Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘history of science’


Opening Ceremony and Award Presentations from the 2015 AACR Meeting in Philadelphia PA; Pennsylvania Convention Center, Sunday April 19, 2015: 8:15 AM

 

Reporter: Stephen J. Williams, Ph.D.

The following contain notes from the Sunday April 19, 2015 AACR Meeting (Pennsylvania Convention Center, Philadelphia PA) 8:15 AM Opening Ceremony and Awards Presentation

Ninth Annual AACR Team Science Award

Recipient: Designing Androgen Receptor (AR) Inhibitor Team

The Designing AR Inhibitors Team is a multi-institutional team that is composed of Charles Sawyers, MD, PhD, team leader, director of the Human Oncology and Pathogenesis Program at Memorial Sloan Kettering Cancer Center in New York, AACR past-president, and Howard Hughes Medical Institute investigator; Howard Scher, MD, chief of genitourinary oncology service and D. Wayne Calloway chair in urologic oncology at Memorial Sloan Kettering; and Michael Jung, PhD, distinguished professor in the Department of Chemistry and Biochemistry at the UCLA.

The team was honored for their collective work in discovering and developing the novel antiandrogen enzalutamide (Xtandi) for the treatment of metastatic castration-resistant prostate cancer in a collaboration that started ten years ago.

Twelfth Annual AACR Award for Lifetime Achievement in Cancer Research

Recipient: Mario R. Capecchi, Ph.D.

Dr. Capecchi is a geneticist who won the Nobel prize for creating technologies that resulted in the first knockout mouse. For this work, Capecchi won the 2007 Nobel prize for medicine or physiology, along with Martin Evans and Oliver Smithies, who also contributed.

AACR Distinguished Public Service Award

Recipient : Miri Ziv Director General of Israel Cancermiri_ziv_180_s_002

  • Instrumental in getting national Israeli mammography screening
  • Efforts led to national skin cancer screening program in Israel
  • Prevention/control programs
  • In 1995 representative to European Breast League

Ninth Annual AACR Margaret Foti Award for Leadership and Extraordinary Achievements in Cancer Research

Recipient: Donald S. Coffey, Ph.D.

Dr. Coffey discovered the nuclear matrix and made pivotal discoveries understanding the process of DNA synthesis. He is the leader of the National Prostate Coalition and efforts led to the development of the Prostate Specific Antigen (PSA) as a prostate cancer biomarker. Now his lab is assessing the role of chaos, fractals and complexity in the self-organization of DNA, cells and tissue in relation to tumor biology.

In a side note, both Dr. Foti and Dr. Coffey had the same mentor, Dr. Sydney Weinhouse and Professor Leslie Helleman, who both studied the oxidation of free fatty acids and took Otto Warburg’s hypothesis a step further to understand how more complex cancer metabolism was than Otto had imagined.

Other award winners were:

Dr. Richard Pasdur of the FDA who won the Public Service Award

In memorial

Dr. Upton (M.D.) pathologist head of NCI and established EPA

Dr. Emmanuel Farber, M.D., Ph.D. – biology of tobacco control and issued the historical Surgeon

General’s report on smoking

Dr. June Biedler, Ph.D. – showed multidrug resistance and defined cytogenetics of  neuroblastoma

 

Other related articles on Cancer History and Social Media Coverage were published in this Open Access Online Scientific Journal, include the following:

Cancer Biology and Genomics for Disease Diagnosis

Introduction – The Evolution of Cancer Therapy and Cancer Research: How We Got Here?

Methodology for Conference Coverage using Social Media: 2014 MassBio Annual Meeting 4/3 – 4/4 2014, Royal Sonesta Hotel, Cambridge, MA

List of Breakthroughs in Cancer Research and Oncology Drug Development by Awardees of The Israel Cancer Research Fund

2013 American Cancer Research Association Award for Outstanding Achievement in Chemistry in Cancer Research: Professor Alexander Levitzki

 

Advertisements

Read Full Post »


Heroes in Medical Research: Developing Models for Cancer Research

Author, Curator: Stephen J. Williams, Ph.D.

 

The current rapid progress in cancer research would have never come about if not for the dedication of past researchers who had developed many of the scientific tools we use today. In this issue of Heroes in Medical Research I would like to give tribute to the researchers who had developed the some of the in-vivo and in-vitro models which are critical for cancer research.

 

The Animal Modelers in Cancer Research

Helen Dean King, Ph.D. (1869-1955)

Helen Dean King

Helen Dean King, Ph.D. from www.ExplorePAhistory.com; photo Courtesy of the Wistar Institute Archive Collection, Philadelphia, PA

 

 

The work of Dr. Helen Dean King on rat inbreeding led to development of strains of laboratory animals. Dr. King taught at Bryn Mawr College, then worked at University of Pennsylvania and the Wistar Institute under famed geneticist Thomas Hunt Morgan, researching if inbreeding would produce harmful genetic traits.   At University of Pennsylvania she examined environmental and genetic factors on gender determination.

 

 

 

 

Important papers include [1-6]as well as the following contributions:

“Studies in Inbreeding”, “Life Processes in Gray Norway Rats During Fourteen Years in Captivity”, doctoral thesis on embryologic development in toads (1899)

 

Milestones include:

 

1909    started albino rat breeding and bred 20 female and male from same litter (King colony) to 25

successive generations (inbreeding did not cause harmful traits)

 

1919     started to domesticate the wild Norwegian rats that ran thru Philadelphia (six pairs Norway rats

thru 28 generations)

A good reference for definitions of rat inbreeding versus line generation including a history of Dr. King’s work can be found at the site: Munificent Mischief Rattery and a brief history here.[7] In addition, Dr. King had investigated using rat strains as a possible recipient for tumor cells. The work was an important advent to the use of immunodeficient models for cancer research.

 

As shown below Philadelphia became a hotbed for research into embryology, development, genetics, and animal model development.

 

Beatrice Mintz, Ph.D.

(Beatrice Minz, Ph.D.; photo credit Fox Chase Cancer Center, www.pubweb.fccc.edu) Mintz

Dr. Mintz, an embryologist and cancer researcher from Fox Chase Cancer Center in Philadelphia, PA, contributed some of the most seminal discoveries leading to our current understanding of genetics, embryo development, cellular differentiation, and oncogenesis, especially melanoma, while pioneering techniques which allowed the development of genetically modified mice.

If you get the privilege of hearing her talk, take advantage of it. Dr. Mintz is one of those brilliant scientists who have the ability to look at a clinical problem from the viewpoint of a basic biological question and, at the same time, has the ability to approach the well-thought out questions with equally well thought out experimental design. For example, Dr. Mintz asked if a cell’s developmental fate was affected by location in the embryo. This led to her work by showing teratocarcinoma tumor cells in the developing embryo could revert to a more normal phenotype, essentially proving two important concepts in development and tumor biology:

  1. The existence of pluripotent stem cells
  2. That tumor cells are affected by their environment (which led to future concepts of the importance of tumor microenvironment on tumor growth

Other seminal discoveries included:

  • Development of the first mouse chimeras using novel cell fusion techniques
  • With Rudolf Jaenisch in 1974, showed integration of viral DNA from SV40, could be integrated into the DNA of developing mice and persist into adulthood somatic cells, the first transgenesis in mice which led ultimately to:
  • Development of the first genetically modified mouse model of human melanoma in 1993

Her current work, seen on the faculty webpage here, is developing mice with predisposition to melanoma to uncover risk factors associated with the early development of melanoma.

In keeping with the Philadelphia tradition another major mouse model which became seminal to cancer drug discovery was co-developed in the same city, same institute and described in the next section.

It is interesting to note that the first cloning of an animal, a frog, had taken place at the Institute for Cancer Research, later becoming Fox Chase Cancer Center, which was performed by Drs. Robert Briggs and Thomas J. King and reported in the 152 PNAS paper Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs’ Eggs.[8]

 

 The Immunodeficient Animal as a Model System for Cancer Research – Dr. Mel Bosma, Ph.D.

 

Bosma

Melvin J. Bosma, Ph.D.; photo credit Fox Chase Cancer Center

In the summer of 1980 at Fox Chase Cancer Center, Dr. Melvin J. Bosma and his co-researcher wife Gayle discovered mice with deficiencies in common circulating antibodies and since, these mice were littermates, realized they had found a genetic defect which rendered the mice immunodeficient (upon further investigation these mice were unable to produce mature B and T cells). These mice were the first scid (severe combined immunodeficiency) colony. The scid phenotype was later found to be a result of a spontaneous mutation in the enzyme Prkdc {protein kinase, DNA activated, catalytic polypeptide} involved in DNA repair, and ultimately led to a defect in V(D)J recombination of immunoglobulins.

The emergence of this scid mouse was not only crucial for AIDS research but was another turning point in cancer research , as researchers now had a robust in-vivo recipient for human tumor cells. The orthotopic xenograft of human tumor cells now allowed for studies on genetic and microenvironmental factors affecting tumorigenicity, as well as providing a model for chemotherapeutic drug development (see Suggitt for review and references)[9]. A discussion of the pros and cons of the xenograft system for cancer drug discovery would be too voluminous for this post and would warrant a full review by itself. But before the advent of such scid mouse systems researchers relied on spontaneous and syngeneic mouse tumor models such as the B16 mouse melanoma and Lewis lung tumor model.

Other scid systems have been developed such as in the dog, horse, and pig. Please see the following post on this site The SCID Pig: How Pigs are becoming a Great Alternate Model for Cancer Research. The athymic (nude) mouse (nu/nu) also is a popular immunodeficient mouse model used for cancer research

Two other in-vivo tumor models: Patient Derived Xenografts (PDX) and Genetically Engineered Mouse models (GEM) deserve their own separate discussion however the success of these new models can be attributed to the hard work of the aforementioned investigators. Therefore I will post separately and curate PDX and GEM models of cancer and highlight some new models which are having great impact on cancer drug development.

 

References

1.         Loeb L, King HD: Transplantation and Individuality Differential in Strains of Inbred Rats. The American journal of pathology 1927, 3(2):143-167.

2.         Lewis MR, Aptekman PM, King HD: Retarding action of adrenal gland on growth of sarcoma grafts in rats. J Immunol 1949, 61(4):315-319.

3.         Aptekman PM, Lewis MR, King HD: Tumor-immunity induced in rats by subcutaneous injection of tumor extract. J Immunol 1949, 63(4):435-440.

4.         Lewis MR, Aptekman PM, King HD: Inactivation of malignant tissue in tumor-immune rats. J Immunol 1949, 61(4):321-326.

5.         Lewis MR, King HD, et al.: Further studies on oncolysis and tumor immunity in rats. J Immunol 1948, 60(4):517-528.

6.         Aptekman PM, Lewis MR, King HD: A method of producing in inbred albino rats a high percentage of immunity from tumors native in their strain. J Immunol 1946, 52:77-86.

7.         Ogilvie MB: Inbreeding, eugenics, and Helen Dean King (1869-1955). Journal of the history of biology 2007, 40(3):467-507.

8.         Briggs R, King TJ: Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs’ Eggs. Proceedings of the National Academy of Sciences of the United States of America 1952, 38(5):455-463.

9.         Suggitt M, Bibby MC: 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clinical cancer research : an official journal of the American Association for Cancer Research 2005, 11(3):971-981.

 

Other posts on this site about Cancer, Animal Models of Disease, and other articles in this series include:

The SCID Pig: How Pigs are becoming a Great Alternate Model for Cancer Research

A Synthesis of the Beauty and Complexity of How We View Cancer

Guidelines for the welfare and use of animals in cancer research

Importance of Funding Replication Studies: NIH on Credibility of Basic Biomedical Studies

FDA Guidelines For Developmental and Reproductive Toxicology (DART) Studies for Small Molecules

Report on the Fall Mid-Atlantic Society of Toxicology Meeting “Reproductive Toxicology of Biologics: Challenges and Considerations:

What`s new in pancreatic cancer research and treatment?

Heroes in Medical Research: Dr. Carmine Paul Bianchi Pharmacologist, Leader, and Mentor

Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer

Heroes in Medical Research: Barnett Rosenberg and the Discovery of Cisplatin

Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension

Reuben Shaw, Ph.D., a geneticist and researcher at the Salk Institute: Metabolism Influences Cancer

 

Read Full Post »


Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer

Curator and Reporter: Stephen J. Williams, PhD

This is the second posting in this series in which I highlight the basic research which led to seminal breakthroughs in the medical field, brought on by the result of basic inquiry, thorough and detailed investigation, meticulously following the scientific method, and eventually leading to development of important medical therapies.

In his autobiography, Virus Hunting: AIDS, Cancer & the Human Retrovirus: A Story of Scientific Discovery, Dr. Robert Gallo, M.D. describes a wonderful story of the history behind, scientific biographies, and chronology of the discoveries which led he and his colleagues (including co-discoverer Dr. Luke Montagnier) to recognize retroviruses (in particular HIV) as the leading culprit for the cause of AIDS and in the etiology of Kaposi’s sarcoma.   For anyone who appreciates the history behind scientific discoveries and appreciates learning about the multitude of individual efforts which are the crux of seminal research, this book is a must read.

Recommendations from the back cover include:

Virus Hunting will be read and reread, for years to come.” —New York Newsday

“Provides a human, revealing look into the arcane, usually secret confines of laboratory science.”

Martin Delany, Project Inform

..as well as others.

While a fascinating aspect of this book is the description, like fitting pieces of a puzzle, of the important discoveries throughout history which are the necessary foundations for further investigations and discoveries, more important is a telling, personal narrative of the people involved in those initial and subsequent discoveries.  In fact, the book has over 396 colleagues, mentors, technicians, students, and even critiques who are given credit, in one form or another, for the ultimate discovery of HIV as a causative agent for the development of AIDS. The book is a literal Who’s Who in Science and shows how important personal collaboration and friendships are in the process of scientific discovery.

In 1972, Dr. Seymour Perry had appointed the young Dr. Robert Gallo as head of a new department, the Human Tumor Cell Biology Branch, renamed the Laboratory of Tumor Cell Biology.  The lab was carrying on the work on tRNA that Dr. Gallo had performed in Dr. Sid Perska’s group at NIH.  However, with the help of new lab members Dr. David Gillespie, Dr. Flossie Wong-Staal, and Dr. Marjorie Robert-Guroff the lab focused on the search for disease-causing retroviruses, especially in human leukemias.  This was, in part, due to conversations with Dr. Robert Huebner and Todaro, who insisted that

“within the genetic makeup of this endogenous retroviral material was, they suggested, a special gene, the oncogene, that was the parent of the cancer-causing protein”

which may explain some of the early work by Rous concerning the Rous sarcoma virus.

Enter in Gallo’s good friend Dr. Bob Ting.  Dr. Gallo had known Dr. Ting socially since 1966, shortly after Gallo had arrived at NIH.  Dr. Bob Ting was a well-established NCI investigator, who was doing work on DNA and RNA oncogenic viruses of animals.  Originally from a large and wealthy family in Hong Kong, Dr. Ting had worked with Nobel Prize winners Salvatore Luria (who worked on phages) and Renato Dulbecco, who, along with his well-known cell culture media, had made the seminal discoveries that led to our knowledge how some DNA viruses can transform normal animal cells into neoplastic-like cells in culture.

Bob Ting gave a talk on these oncogenic viruses and Gallo was very interested in his observations that oncogenic viruses like Rous and Maloney, could transform cells in vitro in a matter of days.

A friendship developed between the two over tennis matches and Chinese food.  During this time, Dr. Ting made the important suggestion that they both collaborate and use the viral systems developed by Dulbecco.  Ting also introduced him to RNA viruses, Dr. Robert Huebner, and Dr. Howard Temin.  It was, in part, due to these associations that Gallo started looking, in earnest, at the possibility of RNA retroviruses in leukemias. Thus, just like the internet today, connections and networking provided new insights into current research, and helped lead the advent of new discoveries, therapies, and scientific disciplines.

Therefore, “after some late-night discussion with Bob Ting, I decided to enter the fray. My own laboratory, … would immediately be set up to compare the properties of reverse transcriptase enzymes from many different animal retroviruses”.

Although the rest is more history, this early friendship, collaboration, and mentoring by Bob Ting had “transformed” Gallo’s research efforts to set him up to make some of the important discoveries eventually leading to the discovery of the role of HIV in AIDS.

A video interviewing Dr. Gallo can be found here:

VIEW VIDEO

https://www.youtube.com/watch?v=ELRlXLGWu4I

A very nice writeup/obituary for Dr. Ting was written by Patricia Sullivan of the Washington Post and is included below.

Robert Ting, 77; Biotech Pioneer

ME/Ting-ob

Dr. Robert Ting’s biotech company in Rockville developed the first FDA-approved diagnostic test kits to test for HIV antibodies. (By Gerald Martineau — The Washington Post)

 

By Patricia Sullivan

Washington Post Staff Writer
Friday, September 22, 2006

Robert C.Y. Ting, 77, a research scientist who started one of the early biotechnology companies in the Washington area, died Sept. 11 of complications after cardiac surgery at the Cleveland Clinic in Cleveland.

Dr. Ting founded Biotech Research Laboratories Inc. in Rockville in 1973, producing cells for government scientists to use in research. Eleven years later, his firm obtained a federal license to develop and produce the first FDA-approved diagnostic test kits for HIV antibody confirmation.

Robert C. Gallo, who co-discovered the HIV virus as the cause of AIDS, called Dr. Ting a pioneer in the field who popularized the term “biotechnology” when he moved from research to entrepreneurship.

“He introduced me to virology, and he did it twice,” said Gallo, director of the Institute of Human Virology in Baltimore. The men had known each other since the 1960s, and while playing tennis one day, Dr. Ting advised the cancer researcher to look at new research in viruses. Later, when Gallo was studying leukemia, Dr. Ting directed him to animal research in leukemia. “First he showed me how viruses change cells. Then he introduced me to retrovirology. . . . I went into retrovirology solely because of those discussions with Bob Ting on tennis courts,” Gallo said.

Dr. Ting, whom Gallo described as a quiet, modest man, was born in Shanghai, the son of a physician to Gen. Chiang Kai-Shek. His family fled the country during the Japanese invasion of China during World War II and moved to Hong Kong. Soon after, he moved to the United States, where he received a bachelor’s degree and in 1956 a master’s degree in genetics from Amherst College.

He received a doctoral degree in microbiology and biochemistry from the University of Illinois in 1960 under Salvador E. Luria, who later won the 1969 Nobel Prize in Medicine and Physiology. Dr. Ting spent the next two years on a postdoctoral fellowship at the California Institute of Technology, working with Renato Dulbecco, who later won the 1975 Nobel Prize in Medicine and Physiology. Their work focused on how viruses cause tumors.

“A lot of molecular biology developed from this,” Dr. Ting told The Washington Post in 1984 from his Rockville office, cluttered with scientific journals, awards and a large blackboard. “There was so much evidence in animal systems [that viruses cause tumors], that the next question was obvious — can you find the equivalent in humans.”

Dr. Ting joined the National Institutes of Health in 1962 as a visiting fellow and then a senior research scientist at the National Cancer Institute. From 1966 to 1968, he was an associate editor for the Journal of the National Cancer Institute.

In 1969, he joined Litton Bionetics Inc. in Rockville as director of experimental oncology, leading a project funded by the institute to search for viruses in human leukemia patients. He became scientific director of the cancer research branch the next year.

With academic, government and private business experience under his belt, Dr. Ting decided to go into business on his own and in 1973 started Biotech Research Laboratories in Rockville. It was a profitable supplier of research services and supplies until 1981, when it went public and produced the HIV diagnostic test kits. It became one of the most successful public biotech companies in the area in the mid-1980s.

The Economic Development Board of Singapore invited him to return to Asia to start a biotech company, which he did in 1985, forming Diagnostic Biotechnology Ltd. He also joined the Institute of Molecular and Cell Biology at the National University of Singapore, which Gallo called “the most prominent Asian academic biotechnology center.”

He returned to the United States in 1998 to join the board of Cell Works Inc. in Baltimore, and became chair and chief executive of a joint venture, Cell Works Asia Limited, in 2000.

Most recently, Dr. Ting was the founding president and chief executive of Profectus Biosciences Inc. of Baltimore, previously known as Maryland BioTherapeutics Inc.

Dr. Ting was past chairman of the F.F. Fraternity, one of the oldest Chinese fraternities in the United States. He was also a member of the Organization of Chinese Americans in the D.C. area since its inception in the early 1970s. He enjoyed tennis, golf, ballroom dancing and international travel. He also was a wine connoisseur.

Survivors include his wife of 44 years, Sylvia Han Ting of Potomac; three children, Anthony Ting of Shaker Heights, Ohio, Andrew Ting of Beverly, Mass., and Jennifer Chow of Potomac; seven sisters; and seven grandchildren.

An obituary written from his son Anthony can be found here:

https://www.amherst.edu/aboutamherst/magazine/in_memory/1953/robertting

Sources:

http://www.amazon.com/Virus-Hunting-Retrovirus-Scientific-Discovery/dp/0465098150

http://www.washingtonpost.com/wp-dyn/content/article/2006/09/21/AR2006092101936.html

Other articles/postings related to this topic and HIV on this site includes:

Heroes in Medical Research: Barnett Rosenberg and the Discovery of Cisplatin

History of medicine, science, and society: 200 Years of the New England Journal of Medicine

Why did Pauling Lose the “Race” to James Watson and Francis Crick? How Crick Describes his Discovery in a Letter to his Son

John Randall’s MRC Research Unit and Rosalind Franklin’s role at Kings College

Interview with the co-discoverer of the structure of DNA: Watson on The Double Helix and his changing view of Rosalind Franklin

Otto Warburg, A Giant of Modern Cellular Biology

Inspiration From Dr. Maureen Cronin’s Achievements in Applying Genomic Sequencing to Cancer Diagnostics

Nanotechnology and HIV/AIDS treatment

HIV vaccine: Caltech puts us One step further

Getting Better: Documentary Videos on Medical Progress — in Surgery, Leukemia, and HIV/AIDS.

Read Full Post »