Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘autism spectrum disorders (ASDs)’


Disease related changes in proteomics, protein folding, protein-protein interaction

Curator: Larry H. Bernstein, MD, FCAP

LPBI

 

Frankenstein Proteins Stitched Together by Scientists

http://www.genengnews.com/gen-news-highlights/frankenstein-proteins-stitched-together-by-scientists/81252715/

http://www.genengnews.com/Media/images/GENHighlight/thumb_May11_2016_Wikipedia_1831Frankenstein2192501426.jpg

The Frankenstein monster, stitched together from disparate body parts, proved to be an abomination, but stitched together proteins may fare better. They may, for example, serve specific purposes in medicine, research, and industry. At least, that’s the ambition of scientists based at the University of North Carolina. They have developed a computational protocol called SEWING that builds new proteins from connected or disconnected pieces of existing structures. [Wikipedia]

Unlike Victor Frankenstein, who betrayed Promethean ambition when he sewed together his infamous creature, today’s biochemists are relatively modest. Rather than defy nature, they emulate it. For example, at the University of North Carolina (UNC), researchers have taken inspiration from natural evolutionary mechanisms to develop a technique called SEWING—Structure Extension With Native-substructure Graphs. SEWING is a computational protocol that describes how to stitch together new proteins from connected or disconnected pieces of existing structures.

“We can now begin to think about engineering proteins to do things that nothing else is capable of doing,” said UNC’s Brian Kuhlman, Ph.D. “The structure of a protein determines its function, so if we are going to learn how to design new functions, we have to learn how to design new structures. Our study is a critical step in that direction and provides tools for creating proteins that haven’t been seen before in nature.”

Traditionally, researchers have used computational protein design to recreate in the laboratory what already exists in the natural world. In recent years, their focus has shifted toward inventing novel proteins with new functionality. These design projects all start with a specific structural “blueprint” in mind, and as a result are limited. Dr. Kuhlman and his colleagues, however, believe that by removing the limitations of a predetermined blueprint and taking cues from evolution they can more easily create functional proteins.

Dr. Kuhlman’s UNC team developed a protein design approach that emulates natural mechanisms for shuffling tertiary structures such as pleats, coils, and furrows. Putting the approach into action, the UNC team mapped 50,000 stitched together proteins on the computer, and then it produced 21 promising structures in the laboratory. Details of this work appeared May 6 in the journal Science, in an article entitled, “Design of Structurally Distinct Proteins Using Strategies Inspired by Evolution.”

“Helical proteins designed with SEWING contain structural features absent from other de novo designed proteins and, in some cases, remain folded at more than 100°C,” wrote the authors. “High-resolution structures of the designed proteins CA01 and DA05R1 were solved by x-ray crystallography (2.2 angstrom resolution) and nuclear magnetic resonance, respectively, and there was excellent agreement with the design models.”

Essentially, the UNC scientists confirmed that the proteins they had synthesized contained the unique structural varieties that had been designed on the computer. The UNC scientists also determined that the structures they had created had new surface and pocket features. Such features, they noted, provide potential binding sites for ligands or macromolecules.

“We were excited that some had clefts or grooves on the surface, regions that naturally occurring proteins use for binding other proteins,” said the Science article’s first author, Tim M. Jacobs, Ph.D., a former graduate student in Dr. Kuhlman’s laboratory. “That’s important because if we wanted to create a protein that can act as a biosensor to detect a certain metabolite in the body, either for diagnostic or research purposes, it would need to have these grooves. Likewise, if we wanted to develop novel therapeutics, they would also need to attach to specific proteins.”

Currently, the UNC researchers are using SEWING to create proteins that can bind to several other proteins at a time. Many of the most important proteins are such multitaskers, including the blood protein hemoglobin.

 

Histone Mutation Deranges DNA Methylation to Cause Cancer

http://www.genengnews.com/gen-news-highlights/histone-mutation-deranges-dna-methylation-to-cause-cancer/81252723/

http://www.genengnews.com/Media/images/GENHighlight/thumb_May13_2016_RockefellerUniv_ChildhoodSarcoma1293657114.jpg

In some cancers, including chondroblastoma and a rare form of childhood sarcoma, a mutation in histone H3 reduces global levels of methylation (dark areas) in tumor cells but not in normal cells (arrowhead). The mutation locks the cells in a proliferative state to promote tumor development. [Laboratory of Chromatin Biology and Epigenetics at The Rockefeller University]

They have been called oncohistones, the mutated histones that are known to accompany certain pediatric cancers. Despite their suggestive moniker, oncohistones have kept their oncogenic secrets. For example, it has been unclear whether oncohistones are able to cause cancer on their own, or whether they need to act in concert with additional DNA mutations, that is, mutations other than those affecting histone structures.

While oncohistone mechanisms remain poorly understood, this particular question—the oncogenicity of lone oncohistones—has been resolved, at least in part. According to researchers based at The Rockefeller University, a change to the structure of a histone can trigger a tumor on its own.

This finding appeared May 13 in the journal Science, in an article entitled, “Histone H3K36 Mutations Promote Sarcomagenesis Through Altered Histone Methylation Landscape.” The article describes the Rockefeller team’s study of a histone protein called H3, which has been found in about 95% of samples of chondoblastoma, a benign tumor that arises in cartilage, typically during adolescence.

The Rockefeller scientists found that the H3 lysine 36–to–methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo.

After the scientists inserted the H3 histone mutation into mouse mesenchymal progenitor cells (MPCs)—which generate cartilage, bone, and fat—they watched these cells lose the ability to differentiate in the lab. Next, the scientists injected the mutant cells into living mice, and the animals developed the tumors rich in MPCs, known as an undifferentiated sarcoma. Finally, the researchers tried to understand how the mutation causes the tumors to develop.

The scientists determined that H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases.

“Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation,” the authors of the Science study wrote. “After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation.”

Essentially, when the H3K36M mutation occurs, the cell becomes locked in a proliferative state—meaning it divides constantly, leading to tumors. Specifically, the mutation inhibits enzymes that normally tag the histone with chemical groups known as methyls, allowing genes to be expressed normally.

In response to this lack of modification, another part of the histone becomes overmodified, or tagged with too many methyl groups. “This leads to an overall resetting of the landscape of chromatin, the complex of DNA and its associated factors, including histones,” explained co-author Peter Lewis, Ph.D., a professor at the University of Wisconsin-Madison and a former postdoctoral fellow in laboratory of C. David Allis, Ph.D., a professor at Rockefeller.

The finding—that a “resetting” of the chromatin landscape can lock the cell into a proliferative state—suggests that researchers should be on the hunt for more mutations in histones that might be driving tumors. For their part, the Rockefeller researchers are trying to learn more about how this specific mutation in histone H3 causes tumors to develop.

“We want to know which pathways cause the mesenchymal progenitor cells that carry the mutation to continue to divide, and not differentiate into the bone, fat, and cartilage cells they are destined to become,” said co-author Chao Lu, Ph.D., a postdoctoral fellow in the Allis lab.

Once researchers understand more about these pathways, added Dr. Lewis, they can consider ways of blocking them with drugs, particularly in tumors such as MPC-rich sarcomas—which, unlike chondroblastoma, can be deadly. In fact, drugs that block these pathways may already exist and may even be in use for other types of cancers.

“One long-term goal of our collaborative team is to better understand fundamental mechanisms that drive these processes, with the hope of providing new therapeutic approaches,” concluded Dr. Allis.

 

Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape

Chao Lu, Siddhant U. Jain, Dominik Hoelper, …, C. David Allis1,, Nada Jabado,, Peter W. Lewis,
Science  13 May 2016; 352(6287):844-849 http://dx.doi.org:/10.1126/science.aac7272  http://science.sciencemag.org/content/352/6287/844

An oncohistone deranges inhibitory chromatin

Missense mutations (that change one amino acid for another) in histone H3 can produce a so-called oncohistone and are found in a number of pediatric cancers. For example, the lysine-36–to-methionine (K36M) mutation is seen in almost all chondroblastomas. Lu et al. show that K36M mutant histones are oncogenic, and they inhibit the normal methylation of this same residue in wild-type H3 histones. The mutant histones also interfere with the normal development of bone-related cells and the deposition of inhibitory chromatin marks.

Science, this issue p. 844

Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36–to–methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.

 

Mitochondria? We Don’t Need No Stinking Mitochondria!

 

http://www.genengnews.com/Media/images/GENHighlight/thumb_fx11801711851.jpg
Diagram comparing typical eukaryotic cell to the newly discovered mitochondria-free organism. [Karnkowska et al., 2016, Current Biology 26, 1–11]
  • The organelle that produces a significant portion of energy for eukaryotic cells would seemingly be indispensable, yet over the years, a number of organisms have been discovered that challenge that biological pretense. However, these so-called amitochondrial species may lack a defined organelle, but they still retain some residual functions of their mitochondria-containing brethren. Even the intestinal eukaryotic parasite Giardia intestinalis, which was for many years considered to be mitochondria-free, was proven recently to contain a considerably shriveled version of the organelle.
  • Now, an international group of scientists has released results from a new study that challenges the notion that mitochondria are essential for eukaryotes—discovering an organism that resides in the gut of chinchillas that contains absolutely no trace of mitochondria at all.
  • “In low-oxygen environments, eukaryotes often possess a reduced form of the mitochondrion, but it was believed that some of the mitochondrial functions are so essential that these organelles are indispensable for their life,” explained lead study author Anna Karnkowska, Ph.D., visiting scientist at the University of British Columbia in Vancouver. “We have characterized a eukaryotic microbe which indeed possesses no mitochondrion at all.”

 

Mysterious Eukaryote Missing Mitochondria

Researchers uncover the first example of a eukaryotic organism that lacks the organelles.

By Anna Azvolinsky | May 12, 2016

http://www.the-scientist.com/?articles.view/articleNo/46077/title/Mysterious-Eukaryote-Missing-Mitochondria

http://www.the-scientist.com/images/News/May2016/620_Monocercomonides-Pa203.jpg

Monocercomonoides sp. PA203VLADIMIR HAMPL, CHARLES UNIVERSITY, PRAGUE, CZECH REPUBLIC

Scientists have long thought that mitochondria—organelles responsible for energy generation—are an essential and defining feature of a eukaryotic cell. Now, researchers from Charles University in Prague and their colleagues are challenging this notion with their discovery of a eukaryotic organism,Monocercomonoides species PA203, which lacks mitochondria. The team’s phylogenetic analysis, published today (May 12) in Current Biology,suggests that Monocercomonoides—which belong to the Oxymonadida group of protozoa and live in low-oxygen environmentsdid have mitochondria at one point, but eventually lost the organelles.

“This is quite a groundbreaking discovery,” said Thijs Ettema, who studies microbial genome evolution at Uppsala University in Sweden and was not involved in the work.

“This study shows that mitochondria are not so central for all lineages of living eukaryotes,” Toni Gabaldonof the Center for Genomic Regulation in Barcelona, Spain, who also was not involved in the work, wrote in an email to The Scientist. “Yet, this mitochondrial-devoid, single-cell eukaryote is as complex as other eukaryotic cells in almost any other aspect of cellular complexity.”

Charles University’s Vladimir Hampl studies the evolution of protists. Along with Anna Karnkowska and colleagues, Hampl decided to sequence the genome of Monocercomonoides, a little-studied protist that lives in the digestive tracts of vertebrates. The 75-megabase genome—the first of an oxymonad—did not contain any conserved genes found on mitochondrial genomes of other eukaryotes, the researchers found. It also did not contain any nuclear genes associated with mitochondrial functions.

“It was surprising and for a long time, we didn’t believe that the [mitochondria-associated genes were really not there]. We thought we were missing something,” Hampl told The Scientist. “But when the data kept accumulating, we switched to the hypothesis that this organism really didn’t have mitochondria.”

Because researchers have previously not found examples of eukaryotes without some form of mitochondria, the current theory of the origin of eukaryotes poses that the appearance of mitochondria was crucial to the identity of these organisms.

“We now view these mitochondria-like organelles as a continuum from full mitochondria to very small . Some anaerobic protists, for example, have only pared down versions of mitochondria, such as hydrogenosomes and mitosomes, which lack a mitochondrial genome. But these mitochondrion-like organelles perform essential functions of the iron-sulfur cluster assembly pathway, which is known to be conserved in virtually all eukaryotic organisms studied to date.

Yet, in their analysis, the researchers found no evidence of the presence of any components of this mitochondrial pathway.

Like the scaling down of mitochondria into mitosomes in some organisms, the ancestors of modernMonocercomonoides once had mitochondria. “Because this organism is phylogenetically nested among relatives that had conventional mitochondria, this is most likely a secondary adaptation,” said Michael Gray, a biochemist who studies mitochondria at Dalhousie University in Nova Scotia and was not involved in the study. According to Gray, the finding of a mitochondria-deficient eukaryote does not mean that the organelles did not play a major role in the evolution of eukaryotic cells.

To be sure they were not missing mitochondrial proteins, Hampl’s team also searched for potential mitochondrial protein homologs of other anaerobic species, and for signature sequences of a range of known mitochondrial proteins. While similar searches with other species uncovered a few mitochondrial proteins, the team’s analysis of Monocercomonoides came up empty.

“The data is very complete,” said Ettema. “It is difficult to prove the absence of something but [these authors] do a convincing job.”

To form the essential iron-sulfur clusters, the team discovered that Monocercomonoides use a sulfur mobilization system found in the cytosol, and that an ancestor of the organism acquired this system by lateral gene transfer from bacteria. This cytosolic, compensating system allowed Monocercomonoides to lose the otherwise essential iron-sulfur cluster-forming pathway in the mitochondrion, the team proposed.

“This work shows the great evolutionary plasticity of the eukaryotic cell,” said Karnkowska, who participated in the study while she was a postdoc at Charles University. Karnkowska, who is now a visiting researcher at the University of British Columbia in Canada, added: “This is a striking example of how far the evolution of a eukaryotic cell can go that was beyond our expectations.”

“The results highlight how many surprises may await us in the poorly studied eukaryotic phyla that live in under-explored environments,” Gabaldon said.

Ettema agreed. “Now that we’ve found one, we need to look at the bigger picture and see if there are other examples of eukaryotes that have lost their mitochondria, to understand how adaptable eukaryotes are.”

  1. Karnkowska et al., “A eukaryote without a mitochondrial organelle,” Current Biology,doi:10.1016/j.cub.2016.03.053, 2016.

organellesmitochondriagenetics & genomics and evolution

 

A Eukaryote without a Mitochondrial Organelle

Anna Karnkowska,  Vojtěch Vacek,  Zuzana Zubáčová,…,  Čestmír Vlček,  Vladimír HamplDOI: http://dx.doi.org/10.1016/j.cub.2016.03.053  Article Info

PDF (2 MB)   Extended PDF (2 MB)  Download Images(.ppt)  About Images & Usage

Highlights

  • Monocercomonoides sp. is a eukaryotic microorganism with no mitochondria
  • •The complete absence of mitochondria is a secondary loss, not an ancestral feature
  • •The essential mitochondrial ISC pathway was replaced by a bacterial SUF system

The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.

http://www.cell.com/cms/attachment/2056332410/2061316405/fx1.jpg

 

HIV Particles Used to Trap Intact Mammalian Protein Complexes

Belgian scientists from VIB and UGent developed Virotrap, a viral particle sorting approach for purifying protein complexes under native conditions.

http://www.technologynetworks.com/Proteomics/news.aspx?ID=191122

This method catches a bait protein together with its associated protein partners in virus-like particles that are budded from human cells. Like this, cell lysis is not needed and protein complexes are preserved during purification.

With his feet in both a proteomics lab and an interactomics lab, VIB/UGent professor Sven Eyckerman is well aware of the shortcomings of conventional approaches to analyze protein complexes. The lysis conditions required in mass spectrometry–based strategies to break open cell membranes often affect protein-protein interactions. “The first step in a classical study on protein complexes essentially turns the highly organized cellular structure into a big messy soup”, Eyckerman explains.

Inspired by virus biology, Eyckerman came up with a creative solution. “We used the natural process of HIV particle formation to our benefit by hacking a completely safe form of the virus to abduct intact protein machines from the cell.” It is well known that the HIV virus captures a number of host proteins during its particle formation. By fusing a bait protein to the HIV-1 GAG protein, interaction partners become trapped within virus-like particles that bud from mammalian cells. Standard proteomic approaches are used next to reveal the content of these particles. Fittingly, the team named the method ‘Virotrap’.

The Virotrap approach is exceptional as protein networks can be characterized under natural conditions. By trapping protein complexes in the protective environment of a virus-like shell, the intact complexes are preserved during the purification process. The researchers showed the method was suitable for detection of known binary interactions as well as mass spectrometry-based identification of novel protein partners.

Virotrap is a textbook example of bringing research teams with complementary expertise together. Cross-pollination with the labs of Jan Tavernier (VIB/UGent) and Kris Gevaert (VIB/UGent) enabled the development of this platform.

Jan Tavernier: “Virotrap represents a new concept in co-complex analysis wherein complex stability is physically guaranteed by a protective, physical structure. It is complementary to the arsenal of existing interactomics methods, but also holds potential for other fields, like drug target characterization. We also developed a small molecule-variant of Virotrap that could successfully trap protein partners for small molecule baits.”

Kris Gevaert: “Virotrap can also impact our understanding of disease pathways. We were actually surprised to see that this virus-based system could be used to study antiviral pathways, like Toll-like receptor signaling. Understanding these protein machines in their natural environment is essential if we want to modulate their activity in pathology.“

 

Trapping mammalian protein complexes in viral particles

Sven Eyckerman, Kevin Titeca, …Kris GevaertJan Tavernier
Nature Communications Apr 2016; 7(11416)   http://dx.doi.org:/10.1038/ncomms11416

Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes.

Proteins mostly exert their function within supramolecular complexes. Strategies for detecting protein–protein interactions (PPIs) can be roughly divided into genetic systems1 and co-purification strategies combined with mass spectrometry (MS) analysis (for example, AP–MS)2. The latter approaches typically require cell or tissue homogenization using detergents, followed by capture of the protein complex using affinity tags3 or specific antibodies4. The protein complexes extracted from this ‘soup’ of constituents are then subjected to several washing steps before actual analysis by trypsin digestion and liquid chromatography–MS/MS analysis. Such lysis and purification protocols are typically empirical and have mostly been optimized using model interactions in single labs. In fact, lysis conditions can profoundly affect the number of both specific and nonspecific proteins that are identified in a typical AP–MS set-up. Indeed, recent studies using the nuclear pore complex as a model protein complex describe optimization of purifications for the different proteins in the complex by examining 96 different conditions5. Nevertheless, for new purifications, it remains hard to correctly estimate the loss of factors in a standard AP–MS experiment due to washing and dilution effects during treatments (that is, false negatives). These considerations have pushed the concept of stabilizing PPIs before the actual homogenization step. A classical approach involves cross-linking with simple reagents (for example, formaldehyde) or with more advanced isotope-labelled cross-linkers (reviewed in ref. 2). However, experimental challenges such as cell permeability and reactivity still preclude the widespread use of cross-linking agents. Moreover, MS-generated spectra of cross-linked peptides are notoriously difficult to identify correctly. A recent lysis-independent solution involves the expression of a bait protein fused to a promiscuous biotin ligase, which results in labelling of proteins proximal to the activity of the enzyme-tagged bait protein6. When compared with AP–MS, this BioID approach delivers a complementary set of candidate proteins, including novel interaction partners78. Such particular studies clearly underscore the need for complementary approaches in the co-complex strategies.

The evolutionary stress on viruses promoted highly condensed coding of information and maximal functionality for small genomes. Accordingly, for HIV-1 it is sufficient to express a single protein, the p55 GAG protein, for efficient production of virus-like particles (VLPs) from cells910. This protein is highly mobile before its accumulation in cholesterol-rich regions of the membrane, where multimerization initiates the budding process11. A total of 4,000–5,000 GAG molecules is required to form a single particle of about 145 nm (ref. 12). Both VLPs and mature viruses contain a number of host proteins that are recruited by binding to viral proteins. These proteins can either contribute to the infectivity (for example, Cyclophilin/FKBPA13) or act as antiviral proteins preventing the spreading of the virus (for example, APOBEC proteins14).

We here describe the development and application of Virotrap, an elegant co-purification strategy based on the trapping of a bait protein together with its associated protein partners in VLPs that are budded from the cell. After enrichment, these particles can be analysed by targeted (for example, western blotting) or unbiased approaches (MS-based proteomics). Virotrap allows detection of known binary PPIs, analysis of protein complexes and their dynamics, and readily detects protein binders for small molecules.

Concept of the Virotrap system

Classical AP–MS approaches rely on cell homogenization to access protein complexes, a step that can vary significantly with the lysis conditions (detergents, salt concentrations, pH conditions and so on)5. To eliminate the homogenization step in AP–MS, we reasoned that incorporation of a protein complex inside a secreted VLP traps the interaction partners under native conditions and protects them during further purification. We thus explored the possibility of protein complex packaging by the expression of GAG-bait protein chimeras (Fig. 1) as expression of GAG results in the release of VLPs from the cells910. As a first PPI pair to evaluate this concept, we selected the HRAS protein as a bait combined with the RAF1 prey protein. We were able to specifically detect the HRAS–RAF1 interaction following enrichment of VLPs via ultracentrifugation (Supplementary Fig. 1a). To prevent tedious ultracentrifugation steps, we designed a novel single-step protocol wherein we co-express the vesicular stomatitis virus glycoprotein (VSV-G) together with a tagged version of this glycoprotein in addition to the GAG bait and prey. Both tagged and untagged VSV-G proteins are probably presented as trimers on the surface of the VLPs, allowing efficient antibody-based recovery from large volumes. The HRAS–RAF1 interaction was confirmed using this single-step protocol (Supplementary Fig. 1b). No associations with unrelated bait or prey proteins were observed for both protocols.

Figure 1: Schematic representation of the Virotrap strategy.

http://www.nature.com/ncomms/2016/160428/ncomms11416/images_article/ncomms11416-f1.jpg

 

Expression of a GAG-bait fusion protein (1) results in submembrane multimerization (2) and subsequent budding of VLPs from cells (3). Interaction partners of the bait protein are also trapped within these VLPs and can be identified after purification by western blotting or MS analysis (4).

Virotrap for the detection of binary interactions

We next explored the reciprocal detection of a set of PPI pairs, which were selected based on published evidence and cytosolic localization15. After single-step purification and western blot analysis, we could readily detect reciprocal interactions between CDK2 and CKS1B, LCP2 and GRAP2, and S100A1 and S100B (Fig. 2a). Only for the LCP2 prey we observed nonspecific association with an irrelevant bait construct. However, the particle levels of the GRAP2 bait were substantially lower as compared with those of the GAG control construct (GAG protein levels in VLPs; Fig. 2a, second panel of the LCP2 prey). After quantification of the intensities of bait and prey proteins and normalization of prey levels using bait levels, we observed a strong enrichment for the GAG-GRAP2 bait (Supplementary Fig. 2).

…..

Virotrap for unbiased discovery of novel interactions

For the detection of novel interaction partners, we scaled up VLP production and purification protocols (Supplementary Fig. 5 and Supplementary Note 1 for an overview of the protocol) and investigated protein partners trapped using the following bait proteins: Fas-associated via death domain (FADD), A20 (TNFAIP3), nuclear factor-κB (NF-κB) essential modifier (IKBKG), TRAF family member-associated NF-κB activator (TANK), MYD88 and ring finger protein 41 (RNF41). To obtain specific interactors from the lists of identified proteins, we challenged the data with a combined protein list of 19 unrelated Virotrap experiments (Supplementary Table 1 for an overview). Figure 3 shows the design and the list of candidate interactors obtained after removal of all proteins that were found in the 19 control samples (including removal of proteins from the control list identified with a single peptide). The remaining list of confident protein identifications (identified with at least two peptides in at least two biological repeats) reveals both known and novel candidate interaction partners. All candidate interactors including single peptide protein identifications are given in Supplementary Data 2 and also include recurrent protein identifications of known interactors based on a single peptide; for example, CASP8 for FADD and TANK for NEMO. Using alternative methods, we confirmed the interaction between A20 and FADD, and the associations with transmembrane proteins (insulin receptor and insulin-like growth factor receptor 1) that were captured using RNF41 as a bait (Supplementary Fig. 6). To address the use of Virotrap for the detection of dynamic interactions, we activated the NF-κB pathway via the tumour necrosis factor (TNF) receptor (TNFRSF1A) using TNFα (TNF) and performed Virotrap analysis using A20 as bait (Fig. 3). This resulted in the additional enrichment of receptor-interacting kinase (RIPK1), TNFR1-associated via death domain (TRADD), TNFRSF1A and TNF itself, confirming the expected activated complex20.

Figure 3: Use of Virotrap for unbiased interactome analysis

http://www.nature.com/ncomms/2016/160428/ncomms11416/images_article/ncomms11416-f3.jpg

Figure 4: Use of Virotrap for detection of protein partners of small molecules.

http://www.nature.com/ncomms/2016/160428/ncomms11416/images_article/ncomms11416-f4.jpg

….

Lysis conditions used in AP–MS strategies are critical for the preservation of protein complexes. A multitude of lysis conditions have been described, culminating in a recent report where protein complex stability was assessed under 96 lysis/purification protocols5. Moreover, the authors suggest to optimize the conditions for every complex, implying an important workload for researchers embarking on protein complex analysis using classical AP–MS. As lysis results in a profound change of the subcellular context and significantly alters the concentration of proteins, loss of complex integrity during a classical AP–MS protocol can be expected. A clear evolution towards ‘lysis-independent’ approaches in the co-complex analysis field is evident with the introduction of BioID6 and APEX25 where proximal proteins, including proteins residing in the complex, are labelled with biotin by an enzymatic activity fused to a bait protein. A side-by-side comparison between classical AP–MS and BioID showed overlapping and unique candidate binding proteins for both approaches78, supporting the notion that complementary methods are needed to provide a comprehensive view on protein complexes. This has also been clearly demonstrated for binary approaches15 and is a logical consequence of the heterogenic nature underlying PPIs (binding mechanism, requirement for posttranslational modifications, location, affinity and so on).

In this report, we explore an alternative, yet complementary method to isolate protein complexes without interfering with cellular integrity. By trapping protein complexes in the protective environment of a virus-like shell, the intact complexes are preserved during the purification process. This constitutes a new concept in co-complex analysis wherein complex stability is physically guaranteed by a protective, physical structure. A comparison of our Virotrap approach with AP–MS shows complementary data, with specific false positives and false negatives for both methods (Supplementary Fig. 7).

The current implementation of the Virotrap platform implies the use of a GAG-bait construct resulting in considerable expression of the bait protein. Different strategies are currently pursued to reduce bait expression including co-expression of a native GAG protein together with the GAG-bait protein, not only reducing bait expression but also creating more ‘space’ in the particles potentially accommodating larger bait protein complexes. Nevertheless, the presence of the bait on the forming GAG scaffold creates an intracellular affinity matrix (comparable to the early in vitro affinity columns for purification of interaction partners from lysates26) that has the potential to compete with endogenous complexes by avidity effects. This avidity effect is a powerful mechanism that aids in the recruitment of cyclophilin to GAG27, a well-known weak interaction (Kd=16 μM (ref. 28)) detectable as a background association in the Virotrap system. Although background binding may be increased by elevated bait expression, weaker associations are readily detectable (for example, MAL—MYD88-binding study; Fig. 2c).

The size of Virotrap particles (around 145 nm) suggests limitations in the size of the protein complex that can be accommodated in the particles. Further experimentation is required to define the maximum size of proteins or the number of protein complexes that can be trapped inside the particles.

….

In conclusion, Virotrap captures significant parts of known interactomes and reveals new interactions. This cell lysis-free approach purifies protein complexes under native conditions and thus provides a powerful method to complement AP–MS or other PPI data. Future improvements of the system include strategies to reduce bait expression to more physiological levels and application of advanced data analysis options to filter out background. These developments can further aid in the deployment of Virotrap as a powerful extension of the current co-complex technology arsenal.

 

New Autism Blood Biomarker Identified

Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD

http://www.technologynetworks.com/Proteomics/news.aspx?ID=191268

 

In a recent edition of Scientific Reports, UT Southwestern researchers reported on the identification of a blood biomarker that could distinguish the majority of ASD study participants versus a control group of similar age range. In addition, the biomarker was significantly correlated with the level of communication impairment, suggesting that the blood test may give insight into ASD severity.

“Numerous investigators have long sought a biomarker for ASD,” said Dr. Dwight German, study senior author and Professor of Psychiatry at UT Southwestern. “The blood biomarker reported here along with others we are testing can represent a useful test with over 80 percent accuracy in identifying ASD.”

ASD1 –  was 66 percent accurate in diagnosing ASD. When combined with thyroid stimulating hormone level measurements, the ASD1-binding biomarker was 73 percent accurate at diagnosis

 

A Search for Blood Biomarkers for Autism: Peptoids

Sayed ZamanUmar Yazdani,…, Laura Hewitson & Dwight C. German
Scientific Reports 2016; 6(19164) http://dx.doi.org:/10.1038/srep19164

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, and restricted, repetitive patterns of behavior. In order to identify individuals with ASD and initiate interventions at the earliest possible age, biomarkers for the disorder are desirable. Research findings have identified widespread changes in the immune system in children with autism, at both systemic and cellular levels. In an attempt to find candidate antibody biomarkers for ASD, highly complex libraries of peptoids (oligo-N-substituted glycines) were screened for compounds that preferentially bind IgG from boys with ASD over typically developing (TD) boys. Unexpectedly, many peptoids were identified that preferentially bound IgG from TD boys. One of these peptoids was studied further and found to bind significantly higher levels (>2-fold) of the IgG1 subtype in serum from TD boys (n = 60) compared to ASD boys (n = 74), as well as compared to older adult males (n = 53). Together these data suggest that ASD boys have reduced levels (>50%) of an IgG1 antibody, which resembles the level found normally with advanced age. In this discovery study, the ASD1 peptoid was 66% accurate in predicting ASD.

….

Peptoid libraries have been used previously to search for autoantibodies for neurodegenerative diseases19 and for systemic lupus erythematosus (SLE)21. In the case of SLE, peptoids were identified that could identify subjects with the disease and related syndromes with moderate sensitivity (70%) and excellent specificity (97.5%). Peptoids were used to measure IgG levels from both healthy subjects and SLE patients. Binding to the SLE-peptoid was significantly higher in SLE patients vs. healthy controls. The IgG bound to the SLE-peptoid was found to react with several autoantigens, suggesting that the peptoids are capable of interacting with multiple, structurally similar molecules. These data indicate that IgG binding to peptoids can identify subjects with high levels of pathogenic autoantibodies vs. a single antibody.

In the present study, the ASD1 peptoid binds significantly lower levels of IgG1 in ASD males vs. TD males. This finding suggests that the ASD1 peptoid recognizes antibody(-ies) of an IgG1 subtype that is (are) significantly lower in abundance in the ASD males vs. TD males. Although a previous study14 has demonstrated lower levels of plasma IgG in ASD vs. TD children, here, we additionally quantified serum IgG levels in our individuals and found no difference in IgG between the two groups (data not shown). Furthermore, our IgG levels did not correlate with ASD1 binding levels, indicating that ASD1 does not bind IgG generically, and that the peptoid’s ability to differentiate between ASD and TD males is related to a specific antibody(-ies).

ASD subjects underwent a diagnostic evaluation using the ADOS and ADI-R, and application of the DSM-IV criteria prior to study inclusion. Only those subjects with a diagnosis of Autistic Disorder were included in the study. The ADOS is a semi-structured observation of a child’s behavior that allows examiners to observe the three core domains of ASD symptoms: reciprocal social interaction, communication, and restricted and repetitive behaviors1. When ADOS subdomain scores were compared with peptoid binding, the only significant relationship was with Social Interaction. However, the positive correlation would suggest that lower peptoid binding is associated with better social interaction, not poorer social interaction as anticipated.

The ADI-R is a structured parental interview that measures the core features of ASD symptoms in the areas of reciprocal social interaction, communication and language, and patterns of behavior. Of the three ADI-R subdomains, only the Communication domain was related to ASD1 peptoid binding, and this correlation was negative suggesting that low peptoid binding is associated with greater communication problems. These latter data are similar to the findings of Heuer et al.14 who found that children with autism with low levels of plasma IgG have high scores on the Aberrant Behavior Checklist (p < 0.0001). Thus, peptoid binding to IgG1 may be useful as a severity marker for ASD allowing for further characterization of individuals, but further research is needed.

It is interesting that in serum samples from older men, the ASD1 binding is similar to that in the ASD boys. This is consistent with the observation that with aging there is a reduction in the strength of the immune system, and the changes are gender-specific25. Recent studies using parabiosis26, in which blood from young mice reverse age-related impairments in cognitive function and synaptic plasticity in old mice, reveal that blood constituents from young subjects may contain important substances for maintaining neuronal functions. Work is in progress to identify the antibody/antibodies that are differentially binding to the ASD1 peptoid, which appear as a single band on the electrophoresis gel (Fig. 4).

……..

The ADI-R is a structured parental interview that measures the core features of ASD symptoms in the areas of reciprocal social interaction, communication and language, and patterns of behavior. Of the three ADI-R subdomains, only the Communication domain was related to ASD1 peptoid binding, and this correlation was negative suggesting that low peptoid binding is associated with greater communication problems. These latter data are similar to the findings of Heuer et al.14 who found that children with autism with low levels of plasma IgG have high scores on the Aberrant Behavior Checklist (p < 0.0001). Thus, peptoid binding to IgG1 may be useful as a severity marker for ASD allowing for further characterization of individuals, but further research is needed.

 

  • Titration of IgG binding to ASD1 using serum pooled from 10 TD males and 10 ASD males demonstrates ASD1’s ability to differentiate between the two groups. (B)Detecting IgG1 subclass instead of total IgG amplifies this differentiation. (C) IgG1 binding of individual ASD (n=74) and TD (n=60) male serum samples (1:100 dilution) to ASD1 significantly differs with TD>ASD. In addition, IgG1 binding of older adult male (AM) serum samples (n=53) to ASD1 is significantly lower than TD males, and not different from ASD males. The three groups were compared with a Kruskal-Wallis ANOVA, H = 10.1781, p<0.006. **p<0.005. Error bars show SEM. (D) Receiver-operating characteristic curve for ASD1’s ability to discriminate between ASD and TD males.

http://www.nature.com/article-assets/npg/srep/2016/160114/srep19164/images_hires/m685/srep19164-f3.jpg

 

Association between peptoid binding and ADOS and ADI-R subdomains

Higher scores in any domain on the ADOS and ADI-R are indicative of more abnormal behaviors and/or symptoms. Among ADOS subdomains, there was no significant relationship between Communication and peptoid binding (z = 0.04, p = 0.966), Communication + Social interaction (z = 1.53, p = 0.127), or Stereotyped Behaviors and Restrictive Interests (SBRI) (z = 0.46, p = 0.647). Higher scores on the Social Interaction domain were significantly associated with higher peptoid binding (z = 2.04, p = 0.041).

Among ADI-R subdomains, higher scores on the Communication domain were associated with lower levels of peptoid binding (z = −2.28, p = 0.023). There was not a significant relationship between Social Interaction (z = 0.07, p = 0.941) or Restrictive/Repetitive Stereotyped Behaviors (z = −1.40, p = 0.162) and peptoid binding.

 

 

Computational Model Finds New Protein-Protein Interactions

Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.

http://www.technologynetworks.com/Proteomics/news.aspx?id=190995

Using a computational model they developed, researchers at the University of Pittsburgh School of Medicine have discovered more than 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia. The findings, published online in npj Schizophrenia, a Nature Publishing Group journal, could lead to greater understanding of the biological underpinnings of this mental illness, as well as point the way to treatments.

There have been many genome-wide association studies (GWAS) that have identified gene variants associated with an increased risk for schizophrenia, but in most cases there is little known about the proteins that these genes make, what they do and how they interact, said senior investigator Madhavi Ganapathiraju, Ph.D., assistant professor of biomedical informatics, Pitt School of Medicine.

“GWAS studies and other research efforts have shown us what genes might be relevant in schizophrenia,” she said. “What we have done is the next step. We are trying to understand how these genes relate to each other, which could show us the biological pathways that are important in the disease.”

Each gene makes proteins and proteins typically interact with each other in a biological process. Information about interacting partners can shed light on the role of a gene that has not been studied, revealing pathways and biological processes associated with the disease and also its relation to other complex diseases.

Dr. Ganapathiraju’s team developed a computational model called High-Precision Protein Interaction Prediction (HiPPIP) and applied it to discover PPIs of schizophrenia-linked genes identified through GWAS, as well as historically known risk genes. They found 504 never-before known PPIs, and noted also that while schizophrenia-linked genes identified historically and through GWAS had little overlap, the model showed they shared more than 100 common interactors.

“We can infer what the protein might do by checking out the company it keeps,” Dr. Ganapathiraju explained. “For example, if I know you have many friends who play hockey, it could mean that you are involved in hockey, too. Similarly, if we see that an unknown protein interacts with multiple proteins involved in neural signaling, for example, there is a high likelihood that the unknown entity also is involved in the same.”

Dr. Ganapathiraju and colleagues have drawn such inferences on protein function based on the PPIs of proteins, and made their findings available on a website Schizo-Pi. This information can be used by biologists to explore the schizophrenia interactome with the aim of understanding more about the disease or developing new treatment drugs.

Schizophrenia interactome with 504 novel protein–protein interactions

MK GanapathirajuM Thahir,…,  CE LoscherEM Bauer & S Chaparala
npj Schizophrenia 2016;  2(16012)   http://dx.doi.org:/10.1038/npjschz.2016.12

(GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein–protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities.

Schizophrenia (SZ) is a common, potentially severe psychiatric disorder that afflicts all populations.1 Gene mapping studies suggest that SZ is a complex disorder, with a cumulative impact of variable genetic effects coupled with environmental factors.2 As many as 38 genome-wide association studies (GWAS) have been reported on SZ out of a total of 1,750 GWAS publications on 1,087 traits or diseases reported in the GWAS catalog maintained by the National Human Genome Research Institute of USA3 (as of April 2015), revealing the common variants associated with SZ.4 The SZ Working Group of the Psychiatric Genomics Consortium (PGC) identified 108 genetic loci that likely confer risk for SZ.5 While the role of genetics has been clearly validated by this study, the functional impact of the risk variants is not well-understood.6,7 Several of the genes implicated by the GWAS have unknown functions and could participate in possibly hitherto unknown pathways.8 Further, there is little or no overlap between the genes identified through GWAS and ‘candidate genes’ proposed in the pre-GWAS era.9

Interactome-based studies can be useful in discovering the functional associations of genes. For example,disrupted in schizophrenia 1 (DISC1), an SZ related candidate gene originally had no known homolog in humans. Although it had well-characterized protein domains such as coiled-coil domains and leucine-zipper domains, its function was unknown.10,11 Once its protein–protein interactions (PPIs) were determined using yeast 2-hybrid technology,12 investigators successfully linked DISC1 to cAMP signaling, axon elongation, and neuronal migration, and accelerated the research pertaining to SZ in general, and DISC1 in particular.13 Typically such studies are carried out on known protein–protein interaction (PPI) networks, or as in the case of DISC1, when there is a specific gene of interest, its PPIs are determined by methods such as yeast 2-hybrid technology.

Knowledge of human PPI networks is thus valuable for accelerating discovery of protein function, and indeed, biomedical research in general. However, of the hundreds of thousands of biophysical PPIs thought to exist in the human interactome,14,15 <100,000 are known today (Human Protein Reference Database, HPRD16 and BioGRID17 databases). Gold standard experimental methods for the determination of all the PPIs in human interactome are time-consuming, expensive and may not even be feasible, as about 250 million pairs of proteins would need to be tested overall; high-throughput methods such as yeast 2-hybrid have important limitations for whole interactome determination as they have a low recall of 23% (i.e., remaining 77% of true interactions need to be determined by other means), and a low precision (i.e., the screens have to be repeated multiple times to achieve high selectivity).18,19Computational methods are therefore necessary to complete the interactome expeditiously. Algorithms have begun emerging to predict PPIs using statistical machine learning on the characteristics of the proteins, but these algorithms are employed predominantly to study yeast. Two significant computational predictions have been reported for human interactome; although they have had high false positive rates, these methods have laid the foundation for computational prediction of human PPIs.20,21

We have created a new PPI prediction model called High-Confidence Protein–Protein Interaction Prediction (HiPPIP) model. Novel interactions predicted with this model are making translational impact. For example, we discovered a PPI between OASL and DDX58, which on validation showed that an increased expression of OASL could boost innate immunity to combat influenza by activating the RIG-I pathway.22 Also, the interactome of the genes associated with congenital heart disease showed that the disease morphogenesis has a close connection with the structure and function of cilia.23Here, we describe the HiPPIP model and its application to SZ genes to construct the SZ interactome. After computational evaluations and experimental validations of selected novel PPIs, we present here 504 highly confident novel PPIs in the SZ interactome, shedding new light onto several uncharacterized genes that are associated with SZ.

We developed a computational model called HiPPIP to predict PPIs (see Methods and Supplementary File 1). The model has been evaluated by computational methods and experimental validations and is found to be highly accurate. Evaluations on a held-out test data showed a precision of 97.5% and a recall of 5%. 5% recall out of 150,000 to 600,000 estimated number of interactions in the human interactome corresponds to 7,500–30,000 novel PPIs in the whole interactome. Note that, it is likely that the real precision would be higher than 97.5% because in this test data, randomly paired proteins are treated as non-interacting protein pairs, whereas some of them may actually be interacting pairs with a small probability; thus, some of the pairs that are treated as false positives in test set are likely to be true but hitherto unknown interactions. In Figure 1a, we show the precision versus recall of our method on ‘hub proteins’ where we considered all pairs that received a score >0.5 by HiPPIP to be novel interactions. In Figure 1b, we show the number of true positives versus false positives observed in hub proteins. Both these figures also show our method to be superior in comparison to the prediction of membrane-receptor interactome by Qi et al’s.24 True positives versus false positives are also shown for individual hub proteins by our method in Figure 1cand by Qi et al’s.23 in Figure 1d. These evaluations showed that our predictions contain mostly true positives. Unlike in other domains where ranked lists are commonly used such as information retrieval, in PPI prediction the ‘false positives’ may actually be unlabeled instances that are indeed true interactions that are not yet discovered. In fact, such unlabeled pairs predicted as interactors of the hub gene HMGB1 (namely, the pairs HMGB1-KL and HMGB1-FLT1) were validated by experimental methods and found to be true PPIs (See the Figures e–g inSupplementary File 3). Thus, we concluded that the protein pairs that received a score of ⩾0.5 are highly confident to be true interactions. The pairs that receive a score less than but close to 0.5 (i.e., in the range of 0.4–0.5) may also contain several true PPIs; however, we cannot confidently say that all in this range are true PPIs. Only the PPIs predicted with a score >0.5 are included in the interactome.

Figure 1

http://www.nature.com/article-assets/npg/npjschz/2016/npjschz201612/images_hires/w582/npjschz201612-f1.jpg

Computational evaluation of predicted protein–protein interactions on hub proteins: (a) precision recall curve. (b) True positive versus false positives in ranked lists of hub type membrane receptors for our method and that by Qi et al. True positives versus false positives are shown for individual membrane receptors by our method in (c) and by Qi et al. in (d). Thick line is the average, which is also the same as shown in (b). Note:x-axis is recall in (a), whereas it is number of false positives in (bd). The range of y-axis is observed by varying the threshold from 1.0–0 in (a), and to 0.5 in (bd).

SZ interactome

By applying HiPPIP to the GWAS genes and Historic (pre-GWAS) genes, we predicted over 500 high confidence new PPIs adding to about 1400 previously known PPIs.

Schizophrenia interactome: network view of the schizophrenia interactome is shown as a graph, where genes are shown as nodes and PPIs as edges connecting the nodes. Schizophrenia-associated genes are shown as dark blue nodes, novel interactors as red color nodes and known interactors as blue color nodes. The source of the schizophrenia genes is indicated by its label font, where Historic genes are shown italicized, GWAS genes are shown in bold, and the one gene that is common to both is shown in italicized and bold. For clarity, the source is also indicated by the shape of the node (triangular for GWAS and square for Historic and hexagonal for both). Symbols are shown only for the schizophrenia-associated genes; actual interactions may be accessed on the web. Red edges are the novel interactions, whereas blue edges are known interactions. GWAS, genome-wide association studies of schizophrenia; PPI, protein–protein interaction.

http://www.nature.com/article-assets/npg/npjschz/2016/npjschz201612/images_hires/m685/npjschz201612-f2.jpg

 

Webserver of SZ interactome

We have made the known and novel interactions of all SZ-associated genes available on a webserver called Schizo-Pi, at the addresshttp://severus.dbmi.pitt.edu/schizo-pi. This webserver is similar to Wiki-Pi33 which presents comprehensive annotations of both participating proteins of a PPI side-by-side. The difference between Wiki-Pi which we developed earlier, and Schizo-Pi, is the inclusion of novel predicted interactions of the SZ genes into the latter.

Despite the many advances in biomedical research, identifying the molecular mechanisms underlying the disease is still challenging. Studies based on protein interactions were proven to be valuable in identifying novel gene associations that could shed new light on disease pathology.35 The interactome including more than 500 novel PPIs will help to identify pathways and biological processes associated with the disease and also its relation to other complex diseases. It also helps identify potential drugs that could be repurposed to use for SZ treatment.

Functional and pathway enrichment in SZ interactome

When a gene of interest has little known information, functions of its interacting partners serve as a starting point to hypothesize its own function. We computed statistically significant enrichment of GO biological process terms among the interacting partners of each of the genes using BinGO36 (see online at http://severus.dbmi.pitt.edu/schizo-pi).

 

Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution

Massimo Stefani · Christopher M. Dobson

Abstract The deposition of proteins in the form of amyloid fibrils and plaques is the characteristic feature of more than 20 degenerative conditions affecting either the central nervous system or a variety of peripheral tissues. As these conditions include Alzheimer’s, Parkinson’s and the prion diseases, several forms of fatal systemic amyloidosis, and at least one condition associated with medical intervention (haemodialysis), they are of enormous importance in the context of present-day human health and welfare. Much remains to be learned about the mechanism by which the proteins associated with these diseases aggregate and form amyloid structures, and how the latter affect the functions of the organs with which they are associated. A great deal of information concerning these diseases has emerged, however, during the past 5 years, much of it causing a number of fundamental assumptions about the amyloid diseases to be reexamined. For example, it is now apparent that the ability to form amyloid structures is not an unusual feature of the small number of proteins associated with these diseases but is instead a general property of polypeptide chains. It has also been found recently that aggregates of proteins not associated with amyloid diseases can impair the ability of cells to function to a similar extent as aggregates of proteins linked with specific neurodegenerative conditions. Moreover, the mature amyloid fibrils or plaques appear to be substantially less toxic than the prefibrillar aggregates that are their precursors. The toxicity of these early aggregates appears to result from an intrinsic ability to impair fundamental cellular processes by interacting with cellular membranes, causing oxidative stress and increases in free Ca2+ that eventually lead to apoptotic or necrotic cell death. The ‘new view’ of these diseases also suggests that other degenerative conditions could have similar underlying origins to those of the amyloidoses. In addition, cellular protection mechanisms, such as molecular chaperones and the protein degradation machinery, appear to be crucial in the prevention of disease in normally functioning living organisms. It also suggests some intriguing new factors that could be of great significance in the evolution of biological molecules and the mechanisms that regulate their behaviour.

The genetic information within a cell encodes not only the specific structures and functions of proteins but also the way these structures are attained through the process known as protein folding. In recent years many of the underlying features of the fundamental mechanism of this complex process and the manner in which it is regulated in living systems have emerged from a combination of experimental and theoretical studies [1]. The knowledge gained from these studies has also raised a host of interesting issues. It has become apparent, for example, that the folding and unfolding of proteins is associated with a whole range of cellular processes from the trafficking of molecules to specific organelles to the regulation of the cell cycle and the immune response. Such observations led to the inevitable conclusion that the failure to fold correctly, or to remain correctly folded, gives rise to many different types of biological malfunctions and hence to many different forms of disease [2]. In addition, it has been recognised recently that a large number of eukaryotic genes code for proteins that appear to be ‘natively unfolded’, and that proteins can adopt, under certain circumstances, highly organised multi-molecular assemblies whose structures are not specifically encoded in the amino acid sequence. Both these observations have raised challenging questions about one of the most fundamental principles of biology: the close relationship between the sequence, structure and function of proteins, as we discuss below [3].

It is well established that proteins that are ‘misfolded’, i.e. that are not in their functionally relevant conformation, are devoid of normal biological activity. In addition, they often aggregate and/or interact inappropriately with other cellular components leading to impairment of cell viability and eventually to cell death. Many diseases, often known as misfolding or conformational diseases, ultimately result from the presence in a living system of protein molecules with structures that are ‘incorrect’, i.e. that differ from those in normally functioning organisms [4]. Such diseases include conditions in which a specific protein, or protein complex, fails to fold correctly (e.g. cystic fibrosis, Marfan syndrome, amyotonic lateral sclerosis) or is not sufficiently stable to perform its normal function (e.g. many forms of cancer). They also include conditions in which aberrant folding behaviour results in the failure of a protein to be correctly trafficked (e.g. familial hypercholesterolaemia, α1-antitrypsin deficiency, and some forms of retinitis pigmentosa) [4]. The tendency of proteins to aggregate, often to give species extremely intractable to dissolution and refolding, is of course also well known in other circumstances. Examples include the formation of inclusion bodies during overexpression of heterologous proteins in bacteria and the precipitation of proteins during laboratory purification procedures. Indeed, protein aggregation is well established as one of the major difficulties associated with the production and handling of proteins in the biotechnology and pharmaceutical industries [5].

Considerable attention is presently focused on a group of protein folding diseases known as amyloidoses. In these diseases specific peptides or proteins fail to fold or to remain correctly folded and then aggregate (often with other components) so as to give rise to ‘amyloid’ deposits in tissue. Amyloid structures can be recognised because they possess a series of specific tinctorial and biophysical characteristics that reflect a common core structure based on the presence of highly organised βsheets [6]. The deposits in strictly defined amyloidoses are extracellular and can often be observed as thread-like fibrillar structures, sometimes assembled further into larger aggregates or plaques. These diseases include a range of sporadic, familial or transmissible degenerative diseases, some of which affect the brain and the central nervous system (e.g. Alzheimer’s and Creutzfeldt-Jakob diseases), while others involve peripheral tissues and organs such as the liver, heart and spleen (e.g. systemic amyloidoses and type II diabetes) [7, 8]. In other forms of amyloidosis, such as primary or secondary systemic amyloidoses, proteinaceous deposits are found in skeletal tissue and joints (e.g. haemodialysis-related amyloidosis) as well as in several organs (e.g. heart and kidney). Yet other components such as collagen, glycosaminoglycans and proteins (e.g. serum amyloid protein) are often present in the deposits protecting them against degradation [9, 10, 11]. Similar deposits to those in the amyloidoses are, however, found intracellularly in other diseases; these can be localised either in the cytoplasm, in the form of specialised aggregates known as aggresomes or as Lewy or Russell bodies or in the nucleus (see below).

The presence in tissue of proteinaceous deposits is a hallmark of all these diseases, suggesting a causative link between aggregate formation and pathological symptoms (often known as the amyloid hypothesis) [7, 8, 12]. At the present time the link between amyloid formation and disease is widely accepted on the basis of a large number of biochemical and genetic studies. The specific nature of the pathogenic species, and the molecular basis of their ability to damage cells, are however, the subject of intense debate [13, 14, 15, 16, 17, 18, 19, 20]. In neurodegenerative disorders it is very likely that the impairment of cellular function follows directly from the interactions of the aggregated proteins with cellular components [21, 22]. In the systemic non-neurological diseases, however, it is widely believed that the accumulation in vital organs of large amounts of amyloid deposits can by itself cause at least some of the clinical symptoms [23]. It is quite possible, however, that there are other more specific effects of aggregates on biochemical processes even in these diseases. The presence of extracellular or intracellular aggregates of a specific polypeptide molecule is a characteristic of all the 20 or so recognised amyloid diseases. The polypeptides involved include full length proteins (e.g. lysozyme or immunoglobulin light chains), biological peptides (amylin, atrial natriuretic factor) and fragments of larger proteins produced as a result of specific processing (e.g. the Alzheimer βpeptide) or of more general degradation [e.g. poly(Q) stretches cleaved from proteins with poly(Q) extensions such as huntingtin, ataxins and the androgen receptor]. The peptides and proteins associated with known amyloid diseases are listed in Table 1. In some cases the proteins involved have wild type sequences, as in sporadic forms of the diseases, but in other cases these are variants resulting from genetic mutations associated with familial forms of the diseases. In some cases both sporadic and familial diseases are associated with a given protein; in this case the mutational variants are usually associated with early-onset forms of the disease. In the case of the neurodegenerative diseases associated with the prion protein some forms of the diseases are transmissible. The existence of familial forms of a number of amyloid diseases has provided significant clues to the origins of the pathologies. For example, there are increasingly strong links between the age at onset of familial forms of disease and the effects of the mutations involved on the propensity of the affected proteins to aggregate in vitro. Such findings also support the link between the process of aggregation and the clinical manifestations of disease [24, 25].

The presence in cells of misfolded or aggregated proteins triggers a complex biological response. In the cytosol, this is referred to as the ‘heat shock response’ and in the endoplasmic reticulum (ER) it is known as the ‘unfolded protein response’. These responses lead to the expression, among others, of the genes for heat shock proteins (Hsp, or molecular chaperone proteins) and proteins involved in the ubiquitin-proteasome pathway [26]. The evolution of such complex biochemical machinery testifies to the fact that it is necessary for cells to isolate and clear rapidly and efficiently any unfolded or incorrectly folded protein as soon as it appears. In itself this fact suggests that these species could have a generally adverse effect on cellular components and cell viability. Indeed, it was a major step forward in understanding many aspects of cell biology when it was recognised that proteins previously associated only with stress, such as heat shock, are in fact crucial in the normal functioning of living systems. This advance, for example, led to the discovery of the role of molecular chaperones in protein folding and in the normal ‘housekeeping’ processes that are inherent in healthy cells [27, 28]. More recently a number of degenerative diseases, both neurological and systemic, have been linked to, or shown to be affected by, impairment of the ubiquitin-proteasome pathway (Table 2). The diseases are primarily associated with a reduction in either the expression or the biological activity of Hsps, ubiquitin, ubiquitinating or deubiquitinating enzymes and the proteasome itself, as we show below [29, 30, 31, 32], or even to the failure of the quality control mechanisms that ensure proper maturation of proteins in the ER. The latter normally leads to degradation of a significant proportion of polypeptide chains before they have attained their native conformations through retrograde translocation to the cytosol [33, 34].

….

It is now well established that the molecular basis of protein aggregation into amyloid structures involves the existence of ‘misfolded’ forms of proteins, i.e. proteins that are not in the structures in which they normally function in vivo or of fragments of proteins resulting from degradation processes that are inherently unable to fold [4, 7, 8, 36]. Aggregation is one of the common consequences of a polypeptide chain failing to reach or maintain its functional three-dimensional structure. Such events can be associated with specific mutations, misprocessing phenomena, aberrant interactions with metal ions, changes in environmental conditions, such as pH or temperature, or chemical modification (oxidation, proteolysis). Perturbations in the conformational properties of the polypeptide chain resulting from such phenomena may affect equilibrium 1 in Fig. 1 increasing the population of partially unfolded, or misfolded, species that are much more aggregation-prone than the native state.

Fig. 1 Overview of the possible fates of a newly synthesised polypeptide chain. The equilibrium ① between the partially folded molecules and the natively folded ones is usually strongly in favour of the latter except as a result of specific mutations, chemical modifications or partially destabilising solution conditions. The increased equilibrium populations of molecules in the partially or completely unfolded ensemble of structures are usually degraded by the proteasome; when this clearance mechanism is impaired, such species often form disordered aggregates or shift equilibrium ② towards the nucleation of pre-fibrillar assemblies that eventually grow into mature fibrils (equilibrium ③). DANGER! indicates that pre-fibrillar aggregates in most cases display much higher toxicity than mature fibrils. Heat shock proteins (Hsp) can suppress the appearance of pre-fibrillar assemblies by minimising the population of the partially folded molecules by assisting in the correct folding of the nascent chain and the unfolded protein response target incorrectly folded proteins for degradation.

……

Little is known at present about the detailed arrangement of the polypeptide chains themselves within amyloid fibrils, either those parts involved in the core βstrands or in regions that connect the various β-strands. Recent data suggest that the sheets are relatively untwisted and may in some cases at least exist in quite specific supersecondary structure motifs such as β-helices [6, 40] or the recently proposed µ-helix [41]. It seems possible that there may be significant differences in the way the strands are assembled depending on characteristics of the polypeptide chain involved [6, 42]. Factors including length, sequence (and in some cases the presence of disulphide bonds or post-translational modifications such as glycosylation) may be important in determining details of the structures. Several recent papers report structural models for amyloid fibrils containing different polypeptide chains, including the Aβ40 peptide, insulin and fragments of the prion protein, based on data from such techniques as cryo-electron microscopy and solid-state magnetic resonance spectroscopy [43, 44]. These models have much in common and do indeed appear to reflect the fact that the structures of different fibrils are likely to be variations on a common theme [40]. It is also emerging that there may be some common and highly organised assemblies of amyloid protofilaments that are not simply extended threads or ribbons. It is clear, for example, that in some cases large closed loops can be formed [45, 46, 47], and there may be specific types of relatively small spherical or ‘doughnut’ shaped structures that can result in at least some circumstances (see below).

…..

The similarity of some early amyloid aggregates with the pores resulting from oligomerisation of bacterial toxins and pore-forming eukaryotic proteins (see below) also suggest that the basic mechanism of protein aggregation into amyloid structures may not only be associated with diseases but in some cases could result in species with functional significance. Recent evidence indicates that a variety of micro-organisms may exploit the controlled aggregation of specific proteins (or their precursors) to generate functional structures. Examples include bacterial curli [52] and proteins of the interior fibre cells of mammalian ocular lenses, whose β-sheet arrays seem to be organised in an amyloid-like supramolecular order [53]. In this case the inherent stability of amyloid-like protein structure may contribute to the long-term structural integrity and transparency of the lens. Recently it has been hypothesised that amyloid-like aggregates of serum amyloid A found in secondary amyloidoses following chronic inflammatory diseases protect the host against bacterial infections by inducing lysis of bacterial cells [54]. One particularly interesting example is a ‘misfolded’ form of the milk protein α-lactalbumin that is formed at low pH and trapped by the presence of specific lipid molecules [55]. This form of the protein has been reported to trigger apoptosis selectively in tumour cells providing evidence for its importance in protecting infants from certain types of cancer [55]. ….

Amyloid formation is a generic property of polypeptide chains ….

It is clear that the presence of different side chains can influence the details of amyloid structures, particularly the assembly of protofibrils, and that they give rise to the variations on the common structural theme discussed above. More fundamentally, the composition and sequence of a peptide or protein affects profoundly its propensity to form amyloid structures under given conditions (see below).

Because the formation of stable protein aggregates of amyloid type does not normally occur in vivo under physiological conditions, it is likely that the proteins encoded in the genomes of living organisms are endowed with structural adaptations that mitigate against aggregation under these conditions. A recent survey involving a large number of structures of β-proteins highlights several strategies through which natural proteins avoid intermolecular association of β-strands in their native states [65].  Other surveys of protein databases indicate that nature disfavours sequences of alternating polar and nonpolar residues, as well as clusters of several consecutive hydrophobic residues, both of which enhance the tendency of a protein to aggregate prior to becoming completely folded [66, 67].

……

Precursors of amyloid fibrils can be toxic to cells

It was generally assumed until recently that the proteinaceous aggregates most toxic to cells are likely to be mature amyloid fibrils, the form of aggregates that have been commonly detected in pathological deposits. It therefore appeared probable that the pathogenic features underlying amyloid diseases are a consequence of the interaction with cells of extracellular deposits of aggregated material. As well as forming the basis for understanding the fundamental causes of these diseases, this scenario stimulated the exploration of therapeutic approaches to amyloidoses that focused mainly on the search for molecules able to impair the growth and deposition of fibrillar forms of aggregated proteins. ….

Structural basis and molecular features of amyloid toxicity

The presence of toxic aggregates inside or outside cells can impair a number of cell functions that ultimately lead to cell death by an apoptotic mechanism [95, 96]. Recent research suggests, however, that in most cases initial perturbations to fundamental cellular processes underlie the impairment of cell function induced by aggregates of disease-associated polypeptides. Many pieces of data point to a central role of modifications to the intracellular redox status and free Ca2+ levels in cells exposed to toxic aggregates [45, 89, 97, 98, 99, 100, 101]. A modification of the intracellular redox status in such cells is associated with a sharp increase in the quantity of reactive oxygen species (ROS) that is reminiscent of the oxidative burst by which leukocytes destroy invading foreign cells after phagocytosis. In addition, changes have been observed in reactive nitrogen species, lipid peroxidation, deregulation of NO metabolism [97], protein nitrosylation [102] and upregulation of heme oxygenase-1, a specific marker of oxidative stress [103]. ….

Results have recently been reported concerning the toxicity towards cultured cells of aggregates of poly(Q) peptides which argues against a disease mechanism based on specific toxic features of the aggregates. These results indicate that there is a close relationship between the toxicity of proteins with poly(Q) extensions and their nuclear localisation. In addition they support the hypotheses that the toxicity of poly(Q) aggregates can be a consequence of altered interactions with nuclear coactivator or corepressor molecules including p53, CBP, Sp1 and TAF130 or of the interaction with transcription factors and nuclear coactivators, such as CBP, endowed with short poly(Q) stretches ([95] and references therein)…..

Concluding remarks
The data reported in the past few years strongly suggest that the conversion of normally soluble proteins into amyloid fibrils and the toxicity of small aggregates appearing during the early stages of the formation of the latter are common or generic features of polypeptide chains. Moreover, the molecular basis of this toxicity also appears to display common features between the different systems that have so far been studied. The ability of many, perhaps all, natural polypeptides to ‘misfold’ and convert into toxic aggregates under suitable conditions suggests that one of the most important driving forces in the evolution of proteins must have been the negative selection against sequence changes that increase the tendency of a polypeptide chain to aggregate. Nevertheless, as protein folding is a stochastic process, and no such process can be completely infallible, misfolded proteins or protein folding intermediates in equilibrium with the natively folded molecules must continuously form within cells. Thus mechanisms to deal with such species must have co-evolved with proteins. Indeed, it is clear that misfolding, and the associated tendency to aggregate, is kept under control by molecular chaperones, which render the resulting species harmless assisting in their refolding, or triggering their degradation by the cellular clearance machinery [166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 178].

Misfolded and aggregated species are likely to owe their toxicity to the exposure on their surfaces of regions of proteins that are buried in the interior of the structures of the correctly folded native states. The exposure of large patches of hydrophobic groups is likely to be particularly significant as such patches favour the interaction of the misfolded species with cell membranes [44, 83, 89, 90, 91, 93]. Interactions of this type are likely to lead to the impairment of the function and integrity of the membranes involved, giving rise to a loss of regulation of the intracellular ion balance and redox status and eventually to cell death. In addition, misfolded proteins undoubtedly interact inappropriately with other cellular components, potentially giving rise to the impairment of a range of other biological processes. Under some conditions the intracellular content of aggregated species may increase directly, due to an enhanced propensity of incompletely folded or misfolded species to aggregate within the cell itself. This could occur as the result of the expression of mutational variants of proteins with decreased stability or cooperativity or with an intrinsically higher propensity to aggregate. It could also occur as a result of the overproduction of some types of protein, for example, because of other genetic factors or other disease conditions, or because of perturbations to the cellular environment that generate conditions favouring aggregation, such as heat shock or oxidative stress. Finally, the accumulation of misfolded or aggregated proteins could arise from the chaperone and clearance mechanisms becoming overwhelmed as a result of specific mutant phenotypes or of the general effects of ageing [173, 174].

The topics discussed in this review not only provide a great deal of evidence for the ‘new view’ that proteins have an intrinsic capability of misfolding and forming structures such as amyloid fibrils but also suggest that the role of molecular chaperones is even more important than was thought in the past. The role of these ubiquitous proteins in enhancing the efficiency of protein folding is well established [185]. It could well be that they are at least as important in controlling the harmful effects of misfolded or aggregated proteins as in enhancing the yield of functional molecules.

 

Nutritional Status is Associated with Faster Cognitive Decline and Worse Functional Impairment in the Progression of Dementia: The Cache County Dementia Progression Study1

Sanders, Chelseaa | Behrens, Stephaniea | Schwartz, Sarahb | Wengreen, Heidic | Corcoran, Chris D.b; d | Lyketsos, Constantine G.e | Tschanz, JoAnn T.a; d;
Journal of Alzheimer’s Disease 2016; 52(1):33-42,     http://content.iospress.com/articles/journal-of-alzheimers-disease/jad150528   http://dx.doi.org:/10.3233/JAD-150528

Nutritional status may be a modifiable factor in the progression of dementia. We examined the association of nutritional status and rate of cognitive and functional decline in a U.S. population-based sample. Study design was an observational longitudinal study with annual follow-ups up to 6 years of 292 persons with dementia (72% Alzheimer’s disease, 56% female) in Cache County, UT using the Mini-Mental State Exam (MMSE), Clinical Dementia Rating Sum of Boxes (CDR-sb), and modified Mini Nutritional Assessment (mMNA). mMNA scores declined by approximately 0.50 points/year, suggesting increasing risk for malnutrition. Lower mMNA score predicted faster rate of decline on the MMSE at earlier follow-up times, but slower decline at later follow-up times, whereas higher mMNA scores had the opposite pattern (mMNA by time β= 0.22, p = 0.017; mMNA by time2 β= –0.04, p = 0.04). Lower mMNA score was associated with greater impairment on the CDR-sb over the course of dementia (β= 0.35, p <  0.001). Assessment of malnutrition may be useful in predicting rates of progression in dementia and may provide a target for clinical intervention.

 

Shared Genetic Risk Factors for Late-Life Depression and Alzheimer’s Disease

Ye, Qing | Bai, Feng* | Zhang, Zhijun
Journal of Alzheimer’s Disease 2016; 52(1): 1-15.                                      http://dx.doi.org:/10.3233/JAD-151129

Background: Considerable evidence has been reported for the comorbidity between late-life depression (LLD) and Alzheimer’s disease (AD), both of which are very common in the general elderly population and represent a large burden on the health of the elderly. The pathophysiological mechanisms underlying the link between LLD and AD are poorly understood. Because both LLD and AD can be heritable and are influenced by multiple risk genes, shared genetic risk factors between LLD and AD may exist. Objective: The objective is to review the existing evidence for genetic risk factors that are common to LLD and AD and to outline the biological substrates proposed to mediate this association. Methods: A literature review was performed. Results: Genetic polymorphisms of brain-derived neurotrophic factor, apolipoprotein E, interleukin 1-beta, and methylenetetrahydrofolate reductase have been demonstrated to confer increased risk to both LLD and AD by studies examining either LLD or AD patients. These results contribute to the understanding of pathophysiological mechanisms that are common to both of these disorders, including deficits in nerve growth factors, inflammatory changes, and dysregulation mechanisms involving lipoprotein and folate. Other conflicting results have also been reviewed, and few studies have investigated the effects of the described polymorphisms on both LLD and AD. Conclusion: The findings suggest that common genetic pathways may underlie LLD and AD comorbidity. Studies to evaluate the genetic relationship between LLD and AD may provide insights into the molecular mechanisms that trigger disease progression as the population ages.

 

Association of Vitamin B12, Folate, and Sulfur Amino Acids With Brain Magnetic Resonance Imaging Measures in Older Adults: A Longitudinal Population-Based Study

B Hooshmand, F Mangialasche, G Kalpouzos…, et al.
AMA Psychiatry. Published online April 27, 2016.    http://dx.doi.org:/10.1001/jamapsychiatry.2016.0274

Importance  Vitamin B12, folate, and sulfur amino acids may be modifiable risk factors for structural brain changes that precede clinical dementia.

Objective  To investigate the association of circulating levels of vitamin B12, red blood cell folate, and sulfur amino acids with the rate of total brain volume loss and the change in white matter hyperintensity volume as measured by fluid-attenuated inversion recovery in older adults.

Design, Setting, and Participants  The magnetic resonance imaging subsample of the Swedish National Study on Aging and Care in Kungsholmen, a population-based longitudinal study in Stockholm, Sweden, was conducted in 501 participants aged 60 years or older who were free of dementia at baseline. A total of 299 participants underwent repeated structural brain magnetic resonance imaging scans from September 17, 2001, to December 17, 2009.

Main Outcomes and Measures  The rate of brain tissue volume loss and the progression of total white matter hyperintensity volume.

Results  In the multi-adjusted linear mixed models, among 501 participants (300 women [59.9%]; mean [SD] age, 70.9 [9.1] years), higher baseline vitamin B12 and holotranscobalamin levels were associated with a decreased rate of total brain volume loss during the study period: for each increase of 1 SD, β (SE) was 0.048 (0.013) for vitamin B12 (P < .001) and 0.040 (0.013) for holotranscobalamin (P = .002). Increased total homocysteine levels were associated with faster rates of total brain volume loss in the whole sample (β [SE] per 1-SD increase, –0.035 [0.015]; P = .02) and with the progression of white matter hyperintensity among participants with systolic blood pressure greater than 140 mm Hg (β [SE] per 1-SD increase, 0.000019 [0.00001]; P = .047). No longitudinal associations were found for red blood cell folate and other sulfur amino acids.

Conclusions and Relevance  This study suggests that both vitamin B12 and total homocysteine concentrations may be related to accelerated aging of the brain. Randomized clinical trials are needed to determine the importance of vitamin B12supplementation on slowing brain aging in older adults.

 

 

Notes from Kurzweill

This vitamin stops the aging process in organs, say Swiss researchers

A potential breakthrough for regenerative medicine, pending further studies

http://www.kurzweilai.net/this-vitamin-stops-the-aging-process-in-organs-say-swiss-researchers

Improved muscle stem cell numbers and muscle function in NR-treated aged mice: Newly regenerated muscle fibers 7 days after muscle damage in aged mice (left: control group; right: fed NR). (Scale bar = 50 μm). (credit: Hongbo Zhang et al./Science) http://www.kurzweilai.net/images/improved-muscle-fibers.png

EPFL researchers have restored the ability of mice organs to regenerate and extend life by simply administering nicotinamide riboside (NR) to them.

NR has been shown in previous studies to be effective in boosting metabolism and treating a number of degenerative diseases. Now, an article by PhD student Hongbo Zhang published in Science also describes the restorative effects of NR on the functioning of stem cells for regenerating organs.

As in all mammals, as mice age, the regenerative capacity of certain organs (such as the liver and kidneys) and muscles (including the heart) diminishes. Their ability to repair them following an injury is also affected. This leads to many of the disorders typical of aging.

Mitochondria —> stem cells —> organs

To understand how the regeneration process deteriorates with age, Zhang teamed up with colleagues from ETH Zurich, the University of Zurich, and universities in Canada and Brazil. By using several biomarkers, they were able to identify the molecular chain that regulates how mitochondria — the “powerhouse” of the cell — function and how they change with age. “We were able to show for the first time that their ability to function properly was important for stem cells,” said Auwerx.

Under normal conditions, these stem cells, reacting to signals sent by the body, regenerate damaged organs by producing new specific cells. At least in young bodies. “We demonstrated that fatigue in stem cells was one of the main causes of poor regeneration or even degeneration in certain tissues or organs,” said Zhang.

How to revitalize stem cells

Which is why the researchers wanted to “revitalize” stem cells in the muscles of elderly mice. And they did so by precisely targeting the molecules that help the mitochondria to function properly. “We gave nicotinamide riboside to 2-year-old mice, which is an advanced age for them,” said Zhang.

“This substance, which is close to vitamin B3, is a precursor of NAD+, a molecule that plays a key role in mitochondrial activity. And our results are extremely promising: muscular regeneration is much better in mice that received NR, and they lived longer than the mice that didn’t get it.”

Parallel studies have revealed a comparable effect on stem cells of the brain and skin. “This work could have very important implications in the field of regenerative medicine,” said Auwerx. This work on the aging process also has potential for treating diseases that can affect — and be fatal — in young people, like muscular dystrophy (myopathy).

So far, no negative side effects have been observed following the use of NR, even at high doses. But while it appears to boost the functioning of all cells, it could include pathological ones, so further in-depth studies are required.

Abstract of NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice

Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD+) and its impact on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD+ precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response (UPRmt) and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the Mdx mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs (NSCs) and melanocyte SCs (McSCs), and increased mouse lifespan. Strategies that conserve cellular NAD+ may reprogram dysfunctional SCs and improve lifespan in mammals.

references:

Hongbo Zhang, Dongryeol Ryu, Yibo Wu, Karim Gariani, Xu Wang, Peiling Luan, Davide D’amico, Eduardo R. Ropelle, Matthias P. Lutolf, Ruedi Aebersold, Kristina Schoonjans, Keir J. Menzies, Johan Auwerx. NAD repletion improves mitochondrial and stem cell function and enhances lifespan in mice. Science, 2016 DOI: 10.1126/science.aaf2693

 

Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin

Sean WhalenRebecca M Truty & Katherine S Pollard
Nature Genetics 2016; 48:488–496
    
    doi:10.1038/ng.3539

Discriminating the gene target of a distal regulatory element from other nearby transcribed genes is a challenging problem with the potential to illuminate the causal underpinnings of complex diseases. We present TargetFinder, a computational method that reconstructs regulatory landscapes from diverse features along the genome. The resulting models accurately predict individual enhancer–promoter interactions across multiple cell lines with a false discovery rate up to 15 times smaller than that obtained using the closest gene. By evaluating the genomic features driving this accuracy, we uncover interactions between structural proteins, transcription factors, epigenetic modifications, and transcription that together distinguish interacting from non-interacting enhancer–promoter pairs. Most of this signature is not proximal to the enhancers and promoters but instead decorates the looping DNA. We conclude that complex but consistent combinations of marks on the one-dimensional genome encode the three-dimensional structure of fine-scale regulatory interactions.

Advertisements

Read Full Post »


Schizophrenia genomics

Larry H. Bernstein, MD, FCAP, Curator

LPBI

 

Histone Methylation at H3K9; Evidence for a Restrictive Epigenome in Schizophrenia

Schizophr Res. 2013 Sep; 149(0): 15–20.      doi:  10.1016/j.schres.2013.06.021

Epigenetic changes are stable and long-lasting chromatin modifications that regulate genomewide and local gene activity. The addition of two methyl groups to the 9th lysine of histone 3 (H3K9me2) by histone methyltransferases (HMT) leads to a restrictive chromatin state, and thus reduced levels of gene transcription. Given the numerous reports of transcriptional down-regulation of candidate genes in schizophrenia, we tested the hypothesis that this illness can be characterized by a restrictive epigenome.

METHODS   We obtained parietal cortical samples from the Stanley Foundation Neuropathology Consortium and lymphocyte samples from the University of Illinois at Chicago (UIC). In both tissues we measured mRNA expression of HMTs GLP, SETDB1 and G9a via real-time RT-PCR and H3K9me2 levels via western blot. Clinical rating scales were obtained from the UIC cohort.

RESULTS   A diagnosis of schizophrenia is a significant predictor for increased GLP, SETDB1 mRNA expression and H3K9me2 levels in both postmortem brain and lymphocyte samples. G9a mRNA is significantly increased in the UIC lymphocyte samples as well. Increased HMT mRNA expression is associated with worsening of specific symptoms, longer durations of illness and a family history of schizophrenia.

CONCLUSIONS   These data support the hypothesis of a restrictive epigenome in schizophrenia, and may associate with symptoms that are notoriously treatment resistant. The histone methyltransferases measured here are potential future therapeutic targets for small molecule pharmacology, and better patient prognosis.

Schizophrenia is conceptualized as a disorder of gene transcription and regulation. Consequently, chromatin is the ideal scaffold to examine this manifested pathophysiology of schizophrenia, as it constitutes the interface between the underlying genetic code and its surrounding biochemical environment. Through post-transcriptional modifications of histone proteins, gene expression can be either transcriptionally active in a ‘euchromatic’ environment, temporarily quieted in ‘facultative heterochromatin,’ or completely silenced in ‘constitutive heterochromatin’ (Zhang and Reinberg 2001). Post-translational modifications to lysine 9 of the H3 protein (H3K9) are uniquely able to reflect these three levels of transcriptional regulation. H3K9 modifications located in the promoter regions of actively transcribed genes are often acetylated (H3K9acetyl). Conversely, quieted transcription in gene-rich areas of the genome are often associated with mono- or dimethyl H3K9 (H3K9me2), while completely silenced areas of the genome are associated with trimethylated H3K9 (H3K9me3). In particular, the formation of H3K9me2 is catalyzed by histone methyltransferases (HMTs), including Eu-HMTase2 (G9a), Eu-HMTase1 (GLP), and SETDB1 (Krishnan et al. 2011) The different degrees of lysine methylation are possible due to the cooperation of these HMTs, which are able to form large heteromeric complexes (Fritsch et al. 2010).

H3K9 methylation has not been extensively studied in the brain, and until recently the regulation and role of the enzymes responsible for its formation were not known. Postnatal, neuronal-specific GLP/G9a knockdown produces a significant decrease in global H3K9me2 levels and inappropriate gene expression, leading to deficits in learning, reduction in exploratory behaviors and motivation in mice (Schaefer et al. 2009; Shinkai and Tachibana 2011;Tachibana et al. 2005;Tzeng et al. 2007). In humans, deletions or loss-of-function mutations of G9a results in Kleefstra Syndrome, characterized by a severe learning disability and developmental delay (Nillesen et al. 2011; Kleefstra et al. 2005). In humans, increased SETDB1 mRNA expression and resultant elevated H3K9me3 levels have been documented in Huntington Disease (HD) (Ryu et al. 2006; Fox et al. 2004).

A hallmark of schizophrenia is aberrant gene regulation, with the vast majority of studies reporting a down-regulation of gene transcription, suggesting that the epigenome of patients with schizophrenia is restrictive (Akbarian et al. 1995;Guidotti et al. 2000;Fatemi et al. 2005; Impagnatiello et al. 1998; Jindal et al. 2010). Postmortem brain studies indicate a reduction of an open histone modification, H3K4me3, and elevated expression of the histone deacetylase HDAC1 mRNA expression (Cheung et al. 2010; Sharma et al. 2008). The use of peripheral blood mononuclear cells as a reflection of overall chromatin state or at particular gene promoters has been successfully implemented in clinical studies of subjects afflicted depression, alcoholism, and schizophrenia. Peripheral blood cell studies have indicated that schizophrenia is associated with an abnormally condensed chromatin structure; (Issidorides et al. 1975; Kosower et al. 1995) specifically increased restrictive H3K9me2 and reduced H3K9 acetylation (Gavin et al. 2009b). Additionally, H3K9 acetylation in schizophrenia patients is less responsive to in vivo treatment with HDAC inhibitors when compared to both patients with bipolar disorder and nonpsychiatric controls (Sharma et al. 2006;Gavin et al. 2008). Finally, a correlation exists between age of onset of psychiatric symptoms of schizophrenia and baseline levels of H3K9me2 (Gavin et al. 2009b). It is the hypothesis of this paper that schizophrenia can be characterized by a restrictive epigenome, which is observable in both brain and peripheral blood, and has specific and observable effects on psychopathology. We have focused on levels of H3K9me2, indicative of facultative heterochromatin, and the enzymes that catalyze this modification, in patients with schizophrenia to examine their role in this illness.

3.1. mRNA Levels of HMT Gene Expression

We performed a multiple linear regression with each HMT gene of interest as the dependent variable. For postmortem brain tissue we examined sex, age, pH, RIN and diagnosis, whereas for lymphocytes we examined sex, age, and diagnosis as explanatory variables. In these two cohorts, we found that a diagnosis of schizophrenia is a significant predictor for GLP mRNA expression in both postmortem brain samples (β=0.44, F(1,24)=5.80, p<0.05), and in lymphocytes (β=−0.41, F(1,40)=7.91, p<0.01), indicating that patients with schizophrenia demonstrated increased levels compared to nonpsychiatric controls (Fig. 1a). Similarly, a diagnosis of schizophrenia is also a significant predictor for increased SETDB1 mRNA levels in both postmortem brain samples (β=0.39, F(1, 24)=4.33,p<0.05), and in lymphocytes (β=0.37, F(1,40)=6.19, p<0.05; Fig. 1b). A diagnosis of schizophrenia is not a significant predictor for elevated G9a mRNA levels in postmortem brain samples (β=0.22, F(1,24)=1.22, p=ns), but is for lymphocytes (β=−0.317, F(1,40)=4.46, p<0.05; Fig. 1c).

Interestingly, in both postmortem tissue (r=0.79, p<0.001) and lymphocytes (r=0.54, p<0.001), GLP and SETDB1 mRNA expression are positively correlated (data not shown).

Fig. 1

mRNA expression in both postmortem parietal cortical samples from the Stanley Foundation Neuropathology Consortium (on the left) and lymphocyte samples from University of Illinois at Chicago (on the right) and a. GLP mRNA levels, b. G9a mRNA levels and

To establish whether there exist differences in HMT mRNA among schizophrenic patients taking psychotropic medication, and those who were not, we performed a second multiple linear regression analysis on each individual cohort. The overall or type-specific use of antipsychotic, antidepressant or mood stabilizing medication are not significant predictors of HMT mRNA levels in either the postmortem or the lymphocyte cohorts.

3.2. H3K9me2 levels in the Postmortem Brain

In a previously published study we documented elevated global H3K9me2 levels in lymphocytes obtained from schizophrenia patients compared to nonpsychiatric controls (Gavin et al. 2009b). In the current study we attempted to discern whether this abnormality in a restrictive histone modification is present in brain tissue from the SFNC cohort as well. We performed a multiple linear regression with H3K9me2 levels as the dependent variable, with sex, age, and diagnosis as explanatory variables. We found that diagnosis of schizophrenia is a significant predictor of H3K9me2 levels extracted from postmortem brain tissue (β=0.40, F(1,24)=4.58, p<0.05; Fig. 2). GLP (r=0.65, p<0.001) and SETDB1 (r=0.44,p<0.05) are positively correlated with H3K9me2 levels, as discovered through a Pearson Correlation (data not shown).

Fig. 2

H3K9me2 levels are significantly increased parietal cortical samples from patients with schizophrenia when compared to nonpsychiatric controls. Below graph, a representative western blot image is shown. All data is shown as a ratio of optical density …     
3.3. Clinical Correlates with Lymphocyte HMT mRNA Levels

Lymphocyte levels of G9a mRNA demonstrated a positive correlation with the PANSS negative subscale total (r=0.61, p<0.05; Fig. 3a), GLP mRNA is positively correlated with the PANSS general subscale total, (r=0.64, p<0.01; Fig. 3b), and SETDB1 mRNA is more highly expressed in patients with longer durations of illness compared to both normal controls and patients in the ‘first episode psychosis’ group (ANOVA, F(2,30)=3.66, p<0.01; Fig. 3c). Patients with a family history of schizophrenia also had significantly increased levels of lymphocyte SETDB1 mRNA (t18=2.52, p<0.05; Fig. 3d).

Fig. 3

Clinical Correlates with Lymphocyte HMT mRNA Levels a. A rise in G9a mRNA is significantly correlated with increasing PANSS negative subscale totals; p<0.05. b. GLP mRNA is significantly increased upon worsening of PANSS general subscale scores;
4. Discussion

The current paper demonstrates an increase in GLP and SETDB1 mRNA in both postmortem parietal cortex and lymphocyte samples from patients with schizophrenia, as well as an increase in G9a mRNA in lymphocytes. G9a and GLP are responsible for the bulk of H3K9me2 modifications across the genome (Shinkai and Tachibana 2011; Tachibana et al. 2005), and SETDB1 is the only euchromatic HMT to specifically di- and tri-methylate H3K9 (Zee et al. 2010;Wang et al. 2003), but all three of these HMTs are able to form large heteromeric complexes, thus allowing for the sequential degrees of lysine methylation (Fritsch et al. 2010). Further, we demonstrate that the ultimate outcome of their catalytic activity, H3K9me2, is significantly increased in patients with schizophrenia as compared to nonpsychiatric controls. Moreover, GLP and SETDB1 mRNA are positively correlated with H3K9me2 levels. These findings add gravity to our previous demonstration of increased H3K9me2 levels in lymphocytes from schizophrenic patients (Gavin et al. 2009b).

Our investigations into the role of H3K9me2 in schizophrenia pathophysiology, as opposed to other H3K9 modifications, were motivated by the hypothesis that initial inactivation of gene promoter activity at various schizophrenia candidate genes can result in gradual entrenchment of the heterochromatin state as a result of disease chronicity and disuse (Sharma et al. 2012). Areas of H3K9me2 can then act as a platform for additional restrictive adaptors, thus resulting in the spreading of heterochromatin across previously unmodified gene rich areas. As such, the gene altering effects of medications are unable to overcome this restrictive burden, leading to repeated medication failures (Sharma et al. 2012). Support for this hypothesis has been previously demonstrated, (Sharma et al. 2008; Benes et al. 2007) including the finding that schizophrenia patients clinically treated for four weeks with the HDAC inhibitor, valproic acid, displayed no increase in peripheral blood cell acetylated histones 3 or 4 as compared to bipolar patients (Sharma et al. 2006). Here, we find an increase in both H3K9me2 levels and the enzymes which catalyze this modification, providing additional evidence supporting an increased heterochromatin state in schizophrenia.

The major role of the parietal cortex is to integrate and evaluate sensory information (Andersen & Buneo, 2003; Cohen & Andersen, 2002). It is one of the last areas of the human brain to fully mature, (Geschwind, 1965) thus early life environmental insults could have a profound effect. Disordered thought, a common symptom in schizophrenia, is most likely explainable through disruption of this system (Torrey, 2007). Patients with schizophrenia report either acute (McGhie & Chapman, 1961) or blunted (Freedman, 1974) sensitivity to sensory stimuli, and demonstrate overall impairment of sensory integration (Manschreck & Ames, 1984; Torrey, 1980). Similar patterns of transcriptional regulation are observed across the cortex, consequently, results from the parietal cortex likely reflect patterns of gene transcription in other brain regions (Hawrylycz et al., 2012).

Due to its heterogeneity, examining schizophrenia as a binary measurement of illness when examining biological relevancy can be limiting (Arango et al. 2000;Buchanan and Carpenter 1994). Through utilizing the PANSS, biological underpinnings that do not demarcate cleanly with diagnostic categories, can be correlated directly with specific symptomatology. Correlations between methyltransferase enzymes and clinical symptomatology indicate that these restrictive enzymes could contribute to specific facets of the illness, particularly negative and general symptoms, which are particularly resistant to improvement. Increased severity of negative symptoms are correlated with poorer disease prognosis, (Wieselgren et al. 1996) and are not alleviated through our current regimen of psychotropics.

Additionally, SETDB1 mRNA levels are also correlated with other markers of a worse disease prognosis, including a more chronic form of the illness, and a history of schizophrenia in the family. Pharmacological targeting of increased levels of SETDB1improves motor performance and extends survival in HD mice, indicating the promise of treatments that modulate gene silencing mechanisms in neuropsychiatric disorders (Ryu et al. 2006).

The main weakness of this current study was that clinical symptoms were correlated with mRNA extracted from peripheral tissue. Enzymes relating specifically to synaptic function were not examined, but rather overall mechanisms of epigenetic regulation that are not tissue specific. While postmortem investigations are able to serve as a useful snapshot at the time of death, the ability to measure and monitor histone marks over time as marker of disease progression, improvement, or as a predictor of pharmacological response are only possible using peripheral blood cells. A strong rationale for the use of blood chromatin ‘levels’ as a type of biosensor that registers the epigenetic milieu has been proposed elsewhere (Sharma 2012). Furthermore, previous studies have indicated the mRNA patterns of expression patterns in lymphocytes are capable of distinguishing between psychiatric diagnostic groups (Middleton et al. 2005).

The present study hypothesized that schizophrenia may be due to abnormal regulation of fundamental epigenetic mechanisms, thus, we chose to measure overall levels of H3K9me2 opposed to specific gene promoters, based on the assumption that while the individual genes silenced in the brain and blood may not be the same, similar global pathogenic processes may be occurring in both tissues.

The results of this paper indicate that chromatin is more restrictive in patients with schizophrenia, and may be significantly contributing to disease pathology. If, through pharmacological interventions, a reduction in this histone hyper-restrictive insult in schizophrenia can be relaxed, inducing a type of “genome softening,” then neuronal gene expression can be enhanced, thus allowing for increased plasticity and improved therapeutic response (Sharma 2005).

  • Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE, Jones EG., Jr Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry.1995;52(4):258–266. [PubMed]
  • Andersen RA, Buneo CA. Sensorimotor integration in posterior parietal cortex. Advances in Neurology. 2003;93:159–177. [PubMed]
  • Arango C, Kirkpatrick B, Buchanan RW. Neurological signs and the heterogeneity of schizophrenia. Am. J. Psychiatry. 2000;157(4):560–565.[PubMed]
  • Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc. Natl. Acad. Sci. U.S.A. 2007;104(24):10164–10169.[PMC free article] [PubMed]
  • Buchanan RW, Carpenter WT. Domains of psychopathology: an approach to the reduction of heterogeneity in schizophrenia. J. Nerv. Ment. Dis.1994;182(4):193–204. [PubMed]
  • Chase KA, Sharma RP. Nicotine induces chromatin remodelling through decreases in the methyltransferases GLP, G9a, Setdb1 and levels of H3K9me2. Int. J. Neuropsychopharmacol. 2012:1–10. [PubMed]
  • Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A.2010;107(19):8824–8829. [PMC free article] [PubMed]
  • Cohen YE, Andersen RA. A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews. Neuroscience. 2002;3(7):553–562. [PubMed]
  • Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr. Res. 2005;72(2–3):109–122. [PubMed]
  • Fox JH, Barber DS, Singh B, Zucker B, Swindell MK, Norflus F, Buzescu R, Chopra R, Ferrante RJ, Kazantsev A, Hersch SM. Cystamine increases L-cysteine levels in Huntington’s disease transgenic mouse brain and in a PC12 model of polyglutamine aggregation. J. Neurochem. 2004;91(2):413–422.[PubMed]

 

Balancing Histone Methylation Activities in Psychiatric Disorders

Alterations in histone lysine methylation and other epigenetic regulators of gene expression contribute to changes in brain transcriptomes in mood and psychosis spectrum disorders, including depression and schizophrenia. Genetic association studies and animal models implicate multiple lysine methyltransferases (KMTs) and demethylases (KDMs) in the neurobiology of emotion and cognition. Here, we review the role of histone lysine methylation and transcriptional regulation in normal and diseased neurodevelopment and discuss various KMTs and KDMs as potential therapeutic targets in the treatment of neuropsychiatric disease.

Schizophrenia and depression are major psychiatric disorders that lack consensus neuropathology and, in a large majority of cases, a straightforward genetic risk architecture. Furthermore, many patients on the mood and psychosis spectrum show an incomplete response to conventional pharmacological treatments which are mainly aimed at monoamine signaling pathways in the brain (Box 1).

Box 1  Schizophrenia and Depression

Schizophrenia affects 1% of the general population and typically begins during young-adult years, although cognitive disturbances could be evident much earlier. The disease is, in terms of genetics and etiology, highly heterogeneous, and increasingly defined as different and partially independent symptom complexes: (i) psychosis with delusions, hallucinations and disorganized thought; (ii) cognitive dysfunction including deficits in attention, memory and executive function; and (iii) depressed mood and negative symptoms including inability to experience pleasure (anhedonia), social withdrawal and poor thought and speech output [42]. Currently prescribed antipsychotics, which are mainly aimed at dopaminergic and/or serotonergic receptor systems, exert therapeutic effects on psychosis in approximately 75% of patients. However, it is the cognitive impairment which is often the more disabling and persistent feature of schizophrenia [42]. Currently there are no established pharmacological treatments for this symptom complex. However, given that cognitive dysfunction is an important predictor for long-term outcome, this area is considered a high priority in schizophrenia research, as reflected by initiatives combining efforts from government agencies, academia and industry, including MATRICS (the Measurement and Treatment Research to Improve Cognition in Schizophrenia) [42].

Affective disorders as a group show, in terms of genetic risk architecture, some overlap with schizophrenia. For example, rare structural variants, including the balanced translocation at the Disrupted-in-Schizophrenia 1 (DISC-1) locus (1q42) or the 22q11 deletion are, in different individuals, associated with either mood disorder or schizophrenia [81, 82].

Depression, including its more severe manifestation, major depressive disorder which has a lifetime risk of 10–15% for the U.S. general population, is associated with excessive sadness, anhedonia, negative thoughts, and neurovegetative symptoms including changes in sleep pattern and appetite [1]. The disorder, which in more severe cases is accompanied by delusions, hallucinations and other symptoms of psychosis, often takes a chronic and recurrent course. Conventional antidepressant therapies primarily target monoamine metabolism and reuptake mechanisms at the terminals of serotonergic, noradrenergic and dopaminergic neurons. Unfortunately, up to 40% of cases show an insufficient response to these pharmacological treatments [1]. In addition, many antipsychotic and antidepressant drugs have significant side effect burden, including weight gain, diabetes and metabolic defects, extrapyramidal symptoms and sexual dysfunction [83, 84].

However, there is evidence that dysregulated gene transcription, indicative of compromised neural circuitry, contributes to disordered brain function in psychosis and mood spectrum disorder [1, 2]. While no single gene transcript is consistently affected, alterations in RNA levels contribute to defects in GABAergic inhibitory neurotransmission and more generally, synapse organization and function, metabolism and mitochondrial functions, and oligodendrocyte pathology [35]. While a number of transcriptional and post-transcriptional mechanisms may contribute to these changes, chromatin-associated proteins and epigenetic regulators invoked in sustained alterations of gene expression and function (Box 2) could play a critical role in the pathophysiology, or treatment of mental illness [6,7]. Indeed, there is evidence that changes in acetylation of histone lysine residues, which are broadly associated with active gene expression [8] and considered a potential therapeutic target for cancer and other medical conditions [9], also impact gene expression patterns in the brain and thereby influence emotional and cognitive functions. For example, mice or rats exposed to systemic treatment, or localized intracranial injections of class I/II histone deacetylase inhibitors (HDACi) exhibit behavioral changes reminiscent of those elicited by conventional antidepressant drugs [1013]. The short chain fatty acid derivative valproic acid, widely prescribed for its mood-stabilizing and anticonvulsant effects, induces brain histone hyperacetylation at a select set of gene promoters when administered to animals at comparatively high doses [14]. Conversely, overexpression of selected HDACs in neuronal structures implicated in the neurobiology of depression, including the hippocampus, elicit a pro-depressant behavioral phenotype [12]. Similarly, animals treated with class I/II HDACi often show improved performance in learning and memory paradigms and furthermore, drug-induced inhibition or activation of class III HDAC (also known as sirtuins) elicits changes in motivational and reward-related behaviors [15]. Therefore, the orderly balance between histone acetyl-transferase and deacetylase activities is critical for cognitive performance and synaptic and behavioral plasticity [16]. Likewise, However, HDACs interfere with acetylation of many non-histone proteins in the nucleus and cytoplasm [16], and moreover, some of these drugs carry a significant side effect burden [9]. Therefore, in light of the emerging role of epigenetic mechanisms in the neurobiology of these and other psychiatric conditions [6], the therapeutic potential of chromatin modifying drugs, other than the HDACi, warrants further investigations. This review will focus on histone lysine methylation, one of the most highly regulated chromatin markings in brain and other tissues. Multiple methyltransferases (KMTs) and demethylases (KDMs) were recently implicated in emotional and cognitive disorders (Fig. 1), and these types of chromatin modifying enzymes could emerge as novel targets in the treatment of mood and psychosis spectrum disorders.

Box 2  Epigenetic regulators and chromatin structure and function

Epigenetics, in the broader sense, applies both to dividing and postmitotic cells, and refers to a type of cellular memory that involves sustained changes in chromatin structure and function, including gene expression, in the absence of DNA sequence alterations (For in depth discussion, see [85]). Chromatin is essentially a repeating chain of nucleosomes comprised of genomic DNA wrapped around an octamer of core histones H2A/H2B/H3/H4. The histone proteins are intensely decorated with epigenetic information, with more than 70 (amino acid) residue-specific sites subject to various types of post-translational modifications (PTM). These include lysine (K) acetylation, methylation and poly ADP-ribosylation, arginine (R) methylation, and serine (S), threonine (T), tyrosine (Y) and histidine (H) phosphorylation [86]. In addition, a subset of the histone H2A, H2B and H4 lysines are covalently linked to the small protein modifiers ubiquitin and SUMO [87, 88]. Finally, epigenetic markings in genomic DNA include 5-methyl-cytosine and the related form, 5-hydroxy-methyl-cytosine [85]. These DNA and nucleosomal histone markings define the functional architecture of chromatin (see main text).

Proteins associated with methylation and other histone PTM are typically defined either as ‘writers’, ‘erasers’ or ‘readers’, essentially differentiating between the process of establishing or removing a mark as opposed to providing a docking site for chromatin remodeling complexes that regulate transcription, or induce and maintain chromatin condensation [18, 86, 89]. As it pertains to the brain, especially in the context of neuropsychiatric disease, a substantial body of knowledge has been generated for a select set of site-specific (K) methyltransferases and demethylases (Fig. 1A). In contrast, many PTMs are recognized by large numbers of reader proteins [90], but to date only very few of these readers have been explored in the brain. To mention just two examples, there are approximately 75 reader proteins specifically associated with histone H3-trimethyl-lysine 4 (H3K4me3), including several components of the SAGA complex ascribed with a key role for transcriptional initiation at RNA polymerase II target genes [90]. In contrast, H3K9me3, generally considered a repressive mark, provides a central hub for heterochromatin (associated) proteins including several members of the HP1 family and zinc finger domain containing molecules [90]. There is additional complexity because pluripotent stem cells and additional cell types decorate many of their promoters with ‘bivalent domains’ which include both open chromatin-associated (methylated H3K4 and H3/H4 acetylation) and repressive (methylated H3K27) marks [91, 92].

An external file that holds a picture, illustration, etc. Object name is nihms275106f1.jpg

Regulation of histone (K) methylation. (A) Listings of residue-specific KMTs and KDMs for H3K4/9/27/36/79 and H4K20. The majority of KMT and KDM are highly specific for a single histone residue, while a few enzymes target multiple residues, as indicated. Red marked KMT/KDM are implicated in neurodevelopment or psychiatric disease as discussed in main text. The non-catalytic JARID2 regulates activity and function of related KMTs. (B) Simplified scheme for selected mono- and trimethylated histone lysine markings implicated in transcriptional regulation, silencing and enhancer function.

The methylation of lysine and arginine residues, like other histone PTM, define chromatin states and function [8, 17]. To date, more than 20 methyl-marks on K and R residues have been described [18, 19]. As it pertains to the lysines, the majority of studies focused on the regulation and methylation-related functions of six specific sites: H3K4, H3K9, H3K27, H3K36, H3K79 and H4K20 [18]. For H3K4 and H3K9/K27, there is additional complexity because specific information is also conveyed (i) for H3K4, the unmethylated lysine effectively serving as a DNA methylation signal [20, 21], and (ii) for H3K9/K27 acetylation as an alternative PTM [22, 23] (Fig. 1A). For the aforementioned H3/H4 residues, specific biological functions and their interrelations with functional chromatin states, including transcriptional initiation and elongation, heterochromatic silencing and other mechanisms, have been described for the trimethyl-, and for some of the mono- and dimethyl-modifications (Representative examples are provided in Fig. 1B. See ref [17] for a detailed description of the histone methylation code and its relation to other types of histone PTM).

The following examples further illustrate the complex regulation of histone lysine methylation. Monomethylation of histone H3-lysine 4 (H3K4me1) plays an important role in neuronal activity-induced transcription at enhancer sequences [24], but the related forms, H3K4me3/2 are primarily found at the 5′ end of genes, with H3K4me3 mostly arranged as distinct and sharp peaks within 1–2Kb of transcription start sites. The H3K4me3 mark provides a docking site at the 5′ end of genes for chromatin remodeling complexes that either facilitate or repress transcription [25]. Furthermore, mono-methyl-H4-K20 shows strong positive correlation with gene expression at promoters enriched with CpGs, which contrasts to the trimethylated form of the same residue which generally is associated with repressed chromatin [23]. Taken together, these examples illustrate that even closely related histone lysine methylation markings are potentially associated with very different chromatin states.

To date, H3K4, H4K9, H3K27 and H4K20 methylation signals were measured at specific loci and genome-wide in human brain, essentially confirming that each of these epigenetic markings defines the same type of chromatin as in the peripheral tissues or animal brain [2630]. Interestingly, a subset of psychotherapeutic drugs including the mood-stabilizer valproate, the atypical antipsychotic clozapine and some monoamine oxidase inhibitors and stimulant drugs interfere with brain histone methylation (Table 1).

Molecular mechanisms of histone (lysine) methylation

A complex system of site-specific methyltransferases, which transfer the methyl-group of S-Adenosyl-Methionine (SAM) to lysine residues, has evolved in the vertebrate cell. There are an estimated 70 human genes harboring the Su(var)3–9,Enhancer of Zeste,Trithorax (SET) domain, which spans approximately 130 amino acids essential for KMT enzymatic activity [31]. The only known exception is the H3K79-specific methyltransferase, KMT4/DOT1L [31, 32], which lacks a SET. Each of the histone K residues discussed above is the preferential target of a distinct set of methyltransferase proteins (Fig. 1A)[19]. Of note, these histone-modifying enzymes are thought not to access histone substrates directly unless recruited by DNA-bound activators and repressors, a mechanism which could target each methyltransferase to a highly specific set of genomic loci [19].

An equally complex system exists for the site-specific lysine demethylases (Fig. 1A). There are at least two different mechanisms for active histone demethylation. The first enzyme type, represented by lysine-specific demethylase 1 (LSD1/KDM1A), contains an amine oxidase domain and requires flavin adenine dinucleotide (FAD) as a cofactor to demethylate di- and mono-methylated lysines. LSD1 and its homologue, LSD2, are primarily H3K4 demethylases, albeit depending on species and context, and activity against H3K9 also has been described [18]. Interestingly, monoamine oxidase inhibitors (MAOi) such as tranylcypromine or phenelzine — powerful antidepressants that exert their therapeutic effects mainly by elevating brain monoamine levels through inhibition of MAO-A/B — also block LSD1 type histone demethylases [18]. While LSD1 is thought to regulate histone methylation at promoters, LSD2 is bound to transcriptional elongation complexes and removes H3K4 methyl markings in gene bodies, thereby facilitating gene expression by reducing spurious transcriptional initiation outside of promoters [33]. The second type of demethylase, which in contrast to LSD1/LSD2 is capable of demethylating trimethyl markings, involves Fe2+-dependent dioxygenation by Jumonji-C (JmJC) domain-mediated catalysis [18]. Given that each of the KMTs and KDMs described has a different combinatorial set of functional domains and (protein) binding partners [18, 34], it is likely that the various site-specific methyltransferases and demethylases are largely non-redundant in function.

KMTs and KDMs with a role in cognition and neuropsychiatric disease

An increasing number of KMTs and KDMs are implicated in neurodevelopment and major psychiatric diseases (marked in red in Fig. 1A).

H3K4

The first histone lysine methyltransferase explored in the nervous system was KMT2A/MLL1, a member of the mixed-lineage leukemia (MLL) family of molecules. Mice heterozygous for an insertional (lacZ) loss-of-function Mll1mutation show distinct abnormalities in hippocampal plasticity and signaling [35], in conjunction with defects of learning and memory [36]. Of note, the hippocampus, and other portions of the forebrain including prefrontal cortex and ventral striatum, are frequently implicated in the neural circuitry of mood and psychosis spectrum disorders [1]. Furthermore, conditional deletion of Mll1resulted in defective neurogenesis during the early postnatal period [37]. While the full spectrum of MLL1 target genes in neurons and glia awaits further investigation, dysregulated expression of certain transcription factors such as DLX2, a key regulator for the differentiation of forebrain GABAergic neurons (which are essential for inhibitory neurotransmission and orderly synchronization of neural networks) [38], may contribute to the cognitive phenotype of the Mll1mutant mice. These observations may be relevant for the pathophysiology of schizophrenia, because some patients show in the prefrontal cortex a deficit in H3K4-trimethylation and gene expression at a subset of GABAergic promoters, including GAD1 encoding a GABA synthesis enzyme [28]. While the timing and age-of-onset for this ‘molecular lesion’ remains unknown, it is of interest that in the normal PFC, H3K4 methylation at the site of GABAergic genes progressively increases during the transition from fetal period to childhood to adulthood [28]. The epigenetic vulnerability of the Gad1 promoter during such prolonged developmental periods is further emphasized by recent animal studies demonstrating that Gad1-DNA methylation and histone acetylation are heavily influenced by the level of maternal care in the neonatal period/pre-weanling period [39].

There is additional evidence that epigenetic fine-tuning of the brain’s H3K4 methyl-markings is critical for orderly neurodevelopment. Of note, loss-of-function mutations in KDM5C/JARID1C/SMCX, an X-linked gene encoding a H3K4 demethylase, have been linked to mental retardation [40] and autism spectrum disorders [41]. The KDM5C gene product operates in a chromatin remodeling complex together with HDAC1/2 histone deacetylases and the transcriptional repressor REST, thereby poising neuron-restrictive silencer elements for H3K4 demethylation and decreased expression of target genes including synaptic proteins and sodium channels [40]. However, because this study was conducted with the HeLa cell line, it remains to be determined whether similar mechanisms operate in the nervous system.

In addition to its role in neurodevelopment, MLL-mediated H3K4 methylation could play a potential role for the treatment of psychosis. The atypical antipsychotic clozapine, which has a somewhat higher therapeutic efficacy when compared to conventional antipsychotics that function primarily as dopamine D2 receptor antagonists [42], upregulates H3K4 tri-methylation at the Gad1/GAD1GABA synthesis enzyme gene promoter. These effects were not mimicked in dopamine receptors D2/D3 (Drd2/3) compound null mutant mice, suggesting that blockade of dopamine D2-like receptors is not sufficient for clozapine-induced H3K4 methylation [28]. In the human PFC, GAD1-associated H3K4 methylation was increased in subjects exposed to clozapine, as compared to subjects treated with conventional antipsychotics. Conversely, mice heterozygous for the H3K4-specific KMT, mixed-lineage leukemia 1 (MLL1), exhibited decreased H3K4 methylation at brain Gad1 [28]. Therefore, it is possible that MLL1, which is highly expressed in GABAergic and other neurons of the adult cerebral cortex [28], will in the future emerge as a novel target for the treatment of psychosis. Questions that remain to be resolved include (i) the molecular pathways linking clozapine — a drug that impacts dopaminergic, serotonergic, muscarinic and other signaling pathways — to MLL1-mediated histone methylation, and (ii) whether or not the clozapine-induced changes in H3K4 methylation are restricted to GABAergic gene promoters or, alternatively, the reflection of more widespread epigenetic changes throughout the genome. Of note, clozapine’s effects on H3K4 methylation require intact brain circuitry and cannot be mimicked in cultured neurons differentiated from forebrain progenitor cells [43]. This finding is in good agreement with the recent observation that some of clozapine’s therapeutic effects require an intact serotonergic system, particularly its presynaptic components [44].

H3K9

The 9q34 subtelomeric deletion syndrome, which includes mental retardation and other developmental defects, is caused by deleterious mutations and haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1, also known as GLP and KMT1D) [45]. This gene encodes a H3K9-specific methyltransferase that operates in a multimeric complex that includes its closest homologue, G9a/KMT1C, and additional H3K9-specific HMTs [46]. Studies in mutant mice suggest that the GLP/G9a complex is important for suppression of non-neuronal and progenitor genes in mature neurons, and loss of this complex has deleterious effects on cognition and other higher brain functions [47]. Furthermore, G9a-mediated H3K9 methylation events within the reward circuitry, including the ventral striatum, are critical intermediates for the long-term effects of cocaine on reward behavior and neuronal morphology [48]. This would suggest that GLP/G9a, and proper regulation of H3K9 levels, is important for orderly brain function both in developing and mature brain.

Furthermore, changes in motivational and affective behaviors could be elicited by overexpression of the H3K9-HMT, SET domain bifurcated 1 (KMT1C/SETDB1/ESET), in adult forebrain neurons [49]. Interestingly, SETDB1 occupancy in neuronal chromatin is highly restricted, and may be confined to less than 0.75% of annotated genes [49]. However, among these are several NMDA and other ionotropic glutamate receptor subunit genes, including Grin2a/b (Nr2a/b)[49]. Mild to moderate inhibition of NMDA receptor-mediated (including Grin2b) neurotransmission elicits a robust improvement of depressive symptoms in some mood disorder patients [50], and, indeed, SETDB1-mediated H3K9 methylation and repressive chromatin remodeling at the Grin2b locus was associated with antidepressant-like behavioral phenotypes in the Setdb1 transgenic mice [49]. Of note, NMDA receptor antagonists, including GRIN2B-specific drugs, elicit significant therapeutic benefits even in subjects who failed multiple trials of selective serotonin reuptake inhibitors (SSRI) and other conventional antidepressants [50]. However, drugs directly acting at the NMDA receptor site have an unfavorable side effect profile, and therapeutic strategies aimed at SETDB1 expression and activity may therefore provide an alternative strategy.

Interestingly, mice with a genetic ablation of Kap1, encoding the SETDB1 binding partner KRAB-associated protein 1, also known as TRIM28/TIF1b/KRIP1)[51], show increased anxiety and deficits in cognition and memory [52], which are phenotypes that are broadly opposite from those observed in mice with increasedSetdb1 expression in brain [49]. These findings further speak to the therapeutic potential of the Kap1-Setdb1 repressor complex in the context of neuropsychiatric disease.

Finally, the H3K9-specific demethylase, KDM3A/Jmjd1A, showed increased H3K9-methylation at its own promoter in the ventral striatum of mice exposed to social defeat (a type of stressor associated with a depression-like syndrome in these animals), while mice that were treated with a conventional antidepressant or that were resilient to this type of stress did not show changes in KDM3A promoter methylation [53]. While it is unclear whether KDM3A or some other demethylase acitivity is altered in the depressed animals, the same study [53] reported widespread repressive histone methylation changes, including increased dimethyl-H3K9 and methylated H3K27 at hundreds of gene promoters in stress susceptible animals, which further emphasizes the importance of these PTMs for the epigenetics of mood disorder.

H3K27

The H3K27-selective methyltransferase, KMT6A, also known as Enhancer of zeste homolog2 (EZH2), is associated with the polycomb repressive chromatin remodeling complex 2 (PRC2) [54], and essential for cortical progenitor cell and neuron production. Consequently, loss of EZH2 function is associated with severe thinning of the cerebral cortex and a disproportionate loss of neurons residing in upper cortical layers I–IV [55]. Likewise, the H3K27-specific demethylase, JMJD3, is important for neurogenesis and neuronal lineage commitment [56]. Furthermore, H3K27 methylation is dynamically regulated in mature brain and involved in the neurobiology of major psychiatric disease. For example, changes in expression of brain-derived neurotrophic factor (Bdnf) in hippocampus of mice exposed to environmental enrichment or chronic stress are associated with opposite changes in the H3K27me3 mark at a subset of Bdnf gene promoters [12,57]. In addition, acute stress leads to an overall decrease in hippocampal H3K27me3 and H3K9me3 [58]. Furthermore, in the orbitofrontal cortex of suicide completers, alterations in H3K27 methylation were described at the TRKB gene, encoding the high affinity receptor for the nerve growth factor molecule, BDNF [27]. Changes in the balance between histone H3K4 and H3K27 methylation, or DNA cytosine and H3K27 methylation may also contribute to GABAergic gene expression deficits in schizophrenia [28, 43]. To date it remains unclear which of the various H3K27-specific KMTs and KDMs (Fig. 1) are involved in these disease-related alterations in postmortem brain tissue. Of note, the Jumonji and Arid containing protein 2 (JARID2), which by itself lacks catalytic activity but is crucial for subsequent H3K27 or H3K9 methylation by recruiting the polycomb PRC2 complex to its target genes [59, 60], is located within the schizophrenia susceptibility locus on chromosome 6p22 and confers genetic risk in multiple populations of different ethnic origin [61, 62]. While the biological functions of JARID2 have been studied primarily in the context of transcriptional regulation in stem cells [63, 64], this gene shows widespread expression in the mature nervous system [65], implying JARID2-mediated control over polycomb repressive chromatin remodeling in the adult brain.

H3K36 and H4K20

Epigenetic dysregulation of nuclear receptor-binding SET domain containing protein 1/KMT3B could play a role in some neuro- and glioblastomas [66], but like for other H3K36 and H4K20 regulating enzymes (Fig. 1), to date little is known about their role in neurodevelopment, cognition and psychiatric disease. Strikingly, however, KMT3A/HYPB/SETD2, a member of the SET2 family of KMTs mediating H3K36 methylation [67], is also known as huntingtin-interacting protein 1 (HIP-1) or huntingtin(yeast)-interacting protein B (HYPB) [68]. Huntington’s is a triplet repeat disorder and chronic neurodegenerative condition with motor symptoms and cognitive defects, and significant changes in mood and affect [69]. Whether or not there is altered H3K36 methylation in the neuronal populations that are at risk for degeneration is unclear. Furthermore, the huntingtin/KMT3A interaction has been documented for yeast [68] but not brain. Of note, wildtype huntingtin is a facilitator of polycomb complex PCR2-mediated H3K27 methylation [70], and furthermore, H3K4 and H3K9 methylation changes have been reported in preclinical model systems and postmortem brains with Huntington’s disease [71, 72]. Therefore, it is possible that transcriptional dysregulation in this condition is associated with aberrant methylation patterns of multiple lysine residues.

KMTs and KDMs as Novel Drug Targets

Given the emerging role of histone methylation in the neurobiology of psychiatric disease, the next obvious question is whether this type of PTM could provide a target for a new generation of psychotropic therapeutics. In principle, KMTs and KDMs should provide fertile ground for the development of novel drugs, because these enzymes are considered more specific than, for example, HDACs, because each HDAC enzyme is likely to affect a much larger number of histone residues as compared to KMTs/KDMs [73]. However, like for other histone modifying enzymes, the specificity of KMTs and KDMs is not limited to histones but includes the (de)methylation of lysines of non-histone proteins, including the p53 tumor suppressor protein and the VEGF growth factor [74]. Druggable domains within the KMTs and KDMs could involve not only their catalytic sites, such as the SET domain for the KMTs or the amino oxidase and JmjC domains for the LSD1 and JMJD subtypes of KDMs, respectively, but also some of the many other functional domains that are specific to subsets of these proteins [75]. One potential candidate would be the bromodomain of the MLLs and other H3K4-specific methyltransferases [75]. Bromodomains, which are present in many different types of nuclear proteins, bind to acetylated histones and small molecules interfering with some of these interactions recently emerged as powerful modulators of systemic inflammation [76].

The catalytic activity of the SET domain containing KMTs requires the universal methyl donor, S-adenosyl-methionine (also known as AdoMET). Crystallographic and functional studies revealed that the SAM binding pocket of KMTs is different from the SAM pockets of other proteins, which may increase the chance to develop compounds which specifically target histone methyltransferases but not other enzymes and proteins [31]. Currently, however, no KMT or KDM related drug is in clinical trials. However, several of these compounds show therapeutic promise in preclinical studies. For example, the S-adenosylhomocysteine hydrolase inhibitor, 3-deazaneplanocin A (DZNep) induces apoptosis in breast cancer cells [77]. This drug alters H3K27 and H4K20 trimethylation via interference with polycomb PRC2 repressive chromatin remodeling [73]. Antioncogenic effects were also observed with BIX-01294, a drug that downregulates H3K9 methylation levels by binding to the SET domain of the G9a/GLP(EHMT1) methyltransferases [73]. The same drug was shown to alter addictive behaviors and H3K9 methylation when infused locally into the brain of cocaine-exposed mice [48]. As discussed above, while tranylcypromine and other monoamine oxidase inhibitors used for the treatment of depression are weak inhibitors of the LSD1 type of KDM, recently several compounds emerged with much stronger activity against LSD1/LSD2 [18]. It will be extremely interesting to explore these drugs in preclinical models for mood and psychosis spectrum disorders. Finally, microRNA-based therapeutic strategies, aimed at decreasing levels and expression of chromatin remodeling complexes, including some of the histone modifying enzymes discussed here, are gaining increasing prominence in the field of cancer therapy [73] and may in the future emerge as a novel therapeutic option in the context of neuropsychiatric disease.

Emerging Concept in DNA Methylation: Role of Transcription Factors in Shaping DNA Methylation Patterns
CLAIRE MARCHAL AND BENOIT MIOTTO*   Journal of Cellular Physiology Volume 230, Issue 4,  http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-4652

DNA methylation in mammals is a key epigenetic modification essential to normal genome regulation and development. DNA methylation patterns are established during early embryonic development, and subsequently maintained during cell divisions. Yet, discrete site-specific de novo DNA methylation or DNA demethylation events play a fundamental role in a number of physiological and pathological contexts, leading to critical changes in the transcriptional status of genes such as differentiation, tumor suppressor or imprinted genes. How the DNA methylation machinery targets specific regions of the genome during early embryogenesis and in adult tissues remains poorly understood. Here, we report advances being made in the field with a particular emphasis on the implication of transcription factors in establishing and in editing DNA methylation profiles. J. Cell. Physiol. 230: 743–751, 2015.

DNA methylation is a well-studied epigenetic modification in mammalian genomes, discovered in 1948. It is involved in a number of essential cellular processes such as transcription regulation, cellular differentiation, cellular identity maintenance, X inactivation, gene imprinting, and the cellular response to environmental changes (Klose and Bird, 2006; Guibert and Weber, 2013; Smith and Meissner, 2013; Subramaniam et al., 2014). DNA methylation has proved to be a dynamic process, requiring continuous regulation and potentially having an important regulatory role for tissuespecific differentiation or cellular signaling. Indeed, the analysis of the distribution of DNA methylation at the genome scale, and nowadays at the single-base resolution, in different physiological and pathological states, unraveled that local changes in DNA methylation contribute to cell-type specific variation in gene expression. Furthermore, aberrant DNA methylation patterns are documented in a number of human diseases from Immunodeficiency, Centromere instability, and Facial anomalies (ICF) syndrome to cancer, and contribute to the onset or development of these diseases (Smith and Meissner, 2013; Weng et al., 2013; Subramaniam et al., 2014). Needless to say, these discoveries also fuel the promising idea that therapeutic strategies targeting DNA methylation can be used in the prevention and the treatment of cancer and other human diseases, including neuro-developmental disorders (Weng et al., 2013; Subramaniam et al., 2014). As an example, antipsychotic drugs clozapine and sulpiride, combined with histone deacetylase inhibitor valproate, have a beneficial action in schizophrenia and bipolar patients, maybe because they revert the aberrant DNA methylation status at GABAergic gene promoters (Dong et al., 2008). In 2004, 5-azacytidine (VidazaTM, Celgene Corporation, Summit, NJ). A drug blocking DNA methylation, received approval by the Food and Drug Administration for the treatment of myelodysplastic syndromes (Kaminskas et al., 2005).

Figure 1. Overview of the DNA methylation and demethylation pathway. (A) DNMT1 is responsible for the maintenance of DNA methylation during DNA replication. It recognizes hemi-methylated CpG, thanks to its interaction with co-factor UHRF1, and it adds methylation on the un-methylated strand. Black bubbles: methylated CpG. Empty bubbles: un-methylated CpG. (B) DNMT3A/B are responsible for de novo DNA methylation. They establish new patterns of methylation directly from unmethylated CpG-containing sequences. In the embryo, their activity is modulated by a catalytically inactive family member DNMT3L. (C) Passive demethylation occurs through loss of DNMT1/3 activity in actively dividing cells. Loss can be attributed to post-translational modifications, gene mutations, gene silencing or any other mechanism that will eventually lead to DNMT activity inhibition. (D) Active DNA demethylation is catalyzed by the TET family of enzymes. TET1, 2 and 3 can oxydate 5mC into 5hmC (represented in grey bubbles), and eventually oxidate 5hmC into 5-formylcytosine and 5-carboxy-cytosine. None of these bases is recognized by DNMTs causing loss of DNA methylation during DNA replication. In addition, these oxidated bases are recognized by the base-excision repair (BER) pathway and catalytically removed.

Figure 2. Summary of the nuclear factors and epigenetic marks involved in the maintenance of DNA methylation status in different regions of the genome. The table recapitulates our current knowledge on transcription factors, chromatin remodellers and histone marks contributing to the establishment of DNA methylation and its erasure. The information is presented according to genomic features, sharing common regulators, such as promoters/enhancers, tumor suppressor genes, germline gene promoters, imprinted regions, DNA repeats, and retroviral elements and peri-centromeric regions.

…….

t KAP1/DNMTs control the maintenance of DNA methylation, independently of DNA replication, on a number of genomic targets. Yet, DNMTs have been shown to be recruited onto the chromatin by other chromatin remodelers, such as SETDB1 or G9a, or secondary to gene silencing (Gibbons et al., 2000; Dennis et al., 2001; Guibert and Weber, 2013; Pacaud et al., 2014). Thus, only the identification of the full-spectrum of transcription factors involved in the regulation of DNA methylation will tell whether this function is predominantly confer to KRAB-ZNF factors. This systematic analysis might help understand why only a limited number of factors per family are involved in the shaping of DNA methylation. In the case of ZNF factors several explanations have been postulated. The resolution of the structure of the ZNF fingers of Zfp57 bound onto methylated DNA indicated that a specific amino-acid sequence in the DNA binding ZNF fingers might be required for the recognition and binding of methylated CpG sequences (Liu et al., 2012; BuckKoehntop and Defossez, 2013). Using this knowledge, researchers have postulated that ZNF factors containing this motif might likely contribute to shape DNA methylation profile (Liu et al., 2013). An alternative hypothesis rely on the observation that KRAB-ZNF factors are present uniquely in vertebrate genomes and have expanded quite dramatically in mammalian genomes. As DNA repeats sequences also quickly evolved in mammalian genomes, it is suggested that humanspecific KRAB-ZNF factors might primarily contribute in DNA repeats silencing (Lukic et al., 2014).

……

DNA methylation plays an important role in the control of gene expression and cell fate in mammals. Its regulation and function has been upon intense scrutiny since its discovery in mid-1900s. Yet, how DNA methylation patterns are established during embryogenesis, and edited in adult tissue, remains a matter of intense debate. Profiling of DNA methylation in many cell type, species and environmental set up indicates that the DNA methylation profile is thighly correlated with the cell type and its environment. As a consequence, de novo methylation and DNA demethylation events are not randomly distributed but are actually targeted to particular regulatory DNA elements in the genome, including promoters, enhancers or repeated DNAs. For this latter reason researchers have focused on the role of transcription factor in these DNA methylation events. Yet, it is also recognized that non-coding RNAs, short and long, contribute to the establishment and editing of DNA methylation profiles in mammals. Non-coding RNAs may directly interact and control methylation and demethylation activities and, as a consequence, the pattern of DNA methylation in the genome (Di Ruscio et al., 2013; Arab et al., 2014; Castro-Diaz et al., 2014; Molaro et al., 2014; Turelli et al., 2014). For instance, antisense long non-coding RNA TARID (TCF21 antisense RNA inducing demethylation), activates TCF21 expression by inducing promoter demethylation. TARID sequence is complementary to the sequence of the TCF21 promoter. Its transcription causes the anchoring of GADD45A (growth arrest and DNA-damageinducible, alpha), a regulator of DNA demethylation, at the TCF21 promoter and its subsequent chromatin remodelling (Arab et al., 2014). Understanding the interplay between noncoding RNAs and transcription factors in the establishment and the maintenance of DNA methylation is therefore an important challenge for the future.

The Expanding Role of MBD Genes in Autism: Identification of a MECP2 Duplication and Novel Alterations in MBD5, MBD6, and SETDB1

The methyl-CpG-binding domain (MBD) gene family was first linked to autism over a decade ago when Rett syndrome, which falls under the umbrella of autism spectrum disorders (ASDs), was revealed to be predominantly caused by MECP2mutations. Since that time, MECP2 alterations have been recognized in idiopathic ASD patients by us and others. Individuals with deletions across the MBD5 gene also present with ASDs, impaired speech, intellectual difficulties, repetitive behaviors, and epilepsy. These findings suggest that further investigations of the MBD gene family may reveal additional associations related to autism. We now describe the first study evaluating individuals with ASD for rare variants in four autosomal MBD family members, MBD5, MBD6, SETDB1, and SETDB2, and expand our initial screening in the MECP2 gene. Each gene was sequenced over all coding exons and evaluated for copy number variations in 287 patients with ASD and an equal number of ethnically matched control individuals. We identified 186 alterations through sequencing, approximately half of which were novel (96 variants, 51.6%). We identified seventeen ASD specific, nonsynonymous variants, four of which were concordant in multiplex families: MBD5 Tyr1269Cys, MBD6 Arg883Trp, MECP2 Thr240Ser, and SETDB1 Pro1067del. Furthermore, a complex duplication spanning the MECP2 gene was identified in two brothers who presented with developmental delay and intellectual disability. From our studies, we provide the first examples of autistic patients carrying potentially detrimental alterations in MBD6 and SETDB1, thereby demonstrating that the MBD gene family potentially plays a significant role in rare and private genetic causes of autism.

There is growing evidence of the involvement of the methyl-CpG-binding domain (MBD) genes in neurological disorders. To date, pathogenic mutations have been found in patients with clinical features along the autism continuum for two genes in this family, methyl-CpG-binding domain protein 5 (MBD5) and methyl-CpG-binding protein 2 (MECP2). Both genes carry an MBD domain, the unifying feature for the family that includes nine additional genes; BAZ1A, BAZ1B, MBD1,MBD2, MBD3, MBD4, MBD6, SETDB1 and SETDB2 (Roloff et al., 2003). The MBD genes are involved in a variety of functions, including chromatin remodeling (BAZ1A, BAZ1B, MBD1, MBD2, MBD3, and MECP2), DNA damage repair (BAZ1A and MBD4), histone methylation (SETBD1 and SETDB2), and X chromosome inactivation (MBD2, Roloff et al., 2003, Bogdanovic & Veenstra, 2009). There is also functional interplay among members of this family as they have been found to bind at the same promoter regions (MBD1, MBD2, MBD3, andMECP2), partner with each other in complexes (MBD1 and SETBD1), or act in the same complexes in a mutually exclusive manner (MBD2 and MBD3, Sarraf & I. Stancheva 2004; Ballestar et al., 2005; Le Guezennec et al., 2006; Matarazzo et al., 2007). Little is known thus far about the functions of MBD5 and MBD6; they each encode proteins that localize to chromatin but fail to bind methylated DNA (Laget et al., 2010).

One specific disorder in the autism spectrum, Rett syndrome, is caused almost exclusively by alterations in MECP2 (Amir et al., 1999). Due to the location ofMECP2 on the X chromosome, mutations in females can lead to Rett syndrome while males with the same genetic changes typically present with neonatal encephalopathy (Moretti & Zoghbi 2006). Further investigations have demonstrated that MECP2 misregulation can lead to a wide range of clinical features including autism, Angelman-like symptoms, mental retardation with or without infantile seizures, mild learning disabilities, and schizophrenia (Watson et al., 2001; Klauck et al., 2002; Carney et al., 2003; Shibayama et al., 2004;Coutinho et al., 2007; Harvey et al., 2007; Lugtenberg et al., 2009). Our group previously evaluated the MECP2 gene in a dataset of female ASD patients and identified two mutations reported in classic Rett syndrome patients; an Arg294X mutation and a 41 base pair deletion (Leu386fs) predicted to generate a truncated protein (Carney et al., 2003). Furthermore, while point mutations in MECP2 were first recognized to result in abnormal clinical phenotypes, increased expression of the wild type protein due to gene duplication also results in neurodevelopmental disorders (Meins et al., 2005; Van Esch et al., 2005; del Gaudio et al., 2006;Ramocki et al., 2009).

A second gene in the MBD family, MBD5, was tied to neurodevelopmental disorders following the identification of microdeletions on chromosome 2q22–2q23 (Vissers et al., 2003; Koolen et al., 2004; de Vries et al., 2005; Wagenstaller et al., 2007; Jaillard et al., 2008; van Bon et al., 2009; Williams et al., 2009; Chung et al., 2011; Talkowski et al., 2011; Noh & J. M. Graham Jr 2012). The minimal region for these nonrecurrent deletions covers only a single gene, MBD5 (van Bon et al., 2009; Williams et al., 2009; Talkowski et al., 2011). This suggests that the common features of ASDs, delayed or impaired speech, intellectual disability, epilepsy, and stereotypic hand movements found across microdeletion patients manifest due to a decreased expression of this critical gene (van Bon et al., 2009;Williams et al., 2009; Talkowski et al., 2011). Notably, two cases of individuals with duplications across the critical MBD5 region also present with autistic features and developmental delay (Chung et al., 2012). This demonstrates that precise regulation of both MBD5 and MECP2 must be maintained as either increased or decreased expression of each gene can result in a range of neurodevelopmental disorders.

Supplementing clinical evidence, mouse models have reiterated the potential significance of the MBD family in autism etiology. Mbd1 and Mecp2 null models have abnormal neurobehavioral phenotypes including increased anxiety, and impaired social interactions and synaptic plasticity (Guy et al., 2001; Shahbazian et al., 2002b; Zhao et al., 2003; Allan et al., 2008). Furthermore, a transgenicSetdb1 model established a link between this gene and behavior (Jiang et al., 2010a). Additionally, Setdb1 plays a role in the repression of Grin2b, a gene linked to autism, bipolar disorder, intellectual disability, and schizophrenia (Avramopoulos et al., 2007; Allen et al., 2008; Endele et al., 2010; Jiang et al., 2010a; Myers et al., 2011; O’Roak et al., 2011).

Studies have demonstrated that each of the MBD genes are expressed in the brain, while their specific functions having only been determined for a subset of genes (Shahbazian et al., 2002a, Bogdanovic & Veenstra, 2009, Jiang et al., 2010b, Laget et al., 2010, Safran et al., 2010). MeCP2 is a transcriptional regulator believed to act in neuronal maturation as levels increase over time (Shahbazian et al., 2002a,Chahrour et al., 2008). Stable levels of MeCP2 are required through adulthood, as elimination of this protein in adult mice mimics features seen in knockout Mecp2mice (McGraw et al., 2011). The H3K9 methyltransferase SETDB1 acts both in early development as well as later stages of life (Jiang et al., 2010a, Cho et al., 2012). Removal of Setdb1 in mice results in peri-implantation lethality (Dodge et al., 2004). Studies in the forebrain of transgenic Setdb1 mice demonstrate that it targets the NMDA receptors Grin2a and Grin2b as well as the glutamate receptorGrid2 (Yang et al., 2002, Jiang et al., 2010a).

While there is clinical evidence of MECP2 and MBD5 playing a role in autism, only two studies to date have evaluated patients with ASD for mutations in additional MBD family members (Li et al., 2005; Cukier et al., 2010). Previous work in our laboratory analyzed the coding regions of MBD1, MBD2, MBD3, andMBD4 in over 200 individuals with ASD of African and European ancestry and identified multiple variants that altered the amino acid sequence, were unique to patients with autism, and concordant with disease in multiplex families (Cukier et al., 2010). In contrast, a study by Li and colleagues was restricted to a dataset of 65 Japanese autistic patients and reported only a single variation that might be related to autism (Li et al., 2005). We now expand our initial study of MECP2 to a larger dataset that includes male patients and perform the first study evaluating patients with ASD for alterations in four additional MBD family members: MBD5MBD6, SETDB1 and SETDB2.

Sequencing across the five MBD genes in 287 patients with ASD and 288 ethnically matched control individuals identified a total of 186 unique variations (Table 1, Supplemental Tables 37). These variants included 177 single nucleotide polymorphisms (SNPs), five deletions and four insertions. Ninety (48.4%) of the variations have been previously reported in either the dbSNP 134 database (http://www.ncbi.nlm.nih.gov/projects/SNP/) or RettBASE (http://mecp2.chw.edu.au/), while the remaining 96 variants (51.6%) are novel. Fifty-six variations are predicted to alter the amino acid sequence. Fifty-three of the changes were found solely in patients with ASD and absent from controls. To determine variants most likely to contribute to ASD susceptibility, we prioritized changes that were either unique to affected individuals or that had an increased frequency in cases when compared to controls. The 17 most interesting variants were nonsynonymous and unique to our ASD population (Table 1). We utilized four distinct programs to characterize the variants; GERP (Cooper et al., 2005) and PhastCons (Siepel et al., 2005) to measure the level of amino acid conservation across species and PolyPhen (Adzhubei et al., 2010) and SIFT (Kumar et al., 2009) to predict which alterations might have the damaging consequences to protein function.

ASD Unique, Nonsynonymous Variations

The mutational burden between cases and controls of African or European ancestry for each gene was not statistically significant by the chi-squared test (Supplemental Table 8). This was determined for the overall load of all variants as well as nonsynonymous alterations (Supplemental Table 9).

MBD5

Thirty-two changes were identified in MBD5, 18 of which have been previously reported (Supplemental Table 3). A distinct set of 11 alterations were nonsynonymous, four of which were only identified in patients with ASD (Val443Met, Ile1247Thr, Tyr1269Cys, and Arg1299Gln, Figure 1A–D, Table 1). Three of these four alterations (75%) are predicted to be damaging by SIFT, as compared to only two of seven nonsynonymous variants (28.6%) identified solely in control individuals (Supplemental Table 3). One alteration of high interest, MBD5 Tyr1269Cys, was inherited paternally in all three ASD children in multiplex family 7763 (Figure 1C). Two of the affected individuals (0001 and 0100) were intellectually impaired with measured IQ in the moderate to severe range (Full Scale IQ: 40 and 50, respectively), while the remaining brother with autism (0101) had borderline intellectual functioning (Full Scale IQ=78). Furthermore, all three siblings had a delay in language and displayed self-injurious behaviors. Two individuals presented with macrocephaly (0100 and 0101), and individual 0100 has a history of epilepsy (recurrent non-febrile seizures).

Pedigrees of ASD families carrying alterations in MBD5 and MBD6

MBD6

A total of 44 alterations were detected in MBD6, two being single base pair insertions and the remainder of which were SNPs (Supplemental Table 4). Sixteen of the single nucleotide changes have been previously reported and 28 are novel. A subset of 17 alterations was identified only in individuals with ASD, seven of which are predicted to cause missense changes (Table 1, Figure 1E–K). While each of these changes was only identified in a single proband, three of the alterations have high PolyPhen and SIFT scores and are novel (Arg883Trp, Pro943Arg and Arg967Cys), suggesting a strong functional consequence. Furthermore, one of these alterations, Arg883Trp, was identified in multiplex family 7979 and passed maternally to both affected children (Figure 1I). Individual 0001 has a diagnosis of autism and is nonverbal with moderate intellectual disability. His sister (0100) has a diagnosis of Pervasive Developmental Disorder-Not Otherwise Specified and mild intellectual disability, displaying some phrase speech. Both siblings have a history self-injurious behavior. Their mother (1001), who also carries the alteration, was diagnosed with anxiety/panic disorders, depression, obsessive compulsive disorder, and has a history of epilepsy (adolescent onset seizures).

Along with novel variations of interest in MBD6, we found that two known SNPs occur at a higher frequency within our affected population compared to our control population. The first variation, rs61741508 (c.-2C>A), was recognized in sixteen patients with ASD and five controls and is located just upstream of the ATG start site in the Kozak consensus sequence. This variation also has high conservation scores (Supplemental Table 4). The second SNP, rs117084250 (c.2407-64C>T), falls within intron nine and was found in twelve individuals with ASD but only four controls. However, the conservation scores were relatively low, thereby making this a variant of lesser interest (Supplemental Table 4).

MECP2

Twenty-eight alterations were identified in MECP2 (Supplemental Table 5). Sixteen of these are currently in the dbSNP database and another one has been previously reported in RettBASE, leaving 11 novel variations. While none of the frequently recurring, classic Rett syndrome variations were identified in this study, there are two previously reported MeCP2 alterations of undetermined pathogenicity (Thr240Ser and Ala370Thr) that may cause clinical phenotypes. This first variation, MeCP2 Thr240Ser (rs61749738), was identified in two families of African ancestry (1072 and 17130) and absent in control individuals (Figure 2A,B). Further investigation into additional family members showed that the variation was inherited maternally in both cases and concordant with disease in multiplex family 1072. The second alteration, Ala370Thr (rs147017239), was also inherited maternally in a single proband of African ancestry (family18024, Figure 2C).

Pedigrees of ASD families carrying alterations in MeCP2

SETDB1

A total of 44 changes were found in SETDB1, comprised of 19 known and 25 novel alterations (Supplemental Table 6). Eight changes are predicted to be nonsynonymous, but only one of these, Pro1067del, was found solely in patients with ASD. This change is also the only ASD specific, nonsynonymous deletion identified in the entire study. The variant removes three nucleotides and predicts an in-frame deletion of a single amino acid. This deletion falls within the SET domain of the protein and was inherited maternally in both affected sons in family 17187 (Figure 3A).

Figure 3

Pedigrees of ASD families carrying alterations in SETDB1 and SETDB2

Another novel variation of interest in SETDB1 that we identified in a high proportion of cases versus controls, Pro529Leu, was identified in five ASD families of European ancestry and only a single control (Figure 3B–F). This variant was inherited paternally in one family and maternally in the remaining four families. In family 37265, the variation was passed from the father, who has dyslexia, to both the female proband with autism (0001) who was diagnosed with developmental and language delays as well as her brother (0100) who presented with ADHD, anxiety/panic disorder, language delay and macrocephaly (Figure 3E). In two of the families with maternal inheritance (17663 and 37673), the mothers presented with anxiety/panic disorder. In family 17663, the mother also presented with a history of seizures, sleep disorder and self-reported depression, while the mother in family 37673 reported history of adolescent onset Anorexia Nervosa. The increased incidence of this alteration in cases versus controls, along with neuropsychiatric and neurodevelopmental disorders in parents carrying the alteration, suggests that this variation may confer a variety of clinical consequences.

SETDB2

Thirty-eight single base pair alterations were identified in the SETDB2gene, 21 of which have been previously reported and the remaining 17 are novel (Supplemental Table 7). Eight SNPs are predicted to alter amino acids and three of these were unique to affected individuals: Ile425Thr, Thr475Met and Pro536Arg (Table 1, Figure 3C,G,H). However, these alterations are not predicted to have a highly detrimental effect on the protein and occur within singleton families, making it difficult to determine whether they may play a pathogenic role in ASD.

Along with isolating additional variations in MBD5 and MECP2 that may contribute to neuropsychiatric disease, this study is the first to report prospective pathogenic variations in MBD6 and SETDB1. These include two novel, nonsynonymous alterations in MBD6 (Arg883Trp and Pro943Arg) and one more in SETDB1 (Pro1067del). Furthermore, the MBD6 Arg883Trp and SetDB1 Pro1067del variations each segregated with ASD in the multiplex families. Potential for SETDB1 to play a role in neurobehavioral phenotypes is supported by results from transgenic Setdb1 mice demonstrating a role in mood behaviors (Jiang et al., 2010a).

To date, MBD5 mutations have been identified in individuals presenting a range of clinical phenotypes including ASD, developmental delay, intellectual disability, epilepsy, repetitive movements, and language impairments (Vissers et al., 2003;Koolen et al., 2004; de Vries et al., 2005; Wagenstaller et al., 2007; Jaillard et al., 2008; van Bon et al., 2009; Williams et al., 2009; Chung et al., 2011; Talkowski et al., 2011; Noh & Graham Jr 2012). These results suggest a significant role for theMBD5 isoform 1, which presents with increased expression in the brain (Laget et al., 2010). It has been estimated that between microdeletions and point mutations of MBD5, this gene may play a contributing genetic role in up to 1% of individuals with ASD (Talkowski et al., 2011). Of the nonsynonymous alterations identified in this study, ASD specific changes were more likely to be predicted to be damaging as compared to those variations found in control individuals (Supplemental Table 3). MBD5 Tyr1269Cys is a strong potentially pathogenic change due to its co-segregation with ASD in a multiplex family of three affected children, high conservation of this amino acid across species and altered function in the luciferase transcriptional activation assay. While this alteration does not fall in a known protein domain, it is specific to isoform 1, the isoform predominately expressed in brain (Laget et al., 2010). It seems likely that most alterations inMBD5 related to disease will be rare and unique, as the one alteration previously reported to have an increased frequency in patients with ASD, Gly79Glu, was only identified in a single control in the current study (Talkowski et al., 2011).

The role of MECP2 in developmental disorders is undisputed (Samaco & Neul 2011). Our study supports the possible pathogenicity of two specific MeCP2 alterations: Thr240Ser and Ala370Thr. The first variant, Thr240Ser was identified in two male probands from families of African ancestry, including the multiplex family 1072 where the variant segregated with ASD (Figure 2A,B). The maternal inheritance in family 17130 and presence of an unaffected carrier sister suggests that the variation may only present with a clinical phenotype in a hemizygous state. This variant falls within the transcriptional repression domain and has been previously reported in four studies; three cases of males with intellectual disability and one female with Rett syndrome (Yntema et al., 2002; Bourdon et al., 2003;Bienvenu & J. Chelly 2006; Campos et al., 2007; Bunyan & D. O. Robinson 2008). The second alteration, Ala370Thr, was identified in a singleton family of African ancestry and previously reported in three Chinese individuals: one female with Rett syndrome, her unaffected mother and a male presenting with epileptic encephalopathy (Figure 2C, Li et al., 2007; Wong & Li 2007). Both of these alterations must be further evaluated to isolate their potential functional consequences.

Finally, while we did identify variants of interest in four of the genes studied,SETDB2 alterations did not appear to be related to the occurrence of ASDs.

This is the first study to evaluate the coding regions of MBD5, MBD6, SETDB1, and SETDB2 for rare alterations in individuals with ASD. We identified novel point mutations predicted to be damaging and concordant with disease in multiplex families, as well as a complex duplication encompassing MECP2. Additional studies, ideally both in patients and animal models, are required to determine the precise consequences of these alterations. The results described here compound the evidence of MECP2 and MBD5’s involvement in ASDs and neurodevelopmental disorders and provide the first examples of autistic patients carrying potentially detrimental alterations in MBD6 and SETDB1. This study demonstrates the expanding role MBD genes play in autism etiology.

PI3K/Akt: getting it right matters

T F Franke1          Oncogene (2008) 27, 6473–6488;      http://dx.doi.org:/10.1038/onc.2008.313

The Akt serine/threonine kinase (also called protein kinase B) has emerged as a critical signaling molecule within eukaryotic cells. Significant progress has been made in clarifying its regulation by upstream kinases and identifying downstream mechanisms that mediate its effects in cells and contribute to signaling specificity. Here, we provide an overview of present advances in the field regarding the function of Akt in physiological and pathological cell function within a more generalized framework of Akt signal transduction. An emphasis is placed on the involvement of Akt in human diseases ranging from cancer to metabolic dysfunction and mental disease.

The molecular mechanisms of Akt regulation are summarized in Figure 1.

Figure 1.

Figure 1 - Unfortunately we are unable to provide accessible alternative text for this. If you require assistance to access this image, please contact help@nature.com or the authorCanonical schematic depicting the present state of our understanding of Akt activation and regulation of downstream biological responses. Autophosphorylation of RTKs induces the recruitment of p85 regulatory subunits leading to PI3K activation. Once activated, p110 catalytic subunits phosphorylate plasma membrane-bound phosphoinositides (PI-4-P and PI-4,5-P2) on the D3-position of their inositol rings. The second messengers resulting from this PI3K-dependent reaction are PI-3,4-P2and PI-3,4,5-P3 (also called PIP3). PIP3, in turn, is the substrate for the phosphoinositide 3-phosphatase PTEN, an endogenous inhibitor of PI3K signaling in cells. The phosphoinositide products of PI3K form high-affinity binding sites for the PH domains of intracellular molecules. PDK1 and Akt are two of the many targets of PI3K products in cells. Following binding of the Akt PH domain to PI3K products, Akt is phosphorylated by PDK1 on a critical threonine residue in its kinase domain. mTORC2 is the main kinase activity that through phosphorylation of a C-terminal HM serine residue locks Akt enzyme into an active conformation. Other kinases such as DNA-PK and ILK1 are also capable of phosphorylating Akt at the HM site but may do so in a cell- or context-dependent manner. Akt activation is blunted by phosphatases including PP2A and PHLPP that inhibit Akt activity by dephosphorylation. Studies examining Akt-interacting proteins such as CTMP or second messengers such as Ins(1,3,4,5)P4 suggest that this common pathway of Akt regulation may be further specified within certain functional contexts or during development. Once activated, Akt activation is channeled into a plethora of downstream biological responses reaching from angiogenesis, cell survival, proliferation, translation to metabolism.

Full figure and legend (367K)

 …….

Consequences of Akt activation include diverse biological responses, ranging from primarily metabolic functions such as glucose transport, glycolysis, glycogen synthesis and the suppression of gluconeogenesis to protein synthesis, increased cell size, cell-cycle progression and apoptosis suppression.

Insights into the molecular consequences of increased Akt activation were derived from seminal studies that ultimately identified the ‘orphan’ proto-oncogene as an obligate intermediate downstream of PI3K in the insulin-dependent metabolic control of glycogen synthesis. When searching for kinases that could regulate GSK3, the groups of Brian Hemmings and Phil Cohen realized that Akt inhibited GSK3 activity in an insulin-stimulated and PI3K-dependent manner by direct phosphorylation of an N-terminal regulatory serine residue (Cross et al., 1995). By systematically permutating the amino-acid sequence surrounding the Akt phosphorylation site in GSK3, Alessi et al. (1996b) derived an optimal peptide sequence for Akt phosphorylation (R-X-R-X-X-S/T; where R is an arginine residue, S is serine, T is threonine and X is any amino acid). This Akt consensus motif is a common feature of known substrates of Akt, and its presence predicts reasonably well whether a given protein may be phosphorylated by Akt enzyme in vitro (for review, see Manning and Cantley, 2007). Experiments using randomized permutations on the basis of the motif to optimize substrate peptides have defined the requirement for optimal phosphorylation by Akt further (Obata et al., 2000). The preferred phosphoacceptor for Akt-dependent phosphorylation is a serine residue, but a synthetic substrate peptide with a threonine residue as the phosphoacceptor instead (R-P-R-A-A-T-F; P=proline, A=alanine, F=phenylalanine) is also easily phosphorylated. For achieving optimal phosphorylation efficiency, the phosphoacceptor is best followed by a hydrophobic residue with a large side-chain in the p+1 position, and preceded by a serine or threonine at the p−2 position.

One of the first targets of Akt to be identified that has direct implications for regulating cell survival is the pro-apoptotic BCL2-antagonist of death (BAD) protein. BAD regulation by Akt has exemplified the molecular pathways linking survival factor signaling to apoptosis suppression (for review, see Franke and Cantley, 1997). When BAD is not phosphorylated, it will inhibit Bcl-xL and other anti-apoptotic Bcl-2 family members by direct binding of its Bcl-2 homology domain to their hydrophobic grooves (Gajewski and Thompson, 1996). Once phosphorylated, these phospho-serine residues of BAD form high-affinity binding sites for cytoplasmic 14-3-3 molecules. As a result, phosphorylated BAD is retained in the cytosol where its pro-apoptotic activity is effectively neutralized (Zha et al., 1996). The importance of BAD as an integration point of survival signaling is underscored by the fact that it is a substrate for multiple independent kinase pathways in cells, not all of which phosphorylate BAD at the same site(s) as Akt (Datta et al., 2000). The mechanisms of 14-3-3-dependent regulation of BAD function hereby resemble the Akt-dependent inhibition of FoxO transcription factors that regulate the transcription of pro-apoptotic genes (Brunet et al., 1999).

The function of Akt extends beyond maintaining mitochondrial integrity to keep cytochrome c and other apoptogenic factors in the mitochondria (Kennedy et al., 1999). Akt activity also mitigates the response of cells to the release of cytochrome c into the cytoplasm. Although caspase-9 is an Akt substrate in human cells, where it may explain cytochrome c resistance (Cardone et al., 1998), it may not be the only, or even the most important, target because Akt-dependent cytochrome c resistance can be observed in animal species where caspase-9 lacks a potential Akt phosphorylation site (Fujita et al., 1999; Zhou et al., 2000). Not surprisingly, other components of the post-mitochondrial machinery such as the X-linked inhibitor of apoptotic proteins (XIAP) have been suggested as potential Akt substrates (Dan et al., 2004).

Another important class of Akt targets are proteins involved in the stress-activated/mitogen activated protein kinase (SAPK/MAPK) cascades. Growing experimental evidence points to a close functional relationship between the Akt survival pathway and SAPK/MAPK cascades that are activated by various cellular stresses and are linked to apoptosis. Increased Akt activity has been shown to suppress the JNK and p38 pathways (Berra et al., 1998; Cerezoet al., 1998; Okubo et al., 1998). It has been shown that apoptosis signal-regulating kinase 1 (ASK1) is regulated by Akt and contains an Akt-specific phosphorylation site (Kim et al., 2001). These findings have been confirmed independently by other groups (Yuan et al., 2003; Mabuchi et al., 2004). Thus, ASK1 is likely to be one of the points of convergence between PI3K/Akt signaling and stress-activated kinase cascades, although probably not the only one. Akt also phosphorylates the small G protein Rac1 (Kwon et al., 2000), the MAP2K stress-activated protein kinase kinase-1 (SEK1; also known as JNKK1 or MKK4) (Park et al., 2002) and the MAP3K mixed lineage kinase 3 (MLK3) (Barthwal et al., 2003; Figueroa et al., 2003). Using yeast-2-hybrid screens to identify interacting partners for Akt kinases, Figueroa et al. (2003) found binding of Akt2 to the JNK adaptor POSH. These authors showed that the binding of Akt2 to POSH results in an inhibition of JNK activity, and that this inhibition is mediated by phosphorylation of the upstream kinase MLK3 and leads to the disassembly of the JNK signaling complex. In turn, POSH is also an Akt substrate (Lyons et al., 2007). Taken together, these findings point to an intriguing model for the regulation of the JNK pathway by Akt, in which the Akt-dependent phosphorylation of specific components can block signal transduction through the stress-regulated kinase cascade. In spite of this, it has been reported that Akt also blocks the pro-apoptotic activity of other MAP3Ks such as MLK1 and MLK2 that act in parallel to MLK3 but do not contain a typical Akt consensus phosphorylation motif (Xu et al., 2001). Thus, phosphorylation-based mechanisms may be limited in explaining the role of Akt in blocking JNK signaling.

Although many of its substrates are involved in clearly defined biological functions within a circumscribed context such as cell proliferation, a more thorough analysis of Akt signaling has suggested that the boundaries between metabolic processes and apoptosis suppression may be artificial. For example, the Akt target GSK3 has been implicated both in the regulation of glucose metabolism and cell survival (Pap and Cooper, 1998). These findings suggest that the distinctions between cell growth, survival, metabolism and apoptosis regulation do not properly reflect functional interactions between concurrent biological processes in cells. This shift in perception has been fueled by studies from the Korsmeyer laboratory that have demonstrated a canonical function for the pro-apoptotic Bcl-2 family member BAD in the regulation of glucokinase activity (Danial et al., 2003). It is conceivable that findings of PKA-dependent regulation of BAD in glucose metabolism can be extrapolated to BAD inhibition by Akt. Still, a formal confirmation for a role of Akt in this process has yet to be presented (for review, see Downward, 2003).

The critical importance of Akt signaling for neuronal function is implied from several lines of in vitro evidence using neuronal cell lines and dispersed primary neuronal cultures that have demonstrated a requirement for Akt in the protection against trophic factor deprivation, oxidative stress and ischemic injury (Dudek et al., 1997; Salinas et al., 2001; Noshita et al., 2002). Dysregulation of Akt activity is observed in neurodegenerative diseases including Alzheimer’s disease (Rickle et al., 2004; Ryderet al., 2004), Parkinson’s disease (Hashimoto et al., 2004) and Huntington’s disease (Humbert et al., 2002), and it is also associated with the pathobiological mechanisms underlying spinocerebellar ataxia (Chen et al., 2003). A mechanistic involvement of impaired Akt signaling in neurodegeneration is further supported by the Akt-dependent phosphorylation of the disease-related proteins huntingtin (Humbert et al., 2002) and ataxin (Chen et al., 2003).

Other studies suggest that the involvement of Akt in brain function extends beyond the protection of neuronal cells against apoptotic insults. Indeed, pathological changes in Akt signal transduction have been described that are associated with mental diseases. Significantly decreased Akt1 expression has been reported in patients suffering from familial schizophrenia (Emamian et al., 2004). Decreased Akt1 levels are correlated with increased GSK3 activity, presumably because of the lack of the Akt-dependent inhibitory input on GSK3. In support of AKT1 being a susceptibility gene for schizophrenia, Akt1(−/−) mice exhibit increased sensitivity to the sensorimotor disruptive effect of amphetamine, which is partly reversed by the treatment of mutant mice with the antipsychotic drug haloperidol (Emamian et al., 2004). Additional support for a contribution of impaired Akt signaling in the pathogenesis of schizophrenia derives from the finding of mutant PI3K signaling in schizophrenia (for review, see Arnold et al., 2005). A direct involvement of Akt in dopaminergic action is indicated by the observation that Akt1(−/−) mutant mice exhibit a behavioral phenotype resembling enhanced dopaminergic transmitter function (Emamian et al., 2004). By interacting with the GSK3 pathway, Akt modulates the suppression of dopamine (DA)-associated behaviors after treatment with the mood stabilizer lithium (Beaulieu et al., 2004). Furthermore, a β-arrestin 2-mediated kinase/phosphatase scaffold of Akt and protein phosphatase A (PP2A) is required for the regulation of Akt downstream of DA receptors (Beaulieu et al., 2005). Still, the role of Akt in dopaminergic responses by far exceeds actions downstream of DA receptors: the insulin-dependent regulation of DA transporter also depends on Akt activity (Garcia et al., 2005).

Since the field of Akt signaling in psychiatric disorders is still emerging, it may be too early to speculate about the molecular involvement of Akt in regulating higher brain function. Possible functional outlets of Akt include some of the substrates mentioned above, including mTORC1 and GSK3. In addition, substrates of Akt related to synaptic plasticity and transmission have been described. One such novel substrate of Akt related to neuronal excitability is the β2-subunit of the type A γ-aminobutyric acid receptor (GABAA-R) (Lin et al., 2001). In support of a direct involvement of Akt in synaptic function, studies directed at working memory performance performed in Akt1(−/−) mice (Lai et al., 2006) and in healthy individuals carrying the AKT1 coding variation observed in familial schizophrenia (Tan et al., 2008) find a strong correlation with cognitive performance. Additional roles for Akt in higher brain function are suggested by studies from the Nestler laboratory that have explored the IRS2-Akt pathway during the development of tolerance to opiate reward (Russo et al., 2007). By using viral-mediated gene transfer to express mutant Akt in midbrain neurons, these authors demonstrate that downregulation of the IRS2-Akt pathway mediates morphine-induced decreases in cell size of DA neurons in brain regions that are critically involved in the reward circuitry and affected in individuals addicted to drugs of abuse.

Finally, TSC patients show an increased incidence of autism spectrum disorders (ASD) ranging from 25 to 50% (for review, seeWiznitzer, 2004). Individuals with macrocephaly due to Lhermitte–Duclos disease are prone to ASD and show a pronounced incidence of mutations in the PTEN tumor suppressor gene (Butler et al., 2005). Additional experimental support for a possible involvement of PTEN/Akt in ASD is provided by data from the Parada laboratory examining the morphology and behavior of mutant mice with neuron-specific knockout of PTEN (Kwon et al., 2006). Future studies will be required to clarify the function of Akt in cognition and characterize the underlying molecular mechanisms. In spite of this, these initial studies suggest a complex function of Akt in conditions affecting brain function and mental health.

The emerging involvement of Akt in higher brain function is summarized in Figure 2.

Figure 2.

Figure 2 - Unfortunately we are unable to provide accessible alternative text for this. If you require assistance to access this image, please contact help@nature.com or the author

Akt kinase regulates diverse aspects of neuronal cell function. Akt activation in neuronal cells follows similar mechanisms to those outlined in Figure 1, including activation of PI3K by RTKs including IGF-1/insulin and nerve growth factor (BDNF/NT-3) receptors. Other mechanisms governing Akt activity in neuronal cells include G-coupled receptors for the monoamine neurotransmitters serotonin (5-HT) (for review, see Raymond et al., 2001) and dopamine (DA) (for review, see Beaulieu et al., 2007). Depending on receptor type (D2-DA and 5-HT1A receptors vs D1-DA receptors), binding of 5-HT or DA decreases or increases the activity of adenylyl cyclase (AC), respectively. Changes in cAMP second messenger levels, in turn, alter PKA and PP2A activity. PP2A is inhibited by increased PKA activity, thus maintaining Akt in an activated state after 5-HT1Areceptor simulation (Hsiung et al., 2008). After binding of DA to D2-DA receptor, following initial inhibition of AC, a secondary internalization complex is formed between β-arrestin 2, PP2A and Akt leading to the inhibition of Akt. In neuronal cells, activated Akt regulates diverse targets that have been implicated in the regulation of protein translation and cell size (mTORC1), axonal outgrowth (GSK3), apoptosis suppression (BAD) and synaptic plasticity (GABAA-R). Details regarding functional consequences of Akt regulation for higher brain function are discussed in the text.

Full figure and legend (306K)

 

When considering the present understanding of all the signals leading to and from Akt, we face a growing complexity that is in part compounded by the intersection of multiple signaling cascades. Many substrates of Akt are shared with other kinases that have similar specificities. Moreover, signals originating from activated Akt do not simply lead to changes in the biological activity of specific downstream substrates, but affect entire signaling networks. In spite of this, there is hope that there is order to the far-reaching physiological involvement of Akt. One possibility is that differential regulation of the binding partners of Akt may determine cell- and context-specific signaling by Akt. Studies are now needed to elucidate the physiological functions of the binding partners of Akt in mammalian physiology.

A second challenge that the field is facing arises from the involvement of Akt in multiple areas of physiology. These now exceed cancer and diabetes and, as briefly outlined above, include higher brain functions related to cognition.

SETDB1 in Early Embryos and Embryonic Stem Cells

Yong-Kook Kang

The histone methyltransferase SETDB1 contributes to the silencing of local chromatin and the target specificity appears to be determined through various proteins that SETDB1 interacts with. This fundamental function endows SETDB1 with specialized roles in embryonic cells. Keeping the genomic and transcriptomic integrity via proviral silencing and maintaining the pluripotency by repressing the differentiation-associated genes have been demonstrated as the roles of SETDB1 in embryonic stem cells. In early developing embryos, SETDB1 exhibits characteristic nuclear mobilizations that might account for its pleiotropic roles in these rapidly changing cells as well. Early lethality of SETDB1-null embryos, along with other immunolocalization findings, suggests that SETDB1 is necessary for reprogramming and preparing the genomes of zygotes and pluripotent cells for the post-implantation developmental program.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706629/

Exome sequencing of probands with autism have revealed broadly similar results:de novo mutations in a large set of genes occur in a significant fraction of patients, with relatively high OR’s for damaging mutations in genes expressed in the brain9,1921. Most interestingly, CHD8, which like CHD7 reads H3K4me marks, is frequently mutated in autism22, raising the question of whether the H3K4me pathway may play a role in many congenital diseases. Among 249 protein-alteringde novo mutations in CHD (Supplementary Table 4) and 570 such mutations in autism9,19,20,23, there were two genes, CUL3 and NCKAP1, with damaging mutations in both CHD and autism and none in controls (P = 0.001, Monte Carlo simulation), and several others with mutations in both (e.g., SUV40H1 and CHD7). Similarly, rare copy number variants at 22q11.2, 1q21, and 16p11 are found in patients with autism, CHD or both diseases2426. These observations suggest variable expressivity of mutations in key developmental genes. Identification of the complete set of these developmental genes and the full spectrum of the resulting phenotypes will likely be important for patient care and genetic counseling.

 

Context-specific microRNA function in developmental complexity

Adam P. Carroll1,2Paul A. Tooney1,2 and Murray J. Cairns1,2,*      http://jmcb.oxfordjournals.org/content/early/2013/03/01/jmcb.mjt004.full     J Mol Cell Biol (2013)    doi: 10.1093/jmcb/mjt004

Since their discovery, microRNAs (miRNA) have been implicated in a vast array of biological processes in animals, from fundamental developmental functions including cellular proliferation and differentiation, to more complex and specialized roles such as longterm potentiation and synapse-specific modifications in neurons. This review recounts the history behind this paradigm shift, which has seen small non-coding RNA molecules coming to the forefront of molecular biology, and introduces their role in establishing developmental complexity in animals. The fundamental mechanisms of miRNA biogenesis and function are then considered, leading into a discussion of recent discoveries transforming our understanding of how these molecules regulate gene network behaviour throughout developmental and pathophysiological processes. The emerging complexity of this mechanism is also examined with respect to the influence of cellular context on miRNA function. This discussion highlights the absolute imperative for experimental designs to appreciate the significance of context-specific factors when determining what genes are regulated by a particular miRNA. Moreover, by establishing the timing, location, and mechanism of these regulatory events, we may ultimately understand the true biological function of a specific miRNA in a given cellular environment.

It was once considered the central dogma of molecular biology that gene expression was regulated in a unidirectional manner whereby cellular instructions were encoded in DNA to be transcribed to produce RNA, which simply acted as a messenger molecule to produce the protein end-products that executed these cellular instructions. In fact, signs of a biological phenomenon whereby non-protein-coding RNA molecules could interfere with this very process were not even realized until the 1970s and early 1980s, when exogenous oligonucleotides complementary to ribosomal RNA were found to interfere with ribosome function (Taniguchi and Weissmann, 1978; Eckhardt and Luhrmann, 1979;Jayaraman et al., 1981). A number of experiments in both prokaryotes and eukaryotes further supported the notion of antisense RNA as an antagonist to RNA function (Chang and Stoltzfus, 1985; Ellison et al., 1985; Harland and Weintraub, 1985; Izant and Weintraub, 1985; Melton, 1985), and one such experiment elegantly demonstrated that the introduction of synthetic oligonucleotides complementary to 3′- and 5′-terminal repeats of Rous sarcoma virus 35S RNA not only attenuated viral replication and cell transformation, but also inhibited viral RNA translation in vitro (Stephenson and Zamecnik, 1978; Zamecnik and Stephenson, 1978).

In addition to this, the successful inhibition of thymidine kinase gene expression by antisense RNA in eukaryotic cells precipitated the concept of antisense RNA not only as an experimental tool, but also as a therapeutic design (Izant and Weintraub, 1984). Determining the functionality of a previously identified gene sequence without identifying, isolating, or characterizing the protein product; interfering with RNAs that are never translated; and silencing the expression of disease-associated transcripts in a sequence-specific manner: these were some very appealing prospects. By the late 1980s and early 1990s, a variety of techniques had evolved in the field of molecular and applied genetics whereby various antisense DNA and RNA construct designs were employed to efficiently downregulate target gene expression (Fire et al., 1991).

Meanwhile, the scientific community was also beginning to appreciate a role for endogenous antisense RNA. Short antisense transcripts were found to form an RNA–RNA duplex with the 5′ end of the replication primer of the ColE1 plasmid (Tomizawa et al., 1981; Tomizawa and Itoh, 1982). Endogenous antisense RNA control in prokaryotes was also linked with various biological processes such as plasmid replication, transposition, temporal bacteriophage development, and catabolite repression in bacteria (Light and Molin, 1983; Simons and Kleckner, 1983; Kumar and Novick, 1985). Evidence was also beginning to mount to implicate antisense control mechanisms in eukaryotic organisms (Adeniyi-Jones and Zasloff, 1985; Farnham et al., 1985; Heywood, 1986; Spencer et al., 1986; Williams and Fried, 1986; Stevens et al., 1987), including the demonstration that antisense transcripts in the bovine papillomavirus type 1 (BPV-1) genome prevented episomal replication (Bergman et al., 1986).

It was only a matter of time before phenomena of gene silencing began to unfold in animals. Previous work in the 1980s with Caenorhabditis elegans had established that mutations in the genes for lin-4, lin-14, lin-28, lin-29, and lin-41 altered the heterochronic lineage of developing larvae, resulting in a failure to control temporal aspects of post-embryonic development (Chalfie et al., 1981; Ambros and Horvitz, 1984; 1987; Ambros, 1989); thus, these genes were referred to as being ‘heterochronic’. However, in 1993 it was discovered that lin-4 was located within an intron and was thus unlikely to encode a protein. More significantly, two lin-4 transcripts ∼22 and 61 nucleotides in length were identified that exhibited complementarity to a repeat sequence element in the 3′ untranslated region (UTR) of lin-14 mRNA (Lee et al., 1993). With another report soon replicating this finding in C. elegans andCaenorhabditis briggsae (Wightman et al., 1993), the notion was set forth that the 22-nucloetide lin-4 transcript represented an active mature form of the 61-nucelotide transcript and functioned to control worm larval development by binding to the 3′-UTR of lin-14, thereby negatively regulating its function via an antisense RNA–RNA interaction. Furthermore, lin-4 exhibited complementarity to seven regions within the 3′-UTR of lin-14, demonstrating that gene expression was more potently inhibited as more of these non-coding transcripts bound to the mRNA (He and Hannon, 2004). Retrospectively, we can identify the lin-4 gene in C. elegans as the pioneer of a new class of small, non-coding RNAs called microRNA (miRNA) (Lee et al., 1993), which utilize the RNA interference (RNAi) pathway to regulate the expression of protein-encoding genes at post-transcriptional level (He and Hannon, 2004).

The following few years were somewhat quiet at the forefront of miRNA research, with lin-4 mechanism assumed to be a unique event. Meanwhile, RNAi was coming to prominence in 1998 with Fire and Mello (along with their colleagues) reporting double-stranded RNA (dsRNA) to be far more potent at mediating gene suppression in C. elegans than single-stranded antisense RNA (Fire et al., 1998). Interestingly, only small quantities of dsRNA were required to induce post-transcriptional gene silencing (PTGS), and it was hypothesized that an endogenous catalytic or amplification component was mediating mRNA degradation prior to translation (Montgomery et al., 1998). RNAi was soon thereafter reported as an ATP-dependent process in an in vitroDrosophila embryo lysate system where dsRNA was processed into 21–23-nucleotide species that appeared to guide sequence-specific mRNA cleavage (Zamore et al., 2000). When dsRNA was shown by the Tuschl laboratory to be processed into 21–22-nucleotide short interfering RNA (siRNA) by a ribonuclease III enzyme to mediate sequence-specific RNAi in human embryonic kidney HEK-293 cells, the prospect was set forth for exogenous 21–22-nucleotide siRNA to be developed as gene-specific therapeutic molecules (Elbashir et al., 2001a).

With incredible excitement surrounding the implications of RNAi, Ruvkun and colleagues discovered a second miRNA inC. elegans in 2000. Like lin-4, the newly discovered let-7 exhibited complementarity to the 3′-UTR of heterochronic genes, in this case lin-14, lin-28, lin-41, lin-42, and daf-12 (Reinhart et al., 2000). Moreover, they discovered that let-7 was highly conserved in its temporal regulation across phylogeny (Pasquinelli et al., 2000), refuting the widely believed concept that lin-4 and let-7 were a worm-specific oddity and propelling miRNA to significance as native endogenous clients of the RNAi machinery. This catalysed intense genome-wide searches for the discovery of more endogenous small regulatory RNAs in numerous species, to the point that miRBase Release 19 currently contains sequence data for 25141 mature miRNA products in 193 organism species (Kozomara and Griffiths-Jones, 2011).

The significance of non-coding RNA was further illuminated in 2001 when the completion of the human genome project revealed that <2% of the human genome encoded proteins (Lander et al., 2001). It has been realized that the ratio of non-coding to protein-coding DNA in the genome correlates with developmental complexity (Mattick, 2004), and a recent publication has reported on the exponential correlation of miRNA gene number and 3′-UTR length—but not 5′-UTR or coding sequence length—with morphological complexity in animals (Chen et al., 2012). This was measured according to the number of cell types within each organism, and also confirmed earlier observations that 3′-UTR length in housekeeping genes has remained short across organisms, thereby minimizing miRNA-binding site potential and reducing the complexity with which these constitutively expressed genes are regulated (Stark et al., 2005). Today we certainly have a stronger appreciation for RNA molecules to function not only as messengers of protein production, but also as complex regulatory molecules facilitating the intricate control of gene expression required for developmental complexity (Kosik, 2009).

Mechanisms of miRNA function

When considering non-coding RNA function, miRNAs constitute one of the largest classes of endogenous, non-coding regulatory RNA molecules in animals. In their mature form they are ∼19–22 nucleotides in length, and they interact via Watson–Crick binding with regions of complementarity primarily within the 3′-UTR of mRNA transcripts. In doing so, miRNAs act as sequence-specificity guides for the RNAi machinery to mediate repression of target gene expression at post-transcriptional level by negatively regulating mRNA stability and/or protein translation.

miRNA biogenesis

miRNAs are typically transcribed by RNA polymerase II (pol II) as long primary miRNA (pri-miRNA) transcripts, which undergo sequential cleavage into a precursor miRNA (pre-miRNA) transcript before being cleaved again into the mature miRNA duplex (Figure 1). These pri-miRNA transcripts range in length from several hundred nucleotides to several kilobases, can contain either a single miRNA or clusters of several miRNAs, and originate from intronic regions of protein-coding and non-coding genes, as well as from intergenic and exonic regions (Rodriguez et al., 2004; Saini et al., 2007). The microprocessor complex is responsible for mediating pri-miRNA cleavage, with the dsRNA-binding protein DGCR8 (DiGeorge syndrome critical region gene 8) binding the pri-miRNA and positioning the catalytic site of Drosha—a ribonuclease III (RNase III) dsRNA-specific endonuclease—11 nucleotides from the base of the duplex stem to mediate nuclear processing to the pre-miRNA transcript (Denli et al., 2004; Han et al., 2006). This produces a pre-miRNA hairpin typically 55–70 nucleotides in length with a two-nucleotide 3′ overhang, characteristic of RNase III-mediated cleavage (Lee et al., 2003). This two-nucleotide overhang facilitates the subsequent exportation of the pre-miRNA from the nucleus to the cytoplasm by a RanGTP/Exportin5-dependent mechanism and is suspected to also facilitate subsequent cleavage by the RNase III endonuclease Dicer (Yi et al., 2003; Bohnsack et al., 2004; Lund et al., 2004). This cleavage requires the interaction of Dicer with the dsRNA-binding protein TRBP [HIV-1 transactivating response (TAR) RNA-binding protein] (Forstemann et al., 2005), and as a result of Dicer processing the terminal base pairs and the loop of the pre-miRNA are excised. This produces a 19–22-nucleotide mature miRNA duplex, which possess two-nucleotide overhangs at each 3′ end (Lee et al., 2002).

 

Figure 1

http://jmcb.oxfordjournals.org/content/early/2013/03/01/jmcb.mjt004/F1.medium.gif

Figure 1

A model for canonical miRNA biogenesis and function in animals. After their transcription by RNA polymerase II, pri-miRNAs are cleaved in the nucleus by Drosha, which forms a microprocessor complex with DGCR8. This generates the pre-miRNA, which is actively exported into the cytoplasm via a RanGTP/Exportin 5-dependent mechanism. In the cytoplasm, Dicer binds the base of the pre-miRNA stem defined in the nucleus by Drosha. Dicer cleavage liberates a mature miRNA duplex that exhibits imperfect complementarity. This miRNA duplex is assembled into the miRISC loading complex, in which the passenger strand is discarded. The miRNA guides the mature miRISC to regions of complementarity within mRNA transcripts, thereby mediating post-transcriptional gene silencing through translational repression and/or mRNA degradation.

miRISC loading

After their maturation into small RNA duplexes, miRNAs are loaded into ribonucleoprotein (RNP) complexes, often referred to as miRNA-induced silencing complexes (miRISCs), RISCs, or miRNPs. The signature components of each miRISC are the miRNA and an Argonaute (AGO) protein. In humans, there are four AGO proteins (AGO1-4), each consisting of the highly conserved P-element-induced wimpy testes (PIWI), middle (MID), and PIWI-AGO-Zwille (PAZ) domains, along with a less-conserved terminal domain. The loading of the miRNA into this protein complex has been proposed to occur in tandem with Dicer-mediated miRNA maturation (Gregory et al., 2005;Maniataki and Mourelatos, 2005) and requires ATP hydrolysis with additional chaperone proteins to create an open conformation to facilitate loading of the miRNA duplex (Liu et al., 2004; Yoda et al., 2010).

A key feature of miRNA is that while both strands of a small RNA duplex are capable of activating the miRISC, typically only one strand will induce silencing (Khvorova et al., 2003). This asymmetry is primarily governed by the relative thermodynamic properties of the RNA duplex, such that the miRISC-associated helicase preferentially unwinds the miRNA duplex from the end with least resistance in terms of inter-strand hydrogen bonding. The strand with its 5′ end at this less thermodynamically stable end is selected as the guide strand, and proteins such as TRBP or protein kinase, interferon-inducible dsRNA-dependent activator (PACT) are proposed to interact with Dicer to sense this thermodynamic asymmetry (Schwarz et al., 2003; Noland et al., 2011). In doing so, the guide strand is retained in the miRISC, while the other strand (the passenger, or the miRNA* strand) is discarded (Hutvagner, 2005; Matranga et al., 2005). miRNA strand selection also appears to be independent of Dicer processing polarity (Preall et al., 2006), where both ends of a duplex have similar thermodynamic properties, both the miRNA and miRNA* act as the guide strand with similar frequencies (Schwarz et al., 2003). However, strand selection does not always occur according to the axiom of thermodynamic strand asymmetry, with tissue-specific factors appearing to play a role in enabling both the miRNA and miRNA* strands to co-accumulate and function as the guide strand (Ro et al., 2007). For this reason, miRNA nomenclature has advanced beyond the miRNA* system, with the adoption of miRNA-5p and -3p names to indicate whether the mature miRNA sequence is derived from the 5′ or 3′ end of the pre-miRNA transcript.

Once the mature miRNA strand has been isolated in the mature miRISC, the AGO protein functions as an interface for the miRNA to interact with its mRNA targets. Recent characterization of human AGO2 has revealed that the 3′ hydroxyl of the miRNA inserts into a hydrophobic pocket of AGO such that the terminal nucleotide stacks against the aromatic ring of a conserved phenylalanine residue in the AGO PAZ domain (Jinek and Doudna, 2009). Meanwhile, the MID domain forms a binding pocket that anchors the miRNA 5′ phosphate such that this terminal nucleotide is distorted and does not interact with the target mRNA (Ma et al., 2005; Parker et al., 2005).

…….

Since being discovered as regulators of developmental timing in C. elegans, it has become widely established that miRNA-mediated regulation of gene expression is a fundamental biological phenomenon required to facilitate key developmental processes such as cellular proliferation, programmed cell death, and cell lineage determination and differentiation (Bartel, 2009; Ambros, 2011). Their significance is such that 60% of the human genome is predicted to be regulated by miRNA function (Friedman et al., 2009), each miRNA estimated to regulate around 200 target genes (Krek et al., 2005).

Figure 2

http://jmcb.oxfordjournals.org/content/early/2013/03/01/jmcb.mjt004/F2.medium.gif

Figure 2

Characteristic miRNA associated with the proliferation and differentiation of specialized cell types. A number of distinct miRNAs are expressed at specific stages through development to play a vital role in mediating cell proliferation, specification, and differentiation. A number of miRNAs involved in the establishment of specialized cell types are illustrated for neurogenesis (Smirnova et al., 2005;Makeyev et al., 2007; Shen and Temple, 2009; Shi et al., 2010; Zhao et al., 2010), myogenesis (Chen et al., 2006; Kim et al., 2006), haematopoiesis (Chen et al., 2004; Georgantas et al., 2007;Vasilatou et al., 2010), oligodendrocyte differentiation (Lau et al., 2008; Dugas et al., 2010), as well as induced pluripotent stem (iPS) cell reprogramming (Miyoshi et al., 2011).

 

miRNAs play a central role in establishing the spatiotemporal gene expression patterns required to establish specialized cell types and promote developmental complexity. The inherent complexity of miRNA function, however, requires a scientific approach in which context-specific miRNA function must be acknowledged if advancements are to be made in understanding how these small regulatory RNA molecules function in various developmental and pathophysiological processes. While this requires an appreciation for mechanistic aspects such as non-redundant miRISC function and the dynamic regulatory outcomes this facilitates, arguably the greatest challenge facing miRNA biology is the identification of the many genes that each miRNA targets and an understanding of the context-specific factors that determine when and how these genes are regulated.

 

 

Read Full Post »