Advertisements
Feeds:
Posts
Comments

Posts Tagged ‘metastatic tumor cells’


Cancer Stem Cells as a Mechanism of Resistance

 

Curator: Stephen J. Williams, Ph.D.

The cancer stem-cell hypothesis proposes the existence of a subset of cells within a heterogeneous tumor cell population that have stem-cell like properties [1], and may be essential for the progression and metastases of epithelial malignancies, by providing a reservoir of cells that self-renew and differentiate into the bulk of the tumor [2]. The stem-cell hypothesis implies that similar genetic regulatory pathways might define critical stem-cell like functions, such as self-renewal and pluripotency, in both normal and cancer stem-cells. Indeed, cancer stem-cells have been identified in many tumor types, such as breast [3], pancreas [4] and ovarian [5], based on screening with cellular markers typically found in normal stem-cells such as CD44, ALDH1, and CD133 (reviewed in [2]). A number of studies have suggested that the expression of these stem-cell markers is correlated with poor prognosis [6-9]. The ability to identify and isolate these populations may have a significant impact on design of individualized therapies.

Great general posts and good review on this site about Cancer Stem Cells, their markers, and ability to target them with chemotherapy can be seen here.

In Focus: Identity of Cancer Stem Cells

In Focus: Targeting of Cancer Stem Cells

Stem Cells and Cancer

 

However, there has been growing acknowledgement of the ability of cancer stem cell populations to resist the cytotoxic effects of most chemotherapeutic agents, including cisplatin, topoisomerase inhibitors, DNA damaging agents, and even tyrosine kinase inhibitors (TKI). Indeed, some feel that intrinsic resistance to cytotoxic drugs may be a biological feature of cancer stem cells.

Definitions:

Acquired resistance: a resistance to a particular drug which results following continued exposure to said drug. Can take days (in cases of some TKIs) or months to develop. Acquired resistant cells lines are developed by exposure to increasing drug concentration over a time period (either intermittent exposure or continuous exposure)

Intrinsic resistance: a pre-existing resistance usually termed refractory where cancer cells THAT HAVE NOT BEEN EXPOSED to drug, do not respond to initial drug exposure. Can be seen experimentally in panels of unrelated cancer cells lines isolated from untreated patients which show no cytotoxicity to drug exposure in vitro.

Below is one of the first reports which described the drug resistant phenotype of cancer stem cells in an in vivo (mouse) model of breast cancer with videos.

Cancer Res. 2008 May 1;68(9):3243-50. doi: 10.1158/0008-5472.CAN-07-5480.

Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors.

Shafee N1, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EY.

Author information

Abstract

The majority of BRCA1-associated breast cancers are basal cell-like, which is associated with a poor outcome. Using a spontaneous mouse mammary tumor model, we show that platinum compounds, which generate DNA breaks during the repair process, are more effective than doxorubicin in Brca1/p53-mutated tumors. At 0.5 mg/kg of daily cisplatin treatment, 80% primary tumors (n = 8) show complete pathologic response. At greater dosages, 100% show complete response (n = 19). However, after 2 to 3 months of complete remission following platinum treatment, tumors relapse and become refractory to successive rounds of treatment. Approximately 3.8% to 8.0% (mean, 5.9%) of tumor cells express the normal mammary stem cell markers, CD29(hi)24(med), and these cells are tumorigenic, whereas CD29(med)24(-/lo) and CD29(med)24(hi) cells have diminished tumorigenicity or are nontumorigenic, respectively. In partially platinum-responsive primary transplants, 6.6% to 11.0% (mean, 8.8%) tumor cells are CD29(hi)24(med); these populations significantly increase to 16.5% to 29.2% (mean, 22.8%; P < 0.05) in platinum-refractory secondary tumor transplants. Further, refractory tumor cells have greater colony-forming ability than the primary transplant-derived cells in the presence of cisplatin. Expression of a normal stem cell marker, Nanog, is decreased in the CD29(hi)24(med) populations in the secondary transplants. Top2A expression is also down-regulated in secondary drug-resistant tumor populations and, in one case, was accompanied by genomic deletion of Top2A. These studies identify distinct cancer cell populations for therapeutic targeting in breast cancer and implicate clonal evolution and expansion of cancer stem-like cells as a potential cause of chemoresistance.

Please Watch Videos

 

Below is a curation of talks and abstracts from the 2015 Annual AACR Meeting in Philadelphia, PA.

The Talk by Dr. Cheresh is an example of this school of thought; that inducing cancer cell stemness can result in development of drug resistance, in this case to a TKI. (For a press release on this finding see here.)

SY27-04: Induction of cancer stemness and drug resistance by EGFR blockade
Tuesday, Apr 21, 2015, 12:00 PM -12:15 PM
David A. Cheresh. UCSD Moores Cancer Center, La Jolla, CA

SY27-04  
 
Presentation Title: Induction of cancer stemness and drug resistance by EGFR blockade
Presentation Time: Tuesday, Apr 21, 2015, 12:00 PM -12:15 PM
Abstract Body: Tumor drug resistance is often accompanied by genetic and biological changes in the tumor cell population reflecting the acquisition of a stem-like state. However, it is not clear whether cancer therapies select for the growth of drug resistance cancer stem cells and/or directly induce the reprograming of tumor cells to a cancer stem-like, drug resistance state. We provide evidence that breast, pancreas and lung carcinomas in the presence of prolonged exposure to EGFR inhibitors undergo an epigenetic reprogramming resulting in a drug resistant stem-like tumor population expressing the cell surface marker CD61 (b3 integrin). In fact, CD61 in the context of KRAS, is necessary and sufficient to account for drug resistance, tumor initiation, self-renewal and expression of the pluripotent genes Oct 4 and Nanog. Once expressed, CD61 in the unligated state recruits KRAS to the plasma membrane leading to the activation of RalB, TBK1 and c-Rel driving both stemness and EGFR inhibitor resistance. Pharmacological targeting this pathway with drugs such as bortezomib or revlimid not only reverses stemness but resensitizes these epithelial tumors to EGFR inhibition. This epigenetic pathway can also be initiated by range of cellular stresses found within the tumor microenvironment such as hypoxia, nutrient deprivation, low pH, and oxidative stress. In normal tissues CD61 is induced during tissue remodeling and repair. For example, CD61 was found to be critical for mammary gland remodeling during pregnancy and as a mediator of pathological neovascularization. Together these findings reveal a stress-induced epigenetic pathway characterized by the upregulation of CD61 that promotes the remodeling of normal tissues but in tumors contributes to EGFR inhibitor resistance and tumor progression.

 

http://cancerres.aacrjournals.org/gca?gca=canres%3B75%2F15_Supplement%2F4&gca=canres%3B75%2F15_Supplement%2F6&gca=canres%3B75%2F15_Supplement%2F19&gca=canres%3B75%2F15_Supplement%2F24&gca=canres%3B75%2F15_Supplement%2F48&gca=canres%3B75%2F15_Supplement%2F54&gca=canres%3B75%2F15_Supplement%2F57&gca=canres%3B75%2F15_Supplement%2F88&gca=canres%3B75%2F15_Supplement%2F90&gca=canres%3B75%2F15_Supplement%2F97&allch=&submit=Go

Selected Abstracts

  1. Abstract 1
  2. Molecular and Cellular Biology – Poster Presentations – Proffered Abstracts – Poster Presentations – Cell Death Mechanisms: Abstract 4: ABT-263 is effective in a subset of non-small cell lung cancer cell lines
    • Aoi Kuroda,
    • Keiko Ohgino,
    • Hiroyuki Yasuda,
    • Junko Hamamoto,
    • Daisuke Arai,
    • Kota Ishioka,
    • Tetsuo Tani,
    • Shigenari Nukaga,
    • Ichiro Kawada,
    • Katsuhiko Naoki,
    • Kenzo Soejima,
    • and Tomoko Betsuyaku

Cancer Res August 1, 2015 75:4; doi:10.1158/1538-7445.AM2015-4

  1. Abstract 2
  2. Molecular and Cellular Biology – Poster Presentations – Proffered Abstracts – Poster Presentations – Cell Death Mechanisms: Abstract 6: Quantitative assessment of BCL-2:BIM complexes as a pharmacodynamic marker for venetoclax (ABT-199)
    • Sha Jin,
    • Paul Tapang,
    • Donald J. Osterling,
    • Wenqing Gao,
    • Daniel H. Albert,
    • Andrew J. Souers,
    • Joel D. Leverson,
    • Darren C. Phillips,
    • and Jun Chen

Cancer Res August 1, 2015 75:6; doi:10.1158/1538-7445.AM2015-6

  1. Molecular and Cellular Biology – Poster Presentations – Proffered Abstracts – Poster Presentations – Cell Death Mechanisms: Abstract 24: The phosphorylation of p53 at serine 46 is essential to induce cell death through palmdelphin in response to DNA damage
    • Nurmaa Khund Dashzeveg and
    • Kiyotsugu Yoshida

Cancer Res August 1, 2015 75:24; doi:10.1158/1538-7445.AM2015-24

  1. Abstract 5
  2. Molecular and Cellular Biology – Poster Presentations – Proffered Abstracts – Poster Presentations – Cell Signaling in Cancer 1: Abstract 48: Identification of a novel binding protein playing a critical role in HER2 activation in lung cancer cells
    • Tomoaki Ohtsuka,
    • Masakiyo Sakaguchi,
    • Katsuyoshi Takata,
    • Shinsuke Hashida,
    • Mototsugu Watanabe,
    • Ken Suzawa,
    • Yuho Maki,
    • Hiromasa Yamamoto,
    • Junichi Soh,
    • Hiroaki Asano,
    • Kazunori Tsukuda,
    • Shinichiro Miyoshi,
    • and Shinichi Toyooka

Cancer Res August 1, 2015 75:48; doi:10.1158/1538-7445.AM2015-48

  1. Abstract 1 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Death Mechanisms

Abstract 4: ABT-263 is effective in a subset of non-small cell lung cancer cell lines

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

Rationale:

ABT-263 (Navitoclax) is one of the BH3 mimetics targeting anti-apoptotic B-cell lymphoma-2 (Bcl-2) family proteins such as Bcl-2, Bcl-XL, and Bcl-w, thereby inducing apoptosis. It has been reported that the response to ABT-263 is associated with expressions of myeloid cell leukemia-1 (Mcl-1), an anti-apoptotic protein. Given its effectiveness as a single agent in preclinical studies, ABT-263 is currently being evaluated in clinical trials for small cell lung cancer (SCLC) and leukemia. However, the efficacy of ABT-263 in non-small cell lung cancer (NSCLC) has not been fully evaluated. We examined the effect of ABT-263 on cell proliferation of NSCLC cell lines and investigated the underlying mechanisms.

Methods:

The following 9 NSCLC cell lines were examined: SK-LU-1, A549, H358, Calu3, H3122, H1975, H460, H441, and BID007. The effects of ABT-263 in NSCLC cell lines were evaluated by MTS assay. Apoptosis was examined by flowcytometry using staining for annexin V and propidium iodide (PI), and also western blotting for cleaved PARP. Quantitative RT-PCR was carried out to assess the mRNA expression levels of anti-apoptotic genes and pro-apoptotic genes. Immunoprecipitation and western blotting were performed to compare the levels of anti-apoptotic and pro-apoptotic proteins between the sensitive and resistant cell lines. In addition, knockdown of Mcl-1 was performed by siRNA.

Results:

By screening 9 NSCLC cell lines using MTS assay, we found Calu3 and BID007were sensitive to ABT-263. We also confirmed that apoptosis was induced only in the ABT-263 sensitive lines but not in the ABT-263 resistant cell lines after ABT-263 treatment. However, the expression levels of Bcl-2 family proteins, including Mcl-1, did not differ significantly among the ABT-263 sensitive and resistant cell lines. Unlike the results in previous reports regarding SCLC, Mcl-1 was not decreased in the sensitive cell lines. The ABT-263 resistant cell lines became sensitive to ABT-263 after knockdown of Mcl-1 by siRNA, while the ABT-263 sensitive cell lines maintained the same sensitivity.

Conclusion:

We found that Calu3 and BID007 were sensitive to ABT-263. In the sensitive NSCLC cell lines, ABT-263 induces apoptosis irrespective of Mcl-1 expression levels.

Citation Format: Aoi Kuroda, Keiko Ohgino, Hiroyuki Yasuda, Junko Hamamoto, Daisuke Arai, Kota Ishioka, Tetsuo Tani, Shigenari Nukaga, Ichiro Kawada, Katsuhiko Naoki, Kenzo Soejima, Tomoko Betsuyaku. ABT-263 is effective in a subset of non-small cell lung cancer cell lines. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4. doi:10.1158/1538-7445.AM2015-4

    • ©2015 American Association for Cancer Research.
  1. Abstract 2 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Death Mechanisms

Abstract 6: Quantitative assessment of BCL-2:BIM complexes as a pharmacodynamic marker for venetoclax (ABT-199)

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

The BCL-2-selective inhibitor venetoclax (ABT-199) binds with high affinity to the BH3-binding groove of BCL-2, thereby competing for binding with the BH3-only protein BIM (Souers et al., 2013). Venetoclax is currently being evaluated in clinical trials for CLL, AML, multiple myeloma and NHL. To facilitate these studies, we developed and validated a 384-well electrochemiluminescent ELISA (MSD, Gaithersburg, MD,USA) that quantifies expression of BCL-2, BCL-XL, and MCL-1protein alone or in complex with BIM. We subsequently quantified expression of BCL-2 and BCL-2:BIM complexes in 16 hematologic tumor cell lines. We found the EC50 of venetoclax in these tumor cell lines to correlate strongly with baseline BCL-2:BIM complex levels. This correlation was superior to the correlation between venetoclax EC50 and absolute BCL-2 expression. We also applied the assay to measure disruption of BCL-2:BIM complexes in vivo. Treatment of the Non-Hodgkin’s Lymphoma (NHL) xenograft model SU-DHL-4 with a BCL-2-selective inhibitor resulted in disruption of tumor BCL-2:BIM complexes that aligned with serum and tumor concentrations of inhibitor. Collectively, these data demonstrate that quantifying BCL-2:BIM complexes offers an accurate means of assessing target engagement by venetoclax and, potentially, predicting its efficacy. The utility of this assay is currently being assessed in clinical trials.

Citation Format: Sha Jin, Paul Tapang, Donald J. Osterling, Wenqing Gao, Daniel H. Albert, Andrew J. Souers, Joel D. Leverson, Darren C. Phillips, Jun Chen. Quantitative assessment of BCL-2:BIM complexes as a pharmacodynamic marker for venetoclax (ABT-199). [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 6. doi:10.1158/1538-7445.AM2015-6

    • ©2015 American Association for Cancer Research.
  1. Abstract 3 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Death Mechanisms

Abstract 19: Antitumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

Survivin, which is highly expressed and promotes cell survival in diffuse malignant peritoneal mesothelioma (DMPM), exclusively relies on the nuclear exportin 1 (XPO1/CRM1) to be released in the cytoplasm and perform its anti-apoptotic function. Here, we explored the efficacy of selective inhibitors of nuclear export (SINEs) in patient-derived DMPM preclinical models. Exposure to individual SINE (KPT-251, KPT-276, KPT-330) was able to induce a time- and dose-dependent inhibition of the growth of two DMPM cell lines without affecting normal cell proliferation. Such a cell growth inhibition was preceded by a decline in the nuclear XPO1/CRM1 levels and an increase in the nuclear accumulation of its cargo proteins p53 and p21, which led to a cell cycle arrest at G1-phase. Our results also indicated that survivin is an essential component of the downstream signaling pathway of XPO1/CRM1 inhibition in DMPM cells. In fact, in both cell lines, exposure to SINEs led to a time-dependent reduction of cytoplasmic survivin levels and, after an initial survivin nuclear accumulation, also to a progressive decrease in the nuclear protein abundance, through the ubiquitin-proteasomal degradation pathway, leading to the complete depletion of total survivin levels. In both DMPM cell models, according to survivin anti-apoptotic activity, drug-induced reduction of cytoplasmic survivin levels correlated with the onset of caspase-dependent apoptosis. We further observed that SINEs can be combined with other survivin inhibitors, such as the survivin suppressant YM155 to achieve enhanced growth inhibition in DMPM cells. Initial in vivo experiments with orally administered KPT-251, KPT-276 and the orally available, clinical stage KPT-330 (selinexor) indicated that each compound was able to significantly reduce the growth of early-stage subcutaneous DMPM xenografts. Interestingly, additional experiments carry out with selinexor demonstrated that the compound was also able to inhibit the growth of late-stage subcutaneous DMPM xenografts in nude mice. Most importantly, oral administration of selinexor to SCID mice reduced the growth of orthotopic DMPM xenografts, which properly recapitulate the dissemination pattern in the peritoneal cavity of human DMPM and, for this reason, represent a valuable model for investigating novel therapeutic approaches for the disease. Consistent with an important role of survivin as a determinant of anti-cancer activity of SINE compounds, a reduction of the protein expression was observed in tumor specimens obtained from selinexor treated mice. Overall, our results (i) demonstrate a marked efficacy of SINEs in DMPM preclinical models, which is, at least in part, dependent on the interference with survivin intracellular distribution and function, and (ii) suggest SINE-mediated XPO1/CRM1 inhibition as a novel therapeutic option for the disease.

Citation Format: Nadia Zaffaroni, Michelandrea De Cesare, Denis Cominetti, Valentina Doldi, Alessia Lopergolo, Marcello Deraco, Paolo Gandellini, Yosef Landesman, Sharon Friedlander, Michael G. Kauffman, Sharon Shacham, Marzia Pennati. Antitumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 19. doi:10.1158/1538-7445.AM2015-19

    • ©2015 American Association for Cancer Research.
  1. Abstract 4 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Death Mechanisms

Abstract 24: The phosphorylation of p53 at serine 46 is essential to induce cell death through palmdelphin in response to DNA damage

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

Tumor suppressor p53 plays a pivotal role in cell cycle arrest, DNA repair, and apoptosis in response to DNA damage. Promoter selectivity of p53 depends mainly on post-translational modification. Notably, the apoptotic function of p53 is related to its phosphorylation at serine-46 (ser46) to promote pro-apoptotic genes. However, little is known about the pro-apoptotic genes induced by Ser46 phosphorylation. Our research achieved to investigate the pro-apoptotic genes induced by p53 in a phospho-ser46-specific manner using microarray and ChIP sequencing in human cancer cell lines. As a result, palmdelphin (PALMD), an isoform of paralemmin protein, was strongly elicited from the phosphorylation of ser46. The mRNA and protein expression of PALMD increased only in wild type p53 transfected cells, but not in ser46-mutated cells. Importantly, PALMD moved to the nucleus in response to DNA damage and the apoptotic function of PALMD was tightly exerted with localization into nucleus. Interestingly, down-regulation of PALMD by siRNA resulted in necroptosis-like cell death through ATP depletion. Moreover, we found vimentin as a PALMD interacting protein and the depletion of vimentin increased PALMD level to accelerate apoptosis. These results demonstrate that p53 regulates cell death fate (apoptosis or necroptosis-like cell death) through promoting PALMD expression in a phospho-ser46-specific manner in response to DNA damage.

Citation Format: Nurmaa Khund Dashzeveg, Kiyotsugu Yoshida. The phosphorylation of p53 at serine 46 is essential to induce cell death through palmdelphin in response to DNA damage. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 24. doi:10.1158/1538-7445.AM2015-24

    • ©2015 American Association for Cancer Research.
  1. Abstract 5 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Signaling in Cancer 1

Abstract 48: Identification of a novel binding protein playing a critical role in HER2 activation in lung cancer cells

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

Human epidermal growth factor receptor 2 (HER2) is a member of epidermal growth factor receptor (EGFR) family. Previous studies have revealed that many kinds of malignant tumors have genetic mutations or amplification of HER2, indicating that HER2 alterations are oncogenic. Many kinds of HER2 targeted therapies are effective to HER2 positive tumors, but those treated tumors often get resistance to drugs. Thus, to elucidate HER2 related pathway in cancer biology is important to develop new therapeutic strategy for cancers.

Recently, we newly identified a protein X (a temporary name) as a novel binding protein to HER2 with immunoprecipitation and following LC-Ms/Ms analysis. The protein generally expressed in lung and breast cancers at remarkable level.

We constructed plasmid vectors carrying wild type HER2 and gene X. These vectors were simultaneously introduced to HEK293T cells to examine the binding ability of protein X and HER2 as well as the effect of gene X on HER2-mediated signal-transduction pathway. The approach clearly showed that the expression of gene X, resulted in phosphorylation of HER2 and subsequent activation of oncogenic effector molecules.

We next constructed several kinds of gene X-truncated variants and subjected to the binding assay to look for the binding domain of gene X to HER2. The analysis showed that N-terminal head domain of gene X was essential for the HER2 binding. This domain has an ability to induce HER2 phosphorylation and subsequent activation of the effector kinase, ERK.

In conclusion, we found that gene X is a novel binding protein to HER2 and has a role in HER2 activation.

Citation Format: Tomoaki Ohtsuka, Masakiyo Sakaguchi, Katsuyoshi Takata, Shinsuke Hashida, Mototsugu Watanabe, Ken Suzawa, Yuho Maki, Hiromasa Yamamoto, Junichi Soh, Hiroaki Asano, Kazunori Tsukuda, Shinichiro Miyoshi, Shinichi Toyooka. Identification of a novel binding protein playing a critical role in HER2 activation in lung cancer cells. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 48. doi:10.1158/1538-7445.AM2015-48

    • ©2015 American Association for Cancer Research.
  1. Abstract 6 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Signaling in Cancer 1

Abstract 54: Ezrin enhances signaling and nuclear translocation of the epidermal growth factor receptor in non-small cell lung cancer cells

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

The cytoskeletal cross linker protein ezrin is a member of the ezrin-radixin-moesin (ERM) family and plays important roles not only in cell motility, cell adhesion, and apoptosis, but also in various cell-signaling pathways. Ezrin interacts with EGFR in the cell membrane and involves in cell motility events, but little is known about the effects of this interaction on the EGFR signaling pathway. We investigated the role of Ezrin in EGFR signaling and nuclear trafficking in non-small cell lung cancer (NSCLC) cell lines. The ligand induced interaction between Ezrin and EGFR was evaluated by immunoprecipitation (IP) and immunofluorescence (IF) in H292 and A549 cells. Ezrin levels were reduced using siRNA in these two cell lines. Downstream signaling protein phosphorylation and nuclear localization of EGFR were detected after EGF treatment. Expressions of nuclear EGFR target genes were evaluated by qPCR. Endogenous Ezrin was found in a complex with EGFR in IP and IF. When Ezrin protein expression was inhibited, phosphorylation levels of EGFR at Y1068, Y1101 and Y845 were reduced as well as phosphorylation levels of downstream signaling pathway proteins ERK and STAT3. Cell fractionation revealed that EGFR nuclear translocation after EGF treatment significantly reduced in Ezrin-knockdown cells. Further, mRNA levels of EGFR target genes AuroraK-A, COX2, Cyclin D1 and iNOS were decreased in Ezrin-knockdown A549 cells. Small molecule ezrin inhibitors showed strong synergy with EGFR inhibitors in cytotoxicity assays. These results suggest that Ezrin has a role as an enhancer in the EGFR pathway and targeting ezrin may potentiate anti-EGFR based therapies in NSCLC.

Citation Format: Yasemin Saygideger Kont, Haydar Celik, Hayriye V. Erkizan, Tsion Minas, Jenny Han, Jeffrey Toretsky, Aykut Uren. Ezrin enhances signaling and nuclear translocation of the epidermal growth factor receptor in non-small cell lung cancer cells. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 54. doi:10.1158/1538-7445.AM2015-54

    • ©2015 American Association for Cancer Research.
  1. Abstract 7 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Cell Signaling in Cancer 1

Abstract 57: Substrates of protein kinase C drive cell rac1-dependent motility

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

This laboratory has identified and/or characterized substrates of PKC that upon phosphorylation give rise to motility, an aspect of metastasis. By use of the traceable kinase method, we discovered that alpha-tubulin and Cdc42 effector protein-4 (CEP4) are PKC substrates. Phosphorylation of alpha-tubulin stimulates its incorporation into microtubules (MTs), consequently increasing the stability and prolonged growth of MTs and leading to the activation of the small GTPase Rac1. CEP4 undergoes phosphorylation by PKC that results in its release from Cdc42, whereupon CEP4 binds a guanine nucleotide exchange factor (GEF) that in turn activates Rac1 GTPase. These results imply that Rac1 acts as a node in pathways driven by phosphorylated PKC substrates. Since translocation of IQGAP to the membrane is known to be promoted by Rac1, a role is explored in non-transformed human MCF-10A cells that express a specific phospho-mimetic mutant substrate. In addition, the phospho-mimetic mutant for each substrate expressed in human metastatic MDA-MB-231 cells produces different morphologies in 3-D growth assays. This research is being supported by NIH CA125632.

Citation Format: Susan A. Rotenberg, Xin Zhao, Shatarupa De. Substrates of protein kinase C drive cell rac1-dependent motility. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 57. doi:10.1158/1538-7445.AM2015-57

    • ©2015 American Association for Cancer Research.
  1. Abstract 8 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Deregulation of Gene Expression in Prostate Cancer and Sarcoma

Abstract 88: The Nkx3.1 homeobox gene maintains prostatic identity while its loss leads to prostate cancer initiation

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

Background

Maintenance of epithelial cell identity is tightly coordinated by tissue-specific gene expression programs, which are often deregulated during tumorigenesis. The homeodomain-containing transcription factor, Nkx3.1, is a key regulator of normal prostatic development and is frequently lost at early stages of prostate cancer initiation. In this study, we aim to elucidate detailed mechanisms governing Nkx3.1-driven maintenance of prostate identity and how deregulation of such can lead to prostate tumorigenesis.

Models and Methods

We evaluated the consequences of Nkx3.1 loss or gain of function in vivo using genetically-engineered mouse models and cell-recombination assays. RNA sequencing was performed to generate gene expression profiles, which were analyzed using Gene Set Enrichment analysis (GSEA), and validated by quantitative real-time PCR. In parallel, protein expression was assessed by immunofluorescence and western blot. Immunoprecipitation (IP) and chromatin-immunoprecipitation (ChIP) assays were performed using RWPE1 prostate epithelial cells.

Results

Here, we show that loss of function of Nkx3.1 leads to the progressive down-regulation of a prostate-specific gene expression program and to aberrant expression of genes that are not typically expressed in the prostate epithelium. Conversely, gain of function of Nkx3.1 in non-prostatic epithelium leads to the acquisition of a prostate-like morphology and expression of prostate-related genes. Our findings indicate that the underlying mechanism by which Nkx3.1 promotes prostatic identity is via epigenetic regulation of gene expression. In particular, we show that Nkx3.1 interacts with the histone methyl-transferase complex G9a/Glp. Finally, we demonstrate that this interaction is necessary for maintenance of prostate identity in vivo and that Nkx3.1 and G9a cooperate to control expression of genes that coordinate prostatic epithelial integrity.

Conclusions

Our results suggest that Nkx3.1 promotes prostatic identity by interacting with histone modifying enzymes to coordinate the expression of prostate-specific genes and that the loss of this function results in a failure to maintain prostate identity associated with early stages of prostate tumorigenesis.

Citation Format: Clémentine Le Magnen, Aditya Dutta, Cory Abate-Shen. The Nkx3.1 homeobox gene maintains prostatic identity while its loss leads to prostate cancer initiation. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 88. doi:10.1158/1538-7445.AM2015-88

    • ©2015 American Association for Cancer Research.
  1. Abstract 9 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Deregulation of Gene Expression in Prostate Cancer and Sarcoma

Abstract 90: K63-linked JARID1B ubiquitination by TRAF6 contributes to aberrant elevation of JARID1B in prostate cancer

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

Aberrant elevation of JARID1B and histone H3 Lys4 trimethylations (H3K4me3) is frequently observed in many diseases including prostate cancer (PCa), yet the mechanisms on the regulations of JARID1B and H3K4me3 through epigenetic modifications still remain poorly understood. In this study we performed immunohistochemistry staining, immunofluorescence imaging, immunoprecipitation, shRNA and Western blotting analysis in mouse embryonic fibroblasts (MEFs), mouse models, and cultured human prostate cancer cells. As a result, we discovered that SKP2 modulates JARID1B and H3K4me3 levels in vitro in PTEN null prostate cancer cells and in vivo in Pten/Trp53 mouse models. We demonstrated that levels of SKP2, JARID1B and H3K4me3 are strikingly elevated in vitro and in vivo when both PTEN and P53 are inactivated. Importantly, SKP2 inactivation resulted in a reduction of cell growth, cell migration and malignant transformation of Pten/Trp53 double null MEFs, and further restrained prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, JARID1B is ubiquitinated by E3 ligase TRAF6 through the K63-linkage in prostate cancer cells. Interestingly, SKP2 contributes to JARID1B ubiquitination machinery as a non-E3 ligase regulator by decreasing TRAF6-mediated ubiquitination of JARID1B. SKP2 deficiency resulted in an increase of JARID1B ubiquitination and in turn a reduction of H3K4me3, and induced senescence through JARID1B accumulation in nucleoli of PCa cells and prostate tumors of mice. Furthermore, we showed that the aberrant levels of SKP2, JARID1B, and H3K4me3 are associated with malignant features of castration-resistant prostate cancer (CRPC) in mice. Overall, our findings reveal a novel network of SKP2- JARID1B, and targeting SKP2 and JARID1B may be a potential strategy for PCa control.

Citation Format: Wenfu Lu, Shenji Liu, Bo Li, Yingqiu Xie, Christine Adhiambo, Qing Yang, Billy R. Ballard, Keiichi I. Nakayama, Robert J. Matusik, Zhenbang Chen. K63-linked JARID1B ubiquitination by TRAF6 contributes to aberrant elevation of JARID1B in prostate cancer. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 90. doi:10.1158/1538-7445.AM2015-90

    • ©2015 American Association for Cancer Research.
  1. Abstract 10 of 10Molecular and Cellular Biology / Poster Presentations – Proffered Abstracts / Poster Presentations – Histone Methylation and Acetylation

Abstract 97: CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism

Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA

CARM1 (PRMT4) is a type I arginine methyltransferase involved in the regulation of transcription, pre-mRNA splicing, cell cycle progression and the DNA damage response. Overexpression of CARM1 has been implicated in breast, prostate, and colorectal cancers. Since CARM1 appears to be a good target for the development of therapies against these cancers, we studied the substrate specificity and kinetic mechanism of the full-length human enzyme. CARM1 has been shown to methylate both residues R17 and R26 of histone H3. Substrate specificity was examined by testing CARM1 activity with several H3-based peptide substrates using a radiometric assay. Comparison of kcat/KM values reveal that methylation of H3R17 is preferred over H3R26. An R17/R26K peptide produced 8-fold greater kcat/KM value compared to the corresponding R17K/R26 peptide. These effects are KM-driven as kcat values remain relatively constant for the peptides tested. Shortening the peptide at the C-terminus by 5 amino acid residues greatly reduced the specificity (16-24-fold), demonstrating the contribution of distal residues to substrate binding. In contrast, adding residues to the N-terminus of the shortened peptide had a negative effect on activity. CARM1 displays little preference for monomethylated over unmethylated H3R17 (2-5-fold by kcat/KM) suggesting that it operates through a distributive mechanism. Previous crystallographic studies with mouse CARM1 showed that part of the substrate binding groove was formed by cofactor binding, thereby suggesting an ordered kinetic mechanism (Yue et al., EMBO J., 2007). Our results from dead-end and product inhibition studies performed with human CARM1, however, are consistent with a random kinetic mechanism. SAH and sinefungin demonstrate competitive inhibition with respect to SAM and produced noncompetitive inhibition patterns with respect to peptide. Both dimethylated R17 product peptide and dead-end R17K peptide exhibited noncompetitive inhibition patterns with respect to SAM. Furthermore, binding of SAM and peptide substrates were shown to be independent of each other in initial velocity experiments where both substrates were varied. Together, these results elucidate the kinetic mechanism of CARM1 and highlight elements important for binding affinity.

Citation Format: Suzanne L. Jacques, Katrina P. Aquino, Jodi Gureasko, P Ann Boriack-Sjodin, Robert A. Copeland, Thomas V. Riera. CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 97. doi:10.1158/1538-7445.AM2015-97

    • ©2015 American Association for Cancer Research.

References

 

  1. Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3(7):730-737.
  2. Al-Hajj M, Clarke MF: Self-renewal and solid tumor stem cells. Oncogene 2004, 23(43):7274-7282.
  3. Hughes L, Malone C, Chumsri S, Burger AM, McDonnell S: Characterisation of breast cancer cell lines and establishment of a novel isogenic subclone to study migration, invasion and tumourigenicity. Clin Exp Metastasis 2008, 25(5):549-557.
  4. Li C, Lee CJ, Simeone DM: Identification of human pancreatic cancer stem cells. Methods Mol Biol 2009, 568:161-173.
  5. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008, 68(11):4311-4320.
  6. Kakarala M, Wicha MS: Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 2008, 26(17):2813-2820.
  7. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1(5):555-567.
  8. Dontu G: Breast cancer stem cell markers – the rocky road to clinical applications. Breast Cancer Res 2008, 10(5):110.
  9. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A et al: Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer 2008, 18(3):506-514.

 

Additional Articles on this Open Access Journal on Cancer Stem Cells Include

Nonhematologic Cancer Stem Cells [11.2.3]

In Focus: Identity of Cancer Stem Cells

In Focus: Targeting of Cancer Stem Cells

Stem Cells and Cancer

Positron Emission Tomography (PET) and Near-Infrared Fluorescence Imaging: Noninvasive Imaging of Cancer Stem Cells (CSCs) monitoring of AC133+ glioblastoma in subcutaneous and intracerebral xenograft tumors

“To Die or Not To Die” – Time and Order of Combination drugs for Triple Negative Breast Cancer cells: A Systems Level Analysis

Can IntraTumoral Heterogeneity Be Thought of as a Mechanism of Resistance?

 

 

Advertisements

Read Full Post »


Cancer Metastasis

Author: Tilda Barliya PhD

Metastasis, a complex process that involves the spread of tumor cells, accounts for more than 90%of cancer-related mortality (1,2). A metastatic tumor cell has a treacherous journey to go through:

  • local invasion and intravasation
  • survival in the circulation
  • homing and extravasation into the parenchyma of distant organs
  • adaptation to the new environment
  • outgrowth of secondary lesions

Although tumor cells that are shed from the primary tumor disseminate throughout the body, they tend to colonize select organs, with characteristically different periods of latency and efficiency depending on tumor type or subtype (2).

Steven Paget’s century-old ‘seed and soil’ hypothesis (2, 9) likened tumor cells to ‘seeds’ that are systemically distributed, but that only inhabit particular environments, or ‘soils’, which are supportive to their sustained growth. Understanding the molecular complexity of this process is difficult and we’ll try to unravel some of the pathogenesis and cellular basis that support the metastatic process.

Progression models:

There are two major tumor progression models (2) :

  • Linear –  primary tumour cells undergo successive rounds of mutation and selection35, giving rise to a biologically heterogeneous cellular population in which a subset of malignant clones have accumulated genetic alterations, necessary for metastasis.
  • Parallel –  tumor cells may disseminate very early in malignant progression, colonize multiple secondary sites at different times and ultimately accumulate genetic changes independently from those incurred by the primary tumor.

While both theories are possible, the linear model is validated by both clinical evidence and animal models, the parallel model is mainly based on animal models and still under investigation for clinical clues.

Meera Saxena. Molecular Oncology
Volume 7, Issue 2 , Pages 283-296, April 2013

Drivers of metastasis

During the past few years several methods and studies have been used to find and correlate between a specific gene and it’s homing target.

These genes, which were found using next-generation sequencing and their equivalents, were also validated their actual functional consequences.

Figure 1 (Meera Saxena et al) represent some of the genes that were associated with organ-specific translocation (additional genes were recently identified and included in table 1 – Sethi N et all). Herein, we generally show the gene to organ-specific homing, yet we will not discuss each and every one of them.  An example of specific gene to organ will be further discussed in detail in follow up article.

Signalling pathways in cancer metastasis have been extensively studied at the level of individual proteins or as a linear cascade of proteins but they have been less frequently evaluated through a network approach (2). Understanding the different variables in the gene-metastasis network may be crucial for drug development.

For example;  the drug–gene–phenotype Connectivity Map approach was successfully used to identify the mTOR inhibitor rapamycin as an effective agent for overcoming dexamethasone resistance in acute lymphoblastic leukaemia (2, 4).

Microenvironment

“Non-neoplastic stromal cells have a function in the development of tumor metastasis. Stromal cells as important regulators of metastasis through their ability to influence cancer cell functions such as chemotaxis and invasion, as well as microenvironment properties. It should not come as a surprise that tumor angiogenesis was among the initial findings that supported a role for stromal cells in cancer metastasis; the poor vascular integrity of newly synthesized blood vessels within the tumour allows for the escape of malignant cells with the potential of distant spread” (2). Such cells include:

  • Tumour-associated macrophages,
  • Leukocytes and other immune cells,
  • Mesenchymal cells that reside in breast tissue
  • Mesenchymal cells and neuroendocrine cells

Although some of the molecular pathway was discovered, the molecular components that facilitate communication between tumour cells and individual stromal cells of the primary tumor have yet to be fully understood.

Circulating Tumor cells (CTC)

“Essential to cancer metastasis is the ability of primary tumor cells to enter the vasculature and to use these fluid ‘highways’ as a means to reach distant organs”. Tight vascular wall barriers, unfavorable conditions for survival in distant organs, and a rate-limiting acquisition of organ colonization functions are just some of the impediments to the formation of distant metastasis (2,5,6 ).

Despite their clear prognostic importance, the diagnostic value of CTCs is largely unknown and fairly unexplored. Research challenges both in detection and interpretation render their ability to  be clinically accepted. Additional research is needed to fully explore CTCs’ potential in to predict clinical response to therapy would also help to guide disease management.

Colonization

The colonization and outgrowth of tumor cells in a secondary organ is often considered the rate-limiting, as well as the most poorly delineated, step in the metastatic cascade. Understanding the functional involvement of the tumor stromal cells of the secondary site may be crucial to understanding their ability to colonize.

The pre-metastatic niche model shows that, preceding the arrival of  disseminated tumour cells (DTCs), bone marrow-derived haematopoietic stem cells are mobilized by tumour-derived factors and are recruited to the secondary site where they negotiate a more hospitable microenvironment to foster the survival and expansion of metastatic lesions. Inflammatory cytokines have emerged as crucial mediators of the pre-metastatic niche and self-seeding and include IL-6, SRC and NF-kB.

After surviving the adjustment to the secondary site, tumor cells must sustain their growth to develop overt metastases. Developmental pathways have emerged as important players in tumor progression and metastasis. These include: transforming growth factor-β (TGFβ), bone morphogenetic protein (BMP), WNT and Hedgehog.  These genes will trigger additional genes that will affect downstream steps of the colonization process.

Clinical Aspect

“As most metastatic cancers are inoperable, systemic treatments using chemotherapeutic or targeted therapy is often the only option to slow tumor growth or to relieve metastasis-associated morbidity”.  Genes and pathways that have crucial roles in primary tumour growth and metastasis are ideal targets for therapeutic inventions. One example is the oncogenic BRAF:  potent inhibitors of mutant BRAF, had initial clinical results which suggest dramatic efficacy in the treatment of metastatic malignant melanoma.  It is important to keep in mind that many cancers develop resistance to BRAF inhibitor and require used of next-generation drugs. More so,  the mechanism of resistance will be discussed elsewhere.

A sound framework of normal homeostatic mechanisms can improve our ability to understand and target tumor–stromal interactions in metastasis.

Summary:

“Despite recognizing the devastating consequences of metastasis, we are not yet able to effectively treat cancer that has spread to vital organs” .  Despite our increasing knowledge about metastatic colonization, we still hold little understanding of how metastatic tumour cells behave as solitary disseminated entities. Understanding the genomics of metastatic cancer cells and the complexity of the metastasis process will enable us to develop a better target-therapeutic drugs.

 

References:

1. Naure Review: Cancer: focus on metastasis. http://www.nature.com/nrc/focus/metastasis/index.html

2. Nilay Sethi and Yibin Kang. Unravelling the complexity of metastasis — molecular understanding and targeted therapies. Nature Reviews Cancer 2011; 11:732- 748. http://www.nature.com/nrc/journal/v11/n10/abs/nrc3125.html

3. Meera Saxena and Gerhard Christophor. Rebuilding cancer metastasis in the mouse. Molecular Oncology 2013, 7(2):283-296. http://www.moloncol.org/article/S1574-7891(13)00033-1/abstract

4. Lamb, J. et al. The Connectivity Map: using geneexpression signatures to connect small molecules, genes, and disease. Science 2006 313, 1929–1935. http://www.sciencemag.org/content/313/5795/1929.short

5. Chiang AC and Massagué J. Molecular basis of metastasis. N Engl J Med. 2008 Dec 25;359(26):2814 23 ;http://www.ncbi.nlm.nih.gov/pubmed/19109576

6. By: Ritu Saxena PhD. In focus: Circulating Tumor Cells. https://pharmaceuticalintelligence.com/2013/06/24/in-focus-circulating-tumor-cells/

7.   Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. http://www.nature.com/nature/journal/v417/n6892/full/nature00766.html

8. Arozarena, I. et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP specific phosphodiesterase PDE5A. Cancer Cell 19, 45–57 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21215707

9. Isaiah J. Fidler. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Review Cancer. 2003 June. 3(6):453-8. http://www.ncbi.nlm.nih.gov/pubmed/12778135

10. Christoph A. Klein. Parallel progression of primary tumours and metastases.   Nat Rev Cancer. 2009 Apr;9(4):302-12  http://www.ncbi.nlm.nih.gov/pubmed/19308069 http://prometheus.fmrp.usp.br/biocelmolcancer/Klein.pdf

 

Other related articles published on this Open Access Scientific Journal, include the following:

I. By: Ritu Saxena PhD. In focus: Circulating Tumor Cells. https://pharmaceuticalintelligence.com/2013/06/24/in-focus-circulating-tumor-cells/

II. By: Ritu Saxena PhD. Scientists use natural agents for prostate cancer bone metastasis treatment. https://pharmaceuticalintelligence.com/2012/09/17/natural-agents-for-prostate-cancer-bone-metastasis-treatment/

III. By: Prabodh Kandala, PhD. All Cancer Cells Are Not Created Equal: Some Cell Types Control Continued Tumor Growth, Others Prepare the Way for Metastasis. https://pharmaceuticalintelligence.com/2012/05/17/all-cancer-cells-are-not-created-equal-some-cell-types-control-continued-tumor-growth-others-prepare-the-way-for-metastasis/

IV. By: Aviva Lev-Ari PhD RN. MIT Scientists Identified Gene that Controls Aggressiveness in Breast Cancer Cells. https://pharmaceuticalintelligence.com/2013/07/03/mit-scientists-identified-gene-that-controls-aggressiveness-in-breast-cancer-cells/

V. By: Demet Sag PhD CRA, GCP.  The Magic of the Pandora’s Box : Epigenetics and Stemness with Long non-coding RNAs (lincRNA). https://pharmaceuticalintelligence.com/2013/06/30/the-magic-of-the-pandoras-box-epigenetics-and-stemmness-with-long-non-coding-rnas-lincrna/

 

Read Full Post »