and Foundation Medicine, which I advised, are examples of what I think are extremely important innovative approaches in the practice of molecular oncology. The Tale of Two Tests is being written.

Read more posts from Patrick Terry

Tags: 

http://www.scientiaadv.com/blog/2011/10/18/inspiration-from-maureen-cronin-achievements-in-cancer-diagnostics/

Read Full Post »


Reporter: Aviva Lev-Ari, PhD, RN

German firm Alacris Theranostics today announced a deal with GlaxoSmithKline for the application of Alacris’ Modcell System for drug stratification.

The technology, which was developed at the Max Planck Institute for Molecular Genetics and is licensed exclusively to Alacris, will be used by GSK for early stage cancer drug discovery. GSK will provide Alacris with preclinical biology data from a cancer drug discovery project. Alacris will apply its systems biology model to determine the in silico effect of the inhibitor in its “virtual clinical trial,” and then suggest cancer cell lines, as well as cancers, that may be likely responders to the inhibitor.

The process will be based on whole-genome and transcriptome data integrated in Alacris’ cancer model ModCell.

Financial terms of the deal were not disclosed.

Based in Berlin, Alacris develops personalized medicine approaches directed at cancer. Its ModCell approach is based on next-generation sequencing and kinetic pathway information, as well as mutation and drug databases.

SOURCE:

http://www.genomeweb.com//node/1153161?hq_e=el&hq_m=1408239&hq_l=2&hq_v=e1df6f3681

 

What is the strategy of the Competition

Foundation Medicine, AstraZeneca to ID Genetic Mutations for Cancer Drug Development

November 12, 2012

NEW YORK (GenomeWeb News) – Foundation Medicine today announced a deal with AstraZeneca aimed at predicting a patient’s response or resistance to targeted medicines.

The firms are partnering to identify genomic mutations in cancer-related tumor genes that may prove helpful to AstraZeneca in developing new therapies for patients. Foundation Medicine also was granted right of first negotiation for developing potential diagnostic products.

According to Susan Galbraith, vice president and head of the AstraZeneca Oncology Innovative Medicines Unit, the collaboration will allow the drug firm to “identify tumor-specific defects and alterations that can be used for patient segmentation.”

Financial and other terms of the agreement were not disclosed.

“We are helping companies like AstraZeneca achieve deeper insight into their programs and trials with our unique cancer expertise and our ability to provide genomic information that can impact clinical treatment decisions,” Michael Pellini, president and CEO of Foundation Medicine, said in a statement. “Together, we expect to enable a more individualized, targeted approach to cancer drug development and clinical trials.”

The partnership is the most recent in a string of deals that Cambridge, Mass.-based Foundation Medicine has forged in recent months with drug firms. It follows a collaboration with Eisai last month, Clovis Oncologyin August, and Novartis in June.

SOURCE:

Life Tech to Partner with Bristol-Myers Squibb for CDx Development

September 17, 2012

NEW YORK (GenomeWeb News) – Life Technologies said today that it would collaborate with Bristol-Myers Squibb to develop companion diagnostics. Initially, the companies will partner on an oncology project with the option to expand collaborative efforts across a range of disease areas.

Life Tech will utilize a variety of its technology platforms including both next-generation and Sanger sequencing instruments, qPCR, flow cytometry, and immuno-histochemistry.

“The pharmaceutical industry is increasingly turning its focus to discovering and delivering targeted, personalized medications,” Life Tech’s President of Medical Sciences, Ronnie Andrews, said in a statement. “As more and more targeted drugs come onto the market in the next decade, there will be a growing need for diagnostics that can help predict which patients will benefit from which drugs.”

The agreement is part of Life Tech’s strategy to expand and develop its diagnostic business through both internal development and also partnerships and acquisitions.

Internally, the company has said that it plans to build out its medical sciences business across multiple technologies and develop assays across five disease areas: oncology, inherited disease, neurological disorders, transplant diagnostics, and infectious diseases.

In addition, in July it acquired direct-to-consumer genomic testing company Navigenics, which gave Life Tech access to its CLIA certified laboratory.

SOURCE:

http://www.genomeweb.com/sequencing/life-tech-partner-bristol-myers-squibb-cdx-development

 

Life Tech, Boston Children’s Hospital to Develop Sequencing Workflows on Ion Proton in CLIA Lab

June 20, 2012

NEW YORK (GenomeWeb News) – Life Technologies said today that it will collaborate with Boston Children’s Hospital to develop next-generation sequencing workflows in a CLIA and CAP certified laboratory.

As part of the collaboration, the hospital plans to purchase Life Tech’s Ion Proton, a benchtop, semiconductor sequencing machine.

David Margulies, director of the Gene Partnership Program at Boston Children’s Hospital, said in statement that the deal is an “important first step toward providing informed, personalized care for patients whose conditions are difficult to treat.”

The deal is Life Tech’s second announced this week to develop sequencing protocols for the Ion Proton in collaboration with a children’s hospital. Earlier this week, it said it would work with the Hospital for Sick Children in Toronto, which has launched a new Centre for Genetic Medicine and plans to install four Proton machines.

Paul Billings, Life Tech’s chief medical officer, commented in a statement that these kinds of partnerships are “essential to our medical sciences strategy as we seek to assist researchers in discovering improved diagnostics and treatments for genetic conditions.”

In a separate announcement today, Life Tech said that it is collaborating with the University of North Texas Health Science Center’s Institute of Applied Genetics to use the firm’s Ion Personal Genome Machine system to further the center’s forensic DNA research. Life Tech said that it will collaborate with the center to train forensic analysts in applying next-gen sequencing to their research.

Foundation Medicine, Novartis Ink New Deal for Clinical Oncology Programs

June 07, 2012

NEW YORK (GenomeWeb News) – Foundation Medicine today said it and Novartis have reached a new agreement to use Foundation’s clinical grade, next-generation sequencing to support the drug firm’s clinical oncology programs.

The three-year agreement builds on a 2011 deal between the firms and calls for the use of Foundation Medicine’s molecular information platform across many of Novartis’ Phase 1 and Phase 2 oncology clinical programs. The initial collaboration generated “very interesting” data, and this type of tumor genomic profiling has become an important part of Novartis’ clinical trials, Foundation Medicine said.

Foundation Medicine’s sequencing capabilities allow for the rapid analysis of hundreds of cancer-related genes from formalin-fixed, paraffin-embedded tumor samples, and earlier this year its laboratory in Cambridge, Mass., gained Clinical Laboratory Improvement Amendments certification. Novartis plans to use the technology to align clinical trial enrollment and outcome analysis with the genomic profile of patient tumors, accelerating the development of Novartis’ portfolio of targeted cancer therapeutics and expanding treatment options for patients.

Foundation Medicine added that it may develop additional diagnostic products from the partnership.

“The comprehensive molecular assessment of Novartis’ Oncology clinical trial samples is expected to help to bring potentially lifesaving therapies to the right patients more quickly, and we expect that the wealth of molecular information will help fundamentally improve the way cancer is understood and treated,” Michael Pellini, president and CEO of Foundation Medicine, said in a statement.

Financial and other terms of the deal were not disclosed.

SOURCE:

Carestream Teams with Beatson Institute on Molecular Imaging Efforts

May 14, 2012
NEW YORK (GenomeWeb News) – Carestream Molecular Imaging announced today that it will collaborate with the Beatson Institute for Cancer Research on preclinical imaging approaches in oncology.

The partners will use Carestream’s Alibri trimodal imaging system, which combines PET, SPECT, and CT modalities in one platform. The system is being used by the Beatson Institute in its research into cancer cell behavior, as well as the development of new therapeutic, diagnostic, and prognostic tools.

The Beatson Institute, which is a core-funded institute of Cancer Research UK and is based in Glasgow, Scotland, said the Carestream technology would be used by its own researchers, as well as its close collaborators including the West of Scotland Cancer Center.

“The combination of PET, SPECT, and CT technologies in one instrument provides investigators at our institutions the flexibility to support research programs across many areas of cancer research such as biomarker, theranostics, and drug development,” Kurt Anderson, research professor and director of the Beatson Advanced Imaging Resource, said in a statement.

 

Read Full Post »


Foundation Medicine and Novartis have reached a 3 year agreement to use Foundation’s clinical grade, next-generation sequencing to support the drug firm’s clinical oncology programs. The agreement builds on a 2011 deal between the firms and calls for the use of Foundation Medicine’s molecular information platform across many of Novartis’ Phase 1 and Phase 2 oncology clinical programs. The initial collaboration generated “very interesting” data, and this type of tumor genomic profiling has become an important part of Novartis’ clinical trials, Foundation Medicine said.

Foundation Medicine added that it may develop additional diagnostic products from the partnership.

“The comprehensive molecular assessment of Novartis’ Oncology clinical trial samples is expected to help to bring potentially lifesaving therapies to the right patients more quickly, and we expect that the wealth of molecular information will help fundamentally improve the way cancer is understood and treated,” Michael Pellini, president and CEO of Foundation Medicine, said in a statement.

Source:

http://www.genomeweb.com/sequencing/foundation-medicine-novartis-ink-new-deal-clinical-oncology-programs

 

Reported by: Dr. V.S.Karra, Ph.D.

Read Full Post »